WO2019125023A1 - 내마모성이 우수한 강재 및 그 제조방법 - Google Patents

내마모성이 우수한 강재 및 그 제조방법 Download PDF

Info

Publication number
WO2019125023A1
WO2019125023A1 PCT/KR2018/016384 KR2018016384W WO2019125023A1 WO 2019125023 A1 WO2019125023 A1 WO 2019125023A1 KR 2018016384 W KR2018016384 W KR 2018016384W WO 2019125023 A1 WO2019125023 A1 WO 2019125023A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
steel
excluding
rolled
less
Prior art date
Application number
PCT/KR2018/016384
Other languages
English (en)
French (fr)
Other versions
WO2019125023A8 (ko
Inventor
김용진
정영덕
강명훈
윤여선
박수길
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US16/954,672 priority Critical patent/US20210164068A1/en
Priority to EP18890993.1A priority patent/EP3730649A1/en
Priority to CN201880083118.1A priority patent/CN111492082B/zh
Publication of WO2019125023A1 publication Critical patent/WO2019125023A1/ko
Publication of WO2019125023A8 publication Critical patent/WO2019125023A8/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to an austenitic steels used for industrial machinery, structural materials, steels for mining, transportation and storage in oil and gas industries such as steel for slurry pipes and sour steels, And more particularly to an austenitic steel material excellent in internal quality and abrasion resistance and a method of manufacturing the same.
  • the austenitic steels are used for various purposes because of their excellent work hardening ability, low temperature toughness and non-magnetic properties.
  • carbon steels mainly composed of ferrite or martensite which are mainly used in the prior art, are limited in their properties, the application of carbon steels has been increasing as a substitute material to overcome these disadvantages.
  • the ingot or slab of high manganese steel is inevitably segregated by impurity elements such as P and S in addition to alloying elements such as manganese and carbon during solidification, which is further deteriorated in post-processing such as hot rolling, And the formation of coarse carbides along the segregated seaweeds eventually promotes non-uniformity of microstructure and deterioration of physical properties.
  • Patent Document 1 Korean Patent Laid-Open Publication No. 2016-0077558
  • a preferred aspect of the present invention is to provide a steel material excellent in strength, elongation, impact toughness, and excellent in internal quality and abrasion resistance.
  • Another aspect of the present invention is to provide a method of manufacturing a steel material excellent in strength, elongation and impact toughness, and excellent in internal quality and abrasion resistance.
  • a method of manufacturing a semiconductor device which comprises 0.55 to 1.4% of carbon (C), 12 to 23% of manganese (Mn), 5% Cu: not more than 5% (excluding 0%), Al: not more than 0.5% (excluding 0%), Si: not more than 1.0% (excluding 0%), S: not more than 0.02% P): 0.04% or less (including 0%), the remainder Fe, and unavoidable impurities, and has a microstructure, a steel material having excellent abrasion resistance including carbide and remaining austenite in an area percent of 10% Is provided.
  • the steel material may have an ingredient segregation index (S) expressed by the following relational expression 1 below 3.0.
  • S ingredient segregation index
  • the central component means a component in the range of 50 ⁇ or less in the upper and lower parts of the portion where the highest component is measured in the microstructure analysis at the position of the rolled material 1/2 thickness
  • the steel may have a yield strength of 350 MPa or more, a uniform elongation of 20% or more, and impact toughness of 40 J or more .
  • a method of manufacturing a semiconductor device which comprises 0.55 to 1.4% of carbon (C), 12 to 23% of manganese (Mn), 5% (Cu): not more than 5% (excluding 0%), Al: not more than 0.5% (excluding 0%), Si: not more than 1.0% (excluding 0%), S: not more than 0.02% (P): not more than 0.04% (including 0%), the balance Fe, and unavoidable impurities;
  • T R reheating temperature ( ⁇ ); [C] and [Mn] each means the content (% by weight) of the corresponding element]
  • Fig. 1 is a photograph showing defects in the center of the steel sheet thickness of the comparative steel 4.
  • the inventors of the present invention have been studying steels having excellent strength and abrasion resistance as compared with conventional steels used in technical fields requiring abrasion resistance.
  • high manganese steels not only excellent strength and elongation specific to austenitic steels can be secured,
  • the work hardening rate is improved, the hardness is rather increased due to the work hardening of the material itself in a wear environment, and excellent wear resistance can be ensured, thereby completing the present invention.
  • the present invention provides an austenitic steel material having excellent strength and elongation specific to an austenitic steel material and having high hardness due to work hardening of the material itself in a wear environment and having excellent abrasion resistance and a method for producing the same.
  • the present invention optimizes the casting condition and the reheating condition to control the core embrittlement problem due to a large amount of carbon and manganese content and impurities such as P, which is a problem of the conventional austenitic wear-resistant steel,
  • This improved austenitic abrasion resistant steel material and a manufacturing method thereof are provided
  • the steel having excellent abrasion resistance contains 0.55 to 1.4% of carbon (C), 12 to 23% of manganese (Mn), 5% or less of chromium (Cr) ), Copper (Cu): not more than 5% (excluding 0%), Al: not more than 0.5% (excluding 0%), Si: not more than 1.0% (excluding 0%), S: not more than 0.02% ), Phosphorus (P): 0.04% or less (including 0%), the remainder Fe and unavoidable impurities, and 10% or less (including 0%) of carbide and remaining austenite in a microstructure.
  • Carbon (C) serves as an austenite stabilizing element not only for improving the uniform elongation but also for enhancing the strength and increasing the work hardening rate. If the content of carbon is less than 0.55%, it is difficult to form stable austenite at room temperature, and it is difficult to secure sufficient strength and work hardening rate. On the other hand, if the content exceeds 1.4%, a large amount of carbide is precipitated to reduce the uniform elongation, which may make it difficult to secure an excellent elongation, and may cause a decrease in abrasion resistance and premature rupture.
  • the content of C is preferably limited to 0.55 to 1.4%, and more preferably to 0.8 to 1.3%.
  • Manganese (Mn) is a very important element that stabilizes austenite and improves the uniform elongation. In order to obtain austenite as the main structure in the present invention, it is preferable that Mn is contained at 12% or more.
  • the content of Mn is less than 12%, the austenite stability is lowered and a martensitic structure can be formed. As a result, if austenite structure is not sufficiently secured, it is difficult to secure a sufficient uniform elongation.
  • the content of Mn exceeds 23%, not only the production cost is increased but also there are problems such as deterioration of corrosion resistance due to addition of manganese and difficulty in manufacturing process
  • the content of Mn is preferably limited to 12 to 23%, and more preferably to 15 to 21%.
  • Chromium (Cr) stabilizes austenite up to the appropriate amount of added amount, improves impact toughness at low temperature, and increases the strength of steel by solidification in austenite. Chromium is also an element that improves the corrosion resistance of steel. However, if the content of Cr exceeds 5%, carbides are excessively formed on the austenite grain boundaries, which may significantly lower the toughness of the steel, which is not preferable. In some cases, it may be limited to 3.5% or less.
  • Copper (Cu) has a very low solubility in the carbide and is slow to diffuse in the austenite and is concentrated at the austenite and nucleated carbide interface, thereby inhibiting the diffusion of carbon, effectively slowing the carbide growth, .
  • the upper limit of the content is preferably limited to 5%.
  • Aluminum (Al) and silicon (Si) are components to be added as a deoxidizer during the steelmaking process.
  • the upper limit of the aluminum (Al) content is limited to 0.5%, and the upper limit of the silicon (Si) content is preferably limited to 1.0% .
  • S is desirably suppressed as impurities as possible, and the upper limit thereof is preferably 0.02%.
  • P is well known as an element which causes segregation in the grain boundary and induces high-temperature brittleness.
  • high alloy steels containing a large amount of C and Mn, such as the inventive steels It may cause brittleness.
  • P exceeds a certain amount the degree of segregation sharply increases, and therefore, the content thereof is preferably limited to 0.04% or less.
  • a steel material excellent in wear resistance according to a preferred aspect of the present invention is a microstructure and includes carbide and residual austenite in an area percent of 10% or less (including 0%).
  • the fraction of the carbide exceeds 10% by area%, rapid impact toughness deterioration may be caused.
  • the austenite improves ductility and toughness.
  • the steel has a component segregation index (S) expressed by the following relational expression 1 of 3.0 or less.
  • the central component means a component in the range of 50 ⁇ or less in the upper and lower parts of the portion where the highest component is measured in the microstructure analysis at the position of the rolled material 1/2 thickness
  • the steel may have a yield strength of 350 MPa or more, a uniform elongation of 20% or more, and impact toughness of 40 J or more.
  • a method of manufacturing a steel material having excellent wear resistance which comprises 0.55 to 1.4% of carbon (C), 12 to 23% of manganese (Mn), 5% (Excluding 0%), copper (Cu): not more than 5% (excluding 0%), Al: not more than 0.5% (excluding 0%), Si: not more than 1.0% (Including 0%), phosphorus (P): not more than 0.04% (including 0%), the balance Fe and unavoidable impurities;
  • T R reheating temperature ( ⁇ ); [C] and [Mn] each means the content (% by weight) of the corresponding element]
  • the molten steel thus formed is continuously cast to obtain a steel slab under conditions of a molten steel temperature (T C ) satisfying the following relational expression 2 and a casting speed (V) satisfying the following relational expression (3).
  • the casting conditions according to the composition changes as shown in the relational expressions 2 to 4 are derived. This makes it possible to suppress the internal quality (core quality) that frequently occurs in the final steel.
  • an excessive segregation band may be formed in the slab, resulting in slab brittleness, and excessive segregation remains after reheating and rolling, which may cause quality defects.
  • the slab obtained by continuous casting as described above is reheated.
  • the slab reheating is preferably carried out at a reheating temperature (T R ) determined by the following formula (5).
  • T R reheating temperature ( ⁇ ); [C] and [Mn] each means the content (% by weight) of the corresponding element]
  • the slabs thus reheated as described above are hot-rolled to obtain a hot-rolled steel sheet having a finish rolling temperature of 850 to 1050 ° C.
  • finish rolling temperature is lower than 850 ° C, carbides may precipitate and the uniform elongation may be lowered, and the microstructure may be pancaked to cause non-uniform stretching due to tissue anisotropy. If the finish rolling temperature is higher than 1050 ° C, crystal grain growth may be active and the crystal grains may easily be coarsened, resulting in a problem of lowering the strength.
  • the hot-rolled steel is cooled to 5 ° C / sec or more to 600 ° C or less.
  • the cooling rate is less than 5 ⁇ ⁇ / sec or the cooling stop temperature is more than 600 ⁇ ⁇ , carbide precipitation may occur to lower the elongation.
  • the rapid cooling process helps to ensure high employment of C and N elements in the matrix. Therefore, it is preferable that the cooling is carried out at a rate of 5 ° C / sec or more to 600 ° C or less.
  • the cooling rate is more preferably 10 ° C / sec or more, and more preferably 15 ° C / sec or more.
  • the upper limit of the cooling rate is not particularly limited and may be limited in consideration of the cooling ability of the facility.
  • the cooling of the hot-rolled steel may be performed up to room temperature.
  • a method of producing a steel material excellent in wear resistance for example, a steel material having a yield strength of 350 MPa or more, a uniform elongation of 20% or more, and impact toughness of 40 J or more.
  • Hot rolled steel was produced by reheating, hot rolling and cooling the slabs under the conditions shown in Table 3, after continuously casting the molten steels satisfying the following component and composition ranges as shown in Table 1 under the conditions shown in Table 2 below.
  • the microstructure, component segregation index, cracking incidence (%), abrasion resistance (g), yield strength (MPa) and uniform elongation percentage (%) of the hot rolled steel sheet thus prepared were measured, .
  • the abrasion resistance was evaluated by measuring the weight after abrasion by contacting a specimen with a rotating roll while spraying a certain amount of sand by a sand abrasion test according to ASTM 65 test method.
  • Component Segregation Index (S) (rolled material center portion C component / molten steel C component) /1.25+ (rolled member center portion Mn component / molten steel Mn component) /1.15+ (rolled member center component P component / molten steel P component) / 3.0
  • rolled material 1/2 refers to a component in the upper and lower 50 ⁇ m range of the portion where the highest component is measured when the microstructure is analyzed at the thickness position
  • the inventive steel (1-5) satisfying both the steel composition and the manufacturing conditions of the present invention is excellent in abrasion resistance, yield strength, impact toughness and uniform elongation, The rate is also low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 강도, 연신율 및 충격인성이 우수할 뿐만 아니라 내부 품질 및 내마모성이 우수한 강재 및 그 제조방법을 제공하고자 하는 것이다. 본 발명에 의하면, 중량%로, 탄소(C): 0.55~1.4%, 망간(Mn): 12~23%, 크롬(Cr): 5%이하(0%는 제외), 구리(Cu): 5%이하(0%는 제외), Al:0.5%이하(0%는 제외), Si:1.0%이하(0%는 제외), S:0.02%이하(0% 포함), 인(P): 0.04%이하(0% 포함), 잔부 Fe 및 불가피한 불순물을 포함하고, 미세조직으로 면적%로, 10%이하(0% 포함)의 탄화물 및 잔부 오스테나이트를 포함하는 내마모성이 우수한 강재 및 그 제조방법이 제공된다.

Description

내마모성이 우수한 강재 및 그 제조방법
본 발명은 산업기계, 구조재료, 그리고 슬러리 파이프용 강재, 내sour 강재 등 오일 및 가스 산업 (Oil and Gas Industries)에서 채굴, 수송, 저장 분야 등의 강재에 사용되는 오스테나이트계 강재 및 그 제조방법에 관한 것으로, 보다 상세하게는 내부품질 및 내마모성이 우수한 오스테나이트계 강재 및 그 제조방법에 관한 것이다.
오스테나이트계 강재는 그 자체가 가지고 있는 우수한 가공경화능, 저온인성 및 비자성 등의 성질로 인하여 다양한 용도로 사용되고 있다. 특히, 기존에 주로 사용되던 페라이트 혹은 마르텐사이트를 주 조직으로 하는 탄소강이 그 특성에 한계를 나타냄에 따라 이들의 단점을 극복하는 대체재로 최근 그 적용이 증가하고 있는 추세이다.
특히, 광산 산업, 오일 및 가스 산업 (Oil and Gas Industries)의 성장에 따라 채굴, 수송, 정제 및 저장 과정에서 사용 강재의 마모가 큰 문제점으로 대두되고 있다. 특히 최근 석유를 대체할 화석 연료로 오일 샌드 (Oil Sands)에 대한 개발이 본격화 됨에 따라 오일, 암석, 자갈, 모래 등이 포함된 슬러리에 의한 강재 마모는 생산 비용의 증가를 일으키는 중요한 원인으로 지적되고 있으며, 이에 따라 내마모성이 우수한 강재의 개발 및 적용에 대한 수요가 크게 증가하고 있다.
기존의 광산 및 기계산업용 부품 산업에서는 내마모성이 우수한 해드필드강 (Hadfield)이 주로 사용되어 왔으며, 강재의 내마모성을 높이기 위해 높은 함량의 탄소를 함유시키고 망간을 다량 포함시켜 오스테나이트 조직 및 마모 저항성을 증가시키려는 노력이 꾸준히 진행되어 왔다. 그러나, 해드필드강의 경우 높은 탄소 함량은 오스테나이트 입계를 따라 네트웍 형태의 탄화물을 고온에서 생성시켜 강재의 물성, 특히 연성을 급격히 저하시킨다.
이러한 네트웍 형태의 탄화물 석출을 억제하기 위해 고온에서 용체화 처리를 하거나 혹은 열간가공 후 상온으로 급냉시켜 고망간강을 제조하는 방법이 제시되었다. 그러나, 강재의 두께가 두꺼운 경우 또는 용접이 필수적으로 수반되는 경우와 같이 제조조건의 변화가 용이하지 않은 경우 이러한 네트웍 형태의 탄화물 석출을 억제하기 힘들며, 이로 인해 강재의 물성이 급격히 열화되는 문제점이 발생하게 된다.
또한, 고망간강의 잉곳 또는 주편은 응고 중 망간 및 탄소 등과 같은 합금원소 외에도 P, S 등과 같은 불순물 원소에 의한 편석이 필연적으로 발생하고 이는 열간압연 등의 후 가공시 더욱 악화되어 결국 최종제품에서 심화된 편석대를 따라 조대한 탄화물이 형성되며 결국 미세조직의 불균일성을 조장하고 물성 열화가 발생한다.
또한, 가공 중에 발생하는 열이나 응력에 의한 중심부 크랙을 발생시키는 결과를 가져오기도 한다.
내마모성 향상을 위해서는 탄소의 함량을 증가시키는 것이 필수적이며, 이로 인한 탄화물 석출에 의한 물성 열화를 방지하기 위해 망간 함량을 증가시키는 것이 일반적인 방법이 될 수 있으나 이는 결국 합금 량과 제조단가의 상승을 초래하게 된다.
이를 해결하기 위해 망간 대비 탄화물 형성 억제에 효과적인 원소의 첨가에 대한 연구도 요구되고 있다. 또한, 고합금 제품에서 흔히 발생하는 편석에 의한 취성 문제에 대한 연구도 지속적으로 요구되고 있다.
(선행기술문헌)
(특허문헌 1) 대한민국 공개특허공보 제2016-0077558호
본 발명의 바람직한 일 측면은 강도, 연신율 및 충격인성이 우수할 뿐만 아니라 내부 품질 및 내마모성이 우수한 강재를 제공하고자 하는 것이다.
본 발명의 바람직한 다른 일 측면은 강도, 연신율 및 충격인성이 우수할 뿐만 아니라 내부 품질 및 내마모성이 우수한 강재의 제조방법을 제공하고자 하는 것이다.
본 발명의 바람직한 일 측면에 의하면, 중량%로, 탄소(C): 0.55~1.4%, 망간(Mn): 12~23%, 크롬(Cr): 5%이하(0%는 제외), 구리(Cu): 5%이하(0%는 제외), Al:0.5%이하(0%는 제외), Si:1.0%이하(0%는 제외), S:0.02%이하(0% 포함), 인(P): 0.04%이하(0% 포함), 잔부 Fe 및 불가피한 불순물을 포함하고, 미세조직으로, 면적%로, 10%이하(0% 포함)의 탄화물 및 잔부 오스테나이트를 포함하는 내마모성이 우수한 강재가 제공된다.
상기 강재는 하기 관계식 1로 표현되는 성분 편석지수(S)가 3.0 이하일 수 있다.
[관계식 1]
성분 편석지수(S) = (압연재 중심부 C 성분/용강C성분)/1.25 + (압연재 중심부 Mn 성분/용강Mn성분)/1.15 + (압연재 중심부 P 성분/용강P성분)/3.0
(여기서, 중심부 성분은 압연재 1/2두께 위치에서 미세조직 분석시 가장 성분이 높게 측정되는 부분의 상하 50㎛이하 범위의 성분을 의미한다)
상기 강재는 350MPa이상의 항복강도, 20%이상의 균일 연신율 및 40J 이상의 충격인성을 가질 수 있다.
본 발명의 바람직한 다른 일 측면에 의하면, 중량%로, 탄소(C): 0.55~1.4%, 망간(Mn): 12~23%, 크롬(Cr): 5%이하(0%는 제외), 구리(Cu): 5%이하(0%는 제외), Al:0.5%이하(0%는 제외), Si: 1.0%이하(0%는 제외), S: 0.02%이하(0%포함), 인(P): 0.04%이하(0% 포함), 잔부 Fe 및 불가피한 불순물을 포함하는 용강을 준비하는 단계;
상기 용강을 하기 관계식 2를 만족시키는 용강온도(TC)와 하기 관계식 3을 만족시키는 주조속도(V)의 조건으로 연속주조하여 슬라브를 얻는 연속주조단계;
[관계식 2]
K≤TC≤K+60
(상기 관계식 2에서 K 값은 하기 관계식 4에 의해 결정되는 값을 나타낸다.)
[관계식 3]
V (m/min) ≥ 0.025[TC-K]
(상기 관계식 3에서 K 값은 하기 관계식 4에 의해 결정되는 값을 나타낸다.)
[관계식 4]
K (℃) = 1536 - (69[C] + 4.2[Mn] + 39[P])
(여기서, [C], [Mn], [P] 각각은 해당 원소의 함량(중량%)을 의미함)
상기 슬라브를 하기 관계식 5에 의해 구해지는 재가열온도(TR)이하에서 재가열하는 단계;
[관계식 5]
TR = 1453 - 165[C] - 4.5[Mn] - 414[P]
[TR: 재가열온도(℃); [C] 및 [Mn] 각각은 해당 원소의 함량(중량%)을 의미함]
상기와 같이 재가열된 슬라브를 마무리 압연온도가 850~1050℃가 되도록 열간압연하여 열연강재를 얻는 단계; 및
상기 열연강재를 5℃/sec이상으로 600℃ 이하까지 냉각하는 단계를 포함하는 내마모성이 우수한 강재의 제조방법이 제공된다.
본 발명에 의하면, 내마모성이 우수하여 마모가 다량 발생하는 오일 및 가스 산업에서 채굴, 수송, 저장 분야 또는 산업기계 분야 전반의 내마모성이 요구되는 분야에 적용 가능하며, 특히 생산공정 중 발생할 수 있는 내부 결함 발생율을 획기적으로 감소시킬 수 있어 내부품질이 요구되는 분야로 적용 범위를 확대시킬 수 있는 강재를 제공할 수 있다.
도 1은 비교강 4의 강판 두께 중심부 결함을 나타내는 사진이다.
본 발명자들은 내마모성이 요구되는 기술분야에 사용되던 기존 강재 대비 우수한 강도와 내마모성을 갖는 강재에 대해 연구하던 중, 고 망간 강의 경우 오스테나이트계 강재 특유의 우수한 강도 및 연신율을 확보할 수 있을 뿐만 아니라, 가공경화율을 향상시키는 경우, 마모환경에서 소재자체의 가공경화로 인해 오히려 경도가 높아져 우수한 내마모성을 확보할 수 있음을 인식하고 본 발명을 완성하게 되었다.
본 발명은 오스테나이트계 강재 특유의 우수한 강도 및 연신율을 가질 뿐만 아니라, 마모환경에서 소재자체의 가공경화로 인해 오히려 경도가 높아져 우수한 내마모성도 갖는 오스테나이트계 강재 및 그 제조방법을 제공한다.
더 나아가, 본 발명은 주조 조건 및 재가열 조건을 최적화하여 기존의 오스테나이트계 내마모 강재의 문제점인 다량의 탄소 및 망간 함유와 P등과 같은 불순물에 따른 중심부 취화 문제를 제어함으로써 내부품질(중심부 품질)이 향상된 오스테나이트계 내마모 강재 및 그 제조방법을 제공한다
이하, 본 발명의 바람직한 일 측면에 따르는 내마모성이 우수한 강재에 대하여 설명한다.
본 발명의 바람직한 일 측면에 따르는 내마모성이 우수한 강재는 중량%로, 탄소(C): 0.55~1.4%, 망간(Mn): 12~23%, 크롬(Cr): 5%이하(0%는 제외), 구리(Cu): 5%이하(0%는 제외), Al:0.5%이하(0%는 제외), Si: 1.0%이하(0%는 제외), S: 0.02%이하(0% 포함), 인(P): 0.04%이하(0% 포함), 잔부 Fe 및 불가피한 불순물을 포함하고, 미세조직으로 10%이하(0% 포함)의 탄화물과 잔부 오스테나이트를 포함한다.
이하, 성분 및 성분범위에 대하여 설명한다.
C: 0.55~1.4중량%(이하, "%"라고도 함)
탄소(C)는 오스테나이트 안정화 원소로서 균일 연신율을 향상시키는 역할을 할 뿐만 아니라 강도 향상 및 가공경화율을 높이는데 매우 유리한 원소이다. 이러한 탄소의 함량이 0.55% 미만이면 상온에서 안정한 오스테나이트를 형성하기 어렵고, 충분한 강도 및 가공경화율을 확보하기 어려운 문제가 있다. 반면, 그 함량이 1.4%를 초과하게 되면 탄화물이 다량 석출되어 균일 연신율을 저감시켜 우수한 연신율을 확보하기 곤란할 수 있으며, 내마모성 하락 및 조기 파단을 야기할 수 있다.
따라서, 상기 C의 함량은 0.55~1.4%로 제한함이 바람직하며, 0.8~1.3%로 제한하는 것이 보다 바람직하다.
Mn: 12~23%
망간(Mn)은 오스테나이트를 안정화시키는 역할을 하는 매우 중요한 원소로서, 균일 연신율을 향상시킨다. 본 발명에서 주 조직으로 오스테나이트를 얻기 위해서는 Mn이 12% 이상 포함되는 것이 바람직하다.
만일, Mn의 함량이 12% 미만일 경우에는 오스테나이트 안정도가 저하되어 마르텐사이트 조직이 형성될 수 있고, 이로 인해 오스테나이트 조직을 충분히 확보하지 못하면 충분한 균일연신율 확보가 어렵다. 반면, Mn의 함량이 23%를 초과하게 되면 제조비용이 상승할 뿐만 아니라, 망간첨가로 인한 내식성 저하 및 제조 공정상의 어려움 등의 문제점이 있다
따라서, 상기 Mn의 함량은 12~23%로 제한함이 바람직하며, 15~21%로 제한하는 것이 보다 바람직하다.
Cr: 5% 이하(0%는 제외)
크롬(Cr)은 적정한 첨가량의 범위까지는 오스테나이트를 안정화시켜 저온에서의 충격 인성을 향상시키고 오스테나이트 내에 고용되어 강재의 강도를 증가시키는 역할을 한다. 또한, 크롬은 강재의 내식성을 향상시키는 원소이기도 하다. 다만, 이러한 Cr의 함량이 5%를 초과하게 되면 오스테나이트 입계에 탄화물을 과다 형성하여 강재의 인성을 크게 저하시킬 우려가 있으므로, 바람직하지 못하다. 또한 경우에 따라서는 3.5% 이하로 제한할 수도 있다.
Cu: 5% 이하(0%는 제외)
구리(Cu)는 탄화물 내 고용도가 매우 낮고 오스테나이트 내 확산이 느려서 오스테나이트와 핵생성된 탄화물 계면에 농축되고, 이에 따라 탄소의 확산을 방해함으로써 탄화물 성장을 효과적으로 늦추게 되고, 결국 탄화물 생성을 억제하는 효과가 있다. 다만, Cu의 함량이 5%를 초과하는 경우에는 강재의 열간가공성을 저하시키는 문제점이 있으므로, 그 함량의 상한은 5%로 제한하는 것이 바람직하다.
Al: 0.5%이하(0%는 제외), Si: 1.0%이하(0%는 제외)
알루미늄(Al) 및 실리콘(Si)은 제강공정 중 탈산제로 첨가되는 성분으로, 알루미늄(Al) 함량의 상한은 0.5%로 한정하고, 실리콘(Si) 함량의 상한은 1.0%로 한정하는 것이 바람직하다.
S: 0.02%이하(0% 포함)
S는 불순물로서 가능한 한 억제하는 것이 바람직하며, 그 상한은 0.02%로 관리하는 것이 바람직하다.
P: 0.04%이하(0% 포함)
일반적으로, P는 입계에 편석(segregation)하여 고온취성을 유발하는 원소로 잘 알려져 있으며, 특히 본 발명강재와 같이 C, Mn이 다량 함유되는 고합금 강종은 P 편석까지 더해질 경우 슬라브 및 제품에 심각한 취성을 유발할 수 있다. 더욱이 P는 일정 함량을 초과할 경우 편석도가 급격히 상승하게 되므로, 그 함량은 0.04%이하로 제한하는 것이 바람직하다.
이외에 잔부 Fe 및 불가피한 불순물을 포함한다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 본 기술분야에서 통상의 지식을 가진 자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 본 명세서에서 특별히 언급하지는 않는다. 더불어, 상기 조성 이외에 유효한 성분의 첨가가 배제되는 것은 아니다.
본 발명의 바람직한 일 측면에 따르는 내마모성이 우수한 강재는 미세조직으로, 면적%로, 10%이하(0% 포함)의 탄화물 및 잔부 오스테나이트를 포함한다.
상기 탄화물의 분율이 면적%로, 10%를 초과하는 경우에는 급격한 충격인성 열화를 유발할 수 있다. 상기 오스테나이트는 연성 및 인성을 개선시킨다.
상기 강재는 하기 관계식 1로 표현되는 성분 편석지수(S)가 3.0 이하인 것이 바람직하다.
[관계식 1]
성분 편석지수(S) = (압연재 중심부 C 성분/용강C성분)/1.25 + (압연재 중심부 Mn 성분/용강Mn성분)/1.15 + (압연재 중심부 P 성분/용강P성분)/3.0
(여기서, 중심부 성분은 압연재 1/2두께 위치에서 미세조직 분석시 가장 성분이 높게 측정되는 부분의 상하 50㎛이하 범위의 성분을 의미한다)
상기 관계식 1로 표현되는 성분 편석지수(S)가 3.0을 초과하는 경우에는 가공중, 예를 들면 절단 가공중 1/2t(t: 강재두께) 위치에서 편석대를 따라 균열이 발생할 확률이 급격히 상승하게 될 수 있다.
상기 강재는 350MPa이상의 항복강도, 20%이상의 균일 연신율 및 40J 이상의 충격인성을 가질 수 있다.
이하, 본 발명의 바람직한 다른 일 측면에 따르는 내마모성이 우수한 강재의 제조방법에 대하여 상세히 설명한다.
본 발명의 바람직한 다른 일 측면에 따르는 내마모성이 우수한 강재의 제조방법은 중량%로, 탄소(C): 0.55~1.4%, 망간(Mn): 12~23%, 크롬(Cr): 5%이하(0%는 제외), 구리(Cu): 5%이하(0%는 제외), Al: 0.5%이하(0%는 제외), Si: 1.0%이하(0%는 제외), S: 0.02%이하(0% 포함), 인(P): 0.04%이하(0% 포함), 잔부 Fe 및 불가피한 불순물을 포함하는 용강을 준비하는 단계;
상기 용강을 하기 관계식 2를 만족시키는 용강온도(TC)와 하기 관계식 3을 만족시키는 주조속도(V)의 조건으로 연속주조하여 슬라브를 얻는 연속주조단계;
[관계식 2]
K≤TC≤K+60
(상기 관계식 2에서 K 값은 하기 관계식 4에 의해 결정되는 값을 나타낸다.)
[관계식 3]
V (m/min) ≥ 0.025[TC-K]
(상기 관계식 3에서 K 값은 하기 관계식 4에 의해 결정되는 값을 나타낸다.)
[관계식 4]
K (℃) = 1536 - (69[C] + 4.2[Mn] + 39[P])
(여기서, [C], [Mn], [P] 각각은 해당 원소의 함량(중량%)을 의미함)
상기 슬라브를 하기 관계식 5에 의해 구해지는 재가열온도(TR)이하에서 재가열하는 단계;
[관계식 5]
TR = 1453 - 165[C] - 4.5[Mn] - 414[P]
[TR: 재가열온도(℃); [C] 및 [Mn] 각각은 해당 원소의 함량(중량%)을 의미함]
상기와 같이 재가열된 슬라브를 마무리 압연온도가 850~1050℃가 되도록 열간압연하여 열연강재를 얻는 단계; 및
상기 열연강재를 5℃/sec이상으로 600℃ 이하까지 냉각하는 단계를 포함한다.
연속주조단계
상기와 같이 조성되는 용강을 하기 관계식 2를 만족시키는 용강온도(TC)와 하기 관계식 3을 만족시키는 주조속도(V)의 조건으로 연속주조하여 강 슬라브를 얻는다.
[관계식 2]
K≤TC≤K+60
(상기 관계식 2에서 K 값은 하기 관계식 4에 의해 결정되는 값을 나타낸다.)
[관계식 3]
V (m/min) ≥ 0.025[TC-K]
(상기 관계식 3에서 K 값은 하기 관계식 4에 의해 결정되는 값을 나타낸다.)
[관계식 4]
K (℃) = 1536 - (69[C] + 4.2[Mn] + 39[P])
(여기서, [C], [Mn], [P] 각각은 해당 원소의 함량(중량%)을 의미함)
본 발명에서는 고탄소 고망간 내마모강에서 용이하게 발생할 수 있는 슬라브 조직내 과편석을 억제하기 위하여, 상기 관계식 2~4 와 같은 성분변화에 따른 주조조건을 도출한 것이다. 이를 통해 최종 강재에서 빈번히 발생하는 내부품질(중심부 품질) 불량을 억제할 수 있다.
상기와 같은 주조조건으로 슬라브를 제조하지 않을 경우 슬라브 내에 과도한 편석대가 형성되어 슬라브 취성이 발생할 수 있으며, 재가열 및 압연 후에도 과도한 편석대가 잔존하여 품질결함을 유발할 수 있다.
슬라브 재가열 단계
상기와 같이 연속주조하여 얻어진 슬라브를 재가열한다.
상기 슬라브 재가열은 하기 관계식 5에 의해 구해지는 재가열온도(TR)이하에서 실시하는 것이 바람직하다.
[관계식 5]
TR = 1453 - 165[C] - 4.5[Mn] - 414[P]
[TR: 재가열온도(℃); [C] 및 [Mn] 각각은 해당 원소의 함량(중량%)을 의미함]
본 발명에서는 고탄소 고망간 내마모강에서 용이하게 발생할 수 있는 재가열 시 편석대 부분용융에 의한 중심부 취화를 억제하기 위하여, 상기 관계식 5와 같은 성분변화에 따른 재가열 온도 제한 조건을 도출한 것이다. 이를 통해 최종 강재에서 빈번히 발생하는 내부품질(중심부 품질) 불량을 억제할 수 있다.
슬라브 재가열 온도가 TR온도을 초과할 경우 슬라브 내 편석대에서 부분 용융이 발생할 수 있으며, 이로 인해 발생한 중심부 취화는 제품까지 연결되어, 압연재 중심부 성분 편석지수가 3.0을 초과하여 중심부 불량을 야기시킨다.
열연강재를 얻는 단계
상기와 같이 재가열된 슬라브를 마무리 압연온도가 850~1050℃가 되도록 열간압연하여 열연강재를 얻는다.
상기 마무리 압연온도가 850℃미만일 경우에는 탄화물이 석출되어 균일 연신율이 저하될 수 있으며, 미세조직이 팬케이크화 되어 조직 이방성으로 인한 불균일 연신이 발생할 수 있다. 상기 마무리 압연온도가 1050℃를 초과하는 경우에는 결정립 성장이 활발하여 쉽게 결정립이 조대화되어 강도가 저하되는 문제가 발생할 수 있다.
열연강재의 냉각단계
상기 열연강재를 5℃/sec이상으로 600℃이하까지 냉각한다.
상기 냉각속도가 5℃/sec미만이거나, 냉각정지온도가 600℃를 초과하는 경우에는 탄화물이 석출되어 연신율이 저하되는 문제가 발생할 수 있다. 급속한 냉각 공정은 기지조직 내의 C 및 N 원소들의 높은 고용도를 확보하는데 도움이 된다. 따라서, 상기 냉각은 5℃/sec이상으로 600℃이하까지 실시되는 것이 바람직하다. 상기 냉각 속도는 10℃/sec이상이 보다 바람직하며, 15℃/sec 이상이 보다 더 바람직하다.
상기 냉각속도의 상한은 특별히 한정되는 것은 아니며, 설비의 냉각능 등을 고려하여 한정될 수 있다. 상기 열영강재의 냉각은 상온까지 이루어지더라도 무방하다.
본 발명의 바람직한 다른 일 측면에 따르는 내마모성이 우수한 강재의 제조방법에 따르면, 예를 들면, 350MPa이상의 항복강도, 20%이상의 균일 연신율 및 40J 이상의 충격인성을 갖는 강재를 제조할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 다만, 후술하는 실시예는 본 발명을 예시하여 구체화하기 위한 것일 뿐 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.
(실시예)
하기 표 1과 같은 성분 및 성분범위를 만족하는 용강을 하기 표 2의 조건으로 연속주조하여 슬라브를 제조한 후, 하기 표 3의 조건으로 슬라브를 재가열, 열간압연 및 냉각하여 열연강재로 제조하였다.
상기와 같이 제조된 열연강재의 미세조직, 성분 편석지수, 절단크랙 발생율(%), 내마모성(g), 항복강도(MPa) 및 균일 연신율(%)을 측정하고, 그 결과를 하기 표 4에 나타내었다. 여기서, 내마모성은 ASTM 65 시험법을 따르는 모래마모 시험으로 일정량의 모래를 분사하면서 회전하는 롤에 시편을 접촉시켜 마모를 시킨후 감소한 중량을 측정하여 평가한 것이다.
또한, 상기 열연강재에 대한 -29℃충격인성[충격에너지(J)]을 측정하고, 그 결과를 하기 표 4에 함께 나타내었다.
한편, 비교강4에 대해서는 강판 두께 중심부 결함의 발생여부를 확인하기 위하여 사진 관찰하고, 그 결과를 도 1에 나타내었다.
Figure PCTKR2018016384-appb-T000001
Figure PCTKR2018016384-appb-T000002
상기 표 2에서 주조속도(V)는 V (m/min) = 0.025[TC-K]이다.
Figure PCTKR2018016384-appb-T000003
Figure PCTKR2018016384-appb-T000004
1) 성분 편석지수(S) = (압연재 중심부 C 성분/용강C성분)/1.25 + (압연재 중심부 Mn 성분/용강Mn성분)/1.15 + (압연재 중심부 P 성분/용강P성분)/3.0
* 중심부 성분: 압연재 1/2두께 위치에서 미세조직 분석시 가장 성분이 높게 측정되는 부분의 상하 50㎛이하 범위의 성분을 의미한다
2) 절단크랙 발생율: (중심부 균열발생길이/전체절단길이) × 100
하기 표 1 내지 표 4에 나타난 바와 같이, 본 발명의 강 조성 및 제조조건을 모두 만족하는 발명강(1-5)의 경우에는 내마모성, 항복강도, 충격인성 및 균일 연신율이 우수할 뿐만 아니라 절단 크랙율도 낮음을 알 수 있다.
한편, 본 발명의 강 조성 및 제조조건 중 적어도 하나의 조건을 충족하지 못하는 비교강(1 -9)의 경우에는 내마모성, 항복강도, 충격인성 및 균일 연신율 중 적어도 하나의 물성이 불충분하거나 절단 크랙율이 높음을 알 수 있다.
중심부 성분 편석지수가 3.0을 초과한 비교강 4의 경우에는 절단 크랙발생율이 높으며, 도 1에도 나타난 바와 같이, 강재 두께 중심부 결함이 발생되어 있음을 알 수 있다. 절단과정에서 발생하는 열응력에 의해 가장 취약한 중심부에서 균열이 발생하였고, 중심부를 따라 균열이 전파하고 있음을 알 수 있다.

Claims (4)

  1. 중량%로, 탄소(C): 0.55~1.4%, 망간(Mn): 12~23%, 크롬(Cr): 5%이하(0%는 제외), 구리(Cu): 5%이하(0%는 제외), Al:0.5%이하(0%는 제외), Si:1.0%이하(0%는 제외), S:0.02%이하(0% 포함), 인(P): 0.04%이하(0% 포함), 잔부 Fe 및 불가피한 불순물을 포함하고, 미세조직으로 면적%로, 10%이하(0% 포함)의 탄화물 및 잔부 오스테나이트를 포함하는 내마모성이 우수한 강재.
  2. 제1항에 있어서, 상기 강재는 하기 관계식 1로 표현되는 성분 편석지수가 3.0 이하인 것을 특징으로 하는 내마모성이 우수한 강재.
    [관계식 1]
    성분 편석지수(S) = (압연재 중심부 C 성분/용강C성분)/1.25 + (압연재 중심부 Mn 성분/용강Mn성분)/1.15 + (압연재 중심부 P 성분/용강P성분)/3.0
    (여기서, 중심부 성분은 압연재 1/2두께 위치에서 미세조직 분석시 가장 성분이 높게 측정되는 부분의 상하 50㎛이하 범위의 성분을 의미한다)
  3. 제1항에 있어서, 상기 강재는 350MPa이상의 항복강도, 20%이상의 균일 연신율 및 40J 이상의 충격인성을 갖는 것을 특징으로 하는 내마모성이 우수한 강재.
  4. 중량%로, 탄소(C): 0.55~1.4%, 망간(Mn): 12~23%, 크롬(Cr): 5%이하(0%는 제외), 구리(Cu): 5%이하(0%는 제외), Al:0.5%이하(0%는 제외), Si: 1.0%이하(0%는 제외), S: 0.02%이하(0%포함), 인(P): 0.04%이하(0% 포함), 잔부 Fe 및 불가피한 불순물을 포함하는 용강을 준비하는 단계;
    상기 용강을 하기 관계식 2를 만족시키는 용강온도(TC)와 하기 관계식 3을 만족시키는 주조속도(V)의 조건으로 연속주조하여 슬라브를 얻는 연속주조단계;
    [관계식 2]
    K≤TC≤K+60
    (상기 관계식 2에서 K 값은 하기 관계식 4에 의해 결정되는 값을 나타낸다.)
    [관계식 3]
    V (m/min) ≥ 0.025[TC-K]
    (상기 관계식 3에서 K 값은 하기 관계식 4에 의해 결정되는 값을 나타낸다.)
    [관계식 4]
    K (℃) = 1536 - (69[C] + 4.2[Mn] + 39[P])
    (여기서, [C], [Mn], [P] 각각은 해당 원소의 함량(중량%)을 의미함)
    상기 슬라브를 하기 관계식 5에 의해 구해지는 재가열온도(TR)이하에서 재가열하는 단계;
    [관계식 5]
    TR = 1453 - 165[C] - 4.5[Mn] - 414[P]
    [TR: 재가열온도(℃); [C] 및 [Mn] 각각은 해당 원소의 함량(중량%)을 의미함]
    상기와 같이 재가열된 슬라브를 마무리 압연온도가 850~1050℃가 되도록 열간압연하여 열연강재를 얻는 단계; 및
    상기 열연강재를 5℃/sec이상으로 600℃ 이하까지 냉각하는 단계를 포함하는 내마모성이 우수한 강재의 제조방법.
PCT/KR2018/016384 2017-12-22 2018-12-20 내마모성이 우수한 강재 및 그 제조방법 WO2019125023A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/954,672 US20210164068A1 (en) 2017-12-22 2018-12-20 Steel material having excellent wear resistance and manufacturing method
EP18890993.1A EP3730649A1 (en) 2017-12-22 2018-12-20 Steel material having excellent wear resistance and manufacturing method for same
CN201880083118.1A CN111492082B (zh) 2017-12-22 2018-12-20 具有优异的耐磨性的钢材及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0178865 2017-12-22
KR1020170178865A KR102020381B1 (ko) 2017-12-22 2017-12-22 내마모성이 우수한 강재 및 그 제조방법

Publications (2)

Publication Number Publication Date
WO2019125023A1 true WO2019125023A1 (ko) 2019-06-27
WO2019125023A8 WO2019125023A8 (ko) 2020-02-27

Family

ID=66994233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016384 WO2019125023A1 (ko) 2017-12-22 2018-12-20 내마모성이 우수한 강재 및 그 제조방법

Country Status (5)

Country Link
US (1) US20210164068A1 (ko)
EP (1) EP3730649A1 (ko)
KR (1) KR102020381B1 (ko)
CN (1) CN111492082B (ko)
WO (1) WO2019125023A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980058369A (ko) * 1996-12-30 1998-09-25 서춘화 극저온 충격특수성이 우수한 고망간강 및 그 제조방법
KR20000041265A (ko) * 1998-12-22 2000-07-15 이구택 표면스켑결함과 크랙결함을 동시에 방지하는 미니밀공정에 의한고망간강 열연강판의 제조방법
KR20060040718A (ko) * 2003-07-22 2006-05-10 위시노 높은 강도와 우수한 인성을 갖는 냉간 성형에 적합한오스테나이트 철강/탄소강/망간 강판의 제조 방법 및 그에따라 제조된 강판
KR20070091300A (ko) * 2004-11-24 2007-09-10 아르셀러 프랑스 강도 및 연신율 특성이 매우 크고 균질성이 우수한오스테나이트계 철/탄소/망간 강판을 제조하는 방법
JP2012161820A (ja) * 2011-02-08 2012-08-30 Sumitomo Metal Ind Ltd 非磁性鋼の連続鋳造を用いた製造方法
KR20160077558A (ko) 2014-12-23 2016-07-04 주식회사 포스코 도금 품질이 우수한 오스테나이트계 고강도 고망간 용융 알루미늄 도금강판 및 그의 제조방법
KR101714922B1 (ko) * 2015-12-18 2017-03-10 주식회사 포스코 인성 및 내부품질이 우수한 내마모 강재 및 그 제조방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2785318C (en) * 2009-12-28 2014-06-10 Posco Austenite steel material having superior ductility
US9650703B2 (en) * 2011-12-28 2017-05-16 Posco Wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones thereof and method for producing same
US20140356220A1 (en) * 2011-12-28 2014-12-04 Posco Wear resistant austenitic steel having superior machinability and ductility, and method for producing same
JP2013249500A (ja) * 2012-05-31 2013-12-12 Nsk Ltd 転がり軸受
BR112015005020B1 (pt) * 2012-09-27 2020-05-05 Nippon Steel & Sumitomo Metal Corp chapa de aço laminada a quente e método para fabricar a mesma
US20140261918A1 (en) * 2013-03-15 2014-09-18 Exxonmobil Research And Engineering Company Enhanced wear resistant steel and methods of making the same
KR101543916B1 (ko) * 2013-12-25 2015-08-11 주식회사 포스코 표면 가공 품질이 우수한 저온용강 및 그 제조 방법
KR20160075927A (ko) * 2014-12-19 2016-06-30 주식회사 포스코 두께 중심부 강도 및 인성이 우수한 강재 및 이의 제조방법
JP6390573B2 (ja) * 2015-09-29 2018-09-19 Jfeスチール株式会社 冷延鋼板およびその製造方法
WO2017111510A1 (ko) * 2015-12-23 2017-06-29 주식회사 포스코 열간 가공성이 우수한 비자성 강재 및 그 제조방법
WO2017213781A1 (en) * 2016-06-06 2017-12-14 Exxonmobil Research And Engineering Company High strength cryogenic high manganese steels and methods of making the same
KR101917473B1 (ko) * 2016-12-23 2018-11-09 주식회사 포스코 내마모성과 인성이 우수한 오스테나이트계 강재 및 그 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980058369A (ko) * 1996-12-30 1998-09-25 서춘화 극저온 충격특수성이 우수한 고망간강 및 그 제조방법
KR20000041265A (ko) * 1998-12-22 2000-07-15 이구택 표면스켑결함과 크랙결함을 동시에 방지하는 미니밀공정에 의한고망간강 열연강판의 제조방법
KR20060040718A (ko) * 2003-07-22 2006-05-10 위시노 높은 강도와 우수한 인성을 갖는 냉간 성형에 적합한오스테나이트 철강/탄소강/망간 강판의 제조 방법 및 그에따라 제조된 강판
KR20070091300A (ko) * 2004-11-24 2007-09-10 아르셀러 프랑스 강도 및 연신율 특성이 매우 크고 균질성이 우수한오스테나이트계 철/탄소/망간 강판을 제조하는 방법
JP2012161820A (ja) * 2011-02-08 2012-08-30 Sumitomo Metal Ind Ltd 非磁性鋼の連続鋳造を用いた製造方法
KR20160077558A (ko) 2014-12-23 2016-07-04 주식회사 포스코 도금 품질이 우수한 오스테나이트계 고강도 고망간 용융 알루미늄 도금강판 및 그의 제조방법
KR101714922B1 (ko) * 2015-12-18 2017-03-10 주식회사 포스코 인성 및 내부품질이 우수한 내마모 강재 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3730649A4 *

Also Published As

Publication number Publication date
CN111492082A (zh) 2020-08-04
KR102020381B1 (ko) 2019-09-10
US20210164068A1 (en) 2021-06-03
KR20190076795A (ko) 2019-07-02
WO2019125023A8 (ko) 2020-02-27
EP3730649A4 (en) 2020-10-28
CN111492082B (zh) 2021-10-26
EP3730649A1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
WO2017111510A1 (ko) 열간 가공성이 우수한 비자성 강재 및 그 제조방법
WO2016104975A1 (ko) Pwht 후 인성이 우수한 고강도 압력용기용 강재 및 그 제조방법
WO2020067685A1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
WO2018074887A1 (ko) 고강도 철근 및 이의 제조 방법
WO2018117676A1 (ko) 내마모성과 인성이 우수한 오스테나이트계 강재 및 그 제조방법
WO2019125083A1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
WO2021091138A1 (ko) 저온 충격인성이 우수한 고강도 강재 및 그 제조방법
WO2018117712A1 (ko) 저온인성 및 항복강도가 우수한 고 망간 강 및 제조 방법
WO2017082687A1 (ko) 냉간가공성이 우수한 비조질 선재 및 그 제조방법
WO2020067686A1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
WO2018117646A1 (ko) 극저온 충격인성이 우수한 후강판 및 이의 제조방법
WO2018117614A1 (ko) 표면부 nrl-dwt 물성이 우수한 극후물 강재 및 그 제조방법
WO2018117450A1 (ko) 저온인성 및 후열처리 특성이 우수한 내sour 후판 강재 및 그 제조방법
WO2017105109A1 (ko) 저온 변형시효 충격특성이 우수한 고강도 강재 및 이의 제조방법
WO2012043984A2 (ko) 수소유기균열 저항성이 우수한 라인 파이프용 강판 및 그 제조 방법
WO2019124814A1 (ko) 수소유기균열 저항성 및 길이방향 강도 균일성이 우수한 강판 및 그 제조방법
WO2018117678A1 (ko) 표면 특성이 우수한 오스테나이트계 강재 및 그 제조방법
WO2017105134A1 (ko) 인성 및 내부품질이 우수한 내마모 강재 및 그 제조방법
WO2020111857A1 (ko) 크리프 강도가 우수한 크롬-몰리브덴 강판 및 그 제조방법
WO2016105003A1 (ko) 취성균열전파 저항성이 우수한 구조용 극후물 강재 및 그 제조방법
WO2019125025A1 (ko) 고 강도 오스테나이트계 고 망간 강재 및 그 제조방법
WO2019125076A1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
WO2016072679A1 (ko) 강도와 충격 인성이 우수한 선재 및 그 제조방법
WO2019132179A1 (ko) 고강도 고인성 열연강판 및 그 제조방법
WO2019125023A1 (ko) 내마모성이 우수한 강재 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018890993

Country of ref document: EP

Effective date: 20200722