JP5912583B2 - Dielectric ceramic material and method for producing perovskite type complex oxide coarse particles used therefor - Google Patents

Dielectric ceramic material and method for producing perovskite type complex oxide coarse particles used therefor Download PDF

Info

Publication number
JP5912583B2
JP5912583B2 JP2012016507A JP2012016507A JP5912583B2 JP 5912583 B2 JP5912583 B2 JP 5912583B2 JP 2012016507 A JP2012016507 A JP 2012016507A JP 2012016507 A JP2012016507 A JP 2012016507A JP 5912583 B2 JP5912583 B2 JP 5912583B2
Authority
JP
Japan
Prior art keywords
perovskite
dielectric
complex oxide
ceramic material
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012016507A
Other languages
Japanese (ja)
Other versions
JP2013155071A (en
Inventor
田邉 信司
信司 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2012016507A priority Critical patent/JP5912583B2/en
Priority to PCT/JP2013/051903 priority patent/WO2013115183A1/en
Publication of JP2013155071A publication Critical patent/JP2013155071A/en
Application granted granted Critical
Publication of JP5912583B2 publication Critical patent/JP5912583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1

Description

本発明は、複合誘電体の無機充填材等として有用な誘電体セラミック材料及びそれに用いるペロブスカイト型複合酸化物粗粒子の製造方法に関するものである。   The present invention relates to a dielectric ceramic material useful as an inorganic filler for a composite dielectric and a method for producing perovskite-type composite oxide coarse particles used therefor.

電子機器の小型化、薄型化及び高密度化のため、多層プリント配線板が多く使用されるようになってきた。この多層プリント配線板は、高誘電率材料からなる層を内層又は表層に設けて実装密度を向上させることにより、電子機器の更なる小型化、薄型化及び高密度化に対応可能となる。
従来、高誘電率材料としては、セラミック粉末を成形した後、これを焼成して得られるセラミック焼結体を用いているため、その寸法や形状は成形法により制約を受けた。また、焼結体は高硬度で脆性であるため、自由な加工が困難であり、任意の形状や複雑な形状を得るには困難を極めた。
In order to reduce the size, thickness, and density of electronic devices, multilayer printed wiring boards have come to be used frequently. This multilayer printed wiring board can cope with further downsizing, thinning, and high density of electronic equipment by providing a layer made of a high dielectric constant material on the inner layer or surface layer to improve the mounting density.
Conventionally, as a high dielectric constant material, a ceramic sintered body obtained by firing a ceramic powder and then firing the ceramic powder is used. Therefore, the dimensions and shape of the material are limited by the forming method. Further, since the sintered body is high in hardness and brittle, it is difficult to freely process it, and it is extremely difficult to obtain an arbitrary shape or a complicated shape.

このため、樹脂中に高誘電率の無機充填材を分散させた複合誘電体が、加工性に優れるため注目されている(例えば、特許文献1を参照)。
特許文献1では、粒子径が比較的大きな多孔質のペロブスカイト型複合酸化物粒子を用いているため、ハンドリング性に問題が生じることはないが、樹脂中に充填できる量がせいぜい30体積%程度であり、得られる複合誘電体の誘電率が低いという問題があった。
For this reason, a composite dielectric material in which an inorganic filler having a high dielectric constant is dispersed in a resin is attracting attention because of its excellent workability (see, for example, Patent Document 1).
In Patent Document 1, since porous perovskite complex oxide particles having a relatively large particle diameter are used, there is no problem in handling properties, but the amount that can be filled in the resin is about 30% by volume at most. In addition, there is a problem that the dielectric constant of the obtained composite dielectric is low.

一方、特許文献2には、熱硬化性樹脂中に誘電体フィラーを65体積%〜90体積%充填する技術が開示されている。しかし、特許文献2では、誘電体フィラーを高充填しているために、機械的特性及び電気絶縁性の低下が懸念される上に、高充填率のわりには誘電率が低いという問題があった。また、誘電体フィラーを高充填するほど、複合誘電体の密度は大きくなるので、特許文献2の複合誘電体は、より軽量化が求められる用途には適さないという問題もあった。更には、誘電体フィラーは樹脂よりも一般的に高価であることから、誘電体フィラーを高充填するほど製品コストの上昇を招くという問題もあった。   On the other hand, Patent Document 2 discloses a technique of filling a thermosetting resin with 65 to 90 volume% of a dielectric filler. However, in Patent Document 2, since the dielectric filler is highly filled, there is a concern that the mechanical characteristics and the electrical insulation are deteriorated, and the dielectric constant is low instead of the high filling rate. . Further, the higher the dielectric filler is filled, the higher the density of the composite dielectric, so that the composite dielectric disclosed in Patent Document 2 is not suitable for applications requiring further weight reduction. Furthermore, since the dielectric filler is generally more expensive than the resin, there is a problem that the higher the dielectric filler is filled, the higher the product cost is.

特開平5−94717号公報JP-A-5-94717 特開2001−233669号公報JP 2001-233669 A

従って、本発明は、複合誘電体を構成する樹脂中に少なくとも30体積%充填することができ、従来よりも高充填することなく複合誘電体の誘電率を高めることのできる誘電体セラミック材料を提供することを目的とする。また、その誘電体セラミック材料に用いるペロブスカイト型複合酸化物粗粒子の工業的に有利な製造方法を提供することも目的とする。   Therefore, the present invention provides a dielectric ceramic material which can be filled at least 30% by volume in the resin constituting the composite dielectric and can increase the dielectric constant of the composite dielectric without filling higher than before. The purpose is to do. Another object of the present invention is to provide an industrially advantageous method for producing perovskite-type composite oxide coarse particles used for the dielectric ceramic material.

本発明者は、鋭意研究を重ねた結果、特定の平均粒子径及びBET比表面積を有する2種類のペロブスカイト型複合酸化物粒子を組み合わせた誘電体セラミック材料が、上記課題を解決できることを見出し、本発明を完成するに至った。
即ち、本発明に係る誘電体セラミック材料は、平均粒子径が8μm以上50μm以下でBET比表面積が0.3m/g以上1.0m/g以下であるペロブスカイト(ABO)型複合酸化物粗粒子と平均粒子径が0.7μm以上3μm以下でBET比表面積が0.6m/g以上3m/g以下であるペロブスカイト(ABO)型複合酸化物微粒子とからなるものである。
As a result of extensive research, the present inventor has found that a dielectric ceramic material combining two types of perovskite complex oxide particles having a specific average particle diameter and a BET specific surface area can solve the above-mentioned problems. The invention has been completed.
That is, the dielectric ceramic material according to the present invention is a perovskite (ABO 3 ) type composite oxide having an average particle size of 8 μm to 50 μm and a BET specific surface area of 0.3 m 2 / g to 1.0 m 2 / g. It consists of coarse particles and perovskite (ABO 3 ) type complex oxide fine particles having an average particle diameter of 0.7 μm to 3 μm and a BET specific surface area of 0.6 m 2 / g to 3 m 2 / g.

本発明に係るペロブスカイト型複合酸化物粗粒子の製造方法は、Ba、Ca、Mg及びSrからなる群から選択される少なくとも1種の元素を含む炭酸塩と、Ti及びZrからなる群から選択される少なくとも1種の元素を含む酸化物と、分散媒とを含むスラリーを調製する工程、そのスラリーをスプレードライ法で乾燥させて造粒粉を得る工程、及びその造粒粉の焼成温度を1000℃以上1400℃以下の範囲で調整し、BET比表面積が0.3m/g以上1.0m/g以下である焼成体を得る工程を有するものである。 The method for producing perovskite-type composite oxide coarse particles according to the present invention is selected from a carbonate containing at least one element selected from the group consisting of Ba, Ca, Mg and Sr, and a group consisting of Ti and Zr. A step of preparing a slurry containing an oxide containing at least one element and a dispersion medium, a step of drying the slurry by a spray drying method to obtain a granulated powder, and a firing temperature of the granulated powder of 1000 ° C. and adjusted in the range of 1400 ° C. inclusive, and has a step of BET specific surface area to obtain a 0.3 m 2 / g or more 1.0 m 2 / g or less is fired body.

本発明の誘電体セラミック材料によれば、複合誘電体を構成する樹脂中に少なくとも30体積%充填することができ、従来よりも高充填することなく複合誘電体の誘電率を高めることができる。また、本発明のペロブスカイト型複合酸化物粗粒子の製造方法によれば、上記誘電体セラミック材料に用いるペロブスカイト型複合酸化物粗粒子を工業的に有利に製造することができる。   According to the dielectric ceramic material of the present invention, at least 30% by volume can be filled in the resin constituting the composite dielectric, and the dielectric constant of the composite dielectric can be increased without filling higher than before. Also, according to the method for producing perovskite complex oxide coarse particles of the present invention, the perovskite complex oxide coarse particles used for the dielectric ceramic material can be advantageously produced industrially.

製造例1で得られたペロブスカイト型複合酸化物粗粒子の電子顕微鏡写真である。3 is an electron micrograph of perovskite complex oxide coarse particles obtained in Production Example 1. FIG.

本発明に係る誘電体セラミック材料は、平均粒子径が8μm〜50μmでBET比表面積が0.3m/g〜1.0m/gであるペロブスカイト(ABO)型複合酸化物粗粒子と平均粒子径が0.7μm〜3μmでBET比表面積が0.6m/g〜3m/gであるペロブスカイト(ABO)型複合酸化物微粒子とからなるものである。
ペロブスカイト型複合酸化物粗粒子の平均粒子径が8μm未満であると、焼成時に粒子同士の融着が進行して解砕を強力に行う必要を要し、ひいては結晶性低減や微細粒子を発生するなど不具合を生じ、一方、平均粒子径が50μm超であると、最大径が100μmを超え、樹脂との複合化において厚みに関する自由度を失い、用途が大幅に制限される。好ましくは、ペロブスカイト型複合酸化物粗粒子の平均粒子径は10μm〜30μmである。更に、ペロブスカイト型複合酸化物粗粒子のBET比表面積が0.3m/g未満であると、樹脂複合時の誘電率を効率的に発現しにくくなり、一方、BET比表面積が1.0m/g超であると、解砕時の粒子崩壊や微粒子発生を生じたり、樹脂への分散自体にも困難を生じる。好ましくは、ペロブスカイト型複合酸化物粗粒子のBET比表面積は0.4m/g〜0.7m/gである。
また、ペロブスカイト型複合酸化物微粒子の平均粒子径が0.7μm未満であると、粒子自身の結晶性も低く、誘電率向上に対して不利となり、一方、平均粒子径が3μm超であると、粗粒子間に存在して分散性を向上させる上で妨げとなる。好ましくは、ペロブスカイト型複合酸化物微粒子の平均粒子径は1μm〜2μmである。更に、ペロブスカイト型複合酸化物微粒子のBET比表面積が0.6m/g未満であると、樹脂複合時に効率の良い誘電率向上が困難になり、一方、BET比表面積が3m/g超であると、樹脂への分散性が悪くなり、複合体の機械的強度を低減させるなど不具合を生じ易くなる。好ましくは、ペロブスカイト型複合酸化物微粒子のBET比表面積は0.8m/g〜2m/gである。
なお、本発明における平均粒子径とは、レーザー光散乱法により求められる値である。
The average dielectric ceramic material according to the present invention, BET specific surface area average particle diameter in 8μm~50μm is 0.3m 2 /g~1.0m 2 / g perovskites (ABO 3) type composite oxide coarse particles particle size is composed of the BET specific surface area of 0.6m 2 / g~3m 2 / g perovskites (ABO 3) type composite oxide fine particles 0.7Myuemu~3myuemu.
If the average particle size of the perovskite-type composite oxide coarse particles is less than 8 μm, it is necessary to perform strong crushing due to the fusion of the particles during firing, resulting in reduced crystallinity and generation of fine particles. On the other hand, when the average particle diameter is more than 50 μm, the maximum diameter exceeds 100 μm, and the degree of freedom regarding the thickness is lost in the composite with the resin, and the use is greatly limited. Preferably, the average particle diameter of the perovskite complex oxide coarse particles is 10 μm to 30 μm. Furthermore, when the BET specific surface area of the perovskite complex oxide coarse particles is less than 0.3 m 2 / g, it is difficult to efficiently express the dielectric constant at the time of resin compounding, while the BET specific surface area is 1.0 m 2. If it is more than / g, particle collapse or fine particle generation at the time of crushing occurs, or difficulty in dispersion into the resin itself. Preferably, BET specific surface area of the perovskite-type composite oxide coarse particles is 0.4m 2 /g~0.7m 2 / g.
Further, when the average particle size of the perovskite type complex oxide fine particles is less than 0.7 μm, the crystallinity of the particles themselves is low, which is disadvantageous for improving the dielectric constant, while the average particle size is more than 3 μm. It exists between coarse particles and hinders improvement in dispersibility. Preferably, the average particle size of the perovskite complex oxide fine particles is 1 μm to 2 μm. Furthermore, if the BET specific surface area of the perovskite-type composite oxide fine particles is less than 0.6 m 2 / g, it is difficult to improve the dielectric constant efficiently at the time of resin composite, while the BET specific surface area exceeds 3 m 2 / g. When it exists, the dispersibility to resin will worsen and it will become easy to produce malfunctions, such as reducing the mechanical strength of a composite. Preferably, BET specific surface area of the perovskite type composite oxide particles is 0.8m 2 / g~2m 2 / g.
The average particle diameter in the present invention is a value determined by a laser light scattering method.

本発明に係る誘電体セラミック材料において、好ましくはペロブスカイト型複合酸化物粗粒子の配合割合は10重量%〜70重量%であり且つペロブスカイト型複合酸化物微粒子の配合割合は30重量%〜90重量%であり、より好ましくはペロブスカイト型複合酸化物粗粒子の配合割合は30重量%〜60重量%であり且つペロブスカイト型複合酸化物微粒子の配合割合は40重量%〜70重量%である。ペロブスカイト型複合酸化物粗粒子とペロブスカイト型複合酸化物微粒子との配合割合が上記範囲内であると、樹脂複合時の分散性が良好である上、強度が高く、誘電特性に優れた複合誘電体を得ることができる。   In the dielectric ceramic material according to the present invention, the blending ratio of the perovskite complex oxide coarse particles is preferably 10% by weight to 70% by weight and the blending ratio of the perovskite complex oxide fine particles is preferably 30% by weight to 90% by weight. More preferably, the blending ratio of the perovskite complex oxide coarse particles is 30 wt% to 60 wt%, and the blending ratio of the perovskite complex oxide fine particles is 40 wt% to 70 wt%. When the blending ratio of the perovskite complex oxide coarse particles and the perovskite complex oxide fine particles is within the above range, the composite dielectric has excellent dispersibility when combined with a resin, high strength, and excellent dielectric properties. Can be obtained.

ペロブスカイト型複合酸化物の組成は、特に制限されるものではないが、Aサイト元素が、Ba、Ca、Mg及びSrからなる群から選択される少なくとも1種であり、Bサイト元素が、Ti及びZrからなる群から選択される少なくとも1種であることが好ましい。具体的な好ましい組成を例示すると、BaTiO、CaTiO、SrTiO、BaCa1−xTiO(式中、xは0<x<1)、BaSr1−xZrO(式中、xは0<x<1)、BaTiZr1−x(式中、xは0<x<1)、BaCa1−xTiZr1−y(式中、xは0<x<1、yは0<y<1)、Ba1−x−yCaMgTiZr1-z(式中、xは0<x<1、yは0<y<1、zは0<z<1、0<x+y<1)等が挙げられる。これらのペロブスカイト型複合酸化物は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The composition of the perovskite complex oxide is not particularly limited, but the A site element is at least one selected from the group consisting of Ba, Ca, Mg and Sr, and the B site element is Ti and It is preferably at least one selected from the group consisting of Zr. Specific preferred compositions are exemplified by BaTiO 3 , CaTiO 3 , SrTiO 3 , Ba x Ca 1-x TiO 3 (where x is 0 <x <1), Ba x Sr 1-x ZrO 3 (wherein , X is 0 <x <1), BaTi x Zr 1-x O 3 (where x is 0 <x <1), Ba x Ca 1-x Ti y Zr 1-y O 3 (where x is 0 <x <1, y is 0 <y <1), Ba 1-x-y Ca x Mg y Ti z Zr 1-z O 3 ( wherein, x is 0 <x <1, y is 0 < Examples of y <1, z include 0 <z <1, 0 <x + y <1). These perovskite complex oxides may be used alone or in combination of two or more.

ペロブスカイト型複合酸化物では、Aサイト元素とBサイト元素とのモル比を示すA/B比が、好ましくは0.995〜1.010、より好ましくは0.997〜1.005、最も好ましくは0.999〜1.004の範囲にある。A/B比が上記範囲内であると、誘電体セラミック材料を充填した複合誘電体の誘電率をより高めることができる。   In the perovskite type complex oxide, the A / B ratio indicating the molar ratio between the A site element and the B site element is preferably 0.995 to 1.010, more preferably 0.997 to 1.005, most preferably It is in the range of 0.999 to 1.004. When the A / B ratio is within the above range, the dielectric constant of the composite dielectric filled with the dielectric ceramic material can be further increased.

ペロブスカイト型複合酸化物の粒子形状は、球状であることが充填性に優れる観点から好ましい。なお、粒子形状が球状とは球状とみなせる形状である限り、必ずしも真球であることを要しない。   The particle shape of the perovskite complex oxide is preferably spherical from the viewpoint of excellent filling properties. In addition, as long as the particle shape is a shape that can be regarded as a sphere, it is not necessarily required to be a true sphere.

このようなペロブスカイト型複合酸化物の製造履歴は、特に制限されるものではなく、例えば、共沈法、加水分解法、水熱合成法、ゾル−ゲル法、固相法、蓚酸塩法等の通常の方法で得られるものを使用することができる。
中でも、ペロブスカイト型複合酸化物粗粒子については、固相法を利用して製造することが工業的観点から望ましい。ペロブスカイト型複合酸化物粗粒子を製造する具体的な方法は、Ba、Ca、Mg及びSrからなる群から選択される少なくとも1種の元素を含む炭酸塩と、Ti及びZrからなる群から選択される少なくとも1種の元素を含む酸化物と、分散媒とを含むスラリーを調製し、このスラリーをスプレードライ法で乾燥させて造粒粉を得、この造粒粉を焼成すればよい。造粒粉の焼成温度を1000℃〜1400℃の範囲で調整することで、0.3m/g〜1.0m/gのBET比表面積を有するペロブスカイト型複合酸化物粗粒子を得ることができる。
The production history of such a perovskite complex oxide is not particularly limited, and examples thereof include a coprecipitation method, a hydrolysis method, a hydrothermal synthesis method, a sol-gel method, a solid phase method, and an oxalate method. What is obtained by a normal method can be used.
Among these, it is desirable from the industrial viewpoint that the perovskite-type complex oxide coarse particles are produced using a solid phase method. A specific method for producing the perovskite-type composite oxide coarse particles is selected from the group consisting of carbonate containing at least one element selected from the group consisting of Ba, Ca, Mg and Sr, and the group consisting of Ti and Zr. A slurry containing an oxide containing at least one element and a dispersion medium may be prepared, the slurry may be dried by a spray drying method to obtain a granulated powder, and the granulated powder may be fired. By adjusting the firing temperature of the granulated powder in a range of 1000 ° C. to 1400 ° C., to obtain a perovskite-type composite oxide coarse particles having a BET specific surface area of 0.3m 2 /g~1.0m 2 / g it can.

なお、スプレードライ法で乾燥させるスラリーは、メディアミル等の湿式粉砕装置で、混合及び粉砕処理を行っておくことが、各原料が均一に混合された均一混合スラリーを一層容易に得ることができる観点から好ましい。
また、メディアミルによる処理は、スラリー中の固形分の平均粒子径が0.8μm以下、好ましくは0.1μm〜0.6μmで、最大粒子径が3μm以下となるように行うことが、粒子間の空隙の状態を制御しながら、上記範囲の平均粒子径とBET比表面積のものを容易に得ることができ、また、誘電特性にも優れたペロブスカイト型複合酸化物粗粒子が得られる観点から好ましい。
メディアミルとしては、ビーズミル、ボールミル、ペイントシェーカー、アトライタ、サンドミル等を用いることができる。特にビーズミルを用いることが好ましい。その場合、運転条件やビーズの種類及び大きさは、装置のサイズや処理量、使用する原料の種類に応じて適切に選択すればよい。
Note that the slurry to be dried by the spray drying method is mixed and pulverized by a wet pulverization apparatus such as a media mill, so that a uniform mixed slurry in which each raw material is uniformly mixed can be obtained more easily. It is preferable from the viewpoint.
Further, the treatment by the media mill is performed so that the average particle size of the solid content in the slurry is 0.8 μm or less, preferably 0.1 μm to 0.6 μm, and the maximum particle size is 3 μm or less. From the viewpoint of easily obtaining a perovskite-type composite oxide coarse particle having an average particle diameter and a BET specific surface area in the above range while controlling the state of the voids, and having excellent dielectric properties. .
As the media mill, a bead mill, a ball mill, a paint shaker, an attritor, a sand mill, or the like can be used. It is particularly preferable to use a bead mill. In that case, the operating conditions and the type and size of the beads may be appropriately selected according to the size and processing amount of the apparatus and the type of raw material to be used.

また、スプレードライ法による乾燥は、乾燥温度が100℃〜130℃、好ましくは105℃〜120℃であり、また、造粒粉の平均粒子径が10μm〜60μm、好ましくは15μm〜40μmとなるように行われることが、目的とするペロブスカイト型複合酸化物粗粒子の粒径の制御の点から好ましい。   Further, the drying by the spray drying method is such that the drying temperature is 100 ° C. to 130 ° C., preferably 105 ° C. to 120 ° C., and the average particle diameter of the granulated powder is 10 μm to 60 μm, preferably 15 μm to 40 μm. Is preferably performed from the viewpoint of controlling the particle diameter of the target perovskite complex oxide coarse particles.

焼成温度を上記範囲とする理由は、1000℃未満では焼成を進めて目的の比表面積に到達させることができないためであり、一方、1400℃を越えると焼成用の機材の特殊化を要すためである。焼成時間は、通常5時間〜30時間、好ましくは10時間〜20時間である。焼成の雰囲気は特に制限されず大気中又は不活性ガス雰囲気中の何れであってもよい。   The reason for setting the firing temperature in the above range is that if the temperature is less than 1000 ° C., the firing cannot proceed to reach the target specific surface area, whereas if it exceeds 1400 ° C., specialization of the equipment for firing is required. It is. The firing time is usually 5 hours to 30 hours, preferably 10 hours to 20 hours. The firing atmosphere is not particularly limited and may be either air or an inert gas atmosphere.

また、上記製法で用いるスラリーには、チタン酸バリウム前駆体を含有させてもよい。スラリーにチタン酸バリウム前駆体を含有させることで、組成制御の簡便化を図ることができ、特性のバラツキが極めて少ないものを得ることができる。なお、チタン酸バリウム前駆体とは、水溶液中で、TiCl、BaCl及び蓚酸を反応させてBaTiO(C・4HO(蓚酸バリウムチタニル)の沈殿を生成させた後、生成した沈殿を乾燥もしくは脱蓚酸して得られるものである。また、この製法では、ホウ素ケイ素系やビスマス系に代表されるガラス粉末等の焼結助剤を使用しなくてもペロブスカイト型複合酸化物粗粒子を得ることができるという利点がある。焼結助剤は、焼結を低温化する効果があるものの、得られるペロブスカイト型複合酸化物粗粒子の化学的・環境的耐性を低下させる。そのため、ペロブスカイト型複合酸化物粗粒子は、焼結助剤を含有しないことが好ましい。 Moreover, you may make the slurry used by the said manufacturing method contain a barium titanate precursor. By containing the barium titanate precursor in the slurry, it is possible to simplify the composition control and obtain a product with extremely small variation in characteristics. The barium titanate precursor is formed by reacting TiCl 4 , BaCl 2 and oxalic acid in an aqueous solution to form a precipitate of BaTiO (C 2 O 4 ) 2 .4H 2 O (barium titanyl oxalate). The resulting precipitate is obtained by drying or deacidifying. In addition, this production method has an advantage that perovskite-type composite oxide coarse particles can be obtained without using a sintering aid such as glass powder represented by boron silicon-based or bismuth-based. Although the sintering aid has the effect of lowering the sintering temperature, it lowers the chemical and environmental resistance of the resulting perovskite complex oxide coarse particles. Therefore, it is preferable that the perovskite complex oxide coarse particles do not contain a sintering aid.

ペロブスカイト型複合酸化物微粒子については、蓚酸塩法を利用して製造することが工業的観点から望ましい。蓚酸塩法では、蓚酸由来の有機物を焼成により十分除去する必要がある。焼成温度は、通常950℃〜1200℃、好ましくは1050℃〜1150℃である。焼成時間は、通常5時間〜30時間、好ましくは10時間〜20時間である。焼成の雰囲気は特に制限されず大気中又は不活性ガス雰囲気中の何れであってもよい。この製法において焼成は、所望により何度行ってもよく、粉体特性を均一にするため1度焼成したものを粉砕し、再焼成を行ってもよい。   Perovskite-type composite oxide fine particles are preferably produced from the industrial viewpoint by using the oxalate method. In the oxalate method, it is necessary to sufficiently remove organic substances derived from oxalic acid by calcination. The firing temperature is usually 950 ° C to 1200 ° C, preferably 1050 ° C to 1150 ° C. The firing time is usually 5 hours to 30 hours, preferably 10 hours to 20 hours. The firing atmosphere is not particularly limited and may be either air or an inert gas atmosphere. In this production method, the firing may be performed as many times as desired, and the fired once may be pulverized and refired to make the powder characteristics uniform.

上述した製法で得られるペロブスカイト型複合酸化物には、必要により誘電特性や温度特性を調製する目的で副成分元素含有化合物を含有させてもよい。用いることができる副成分元素含有化合物としては、例えば、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの希土類元素、Ba、Li、Bi、Zn、Mn、Al、Si、Ca、Sr、Co、Ni、Cr、Fe、Mg、Ti、V、Nb、Mo、W及びSnからなる群より選ばれる少なくとも1種の元素を含む化合物が挙げられる。これらの副成分元素含有化合物は、無機物であってもよく、有機物であってもよく、例えば、上記元素を含む酸化物、水酸化物、塩化物、硝酸塩、蓚酸塩、カルボン酸塩、アルコキシド等が挙げられる。ペロブスカイト型複合酸化物に副成分元素を含有させる方法は、例えば、ペロブスカイト型複合酸化物の原料粉末に副成分元素含有化合物を添加する等の常法に従って行えばよい。   The perovskite complex oxide obtained by the above-described production method may contain a subcomponent element-containing compound for the purpose of adjusting dielectric characteristics and temperature characteristics, if necessary. Examples of the subcomponent element-containing compound that can be used include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu rare earth elements. At least one selected from the group consisting of Ba, Li, Bi, Zn, Mn, Al, Si, Ca, Sr, Co, Ni, Cr, Fe, Mg, Ti, V, Nb, Mo, W and Sn Examples include compounds containing elements. These subcomponent element-containing compounds may be inorganic or organic, for example, oxides, hydroxides, chlorides, nitrates, oxalates, carboxylates, alkoxides and the like containing the above elements. Is mentioned. The perovskite complex oxide may contain a subcomponent element according to a conventional method, for example, adding a subcomponent element-containing compound to the perovskite complex oxide raw material powder.

本発明の誘電体セラミック材料は、熱硬化性樹脂、熱可塑性樹脂等の高分子材料と無機充填材とからなる複合誘電体用の無機充填材として好適に用いることができる他、トナーの外添剤等の用途にも適用可能である。   The dielectric ceramic material of the present invention can be suitably used as an inorganic filler for a composite dielectric composed of a polymer material such as a thermosetting resin or a thermoplastic resin and an inorganic filler. It is also applicable to uses such as agents.

次いで、本発明の誘電体セラミック材料を無機充填材として用いた複合誘電体について説明する。
本発明における複合誘電体は、後述する高分子材料に上述した誘電体セラミック材料を好ましくは30体積%〜60体積%、より好ましくは40体積%〜55体積%充填することができる。誘電体セラミック材料を充填率が低過ぎると、高い誘電率が得られず、一方、充填率が高過ぎると、機械的特性及び電気絶縁性の低下が懸念される。しかし、本発明の誘電体セラミック材料は、特許文献2よりも低い充填率で同程度の誘電率を達成することができる(後述する実施例を参照)。
Next, a composite dielectric using the dielectric ceramic material of the present invention as an inorganic filler will be described.
The composite dielectric according to the present invention can be filled with the above-described dielectric ceramic material in a polymer material described later, preferably 30% to 60% by volume, more preferably 40% to 55% by volume. If the dielectric ceramic material has a too low filling rate, a high dielectric constant cannot be obtained. On the other hand, if the filling rate is too high, there is a concern that the mechanical properties and the electrical insulation are deteriorated. However, the dielectric ceramic material of the present invention can achieve the same dielectric constant with a lower filling factor than that of Patent Document 2 (see Examples described later).

本発明において用いることができる高分子材料としては、熱硬化性樹脂、熱可塑性樹脂又は光感光性樹脂が挙げられる。
熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、メラミン樹脂、シアネート樹脂類、ビスマレイミド類、ビスマレイミド類とジアミンとの付加重合物、多官能性シアン酸エステル樹脂、二重結合付加ポリフェニレンオキサイド樹脂、不飽和ポリエステル樹脂、ポリビニルベンジルエーテル樹脂、ポリブタジエン樹脂、フマレート樹脂等の公知のものが挙げられる。これらの熱硬化性樹脂は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これら熱硬化性樹脂の中でも、耐熱性、加工性、価格等のバランスからエポキシ樹脂及びポリビニルベンジルエーテル樹脂が好ましい。
Examples of the polymer material that can be used in the present invention include a thermosetting resin, a thermoplastic resin, and a photosensitive resin.
Examples of thermosetting resins include epoxy resins, phenol resins, polyimide resins, melamine resins, cyanate resins, bismaleimides, addition polymers of bismaleimides and diamines, polyfunctional cyanate ester resins, and double resins. Well-known things, such as bond addition polyphenylene oxide resin, unsaturated polyester resin, polyvinyl benzyl ether resin, polybutadiene resin, and fumarate resin, are mentioned. These thermosetting resins may be used individually by 1 type, and may be used in combination of 2 or more type. Among these thermosetting resins, an epoxy resin and a polyvinyl benzyl ether resin are preferable from the balance of heat resistance, processability, price, and the like.

本発明で用いるエポキシ樹脂とは、1分子内に少なくとも2個のエポキシ基を有するモノマー、オリゴマー、ポリマー全般であり、例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド類とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールB、ビスフェノールF、ビスフェノールS、アルキル置換又は非置換のビフェノール等のジグリシジルエーテル、フェノール類とジシクロペンタジエンやテルペン類との付加物または重付加物をエポキシ化したもの、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、脂環族エポキシ樹脂等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。   The epoxy resin used in the present invention includes monomers, oligomers, and polymers in general having at least two epoxy groups in one molecule. For example, phenols including phenol novolac type epoxy resins and orthocresol novolac type epoxy resins, Phenols such as cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F and / or naphthols such as α-naphthol, β-naphthol, dihydroxynaphthalene and aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde Epoxidized novolak resin obtained by condensing or co-condensing with an acidic catalyst, bisphenol A, bisphenol B, bisphenol F, bisphenol S, diglycidyl ether such as alkyl-substituted or unsubstituted biphenol, epoxidized adduct or polyaddition product of phenol and dicyclopentadiene or terpene, polybasic acid such as phthalic acid, dimer acid and epichlorohydrin Glycidyl ester type epoxy resin obtained by the reaction of glycidyl amine type epoxy resin obtained by the reaction of polyamine such as diaminodiphenylmethane and isocyanuric acid and epichlorohydrin, linear fat obtained by oxidizing the olefin bond with peracid such as peracetic acid Group epoxy resin, alicyclic epoxy resin, and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.

エポキシ樹脂硬化剤としては、当業者において公知のものはすべて用いることができるが、特に、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等のC〜C20の直鎖脂肪族ジアミン、メタフェニレンジアミン、パラフェニレンジアミン、パラキシレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルフォン、4,4’−ジアミノジシクロヘキサン、ビス(4−アミノフェニル)フェニルメタン、1,5−ジアミノナフタレン、メタキシリレンジアミン、パラキシリレンジアミン、1,1−ビス(4−アミノフェニル)シクロヘキサン、ジシアノジアミド等のアミン類、フェノールノボラック樹脂、クレゾールノボラック樹脂、tert−ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂、レゾール型フェノール樹脂、ポリパラオキシスチレン等のポリオキシスチレン、フェノールアラルキル樹脂、ナフトール系アラルキル樹脂等の、ベンゼン環やナフタリン環その他の芳香族性の環に結合する水素原子が水酸基で置換されたフェノール化合物と、カルボニル化合物との共縮合によって得られるフェノール樹脂や、酸無水物等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
エポキシ樹脂硬化剤の配合量は、エポキシ樹脂に対して、当量比で好ましくは0.1〜10、より好ましくは0.7〜1.3の範囲である。
The epoxy resin curing agent, it is possible to use all known those in the art, in particular, ethylenediamine, trimethylenediamine, tetramethylenediamine, linear aliphatic diamines of C 2 -C 20, such as hexamethylenediamine, Metaphenylenediamine, paraphenylenediamine, paraxylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 4,4 ' -Amines such as diaminodicyclohexane, bis (4-aminophenyl) phenylmethane, 1,5-diaminonaphthalene, metaxylylenediamine, paraxylylenediamine, 1,1-bis (4-aminophenyl) cyclohexane, dicyanodiamide Kind Benzol such as novolak type resin such as novolak resin, cresol novolak resin, tert-butylphenol novolak resin, nonylphenol novolak resin, resol type phenol resin, polyparaoxystyrene, phenol aralkyl resin, naphthol type aralkyl resin, etc. Examples thereof include phenol resins obtained by cocondensation of a phenol compound in which a hydrogen atom bonded to a ring, a naphthalene ring or other aromatic ring is substituted with a hydroxyl group, and a carbonyl compound, and acid anhydrides. These may be used individually by 1 type and may be used in combination of 2 or more type.
The compounding quantity of an epoxy resin hardening | curing agent becomes like this. Preferably it is 0.1-10 in an equivalent ratio with respect to an epoxy resin, More preferably, it is the range of 0.7-1.3.

また、本発明においてエポキシ樹脂の硬化反応を促進させる目的で公知の硬化促進剤を用いることができる。硬化促進剤としては、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン、ベンジルジメチルアミン等の三級アミン化合物、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール等のイミダゾール化合物、トリフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン化合物、ホスホニウム塩、アンモニウム塩等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。   In the present invention, a known curing accelerator can be used for the purpose of accelerating the curing reaction of the epoxy resin. Examples of the curing accelerator include 1,8-diaza-bicyclo (5,4,0) undecene-7, tertiary amine compounds such as triethylenediamine and benzyldimethylamine, 2-methylimidazole, 2-ethyl-4- Examples thereof include imidazole compounds such as methylimidazole, 2-phenylimidazole and 2-phenyl-4-methylimidazole, organic phosphine compounds such as triphenylphosphine and tributylphosphine, phosphonium salts and ammonium salts. These may be used individually by 1 type and may be used in combination of 2 or more type.

本発明で用いるポリビニルベンジルエーテル樹脂とは、ポリビニルベンジルエーテル化合物から得られるものである。ポリビニルベンジルエーテル化合物は、下記一般式(1)で示される化合物が好ましい。   The polyvinyl benzyl ether resin used in the present invention is obtained from a polyvinyl benzyl ether compound. The polyvinyl benzyl ether compound is preferably a compound represented by the following general formula (1).

Figure 0005912583
Figure 0005912583

一般式(1)の式中、Rはメチル基又はエチル基を示す。Rは水素原子又は炭素数1〜10の炭化水素基を示す。Rで表される炭化水素基は、置換基を有していてもよいアルキル基、アラルキル基、アリール基等である。アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。アラルキル基としては、例えば、ベンジル基等が挙げられる。アリール基としては、例えば、フェニル基等が挙げられる。Rは水素原子又はビニルベンジル基を示す。なお、Rの水素原子は一般式(1)の化合物を合成する場合の出発化合物に由来し、水素原子とビニルベンジル基とのモル比が60:40〜0:100であると硬化反応を十分に進行させることができ、また、本発明の複合誘電体において、十分な誘電特性が得られる点で好ましい。nは2〜4の整数を示す。 In formula (1), R 1 represents a methyl group or an ethyl group. R 2 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. The hydrocarbon group represented by R 2 is an alkyl group, aralkyl group, aryl group or the like which may have a substituent. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, and a butyl group. Examples of the aralkyl group include a benzyl group. Examples of the aryl group include a phenyl group. R 3 represents a hydrogen atom or a vinylbenzyl group. The hydrogen atom of R 3 is derived from the starting compound in the case of synthesizing the compound of general formula (1), and the curing reaction is carried out when the molar ratio of hydrogen atom to vinylbenzyl group is 60:40 to 0: 100. The composite dielectric of the present invention is preferable in that it can be sufficiently advanced and sufficient dielectric properties can be obtained. n shows the integer of 2-4.

ポリビニルベンジルエーテル化合物は、それのみを樹脂材料として重合して用いてもよく、他のモノマーと共重合させて用いてもよい。共重合可能なモノマーとしてはスチレン、ビニルトルエン、ジビニルベンゼン、ジビニルベンジルエーテル、アリルフェノール、アリルオキシベンゼン、ジアリルフタレート、アクリル酸エステル、メタクリル酸エステル、ビニルピロリドン、これらの変性物等が挙げられる。これらのモノマーの配合割合は、ポリビニルベンジルエーテル化合物に対して2質量%〜50質量%である。   The polyvinyl benzyl ether compound may be used by polymerizing only it as a resin material, or may be used by copolymerizing with other monomers. Examples of the copolymerizable monomer include styrene, vinyl toluene, divinyl benzene, divinyl benzyl ether, allylphenol, allyloxybenzene, diallyl phthalate, acrylic acid ester, methacrylic acid ester, vinyl pyrrolidone, and modified products thereof. The mixing ratio of these monomers is 2% by mass to 50% by mass with respect to the polyvinyl benzyl ether compound.

ポリビニルベンジルエーテル化合物の重合及び硬化は、公知の方法で行うことができる。硬化は、硬化剤の存在下又は不存在下の何れでも可能である。硬化剤としては、例えば、過酸化ベンゾイル、メチルエチルケトンパーオキシド、ジクミルパーオキシド、t−ブチルパーベンゾエート等の公知のラジカル重合開始剤を使用することができる。使用量は、ポリビニルベンジルエーテル化合物100質量部に対して0質量部〜10質量部である。硬化温度は、硬化剤の使用の有無及び硬化剤の種類によっても異なるが、十分に硬化させるためには、好ましくは20℃〜250℃、より好ましくは50℃〜250℃である。
また、硬化の調整のために、ハイドロキノン、ベンゾキノン、銅塩等を配合してもよい。
Polymerization and curing of the polyvinyl benzyl ether compound can be performed by a known method. Curing can be done in the presence or absence of a curing agent. As the curing agent, for example, known radical polymerization initiators such as benzoyl peroxide, methyl ethyl ketone peroxide, dicumyl peroxide, and t-butyl perbenzoate can be used. The usage-amount is 0 mass part-10 mass parts with respect to 100 mass parts of polyvinyl benzyl ether compounds. The curing temperature varies depending on whether or not the curing agent is used and the type of the curing agent, but is preferably 20 ° C. to 250 ° C., more preferably 50 ° C. to 250 ° C. in order to sufficiently cure.
Moreover, you may mix | blend hydroquinone, a benzoquinone, copper salt, etc. for adjustment of hardening.

熱可塑性樹脂としては、例えば、(メタ)アクリル樹脂、ヒドロキシスチレン樹脂、ノボラック樹脂、ポリエステル樹脂、ポリイミド樹脂、ナイロン樹脂、ポリエーテルイミド樹脂等の公知のものが挙げられる。   Examples of the thermoplastic resin include known ones such as (meth) acrylic resin, hydroxystyrene resin, novolac resin, polyester resin, polyimide resin, nylon resin, and polyetherimide resin.

感光性樹脂としては、例えば、光重合性樹脂、光架橋性樹脂等の公知のものが挙げられる。   Examples of the photosensitive resin include known ones such as a photopolymerizable resin and a photocrosslinkable resin.

本発明で用いる光重合性樹脂としては、例えば、エチレン性不飽和基を有するアクリル系共重合体(感光性オリゴマー)と光重合性化合物(感光性モノマー)と光重合開始剤を含むもの、エポキシ樹脂と光カチオン重合開始剤とを含むもの等が挙げられる。感光性オリゴマーとしては、エポキシ樹脂にアクリル酸を付加したもの、それをさらに酸無水物と反応させたものやグリシジル基を有する(メタ)アクリルモノマーを含む共重合体に(メタ)アクリル酸を反応させたもの、さらにそれに酸無水物を反応したもの、水酸基を有する(メタ)アクリルモノマーを含む共重合体に(メタ)アクリル酸グリシジルを反応させたもの、さらにそれに酸無水物を反応したもの、無水マレイン酸を含む共重合体に水酸基を有する(メタ)アクリルモノマーあるいはグリシジル基を有する(メタ)アクリルモノマーを反応させたもの等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。   Examples of the photopolymerizable resin used in the present invention include those containing an acrylic copolymer (photosensitive oligomer) having an ethylenically unsaturated group, a photopolymerizable compound (photosensitive monomer), and a photopolymerization initiator, epoxy. The thing containing resin and a photocationic polymerization initiator is mentioned. Photosensitive oligomers include those obtained by adding acrylic acid to an epoxy resin, those obtained by reacting them with an acid anhydride, and (meth) acrylic acid on a copolymer containing a (meth) acrylic monomer having a glycidyl group. Those obtained by reacting them with acid anhydride, those obtained by reacting glycidyl (meth) acrylate with a copolymer containing a (meth) acrylic monomer having a hydroxyl group, and those obtained by reacting acid anhydride with it. Examples include those obtained by reacting a copolymer containing maleic anhydride with a (meth) acrylic monomer having a hydroxyl group or a (meth) acrylic monomer having a glycidyl group. These may be used individually by 1 type and may be used in combination of 2 or more type.

光重合性化合物(感光性モノマー)としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、N−ビニルピロリドン、アクリロイルモルフォリン、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、N,N−ジメチルアクリルアミド、フェノキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。   Examples of the photopolymerizable compound (photosensitive monomer) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, N-vinylpyrrolidone, acryloylmorpholine, methoxypolyethylene glycol (meth) acrylate, and polyethylene. Glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, N, N-dimethylacrylamide, phenoxyethyl (meth) acrylate, cyclohexyl (meth) acrylate, trimethylolpropane (meth) acrylate, pentaerythritol tri (meth) acrylate , Dipentaerythritol hexa (meth) acrylate, tris (hydroxyethyl) isocyanurate di (meth) acrylate, tris (hydroxyethyl) Isocyanurate tri (meth) acrylate. These may be used individually by 1 type and may be used in combination of 2 or more type.

光重合開始剤としては、例えば、ベンゾインとそのアルキルエーテル類、ベンゾフェノン類、アセトフェノン類、アントラキノン類、キサントン類、チオキサントン類等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。なお、これらの光重合開始剤は、安息香酸系、第三アミン系等の公知慣用の光重合促進剤と併用することができる。光カチオン重合開始剤としては、例えば、トリフェニルスルホニウムヘキサフルオロアンチモネート、ジフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート、ベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート、ブレンステッド酸の鉄芳香族化合物塩(チバ・ガイギー社、CG24−061)等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。   Examples of the photopolymerization initiator include benzoin and its alkyl ethers, benzophenones, acetophenones, anthraquinones, xanthones, thioxanthones, and the like. These may be used individually by 1 type and may be used in combination of 2 or more type. In addition, these photoinitiators can be used together with well-known and usual photopolymerization accelerators, such as a benzoic acid type and a tertiary amine type. Examples of the cationic photopolymerization initiator include triphenylsulfonium hexafluoroantimonate, diphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate, and iron aroma of Bronsted acid. Group compound salts (Ciba-Geigy Corporation, CG24-061) and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.

光カチオン重合開始剤によってエポキシ樹脂が開環重合するが、光重合性は通常のグリシジルエステル系エポキシ樹脂よりも脂環エポキシ樹脂の方が反応速度が速いのでより好ましい。脂環エポキシ樹脂とグリシジルエステル系エポキシ樹脂とを併用することもできる。脂環エポキシ樹脂としては、例えば、ビニルシクロヘキセンジエポキサイド、アリサイクリックジエポキシアセタール、アリサイクリックジエポキシアジペート、アリサイクリックジエポキシカルボキシレート、ダイセル化学工業(株)製、EHPE−3150等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。   Although the epoxy resin undergoes ring-opening polymerization by the photocationic polymerization initiator, the photopolymerizability is more preferable because the reaction speed of the alicyclic epoxy resin is faster than that of a normal glycidyl ester epoxy resin. An alicyclic epoxy resin and a glycidyl ester epoxy resin can be used in combination. Examples of the alicyclic epoxy resin include vinylcyclohexene diepoxide, alicyclic diepoxy acetal, alicyclic diepoxy adipate, alicyclic diepoxycarboxylate, manufactured by Daicel Chemical Industries, Ltd., EHPE-3150, and the like. It is done. These may be used individually by 1 type and may be used in combination of 2 or more type.

光架橋性樹脂としては、例えば、水溶性ポリマー重クロム酸塩系、ポリケイ皮酸ビニル(コダックKPR)、環化ゴムアジド系(コダックKTFR)等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。   Examples of the photocrosslinkable resin include water-soluble polymer dichromate-based, polyvinyl cinnamate (Kodak KPR), and cyclized rubber azide (Kodak KTFR). These may be used individually by 1 type and may be used in combination of 2 or more type.

これらの感光性樹脂の誘電率は一般に2.5〜4.0と低い。従って、バインダーの誘電率を上げるために、感光性樹脂の感光特性を損なわない範囲で、より高誘電性のポリマー(例えば、住友化学のSDP−E(ε:15<)、信越化学のシアノレジン(ε:18<))や高誘電性液体(例えば、住友化学のSDP−S(ε:40<))を添加することもできる。   The dielectric constant of these photosensitive resins is generally as low as 2.5 to 4.0. Therefore, in order to increase the dielectric constant of the binder, a higher dielectric polymer (for example, SDP-E (ε: 15 <) of Sumitomo Chemical, cyanoresin of Shin-Etsu Chemical ( ε: 18 <)) and high dielectric liquid (for example, SDP-S (ε: 40 <) from Sumitomo Chemical) may be added.

本発明において、上記した高分子材料は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。   In the present invention, the polymer materials described above may be used alone or in combination of two or more.

また、本発明の複合誘電体は、本発明の効果を損なわない範囲の添加量で他の無機充填剤を含有することができる。他の無機充填剤としては、例えば、アセチレンブラック、ケッチェンブラック等のカーボン微粉、黒鉛微粉、炭化ケイ素等が挙げられる。   In addition, the composite dielectric of the present invention can contain other inorganic fillers in an addition amount that does not impair the effects of the present invention. Examples of other inorganic fillers include carbon fine powder such as acetylene black and ketjen black, graphite fine powder, silicon carbide and the like.

また、本発明の複合誘電体には、本発明の効果を損なわない範囲で、硬化剤、ガラス粉末、カップリング剤、高分子添加剤、反応性希釈剤、重合禁止剤、レベリング剤、濡れ性改良剤、界面活性剤、可塑剤、紫外線吸収剤、酸化防止剤、帯電防止剤、無機系充填剤、防カビ剤、調湿剤、染料溶解剤、緩衝剤、キレート剤、難燃剤、シランカップリング剤(インテグラルブレンド法)等を添加してもよい。これらの添加剤は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。   Further, the composite dielectric of the present invention has a curing agent, glass powder, coupling agent, polymer additive, reactive diluent, polymerization inhibitor, leveling agent, wettability as long as the effects of the present invention are not impaired. Improving agent, surfactant, plasticizer, UV absorber, antioxidant, antistatic agent, inorganic filler, antifungal agent, humidity control agent, dye dissolving agent, buffering agent, chelating agent, flame retardant, silane cup A ring agent (integral blend method) or the like may be added. These additives may be used individually by 1 type, and may be used in combination of 2 or more type.

本発明の複合誘電体は、複合誘電体ペーストを調製し、有機溶剤の除去、硬化反応又は重合反応を行うことにより製造することができる。複合誘電体ペーストは、樹脂成分、誘電体セラミック材料、必要により添加される添加剤及び有機溶剤を含有するものである。   The composite dielectric of the present invention can be produced by preparing a composite dielectric paste and performing an organic solvent removal, curing reaction or polymerization reaction. The composite dielectric paste contains a resin component, a dielectric ceramic material, additives that are added as necessary, and an organic solvent.

複合誘電体ペーストに含有される樹脂成分は、熱硬化性樹脂の重合性化合物、熱可塑性樹脂の重合体及び感光性樹脂の重合性化合物である。なお、これらの樹脂成分は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。   The resin component contained in the composite dielectric paste is a polymerizable compound of a thermosetting resin, a polymer of a thermoplastic resin, and a polymerizable compound of a photosensitive resin. In addition, these resin components may be used individually by 1 type, and may be used in combination of 2 or more type.

ここで、重合性化合物とは、重合性基を有する化合物を示し、例えば、完全硬化前の前駆体重合体、重合性オリゴマー及び単量体を含む。また、重合体とは、実質的に重合反応が完了した化合物を示す。   Here, the polymerizable compound indicates a compound having a polymerizable group, and includes, for example, a precursor polymer, a polymerizable oligomer, and a monomer before complete curing. Moreover, a polymer shows the compound which the polymerization reaction was completed substantially.

必要により添加される有機溶剤としては、用いる樹脂成分により異なり、樹脂成分を溶解できるものであれば特に制限されるものではないが、例えば、N−メチルピロリドン、ジメチルホルムアミド、エーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサン、1〜6個の炭素原子を有する直鎖又は分岐のアルキル基を有するモノアルコールのエチルグリコールエーテル、プロピレングリコールエーテル、ブチルグリコールエーテル、ケトン、アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、シクロヘキサノン、エステル、エチルアセテート、ブチルアセテート、エチレングリコールアセテート、メトキシプロピルアセテート、メトキシプロパノール、その他ハロゲン化炭化水素、脂環式炭化水素、芳香族炭化水素等が挙げられる。これらの有機溶剤は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの中でも、ヘキサン、ヘプタン、シクロヘキサン、トルエン及びジキシレンが好ましい。   The organic solvent added as necessary varies depending on the resin component used and is not particularly limited as long as it can dissolve the resin component. For example, N-methylpyrrolidone, dimethylformamide, ether, diethyl ether, tetrahydrofuran , Dioxane, ethyl alcohol ether of monoalcohol having linear or branched alkyl group having 1 to 6 carbon atoms, propylene glycol ether, butyl glycol ether, ketone, acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, Cyclohexanone, ester, ethyl acetate, butyl acetate, ethylene glycol acetate, methoxypropyl acetate, methoxypropanol, other halogenated hydrocarbons, alicyclic hydrocarbons And an aromatic hydrocarbon and the like. These organic solvents may be used individually by 1 type, and may be used in combination of 2 or more type. Among these, hexane, heptane, cyclohexane, toluene, and dixylene are preferable.

本発明において、複合誘電体ペーストは、所望の粘度に調製して使用される。複合誘電体ペーストの粘度は、通常、1,000mPa・s〜1,000,000mPa・s(25℃)であり、複合誘電体ペーストの塗布性を考慮すると、好ましくは10,000mPa・s〜600,000mPa・s(25℃)である。   In the present invention, the composite dielectric paste is prepared to have a desired viscosity. The viscosity of the composite dielectric paste is usually 1,000 mPa · s to 1,000,000 mPa · s (25 ° C.), and preferably 10,000 mPa · s to 600 considering the applicability of the composite dielectric paste. 1,000 mPa · s (25 ° C.).

本発明の複合誘電体は、フィルム状、バルク状又は所定形状の成形体として加工して用いることができ、特に薄膜形状の高誘電体フィルムとして用いることができる。   The composite dielectric of the present invention can be processed and used as a film-shaped, bulk-shaped or predetermined-shaped molded body, and can be used particularly as a high-dielectric film having a thin film shape.

本発明の複合誘電材料を用いて複合誘電体フィルムを製造するには、例えば、従来公知の複合誘電体ペーストの使用方法に従って製造すればよく、下記にその一例を示す。
複合誘電体ペーストを基材上に塗布した後、乾燥することによりフィルム状に成形することができる。基材としては、例えば、表面に剥離処理がなされたプラスチックフィルムを用いることができる。剥離処理が施されたプラスチックフィルム上に塗布してフィルム状に成形した場合、一般には成形後、フィルムから基材を剥離して用いることが好ましい。基材として用いることができるプラスチックフィルムとしては、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエステルフィルム、ポリイミドフィルム、アラミド、カプトン、ポリメチルペンテン等のフィルムを挙げることができる。また、基材として用いるプラスチックフィルムの厚みとしては、1μm〜100μmであることが好ましく、さらに好ましくは1μm〜40μmである。また、基材表面上に施す離型処理としては、シリコーン、ワックス、フッ素樹脂等を表面に塗布する離型処理が好ましく用いられる。
In order to manufacture a composite dielectric film using the composite dielectric material of the present invention, for example, it may be manufactured according to a conventionally known method of using a composite dielectric paste, and an example thereof is shown below.
After applying the composite dielectric paste onto the substrate, it can be formed into a film by drying. As the base material, for example, a plastic film having a surface subjected to a peeling treatment can be used. When applied onto a plastic film that has been subjected to a release treatment and formed into a film, it is generally preferable to use the substrate after peeling it from the film. Examples of the plastic film that can be used as the substrate include polyethylene terephthalate (PET) film, polyethylene film, polypropylene film, polyester film, polyimide film, aramid, kapton, and polymethylpentene. The thickness of the plastic film used as the substrate is preferably 1 μm to 100 μm, more preferably 1 μm to 40 μm. Moreover, as a mold release process performed on the substrate surface, a mold release process in which silicone, wax, fluororesin or the like is applied to the surface is preferably used.

また、基材として金属箔を用い、金属箔の上に誘電体フィルムを形成してもよい。このような場合、基材として用いた金属箔をコンデンサーの電極として用いることができる。   Alternatively, a metal foil may be used as the substrate, and a dielectric film may be formed on the metal foil. In such a case, the metal foil used as the base material can be used as the capacitor electrode.

基材上に前記複合誘電体ペーストを塗布する方法としては、特に限定されるものではなく、一般的な塗布方法を用いることができる。例えば、ローラー法、スプレー法、シルクスクリーン法等により塗布することができる。   The method for applying the composite dielectric paste on the substrate is not particularly limited, and a general application method can be used. For example, it can apply | coat by the roller method, the spray method, the silk screen method, etc.

このような誘電体フィルムは、プリント基板等の基板に組み込んだ後、加熱して熱硬化することができる。また、感光性樹脂を用いた場合には、選択的に露光することによりパターニングすることができる。   Such a dielectric film can be heated and thermally cured after being incorporated into a substrate such as a printed circuit board. Further, when a photosensitive resin is used, patterning can be performed by selective exposure.

また、例えば、カレンダー法等により、本発明の複合誘電体を押出成形して、フィルム状に成形してもよい。
押出成形した誘電体フィルムは、上記の基材上に押し出されるように成形されてもよい。また、基材として、金属箔を用いる場合、金属箔としては、銅、アルミニウム、真鍮、ニッケル、鉄等を材料とする箔の他、これらの合金の箔、複合箔等を用いることができる。金属箔には、必要時に応じて表面粗面化の処理や、接着剤の塗布等の処理を施しておいてもよい。
Further, for example, the composite dielectric of the present invention may be extruded and formed into a film by a calendar method or the like.
The extruded dielectric film may be molded so as to be extruded onto the substrate. Moreover, when using metal foil as a base material, foil, composite foil, etc. of these alloys other than foil made from copper, aluminum, brass, nickel, iron, etc. can be used as metal foil. The metal foil may be subjected to a surface roughening treatment or an adhesive application treatment as necessary.

また、金属箔の間に誘電体フィルムを形成してもよい。この場合、金属箔上に複合誘電体ペーストを塗布した後、この上に金属箔を載せ、金属箔の間に複合誘電体ペーストを挟んだ状態で乾燥させることにより、金属箔の間に挟まれた状態の誘電体フィルムを形成してもよい。また、金属箔の間に挟まれるように押出成形することにより、金属箔の間に設けられた誘電体フィルムを形成してもよい。   A dielectric film may be formed between the metal foils. In this case, after applying the composite dielectric paste on the metal foil, the metal foil is placed on the metal foil, and then dried with the composite dielectric paste sandwiched between the metal foils, so that the metal foil is sandwiched between the metal foils. You may form the dielectric film of the state. Alternatively, a dielectric film provided between the metal foils may be formed by extrusion so as to be sandwiched between the metal foils.

また、本発明の複合誘電体は、前述した有機溶媒を用いてワニスとした後、これにクロス又は不織布を含浸し、乾燥を行うことによりプリプレグとして用いてもよい。用いることができるクロスや不織布の種類は、特に制限されるものではなく、公知のものを使用することができる。クロスとしては、ガラスクロス、アラミドクロス、カーボンクロス、延伸多孔質ポリテトラフルオロエチレン等が挙げられる。また、不織布としては、アラミド不織布、ガラスペーパー等が挙げられる。プリプレグは、回路基板等の電子部品に積層した後、硬化することにより、電子部品に絶縁層を導入することができる。   The composite dielectric of the present invention may be used as a prepreg by forming a varnish using the organic solvent described above, then impregnating it with a cloth or a nonwoven fabric, and drying. The kind of cloth or nonwoven fabric that can be used is not particularly limited, and known ones can be used. Examples of the cloth include glass cloth, aramid cloth, carbon cloth, stretched porous polytetrafluoroethylene, and the like. Examples of the nonwoven fabric include an aramid nonwoven fabric and glass paper. The prepreg can be laminated on an electronic component such as a circuit board and then cured to introduce an insulating layer into the electronic component.

本発明の複合誘電体は、高い誘電率を有することから電子部品、特にプリント回路基板、半導体パッケージ、コンデンサー、高周波用アンテナ、無機EL等の電子部品の誘電体層として好適に用いることができる。   Since the composite dielectric of the present invention has a high dielectric constant, it can be suitably used as a dielectric layer of electronic components, particularly electronic components such as printed circuit boards, semiconductor packages, capacitors, high frequency antennas, and inorganic EL.

本発明の複合誘電体を用いて多層プリント配線板を製造するには、当該技術分野で公知の方法を用いて製造することがでる(例えば、特開2003−192768号公報、特開2005−29700号公報、特開2002−226816号公報、特開2003−327827号公報等参照。)。なお、以下に示す一例は、複合誘電体の高分子材料として熱硬化性樹脂を用いた場合の例示である。   In order to produce a multilayer printed wiring board using the composite dielectric of the present invention, it can be produced by a method known in the technical field (for example, JP 2003-192768 A, JP 2005-29700 A). No., JP 2002-226816 A, JP 2003-327827, etc.). In addition, the example shown below is an example at the time of using a thermosetting resin as a polymer material of a composite dielectric.

本発明の複合誘電体を前述した誘電体フィルムとし、誘電体フィルムの樹脂面で回路基板に加圧、加熱するか、或いは真空ラミネーターを使用してラミネートする。ラミネート後、フィルムから基材を剥離して露出された樹脂層上に、更に金属箔をラミネートし、樹脂を加熱硬化させる。   The composite dielectric of the present invention is used as the dielectric film described above, and the circuit board is pressed and heated on the resin surface of the dielectric film, or laminated using a vacuum laminator. After lamination, a metal foil is further laminated on the resin layer exposed by peeling the substrate from the film, and the resin is cured by heating.

また、本発明の複合誘電体をプリプレグとしたものの回路基板へのラミネートは、真空プレスにより行うことができる。具体的にはプリプレグの片面を回路基板に接触させ、他面に金属箔をのせてプレスを行うことが望ましい。   In addition, the composite dielectric of the present invention as a prepreg can be laminated on a circuit board by a vacuum press. Specifically, it is desirable to perform pressing by bringing one side of the prepreg into contact with the circuit board and placing a metal foil on the other side.

また、本発明の複合誘電体をワニスとして用い、回路基板に、スクリーン印刷、カーテンコート、ロールコート、スプレーコート等を用いて塗布・乾燥することにより多層プリント配線板の中間絶縁層を形成することができる。   In addition, the composite dielectric of the present invention is used as a varnish, and an intermediate insulating layer of a multilayer printed wiring board is formed on a circuit board by coating and drying using screen printing, curtain coating, roll coating, spray coating, etc. Can do.

本発明において、絶縁層を最外層に持つプリント配線板の場合は、スルーホール及びバイアホール部をドリルまたはレーザーで穴開けを行い、絶縁層表面を粗化剤処理し微細な凹凸を形成する。絶縁層の粗化方法としては、絶縁樹脂層が形成された基板を酸化剤等の溶液中に浸漬する方法や、酸化剤等の溶液をスプレーする方法等の仕様に応じて、実施することができる。粗化処理剤の具体例としては、重クロム酸塩、過マンガン酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、メトキシプロパノール等の有機溶剤、また苛性ソーダ、苛性カリ等のアルカリ性水溶液、硫酸、塩酸等の酸性水溶液、又は各種プラズマ処理等を用いることができる。また、これらの処理は併用して用いてもよい。上記のように、絶縁層が粗化されたプリント配線板上は、次いで蒸着、スパッタリング、イオンプレーティング等の乾式めっき、もしくは無電解・電解めっき等の湿式めっきにより導体層を形成する。このとき、導体層とは逆パターンのめっきレジストを形成し、無電解めっきのみで導体層を形成してもよい。このように導体層が形成された後、アニール処理することにより、熱硬化性樹脂の硬化が進行し導体層のピール強度をさらに向上させることもできる。このようにして、最外層に導体層を形成することができる。   In the present invention, in the case of a printed wiring board having an insulating layer as the outermost layer, through holes and via holes are drilled with a drill or laser, and the surface of the insulating layer is treated with a roughening agent to form fine irregularities. As a roughening method of the insulating layer, it may be carried out according to specifications such as a method of immersing the substrate on which the insulating resin layer is formed in a solution of an oxidizing agent, a method of spraying a solution of an oxidizing agent, etc. it can. Specific examples of the roughening agent include dichromate, permanganate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and other oxidizing agents, N-methyl-2-pyrrolidone, N, N-dimethylformamide, methoxy An organic solvent such as propanol, an alkaline aqueous solution such as caustic soda and caustic potash, an acidic aqueous solution such as sulfuric acid and hydrochloric acid, or various plasma treatments can be used. These treatments may be used in combination. As described above, a conductor layer is formed on the printed wiring board with the insulating layer roughened by dry plating such as vapor deposition, sputtering, ion plating, or wet plating such as electroless / electrolytic plating. At this time, a plating resist having a pattern opposite to that of the conductor layer may be formed, and the conductor layer may be formed only by electroless plating. After the conductor layer is formed in this way, annealing treatment can be performed to further cure the thermosetting resin and further improve the peel strength of the conductor layer. In this way, a conductor layer can be formed on the outermost layer.

また、中間絶縁層を形成した金属箔は、真空プレスで積層することにより、多層化できる。中間絶縁層を形成した金属箔は、内層回路が形成されたプリント配線板上に、真空プレスで積層することにより、最外層が導体層のプリント配線板にすることができる。また、本発明の複合誘電体を用いたプリプレグは、金属箔と供に、内層回路が形成されたプリント配線板上に、真空プレスで積層することにより、最外層が導体層のプリント配線板にすることができる。コンホーマル工法等で所定のスルーホール及びバイアホール部をドリルまたはレーザーで穴開けを行い、スルーホール及びバイアホール内をデスミア処理し、微細な凹凸を形成する。次に、無電解・電解めっき等の湿式めっきにより、層間の導通を取る。   Moreover, the metal foil in which the intermediate insulating layer is formed can be multilayered by laminating with a vacuum press. The metal foil on which the intermediate insulating layer is formed can be made into a printed wiring board having a conductor layer as the outermost layer by laminating with a vacuum press on the printed wiring board on which the inner layer circuit is formed. Moreover, the prepreg using the composite dielectric of the present invention is laminated together with a metal foil on a printed wiring board on which an inner layer circuit is formed by a vacuum press, so that the outermost layer is a printed wiring board having a conductor layer. can do. A predetermined through hole and via hole are drilled with a drill or a laser by a conformal method or the like, and the inside of the through hole and via hole is desmeared to form fine irregularities. Next, conduction between layers is achieved by wet plating such as electroless / electrolytic plating.

さらに、必要に応じてこれらの工程を数回繰り返し、更に、最外層の回路形成が終了した後、ソルダーレジストを、スクリーン印刷法によるパターン印刷・熱硬化、又はカーテンコート・ロールコート・スプレーコートによる全面印刷・熱硬化後レーザーでパターンを形成することにより、所望の多層プリント配線板を得る。   Furthermore, if necessary, these steps are repeated several times. Further, after the outermost circuit formation is completed, the solder resist is applied by pattern printing / thermosetting by screen printing, or by curtain coating / roll coating / spray coating. A desired multilayer printed wiring board is obtained by forming a pattern with a laser after full surface printing and thermosetting.

以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。
<製造例1:ペロブスカイト型複合酸化物粗粒子(BaCaTiZr系)>
容器に水を仕込み、撹拌しながら粉末濃度が20〜30重量%となるよう、また所定の複合酸化物組成となるよう炭酸バリウム、炭酸カルシウム、酸化チタン及び酸化ジルコニウムを仕込み、1時間以上撹拌してスラリーを得た。このスラリーをビーズミルにて、レーザー光散乱法で求めた固形分の平均粒子径が0.47μm、粒度分布の最大径が3μm以下となるよう処理した。このスラリーを、スプレーバッグドライヤーを用いて造粒乾燥処理し、球状の造粒粉とした。なお、球状の造粒粉はレーザー光散乱法で求められる平均粒子径が33.4μmであった。スプレーバッグドライヤーのスラリー射出仕様は100mmφのディスクで20,000rpmとし、乾燥室温度は105℃とした。得られた造粒粉を気孔率20%以上のアルミナ系容器に仕込み、1225℃で20時間焼成を行った。得られた焼成体をコーヒーミルで解砕し、目開き100μmの篩を通して、球状の複合ペロブスカイト粒子を得た。得られた複合ペロブスカイト粒子は、22.5μmの平均粒子径(D50)、0.62m/gのBET比表面積及び1.003のA/B比((BaO+CaO)/(TiO+ZrO)のモル比)を有するBa(0.981)Ca(0.020)Ti(0.848)Zr(0.150)であった。なお、複合ペロブスカイト粒子の平均粒子径はレーザー光散乱法で求めた。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these.
<Production Example 1: Perovskite complex oxide coarse particles (BaCaTiZr system)>
Charge water into the container and stir for 1 hour or more with barium carbonate, calcium carbonate, titanium oxide and zirconium oxide so that the powder concentration becomes 20 to 30% by weight while stirring, and to have a predetermined composite oxide composition. To obtain a slurry. This slurry was treated with a bead mill so that the average particle size of solid content determined by the laser light scattering method was 0.47 μm and the maximum particle size distribution was 3 μm or less. This slurry was granulated and dried using a spray bag dryer to obtain a spherical granulated powder. The spherical granulated powder had an average particle size of 33.4 μm determined by the laser light scattering method. The slurry injection specification of the spray bag dryer was 20,000 rpm with a 100 mmφ disk, and the drying chamber temperature was 105 ° C. The obtained granulated powder was charged into an alumina container having a porosity of 20% or more, and baked at 1225 ° C. for 20 hours. The obtained fired body was crushed with a coffee mill, and passed through a sieve having an opening of 100 μm to obtain spherical composite perovskite particles. The obtained composite perovskite particles had an average particle diameter (D 50 ) of 22.5 μm, a BET specific surface area of 0.62 m 2 / g and an A / B ratio of 1.003 ((BaO + CaO) / (TiO 2 + ZrO 2 )). Ba (0.981) Ca (0.020) Ti (0.848) Zr (0.150) O 3 . The average particle size of the composite perovskite particles was determined by a laser light scattering method.

<製造例2:ペロブスカイト型複合酸化物粗粒子(BaCaTiZr系)>
焼成温度を1250℃に変更した以外は製造例1と同様にして球状の複合ペロブスカイト粒子を得た。得られた複合ペロブスカイト粒子は、21.5μmの平均粒子径(D50)、0.85m/gのBET比表面積及び1.000のA/B比((BaO+CaO)/(TiO+ZrO)のモル比)を有するBa(0.980)Ca(0.020)Ti(0.849)Zr(0.151)あった。なお、複合ペロブスカイト粒子の平均粒子径はレーザー光散乱法で求めた。
<Production Example 2: Perovskite complex oxide coarse particles (BaCaTiZr system)>
Spherical composite perovskite particles were obtained in the same manner as in Production Example 1 except that the firing temperature was changed to 1250 ° C. The resulting composite perovskite particles have an average particle diameter (D 50 ) of 21.5 μm, a BET specific surface area of 0.85 m 2 / g and an A / B ratio of (1.00) ((BaO + CaO) / (TiO 2 + ZrO 2 )). Ba (0.980) Ca (0.020) Ti (0.849) Zr (0.151) O 3 having a molar ratio of The average particle size of the composite perovskite particles was determined by a laser light scattering method.

<製造例3:ペロブスカイト型複合酸化物粗粒子(BaCaTiZr系)>
容器に水を仕込み、所定量の分散剤(花王株式会社製ポイズ2100)を添加し、撹拌しながら粉末濃度が20〜30重量%となるよう、また所定の複合酸化物組成となるようチタン酸バリウム前駆体、炭酸バリウム、炭酸カルシウム及び酸化ジルコニウムを仕込み、1時間以上撹拌してスラリーを得た。このスラリーをビーズミルにて、レーザー光散乱法で求めた固形分の平均粒子径が0.54μm、粒度分布の最大径が3μm以下となるよう処理した。このスラリーを、スプレーバッグドライヤーを用いて造粒乾燥処理し、球状の造粒粉とした。なお、球状の造粒粉はレーザー光散乱法で求められる平均粒子径が30.3μmであった。スプレーバッグドライヤーのスラリー射出仕様は100mmφのディスクで20,000rpmとし、乾燥室温度は105℃とした。得られた造粒粉を気孔率20%以上のアルミナ系容器に仕込み、1175℃で20時間焼成を行った。得られた焼成体をコーヒーミルで解砕し、目開き100μmの篩を通して、球状の複合ペロブスカイト粒子を得た。得られた複合ペロブスカイト粒子は、21.4μmの平均粒子径(D50)、0.62m/gのBET比表面積及び1.001のA/B比((BaO+CaO)/(TiO+ZrO)のモル比)を有するBa(0.980)Ca(0.020)Ti(0.851)Zr(0.149)であった。
なお、ここで使用したチタン酸バリウム前駆体は、蓚酸塩法チタン酸バリウム合成の出発原料となる蓚酸バリウムチタニルを脱蓚酸し、さらに気流粉砕を行って得られたものである。この、チタン酸バリウム前駆体は、2.8μmの平均粒子径(D50)及び7.7m/gのBET比表面積を有するものであった。
また、複合ペロブスカイト粒子及びチタン酸バリウム前駆体の平均粒子径はレーザー光散乱法で求めた。
<Production Example 3: Perovskite complex oxide coarse particles (BaCaTiZr system)>
Water is charged in a container, a predetermined amount of a dispersant (poise 2100 manufactured by Kao Corporation) is added, and the titanic acid is adjusted so that the powder concentration becomes 20 to 30% by weight while stirring and a predetermined composite oxide composition is obtained. A barium precursor, barium carbonate, calcium carbonate and zirconium oxide were charged and stirred for 1 hour or longer to obtain a slurry. This slurry was treated with a bead mill so that the average particle size of the solid content determined by the laser light scattering method was 0.54 μm and the maximum particle size distribution was 3 μm or less. This slurry was granulated and dried using a spray bag dryer to obtain a spherical granulated powder. The spherical granulated powder had an average particle size of 30.3 μm determined by a laser light scattering method. The slurry injection specification of the spray bag dryer was 20,000 rpm with a 100 mmφ disk, and the drying chamber temperature was 105 ° C. The obtained granulated powder was charged into an alumina container having a porosity of 20% or more, and baked at 1175 ° C. for 20 hours. The obtained fired body was crushed with a coffee mill, and passed through a sieve having an opening of 100 μm to obtain spherical composite perovskite particles. The obtained composite perovskite particles have an average particle diameter (D 50 ) of 21.4 μm, a BET specific surface area of 0.62 m 2 / g and an A / B ratio of 1.001 ((BaO + CaO) / (TiO 2 + ZrO 2 )). Ba (0.980) Ca (0.020) Ti (0.851) Zr (0.149) O 3 .
The barium titanate precursor used here is obtained by degassing barium titanyl oxalate, which is a starting material for synthesizing oxalate-based barium titanate, and further performing airflow pulverization. This barium titanate precursor had an average particle diameter (D 50 ) of 2.8 μm and a BET specific surface area of 7.7 m 2 / g.
The average particle size of the composite perovskite particles and barium titanate precursor was determined by a laser light scattering method.

<製造例4:ペロブスカイト型複合酸化物粗粒子(BaCaTiZr系)>
焼成温度を1200℃に変更した以外は製造例3と同様にして球状の複合ペロブスカイト粒子を得た。得られた複合ペロブスカイト粒子は、20.4μmの平均粒子径(D50)、0.49m/gのBET比表面積及び1.001のA/B比((BaO+CaO)/(TiO+ZrO)のモル比)を有するBa(0.980)Ca(0.020)Ti(0.851)Zr(0.149)であった。なお、複合ペロブスカイト粒子の平均粒子径はレーザー光散乱法で求めた。
<Production Example 4: Perovskite complex oxide coarse particles (BaCaTiZr system)>
Spherical composite perovskite particles were obtained in the same manner as in Production Example 3 except that the firing temperature was changed to 1200 ° C. The resulting composite perovskite particles have an average particle diameter (D 50 ) of 20.4 μm, a BET specific surface area of 0.49 m 2 / g and an A / B ratio of 1.001 ((BaO + CaO) / (TiO 2 + ZrO 2 )). Ba (0.980) Ca (0.020) Ti (0.851) Zr (0.149) O 3 . The average particle size of the composite perovskite particles was determined by a laser light scattering method.

<製造例5:ペロブスカイト型複合酸化物粗粒子(BaTi系)>
容器に水を仕込み、所定量の分散剤(花王株式会社製ポイズ2100)を添加し、撹拌しながら粉末濃度が20〜30重量%となるよう、チタン酸バリウム前駆体を仕込み、1時間以上撹拌してスラリーを得た。このスラリーをビーズミルにて、レーザー光散乱法で求められる固形分の平均粒子径が0.51μm、粒度分布の最大径が3μm以下となるよう処理した。このスラリーを、スプレーバッグドライヤーを用いて造粒乾燥処理し、球状の造粒粉とした。なお、球状の造粒粉はレーザー光散乱法で求められる平均粒子径が32.9μmであった。スプレーバッグドライヤーのスラリー射出仕様は100mmφのディスクで20,000rpmとし、乾燥室温度は105℃とした。得られた造粒粉を気孔率20%以上のアルミナ系容器に仕込み、1100℃で20時間焼成を行った。得られた焼成体をコーヒーミルで解砕し、目開き100μmの篩を通して、球状のチタン酸バリウム粒子を得た。得られたチタン酸バリウム粒子は、19.2μmの平均粒子径(D50)、0.62m/gのBET比表面積及び0.999のA/B比(BaO/TiOのモル比)を有するものであった。
なお、ここで使用したチタン酸バリウム前駆体は、蓚酸塩法チタン酸バリウム合成の出発原料となる蓚酸バリウムチタニルを脱蓚酸し、さらに気流粉砕を行って得られたものである。この、チタン酸バリウム前駆体は、2.8μmの平均粒子径(D50)及び7.7m/gのBET比表面積を有するものであった。
また、球状のチタン酸バリウム粒子及びチタン酸バリウム前駆体の平均粒子径はレーザー光散乱法で求めた。
<Production Example 5: Perovskite complex oxide coarse particles (BaTi system)>
Water is charged in a container, a predetermined amount of a dispersant (poise 2100 manufactured by Kao Corporation) is added, and a barium titanate precursor is charged so that the powder concentration becomes 20 to 30% by weight while stirring, and stirring is performed for 1 hour or more. Thus, a slurry was obtained. This slurry was treated with a bead mill so that the average particle size of solids determined by the laser light scattering method was 0.51 μm and the maximum particle size distribution was 3 μm or less. This slurry was granulated and dried using a spray bag dryer to obtain a spherical granulated powder. The spherical granulated powder had an average particle size of 32.9 μm determined by the laser light scattering method. The slurry injection specification of the spray bag dryer was 20,000 rpm with a 100 mmφ disk, and the drying chamber temperature was 105 ° C. The obtained granulated powder was charged into an alumina container having a porosity of 20% or more and baked at 1100 ° C. for 20 hours. The obtained fired body was pulverized with a coffee mill and passed through a sieve having an opening of 100 μm to obtain spherical barium titanate particles. The obtained barium titanate particles have an average particle diameter (D 50 ) of 19.2 μm, a BET specific surface area of 0.62 m 2 / g, and an A / B ratio of 0.999 (BaO / TiO 2 molar ratio). I had it.
The barium titanate precursor used here is obtained by degassing barium titanyl oxalate, which is a starting material for synthesizing oxalate-based barium titanate, and further performing airflow pulverization. This barium titanate precursor had an average particle diameter (D 50 ) of 2.8 μm and a BET specific surface area of 7.7 m 2 / g.
The average particle diameter of the spherical barium titanate particles and barium titanate precursor was determined by a laser light scattering method.

<製造例6:ペロブスカイト型複合酸化物粗粒子(BaTi系)>
焼成温度を1150℃に変更した以外は製造例5と同様にして球状のチタン酸バリウム粒子を得た。得られたチタン酸バリウム粒子は、15.3μmの平均粒子径(D50)、0.40m/gのBET比表面積及び0.999のA/B比(BaO/TiOのモル比)を有するものであった。なお、チタン酸バリウム粒子の平均粒子径はレーザー光散乱法で求めた。
<Production Example 6: Perovskite complex oxide coarse particles (BaTi system)>
Spherical barium titanate particles were obtained in the same manner as in Production Example 5 except that the firing temperature was changed to 1150 ° C. The obtained barium titanate particles have an average particle diameter (D 50 ) of 15.3 μm, a BET specific surface area of 0.40 m 2 / g, and an A / B ratio of 0.999 (molar ratio of BaO / TiO 2 ). I had it. The average particle size of the barium titanate particles was determined by a laser light scattering method.

<製造例7:ペロブスカイト型複合酸化物粗粒子(BaTi系)>
焼成温度を1000℃に変更した以外は製造例5と同様にして球状のチタン酸バリウム粒子を得た。得られたチタン酸バリウム粒子は、18.9μmの平均粒子径(D50)、0.96m/gのBET比表面積及び1.001のA/B比(BaO/TiOのモル比)を有するものであった。なお,チタン酸バリウム粒子の平均粒子径はレーザー光散乱法で求めた。
<Production Example 7: Perovskite complex oxide coarse particles (BaTi system)>
Spherical barium titanate particles were obtained in the same manner as in Production Example 5 except that the firing temperature was changed to 1000 ° C. The obtained barium titanate particles had an average particle diameter (D 50 ) of 18.9 μm, a BET specific surface area of 0.96 m 2 / g, and an A / B ratio of 1.001 (BaO / TiO 2 molar ratio). I had it. The average particle diameter of the barium titanate particles was determined by a laser light scattering method.

<製造例8:ペロブスカイト型複合酸化物微粒子(BaTi系)>
蓚酸バリウムチタニルを脱蓚酸した後、気孔率20%以上のムライト製容器に仕込み、950℃で20時間の焼成を行なった。焼成粉末に対し気流粉砕を行い、平均粒子径0.75μm、BET比表面積2.0m/gのチタン酸バリウムを得た。このチタン酸バリウムを同様にムライト製容器に仕込み、1100℃で20時間の焼成を行なった。焼成粉末に対し気流粉砕を行い、球状のチタン酸バリウム粒子を得た。得られたチタン酸バリウム粒子は、1.9μmの平均粒子径(D50)、0.90m/gのBET比表面積及び1.001のA/B比(BaO/TiOのモル比)を有するものであった。なお、球状のチタン酸バリウム粒子の平均粒子径はレーザー光散乱法で求めた。
<Production Example 8: Perovskite complex oxide fine particles (BaTi type)>
After barium titanyl oxalate was deacidified, it was charged into a mullite container having a porosity of 20% or more and baked at 950 ° C. for 20 hours. The fired powder was air pulverized to obtain barium titanate having an average particle size of 0.75 μm and a BET specific surface area of 2.0 m 2 / g. This barium titanate was similarly charged into a mullite container and baked at 1100 ° C. for 20 hours. The fired powder was subjected to airflow pulverization to obtain spherical barium titanate particles. The obtained barium titanate particles have an average particle diameter (D 50 ) of 1.9 μm, a BET specific surface area of 0.90 m 2 / g, and an A / B ratio of 1.001 (BaO / TiO 2 molar ratio). I had it. The average particle diameter of the spherical barium titanate particles was determined by a laser light scattering method.

<実施例1〜7>
表1に示すような重量割合で、上記製造例で得られたペロブスカイト型複合酸化物粗粒子及びペロブスカイト型複合酸化物微粒子を市販のミキサーで混合し、実施例1〜7の誘電体セラミック材料を得た。
<Examples 1-7>
The perovskite type complex oxide coarse particles and the perovskite type complex oxide fine particles obtained in the above production examples were mixed with a commercially available mixer at a weight ratio as shown in Table 1, and the dielectric ceramic materials of Examples 1 to 7 were mixed. Obtained.

Figure 0005912583
Figure 0005912583

表2に示すような配合割合で、無機充填材としての実施例1〜7の誘電体セラミック材料、製造例1で得られたペロブスカイト型複合酸化物粗粒子又は製造例8で得られたペロブスカイト型複合酸化物微粒子と、エポキシ樹脂とを混練し、エポキシ樹脂組成物を調製した。表2中、混練が問題なく行え、均一なエポキシ樹脂組成物が得られたものを○と評価し、混練は行えるが、エポキシ樹脂組成物の増粘により泡が生じたものを△と評価し、混練が困難であったものを×と評価した。
なお、ここで使用したエポキシ樹脂は、99重量%の熱硬化性エポキシ樹脂(三菱化学株式会社製、商品名:JER(登録商標)828EL、分子量約370、比重1.17、25℃での公称粘度120〜150P)と、1重量%のイミダゾール系硬化促進剤(四国化成工業株式会社製、商品名:2E4MZ)とからなるものである。
The dielectric ceramic materials of Examples 1 to 7 as inorganic fillers, the perovskite type composite oxide coarse particles obtained in Production Example 1 or the perovskite type obtained in Production Example 8 at a blending ratio as shown in Table 2 The composite oxide fine particles and the epoxy resin were kneaded to prepare an epoxy resin composition. In Table 2, kneading can be performed without any problem, and a uniform epoxy resin composition obtained is evaluated as “good”, and kneading can be performed, but a foam produced by thickening of the epoxy resin composition is evaluated as “△”. Those that were difficult to knead were evaluated as x.
The epoxy resin used here is a 99% by weight thermosetting epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: JER (registered trademark) 828EL, molecular weight of about 370, specific gravity of 1.17, nominal at 25 ° C. Viscosity 120-150P) and 1% by weight of an imidazole curing accelerator (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 2E4MZ).

Figure 0005912583
Figure 0005912583

表2の結果より、実施例1〜7の誘電体セラミック材料を使用した実施例8〜14ではいずれも、エポキシ樹脂中に30体積%以上充填することができた。これに対し、比較例1では、無機充填材を30体積%充填することができたものの、エポキシ樹脂組成物の増粘により泡が生じた。更に、比較例1では、35体積%以上充填することはできなかった。また、比較例2では、無機充填材を50体積%までは充填することができたが、55体積%充填することはできなかった。   From the results shown in Table 2, in each of Examples 8 to 14 using the dielectric ceramic materials of Examples 1 to 7, 30% by volume or more could be filled in the epoxy resin. On the other hand, in Comparative Example 1, although it was possible to fill the inorganic filler with 30% by volume, bubbles were generated due to thickening of the epoxy resin composition. Furthermore, in Comparative Example 1, it was not possible to fill 35% by volume or more. In Comparative Example 2, the inorganic filler could be filled up to 50% by volume, but could not be filled up to 55% by volume.

次いで、上記混練の評価で○が得られたエポキシ樹脂組成物のうち、エポキシ樹脂組成物中の無機充填材充填率が50体積%及び55体積%のものについて誘電特性を評価した。エポキシ樹脂組成物を140℃、5時間で硬化させて複合誘電体試料を作製した。得られた複合誘電体試料の両面に、蒸着法にて厚さ30nmの白金膜を電極として形成した後、インピーダンスアナライザー(ソーラートロン社製1255B)、インターフェース(ソーラートロン社製1296)にて、周波数1kHz、印加電圧1Vにおける誘電率及び誘電損失の測定を行った。結果を表3に示す。   Next, among the epoxy resin compositions obtained by the evaluation of the kneading, those having an inorganic filler filling rate in the epoxy resin composition of 50% by volume and 55% by volume were evaluated for dielectric characteristics. The epoxy resin composition was cured at 140 ° C. for 5 hours to prepare a composite dielectric sample. A platinum film having a thickness of 30 nm was formed as an electrode on both surfaces of the obtained composite dielectric sample by vapor deposition, and then the frequency was measured with an impedance analyzer (Solartron 1255B) and interface (Solartron 1296). The dielectric constant and dielectric loss at 1 kHz and applied voltage of 1 V were measured. The results are shown in Table 3.

Figure 0005912583
Figure 0005912583

表3の結果より、同じ充填率(50体積%)で比べた場合、実施例8〜12は、比較例2よりも誘電率が高く、特に、実施例10〜12については、比較例2より誘電損失が低くなっており、誘電特性が極めて良好であった。また、充填率が55体積%の場合も、実施例8〜10は、誘電損失に問題はなく、極めて高い誘電率を示した。また、実施例8〜12で50体積%充填して得られた誘電率は、特許文献2の試料番号3(本実施例で使用したエポキシ樹脂よりも誘電率が大きい樹脂系において、誘電体フィラーを50体積%充填)の誘電率30を大きく上回っており、特に実施例10〜12で50体積%充填して得られた誘電率は、特許文献2の試料番号4(本実施例で使用したエポキシ樹脂よりも誘電率が大きい樹脂系において、誘電体フィラーを60体積%充填)の誘電率46をも大きく上回っていることが分かる。   From the results of Table 3, when compared at the same filling rate (50% by volume), Examples 8 to 12 have higher dielectric constants than Comparative Example 2, and in particular, Examples 10 to 12 are more than Comparative Example 2. The dielectric loss was low and the dielectric properties were very good. Further, even when the filling rate was 55% by volume, Examples 8 to 10 had no problem in dielectric loss and exhibited extremely high dielectric constants. Further, the dielectric constant obtained by filling 50% by volume in Examples 8 to 12 is the sample number 3 of Patent Document 2 (in the resin system having a dielectric constant larger than that of the epoxy resin used in this example, the dielectric filler) The dielectric constant obtained by filling 50% by volume in Examples 10 to 12 is the sample number 4 of Patent Document 2 (used in this example). It can be seen that in the resin system having a dielectric constant larger than that of the epoxy resin, the dielectric constant 46 of 60% by volume of the dielectric filler) is greatly exceeded.

Claims (7)

平均粒子径が8μm以上50μm以下でBET比表面積が0.3m/g以上1.0m/g以下であるペロブスカイト(ABO)型複合酸化物粗粒子と平均粒子径が0.7μm以上3μm以下でBET比表面積が0.6m/g以上3m/g以下であるペロブスカイト(ABO)型複合酸化物微粒子とからなることを特徴とする誘電体セラミック材料。 Perovskite (ABO 3 ) type composite oxide coarse particles having an average particle size of 8 μm to 50 μm and a BET specific surface area of 0.3 m 2 / g to 1.0 m 2 / g and an average particle size of 0.7 μm to 3 μm A dielectric ceramic material comprising: perovskite (ABO 3 ) type composite oxide fine particles having a BET specific surface area of 0.6 m 2 / g or more and 3 m 2 / g or less. 前記ペロブスカイト型複合酸化物粗粒子の配合割合が、10重量%以上70重量%以下であり且つ前記ペロブスカイト型複合酸化物微粒子の配合割合が、30重量%以上90重量%以下であることを特徴とする請求項に記載の誘電体セラミック材料。 The blending ratio of the perovskite complex oxide coarse particles is 10 wt% or more and 70 wt% or less, and the blending ratio of the perovskite complex oxide fine particles is 30 wt% or more and 90 wt% or less. The dielectric ceramic material according to claim 1 . 前記ペロブスカイト型複合酸化物微粒子が、Aサイト元素がBa、Ca、Mg及びSrからなる群から選択される少なくとも1種であり且つBサイト元素がTi及びZrからなる群から選択される少なくとも1種であるABO型複合酸化物からなることを特徴とする請求項1又は2に記載の誘電体セラミック材料。 The perovskite complex oxide fine particles are at least one selected from the group consisting of Ba, Ca, Mg and Sr as the A site element, and at least one selected from the group consisting of Ti and Zr as the B site element. dielectric ceramic material according to claim 1 or 2, characterized in that it consists of ABO 3 type composite oxide is. 前記ペロブスカイト型複合酸化物粗粒子が、焼結助剤を含有しないことを特徴とする請求項1〜の何れか一項に記載の誘電体セラミック材料。 The perovskite-type composite oxide coarse particles, the dielectric ceramic material according to any one of claim 1 to 3, characterized in that it does not contain the sintering aid. 複合誘電体の無機充填材として用いられることを特徴とする請求項1〜の何れか一項に記載の誘電体セラミック材料。 The dielectric ceramic material according to any one of claims 1 to 4 , wherein the dielectric ceramic material is used as an inorganic filler of a composite dielectric. Ba、Ca、Mg及びSrからなる群から選択される少なくとも1種の元素を含む炭酸塩と、Ti及びZrからなる群から選択される少なくとも1種の元素を含む酸化物と、分散媒とを含むスラリーを、メディアミルにより、前記スラリー中の固形分の平均粒子径が0.8μm以下、最大粒子径が3μm以下となるように調製する工程、
前記スラリーをスプレードライ法で乾燥させて造粒粉を得る工程、及び
前記造粒粉の焼成温度を1000℃以上1400℃以下の範囲で調整し、BET比表面積が0.3m/g以上1.0m/g以下である焼成体を得る工程
を有することを特徴とするペロブスカイト型複合酸化物粗粒子の製造方法。
A carbonate containing at least one element selected from the group consisting of Ba, Ca, Mg and Sr; an oxide containing at least one element selected from the group consisting of Ti and Zr; and a dispersion medium. A step of preparing a slurry containing a media mill so that an average particle size of a solid content in the slurry is 0.8 μm or less and a maximum particle size is 3 μm or less ,
A step of drying the slurry by a spray drying method to obtain a granulated powder; and a firing temperature of the granulated powder is adjusted in a range of 1000 ° C. or higher and 1400 ° C. or lower, and a BET specific surface area is 0.3 m 2 / g or higher and 1 The manufacturing method of the perovskite type complex oxide coarse particle which has the process of obtaining the baked body which is 0.0 m < 2 > / g or less.
前記スラリーが、チタン酸バリウム前駆体を更に含むことを特徴とする請求項に記載のペロブスカイト型複合酸化物粗粒子の製造方法。 The method for producing perovskite complex oxide coarse particles according to claim 6 , wherein the slurry further contains a barium titanate precursor.
JP2012016507A 2012-01-30 2012-01-30 Dielectric ceramic material and method for producing perovskite type complex oxide coarse particles used therefor Active JP5912583B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012016507A JP5912583B2 (en) 2012-01-30 2012-01-30 Dielectric ceramic material and method for producing perovskite type complex oxide coarse particles used therefor
PCT/JP2013/051903 WO2013115183A1 (en) 2012-01-30 2013-01-29 Dielectric ceramic material and process for producing coarse particles of perovskite-type composite oxide for use therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012016507A JP5912583B2 (en) 2012-01-30 2012-01-30 Dielectric ceramic material and method for producing perovskite type complex oxide coarse particles used therefor

Publications (2)

Publication Number Publication Date
JP2013155071A JP2013155071A (en) 2013-08-15
JP5912583B2 true JP5912583B2 (en) 2016-04-27

Family

ID=48905218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012016507A Active JP5912583B2 (en) 2012-01-30 2012-01-30 Dielectric ceramic material and method for producing perovskite type complex oxide coarse particles used therefor

Country Status (2)

Country Link
JP (1) JP5912583B2 (en)
WO (1) WO2013115183A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105793197B (en) * 2013-11-29 2018-10-23 石原产业株式会社 Black fines near-infrared reflection material, its manufacturing method and its application
CN109071257B (en) * 2016-04-01 2020-12-15 电化株式会社 Barium titanate-based powder, method for producing same, and use thereof
JP6972115B2 (en) 2017-04-04 2021-11-24 デンカ株式会社 Powder mixture
JP7017392B2 (en) * 2017-12-12 2022-02-08 トヨタ自動車株式会社 Positive electrode material and lithium secondary battery using it
JP7002433B2 (en) 2018-10-25 2022-02-04 トヨタ自動車株式会社 Positive electrode material and secondary battery using this

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256254B2 (en) * 1991-12-09 2002-02-12 日本特殊陶業株式会社 Flexible composite piezoelectric material
JP3098831B2 (en) * 1991-12-09 2000-10-16 日本特殊陶業株式会社 Composite piezoelectric materials for underwater transducers
JPH09255337A (en) * 1996-03-18 1997-09-30 Kubota Corp Alkaline earth metal titanate powder and its production
JP4759211B2 (en) * 2002-10-01 2011-08-31 日本化学工業株式会社 Method for producing perovskite-type barium titanate powder
JP2004285105A (en) * 2003-03-19 2004-10-14 Fujikura Ltd Resin mixture with high dielectric constant
JP5040015B2 (en) * 2007-01-18 2012-10-03 大塚化学株式会社 Method for producing composite metal titanate
JP2011073947A (en) * 2009-10-02 2011-04-14 Fuji Titan Kogyo Kk Multiple oxide and method for producing the same
JP5337316B2 (en) * 2012-01-30 2013-11-06 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 High dielectric insulating resin composition

Also Published As

Publication number Publication date
JP2013155071A (en) 2013-08-15
WO2013115183A1 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP5193882B2 (en) Modified perovskite complex oxide, method for producing the same, and complex dielectric material
JP4747091B2 (en) Composite dielectric material
WO2010008040A1 (en) Modified perovskite type composite oxide, manufacturing method thereof, and composite dielectric material
JP5912583B2 (en) Dielectric ceramic material and method for producing perovskite type complex oxide coarse particles used therefor
KR20110042185A (en) Modified perovskite type composite oxide, manufacturing method thereof, and composite dielectric material
JP5774510B2 (en) Dielectric ceramic material and method for producing perovskite type complex oxide coarse particles used therefor
JPWO2008087986A1 (en) Inorganic filler and composite dielectric material using the same
JP5283996B2 (en) Modified perovskite complex oxide, method for producing the same, and complex dielectric material
KR102510234B1 (en) Modified perovskite-type composite oxide, manufacturing method thereof, and composite dielectric material
JP5195342B2 (en) Core-shell structured particles, composition, dielectric composition and capacitor
JP5362280B2 (en) Modified perovskite complex oxide, method for producing the same, and complex dielectric material
JP5341417B2 (en) Modified perovskite complex oxide, method for producing the same, and complex dielectric material
JP6986212B1 (en) Resin composition, prepreg, laminated board, metal foil-clad laminated board, and printed wiring board
JP5283995B2 (en) Modified perovskite complex oxide, method for producing the same, and complex dielectric material
JPS63264662A (en) Polyphenylene oxide resin composition
JP2005068299A (en) High permittivity epoxy resin paste and electronic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5912583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250