WO2019123916A1 - Modified perovskite complex oxide, method for producing same and composite dielectric material - Google Patents

Modified perovskite complex oxide, method for producing same and composite dielectric material Download PDF

Info

Publication number
WO2019123916A1
WO2019123916A1 PCT/JP2018/042309 JP2018042309W WO2019123916A1 WO 2019123916 A1 WO2019123916 A1 WO 2019123916A1 JP 2018042309 W JP2018042309 W JP 2018042309W WO 2019123916 A1 WO2019123916 A1 WO 2019123916A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
perovskite
composite oxide
type composite
modified
Prior art date
Application number
PCT/JP2018/042309
Other languages
French (fr)
Japanese (ja)
Inventor
淳史 ▲高▼▲崎▼
田邉 信司
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to KR1020207020496A priority Critical patent/KR102510234B1/en
Priority to CN201880082164.XA priority patent/CN111511686A/en
Priority to JP2019560879A priority patent/JP7204673B2/en
Publication of WO2019123916A1 publication Critical patent/WO2019123916A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a modified perovskite-type composite oxide useful as an inorganic filler for a composite dielectric or composite piezoelectric material, a method for producing the same, and a composite dielectric material containing the modified perovskite-type composite oxide.
  • a composite dielectric material in which an inorganic filler generally referred to as a dielectric in a broad sense, such as a ferroelectric, a pyroelectric or a piezoelectric, is dispersed in a resin is excellent in processability and has high dielectric characteristics and low loss characteristics. It is attracting attention as a new material that can have various functions such as pyroelectric characteristics and piezoelectric characteristics.
  • an inorganic filler used here for example, a perovskite type complex oxide is known (see, for example, Patent Document 1).
  • the perovskite-type composite oxide has a problem that the specific surface area changes with time and the dielectric characteristics are degraded, and when it comes in contact with water, A site metals such as Ba, Ca, Sr, and Mg in the structure are eluted. Along with this, there has been a problem that the interface between the resin and the inorganic filler peels off, or the insulation deteriorates due to ion migration.
  • Patent Documents 2 to 4 it is known to surface-treat an inorganic filler such as barium titanate with a coupling agent in order to improve the dispersibility in a resin.
  • Patent Documents 5 and 6 describe that a metal oxide such as barium titanate is surface-treated with a silane coupling agent in order to improve the mixing property with a resin.
  • an object of the present invention is to provide a perovskite-type composite oxide excellent in packing property and dispersibility in a resin and a method for producing the same in order to solve the above-mentioned problems.
  • the present inventors have found that the perovskite type complex oxide coated with a specific silane coupling agent is excellent in dispersibility in an organic solvent, and is thus incorporated into a resin. It has been found that the packing property and the dispersibility are excellent, and the present invention has been completed. That is, the present invention is a modified perovskite-type composite oxide in which the surface of a perovskite-type composite oxide particle is coated with a silane coupling agent represented by the following general formula (1).
  • XY a Si (OZ) 4-a
  • X is a hydrogen atom, an epoxy group, an amino group, a vinyl group, a (meth) acrylic group, an isocyanate group or a mercapto group
  • Y is a linear alkylene group having 5 or more carbon atoms
  • Z is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an acetyl group or an alkoxyalkyl group having 2 to 4 carbon atoms, and a is 1 or 2.
  • the mixture is supplied to an air flow crusher to obtain the perovskite type complex oxide. It is a method for producing a modified perovskite-type composite oxide, characterized in that the surface of the perovskite-type composite oxide particles is coated with the above-mentioned silane coupling agent while being pulver
  • the present invention it is possible to provide a modified perovskite-type composite oxide excellent in the filling property and dispersibility in a resin, and a method for producing the same.
  • the modified perovskite-type composite oxide of the present invention is obtained by coating the surface of a perovskite-type composite oxide particle with a silane coupling agent represented by the following general formula (1).
  • XY a Si (OZ) 4-a
  • X is a hydrogen atom, an epoxy group, an amino group, a vinyl group, a (meth) acrylic group, an isocyanate group or a mercapto group
  • Y is a linear alkylene group having 5 or more carbon atoms
  • Z is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an acetyl group or an alkoxyalkyl group having 2 to 4 carbon atoms, and a is 1 or 2.
  • the perovskite-type composite oxide to be modified is not particularly limited, and barium titanate, strontium titanate, calcium titanate, potassium niobate, sodium niobate, sodium potassium niobate, potassium sodium niobate are not particularly limited. And bismuth potassium titanate, bismuth sodium titanate, bismuth ferrate, potassium tantalate, and as these composite solid solutions, potassium tantalate niobate, potassium sodium lithium tantalate niobate and the like can be mentioned. These perovskite complex oxides may be used alone or in combination of two or more.
  • perovskite type complex oxide is not particularly limited, and, for example, coprecipitation method, hydrolysis method, wet method such as hydrothermal synthesis method, sol-gel method, solid phase method, etc. Those obtained by known methods are used.
  • the physical properties of these perovskite type composite oxides are not particularly limited, but the BET specific surface area is preferably 0.2 m 2 / g to 20 m 2 / g, more preferably 0.3 m 2 / g to 15 m 2 It is preferable from the viewpoint of handling in the pulverizing step of 1 / g.
  • the perovskite type composite oxide preferably has an average particle diameter of 0.1 ⁇ m to 10 ⁇ m, more preferably 0.15 ⁇ m to 5 ⁇ m from the viewpoint of handling in the pulverizing step.
  • the average particle diameter is a median diameter (D50) measured using water as a dispersion medium by a laser diffraction scattering method.
  • the particle shape of the perovskite-type composite oxide to be modified is not particularly limited, and may be any of spherical, granular, plate-like, scaly, whisker-like, rod-like, filamentous, etc. .
  • X is a hydrogen atom, an epoxy group, an amino group, a vinyl group, a (meth) acrylic group, an isocyanate group or a mercapto group.
  • a hydrogen atom is preferable.
  • Examples of the linear alkylene group having 5 or more carbon atoms represented by Y in the general formula (1) include n-pentylene group, n-hexylene group, n-heptylene group, n-octylene group, n-nonylene group , N-decylene group, n-undecylene group, n-dodecylene group, n-tridecylene group, n-tetradecylene group, n-pentadecylene group, n-hexadecylene group, n-heptadecylene group, n-octadecylene group, n-nonadecylene group Etc.
  • the number of carbon atoms in the linear alkylene group is preferably 5 or more and 20 or less.
  • the alkyl group having 1 to 3 carbon atoms represented by Z in the general formula (1) include a methyl group, an ethyl group and a propyl group.
  • examples of the alkoxyalkyl group having 2 to 4 carbon atoms represented by Z in the general formula (1) include a methoxymethyl group, an ethoxymethyl group, a methoxyethyl group and an ethoxyethyl group.
  • Average of the modified perovskite-type composite oxide (perovskite-type composite oxide coated with a silane coupling agent represented by the general formula (1)) of the present invention measured by using an organic solvent as a dispersion medium by a laser diffraction scattering method
  • Dw is Dw
  • the degree of aggregation represented by Dos / Dw is preferably 1.4 or less, more preferably 1.2 or less.
  • the organic solvent to be used here is not particularly limited, and includes methyl ethyl ketone, acetone, n-hexane, methanol, ethanol, toluene, cyclopentanone and the like.
  • the moisture absorption of the modified perovskite-type composite oxide of the present invention is preferably 0.3% by mass or less, and more preferably 0.25% by mass or less. If the amount of moisture absorbed is 0.3% by mass or less, the degree to which the surface of the perovskite type complex oxide which is the base material is changed to hydroxide or carbonate compound by water is low, and the change of particle shape and deterioration of electric characteristics You can prevent.
  • the moisture absorption amount of the modified perovskite-type composite oxide can be determined by the following method. First, a sample of the modified perovskite complex oxide immediately after production is precisely weighed (A), and the dried product obtained by heating this sample in a tray drier at 105 ° C.
  • the modified perovskite complex oxide of the present invention is prepared by mixing the perovskite complex oxide to be modified and the silane coupling agent represented by the above general formula (1), and then subjecting the mixture to air flow grinding. It can be manufactured by coating the surface of the perovskite type complex oxide particles with a silane coupling agent while grinding the perovskite type complex oxide by supplying to a machine. A mixture of the perovskite complex oxide and the silane coupling agent represented by the above general formula (1) is supplied to an air flow crusher to newly form the perovskite complex oxide exposed in the process of being pulverized.
  • the surface can be immediately coated with the silane coupling agent represented by the above general formula (1), the chance of exposure to the surrounding environment and contact with moisture can be reduced, and the elution and ratio of A-site metal can be reduced. The time-dependent change of the surface area can be suppressed.
  • the method of mixing the perovskite type composite oxide and the silane coupling agent is not particularly limited, but a method of spraying the silane coupling agent onto the perovskite type composite oxide, solid silane coupling agent as the perovskite type composite
  • a method of dry mixing with an oxide, a method of adding a liquid silane coupling agent to a perovskite type complex oxide dispersed in an organic solvent, and filtering and drying to obtain a mixture, and the like can be mentioned.
  • the silane coupling agent may be used as a stock solution, or may be used after being dissolved in an appropriate solvent (alcohols, ketones, ethers, etc.).
  • the mass ratio of the perovskite type complex oxide to the silane coupling agent is preferably 99.5: 0.5 to 95: 5, and 99: 1 It is more preferable to set to -96: 4.
  • the mass ratio of the perovskite type complex oxide to the silane coupling agent is 99.5: 0.5 to 95: 5
  • at least one layer of silane coupling agent film is formed on the surface of the perovskite type complex oxide particle. can do.
  • the effect obtained is not amplified, which is economically disadvantageous.
  • the jet mill is preferable from the viewpoint of less contamination due to the structure in which the blades and the media are not carried into the grinding chamber.
  • the grinding pressure is preferably 0.03 MPa or more, and more preferably 0.05 MPa to 0.7 MPa.
  • the powder feeding speed is preferably 4 to 40 kg / hr, although it depends on the size of the air flow type crusher.
  • the modified perovskite-type composite oxide of the present invention thus obtained is excellent in the high dielectric characteristics, low loss characteristics, pyroelectric characteristics, piezoelectric characteristics, etc. It is possible to produce a composite dielectric material that The modified perovskite-type composite oxide of the present invention can be a ferroelectric, a pyroelectric and a piezoelectric, but in a broad sense it is generically called a dielectric including a paraelectric.
  • the composite dielectric material of the present invention contains a polymer material and the above-mentioned modified perovskite-type composite oxide as an inorganic filler.
  • the composite dielectric material of the present invention is preferably contained in a polymer material described later preferably at least 60% by mass, more preferably at least 70% by mass to 90% by mass of the above modified perovskite-type composite oxide. More preferably, it is a material having a relative dielectric constant of 20 or more.
  • thermosetting resin for example, epoxy resin, phenol resin, polyimide resin, melamine resin, cyanate resins, bismaleimides, addition polymer of bismaleimides and diamine, polyfunctional cyanate ester resin, double resin
  • thermosetting resins may be used alone or in combination of two or more.
  • epoxy resin and polyvinyl benzyl ether resin are preferable in terms of balance of heat resistance, processability, price and the like.
  • the epoxy resin used in the present invention is generally a monomer, an oligomer or a polymer having at least two epoxy groups in one molecule, for example, a phenol novolac epoxy resin, a phenol including an orthocresol novolac epoxy resin, Phenols such as cresol, xylenol, resorcinol, catechol, bisphenol A, bisphenol F and / or naphthols such as ⁇ -naphthol, ⁇ -naphthol, dihydroxynaphthalene and aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde Epoxidized novolak resin obtained by condensation or cocondensation under an acidic catalyst, bisphenol A, bisphenol B, bisphenol F, bisphenol Diglycidyl ethers such as alkyl-substituted or unsubstituted biphenols, epoxidized
  • epoxy resin curing agent any of those known in the art can be used, and in particular, C 2 to C 20 linear aliphatic diamines such as ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, etc.
  • a known curing accelerator may be used to accelerate the curing reaction of the epoxy resin.
  • a curing accelerator for example, tertiary amine compounds such as 1,8-diaza-bicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, 2-methylimidazole, 2-ethyl-4- Examples thereof include imidazole compounds such as methylimidazole, 2-phenylimidazole and 2-phenyl-4-methylimidazole, organic phosphine compounds such as triphenylphosphine and tributylphosphine, phosphonium salts, ammonium salts and the like. These may be used singly or in combination of two or more.
  • the polyvinyl benzyl ether resin used in the present invention is obtained from a polyvinyl benzyl ether compound.
  • the polyvinyl benzyl ether compound is preferably a compound represented by the following general formula (2).
  • R 1 represents a methyl group or an ethyl group.
  • R 2 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • the hydrocarbon group represented by R 2 is an alkyl group which may have a substituent, an aralkyl group, an aryl group or the like.
  • As an alkyl group a methyl group, an ethyl group, a propyl group, a butyl group etc. are mentioned, for example.
  • As an aralkyl group, a benzyl group etc. are mentioned, for example.
  • R 3 represents a hydrogen atom or a vinylbenzyl group.
  • the hydrogen atom of R 3 is derived from the starting compound in the synthesis of the compound of the general formula (2), and the curing reaction is carried out when the molar ratio of hydrogen atom to vinylbenzyl group is 60:40 to 0: 100. It can be sufficiently advanced, and is preferable in that sufficient dielectric characteristics can be obtained in the composite dielectric material of the present invention.
  • n is an integer of 2 to 4;
  • the polyvinyl benzyl ether compound may be used by polymerizing it alone as a resin material, or may be used after being copolymerized with other monomers.
  • copolymerizable monomers include styrene, vinyltoluene, divinylbenzene, divinylbenzyl ether, allylphenol, allyloxybenzene, diallyl phthalate, acrylic acid ester, methacrylic acid ester, vinyl pyrrolidone, modified products thereof, and the like.
  • the blending ratio of these monomers is 2% by mass to 50% by mass with respect to the polyvinyl benzyl ether compound.
  • the polymerization and curing of the polyvinyl benzyl ether compound can be carried out by known methods. Curing may be either in the presence or absence of a curing agent.
  • a curing agent for example, known radical polymerization initiators such as benzoyl peroxide, methyl ethyl ketone peroxide, dicumyl peroxide, t-butyl perbenzoate and the like can be used.
  • the amount used is 0 parts by mass to 10 parts by mass with respect to 100 parts by mass of the polyvinyl benzyl ether compound.
  • the curing temperature varies depending on the use of the curing agent and the type of the curing agent, but is preferably 20 ° C. to 250 ° C., more preferably 50 ° C. to 250 ° C. for sufficient curing.
  • hydroquinone, benzoquinone, copper salts and the like may be blended for adjustment of curing.
  • thermoplastic resin examples include known resins such as (meth) acrylic resin, hydroxystyrene resin, novolac resin, polyester resin, polyimide resin, nylon resin, and polyetherimide resin.
  • photosensitive resin well-known thing, such as photopolymerizable resin and photocrosslinkable resin, is mentioned, for example.
  • the photopolymerizable resin used in the present invention for example, one containing an acrylic copolymer (photosensitive oligomer) having an ethylenically unsaturated group, a photopolymerizable compound (photosensitive monomer) and a photopolymerization initiator, epoxy
  • a photosensitive oligomer one obtained by adding acrylic acid to an epoxy resin, one obtained by reacting it with an acid anhydride, or (meth) acrylic acid is reacted with a copolymer containing a (meth) acrylic monomer having a glycidyl group.
  • those obtained by reacting an acid anhydride those obtained by reacting a copolymer containing a (meth) acrylic monomer having a hydroxyl group with glycidyl (meth) acrylate, and those obtained by reacting an acid anhydride,
  • a copolymer obtained by reacting a (meth) acrylic monomer having a hydroxyl group or a (meth) acrylic monomer having a glycidyl group with a copolymer containing maleic anhydride may, for example, be mentioned. These may be used singly or in combination of two or more.
  • Examples of the photopolymerizable compound (photosensitive monomer) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, N-vinylpyrrolidone, acryloyl morpholine, methoxypolyethylene glycol (meth) acrylate, polyethylene Glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, N, N-dimethyl acrylamide, phenoxyethyl (meth) acrylate, cyclohexyl (meth) acrylate, trimethylolpropane (meth) acrylate, pentaerythritol tri (meth) acrylate , Dipentaerythritol hexa (meth) acrylate, tris (hydroxyethyl) isocyanurate di (meth) acrylate, tris (hydroxyethyl) ) Isocyanurate tri (meth) acrylate
  • photopolymerization initiator examples include benzoin and its alkyl ethers, benzophenones, acetophenones, anthraquinones, xanthones, thioxanthones and the like. These may be used singly or in combination of two or more. These photopolymerization initiators can be used in combination with known and commonly used photopolymerization accelerators such as benzoic acid type and tertiary amine type.
  • photocationic polymerization initiator for example, triphenylsulfonium hexafluoroantimonate, diphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, benzyl 4-hydroxyphenylmethylsulfonium hexafluorophosphate, iron aroma of Bronsted acid Group compound salts (Ciba-Geigy, CG 24-061) and the like. These may be used singly or in combination of two or more.
  • an epoxy resin is ring-opening-polymerized by a photocationic polymerization initiator
  • the photopolymerization property is more preferable because an alicyclic epoxy resin has a faster reaction rate than a normal glycidyl ester epoxy resin.
  • An alicyclic epoxy resin and a glycidyl ester epoxy resin can be used in combination.
  • the alicyclic epoxy resin include vinylcyclohexene diepoxide, aryl cyclic diepoxy acetal, aryl cyclic diepoxy adipate, aryl cyclic diepoxy carboxylate, manufactured by Daicel Chemical Industries, Ltd., EHPE-3150, etc. Be These may be used singly or in combination of two or more.
  • photocrosslinkable resin examples include water-soluble polymer dichromate-based, polyvinyl cinnamate (Kodak KPR), and cyclized rubber azide (Kodak KTFR). These may be used singly or in combination of two or more.
  • the dielectric constant of these photosensitive resins is generally as low as 2.5 to 4.0. Therefore, in order to increase the dielectric constant of the binder, a polymer having a higher dielectricity (eg, SDP-E ( ⁇ : 15 ⁇ ) of Sumitomo Chemical, cyanoresin (Shin-Etsu Chemical It is also possible to add ⁇ : 18 ⁇ )) or a high dielectric liquid (eg, SDP-S ( ⁇ : 40 ⁇ ) from Sumitomo Chemical).
  • a polymer having a higher dielectricity eg, SDP-E ( ⁇ : 15 ⁇ ) of Sumitomo Chemical, cyanoresin (Shin-Etsu Chemical It is also possible to add ⁇ : 18 ⁇ )
  • a high dielectric liquid eg, SDP-S ( ⁇ : 40 ⁇ ) from Sumitomo Chemical.
  • the above-described polymer materials may be used singly or in combination of two or more.
  • the compounding amount of the modified perovskite-type composite oxide is preferably 60% by mass or more, more preferably 70% by mass to 90% by mass, as a ratio occupied at the time of complexing with the resin. The reason is that if the amount is less than 60% by mass, a sufficient relative dielectric constant tends not to be obtained, while if it exceeds 90% by mass, the viscosity tends to increase and the dispersibility tends to be poor. This is because there is a concern that the strength can not be obtained. It is desirable that the material has a relative dielectric constant of preferably 15 or more, more preferably 20 or more according to the above composition.
  • the composite dielectric material of the present invention can contain other fillers in an amount that does not impair the effects of the present invention.
  • other fillers include carbon fine powder such as acetylene black and ketjen black, graphite fine powder, silicon carbide and the like.
  • the composite dielectric material of the present invention as long as the effects of the present invention are not impaired, curing agents, glass powders, polymer additives, reactive diluents, polymerization inhibitors, leveling agents, wettability improvers, Even if surfactant, plasticizer, UV absorber, antioxidant, antistatic agent, inorganic filler, antifungal agent, humidity control agent, dye solubilizer, buffer agent, chelating agent, flame retardant, etc. are added Good. These additives may be used alone or in combination of two or more.
  • the composite dielectric material of the present invention can be produced by preparing a composite dielectric paste and performing removal of an organic solvent, curing reaction or polymerization reaction.
  • the composite dielectric paste contains a resin component, a modified perovskite-type composite oxide, an additive which is optionally added, and an organic solvent.
  • the resin component contained in the composite dielectric paste is a polymerizable compound of a thermosetting resin, a polymer of a thermoplastic resin, and a polymerizable compound of a photosensitive resin.
  • these resin components may be used individually by 1 type, and may be used combining 2 or more types.
  • the polymerizable compound means a compound having a polymerizable group, and includes, for example, a precursor polymer before complete curing, a polymerizable oligomer and a monomer. Moreover, a polymer shows the compound in which the polymerization reaction was substantially completed.
  • the organic solvent to be added if necessary varies depending on the resin component to be used, and is not particularly limited as long as it can dissolve the resin component, for example, N-methylpyrrolidone, dimethylformamide, ether, diethyl ether, tetrahydrofuran Dioxane, ethyl glycol ether of monoalcohol having linear or branched alkyl group having 1 to 6 carbon atoms, propylene glycol ether, butyl glycol ether, ketone, acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, Cyclohexanone, ester, ethyl acetate, butyl acetate, ethylene glycol acetate, methoxypropyl acetate, methoxypropanol, other halogenated hydrocarbons, alicyclic carbonization Group and an aromatic hydrocarbon and the like.
  • These organic solvents may be used alone or
  • the composite dielectric paste is used after being adjusted to a desired viscosity.
  • the viscosity of the composite dielectric paste is usually 1,000 mPa ⁇ s to 1,000,000 mPa ⁇ s (25 ° C.), and preferably 10,000 mPa ⁇ s to 600 in consideration of the coatability of the composite dielectric paste. And 000 mPa ⁇ s (25 ° C.).
  • the composite dielectric material of the present invention can be processed and used as a film-like, bulk-like or shaped body having a predetermined shape, and in particular, can be used as a thin film-shaped high dielectric film.
  • a composite dielectric film using the composite dielectric material of the present invention it may be produced, for example, according to the conventionally known method of using a composite dielectric paste, and an example thereof is shown below.
  • the composite dielectric paste After the composite dielectric paste is applied on a substrate, it can be formed into a film by drying.
  • a base material for example, a plastic film whose surface is subjected to a peeling treatment can be used. When it apply
  • plastic film which can be used as a base material films of polyethylene terephthalate (PET) film, polyethylene film, polypropylene film, polyester film, polyimide film, aramid, kapton, polymethylpentene and the like can be mentioned.
  • the thickness of the plastic film used as the substrate is preferably 1 ⁇ m to 100 ⁇ m, and more preferably 1 ⁇ m to 40 ⁇ m.
  • the mold release process which apply
  • a metal foil may be used as a substrate, and a dielectric film may be formed on the metal foil.
  • the metal foil used as a base material can be used as an electrode of a capacitor.
  • a general application method can be used. For example, it can be applied by a roller method, a spray method, a silk screen method or the like.
  • Such a dielectric film can be heated and thermally cured after being incorporated into a substrate such as a printed circuit board. Moreover, when photosensitive resin is used, it can pattern by selectively exposing.
  • the composite dielectric material of the present invention may be extruded and formed into a film by a calender method or the like.
  • the extruded dielectric film may be shaped to be extruded onto the above-described substrate.
  • metal foil when using metal foil as a base material, in addition to the foil made from copper, aluminum, brass, nickel, iron etc. as a metal foil, foil of these alloys, composite foil etc. can be used.
  • the metal foil may be subjected to a surface roughening treatment, an application of an adhesive, or the like as required.
  • a dielectric film may be formed between the metal foils.
  • the metal foil is placed on the metal foil and dried in a state where the composite dielectric paste is sandwiched between the metal foils, thereby being sandwiched between the metal foils. It is also possible to form a dielectric film in the negative state.
  • the dielectric film provided between the metal foils may be formed by extrusion so as to be sandwiched between the metal foils.
  • the composite dielectric material of the present invention may be used as a prepreg by forming a varnish using the above-mentioned organic solvent, impregnating it with a cloth or a non-woven fabric, and drying it.
  • the type of cloth or non-woven fabric that can be used is not particularly limited, and known ones can be used. Examples of the cloth include glass cloth, aramid cloth, carbon cloth, stretched porous polytetrafluoroethylene and the like.
  • aramid nonwoven fabric an aramid nonwoven fabric, glass paper, etc. are mentioned.
  • the prepreg can be introduced into the electronic component by laminating it on an electronic component such as a circuit board and then curing it.
  • the composite dielectric material of the present invention has a high relative dielectric constant, it can be suitably used as a dielectric layer of an electronic component, particularly a printed circuit board, a semiconductor package, a capacitor, an antenna for high frequency, an inorganic EL etc. it can.
  • a multilayer printed wiring board using the composite dielectric material of the present invention it can be produced using a method known in the relevant technical field (for example, JP-A 2003-192768, JP-A 2005- 29700, JP-A 2002-226816, JP-A 2003-327827, etc.).
  • a method known in the relevant technical field for example, JP-A 2003-192768, JP-A 2005- 29700, JP-A 2002-226816, JP-A 2003-327827, etc.
  • an example shown below is an illustration at the time of using a thermosetting resin as a polymeric material of composite dielectric material.
  • the composite dielectric material of the present invention is used as the above-mentioned dielectric film, and the circuit board of the dielectric film is pressed, heated or laminated using a vacuum laminator. After lamination, a metal foil is further laminated on the resin layer exposed by peeling off the substrate from the film, and the resin is heat-cured.
  • the composite dielectric material of this invention is made into a prepreg
  • lamination to the circuit board can be performed by a vacuum press.
  • the composite dielectric material of the present invention is used as a varnish, and the circuit board is coated and dried using screen printing, curtain coating, roll coating, spray coating or the like to form an intermediate insulating layer of a multilayer printed wiring board be able to.
  • the present invention in the case of a printed wiring board having an insulating layer as the outermost layer, through holes and via holes are drilled or drilled by a laser, and the surface of the insulating layer is roughened to form fine irregularities.
  • the method of roughening the insulating layer may be carried out according to the specification such as a method of immersing the substrate on which the insulating resin layer is formed in a solution such as an oxidizing agent or a method of spraying a solution such as an oxidizing agent it can.
  • the roughening agent include dichromates, permanganates, ozone, oxidizing agents such as hydrogen peroxide / sulfuric acid and nitric acid, N-methyl-2-pyrrolidone, N, N-dimethylformamide, methoxy Organic solvents such as propanol, alkaline aqueous solutions such as caustic soda and potassium hydroxide, acidic aqueous solutions such as sulfuric acid and hydrochloric acid, or various plasma treatments can be used. Also, these processes may be used in combination.
  • a conductor layer is then formed by dry plating such as vapor deposition, sputtering or ion plating, or wet plating such as electroless / electrolytic plating.
  • a plating resist having a pattern reverse to that of the conductor layer may be formed, and the conductor layer may be formed only by electroless plating.
  • middle insulating layer was formed can be multilayered by laminating
  • the metal foil in which the intermediate insulating layer is formed can be made into a printed wiring board in which the outermost layer is a conductor layer by laminating on the printed wiring board on which the inner layer circuit is formed by a vacuum press.
  • the prepreg using the composite dielectric material of the present invention is a printed wiring board in which the outermost layer is a conductor layer by laminating with a metal foil by a vacuum press on a printed wiring board on which an inner layer circuit is formed.
  • solder resist is subjected to screen printing, pattern printing, heat curing, or curtain coating, roll coating, or spray coating.
  • a desired multilayer printed wiring board is obtained by forming a pattern with a laser after printing on the entire surface and heat curing.
  • a solution B was prepared by adding 5600 g of pure water to 2560 g of a 15.3% by mass aqueous solution of titanium tetrachloride in terms of TiO 2 and diluting it. Then, while stirring, Solution B was added to Solution A over 30 minutes at a reaction temperature of 55 ° C., and after addition, aging was performed for 0.5 hours while stirring was continued.
  • barium titanyl oxalate powder 500 g of the obtained barium titanyl oxalate powder is charged in an alumina crucible, calcined at 900 ° C. for 10 hours, pulverized by a jet mill, and further calcined at 900 ° C. for 9 hours to obtain barium titanate (BET specific surface area : 9 m 2 / g, average particle size: 0.5 ⁇ m).
  • Examples 1 to 3 A silane coupling agent of the type and amount shown in Table 1 is sprayed onto 200 g of the barium titanate obtained above to obtain a mixture of barium titanate and a silane coupling agent, and this mixture is jet mill (( 2.) A modified barium titanate was produced by supplying to SEISIN STJ 200) and processing under the condition of grinding pressure 0.060.06 MPa.
  • Comparative Example 1 The barium titanate obtained above was supplied to a jet mill without spraying a silane coupling agent, and was processed under the conditions of grinding pressure 0.060.06 MPa to produce crushed barium titanate.
  • Modified barium titanate was produced in the same manner as in Examples 1 to 3 except that the surface treatment agent was changed to the type and amount shown in Table 1.
  • the average particle diameter (D50) of the barium titanate not subjected to the surface treatment with the silane coupling agent of Comparative Example 1 was determined by a laser diffraction scattering method using water as a dispersion medium. The average particle size at this time was taken as Dw.
  • the average particle diameter (D50) is determined by the laser diffraction scattering method The The average particle size at this time was taken as Dos.
  • Dos / Dw was calculated from the obtained measured value, and it was considered as the degree of aggregation of particles in the organic solvent.
  • the results are shown in Table 2.
  • the particle size distribution measurement in an organic solvent of the modified barium titanate particles obtained in Example 1 is shown in FIG. 1, and the particle size distribution measurement in an organic solvent of the barium titanate particles obtained in Comparative Example 1 is shown.
  • the result is shown in FIG. 2, and the particle size distribution measurement result in water of the barium titanate particles obtained in Comparative Example 1 is shown in FIG.
  • a laser diffraction type particle size distribution measuring apparatus manufactured by Microtrac Bell, MT3300EX
  • solution A 7200 g of pure water was added to 1300 g of strontium chloride dihydrate and 1300 g of oxalic acid dihydrate, and the suspension obtained by stirring at a temperature of 55 ° C. for 0.5 hours was designated as solution A.
  • a solution B was prepared by adding 5600 g of pure water to 2560 g of a 15.3% by mass aqueous solution of titanium tetrachloride in terms of TiO 2 and diluting it. Then, while stirring, Solution B was added to Solution A over 30 minutes at a reaction temperature of 55 ° C., and after addition, aging was performed for 0.5 hours while stirring was continued.
  • strontium titanyl oxalate After the completion of aging, it was filtered to recover strontium titanyl oxalate. Then, the recovered strontium titanyl oxalate was repulped with pure water and allowed to stand and dried at 80 ° C. for 24 hours to obtain a powder of strontium titanyl oxalate. 500 g of the obtained powder of strontium titanyl oxalate is put in an alumina crucible, calcined at 900 ° C. for 10 hours, pulverized by a jet mill, and further calcined at 900 ° C. for 9 hours to obtain strontium titanate (BET specific surface area 11 m 2 / g, average particle size: 0.4 ⁇ m).
  • Examples 4 to 6 A silane coupling agent of the type and amount shown in Table 3 is sprayed onto 200 g of the strontium titanate obtained above to obtain a mixture of strontium titanate and a silane coupling agent, and this mixture is jet mill (( 2.) The solution was supplied to Seishin Enterprise Co., Ltd., STJ 200, and treated under the conditions of grinding pressure 0.06 0.06 MPa to produce modified strontium titanate.
  • Modified strontium titanate was produced in the same manner as in Examples 4 to 6 except that the surface treatment agent was changed to the type and amount shown in Table 3.
  • Preparation of potassium sodium niobate A raw material mixture was obtained by dry mixing 4688 g of niobium pentoxide, 958 g of sodium carbonate and 1183 g of potassium carbonate using a Henschel mixer. The raw material mixture is calcined at 650 ° C. for 7 hours, pulverized by a jet mill, and further calcined at 900 ° C. for 10 hours to obtain potassium sodium niobate (BET specific surface area: 3 m 2 / g, average particle size: 0.9 ⁇ m) was obtained.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A modified perovskite complex oxide which is obtained by covering the surface of a perovskite complex oxide particle with a silane coupling agent that is represented by general formula (1). (1): (XY)aSi(OZ)4-a (In general formula (1), X represents a hydrogen atom, an epoxy group, an amino group, a vinyl group, a (meth)acrylic group, an isocyanate group or a mercapto group; Y represents a linear alkylene group having 5 or more carbon atoms; Z represents a hydrogen atom, an alkyl group having 1-3 carbon atoms, an acetyl group or an alkoxyalkyl group having 2-4 carbon atoms; and a represents 1 or 2.)

Description

改質ペロブスカイト型複合酸化物及びその製造方法、並びに複合誘電体材料Modified perovskite-type composite oxide, method for producing the same, and composite dielectric material
 本発明は、複合誘電体や複合圧電体の無機充填材として有用な改質ペロブスカイト型複合酸化物及びその製造方法、並びに改質ペロブスカイト型複合酸化物を含む複合誘電体材料に関する。 The present invention relates to a modified perovskite-type composite oxide useful as an inorganic filler for a composite dielectric or composite piezoelectric material, a method for producing the same, and a composite dielectric material containing the modified perovskite-type composite oxide.
 従来、エレクトロニクス産業における高度な電子制御化の中にあって、高性能が必要とされる受動デバイスとしては、セラミック粉末を成形した後、これを焼成して得られるセラミック焼結体が多用されてきた。電子回路の取り回しや部品の実装は、複雑化しながらも低コスト化、省スペース化、高速化、高信頼性化など多くの要求を受け、今なお進化を続けている。このような背景のもと、セラミック焼結体は寸法や形状、実装など成形法に起因して多くの制約を受けている。また、焼結体は高硬度で脆性であるため、自由な加工が困難であり、任意の形状や複雑な形状を得るには困難を極めていた。
 このため、樹脂中に強誘電体、焦電体、圧電体といった広義に誘電体と総称される無機充填材を分散させた複合誘電体材料が、加工性に優れ、高誘電特性、低損失特性、焦電特性、圧電特性など多彩な機能を備えうる新たな素材として注目されている。
 ここで用いられる無機充填材としては、例えば、ペロブスカイト型複合酸化物が知られている(例えば、特許文献1を参照)。しかし、ペロブスカイト型複合酸化物は、比表面積が経時変化し、誘電特性を低下させるという問題があり、また、水と接触すると構造中のBa、Ca、Sr、Mg等のAサイト金属が溶出し、これに伴って樹脂と無機充填材との界面が剥離したり、イオンマイグレーションにより絶縁劣化が起こるという問題があった。
 一方、特許文献2~4に記載されるように、樹脂中における分散性を向上させる目的で、チタン酸バリウム等の無機充填材をカップリング剤で表面処理することが知られている。
 特許文献5及び6では、樹脂との混合性を改善するために、チタン酸バリウム等の金属酸化物に対して、シランカップリング剤により表面処理することが記載されている。
Heretofore, as a passive device requiring high performance in the advanced electronic control in the electronics industry, a ceramic sintered body obtained by forming a ceramic powder and firing it has been widely used. The The management of electronic circuits and the mounting of parts have continued to evolve in response to many demands such as cost reduction, space saving, speeding up and high reliability while becoming complicated. With such a background, ceramic sintered bodies are subject to many limitations due to forming methods such as dimensions, shapes and mounting. In addition, since the sintered body is high in hardness and brittle, free processing is difficult, and it is extremely difficult to obtain an arbitrary shape or a complicated shape.
For this reason, a composite dielectric material in which an inorganic filler generally referred to as a dielectric in a broad sense, such as a ferroelectric, a pyroelectric or a piezoelectric, is dispersed in a resin is excellent in processability and has high dielectric characteristics and low loss characteristics. It is attracting attention as a new material that can have various functions such as pyroelectric characteristics and piezoelectric characteristics.
As an inorganic filler used here, for example, a perovskite type complex oxide is known (see, for example, Patent Document 1). However, the perovskite-type composite oxide has a problem that the specific surface area changes with time and the dielectric characteristics are degraded, and when it comes in contact with water, A site metals such as Ba, Ca, Sr, and Mg in the structure are eluted. Along with this, there has been a problem that the interface between the resin and the inorganic filler peels off, or the insulation deteriorates due to ion migration.
On the other hand, as described in Patent Documents 2 to 4, it is known to surface-treat an inorganic filler such as barium titanate with a coupling agent in order to improve the dispersibility in a resin.
Patent Documents 5 and 6 describe that a metal oxide such as barium titanate is surface-treated with a silane coupling agent in order to improve the mixing property with a resin.
国際公開第2005/093763号International Publication No. 2005/093763 特開2003-49092号公報Japanese Patent Laid-Open No. 2003-49092 特開2005-15652号公報JP 2005-15652 A 特開平7-240117号公報Unexamined-Japanese-Patent No. 7-240117 特開2007-308345号公報JP 2007-308345 A 特開2017-19938号公報JP, 2017-199938, A
 しかしながら、本発明者らが検討したところ、ペロブスカイト型複合酸化物粒子の表面をカップリング剤で単に処理しても、比表面積の経時変化やBa等のAサイト金属の溶出を十分に低減することができず、樹脂との混合性についても改善の余地があることが分かった。樹脂への均質な充填性や樹脂との親和性は、有機溶媒への良分散性が不可欠であり、ペロブスカイト型複合酸化物を未処理のまま又は従来のカップリング剤で表面処理しても、有機溶媒中では十分な分散を得ることが困難であった。 However, as examined by the present inventors, even if the surface of the perovskite-type composite oxide particle is simply treated with a coupling agent, the change in specific surface area with time or the elution of A site metal such as Ba is sufficiently reduced. It was found that there is still room for improvement in mixing with the resin. The homogeneous filling property to the resin and the affinity to the resin require good dispersibility in the organic solvent, and even if the perovskite type complex oxide is untreated or surface treated with a conventional coupling agent, It was difficult to obtain sufficient dispersion in an organic solvent.
 従って、本発明の目的は、上記課題を解決するために、樹脂中への充填性及び分散性に優れたペロブスカイト型複合酸化物及びその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a perovskite-type composite oxide excellent in packing property and dispersibility in a resin and a method for producing the same in order to solve the above-mentioned problems.
 本発明者らは、上記実情に鑑み鋭意研究を重ねた結果、特定のシランカップリング剤により被覆されたペロブスカイト型複合酸化物は、有機溶媒への分散性が優れたものとなり、樹脂中への充填性及び分散性に優れることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、下記一般式(1)で表されるシランカップリング剤によりペロブスカイト型複合酸化物粒子の表面が被覆されていることを特徴とする改質ペロブスカイト型複合酸化物である。
  (XY)aSi(OZ)4-a   (1)
(一般式(1)中、Xは水素原子、エポキシ基、アミノ基、ビニル基、(メタ)アクリル基、イソシアネート基又はメルカプト基であり、Yは炭素原子数5以上の直鎖状アルキレン基であり、Zは水素原子、炭素原子数1~3のアルキル基、アセチル基又は炭素原子数2~4のアルコキシアルキル基であり、aは1又は2である。)
 また、本発明は、ペロブスカイト型複合酸化物と上記一般式(1)で表されるシランカップリング剤とを混合した後、その混合物を気流式粉砕機に供給することによりペロブスカイト型複合酸化物を粉砕しながらペロブスカイト型複合酸化物粒子の表面を上記シランカップリング剤で被覆することを特徴とする改質ペロブスカイト型複合酸化物の製造方法である。
As a result of extensive research in view of the above situation, the present inventors have found that the perovskite type complex oxide coated with a specific silane coupling agent is excellent in dispersibility in an organic solvent, and is thus incorporated into a resin. It has been found that the packing property and the dispersibility are excellent, and the present invention has been completed.
That is, the present invention is a modified perovskite-type composite oxide in which the surface of a perovskite-type composite oxide particle is coated with a silane coupling agent represented by the following general formula (1).
(XY) a Si (OZ) 4-a (1)
(In the general formula (1), X is a hydrogen atom, an epoxy group, an amino group, a vinyl group, a (meth) acrylic group, an isocyanate group or a mercapto group, and Y is a linear alkylene group having 5 or more carbon atoms And Z is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an acetyl group or an alkoxyalkyl group having 2 to 4 carbon atoms, and a is 1 or 2.)
Further, according to the present invention, after mixing the perovskite type complex oxide and the silane coupling agent represented by the above general formula (1), the mixture is supplied to an air flow crusher to obtain the perovskite type complex oxide. It is a method for producing a modified perovskite-type composite oxide, characterized in that the surface of the perovskite-type composite oxide particles is coated with the above-mentioned silane coupling agent while being pulverized.
 本発明によれば、樹脂中への充填性及び分散性に優れた改質ペロブスカイト型複合酸化物及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a modified perovskite-type composite oxide excellent in the filling property and dispersibility in a resin, and a method for producing the same.
実施例1で得られた改質チタン酸バリウム粒子の有機溶媒中での粒度分布測定結果である。It is a particle size distribution measurement result in the organic solvent of the modification | reformation barium titanate particle | grains obtained in Example 1. FIG. 比較例1で得られたチタン酸バリウム粒子の有機溶媒中での粒度分布測定結果である。It is a particle size distribution measurement result in the organic solvent of the barium titanate particle | grains obtained by the comparative example 1. FIG. 比較例1で得られたチタン酸バリウム粒子の水中での粒度分布測定結果である。It is a particle size distribution measurement result in the water of the barium titanate particle obtained by the comparative example 1. FIG.
<改質ペロブスカイト型複合酸化物>
 本発明の改質ペロブスカイト型複合酸化物は、ペロブスカイト型複合酸化物粒子の表面を、下記一般式(1)で表されるシランカップリング剤により被覆したものである。
  (XY)aSi(OZ)4-a   (1)
(一般式(1)中、Xは水素原子、エポキシ基、アミノ基、ビニル基、(メタ)アクリル基、イソシアネート基又はメルカプト基であり、Yは炭素原子数5以上の直鎖状アルキレン基であり、Zは水素原子、炭素原子数1~3のアルキル基、アセチル基又は炭素原子数2~4のアルコキシアルキル基であり、aは1又は2である。)
<Modified perovskite-type composite oxide>
The modified perovskite-type composite oxide of the present invention is obtained by coating the surface of a perovskite-type composite oxide particle with a silane coupling agent represented by the following general formula (1).
(XY) a Si (OZ) 4-a (1)
(In the general formula (1), X is a hydrogen atom, an epoxy group, an amino group, a vinyl group, a (meth) acrylic group, an isocyanate group or a mercapto group, and Y is a linear alkylene group having 5 or more carbon atoms And Z is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an acetyl group or an alkoxyalkyl group having 2 to 4 carbon atoms, and a is 1 or 2.)
 改質対象となるペロブスカイト型複合酸化物は、特に制限されるものではなく、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、ニオブ酸カリウム、ニオブ酸ナトリウム、ニオブ酸カリウムナトリウム、ニオブ酸カリウムナトリウムリチウム、チタン酸ビスマスカリウム、チタン酸ビスマスナトリウム、鉄酸ビスマス、タンタル酸カリウム、また、これら複合固溶体として、タンタル酸ニオブ酸カリウム、タンタル酸ニオブ酸カリウムナトリウムリチウム等が挙げられる。これらのペロブスカイト型複合酸化物は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The perovskite-type composite oxide to be modified is not particularly limited, and barium titanate, strontium titanate, calcium titanate, potassium niobate, sodium niobate, sodium potassium niobate, potassium sodium niobate are not particularly limited. And bismuth potassium titanate, bismuth sodium titanate, bismuth ferrate, potassium tantalate, and as these composite solid solutions, potassium tantalate niobate, potassium sodium lithium tantalate niobate and the like can be mentioned. These perovskite complex oxides may be used alone or in combination of two or more.
 このようなペロブスカイト型複合酸化物の製造履歴は、特に制限されるものではなく、例えば、共沈法、加水分解法、水熱合成法等の湿式法、ゾル-ゲル法、固相法等の公知の方法で得られるものが使用される。これらペロブスカイト型複合酸化物の物性としては、特に制限されるものではないが、BET比表面積が好ましくは0.2m2/g~20m2/g、より好ましくは0.3m2/g~15m2/gのものが、粉砕工程での取り扱いの観点から好ましい。また、ペロブスカイト型複合酸化物の平均粒子径が好ましくは0.1μm~10μm、より好ましくは0.15μm~5μmのものが、粉砕工程での取り扱いの観点から好ましい。この平均粒子径は、レーザー回折散乱法により水を分散媒として用いて測定したメディアン径(D50)である。 The production history of such perovskite type complex oxide is not particularly limited, and, for example, coprecipitation method, hydrolysis method, wet method such as hydrothermal synthesis method, sol-gel method, solid phase method, etc. Those obtained by known methods are used. The physical properties of these perovskite type composite oxides are not particularly limited, but the BET specific surface area is preferably 0.2 m 2 / g to 20 m 2 / g, more preferably 0.3 m 2 / g to 15 m 2 It is preferable from the viewpoint of handling in the pulverizing step of 1 / g. The perovskite type composite oxide preferably has an average particle diameter of 0.1 μm to 10 μm, more preferably 0.15 μm to 5 μm from the viewpoint of handling in the pulverizing step. The average particle diameter is a median diameter (D50) measured using water as a dispersion medium by a laser diffraction scattering method.
 また、改質対象となるペロブスカイト型複合酸化物の粒子形状は、特に制限されるものではなく、球状、粒状、板状、鱗片状、ウィスカー状、棒状、フィラメント状等のいずれであってもよい。 The particle shape of the perovskite-type composite oxide to be modified is not particularly limited, and may be any of spherical, granular, plate-like, scaly, whisker-like, rod-like, filamentous, etc. .
 一般式(1)においてXは、水素原子、エポキシ基、アミノ基、ビニル基、(メタ)アクリル基、イソシアネート基又はメルカプト基である。これらの中でも一般的な有機溶媒への分散性付与という観点から、水素原子であることが好ましい。 In the general formula (1), X is a hydrogen atom, an epoxy group, an amino group, a vinyl group, a (meth) acrylic group, an isocyanate group or a mercapto group. Among these, from the viewpoint of imparting dispersibility to a common organic solvent, a hydrogen atom is preferable.
 一般式(1)においてYで表される炭素原子数5以上の直鎖状アルキレン基としては、n-ペンチレン基、n-へキシレン基、n-ヘプチレン基、n-オクチレン基、n-ノニレン基、n-デシレン基、n-ウンデシレン基、n-ドデシレン基、n-トリデシレン基、n-テトラデシレン基、n-ペンタデシレン基、n-ヘキサデシレン基、n-ヘプタデシレン基、n-オクタデシレン基、n-ノナデシレン基等が挙げられる。入手の容易さの観点から、直鎖状アルキレン基の炭素原子数は5以上20以下であることが好ましい。
 一般式(1)においてZで表される炭素原子数1~3のアルキル基としては、メチル基、エチル基、プロピル基等が挙げられる。また、一般式(1)においてZで表される炭素原子数2~4のアルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、メトキシエチル基、エトキシエチル基等が挙げられる。
Examples of the linear alkylene group having 5 or more carbon atoms represented by Y in the general formula (1) include n-pentylene group, n-hexylene group, n-heptylene group, n-octylene group, n-nonylene group , N-decylene group, n-undecylene group, n-dodecylene group, n-tridecylene group, n-tetradecylene group, n-pentadecylene group, n-hexadecylene group, n-heptadecylene group, n-octadecylene group, n-nonadecylene group Etc. From the viewpoint of availability, the number of carbon atoms in the linear alkylene group is preferably 5 or more and 20 or less.
Examples of the alkyl group having 1 to 3 carbon atoms represented by Z in the general formula (1) include a methyl group, an ethyl group and a propyl group. Further, examples of the alkoxyalkyl group having 2 to 4 carbon atoms represented by Z in the general formula (1) include a methoxymethyl group, an ethoxymethyl group, a methoxyethyl group and an ethoxyethyl group.
 一般式(1)で表されるシランカップリング剤の具体例としては、ヘキシルトリメトキシシラン(X=水素、Y=n-へキシレン基、Z=メチル基、a=1)、ヘプチルトリメトキシシラン(X=水素、Y=n-ヘプチレン基、Z=メチル基、a=1)、オクチルトリエトキシシラン(X=水素、Y=n-オクチレン基、Z=エチル基、a=1)、ノニルトリメトキシシラン(X=水素、Y=n-ノニレン基、Z=メチル基、a=1)、デシルトリメトキシシラン(X=水素、Y=n-デシレン基、Z=メチル基、a=1)ウンデシルトリメトキシシラン(X=水素、Y=n-ウンデシレン基、Z=メチル基、a=1)、ドデシルトリメトキシシラン(X=水素、Y=n-ドデシレン基、Z=メチル基、a=1)、トリデシルトリメトキシシラン(X=水素、Y=n-トリデシレン基、Z=メチル基、a=1)、テトラデシルトリメトキシシラン(X=水素、Y=n-テトラデシレン基、Z=メチル基、a=1)、ペンタデシルトリメトキシシラン(X=水素、Y=n-ペンタデシレン基、Z=メチル基、a=1)等が挙げられる。これらの中でも、一般的な有機溶媒への分散性付与という観点から、ヘキシルトリメトキシシラン、オクチルトリエトキシシラン及びデシルトリメトキシシランが好ましい。 Specific examples of the silane coupling agent represented by the general formula (1) include hexyltrimethoxysilane (X = hydrogen, Y = n-hexylene group, Z = methyl group, a = 1), heptyltrimethoxysilane (X = hydrogen, Y = n-heptylene group, Z = methyl group, a = 1), octyltriethoxysilane (X = hydrogen, Y = n-octylene group, Z = ethyl group, a = 1), nonyl trile Methoxysilane (X = hydrogen, Y = n-nonylene, Z = methyl, a = 1), decyltrimethoxysilane (X = hydrogen, Y = n-decylene, Z = methyl, a = 1) Decyltrimethoxysilane (X = hydrogen, Y = n-undecylene group, Z = methyl group, a = 1), dodecyltrimethoxysilane (X = hydrogen, Y = n-dodecylene group, Z = methyl group, a = 1 ), Tridecyl trimethoxy Orchid (X = hydrogen, Y = n-tridecylene group, Z = methyl group, a = 1), tetradecyltrimethoxysilane (X = hydrogen, Y = n-tetradecylene group, Z = methyl group, a = 1), Pentadecyltrimethoxysilane (X = hydrogen, Y = n-pentadecylene group, Z = methyl group, a = 1) and the like can be mentioned. Among these, hexyltrimethoxysilane, octyltriethoxysilane and decyltrimethoxysilane are preferable from the viewpoint of imparting dispersibility to a common organic solvent.
 レーザー回折散乱法により有機溶媒を分散媒として用いて測定した本発明の改質ペロブスカイト型複合酸化物(一般式(1)で表されるシランカップリング剤により被覆したペロブスカイト型複合酸化物)の平均粒子径(D50)をDosとし、レーザー回折散乱法により水を分散媒として用いて測定した未改質ペロブスカイト型複合酸化物(改質する前のペロブスカイト型複合酸化物)の平均粒子径(D50)をDwとしたときに、Dos/Dwで表される凝集度が1.4以下であることが好ましく、1.2以下であることがより好ましい。凝集度が1.4以下であれば、水に対し濡れ性が比較的良いペロブスカイト型複合酸化物と同様に有機溶媒中でも分散した状態で取り扱えることを意味する。ここで用いる有機溶媒としては、特に制限されないが、メチルエチルケトン、アセトン、n-ヘキサン、メタノール、エタノール、トルエン、シクロペンタノン等が挙げられる。 Average of the modified perovskite-type composite oxide (perovskite-type composite oxide coated with a silane coupling agent represented by the general formula (1)) of the present invention measured by using an organic solvent as a dispersion medium by a laser diffraction scattering method Average particle size (D50) of unmodified perovskite-type composite oxide (perovskite-type composite oxide before modification) measured using a particle size (D50) as Dos and using water as a dispersion medium by a laser diffraction scattering method When Dw is Dw, the degree of aggregation represented by Dos / Dw is preferably 1.4 or less, more preferably 1.2 or less. If the degree of aggregation is 1.4 or less, it means that it can be handled in the state of being dispersed in the organic solvent as well as the perovskite type complex oxide having relatively good wettability to water. The organic solvent to be used here is not particularly limited, and includes methyl ethyl ketone, acetone, n-hexane, methanol, ethanol, toluene, cyclopentanone and the like.
 また、本発明の改質ペロブスカイト型複合酸化物は、吸湿水分量が0.3質量%以下であることが好ましく、0.25質量%以下であることがより好ましい。吸湿水分量が0.3質量%以下であれば、基材であるペロブスカイト型複合酸化物の表面が水分により水酸化物又は炭酸化合物に変化する程度が低く、粒子形状の変化や電気特性の低下を防ぐことができる。なお、本明細書において、改質ペロブスカイト型複合酸化物の吸湿水分量は、以下の方法で求められる。
 まず、製造直後の改質ペロブスカイト型複合酸化物試料を精秤(A)し、この試料を棚段乾燥機で105℃、2時間の条件で加熱して得られた乾燥物を精秤(B)する。これとは別に製造直後の改質ペロブスカイト型複合酸化物試料を精秤(a)し、この試料を40℃、湿度90%の環境下で180分間静置して吸湿させて得られた吸湿試料を精秤(c)する。この吸湿試料を棚段乾燥機で105℃、2時間の条件で加熱して得られた乾燥物を精秤(b)する。次式により付着水分量を求めて、試料に吸湿した水分量(質量%)とする。
  吸湿水分量(質量%)=(((c-b)/a)×100)-(((A-B)/A)×100)
The moisture absorption of the modified perovskite-type composite oxide of the present invention is preferably 0.3% by mass or less, and more preferably 0.25% by mass or less. If the amount of moisture absorbed is 0.3% by mass or less, the degree to which the surface of the perovskite type complex oxide which is the base material is changed to hydroxide or carbonate compound by water is low, and the change of particle shape and deterioration of electric characteristics You can prevent. In the present specification, the moisture absorption amount of the modified perovskite-type composite oxide can be determined by the following method.
First, a sample of the modified perovskite complex oxide immediately after production is precisely weighed (A), and the dried product obtained by heating this sample in a tray drier at 105 ° C. for 2 hours is finely weighed (B ). Separately from this, a sample of the modified perovskite complex oxide immediately after production is precisely weighed (a), and this sample is allowed to absorb moisture by standing for 180 minutes in an environment of 40 ° C. and 90% humidity to obtain a hygroscopic sample obtained (C). The dried product obtained by heating this moisture-absorbing sample with a tray drier at 105 ° C. for 2 hours is precisely weighed (b). The amount of attached water is determined by the following equation to obtain the amount of moisture absorbed by the sample (% by mass).
Moisture content of moisture (mass%) = (((c-b) / a) x 100)-(((A-B) / A) x 100)
 本発明の改質ペロブスカイト型複合酸化物は、改質対象となるペロブスカイト型複合酸化物と、上記一般式(1)で表されるシランカップリング剤とを混合した後、その混合物を気流式粉砕機に供給することによりペロブスカイト型複合酸化物を粉砕しながらペロブスカイト型複合酸化物粒子の表面をシランカップリング剤で被覆することによって製造することができる。ペロブスカイト型複合酸化物と上記一般式(1)で表されるシランカップリング剤との混合物を、気流式粉砕機に供給することにより、粉砕される過程で露出するペロブスカイト型複合酸化物の新たな表面を上記一般式(1)で表されるシランカップリング剤で直ぐに被覆することができるため、周囲環境に曝露されて水分と接触する機会を低減することができ、Aサイト金属の溶出や比表面積の経時変化を抑えることができる。 The modified perovskite complex oxide of the present invention is prepared by mixing the perovskite complex oxide to be modified and the silane coupling agent represented by the above general formula (1), and then subjecting the mixture to air flow grinding. It can be manufactured by coating the surface of the perovskite type complex oxide particles with a silane coupling agent while grinding the perovskite type complex oxide by supplying to a machine. A mixture of the perovskite complex oxide and the silane coupling agent represented by the above general formula (1) is supplied to an air flow crusher to newly form the perovskite complex oxide exposed in the process of being pulverized. Since the surface can be immediately coated with the silane coupling agent represented by the above general formula (1), the chance of exposure to the surrounding environment and contact with moisture can be reduced, and the elution and ratio of A-site metal can be reduced. The time-dependent change of the surface area can be suppressed.
 ペロブスカイト型複合酸化物とシランカップリング剤との混合方法は、特に制限されるものではないが、シランカップリング剤をペロブスカイト型複合酸化物に噴霧する方法、固体のシランカップリング剤をペロブスカイト型複合酸化物と乾式混合する方法、有機溶媒中に分散したペロブスカイト型複合酸化物に対し液体のシランカップリング剤を添加し、濾過乾燥して混合物を得る方法等が挙げられる。シランカップリング剤は、原液のまま用いてもよいし、適当な溶媒(アルコール類、ケトン類、エーテル類等)に溶かしたものを用いてもよい。ペロブスカイト型複合酸化物とシランカップリング剤と混合する際、ペロブスカイト型複合酸化物とシランカップリング剤との質量比を99.5:0.5~95:5とすることが好ましく、99:1~96:4とすることがより好ましい。ペロブスカイト型複合酸化物とシランカップリング剤との質量比が99.5:0.5~95:5であれば、ペロブスカイト型複合酸化物粒子の表面に少なくとも1層のシランカップリング剤膜を形成することができる。しかし、シランカップリング剤を多量に添加しても得られる効果が増幅することは無いので経済的に不利となる。 The method of mixing the perovskite type composite oxide and the silane coupling agent is not particularly limited, but a method of spraying the silane coupling agent onto the perovskite type composite oxide, solid silane coupling agent as the perovskite type composite A method of dry mixing with an oxide, a method of adding a liquid silane coupling agent to a perovskite type complex oxide dispersed in an organic solvent, and filtering and drying to obtain a mixture, and the like can be mentioned. The silane coupling agent may be used as a stock solution, or may be used after being dissolved in an appropriate solvent (alcohols, ketones, ethers, etc.). When mixing the perovskite type complex oxide with the silane coupling agent, the mass ratio of the perovskite type complex oxide to the silane coupling agent is preferably 99.5: 0.5 to 95: 5, and 99: 1 It is more preferable to set to -96: 4. When the mass ratio of the perovskite type complex oxide to the silane coupling agent is 99.5: 0.5 to 95: 5, at least one layer of silane coupling agent film is formed on the surface of the perovskite type complex oxide particle. can do. However, even if a large amount of silane coupling agent is added, the effect obtained is not amplified, which is economically disadvantageous.
 気流式粉砕機としては、ジェットミル、ストリームミル、流動床粉砕機等が挙げられる。これらの中でも、粉砕室に羽根やメディアを持ち込まない構造によりコンタミネーションが少ないという観点から、ジェットミルが好ましい。 As an air flow crusher, a jet mill, a stream mill, a fluidized bed crusher and the like can be mentioned. Among these, the jet mill is preferable from the viewpoint of less contamination due to the structure in which the blades and the media are not carried into the grinding chamber.
 気流式粉砕機による粉砕条件としては、特に制限されるものではないが、好ましくは0.03MPa以上、より好ましくは0.05MPa~0.7MPaのグラインディング圧である。また粉体投入速度は、気流式粉砕機のサイズにもよるが、4~40kg/hrが好ましい。この粉砕条件で行うことにより、上記一般式(1)で表されるシランカップリング剤を、新たに露出したペロブスカイト型複合酸化物の表面に十分かつ効率的に被覆することができる。 There are no particular limitations on the conditions for grinding using an air flow crusher, but the grinding pressure is preferably 0.03 MPa or more, and more preferably 0.05 MPa to 0.7 MPa. Further, the powder feeding speed is preferably 4 to 40 kg / hr, although it depends on the size of the air flow type crusher. By performing the pulverization conditions, the silane coupling agent represented by the above general formula (1) can be sufficiently and efficiently coated on the newly exposed surface of the perovskite-type composite oxide.
 このようにして得られる本発明の改質ペロブスカイト型複合酸化物は、樹脂中への充填性及び分散性に優れるため、高誘電特性、低損失特性、焦電特性、圧電特性などに優れた後述する複合誘電体材料を製造することが可能となる。なお、本発明の改質ペロブスカイト型複合酸化物は、強誘電体、焦電体及び圧電体となり得るものであるが、広義には常誘電体も含めて誘電体と総称されるものである。 The modified perovskite-type composite oxide of the present invention thus obtained is excellent in the high dielectric characteristics, low loss characteristics, pyroelectric characteristics, piezoelectric characteristics, etc. It is possible to produce a composite dielectric material that The modified perovskite-type composite oxide of the present invention can be a ferroelectric, a pyroelectric and a piezoelectric, but in a broad sense it is generically called a dielectric including a paraelectric.
<複合誘電体材料>
 本発明の複合誘電体材料は、高分子材料と無機充填材としての上記改質ペロブスカイト型複合酸化物とを含有するものである。本発明の複合誘電体材料は、後述する高分子材料に上記改質ペロブスカイト型複合酸化物を好ましくは60質量%以上、より好ましくは70質量%~90質量%含有させることで好ましくは15以上、より好ましくは20以上の比誘電率を有する材料であることが望ましい。
<Compound dielectric material>
The composite dielectric material of the present invention contains a polymer material and the above-mentioned modified perovskite-type composite oxide as an inorganic filler. The composite dielectric material of the present invention is preferably contained in a polymer material described later preferably at least 60% by mass, more preferably at least 70% by mass to 90% by mass of the above modified perovskite-type composite oxide. More preferably, it is a material having a relative dielectric constant of 20 or more.
 本発明において用いることができる高分子材料としては、熱硬化性樹脂、熱可塑性樹脂又は光感光性樹脂が挙げられる。
 熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、メラミン樹脂、シアネート樹脂類、ビスマレイミド類、ビスマレイミド類とジアミンとの付加重合物、多官能性シアン酸エステル樹脂、二重結合付加ポリフェニレンオキサイド樹脂、不飽和ポリエステル樹脂、ポリビニルベンジルエーテル樹脂、ポリブタジエン樹脂、フマレート樹脂等の公知のものが挙げられる。これらの熱硬化性樹脂は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これら熱硬化性樹脂の中でも、耐熱性、加工性、価格等のバランスからエポキシ樹脂及びポリビニルベンジルエーテル樹脂が好ましい。
As a polymeric material which can be used in this invention, a thermosetting resin, a thermoplastic resin, or a photosensitive resin is mentioned.
As a thermosetting resin, for example, epoxy resin, phenol resin, polyimide resin, melamine resin, cyanate resins, bismaleimides, addition polymer of bismaleimides and diamine, polyfunctional cyanate ester resin, double resin Well-known things, such as bond addition polyphenylene oxide resin, unsaturated polyester resin, polyvinyl benzyl ether resin, a polybutadiene resin, fumarate resin, are mentioned. These thermosetting resins may be used alone or in combination of two or more. Among these thermosetting resins, epoxy resin and polyvinyl benzyl ether resin are preferable in terms of balance of heat resistance, processability, price and the like.
 本発明で用いるエポキシ樹脂とは、1分子内に少なくとも2個のエポキシ基を有するモノマー、オリゴマー、ポリマー全般であり、例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類及び/又はα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド類とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールB、ビスフェノールF、ビスフェノールS、アルキル置換又は非置換のビフェノール等のジグリシジルエーテル、フェノール類とジシクロペンタジエンやテルペン類との付加物または重付加物をエポキシ化したもの、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、脂環族エポキシ樹脂等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The epoxy resin used in the present invention is generally a monomer, an oligomer or a polymer having at least two epoxy groups in one molecule, for example, a phenol novolac epoxy resin, a phenol including an orthocresol novolac epoxy resin, Phenols such as cresol, xylenol, resorcinol, catechol, bisphenol A, bisphenol F and / or naphthols such as α-naphthol, β-naphthol, dihydroxynaphthalene and aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde Epoxidized novolak resin obtained by condensation or cocondensation under an acidic catalyst, bisphenol A, bisphenol B, bisphenol F, bisphenol Diglycidyl ethers such as alkyl-substituted or unsubstituted biphenols, epoxidized adducts or polyadducts of phenols with dicyclopentadiene or terpenes, polybasic acids such as phthalic acid and dimer acids A glycidyl ester type epoxy resin obtained by the reaction of epichlorohydrin, a glycidyl amine type epoxy resin obtained by the reaction of epichlorohydrin with a polyamine such as diaminodiphenylmethane and isocyanuric acid, a linear form obtained by oxidizing an olefin bond with a peroxyacid such as peracetic acid Aliphatic epoxy resins, alicyclic epoxy resins and the like can be mentioned. These may be used singly or in combination of two or more.
 エポキシ樹脂硬化剤としては、当業者において公知のものはすべて用いることができるが、特に、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等のC2~C20の直鎖脂肪族ジアミン、メタフェニレンジアミン、パラフェニレンジアミン、パラキシレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフォン、4,4’-ジアミノジシクロヘキサン、ビス(4-アミノフェニル)フェニルメタン、1,5-ジアミノナフタレン、メタキシリレンジアミン、パラキシリレンジアミン、1,1-ビス(4-アミノフェニル)シクロヘキサン、ジシアノジアミド等のアミン類、フェノールノボラック樹脂、クレゾールノボラック樹脂、tert-ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂、レゾール型フェノール樹脂、ポリパラオキシスチレン等のポリオキシスチレン、フェノールアラルキル樹脂、ナフトール系アラルキル樹脂等の、ベンゼン環やナフタリン環その他の芳香族性の環に結合する水素原子が水酸基で置換されたフェノール化合物と、カルボニル化合物との共縮合によって得られるフェノール樹脂や、酸無水物等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 エポキシ樹脂硬化剤の配合量は、エポキシ樹脂に対して、当量比で好ましくは0.1~10、より好ましくは0.7~1.3の範囲である。
As the epoxy resin curing agent, any of those known in the art can be used, and in particular, C 2 to C 20 linear aliphatic diamines such as ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, etc. Meta-phenylenediamine, para-phenylenediamine, para-xylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylether, 4,4'-diaminodiphenylsulfone, 4,4 ' -Amines such as diaminodicyclohexane, bis (4-aminophenyl) phenylmethane, 1,5-diaminonaphthalene, metaxylylenediamine, paraxylylenediamine, 1,1-bis (4-aminophenyl) cyclohexane and dicyanodiamide Species, pheno Novolak resin such as von novolak resin, cresol novolak resin, tert-butylphenol novolak resin, nonylphenol novolak resin, benzene ring such as polyoxystyrene such as resol type phenol resin, polyparaoxystyrene, phenol aralkyl resin, naphthol type aralkyl resin And a phenol resin obtained by co-condensing a carbonyl compound with a phenol compound in which a hydrogen atom bonded to a naphthalene ring or other aromatic ring is substituted with a hydroxyl group, an acid anhydride and the like. These may be used singly or in combination of two or more.
The compounding amount of the epoxy resin curing agent is preferably in the range of 0.1 to 10, more preferably 0.7 to 1.3 in equivalent ratio with respect to the epoxy resin.
 また、本発明においてエポキシ樹脂の硬化反応を促進させる目的で公知の硬化促進剤を用いることができる。硬化促進剤としては、例えば、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン等の三級アミン化合物、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール化合物、トリフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン化合物、ホスホニウム塩、アンモニウム塩等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 In the present invention, a known curing accelerator may be used to accelerate the curing reaction of the epoxy resin. As a curing accelerator, for example, tertiary amine compounds such as 1,8-diaza-bicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, 2-methylimidazole, 2-ethyl-4- Examples thereof include imidazole compounds such as methylimidazole, 2-phenylimidazole and 2-phenyl-4-methylimidazole, organic phosphine compounds such as triphenylphosphine and tributylphosphine, phosphonium salts, ammonium salts and the like. These may be used singly or in combination of two or more.
 本発明で用いるポリビニルベンジルエーテル樹脂とは、ポリビニルベンジルエーテル化合物から得られるものである。ポリビニルベンジルエーテル化合物は、下記一般式(2)で示される化合物が好ましい。 The polyvinyl benzyl ether resin used in the present invention is obtained from a polyvinyl benzyl ether compound. The polyvinyl benzyl ether compound is preferably a compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(2)の式中、R1はメチル基又はエチル基を示す。R2は水素原子又は炭素数1~10の炭化水素基を示す。R2で表される炭化水素基は、置換基を有していてもよいアルキル基、アラルキル基、アリール基等である。アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。アラルキル基としては、例えば、ベンジル基等が挙げられる。アリール基としては、例えば、フェニル基等が挙げられる。R3は水素原子又はビニルベンジル基を示す。なお、R3の水素原子は一般式(2)の化合物を合成する場合の出発化合物に由来し、水素原子とビニルベンジル基とのモル比が60:40~0:100であると硬化反応を十分に進行させることができ、また、本発明の複合誘電体材料において、十分な誘電特性が得られる点で好ましい。nは2~4の整数を示す。 In the formula of General Formula (2), R 1 represents a methyl group or an ethyl group. R 2 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. The hydrocarbon group represented by R 2 is an alkyl group which may have a substituent, an aralkyl group, an aryl group or the like. As an alkyl group, a methyl group, an ethyl group, a propyl group, a butyl group etc. are mentioned, for example. As an aralkyl group, a benzyl group etc. are mentioned, for example. As an aryl group, a phenyl group etc. are mentioned, for example. R 3 represents a hydrogen atom or a vinylbenzyl group. The hydrogen atom of R 3 is derived from the starting compound in the synthesis of the compound of the general formula (2), and the curing reaction is carried out when the molar ratio of hydrogen atom to vinylbenzyl group is 60:40 to 0: 100. It can be sufficiently advanced, and is preferable in that sufficient dielectric characteristics can be obtained in the composite dielectric material of the present invention. n is an integer of 2 to 4;
 ポリビニルベンジルエーテル化合物は、それのみを樹脂材料として重合して用いてもよく、他のモノマーと共重合させて用いてもよい。共重合可能なモノマーとしてはスチレン、ビニルトルエン、ジビニルベンゼン、ジビニルベンジルエーテル、アリルフェノール、アリルオキシベンゼン、ジアリルフタレート、アクリル酸エステル、メタクリル酸エステル、ビニルピロリドン、これらの変性物等が挙げられる。これらのモノマーの配合割合は、ポリビニルベンジルエーテル化合物に対して2質量%~50質量%である。 The polyvinyl benzyl ether compound may be used by polymerizing it alone as a resin material, or may be used after being copolymerized with other monomers. Examples of copolymerizable monomers include styrene, vinyltoluene, divinylbenzene, divinylbenzyl ether, allylphenol, allyloxybenzene, diallyl phthalate, acrylic acid ester, methacrylic acid ester, vinyl pyrrolidone, modified products thereof, and the like. The blending ratio of these monomers is 2% by mass to 50% by mass with respect to the polyvinyl benzyl ether compound.
 ポリビニルベンジルエーテル化合物の重合及び硬化は、公知の方法で行うことができる。硬化は、硬化剤の存在下又は不存在下の何れでも可能である。硬化剤としては、例えば、過酸化ベンゾイル、メチルエチルケトンパーオキシド、ジクミルパーオキシド、t-ブチルパーベンゾエート等の公知のラジカル重合開始剤を使用することができる。使用量は、ポリビニルベンジルエーテル化合物100質量部に対して0質量部~10質量部である。硬化温度は、硬化剤の使用の有無及び硬化剤の種類によっても異なるが、十分に硬化させるためには、好ましくは20℃~250℃、より好ましくは50℃~250℃である。
 また、硬化の調整のために、ハイドロキノン、ベンゾキノン、銅塩等を配合してもよい。
The polymerization and curing of the polyvinyl benzyl ether compound can be carried out by known methods. Curing may be either in the presence or absence of a curing agent. As a curing agent, for example, known radical polymerization initiators such as benzoyl peroxide, methyl ethyl ketone peroxide, dicumyl peroxide, t-butyl perbenzoate and the like can be used. The amount used is 0 parts by mass to 10 parts by mass with respect to 100 parts by mass of the polyvinyl benzyl ether compound. The curing temperature varies depending on the use of the curing agent and the type of the curing agent, but is preferably 20 ° C. to 250 ° C., more preferably 50 ° C. to 250 ° C. for sufficient curing.
In addition, hydroquinone, benzoquinone, copper salts and the like may be blended for adjustment of curing.
 熱可塑性樹脂としては、例えば、(メタ)アクリル樹脂、ヒドロキシスチレン樹脂、ノボラック樹脂、ポリエステル樹脂、ポリイミド樹脂、ナイロン樹脂、ポリエーテルイミド樹脂等の公知のものが挙げられる。 Examples of the thermoplastic resin include known resins such as (meth) acrylic resin, hydroxystyrene resin, novolac resin, polyester resin, polyimide resin, nylon resin, and polyetherimide resin.
 感光性樹脂としては、例えば、光重合性樹脂、光架橋性樹脂等の公知のものが挙げられる。 As photosensitive resin, well-known thing, such as photopolymerizable resin and photocrosslinkable resin, is mentioned, for example.
 本発明で用いる光重合性樹脂としては、例えば、エチレン性不飽和基を有するアクリル系共重合体(感光性オリゴマー)と光重合性化合物(感光性モノマー)と光重合開始剤を含むもの、エポキシ樹脂と光カチオン重合開始剤とを含むもの等が挙げられる。感光性オリゴマーとしては、エポキシ樹脂にアクリル酸を付加したもの、それをさらに酸無水物と反応させたものやグリシジル基を有する(メタ)アクリルモノマーを含む共重合体に(メタ)アクリル酸を反応させたもの、さらにそれに酸無水物を反応したもの、水酸基を有する(メタ)アクリルモノマーを含む共重合体に(メタ)アクリル酸グリシジルを反応させたもの、さらにそれに酸無水物を反応したもの、無水マレイン酸を含む共重合体に水酸基を有する(メタ)アクリルモノマーあるいはグリシジル基を有する(メタ)アクリルモノマーを反応させたもの等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 As the photopolymerizable resin used in the present invention, for example, one containing an acrylic copolymer (photosensitive oligomer) having an ethylenically unsaturated group, a photopolymerizable compound (photosensitive monomer) and a photopolymerization initiator, epoxy The thing containing resin and a photocationic polymerization initiator etc. are mentioned. As a photosensitive oligomer, one obtained by adding acrylic acid to an epoxy resin, one obtained by reacting it with an acid anhydride, or (meth) acrylic acid is reacted with a copolymer containing a (meth) acrylic monomer having a glycidyl group. Further, those obtained by reacting an acid anhydride, those obtained by reacting a copolymer containing a (meth) acrylic monomer having a hydroxyl group with glycidyl (meth) acrylate, and those obtained by reacting an acid anhydride, A copolymer obtained by reacting a (meth) acrylic monomer having a hydroxyl group or a (meth) acrylic monomer having a glycidyl group with a copolymer containing maleic anhydride may, for example, be mentioned. These may be used singly or in combination of two or more.
 光重合性化合物(感光性モノマー)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、N-ビニルピロリドン、アクリロイルモルフォリン、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、N,N-ジメチルアクリルアミド、フェノキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the photopolymerizable compound (photosensitive monomer) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, N-vinylpyrrolidone, acryloyl morpholine, methoxypolyethylene glycol (meth) acrylate, polyethylene Glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, N, N-dimethyl acrylamide, phenoxyethyl (meth) acrylate, cyclohexyl (meth) acrylate, trimethylolpropane (meth) acrylate, pentaerythritol tri (meth) acrylate , Dipentaerythritol hexa (meth) acrylate, tris (hydroxyethyl) isocyanurate di (meth) acrylate, tris (hydroxyethyl) ) Isocyanurate tri (meth) acrylate. These may be used singly or in combination of two or more.
 光重合開始剤としては、例えば、ベンゾインとそのアルキルエーテル類、ベンゾフェノン類、アセトフェノン類、アントラキノン類、キサントン類、チオキサントン類等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。なお、これらの光重合開始剤は、安息香酸系、第三アミン系等の公知慣用の光重合促進剤と併用することができる。光カチオン重合開始剤としては、例えば、トリフェニルスルホニウムヘキサフルオロアンチモネート、ジフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート、ベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート、ブレンステッド酸の鉄芳香族化合物塩(チバ・ガイギー社、CG24-061)等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the photopolymerization initiator include benzoin and its alkyl ethers, benzophenones, acetophenones, anthraquinones, xanthones, thioxanthones and the like. These may be used singly or in combination of two or more. These photopolymerization initiators can be used in combination with known and commonly used photopolymerization accelerators such as benzoic acid type and tertiary amine type. As a photocationic polymerization initiator, for example, triphenylsulfonium hexafluoroantimonate, diphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, benzyl 4-hydroxyphenylmethylsulfonium hexafluorophosphate, iron aroma of Bronsted acid Group compound salts (Ciba-Geigy, CG 24-061) and the like. These may be used singly or in combination of two or more.
 光カチオン重合開始剤によってエポキシ樹脂が開環重合するが、光重合性は通常のグリシジルエステル系エポキシ樹脂よりも脂環エポキシ樹脂の方が反応速度が速いのでより好ましい。脂環エポキシ樹脂とグリシジルエステル系エポキシ樹脂とを併用することもできる。脂環エポキシ樹脂としては、例えば、ビニルシクロヘキセンジエポキサイド、アリサイクリックジエポキシアセタール、アリサイクリックジエポキシアジペート、アリサイクリックジエポキシカルボキシレート、ダイセル化学工業(株)製、EHPE-3150等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Although an epoxy resin is ring-opening-polymerized by a photocationic polymerization initiator, the photopolymerization property is more preferable because an alicyclic epoxy resin has a faster reaction rate than a normal glycidyl ester epoxy resin. An alicyclic epoxy resin and a glycidyl ester epoxy resin can be used in combination. Examples of the alicyclic epoxy resin include vinylcyclohexene diepoxide, aryl cyclic diepoxy acetal, aryl cyclic diepoxy adipate, aryl cyclic diepoxy carboxylate, manufactured by Daicel Chemical Industries, Ltd., EHPE-3150, etc. Be These may be used singly or in combination of two or more.
 光架橋性樹脂としては、例えば、水溶性ポリマー重クロム酸塩系、ポリケイ皮酸ビニル(コダックKPR)、環化ゴムアジド系(コダックKTFR)等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the photocrosslinkable resin include water-soluble polymer dichromate-based, polyvinyl cinnamate (Kodak KPR), and cyclized rubber azide (Kodak KTFR). These may be used singly or in combination of two or more.
 これらの感光性樹脂の誘電率は一般に2.5~4.0と低い。従って、バインダーの誘電率を上げるために、感光性樹脂の感光特性を損なわない範囲で、より高誘電性のポリマー(例えば、住友化学のSDP-E(ε:15<)、信越化学のシアノレジン(ε:18<))や高誘電性液体(例えば、住友化学のSDP-S(ε:40<))を添加することもできる。 The dielectric constant of these photosensitive resins is generally as low as 2.5 to 4.0. Therefore, in order to increase the dielectric constant of the binder, a polymer having a higher dielectricity (eg, SDP-E (ε: 15 <) of Sumitomo Chemical, cyanoresin (Shin-Etsu Chemical It is also possible to add ε: 18 <)) or a high dielectric liquid (eg, SDP-S (ε: 40 <) from Sumitomo Chemical).
 本発明において、上記した高分子材料は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明の複合誘電体材料において、改質ペロブスカイト型複合酸化物の配合量は、樹脂との複合時に占める割合として、好ましくは60質量%以上、より好ましくは70質量%~90質量%である。この理由は60質量%未満では十分な比誘電率が得られない傾向があり、一方、90質量%を越えると粘度が増加し分散性が悪くなる傾向があるとともに、複合物の固形時に十分な強度が得られない等の懸念があるためである。上記配合により好ましくは15以上、より好ましくは20以上の比誘電率を有する材料であることが望ましい。
In the present invention, the above-described polymer materials may be used singly or in combination of two or more.
In the composite dielectric material of the present invention, the compounding amount of the modified perovskite-type composite oxide is preferably 60% by mass or more, more preferably 70% by mass to 90% by mass, as a ratio occupied at the time of complexing with the resin. The reason is that if the amount is less than 60% by mass, a sufficient relative dielectric constant tends not to be obtained, while if it exceeds 90% by mass, the viscosity tends to increase and the dispersibility tends to be poor. This is because there is a concern that the strength can not be obtained. It is desirable that the material has a relative dielectric constant of preferably 15 or more, more preferably 20 or more according to the above composition.
 また、本発明の複合誘電体材料は、本発明の効果を損なわない範囲の添加量で他の充填剤を含有することができる。他の充填剤としては、例えば、アセチレンブラック、ケッチェンブラック等のカーボン微粉、黒鉛微粉、炭化ケイ素等が挙げられる。 In addition, the composite dielectric material of the present invention can contain other fillers in an amount that does not impair the effects of the present invention. Examples of other fillers include carbon fine powder such as acetylene black and ketjen black, graphite fine powder, silicon carbide and the like.
 また、本発明の複合誘電体材料には、本発明の効果を損なわない範囲で、硬化剤、ガラス粉末、高分子添加剤、反応性希釈剤、重合禁止剤、レベリング剤、濡れ性改良剤、界面活性剤、可塑剤、紫外線吸収剤、酸化防止剤、帯電防止剤、無機系充填剤、防カビ剤、調湿剤、染料溶解剤、緩衝剤、キレート剤、難燃剤等を添加してもよい。これらの添加剤は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 In addition, the composite dielectric material of the present invention, as long as the effects of the present invention are not impaired, curing agents, glass powders, polymer additives, reactive diluents, polymerization inhibitors, leveling agents, wettability improvers, Even if surfactant, plasticizer, UV absorber, antioxidant, antistatic agent, inorganic filler, antifungal agent, humidity control agent, dye solubilizer, buffer agent, chelating agent, flame retardant, etc. are added Good. These additives may be used alone or in combination of two or more.
 本発明の複合誘電体材料は、複合誘電体ペーストを調製し、有機溶剤の除去、硬化反応又は重合反応を行うことにより製造することができる。 The composite dielectric material of the present invention can be produced by preparing a composite dielectric paste and performing removal of an organic solvent, curing reaction or polymerization reaction.
 複合誘電体ペーストは、樹脂成分、改質ペロブスカイト型複合酸化物、必要により添加される添加剤及び有機溶剤を含有するものである。 The composite dielectric paste contains a resin component, a modified perovskite-type composite oxide, an additive which is optionally added, and an organic solvent.
 複合誘電体ペーストに含有される樹脂成分は、熱硬化性樹脂の重合性化合物、熱可塑性樹脂の重合体及び感光性樹脂の重合性化合物である。なお、これらの樹脂成分は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The resin component contained in the composite dielectric paste is a polymerizable compound of a thermosetting resin, a polymer of a thermoplastic resin, and a polymerizable compound of a photosensitive resin. In addition, these resin components may be used individually by 1 type, and may be used combining 2 or more types.
 ここで、重合性化合物とは、重合性基を有する化合物を示し、例えば、完全硬化前の前駆体重合体、重合性オリゴマー及び単量体を含む。また、重合体とは、実質的に重合反応が完了した化合物を示す。 Here, the polymerizable compound means a compound having a polymerizable group, and includes, for example, a precursor polymer before complete curing, a polymerizable oligomer and a monomer. Moreover, a polymer shows the compound in which the polymerization reaction was substantially completed.
 必要により添加される有機溶剤としては、用いる樹脂成分により異なり、樹脂成分を溶解できるものであれば特に制限されるものではないが、例えば、N-メチルピロリドン、ジメチルホルムアミド、エーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサン、1~6個の炭素原子を有する直鎖又は分岐のアルキル基を有するモノアルコールのエチルグリコールエーテル、プロピレングリコールエーテル、ブチルグリコールエーテル、ケトン、アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、シクロヘキサノン、エステル、エチルアセテート、ブチルアセテート、エチレングリコールアセテート、メトキシプロピルアセテート、メトキシプロパノール、その他ハロゲン化炭化水素、脂環式炭化水素、芳香族炭化水素等が挙げられる。これらの有機溶剤は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの中でも、ヘキサン、ヘプタン、シクロヘキサン、トルエン及びジキシレンが好ましい。 The organic solvent to be added if necessary varies depending on the resin component to be used, and is not particularly limited as long as it can dissolve the resin component, for example, N-methylpyrrolidone, dimethylformamide, ether, diethyl ether, tetrahydrofuran Dioxane, ethyl glycol ether of monoalcohol having linear or branched alkyl group having 1 to 6 carbon atoms, propylene glycol ether, butyl glycol ether, ketone, acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, Cyclohexanone, ester, ethyl acetate, butyl acetate, ethylene glycol acetate, methoxypropyl acetate, methoxypropanol, other halogenated hydrocarbons, alicyclic carbonization Group and an aromatic hydrocarbon and the like. These organic solvents may be used alone or in combination of two or more. Among these, hexane, heptane, cyclohexane, toluene and dixylene are preferable.
 本発明において、複合誘電体ペーストは、所望の粘度に調製して使用される。複合誘電体ペーストの粘度は、通常、1,000mPa・s~1,000,000mPa・s(25℃)であり、複合誘電体ペーストの塗布性を考慮すると、好ましくは10,000mPa・s~600,000mPa・s(25℃)である。 In the present invention, the composite dielectric paste is used after being adjusted to a desired viscosity. The viscosity of the composite dielectric paste is usually 1,000 mPa · s to 1,000,000 mPa · s (25 ° C.), and preferably 10,000 mPa · s to 600 in consideration of the coatability of the composite dielectric paste. And 000 mPa · s (25 ° C.).
 本発明の複合誘電体材料は、フィルム状、バルク状又は所定形状の成形体として加工して用いることができ、特に薄膜形状の高誘電体フィルムとして用いることができる。 The composite dielectric material of the present invention can be processed and used as a film-like, bulk-like or shaped body having a predetermined shape, and in particular, can be used as a thin film-shaped high dielectric film.
 本発明の複合誘電材料を用いて複合誘電体フィルムを製造するには、例えば、従来公知の複合誘電体ペーストの使用方法に従って製造すればよく、下記にその一例を示す。
 複合誘電体ペーストを基材上に塗布した後、乾燥することによりフィルム状に成形することができる。基材としては、例えば、表面に剥離処理がなされたプラスチックフィルムを用いることができる。剥離処理が施されたプラスチックフィルム上に塗布してフィルム状に成形した場合、一般には成形後、フィルムから基材を剥離して用いることが好ましい。基材として用いることができるプラスチックフィルムとしては、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエステルフィルム、ポリイミドフィルム、アラミド、カプトン、ポリメチルペンテン等のフィルムを挙げることができる。また、基材として用いるプラスチックフィルムの厚みとしては、1μm~100μmであることが好ましく、さらに好ましくは1μm~40μmである。また、基材表面上に施す離型処理としては、シリコーン、ワックス、フッ素樹脂等を表面に塗布する離型処理が好ましく用いられる。
In order to produce a composite dielectric film using the composite dielectric material of the present invention, it may be produced, for example, according to the conventionally known method of using a composite dielectric paste, and an example thereof is shown below.
After the composite dielectric paste is applied on a substrate, it can be formed into a film by drying. As a base material, for example, a plastic film whose surface is subjected to a peeling treatment can be used. When it apply | coats on the plastic film in which the peeling process was performed, and it shape | molds in a film form, generally it is preferable to peel and use a base material from a film after shaping | molding. As a plastic film which can be used as a base material, films of polyethylene terephthalate (PET) film, polyethylene film, polypropylene film, polyester film, polyimide film, aramid, kapton, polymethylpentene and the like can be mentioned. The thickness of the plastic film used as the substrate is preferably 1 μm to 100 μm, and more preferably 1 μm to 40 μm. Moreover, as a mold release process given on the base-material surface, the mold release process which apply | coats silicone, a wax, a fluorine resin etc. on the surface is used preferably.
 また、基材として金属箔を用い、金属箔の上に誘電体フィルムを形成してもよい。このような場合、基材として用いた金属箔をコンデンサーの電極として用いることができる。 Alternatively, a metal foil may be used as a substrate, and a dielectric film may be formed on the metal foil. In such a case, the metal foil used as a base material can be used as an electrode of a capacitor.
 基材上に前記複合誘電体ペーストを塗布する方法としては、特に限定されるものではなく、一般的な塗布方法を用いることができる。例えば、ローラー法、スプレー法、シルクスクリーン法等により塗布することができる。 It does not specifically limit as method to apply | coat the said composite dielectric paste on a base material, A general application method can be used. For example, it can be applied by a roller method, a spray method, a silk screen method or the like.
 このような誘電体フィルムは、プリント基板等の基板に組み込んだ後、加熱して熱硬化することができる。また、感光性樹脂を用いた場合には、選択的に露光することによりパターニングすることができる。 Such a dielectric film can be heated and thermally cured after being incorporated into a substrate such as a printed circuit board. Moreover, when photosensitive resin is used, it can pattern by selectively exposing.
 また、例えば、カレンダー法等により、本発明の複合誘電体材料を押出成形して、フィルム状に成形してもよい。
 押出成形した誘電体フィルムは、上記の基材上に押し出されるように成形されてもよい。また、基材として、金属箔を用いる場合、金属箔としては、銅、アルミニウム、真鍮、ニッケル、鉄等を材料とする箔の他、これらの合金の箔、複合箔等を用いることができる。金属箔には、必要時に応じて表面粗面化の処理や、接着剤の塗布等の処理を施しておいてもよい。
Also, for example, the composite dielectric material of the present invention may be extruded and formed into a film by a calender method or the like.
The extruded dielectric film may be shaped to be extruded onto the above-described substrate. Moreover, when using metal foil as a base material, in addition to the foil made from copper, aluminum, brass, nickel, iron etc. as a metal foil, foil of these alloys, composite foil etc. can be used. The metal foil may be subjected to a surface roughening treatment, an application of an adhesive, or the like as required.
 また、金属箔の間に誘電体フィルムを形成してもよい。この場合、金属箔上に複合誘電体ペーストを塗布した後、この上に金属箔を載せ、金属箔の間に複合誘電体ペーストを挟んだ状態で乾燥させることにより、金属箔の間に挟まれた状態の誘電体フィルムを形成してもよい。また、金属箔の間に挟まれるように押出成形することにより、金属箔の間に設けられた誘電体フィルムを形成してもよい。 Also, a dielectric film may be formed between the metal foils. In this case, after the composite dielectric paste is applied on the metal foil, the metal foil is placed on the metal foil and dried in a state where the composite dielectric paste is sandwiched between the metal foils, thereby being sandwiched between the metal foils. It is also possible to form a dielectric film in the negative state. Alternatively, the dielectric film provided between the metal foils may be formed by extrusion so as to be sandwiched between the metal foils.
 また、本発明の複合誘電体材料は、前述した有機溶媒を用いてワニスとした後、これにクロス又は不織布を含浸し、乾燥を行うことによりプリプレグとして用いてもよい。用いることができるクロスや不織布の種類は、特に制限されるものではなく、公知のものを使用することができる。クロスとしては、ガラスクロス、アラミドクロス、カーボンクロス、延伸多孔質ポリテトラフルオロエチレン等が挙げられる。また、不織布としては、アラミド不織布、ガラスペーパー等が挙げられる。プリプレグは、回路基板等の電子部品に積層した後、硬化することにより、電子部品に絶縁層を導入することができる。 In addition, the composite dielectric material of the present invention may be used as a prepreg by forming a varnish using the above-mentioned organic solvent, impregnating it with a cloth or a non-woven fabric, and drying it. The type of cloth or non-woven fabric that can be used is not particularly limited, and known ones can be used. Examples of the cloth include glass cloth, aramid cloth, carbon cloth, stretched porous polytetrafluoroethylene and the like. Moreover, as a nonwoven fabric, an aramid nonwoven fabric, glass paper, etc. are mentioned. The prepreg can be introduced into the electronic component by laminating it on an electronic component such as a circuit board and then curing it.
 本発明の複合誘電体材料は、高い比誘電率を有することから電子部品、特にプリント回路基板、半導体パッケージ、コンデンサー、高周波用アンテナ、無機EL等の電子部品の誘電体層として好適に用いることができる。 Since the composite dielectric material of the present invention has a high relative dielectric constant, it can be suitably used as a dielectric layer of an electronic component, particularly a printed circuit board, a semiconductor package, a capacitor, an antenna for high frequency, an inorganic EL etc. it can.
 本発明の複合誘電体材料を用いて多層プリント配線板を製造するには、当該技術分野で公知の方法を用いて製造することがでる(例えば、特開2003-192768号公報、特開2005-29700号公報、特開2002-226816号公報、特開2003-327827号公報等参照。)。なお、以下に示す一例は、複合誘電体材料の高分子材料として熱硬化性樹脂を用いた場合の例示である。 In order to produce a multilayer printed wiring board using the composite dielectric material of the present invention, it can be produced using a method known in the relevant technical field (for example, JP-A 2003-192768, JP-A 2005- 29700, JP-A 2002-226816, JP-A 2003-327827, etc.). In addition, an example shown below is an illustration at the time of using a thermosetting resin as a polymeric material of composite dielectric material.
 本発明の複合誘電体材料を前述した誘電体フィルムとし、誘電体フィルムの樹脂面で回路基板に加圧、加熱するか、或いは真空ラミネーターを使用してラミネートする。ラミネート後、フィルムから基材を剥離して露出された樹脂層上に、更に金属箔をラミネートし、樹脂を加熱硬化させる。 The composite dielectric material of the present invention is used as the above-mentioned dielectric film, and the circuit board of the dielectric film is pressed, heated or laminated using a vacuum laminator. After lamination, a metal foil is further laminated on the resin layer exposed by peeling off the substrate from the film, and the resin is heat-cured.
 また、本発明の複合誘電体材料をプリプレグとしたものの回路基板へのラミネートは、真空プレスにより行うことができる。具体的にはプリプレグの片面を回路基板に接触させ、他面に金属箔をのせてプレスを行うことが望ましい。 Moreover, although the composite dielectric material of this invention is made into a prepreg, lamination to the circuit board can be performed by a vacuum press. Specifically, it is desirable that one side of the prepreg be in contact with the circuit board, and metal foil be placed on the other side for pressing.
 また、本発明の複合誘電体材料をワニスとして用い、回路基板に、スクリーン印刷、カーテンコート、ロールコート、スプレーコート等を用いて塗布・乾燥することにより多層プリント配線板の中間絶縁層を形成することができる。 In addition, the composite dielectric material of the present invention is used as a varnish, and the circuit board is coated and dried using screen printing, curtain coating, roll coating, spray coating or the like to form an intermediate insulating layer of a multilayer printed wiring board be able to.
 本発明において、絶縁層を最外層に持つプリント配線板の場合は、スルーホール及びバイアホール部をドリルまたはレーザーで穴開けを行い、絶縁層表面を粗化剤処理し微細な凹凸を形成する。絶縁層の粗化方法としては、絶縁樹脂層が形成された基板を酸化剤等の溶液中に浸漬する方法や、酸化剤等の溶液をスプレーする方法等の仕様に応じて、実施することができる。粗化処理剤の具体例としては、重クロム酸塩、過マンガン酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、メトキシプロパノール等の有機溶剤、また苛性ソーダ、苛性カリ等のアルカリ性水溶液、硫酸、塩酸等の酸性水溶液、又は各種プラズマ処理等を用いることができる。また、これらの処理は併用して用いてもよい。上記のように、絶縁層が粗化されたプリント配線板上は、次いで蒸着、スパッタリング、イオンプレーティング等の乾式めっき、もしくは無電解・電解めっき等の湿式めっきにより導体層を形成する。このとき、導体層とは逆パターンのめっきレジストを形成し、無電解めっきのみで導体層を形成してもよい。このように導体層が形成された後、アニール処理することにより、熱硬化性樹脂の硬化が進行し導体層のピール強度をさらに向上させることもできる。このようにして、最外層に導体層を形成することができる。 In the present invention, in the case of a printed wiring board having an insulating layer as the outermost layer, through holes and via holes are drilled or drilled by a laser, and the surface of the insulating layer is roughened to form fine irregularities. The method of roughening the insulating layer may be carried out according to the specification such as a method of immersing the substrate on which the insulating resin layer is formed in a solution such as an oxidizing agent or a method of spraying a solution such as an oxidizing agent it can. Specific examples of the roughening agent include dichromates, permanganates, ozone, oxidizing agents such as hydrogen peroxide / sulfuric acid and nitric acid, N-methyl-2-pyrrolidone, N, N-dimethylformamide, methoxy Organic solvents such as propanol, alkaline aqueous solutions such as caustic soda and potassium hydroxide, acidic aqueous solutions such as sulfuric acid and hydrochloric acid, or various plasma treatments can be used. Also, these processes may be used in combination. As described above, on the printed wiring board on which the insulating layer is roughened, a conductor layer is then formed by dry plating such as vapor deposition, sputtering or ion plating, or wet plating such as electroless / electrolytic plating. At this time, a plating resist having a pattern reverse to that of the conductor layer may be formed, and the conductor layer may be formed only by electroless plating. By annealing after the conductor layer is formed as described above, curing of the thermosetting resin proceeds and the peel strength of the conductor layer can be further improved. Thus, the conductor layer can be formed on the outermost layer.
 また、中間絶縁層を形成した金属箔は、真空プレスで積層することにより、多層化できる。中間絶縁層を形成した金属箔は、内層回路が形成されたプリント配線板上に、真空プレスで積層することにより、最外層が導体層のプリント配線板にすることができる。また、本発明の複合誘電体材料を用いたプリプレグは、金属箔と供に、内層回路が形成されたプリント配線板上に、真空プレスで積層することにより、最外層が導体層のプリント配線板にすることができる。コンホーマル工法等で所定のスルーホール及びバイアホール部をドリルまたはレーザーで穴開けを行い、スルーホール及びバイアホール内をデスミア処理し、微細な凹凸を形成する。次に、無電解・電解めっき等の湿式めっきにより、層間の導通を取る。 Moreover, the metal foil in which the intermediate | middle insulating layer was formed can be multilayered by laminating | stacking by a vacuum press. The metal foil in which the intermediate insulating layer is formed can be made into a printed wiring board in which the outermost layer is a conductor layer by laminating on the printed wiring board on which the inner layer circuit is formed by a vacuum press. Moreover, the prepreg using the composite dielectric material of the present invention is a printed wiring board in which the outermost layer is a conductor layer by laminating with a metal foil by a vacuum press on a printed wiring board on which an inner layer circuit is formed. Can be Predetermined through holes and via holes are drilled or lasered by a conformal method or the like, and the insides of the through holes and via holes are desmeared to form fine irregularities. Next, the layers are electrically connected by wet plating such as electroless and electrolytic plating.
 さらに、必要に応じてこれらの工程を数回繰り返し、更に、最外層の回路形成が終了した後、ソルダーレジストを、スクリーン印刷法によるパターン印刷・熱硬化、又はカーテンコート・ロールコート・スプレーコートによる全面印刷・熱硬化後レーザーでパターンを形成することにより、所望の多層プリント配線板を得る。 Furthermore, if necessary, these steps are repeated several times, and after the circuit formation of the outermost layer is completed, the solder resist is subjected to screen printing, pattern printing, heat curing, or curtain coating, roll coating, or spray coating. A desired multilayer printed wiring board is obtained by forming a pattern with a laser after printing on the entire surface and heat curing.
 以下に実施例を用いて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
<チタン酸バリウムの調製>
 塩化バリウム2水塩1300g及びシュウ酸2水塩1300gに純水7200gを加えて、温度55℃で0.5時間撹拌して得られた懸濁液をA液とした。また、TiO2換算で15.3質量%の四塩化チタン水溶液2560gに純水5600gを加えて希釈したものをB液とした。
 次いで、撹拌しながら反応温度55℃で30分間かけてB液をA液に添加し、添加後は撹拌を続けながら0.5時間の熟成を行った。熟成終了後、ろ過してシュウ酸バリウムチタニルを回収した。
 次いで、回収したシュウ酸バリウムチタニルを純水でリパルプし、80℃で24時間静置乾燥してシュウ酸バリウムチタニルの粉末を得た。
 得られたシュウ酸バリウムチタニルの粉末をアルミナ坩堝に500g仕込み、900℃で10時間仮焼した後、ジェットミルにより粉砕し、さらに900℃で9時間仮焼することによりチタン酸バリウム(BET比表面積:9m2/g、平均粒子径:0.5μm)を得た。
<Preparation of barium titanate>
7200 g of pure water was added to 1300 g of barium chloride dihydrate and 1300 g of oxalic acid dihydrate, and the resulting suspension was stirred at a temperature of 55 ° C. for 0.5 hours to give a solution A. A solution B was prepared by adding 5600 g of pure water to 2560 g of a 15.3% by mass aqueous solution of titanium tetrachloride in terms of TiO 2 and diluting it.
Then, while stirring, Solution B was added to Solution A over 30 minutes at a reaction temperature of 55 ° C., and after addition, aging was performed for 0.5 hours while stirring was continued. After the completion of aging, it was filtered to recover barium titanyl oxalate.
Then, the collected barium titanyl oxalate was repulped with pure water and allowed to stand and dried at 80 ° C. for 24 hours to obtain barium titanyl oxalate powder.
500 g of the obtained barium titanyl oxalate powder is charged in an alumina crucible, calcined at 900 ° C. for 10 hours, pulverized by a jet mill, and further calcined at 900 ° C. for 9 hours to obtain barium titanate (BET specific surface area : 9 m 2 / g, average particle size: 0.5 μm).
〔実施例1~3〕
 上記で得られたチタン酸バリウム200gに対し、表1に示す種類及び量のシランカップリング剤を噴霧してチタン酸バリウムとシランカップリング剤との混合物を得、この混合物をジェットミル((株)セイシン企業社製STJ200)に供給し、グラインディング圧≧0.06MPaの条件にて処理して改質チタン酸バリウムを製造した。
[Examples 1 to 3]
A silane coupling agent of the type and amount shown in Table 1 is sprayed onto 200 g of the barium titanate obtained above to obtain a mixture of barium titanate and a silane coupling agent, and this mixture is jet mill (( 2.) A modified barium titanate was produced by supplying to SEISIN STJ 200) and processing under the condition of grinding pressure 0.060.06 MPa.
〔比較例1〕
 上記で得られたチタン酸バリウムにシランカップリング剤を噴霧せずにジェットミルに供給し、グラインディング圧≧0.06MPaの条件にて処理して粉砕されたチタン酸バリウムを製造した。
Comparative Example 1
The barium titanate obtained above was supplied to a jet mill without spraying a silane coupling agent, and was processed under the conditions of grinding pressure 0.060.06 MPa to produce crushed barium titanate.
〔比較例2~4〕
 表1に示す種類及び量の表面処理剤に変更したこと以外は実施例1~3と同様にして改質チタン酸バリウムを製造した。
[Comparative Examples 2 to 4]
Modified barium titanate was produced in the same manner as in Examples 1 to 3 except that the surface treatment agent was changed to the type and amount shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<評価>
(凝集度)
 比較例1のシランカップリング剤による表面処理を行わなかったチタン酸バリウムについて、分散媒に水を用いてレーザー回折散乱法により平均粒子径(D50)を求めた。このときの平均粒子径をDwとした。次いで、実施例1~3及び比較例2~4の改質チタン酸バリウム、並びに比較例1のチタン酸バリウムについて、メチルエチルケトンを分散媒として用いてレーザー回折散乱法により平均粒子径(D50)を求めた。このときの平均粒子径をDosとした。
 得られた測定値からDos/Dwを算出し、有機溶媒中の粒子の凝集度とした。その結果を表2に示す。また、実施例1で得られた改質チタン酸バリウム粒子の有機溶媒中での粒度分布測定を図1に示し、比較例1で得られたチタン酸バリウム粒子の有機溶媒中での粒度分布測定結果を図2に示し、比較例1で得られたチタン酸バリウム粒子の水中での粒度分布測定結果を図3に示す。なお、平均粒子径の測定には、レーザー回折式粒度分布測定装置(マイクロトラック・ベル社製、MT3300EX)を使用した。
<Evaluation>
(Cohesion degree)
The average particle diameter (D50) of the barium titanate not subjected to the surface treatment with the silane coupling agent of Comparative Example 1 was determined by a laser diffraction scattering method using water as a dispersion medium. The average particle size at this time was taken as Dw. Next, with respect to the modified barium titanates of Examples 1 to 3 and Comparative Examples 2 to 4 and the barium titanate of Comparative Example 1, using methyl ethyl ketone as a dispersion medium, the average particle diameter (D50) is determined by the laser diffraction scattering method The The average particle size at this time was taken as Dos.
Dos / Dw was calculated from the obtained measured value, and it was considered as the degree of aggregation of particles in the organic solvent. The results are shown in Table 2. The particle size distribution measurement in an organic solvent of the modified barium titanate particles obtained in Example 1 is shown in FIG. 1, and the particle size distribution measurement in an organic solvent of the barium titanate particles obtained in Comparative Example 1 is shown. The result is shown in FIG. 2, and the particle size distribution measurement result in water of the barium titanate particles obtained in Comparative Example 1 is shown in FIG. For measurement of the average particle size, a laser diffraction type particle size distribution measuring apparatus (manufactured by Microtrac Bell, MT3300EX) was used.
(溶出試験)
 実施例1~3及び比較例1~4それぞれで得られた試料2gとイオン交換水50gとを精秤して1時間撹拌後、上澄み液を0.2μm孔径のシリンジフィルターで濾過した濾液20gに、濃塩酸1mLを加え、50mLとなるように定容した試料溶液を、ICP-AES(アジレント社製Agilent5100)で定量して、水中へのBa溶出の評価を行った。その結果を表2に示す。
(Dissolution test)
2 g of the sample obtained in each of Examples 1 to 3 and Comparative Examples 1 to 4 and 50 g of ion exchanged water were precisely weighed and stirred for 1 hour, and the supernatant was filtered with a 0.2 μm pore diameter syringe filter to make 20 g of filtrate Then, 1 mL of concentrated hydrochloric acid was added, and the volume of the sample solution adjusted to 50 mL was quantified with ICP-AES (Agilent 5100, Agilent) to evaluate the elution of Ba into water. The results are shown in Table 2.
(吸湿試験)
 実施例1~3及び比較例1~4それぞれで得られた試料の吸湿水分量を求めた。その結果を表2に示す。
(Moisture absorption test)
The moisture absorption amount of the samples obtained in each of Examples 1 to 3 and Comparative Examples 1 to 4 was determined. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2の結果から、比較例1のチタン酸バリウム及び比較例2のチタンカップリング剤による改質チタン酸バリウムでは、有機溶媒中での凝集度が高かった。また、比較例3及び比較例4の改質チタン酸バリウムでは、Baの溶出量及び吸湿水分量が多かった。これに対して、実施例1~3で得られた改質チタン酸バリウムでは、凝集度が低く、Baの溶出が抑えられており、また、吸湿水分量が少なく、安定化した粒子となっていることが判る。 From the results in Table 2, in the barium titanate of Comparative Example 1 and the modified barium titanate with the titanium coupling agent of Comparative Example 2, the degree of aggregation in the organic solvent was high. Further, in the modified barium titanate of Comparative Example 3 and Comparative Example 4, the elution amount of Ba and the moisture absorption amount were large. On the other hand, in the modified barium titanate obtained in Examples 1 to 3, the degree of aggregation is low, the elution of Ba is suppressed, and the amount of hygroscopic water is small, resulting in stabilized particles. It can be understood that
<チタン酸ストロンチウムの調製>
 塩化ストロンチウム2水塩1300g及びシュウ酸2水塩1300gに純水7200gを加えて、温度55℃で0.5時間撹拌して得られた懸濁液をA液とした。また、TiO2換算で15.3質量%の四塩化チタン水溶液2560gに純水5600gを加えて希釈したものをB液とした。
 次いで、撹拌しながら反応温度55℃で30分間かけてB液をA液に添加し、添加後は撹拌を続けながら0.5時間の熟成を行った。熟成終了後、ろ過してシュウ酸ストロンチウムチタニルを回収した。
 次いで、回収したシュウ酸ストロンチウムチタニルを純水でリパルプし、80℃で24時間静置乾燥してシュウ酸ストロンチウムチタニルの粉末を得た。
 得られたシュウ酸ストロンチウムチタニルの粉末をアルミナ坩堝に500g仕込み、900℃で10時間仮焼した後、ジェットミルにより粉砕し、さらに900℃で9時間仮焼することによりチタン酸ストロンチウム(BET比表面積:11m2/g、平均粒子径:0.4μm)を得た。
<Preparation of Strontium Titanate>
7200 g of pure water was added to 1300 g of strontium chloride dihydrate and 1300 g of oxalic acid dihydrate, and the suspension obtained by stirring at a temperature of 55 ° C. for 0.5 hours was designated as solution A. A solution B was prepared by adding 5600 g of pure water to 2560 g of a 15.3% by mass aqueous solution of titanium tetrachloride in terms of TiO 2 and diluting it.
Then, while stirring, Solution B was added to Solution A over 30 minutes at a reaction temperature of 55 ° C., and after addition, aging was performed for 0.5 hours while stirring was continued. After the completion of aging, it was filtered to recover strontium titanyl oxalate.
Then, the recovered strontium titanyl oxalate was repulped with pure water and allowed to stand and dried at 80 ° C. for 24 hours to obtain a powder of strontium titanyl oxalate.
500 g of the obtained powder of strontium titanyl oxalate is put in an alumina crucible, calcined at 900 ° C. for 10 hours, pulverized by a jet mill, and further calcined at 900 ° C. for 9 hours to obtain strontium titanate (BET specific surface area 11 m 2 / g, average particle size: 0.4 μm).
〔実施例4~6〕
 上記で得られたチタン酸ストロンチウム200gに対し、表3に示す種類及び量のシランカップリング剤を噴霧してチタン酸ストロンチウムとシランカップリング剤との混合物を得、この混合物をジェットミル((株)セイシン企業社製STJ200)に供給し、グラインディング圧≧0.06MPaの条件にて処理して改質チタン酸ストロンチウムを製造した。
[Examples 4 to 6]
A silane coupling agent of the type and amount shown in Table 3 is sprayed onto 200 g of the strontium titanate obtained above to obtain a mixture of strontium titanate and a silane coupling agent, and this mixture is jet mill (( 2.) The solution was supplied to Seishin Enterprise Co., Ltd., STJ 200, and treated under the conditions of grinding pressure 0.06 0.06 MPa to produce modified strontium titanate.
〔比較例5〕
 上記で得られたチタン酸ストロンチウムにシランカップリング剤を噴霧せずにジェットミルに供給し、グラインディング圧≧0.06MPaの条件にて処理して粉砕されたチタン酸ストロンチウムを製造した。
Comparative Example 5
The strontium titanate obtained above was supplied to a jet mill without spraying a silane coupling agent, and was processed under the conditions of grinding pressure 0.060.06 MPa to produce crushed strontium titanate.
〔比較例6~8〕
 表3に示す種類及び量の表面処理剤に変更したこと以外は実施例4~6と同様にして改質チタン酸ストロンチウムを製造した。
[Comparative Examples 6 to 8]
Modified strontium titanate was produced in the same manner as in Examples 4 to 6 except that the surface treatment agent was changed to the type and amount shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<評価>
(凝集度)
 実施例1~3及び比較例1~4と同様の方法で、実施例4~6及び比較例5~8それぞれで得られた試料の凝集度を求めた。その結果を表4に示す。
<Evaluation>
(Cohesion degree)
The degree of aggregation of the samples obtained in Examples 4 to 6 and Comparative Examples 5 to 8 was determined in the same manner as in Examples 1 to 3 and Comparative Examples 1 to 4. The results are shown in Table 4.
(溶出試験)
 実施例1~3及び比較例1~4と同様の方法で、実施例4~6及び比較例5~8それぞれで得られた試料の水中へのSr溶出の評価を行った。その結果を表4に示す。
(Dissolution test)
In the same manner as in Examples 1 to 3 and Comparative Examples 1 to 4, the evaluation of Sr elution in water of the samples obtained in Examples 4 to 6 and Comparative Examples 5 to 8 was performed. The results are shown in Table 4.
(吸湿試験)
 実施例1~3及び比較例1~4と同様の方法で、実施例4~6及び比較例5~8それぞれで得られた試料の吸湿水分量を求めた。その結果を表4に示す。
(Moisture absorption test)
The moisture absorption amount of each of the samples obtained in Examples 4 to 6 and Comparative Examples 5 to 8 was determined in the same manner as in Examples 1 to 3 and Comparative Examples 1 to 4. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4の結果から、比較例5のチタン酸ストロンチウム及び比較例6~8の改質チタン酸ストロンチウムでは、有機溶媒中での凝集度が高く、Srの溶出量及び吸湿水分量が多かった。これに対して、実施例4~6で得られた改質チタン酸ストロンチウムでは、凝集度が低く、Srの溶出が抑えられており、また、吸湿水分量が少なく、安定化した粒子となっていることが判る。 From the results in Table 4, in the strontium titanate of Comparative Example 5 and the modified strontium titanate of Comparative Examples 6 to 8, the degree of aggregation in the organic solvent was high, and the elution amount of Sr and the moisture absorption amount were large. On the other hand, in the modified strontium titanate obtained in Examples 4 to 6, the degree of aggregation is low, the elution of Sr is suppressed, and the amount of hygroscopic water is small, resulting in stabilized particles. It can be understood that
<ニオブ酸カリウムナトリウムの調製>
 五酸化ニオブ4688g、炭酸ナトリウム958g及び炭酸カリウム1183gを、ヘンシェルミキサーにより乾式混合して原料混合物を得た。
 この原料混合物を、650℃で7時間仮焼した後、ジェットミルにより粉砕し、さらに900℃で10時間仮焼することによりニオブ酸カリウムナトリウム(BET比表面積:3m2/g、平均粒子径:0.9μm)を得た。
Preparation of potassium sodium niobate
A raw material mixture was obtained by dry mixing 4688 g of niobium pentoxide, 958 g of sodium carbonate and 1183 g of potassium carbonate using a Henschel mixer.
The raw material mixture is calcined at 650 ° C. for 7 hours, pulverized by a jet mill, and further calcined at 900 ° C. for 10 hours to obtain potassium sodium niobate (BET specific surface area: 3 m 2 / g, average particle size: 0.9 μm) was obtained.
〔実施例7〕
 上記で得られたニオブ酸カリウムナトリウム200gに対し、表5に示す種類及び量のシランカップリング剤を噴霧してニオブ酸カリウムナトリウムとシランカップリング剤との混合物を得、この混合物をジェットミル((株)セイシン企業社製STJ200)に供給し、グラインディング圧≧0.06MPaの条件にて処理して改質ニオブ酸カリウムナトリウムを製造した。
[Example 7]
A silane coupling agent of the type and amount shown in Table 5 is sprayed onto 200 g of potassium sodium niobate obtained above to obtain a mixture of potassium sodium niobate and a silane coupling agent, and this mixture is jet milled ( It supplied to Seishin Enterprise Co., Ltd. (STJ200), processed on the conditions of grinding pressure> = 0.06MPa, and modified potassium sodium niobate was manufactured.
〔比較例9〕
 上記で得られたニオブ酸カリウムナトリウムにシランカップリング剤を噴霧せずにジェットミルに供給し、グラインディング圧≧0.06MPaの条件にて処理して粉砕されたニオブ酸カリウムナトリウムを製造した。
Comparative Example 9
The potassium sodium niobate obtained above was supplied to a jet mill without spraying a silane coupling agent, and was processed under the conditions of grinding pressure 0.060.06 MPa to produce ground potassium sodium niobate.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<評価>
(凝集度)
 実施例1~3及び比較例1~4と同様の方法で、実施例7及び比較例9それぞれで得られた試料の凝集度を求めた。その結果を表6に示す。
<Evaluation>
(Cohesion degree)
The degree of aggregation of the samples obtained in Example 7 and Comparative Example 9 was determined in the same manner as in Examples 1 to 3 and Comparative Examples 1 to 4. The results are shown in Table 6.
(溶出試験)
 実施例1~3及び比較例1~4と同様の方法で、実施例7及び比較例9それぞれで得られた試料の水中へのSr溶出の評価を行った。その結果を表6に示す。
(Dissolution test)
The evaluation of Sr elution in water of the samples obtained in Example 7 and Comparative Example 9 was performed in the same manner as in Examples 1 to 3 and Comparative Examples 1 to 4. The results are shown in Table 6.
(吸湿試験)
 実施例1~3及び比較例1~4と同様の方法で、実施例7及び比較例9それぞれで得られた試料の吸湿水分量を求めた。その結果を表6に示す。
(Moisture absorption test)
The moisture absorption amount of each of the samples obtained in Example 7 and Comparative Example 9 was determined in the same manner as in Examples 1 to 3 and Comparative Examples 1 to 4. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表6の結果から、比較例9のニオブ酸カリウムナトリウムでは、有機溶媒中での凝集度が高く、Na及びKの溶出量及び吸湿水分量が多かった。これに対して、実施例7で得られた改質ニオブ酸カリウムナトリウムでは、凝集度が低く、Na及びKの溶出が抑えられており、また、吸湿水分量が少なく、安定化した粒子となっていることが判る。 From the results in Table 6, in the potassium sodium niobate of Comparative Example 9, the degree of aggregation in the organic solvent was high, and the elution amounts of Na and K and the moisture absorption amount were large. On the other hand, in the modified potassium sodium niobate obtained in Example 7, the degree of aggregation is low, the elution of Na and K is suppressed, and the amount of hygroscopic water is small, resulting in stabilized particles. It is understood that
 なお、本国際出願は、2017年12月20日に出願した日本国特許出願第2017-243790号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2017-243790 filed on Dec. 20, 2017, and the entire content of this Japanese patent application is incorporated into this international application. Do.

Claims (10)

  1.  下記一般式(1)で表されるシランカップリング剤によりペロブスカイト型複合酸化物粒子の表面が被覆されていることを特徴とする改質ペロブスカイト型複合酸化物。
      (XY)aSi(OZ)4-a   (1)
    (一般式(1)中、Xは水素原子、エポキシ基、アミノ基、ビニル基、(メタ)アクリル基、イソシアネート基又はメルカプト基であり、Yは炭素原子数5以上の直鎖状アルキレン基であり、Zは水素原子、炭素原子数1~3のアルキル基、アセチル基又は炭素原子数2~4のアルコキシアルキル基であり、aは1又は2である。)
    A modified perovskite-type composite oxide, wherein the surface of a perovskite-type composite oxide particle is coated with a silane coupling agent represented by the following general formula (1).
    (XY) a Si (OZ) 4-a (1)
    (In the general formula (1), X is a hydrogen atom, an epoxy group, an amino group, a vinyl group, a (meth) acrylic group, an isocyanate group or a mercapto group, and Y is a linear alkylene group having 5 or more carbon atoms And Z is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an acetyl group or an alkoxyalkyl group having 2 to 4 carbon atoms, and a is 1 or 2.)
  2.  レーザー回折散乱法により有機溶媒を分散媒として用いて測定した前記改質ペロブスカイト型複合酸化物の平均粒子径(D50)をDosとし、レーザー回折散乱法により水を分散媒として用いて測定した未改質ペロブスカイト型複合酸化物の平均粒子径(D50)をDwとしたときに、Dos/Dwで表される凝集度が1.4以下であることを特徴とする請求項1に記載の改質ペロブスカイト型複合酸化物。 The average particle diameter (D50) of the modified perovskite complex oxide measured by using an organic solvent as a dispersion medium by a laser diffraction scattering method as Dos, and not measured by using water as a dispersion medium by a laser diffraction scattering method The modified perovskite according to claim 1, characterized in that the degree of aggregation represented by Dos / Dw is 1.4 or less, where Dw is an average particle diameter (D50) of the porous perovskite type composite oxide. Type complex oxide.
  3.  吸湿水分量が0.3質量%以下であることを特徴とする請求項1又は2に記載の改質ペロブスカイト型複合酸化物。 The modified perovskite-type composite oxide according to claim 1 or 2, wherein the moisture absorption amount is 0.3 mass% or less.
  4.  前記ペロブスカイト型複合酸化物が、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、ニオブ酸カリウム、ニオブ酸ナトリウム、ニオブ酸カリウムナトリウム、ニオブ酸カリウムナトリウムリチウム、チタン酸ビスマスカリウム、チタン酸ビスマスナトリウム、鉄酸ビスマス、タンタル酸カリウム、又はこれら複合固溶体であることを特徴とする請求項1~3のいずれか一項に記載の改質ペロブスカイト型複合酸化物。 The perovskite type complex oxide is barium titanate, strontium titanate, calcium titanate, potassium niobate, sodium niobate, sodium potassium niobate, lithium potassium sodium niobate, bismuth potassium titanate, bismuth sodium titanate, iron The modified perovskite-type composite oxide according to any one of claims 1 to 3, which is bismuth acid, potassium tantalate or a composite solid solution thereof.
  5.  ペロブスカイト型複合酸化物と、下記一般式(1)で表されるシランカップリング剤とを混合した後、その混合物を気流式粉砕機に供給することによりペロブスカイト型複合酸化物を粉砕しながらペロブスカイト型複合酸化物粒子の表面を前記シランカップリング剤で被覆することを特徴とする改質ペロブスカイト型複合酸化物の製造方法。
      (XY)aSi(OZ)4-a   (1)
    (一般式(1)中、Xは水素原子、エポキシ基、アミノ基、ビニル基、(メタ)アクリル基、イソシアネート基又はメルカプト基であり、Yは炭素原子数5以上の直鎖状アルキレン基であり、Zは水素原子、炭素原子数1~3のアルキル基、アセチル基又は炭素原子数2~4のアルコキシアルキル基であり、aは1又は2である。)
    A perovskite type composite oxide and a silane coupling agent represented by the following general formula (1) are mixed, and then the mixture is supplied to an air flow crusher to crush the perovskite type composite oxide while being crushed. A method for producing a modified perovskite-type composite oxide, comprising coating the surface of the composite oxide particle with the silane coupling agent.
    (XY) a Si (OZ) 4-a (1)
    (In the general formula (1), X is a hydrogen atom, an epoxy group, an amino group, a vinyl group, a (meth) acrylic group, an isocyanate group or a mercapto group, and Y is a linear alkylene group having 5 or more carbon atoms And Z is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an acetyl group or an alkoxyalkyl group having 2 to 4 carbon atoms, and a is 1 or 2.)
  6.  前記混合の際の前記ペロブスカイト型複合酸化物と前記シランカップリング剤との質量比を99.5:0.5~95:5とすることを特徴とする請求項5に記載の改質ペロブスカイト型複合酸化物の製造方法。 6. The modified perovskite type according to claim 5, wherein the mass ratio of the perovskite type complex oxide to the silane coupling agent during the mixing is 99.5: 0.5 to 95: 5. Method of producing complex oxide.
  7.  前記気流式粉砕機がジェットミルであることを特徴とする請求項5又は6に記載の改質ペロブスカイト型複合酸化物の製造方法。 The method for producing a modified perovskite-type composite oxide according to claim 5 or 6, wherein the air flow crusher is a jet mill.
  8.  前記気流式粉砕機による粉砕及び表面処理を0.03MPa以上のグラインディング圧で行うことを特徴とする請求項5~7のいずれか一項に記載の改質ペロブスカイト型複合酸化物の製造方法。 The method for producing a modified perovskite-type composite oxide according to any one of claims 5 to 7, wherein the pulverization and the surface treatment by the air flow type pulverizer are performed at a grinding pressure of 0.03 MPa or more.
  9.  前記ペロブスカイト型複合酸化物が、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、ニオブ酸カリウム、ニオブ酸ナトリウム、ニオブ酸カリウムナトリウム、ニオブ酸カリウムナトリウムリチウム、チタン酸ビスマスカリウム、チタン酸ビスマスナトリウム、鉄酸ビスマス、タンタル酸カリウム、又はこれら複合固溶体であることを特徴とする請求項5~8のいずれか一項に記載の改質ペロブスカイト型複合酸化物の製造方法。 The perovskite type complex oxide is barium titanate, strontium titanate, calcium titanate, potassium niobate, sodium niobate, sodium potassium niobate, lithium potassium sodium niobate, bismuth potassium titanate, bismuth sodium titanate, iron The method for producing a modified perovskite-type composite oxide according to any one of claims 5 to 8, which is bismuth acid, potassium tantalate or a composite solid solution thereof.
  10.  請求項1~4のいずれか一項に記載の改質ペロブスカイト型複合酸化物と高分子材料とを含むことを特徴とする複合誘電体材料。 A composite dielectric material comprising the modified perovskite-type composite oxide according to any one of claims 1 to 4 and a polymer material.
PCT/JP2018/042309 2017-12-20 2018-11-15 Modified perovskite complex oxide, method for producing same and composite dielectric material WO2019123916A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207020496A KR102510234B1 (en) 2017-12-20 2018-11-15 Modified perovskite-type composite oxide, manufacturing method thereof, and composite dielectric material
CN201880082164.XA CN111511686A (en) 2017-12-20 2018-11-15 Modified perovskite-type composite oxide, method for producing same, and composite dielectric material
JP2019560879A JP7204673B2 (en) 2017-12-20 2018-11-15 Method for producing modified perovskite-type composite oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017243790 2017-12-20
JP2017-243790 2017-12-20

Publications (1)

Publication Number Publication Date
WO2019123916A1 true WO2019123916A1 (en) 2019-06-27

Family

ID=66993301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042309 WO2019123916A1 (en) 2017-12-20 2018-11-15 Modified perovskite complex oxide, method for producing same and composite dielectric material

Country Status (4)

Country Link
JP (1) JP7204673B2 (en)
KR (1) KR102510234B1 (en)
CN (1) CN111511686A (en)
WO (1) WO2019123916A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270271A (en) * 2021-06-02 2021-08-17 广东工业大学 Ferroelectric film capacitor and preparation method thereof
CN115057469B (en) * 2022-06-27 2023-12-22 江苏联瑞新材料股份有限公司 Spherical calcium titanate preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08161935A (en) * 1994-12-01 1996-06-21 Sunstar Eng Inc Organic dispersion electroluminescent element and reflecting insulation layer composition used for it
JP2004218030A (en) * 2003-01-17 2004-08-05 Sakai Chem Ind Co Ltd Surface-treated metal nickel powder and production method therefor
JP2008297142A (en) * 2007-05-30 2008-12-11 Titan Kogyo Kk Calcium titanate fine particle and toner for electrostatic recording
JP2014034650A (en) * 2012-08-09 2014-02-24 Toyota Central R&D Labs Inc Oxide dielectric material/polymer composite film and method for manufacturing the same
JP2015137208A (en) * 2014-01-23 2015-07-30 チタン工業株式会社 Strontium titanate fine particle for toner and production method of the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240117A (en) 1994-02-25 1995-09-12 Matsushita Electric Works Ltd Composite dielectric and its manufacture
JP2003049092A (en) 2001-08-03 2003-02-21 Hitachi Chem Co Ltd Filler, resin composition, and application thereof
JP2005015652A (en) 2003-06-26 2005-01-20 Fujikura Ltd Resin composition having high dielectric constant and electronic component
CN1934659B (en) 2004-03-29 2010-11-24 日本化学工业株式会社 Inorganic dielectric powder for composite dielectric material and composite dielectric material
JP5034314B2 (en) 2006-05-19 2012-09-26 住友大阪セメント株式会社 High refractive index transparent particle manufacturing method, high refractive index transparent particle, high refractive index transparent composite, and light emitting device
JP5193882B2 (en) * 2007-01-18 2013-05-08 日本化学工業株式会社 Modified perovskite complex oxide, method for producing the same, and complex dielectric material
CN101583672A (en) * 2007-01-18 2009-11-18 日本化学工业株式会社 Inorganic filler and composite dielectric material using the same
CN102249343B (en) * 2011-05-16 2013-02-13 黑龙江大学 Method for synthesizing nanoscale lanthanum ferrate with large specific surface area by utilizing silane coupling agent
CN105093828B (en) * 2014-05-09 2019-11-05 太阳油墨制造株式会社 Hardening resin composition, dry film and printed circuit board
JP2017019938A (en) 2015-07-13 2017-01-26 住友大阪セメント株式会社 Inorganic particle-containing composition, coating film, plastic substrate with coating film, and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08161935A (en) * 1994-12-01 1996-06-21 Sunstar Eng Inc Organic dispersion electroluminescent element and reflecting insulation layer composition used for it
JP2004218030A (en) * 2003-01-17 2004-08-05 Sakai Chem Ind Co Ltd Surface-treated metal nickel powder and production method therefor
JP2008297142A (en) * 2007-05-30 2008-12-11 Titan Kogyo Kk Calcium titanate fine particle and toner for electrostatic recording
JP2014034650A (en) * 2012-08-09 2014-02-24 Toyota Central R&D Labs Inc Oxide dielectric material/polymer composite film and method for manufacturing the same
JP2015137208A (en) * 2014-01-23 2015-07-30 チタン工業株式会社 Strontium titanate fine particle for toner and production method of the same

Also Published As

Publication number Publication date
CN111511686A (en) 2020-08-07
JP7204673B2 (en) 2023-01-16
JPWO2019123916A1 (en) 2020-12-24
KR102510234B1 (en) 2023-03-16
KR20200100124A (en) 2020-08-25

Similar Documents

Publication Publication Date Title
KR101136665B1 (en) Composite dielectric material
JP5193882B2 (en) Modified perovskite complex oxide, method for producing the same, and complex dielectric material
US8609748B2 (en) Modified perovskite type composite oxide, method for preparing the same, and composite dielectric material
KR20110042185A (en) Modified perovskite type composite oxide, manufacturing method thereof, and composite dielectric material
US20200362169A1 (en) Resin composition, copper foil with resin, dielectric layer, copper-clad laminate, capacitor element, and printed wiring board with built-in capacitor
US20100144947A1 (en) Inorganic filler and composite dielectric material using the same
TW200427809A (en) Insulating material, film, circuit board and method for manufacture thereof
WO2019123916A1 (en) Modified perovskite complex oxide, method for producing same and composite dielectric material
JP5912583B2 (en) Dielectric ceramic material and method for producing perovskite type complex oxide coarse particles used therefor
JP5283996B2 (en) Modified perovskite complex oxide, method for producing the same, and complex dielectric material
JP5774510B2 (en) Dielectric ceramic material and method for producing perovskite type complex oxide coarse particles used therefor
JP5195342B2 (en) Core-shell structured particles, composition, dielectric composition and capacitor
JP7176943B2 (en) Laminates, electronic components, and inverters
JP5362280B2 (en) Modified perovskite complex oxide, method for producing the same, and complex dielectric material
JP5341417B2 (en) Modified perovskite complex oxide, method for producing the same, and complex dielectric material
JP5283995B2 (en) Modified perovskite complex oxide, method for producing the same, and complex dielectric material
JP7295635B2 (en) Laminates, electronic components and inverters
JP2004124066A (en) High dielectric composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560879

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207020496

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18889981

Country of ref document: EP

Kind code of ref document: A1