WO2019123852A1 - Substrate processing apparatus and substrate processing method - Google Patents

Substrate processing apparatus and substrate processing method Download PDF

Info

Publication number
WO2019123852A1
WO2019123852A1 PCT/JP2018/040553 JP2018040553W WO2019123852A1 WO 2019123852 A1 WO2019123852 A1 WO 2019123852A1 JP 2018040553 W JP2018040553 W JP 2018040553W WO 2019123852 A1 WO2019123852 A1 WO 2019123852A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
drying auxiliary
liquid
drying
processing apparatus
Prior art date
Application number
PCT/JP2018/040553
Other languages
French (fr)
Japanese (ja)
Inventor
洋祐 塙
悠太 佐々木
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2019123852A1 publication Critical patent/WO2019123852A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method for removing a processing liquid attached to a substrate from a substrate.
  • substrates to be processed include semiconductor wafers, substrates for FPD (Flat Panel Display) such as liquid crystal display devices and organic EL (Electroluminescence) displays, substrates for optical disks, substrates for magnetic disks, substrates for magneto-optical disks, photomasks It includes various substrates such as a glass substrate, a ceramic substrate, and a solar cell substrate.
  • a wet process is a cleaning process that removes contaminants on the substrate surface.
  • reaction by-products etching residues
  • metal impurities and organic contaminants may be attached to the surface of the substrate.
  • a cleaning process such as supplying a cleaning solution to the substrate is performed.
  • a rinse process for removing the cleaning solution with a rinse solution and a drying process for drying the rinse solution are performed.
  • a rinse solution such as deionized water (DIW: Deionized Water) is supplied to the substrate surface to which the cleaning solution is attached, and the cleaning solution on the substrate surface is removed.
  • DIW Deionized Water
  • a drying process is performed to dry the substrate by removing the rinse solution.
  • the aspect ratio (the ratio of the height to the width of the pattern convex portion) in the convex portion of the pattern having the unevenness has been increased.
  • the problem of pattern collapse arises at the time of drying processing. Specifically, a problem occurs when the pattern is in contact with the interface between the liquid, such as the cleaning liquid and the rinse liquid, which has entered the recess of the pattern and the gas in contact with the liquid. That is, due to the effects of surface tension and interface free energy acting on the interface between the liquid and the gas, adjacent convex portions in the pattern are drawn to each other, and the pattern convex portion collapses.
  • Patent Document 1 discloses a drying technique for the purpose of preventing such a pattern collapse.
  • a solution is brought into contact with a substrate on which a structure (pattern) is formed, the solution is converted into a solid to form a pattern support (solid body), and the support is converted from the solid phase to the gas phase, Change and remove without passing through the liquid phase.
  • Patent Document 1 discloses that a sublimation material of at least one of a methacrylic resin, a styrene resin, and a fluorocarbon resin is used as a support material.
  • One embodiment of the present invention is a substrate processing apparatus and a substrate capable of removing a treatment liquid attached to the surface of a substrate while preventing collapse of a pattern formed on the surface of the substrate while suppressing oxidation of the substrate. Provide a treatment method.
  • the sublimation removal means includes a hydrogen gas valve for opening and closing a flow path of a supply pipe for supplying stored hydrogen gas, and a plasma generation unit pipe-connected to the supply pipe.
  • the substrate processing apparatus supplies the hydrogen gas to the substrate by opening the hydrogen gas valve, and then starts discharge at the plasma generation unit.
  • the drying auxiliary substance is removed from the surface of the substrate by the sublimation removal means, and then the heating means is stopped, and a gas at normal temperature or a temperature lower than normal temperature is supplied to the substrate surface.
  • the method further includes a room temperature setting unit that sets the temperature of the substrate surface to a room temperature.
  • FIG. 1 It is a figure which shows schematic structure of the substrate processing apparatus which concerns on one Embodiment of this invention. It is a figure which shows the example of a schematic structure of the control unit of the said substrate processing apparatus. It is a figure which shows the example of a schematic structure of the gas supply unit of the said substrate processing apparatus. It is a schematic cross section which shows the structural example of the board
  • a substrate on which a circuit pattern or the like (hereinafter referred to as a “pattern”) is formed only on one main surface will be used as an example.
  • the main surface on which the pattern is formed is referred to as “surface”, and the main surface on which the pattern on the opposite side is not formed is referred to as “back surface”.
  • the surface of the substrate directed downward is referred to as the “lower surface”, and the surface of the substrate directed upward is referred to as the “upper surface”.
  • the case where the upper surface is a surface will be described below.
  • FIG. 1 is a schematic view showing the configuration of a substrate processing apparatus 1 according to an embodiment of the present invention.
  • the substrate processing apparatus 1 is a sheet-fed substrate processing apparatus which processes a substrate 91 such as a semiconductor substrate (hereinafter simply referred to as a "substrate 91") one by one.
  • the substrate processing apparatus 1 is for cleaning processing for removing contaminants (hereinafter, referred to as “particles and the like”) such as particles adhering to the substrate 91, and rinsing processing and drying processing after the cleaning processing. Used.
  • the substrate processing apparatus 1 is provided with nozzles and the like used for the cleaning process and the rinse process, but in FIG. 1 these are not shown, and only a part used for the drying process is shown.
  • control unit 13 various processing units that control the respective units of the substrate processing apparatus 1 are realized by the arithmetic processing unit 15 as the main control unit performing arithmetic processing according to the procedure described in the program.
  • the functional units realized in the control unit 13 may be realized in hardware by a dedicated logic circuit or the like.
  • the drying auxiliary liquid supply unit 21 is a unit for supplying the drying auxiliary liquid to the substrate 91, and includes a drying auxiliary liquid supply pipe 23, a drying auxiliary liquid valve 25, a drying auxiliary liquid nozzle 27, and a drying auxiliary liquid tank 29.
  • the drying auxiliary liquid tank 29 is in pipeline connection with the drying auxiliary liquid nozzle 27 via the drying auxiliary liquid supply pipe 23. In the middle of the flow path of the drying auxiliary liquid supply pipe 23, a drying auxiliary liquid valve 25 for opening and closing the flow path is interposed.
  • the drying auxiliary liquid tank 29 stores a drying auxiliary liquid in which a drying auxiliary substance is dissolved in a solvent.
  • the drying auxiliary liquid in the drying auxiliary liquid tank 29 is pressurized by a pump (not shown) and sent to the drying auxiliary liquid supply pipe 23.
  • the drying auxiliary liquid valve 25 is electrically connected to the control unit 13, and the opening / closing of the drying auxiliary liquid valve 25 is controlled by an operation command of the control unit 13.
  • the drying auxiliary liquid valve 25 is opened, the drying auxiliary liquid is supplied from the drying auxiliary liquid supply pipe 23 from the drying auxiliary liquid tank 29 to the substrate 91 from the drying auxiliary liquid nozzle 27.
  • the drying auxiliary substance in the present embodiment is desirably in a solid state at normal temperature and normal pressure.
  • methacrylic resin, styrene resin, fluorocarbon resin, novolac resin, isobutylene resin, isoprene resin, butadiene resin, vinyl cinnamate resin, vinylphenol resin, cycloolefin resin, A polyimide resin, a benzoxazole resin, etc. are mentioned.
  • polyisobutylene which is an isobutylene resin, is used as a drying aid.
  • the solvent of the drying auxiliary substance in the present embodiment is preferably a liquid in which the drying auxiliary substance exhibits solubility and can be easily dried at normal temperature.
  • isopropyl alcohol Iso Propyl Alcohol: hereinafter described as "IPA”
  • IPA isopropyl alcohol
  • methanol ethanol
  • ethanol acetone
  • benzene benzene
  • carbon tetrachloride chloroform
  • hexane decalin
  • tetralin acetic acid
  • cyclohexanol ether
  • hydrofluoroether Hydro Fluoro Ether
  • PMEA propylene glycol 1-monomethyl ether 2-acetate
  • NMP N-methyl-2-pyrrolidone
  • deionized water (hereinafter referred to as "DIW") can also be used.
  • DIW deionized water
  • IPA is used as a solvent of the drying auxiliary substance.
  • the drying auxiliary liquid in the present embodiment is a polyisobutylene solution in which polyisobutylene is dissolved in IPA.
  • the hydrogen gas tank 39 is connected to the plasma generating unit 37 via the hydrogen gas supply pipe 33. In the middle of the flow path of the hydrogen gas supply pipe 33, a hydrogen gas valve 35 for opening and closing the flow path is interposed. In the hydrogen gas tank 39, hydrogen gas is stored.
  • the hydrogen gas in the hydrogen gas tank 39 is pressurized by a pressurizing means (not shown) and sent to the hydrogen gas supply pipe 33.
  • the pressurizing means can be realized by a structure in which hydrogen gas is compressed and stored in the hydrogen gas tank 39, in addition to a structure in which pressure is applied by a pump or the like.
  • the gas stored in the hydrogen gas tank 39 may be hydrogen gas mixed with an inert gas.
  • the hydrogen gas valve 35 is electrically connected to the control unit 13, and the opening / closing of the hydrogen gas valve 35 is controlled by an operation command of the control unit 13. When the hydrogen gas valve 35 is opened, hydrogen gas is supplied to the plasma generator 37 through the hydrogen gas supply pipe 33.
  • the plasma generating unit 37 includes a discharge electrode (not shown) on the circumferential surface of a hollow cylindrical insulating tube, applies a high voltage to the discharge electrode, and generates a discharge in the insulating tube.
  • the end of the insulating pipe is in pipe connection with the hydrogen gas supply pipe 33, and the hydrogen gas passes through the insulating pipe in which the discharge is generated.
  • hydrogen gas passes through the discharge portion, hydrogen radicals are generated, and the hydrogen radicals are supplied to the substrate 91.
  • the plasma generating portion 37 may have any structure as long as hydrogen gas can be allowed to pass through the discharge portion, and is not limited to the structure of this embodiment.
  • the gas supply unit 41 is connected to the gas nozzle 47 via the gas supply pipe 43, and supplies the gas to the gas supply pipe 43.
  • the gas supplied to the gas supply pipe 43 is supplied from the gas nozzle 47 to the surface of the substrate 91.
  • the schematic structural example of the gas supply unit 41 is shown in FIG.
  • the gas supply unit 41 includes a nitrogen gas valve 45 and a nitrogen gas tank 49.
  • the nitrogen gas tank 49 is in pipe connection with the gas supply pipe 43. In the middle of the flow path of the gas supply pipe 43, a nitrogen gas valve 45 for opening and closing the flow path is interposed.
  • the nitrogen gas tank 49 stores nitrogen gas.
  • the nitrogen gas in the nitrogen gas tank 49 is pressurized by a pressurizing means (not shown) and sent to the gas supply pipe 43.
  • the pressurizing means can be realized by a structure in which nitrogen gas is compressed and stored in the nitrogen gas tank 49, in addition to a structure in which pressure is applied by a pump or the like.
  • the nitrogen gas valve 45 is electrically connected to the control unit 13, and the opening and closing of the nitrogen gas valve 45 is controlled by an operation command of the control unit 13. When the nitrogen gas valve 45 is opened, nitrogen gas is supplied from the gas nozzle 47 to the substrate 91 through the gas supply pipe 43.
  • the motor 51 is electrically connected to the control unit 13, and rotationally drives the rotation drive unit 53 in accordance with an operation command of the control unit 13.
  • the rotation drive unit 53 and the substrate holding unit 55 are connected, and when the rotation drive unit 53 is rotationally driven by the motor 51, the substrate holding unit 55 also rotates.
  • FIG. 4 is a schematic cross-sectional view showing a configuration example of the substrate holding unit 55 in the present embodiment.
  • a heating unit 54 is disposed inside the substrate holding unit 55.
  • the holding plate 56 in the substrate holding unit 55 is connected to a rotation driving unit 53 (see FIG. 1) disposed below the substrate holding unit 55.
  • the heating unit 54 is not rotated, and is electrically connected to the control unit 13 by the feed shaft that has passed through the rotation drive unit 53.
  • the heating unit 54 performs heating according to an operation command of the control unit 13. Examples of the heating method of the heating unit 54 include electric induction heating by causing a current to flow to the coil, resistance heating, and the like, but the invention is not limited to a specific heating method.
  • the heating unit 54 in the present embodiment is built in the substrate holding unit 55, the heating unit may be disposed between the substrate holding unit 55 and the substrate 91, and the heating unit may be arranged to contact the back surface of the substrate 91. You may distribute it.
  • the heating unit may have a structure that can rotate with the substrate holding unit 55.
  • a plurality of chuck pins 57 are disposed at equal angular intervals on the upper surface of the substrate holding portion 55 near the peripheral edge thereof.
  • the substrate 91 is held by the chuck pins 57 with the surface on which the pattern is to be formed facing upward.
  • Each chuck pin 57 is configured to be movable between an open state and a closed state by a chuck pin opening / closing mechanism (not shown).
  • the open state is a state in which the chuck pin 57 does not hold the peripheral portion of the substrate 91 placed on the chuck pin 57.
  • the closed state is a state in which the chuck pin 57 contacts the lower surface and the outer peripheral end face of the peripheral portion of the substrate 91 and supports the substrate 91 at a position above the upper surface of the substrate holding portion 55 via a gap.
  • the peripheral portion is held by the plurality of chuck pins 57, whereby the substrate 91 is held on the substrate holding portion 55 in a horizontal posture.
  • the substrate processing operation in the substrate processing apparatus 1 configured as described above will be described.
  • An uneven pattern is formed on the substrate 91 by the previous process.
  • the pattern comprises protrusions and recesses.
  • the protrusions have a height in the range of 100 to 200 nm and a width in the range of 10 to 20 nm. Further, the distance between adjacent convex portions (width of concave portions) is in the range of 10 to 20 nm.
  • FIG. 5 is a flowchart showing an operation example of the substrate processing apparatus 1 in the present embodiment.
  • the control unit 13 issues an operation command, whereby the following operation is performed.
  • the rotation drive unit 53 is in a rotation stop state, and the chuck pin 57 is positioned at a position suitable for delivery of the substrate 91. Further, the drying auxiliary liquid valve 25, the hydrogen gas valve 35, and the nitrogen gas valve 45 are closed, and the chuck pin 57 is opened by an open / close mechanism (not shown).
  • An unprocessed substrate 91 is carried into the substrate processing apparatus 1 by a substrate carrying in / out means (not shown), and placed on the chuck pin 57 of the substrate holding unit 55. Then, the chuck pin 57 is closed by an open / close mechanism (not shown).
  • the substrate 91 is subjected to a wet cleaning step (S11) by a wet cleaning unit (not shown).
  • a wet cleaning step for example, SC-1 (a liquid containing ammonia, hydrogen peroxide and water) or SC-2 (a liquid containing hydrochloric acid, hydrogen peroxide and water) on the surface of the substrate 91, etc.
  • SC-1 a liquid containing ammonia, hydrogen peroxide and water
  • SC-2 a liquid containing hydrochloric acid, hydrogen peroxide and water
  • SC-1 is supplied to the surface of the substrate 91 by wet cleaning means (not shown), and after cleaning the substrate 91, DIW is supplied to the surface of the substrate 91 to remove the SC-1. .
  • the substrate processing apparatus 1 performs an IPA rinse step (S12) of supplying IPA to the surface of the substrate 91 to which DIW is attached.
  • the control unit 13 issues an operation command to the motor 51 to rotate the substrate 91 at a constant speed.
  • the control unit 13 supplies IPA near the center of the surface of the substrate 91 by a rinse unit (not shown).
  • a drying auxiliary liquid supplying step (S13) of supplying the drying auxiliary liquid to the surface of the substrate 91 is performed.
  • the control unit 13 issues an operation command to the motor 51 to rotate the substrate 91 at a constant speed.
  • the control unit 13 issues an operation command to the drying auxiliary liquid valve 25 and opens the drying auxiliary liquid valve 25.
  • the drying auxiliary liquid is supplied from the drying auxiliary liquid tank 29 to the vicinity of the center of the surface of the substrate 91 through the drying auxiliary liquid supply pipe 23 and the drying auxiliary liquid nozzle 27.
  • the drying auxiliary liquid supplied to the surface of the substrate 91 flows toward the peripheral portion of the substrate 91 from the vicinity of the center of the substrate 91 by the centrifugal force generated by the rotation of the substrate 91 and diffuses over the entire surface of the substrate 91 .
  • the appearance of the surface of the substrate 91 after the completion of the drying auxiliary liquid supply step is shown in FIG.
  • the pattern 93 is formed on the surface of the substrate 91.
  • the pattern 93 is provided with a convex portion 95 and a concave portion 97.
  • FIG. 6 schematically shows how the polyisobutylene solution 61 as the drying auxiliary liquid is filled in the concave portions 97 of the pattern 93.
  • the rotation speed of the substrate 91 is controlled by the control unit 13 so that the film thickness of the liquid film of the polyisobutylene solution 61 formed on the surface of the substrate 91 becomes thicker than the height of the convex portion 95. adjust.
  • the film thickness of the polyisobutylene 63 deposited in an amorphous state on the surface of the substrate 91 can be kept sufficiently thick in the deposition step described later. It is not necessary to make the film thickness of the liquid film of the polyisobutylene solution 61 thicker than the height of the projections 95 as long as prevention of pattern collapse and removal of liquid adhering to the surface of the substrate 91 can be achieved.
  • control unit 13 instructs the drying auxiliary liquid valve 25 to operate and closes the drying auxiliary liquid valve 25.
  • a precipitation step (S14) is performed.
  • the control unit 13 issues an operation command to the motor 51 to rotate the substrate 91 at a constant speed.
  • the control unit 13 issues an operation command to the nitrogen gas valve 45 and opens the nitrogen gas valve 45.
  • nitrogen gas is supplied from the nitrogen gas tank 49 to the surface of the substrate 91 through the gas supply pipe 43 and the gas nozzle 47.
  • the partial pressure of IPA vapor in the nitrogen gas is lower than the vapor pressure of IPA as a solvent of the polyisobutylene solution on the surface of the substrate 91.
  • IPA on the surface of the substrate 91 is removed by evaporation by the supply of such nitrogen gas, polyisobutylene 63 in an amorphous state is deposited on the surface of the substrate 91.
  • the appearance of the surface of the substrate 91 after completion of the deposition step is shown in FIG.
  • FIG. 7 schematically shows how the polyisobutylene 63 is filled in the concave portions 97 of the pattern 93.
  • control unit 13 issues an operation command to the nitrogen gas valve 45 and closes the nitrogen gas valve 45.
  • polyisobutylene 63 which is a drying auxiliary substance, is deposited by evaporation of IPA as a solvent, but other methods such as deposition by cooling or deposition by a chemical reaction may be used.
  • the control unit 13 issues an operation command to the heating unit 54, and the heating unit 54 performs heating.
  • FIG. 8 schematically shows how the heating unit 54 is heating.
  • the control unit 13 controls the heat treatment of the heating unit 54 so that the surface of the substrate 91 and the polyisobutylene 63 are maintained at a temperature of 100 ° C. to 138 ° C.
  • the temperature of the heating unit 54 when the temperature of the surface of the substrate 91 carried in and the temperature of the polyisobutylene 63 deposited is in the range of 100 ° C. to 138 ° C.
  • the temperature of the substrate 91 and the polyisobutylene 63 is measured in advance. You may control so that it may become the temperature. Alternatively, the temperature of the substrate 91 and the polyisobutylene 63 may be measured by a temperature sensor, and feedback control may be performed so that the temperature of the surface of the substrate 91 and the polyisobutylene 63 is in the range of 100 ° C to 138 ° C.
  • the control unit 13 issues an operation command to the motor 51 to rotate the substrate 91 at a constant speed.
  • the control unit 13 issues an operation command to the hydrogen gas valve 35, and opens the hydrogen gas valve 35.
  • the control unit 13 issues an operation command to the plasma generation unit 37, and a high voltage is applied to the discharge electrode of the plasma generation unit 37 to start the discharge.
  • the substrate 91 is rotated to supply hydrogen radicals to the entire surface of the substrate.
  • hydrogen radicals can be supplied to the entire surface of the substrate, it is not necessary to rotate the substrate 91.
  • FIG. 9 schematically shows how hydrogen radicals are supplied to the polyisobutylene 63.
  • the surface of the substrate 91 and the polyisobutylene 63 are maintained at a temperature in the range of 100 ° C. to 138 ° C. by the heating unit 54. Due to the supply of hydrogen radicals, the amorphous polyisobutylene 63 reacts with the hydrogen radicals to form methane gas.
  • the precipitated polyisobutylene 63 may contain a small amount of oxygen as an impurity.
  • oxygen reacts with hydrogen radicals to generate liquid water
  • the surface tension of the liquid may cause adjacent convex portions in the pattern to be attracted and collapse. Therefore, the temperature of the surface of the substrate 91 and the polyisobutylene 63 is brought into the state of 100 ° C. or more which is the boiling point of water and 138 ° C. or less which is the melting point of the polyisobutylene 63.
  • polyisobutylene 63 can be decomposed into methane gas and water vapor.
  • the surface temperature of the substrate 91 may cool it.
  • oxygen is contained as an impurity in the polyisobutylene 63 close to the surface of the substrate 91, there is a possibility that liquid water may be adhered to the substrate 91 by reacting with hydrogen radicals.
  • the heating unit 54 is not limited to the arrangement on the lower surface of the substrate 91 as long as the temperature of the surface of the substrate 91 and the polyisobutylene 63 can be maintained by raising the temperature.
  • the substrate 91 and the polyisobutylene 63 may be placed in the chamber 11 so that the temperature rise and the temperature can be maintained.
  • the temperature range of the surface of the substrate 91 and the polyisobutylene 63 in the present embodiment is set at 138 ° C. or less, which is the melting point of the polyisobutylene 63.
  • the substrate surface and the drying aid may be kept below the glass transition temperature. Since the glass transition temperature of a general substance is lower than the melting point of the substance, the heat resistance of the substrate holder 55 may be lower than that for the melting point of the substance when it is kept below the glass transition temperature.
  • the sublimation removal step may be performed in a vacuum. If in vacuum, the sublimation rate is increased and the possibility of pattern collapse is further reduced. In addition, it is possible to prevent the reattachment of the residue to the substrate 91.
  • the control unit 13 issues an operation command to the plasma generation unit 37 and stops high voltage application to the discharge electrode of the plasma generation unit 37. Thereafter, the control unit 13 issues an operation command to the hydrogen gas valve 35, and closes the hydrogen gas valve 35. This prevents the oxygen component from entering the insulating tube during discharge, and can suppress the generation of OH radicals (hydroxyl radicals) generated from the oxygen component. Therefore, oxidation of the surface of the substrate 91 can be prevented.
  • control unit 13 issues an operation command to the nitrogen gas valve 45 and closes the nitrogen gas valve 45.
  • a series of substrate drying processes are completed.
  • oxidation of the substrate is suppressed by removing the drying auxiliary material deposited on the surface of the substrate 91 with hydrogen radicals. Therefore, the liquid adhering to the surface of the substrate can be removed while preventing the collapse of the pattern formed on the surface of the substrate while suppressing the oxidation of the substrate.

Abstract

Provided are a substrate processing apparatus and a substrate processing method, which are capable of removing a liquid that adheres to the surface of a substrate, while suppressing oxidation of the substrate and preventing collapse of a pattern that is formed on the surface of the substrate. This substrate processing apparatus is provided with: a drying promoting liquid supply means that supplies a drying promoting liquid to a substrate to which a processing liquid adheres, said drying promoting liquid being obtained by dissolving a sublimable drying promoting substance in a solvent; a precipitation means that causes the drying promoting substance contained in the drying promoting liquid to precipitate on the substrate surface; and a sublimation removal means that removes the drying promoting substance from the substrate surface by causing the drying promoting substance to sublimate by means of a reaction with hydrogen radicals.

Description

基板処理装置及び基板処理方法Substrate processing apparatus and substrate processing method
 この出願は、2017年12月22日提出の日本国特許出願2017-246788号に基づく優先権を主張しており、この出願の全内容はここに引用により組み込まれるものとする。 This application claims priority based on Japanese Patent Application No. 2017-246788 filed on Dec. 22, 2017, the entire contents of this application being incorporated herein by reference.
 本発明は、基板に付着した処理液を基板から除去する基板処理装置及び基板処理方法に関する。処理対象の基板の例は、半導体ウエハ、液晶表示装置や有機EL(Electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用ガラス基板、セラミック基板、太陽電池用基板などの各種基板を含む。 The present invention relates to a substrate processing apparatus and a substrate processing method for removing a processing liquid attached to a substrate from a substrate. Examples of substrates to be processed include semiconductor wafers, substrates for FPD (Flat Panel Display) such as liquid crystal display devices and organic EL (Electroluminescence) displays, substrates for optical disks, substrates for magnetic disks, substrates for magneto-optical disks, photomasks It includes various substrates such as a glass substrate, a ceramic substrate, and a solar cell substrate.
 半導体装置や液晶表示装置などの電子部品の製造工程では、液体を使用する様々な湿式処理が基板に対して施される。その後、湿式処理によって基板に付着した処理液を除去するための乾燥処理が基板に対して施される。 In the process of manufacturing an electronic component such as a semiconductor device or a liquid crystal display device, various wet processes using a liquid are performed on a substrate. Thereafter, the substrate is subjected to a drying treatment for removing the treatment liquid adhering to the substrate by the wet treatment.
 湿式処理の例としては、基板表面の汚染物質を除去する洗浄処理が挙げられる。例えば、ドライエッチング工程により凹凸を有する微細なパターンを形成した基板表面には、反応副生成物(エッチング残渣)が存在している。エッチング残渣の他に、基板表面に金属不純物や有機汚染物質等が付着している場合もある。これらの物質を除去するために、基板へ洗浄液を供給する等の洗浄処理を行う。 An example of a wet process is a cleaning process that removes contaminants on the substrate surface. For example, reaction by-products (etching residues) are present on the substrate surface on which a fine pattern having irregularities is formed by a dry etching process. In addition to the etching residue, metal impurities and organic contaminants may be attached to the surface of the substrate. In order to remove these substances, a cleaning process such as supplying a cleaning solution to the substrate is performed.
 洗浄処理の後には、洗浄液をリンス液により除去するリンス処理と、リンス液を乾燥する乾燥処理が実施される。リンス処理では、例えば、洗浄液が付着した基板表面に対して脱イオン水(DIW:Deionized Water)等のリンス液を供給し、基板表面の洗浄液を除去する。その後、リンス液を除去することにより基板を乾燥させる乾燥処理を行う。 After the cleaning process, a rinse process for removing the cleaning solution with a rinse solution and a drying process for drying the rinse solution are performed. In the rinse process, for example, a rinse solution such as deionized water (DIW: Deionized Water) is supplied to the substrate surface to which the cleaning solution is attached, and the cleaning solution on the substrate surface is removed. After that, a drying process is performed to dry the substrate by removing the rinse solution.
 近年、基板に形成されるパターンの微細化に伴い、凹凸を有するパターンの凸部に於けるアスペクト比(パターン凸部に於ける高さと幅の比)が大きくなってきている。このため、乾燥処理の際、パターン倒壊の問題が生じる。具体的には、パターンの凹部に入り込んだ洗浄液やリンス液等の液体と、液体に接する気体との境界面にパターンが接しているときに問題が生じる。すなわち、液体と気体との境界面に作用する表面張力や界面自由エネルギーなどの影響により、パターン中の隣接する凸部同士が引き寄せられ、パターン凸部が倒壊に至る。 In recent years, with the miniaturization of the pattern formed on the substrate, the aspect ratio (the ratio of the height to the width of the pattern convex portion) in the convex portion of the pattern having the unevenness has been increased. For this reason, the problem of pattern collapse arises at the time of drying processing. Specifically, a problem occurs when the pattern is in contact with the interface between the liquid, such as the cleaning liquid and the rinse liquid, which has entered the recess of the pattern and the gas in contact with the liquid. That is, due to the effects of surface tension and interface free energy acting on the interface between the liquid and the gas, adjacent convex portions in the pattern are drawn to each other, and the pattern convex portion collapses.
 下記特許文献1は、この様なパターンの倒壊の防止を目的とした乾燥技術を開示している。この乾燥技術は、構造体(パターン)が形成された基板に溶液を接触させ、当該溶液を固体に変化させてパターンの支持体(凝固体)とし、当該支持体を固相から気相に、液相を経ることなく変化させて除去する。特許文献1には、支持材として、メタクリル系樹脂、スチレン系樹脂及びフッ化炭素系樹脂の少なくとも何れかの昇華性物質を用いることが開示されている。 The following Patent Document 1 discloses a drying technique for the purpose of preventing such a pattern collapse. In this drying technique, a solution is brought into contact with a substrate on which a structure (pattern) is formed, the solution is converted into a solid to form a pattern support (solid body), and the support is converted from the solid phase to the gas phase, Change and remove without passing through the liquid phase. Patent Document 1 discloses that a sublimation material of at least one of a methacrylic resin, a styrene resin, and a fluorocarbon resin is used as a support material.
特開2013-16699号公報JP, 2013-16699, A
 特許文献1には、支持材を除去するための処理として、加熱処理、紫外線照射、反応性ガス処理、アッシング処理等が挙げられている。しかし、これらの処理においては、基板付近に酸素分子やOHラジカル(ヒドロキシルラジカル)などが到達すると、基板が酸化してしまい、基板特性が悪化するという課題がある。 In Patent Document 1, heat treatment, ultraviolet irradiation, reactive gas treatment, ashing treatment and the like are mentioned as the treatment for removing the support material. However, in these processes, when oxygen molecules or OH radicals (hydroxyl radicals) reach near the substrate, the substrate is oxidized, and there is a problem that the substrate characteristics are deteriorated.
 本発明の一実施形態は、基板の酸化を抑制しながら、基板の表面に形成されたパターンの倒壊を防止しつつ、基板の表面に付着した処理液を除去することができる基板処理装置及び基板処理方法を提供する。 One embodiment of the present invention is a substrate processing apparatus and a substrate capable of removing a treatment liquid attached to the surface of a substrate while preventing collapse of a pattern formed on the surface of the substrate while suppressing oxidation of the substrate. Provide a treatment method.
 本発明の一実施形態は、昇華性を有する乾燥補助物質を溶媒に溶解させた乾燥補助液を、処理液が付着した基板に供給する乾燥補助液供給手段と、前記乾燥補助液に含まれる前記乾燥補助物質を前記基板表面に析出させる析出手段と、前記乾燥補助物質を水素ラジカルとの反応により昇華させ、前記基板表面から除去する昇華除去手段と、を含む、基板処理装置を提供する。 In one embodiment of the present invention, a dry auxiliary liquid supply unit for supplying a dry auxiliary liquid in which a dry auxiliary substance having sublimation properties is dissolved in a solvent is supplied to a substrate to which a treatment liquid adheres; There is provided a substrate processing apparatus comprising: deposition means for depositing a drying auxiliary substance on the surface of the substrate; and sublimation removal means for sublimation of the drying auxiliary substance by reaction with hydrogen radicals to remove the substance from the substrate surface.
 本発明の一実施形態では、前記昇華除去手段は、貯留された水素ガスを供給する供給管の流路を開閉する水素ガスバルブと、前記供給管に管路接続されたプラズマ発生部と、を含み、前記基板処理装置は、前記水素ガスバルブの開成により前記水素ガスを前記基板に供給した後、前記プラズマ発生部で放電を開始する。 In one embodiment of the present invention, the sublimation removal means includes a hydrogen gas valve for opening and closing a flow path of a supply pipe for supplying stored hydrogen gas, and a plasma generation unit pipe-connected to the supply pipe. The substrate processing apparatus supplies the hydrogen gas to the substrate by opening the hydrogen gas valve, and then starts discharge at the plasma generation unit.
 本発明の一実施形態では、前記昇華除去手段は、前記基板表面と前記乾燥補助物質とを昇温させる加熱手段を含む。 In one embodiment of the present invention, the sublimation removal means includes a heating means for raising the temperature of the substrate surface and the drying auxiliary substance.
 本発明の一実施形態では、前記加熱手段は、少なくとも前記乾燥補助物質の温度を水の沸点よりも高く、前記乾燥補助物質の融点よりも低い温度にする。 In one embodiment of the present invention, the heating means makes the temperature of the dry auxiliary substance at least higher than the boiling point of water and lower than the melting point of the dry auxiliary substance.
 本発明の一実施形態では、前記昇華除去手段によって前記乾燥補助物質を前記基板表面から除去した後、前記加熱手段を停止し、常温または常温より低い温度のガスを前記基板表面に供給することで前記基板表面の温度を常温にする常温化手段をさらに含む。 In one embodiment of the present invention, the drying auxiliary substance is removed from the surface of the substrate by the sublimation removal means, and then the heating means is stopped, and a gas at normal temperature or a temperature lower than normal temperature is supplied to the substrate surface. The method further includes a room temperature setting unit that sets the temperature of the substrate surface to a room temperature.
 また、本発明の一実施形態は、昇華性を有する乾燥補助物質を溶媒に溶解させた乾燥補助液を、処理液が付着した基板に供給する乾燥補助液供給工程と、前記乾燥補助液に含まれる前記乾燥補助物質を前記基板表面に析出させる析出手段と、前記乾燥補助物質を水素ラジカルとの反応により昇華させて、前記基板表面から除去する昇華除去工程と、を含む基板処理方法を提供する。 In one embodiment of the present invention, a drying auxiliary liquid supplying step of supplying a drying auxiliary liquid in which a drying auxiliary substance having sublimation properties is dissolved in a solvent is supplied to the substrate to which the processing liquid adheres; A substrate processing method comprising: precipitation means for precipitating the dry auxiliary substance on the surface of the substrate; and a sublimation removal step of removing the dry auxiliary substance from the surface of the substrate by sublimation by reaction with hydrogen radicals. .
 上記の基板処理装置または基板処理方法によれば、基板の酸化を抑制しながら、基板の表面に形成されたパターンの倒壊を防止しつつ、基板の表面に付着した処理液を除去することができる。 本発明における上述の、またはさらに他の目的、特徴及び効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 According to the above substrate processing apparatus or substrate processing method, it is possible to remove the processing liquid attached to the surface of the substrate while preventing the collapse of the pattern formed on the surface of the substrate while suppressing the oxidation of the substrate. . The above or further objects, features and effects of the present invention will be made clear by the description of the embodiments described below with reference to the accompanying drawings.
本発明の一実施形態に係る基板処理装置の概略構成を示す図である。It is a figure which shows schematic structure of the substrate processing apparatus which concerns on one Embodiment of this invention. 前記基板処理装置の制御ユニットの概略構成例を示す図である。It is a figure which shows the example of a schematic structure of the control unit of the said substrate processing apparatus. 前記基板処理装置の気体供給ユニットの概略構成例を示す図である。It is a figure which shows the example of a schematic structure of the gas supply unit of the said substrate processing apparatus. 前記基板処理装置の基板保持部の構成例を示す模式断面図である。It is a schematic cross section which shows the structural example of the board | substrate holding part of the said substrate processing apparatus. 前記基板処理装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the said substrate processing apparatus. 処理途中の基板表面の様子を示す図である。It is a figure which shows the appearance of the substrate surface in the middle of processing. 処理途中の基板表面の様子を示す図である。It is a figure which shows the appearance of the substrate surface in the middle of processing. 処理途中の基板表面の様子を示す図である。It is a figure which shows the appearance of the substrate surface in the middle of processing. 処理途中の基板表面の様子を示す図である。It is a figure which shows the appearance of the substrate surface in the middle of processing. 処理途中の基板表面の様子を示す図である。It is a figure which shows the appearance of the substrate surface in the middle of processing.
 以下の説明において、基板とは、半導体ウエハ、液晶表示装置や有機EL(Electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用ガラス基板、セラミック基板、太陽電池用基板などの各種基板をいう。 In the following description, the substrate refers to a substrate for an FPD (Flat Panel Display) such as a semiconductor wafer, a liquid crystal display device or an organic EL (Electroluminescence) display device, a substrate for an optical disk, a substrate for a magnetic disk, a substrate for a magnetooptical disk, a photo It refers to various substrates such as glass substrates for masks, ceramic substrates, and substrates for solar cells.
 以下の説明においては、一方主面のみに回路パターン等(以下「パターン」と記載する)が形成されている基板を例として用いる。パターンが形成されている主面を「表面」と称し、その反対側のパターンが形成されていない主面を「裏面」と称する。また、下方に向けられた基板の面を「下面」と称し、上方に向けられた基板の面を「上面」と称する。以下においては上面が表面である場合について説明する。 In the following description, a substrate on which a circuit pattern or the like (hereinafter referred to as a “pattern”) is formed only on one main surface will be used as an example. The main surface on which the pattern is formed is referred to as "surface", and the main surface on which the pattern on the opposite side is not formed is referred to as "back surface". In addition, the surface of the substrate directed downward is referred to as the “lower surface”, and the surface of the substrate directed upward is referred to as the “upper surface”. The case where the upper surface is a surface will be described below.
 以下、本発明の実施の形態を、半導体基板の処理に用いられる基板処理装置を例に採って図面を参照して説明する。ただし、本発明は、半導体基板の処理に限らず、液晶表示器用のガラス基板などの各種の基板の処理にも適用することができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, taking a substrate processing apparatus used for processing a semiconductor substrate as an example. However, the present invention can be applied not only to the processing of a semiconductor substrate but also to the processing of various substrates such as a glass substrate for a liquid crystal display.
 <実施形態>
 図1はこの発明の一実施形態に係る基板処理装置1の構成を示した概略図である。この基板処理装置1は、半導体基板等の基板91(以下、単に「基板91」と記載する)を1枚ずつ処理する枚葉式の基板処理装置である。基板処理装置1は、基板91に付着しているパーティクル等の汚染物質(以下「パーティクル等」と記載する)を除去するための洗浄処理、洗浄処理の後のリンス処理、及び乾燥処理のために用いられる。
Embodiment
FIG. 1 is a schematic view showing the configuration of a substrate processing apparatus 1 according to an embodiment of the present invention. The substrate processing apparatus 1 is a sheet-fed substrate processing apparatus which processes a substrate 91 such as a semiconductor substrate (hereinafter simply referred to as a "substrate 91") one by one. The substrate processing apparatus 1 is for cleaning processing for removing contaminants (hereinafter, referred to as “particles and the like”) such as particles adhering to the substrate 91, and rinsing processing and drying processing after the cleaning processing. Used.
 基板処理装置1は、洗浄処理やリンス処理に用いるノズル等を備えているが、図1では、これらは図示せず、乾燥処理に用いられる部位のみを示す。 The substrate processing apparatus 1 is provided with nozzles and the like used for the cleaning process and the rinse process, but in FIG. 1 these are not shown, and only a part used for the drying process is shown.
 <1-1.基板処理装置の構成>
 基板処理装置1の構成について図1を用いて説明する。基板処理装置1は、チャンバ11、制御ユニット(Controller)13、乾燥補助液供給ユニット21、水素ラジカル供給ユニット31、気体供給ユニット41、モータ51、回転駆動部53、加熱部54、基板保持部55、及びチャックピン57を備える。また、基板処理装置1は図示しない基板搬入出手段と、図示しないチャックピン開閉機構と、図示しない湿式洗浄手段と、図示しないリンス手段とを備える。基板処理装置1の各部について、以下に説明する。
<1-1. Configuration of Substrate Processing Apparatus>
The configuration of the substrate processing apparatus 1 will be described with reference to FIG. The substrate processing apparatus 1 includes a chamber 11, a control unit (Controller) 13, a drying auxiliary liquid supply unit 21, a hydrogen radical supply unit 31, a gas supply unit 41, a motor 51, a rotation drive unit 53, a heating unit 54, and a substrate holding unit 55. , And chuck pins 57. The substrate processing apparatus 1 further includes a substrate loading / unloading unit (not shown), a chuck pin opening / closing mechanism (not shown), a wet cleaning unit (not shown), and a rinsing unit (not shown). Each part of the substrate processing apparatus 1 will be described below.
 図2は、制御ユニット13の構成例を示す模式図である。制御ユニット13は、基板処理装置1の各部と電気的に接続しており(図1参照)、各部の動作を制御する。制御ユニット13のハードウエアとしての構成は、一般的なコンピュータと同様のものを採用できる。すなわち、制御ユニット13は、例えば、各種演算処理を行う演算処理部(CPU)15及び記憶部17をバスライン19に接続して構成されている。記憶部17は、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAM、プログラムやデータなどを記憶しておくHDD(ハードディスクドライブ)等を含む。記憶部17には、基板91の処理内容及び処理手順を規定するレシピ、基板処理装置1の構成に関する装置情報などが記憶されている。 FIG. 2 is a schematic view showing a configuration example of the control unit 13. The control unit 13 is electrically connected to each part of the substrate processing apparatus 1 (see FIG. 1), and controls the operation of each part. The hardware configuration of the control unit 13 can be the same as a general computer. That is, the control unit 13 is configured, for example, by connecting an arithmetic processing unit (CPU) 15 that performs various arithmetic processing and a storage unit 17 to the bus line 19. The storage unit 17 includes a ROM, which is a read-only memory for storing basic programs, a RAM, which is a read / write memory for storing various information, and an HDD (hard disk drive) for storing programs and data. The storage unit 17 stores, for example, a recipe that defines the processing content and processing procedure of the substrate 91, and apparatus information on the configuration of the substrate processing apparatus 1.
 制御ユニット13において、プログラムに記述された手順に従って主制御部としての演算処理部15が演算処理を行うことにより、基板処理装置1の各部を制御する各種の機能部が実現される。もっとも、制御ユニット13において実現される一部あるいは全部の機能部は、専用の論理回路などでハードウエア的に実現されてもよい。 In the control unit 13, various processing units that control the respective units of the substrate processing apparatus 1 are realized by the arithmetic processing unit 15 as the main control unit performing arithmetic processing according to the procedure described in the program. However, some or all of the functional units realized in the control unit 13 may be realized in hardware by a dedicated logic circuit or the like.
 図1に戻る。次に、乾燥補助液供給ユニット21について説明する。乾燥補助液供給ユニット21は、基板91へ乾燥補助液を供給するユニットであり、乾燥補助液供給管23、乾燥補助液バルブ25、乾燥補助液ノズル27、及び乾燥補助液タンク29を備える。 Return to FIG. Next, the drying auxiliary liquid supply unit 21 will be described. The drying auxiliary liquid supply unit 21 is a unit for supplying the drying auxiliary liquid to the substrate 91, and includes a drying auxiliary liquid supply pipe 23, a drying auxiliary liquid valve 25, a drying auxiliary liquid nozzle 27, and a drying auxiliary liquid tank 29.
 乾燥補助液タンク29は、乾燥補助液供給管23を介して、乾燥補助液ノズル27と管路接続している。乾燥補助液供給管23の流路途中には、その流路を開閉する乾燥補助液バルブ25が介挿されている。乾燥補助液タンク29には、乾燥補助物質を溶媒に溶解させた乾燥補助液が貯留されている。図示しないポンプにより乾燥補助液タンク29内の乾燥補助液が加圧され、乾燥補助液供給管23へ送られる。 The drying auxiliary liquid tank 29 is in pipeline connection with the drying auxiliary liquid nozzle 27 via the drying auxiliary liquid supply pipe 23. In the middle of the flow path of the drying auxiliary liquid supply pipe 23, a drying auxiliary liquid valve 25 for opening and closing the flow path is interposed. The drying auxiliary liquid tank 29 stores a drying auxiliary liquid in which a drying auxiliary substance is dissolved in a solvent. The drying auxiliary liquid in the drying auxiliary liquid tank 29 is pressurized by a pump (not shown) and sent to the drying auxiliary liquid supply pipe 23.
 乾燥補助液バルブ25は、制御ユニット13と電気的に接続しており、制御ユニット13の動作指令によって乾燥補助液バルブ25の開閉が制御される。乾燥補助液バルブ25が開成すると、乾燥補助液タンク29から乾燥補助液供給管23を通って、乾燥補助液ノズル27から基板91に乾燥補助液が供給される。 The drying auxiliary liquid valve 25 is electrically connected to the control unit 13, and the opening / closing of the drying auxiliary liquid valve 25 is controlled by an operation command of the control unit 13. When the drying auxiliary liquid valve 25 is opened, the drying auxiliary liquid is supplied from the drying auxiliary liquid supply pipe 23 from the drying auxiliary liquid tank 29 to the substrate 91 from the drying auxiliary liquid nozzle 27.
 本実施形態における乾燥補助物質は、常温、常圧雰囲気下で固体状態であることが望ましい。例として、メタクリル系樹脂、スチレン系樹脂、フッ化炭素系樹脂、ノボラック系樹脂、イソブチレン系樹脂、イソプレン系樹脂、ブタジエン系樹脂、ケイ皮酸ビニル系樹脂、ビニルフェノール系樹脂、シクロオレフィン系樹脂、ポリイミド系樹脂、ベンゾオキサゾール系樹脂などが挙げられる。本実施形態では、イソブチレン系樹脂であるポリイソブチレンを乾燥補助物質として用いる。 The drying auxiliary substance in the present embodiment is desirably in a solid state at normal temperature and normal pressure. For example, methacrylic resin, styrene resin, fluorocarbon resin, novolac resin, isobutylene resin, isoprene resin, butadiene resin, vinyl cinnamate resin, vinylphenol resin, cycloolefin resin, A polyimide resin, a benzoxazole resin, etc. are mentioned. In the present embodiment, polyisobutylene, which is an isobutylene resin, is used as a drying aid.
 本実施形態における乾燥補助物質の溶媒は、乾燥補助物質が溶解性を示し、常温で容易に乾燥が可能であるような液体が好ましい。例として、イソプロピルアルコール(Iso Propyl Alcohol:以下「IPA」と記載する)、メタノール、エタノール、アセトン、ベンゼン、四塩化炭素、クロロホルム、ヘキサン、デカリン、テトラリン、酢酸、シクロヘキサノール、エーテル、ハイドロフルオロエーテル(Hydro Fluoro Ether)、プロピレングリコール1-モノメチルエーテル2-アセタート(PGMEA)、またはN-メチル-2-ピロリドン(NMP)などが挙げられる。また、前記溶媒の他に、脱イオン水(De Ionized Water:以下「DIW」と記載する)を用いることもできる。本実施形態では、乾燥補助物質の溶媒としてIPAを用いる。本実施形態における乾燥補助液とは、ポリイソブチレンをIPAに溶解したポリイソブチレン溶液である。 The solvent of the drying auxiliary substance in the present embodiment is preferably a liquid in which the drying auxiliary substance exhibits solubility and can be easily dried at normal temperature. As an example, isopropyl alcohol (Iso Propyl Alcohol: hereinafter described as "IPA"), methanol, ethanol, acetone, benzene, benzene, carbon tetrachloride, chloroform, hexane, decalin, tetralin, acetic acid, cyclohexanol, ether, hydrofluoroether ( Hydro Fluoro Ether), propylene glycol 1-monomethyl ether 2-acetate (PGMEA), or N-methyl-2-pyrrolidone (NMP). In addition to the solvent, deionized water (hereinafter referred to as "DIW") can also be used. In the present embodiment, IPA is used as a solvent of the drying auxiliary substance. The drying auxiliary liquid in the present embodiment is a polyisobutylene solution in which polyisobutylene is dissolved in IPA.
 次に、水素ラジカル供給ユニット31について説明する。水素ラジカル供給ユニット31は、基板91へ水素ラジカルを供給するユニットであり、水素ガス供給管33、水素ガスバルブ35、プラズマ発生部37、及び水素ガスタンク39を備える。 Next, the hydrogen radical supply unit 31 will be described. The hydrogen radical supply unit 31 is a unit for supplying hydrogen radicals to the substrate 91, and includes a hydrogen gas supply pipe 33, a hydrogen gas valve 35, a plasma generation unit 37, and a hydrogen gas tank 39.
 水素ガスタンク39は、水素ガス供給管33を介して、プラズマ発生部37と管路接続している。水素ガス供給管33の流路途中には、その流路を開閉する水素ガスバルブ35が介挿されている。水素ガスタンク39には、水素ガスが貯留されている。図示しない加圧手段により水素ガスタンク39内の水素ガスが加圧され、水素ガス供給管33へ送られる。加圧手段は、ポンプなどによって加圧する構成の他、水素ガスを水素ガスタンク39内に圧縮貯留する構成によっても実現できる。水素ガスタンク39に貯留されるガスは、不活性ガスと混合された水素ガスでもよい。 The hydrogen gas tank 39 is connected to the plasma generating unit 37 via the hydrogen gas supply pipe 33. In the middle of the flow path of the hydrogen gas supply pipe 33, a hydrogen gas valve 35 for opening and closing the flow path is interposed. In the hydrogen gas tank 39, hydrogen gas is stored. The hydrogen gas in the hydrogen gas tank 39 is pressurized by a pressurizing means (not shown) and sent to the hydrogen gas supply pipe 33. The pressurizing means can be realized by a structure in which hydrogen gas is compressed and stored in the hydrogen gas tank 39, in addition to a structure in which pressure is applied by a pump or the like. The gas stored in the hydrogen gas tank 39 may be hydrogen gas mixed with an inert gas.
 水素ガスバルブ35は、制御ユニット13と電気的に接続しており、制御ユニット13の動作指令によって水素ガスバルブ35の開閉が制御される。水素ガスバルブ35が開成すると、水素ガスが水素ガス供給管33を通って、プラズマ発生部37へ供給される。 The hydrogen gas valve 35 is electrically connected to the control unit 13, and the opening / closing of the hydrogen gas valve 35 is controlled by an operation command of the control unit 13. When the hydrogen gas valve 35 is opened, hydrogen gas is supplied to the plasma generator 37 through the hydrogen gas supply pipe 33.
 プラズマ発生部37は、中空である筒状の絶縁管の周面に図示しない放電電極を備え、放電電極に高電圧を印加して絶縁管内に放電を発生させる。絶縁管の端部は水素ガス供給管33と管路接続しており、放電が発生している絶縁管内に水素ガスが通る。放電箇所に水素ガスが通ることで水素ラジカルが発生し、基板91に水素ラジカルが供給される。プラズマ発生部37は放電箇所に水素ガスを通せる構造であればよく、本実施形態の構造に限定しない。 The plasma generating unit 37 includes a discharge electrode (not shown) on the circumferential surface of a hollow cylindrical insulating tube, applies a high voltage to the discharge electrode, and generates a discharge in the insulating tube. The end of the insulating pipe is in pipe connection with the hydrogen gas supply pipe 33, and the hydrogen gas passes through the insulating pipe in which the discharge is generated. When hydrogen gas passes through the discharge portion, hydrogen radicals are generated, and the hydrogen radicals are supplied to the substrate 91. The plasma generating portion 37 may have any structure as long as hydrogen gas can be allowed to pass through the discharge portion, and is not limited to the structure of this embodiment.
 プラズマ発生部37は、制御ユニット13と電気的に接続しており、制御ユニット13の動作指令によってプラズマ発生部37の放電電極への高電圧の印加が制御される。 The plasma generation unit 37 is electrically connected to the control unit 13, and application of a high voltage to the discharge electrode of the plasma generation unit 37 is controlled by an operation command of the control unit 13.
 次に、気体供給ユニット41について説明する。気体供給ユニット41は、気体供給管43を介して気体ノズル47と接続しており、気体供給管43へ気体を供給するユニットである。気体供給管43へ供給された気体は、気体ノズル47から基板91の表面へ供給される。 Next, the gas supply unit 41 will be described. The gas supply unit 41 is connected to the gas nozzle 47 via the gas supply pipe 43, and supplies the gas to the gas supply pipe 43. The gas supplied to the gas supply pipe 43 is supplied from the gas nozzle 47 to the surface of the substrate 91.
 図3に、気体供給ユニット41の概略構成例を示す。気体供給ユニット41は、窒素ガスバルブ45、及び窒素ガスタンク49を備える。 The schematic structural example of the gas supply unit 41 is shown in FIG. The gas supply unit 41 includes a nitrogen gas valve 45 and a nitrogen gas tank 49.
 窒素ガスタンク49は、気体供給管43と管路接続している。気体供給管43の流路途中には、その流路を開閉する窒素ガスバルブ45が介挿されている。窒素ガスタンク49には、窒素ガスが貯留されている。図示しない加圧手段により窒素ガスタンク49内の窒素ガスが加圧され、気体供給管43へ送られる。加圧手段は、ポンプなどによって加圧する構成の他、窒素ガスを窒素ガスタンク49内に圧縮貯留する構成によっても実現できる。 The nitrogen gas tank 49 is in pipe connection with the gas supply pipe 43. In the middle of the flow path of the gas supply pipe 43, a nitrogen gas valve 45 for opening and closing the flow path is interposed. The nitrogen gas tank 49 stores nitrogen gas. The nitrogen gas in the nitrogen gas tank 49 is pressurized by a pressurizing means (not shown) and sent to the gas supply pipe 43. The pressurizing means can be realized by a structure in which nitrogen gas is compressed and stored in the nitrogen gas tank 49, in addition to a structure in which pressure is applied by a pump or the like.
 窒素ガスバルブ45は、制御ユニット13と電気的に接続しており、制御ユニット13の動作指令によって窒素ガスバルブ45の開閉が制御される。窒素ガスバルブ45が開成すると、気体供給管43を通って、気体ノズル47から基板91に窒素ガスが供給される。 The nitrogen gas valve 45 is electrically connected to the control unit 13, and the opening and closing of the nitrogen gas valve 45 is controlled by an operation command of the control unit 13. When the nitrogen gas valve 45 is opened, nitrogen gas is supplied from the gas nozzle 47 to the substrate 91 through the gas supply pipe 43.
 本実施形態では、乾燥補助物質に対して不活性な気体であれば、窒素ガス以外の気体を用いることもできる。本実施形態において、窒素ガスの代替となる気体としては、アルゴンガス、またはヘリウムガスが挙げられる。 In the present embodiment, a gas other than nitrogen gas may be used as long as the gas is inert to the drying auxiliary substance. In the present embodiment, argon gas or helium gas may be mentioned as a gas that substitutes for nitrogen gas.
 図1に戻る。次に、モータ51、回転駆動部53、加熱部54、基板保持部55、及びチャックピン57について説明する。モータ51は、制御ユニット13と電気的に接続しており、制御ユニット13の動作指令によって、回転駆動部53を回転駆動させる。回転駆動部53と基板保持部55とは接続しており、回転駆動部53がモータ51によって回転駆動されると、基板保持部55も回転する。 Return to FIG. Next, the motor 51, the rotation drive unit 53, the heating unit 54, the substrate holding unit 55, and the chuck pin 57 will be described. The motor 51 is electrically connected to the control unit 13, and rotationally drives the rotation drive unit 53 in accordance with an operation command of the control unit 13. The rotation drive unit 53 and the substrate holding unit 55 are connected, and when the rotation drive unit 53 is rotationally driven by the motor 51, the substrate holding unit 55 also rotates.
 図4は本実施形態における基板保持部55の構成例を示す模式断面図である。基板保持部55の内部には加熱部54が配されている。基板保持部55における保持板56は、基板保持部55の下方に配された回転駆動部53(図1参照)に接続している。加熱部54は回転せず、回転駆動部53を伝った給電軸により制御ユニット13と電気的に接続している。加熱部54は、制御ユニット13の動作指令によって、加熱を行う。加熱部54の加熱方式の例としては、コイルへ電流を流すことによる電気誘導加熱や、抵抗加熱などが挙げられるが、特定の加熱方式に限定されない。また、本実施形態における加熱部54は基板保持部55に内蔵されているが、基板保持部55と基板91の間に加熱部を配してもよく、基板91の裏面に接するよう加熱部を配してもよい。加熱部は、基板保持部55と共に回転できる構造を有していてもよい。 FIG. 4 is a schematic cross-sectional view showing a configuration example of the substrate holding unit 55 in the present embodiment. A heating unit 54 is disposed inside the substrate holding unit 55. The holding plate 56 in the substrate holding unit 55 is connected to a rotation driving unit 53 (see FIG. 1) disposed below the substrate holding unit 55. The heating unit 54 is not rotated, and is electrically connected to the control unit 13 by the feed shaft that has passed through the rotation drive unit 53. The heating unit 54 performs heating according to an operation command of the control unit 13. Examples of the heating method of the heating unit 54 include electric induction heating by causing a current to flow to the coil, resistance heating, and the like, but the invention is not limited to a specific heating method. Further, although the heating unit 54 in the present embodiment is built in the substrate holding unit 55, the heating unit may be disposed between the substrate holding unit 55 and the substrate 91, and the heating unit may be arranged to contact the back surface of the substrate 91. You may distribute it. The heating unit may have a structure that can rotate with the substrate holding unit 55.
 基板保持部55の周縁部付近の上面には、等角度間隔に複数のチャックピン57(図1参照。図4では不図示)が配置されている。基板91は、パターンが形成される面を上面に向け、チャックピン57に保持される。各チャックピン57は、図示しないチャックピン開閉機構により、開状態と閉状態との間で移動可能に構成されている。開状態とは、チャックピン57上に載置された基板91の周縁部をチャックピン57が保持しない状態である。閉状態とは、チャックピン57が、基板91の周縁部の下面及び外周端面に接触し、基板保持部55の上面から空隙を介して上方の位置に、基板91を支持する状態である。複数のチャックピン57によって周縁部が保持されることで、基板91は基板保持部55上で水平な姿勢で保持されることとなる。 A plurality of chuck pins 57 (see FIG. 1; not shown in FIG. 4) are disposed at equal angular intervals on the upper surface of the substrate holding portion 55 near the peripheral edge thereof. The substrate 91 is held by the chuck pins 57 with the surface on which the pattern is to be formed facing upward. Each chuck pin 57 is configured to be movable between an open state and a closed state by a chuck pin opening / closing mechanism (not shown). The open state is a state in which the chuck pin 57 does not hold the peripheral portion of the substrate 91 placed on the chuck pin 57. The closed state is a state in which the chuck pin 57 contacts the lower surface and the outer peripheral end face of the peripheral portion of the substrate 91 and supports the substrate 91 at a position above the upper surface of the substrate holding portion 55 via a gap. The peripheral portion is held by the plurality of chuck pins 57, whereby the substrate 91 is held on the substrate holding portion 55 in a horizontal posture.
 <1-2.基板処理の工程>
 次に、上記のように構成された基板処理装置1における基板処理動作について説明する。基板91上には、凹凸のパターンが前工程により形成されている。パターンは、凸部及び凹部を備えている。凸部は、100~200nmの範囲の高さであり、10~20nmの範囲の幅である。また、隣接する凸部間の距離(凹部の幅)は、10~20nmの範囲である。
<1-2. Process of substrate processing>
Next, the substrate processing operation in the substrate processing apparatus 1 configured as described above will be described. An uneven pattern is formed on the substrate 91 by the previous process. The pattern comprises protrusions and recesses. The protrusions have a height in the range of 100 to 200 nm and a width in the range of 10 to 20 nm. Further, the distance between adjacent convex portions (width of concave portions) is in the range of 10 to 20 nm.
 以下、図1及び図5を参照して基板処理の工程を説明する。図5は本実施形態における基板処理装置1の動作例を示すフローチャートである。 Hereinafter, the process of substrate processing will be described with reference to FIGS. 1 and 5. FIG. 5 is a flowchart showing an operation example of the substrate processing apparatus 1 in the present embodiment.
 まず、基板91に応じた所定の基板処理プログラムの実行がオペレータにより指示される。その後、基板91を基板処理装置1に搬入する準備として、制御ユニット13が動作指令を行い、それにより、以下の動作が実行される。 First, the execution of a predetermined substrate processing program according to the substrate 91 is instructed by the operator. Thereafter, in preparation for loading the substrate 91 into the substrate processing apparatus 1, the control unit 13 issues an operation command, whereby the following operation is performed.
 すなわち、回転駆動部53は回転停止状態となり、チャックピン57は基板91の受け渡しに適した位置へ位置決めされる。また、乾燥補助液バルブ25、水素ガスバルブ35、及び窒素ガスバルブ45は閉成状態とされ、チャックピン57は図示しない開閉機構により開状態とされる。 That is, the rotation drive unit 53 is in a rotation stop state, and the chuck pin 57 is positioned at a position suitable for delivery of the substrate 91. Further, the drying auxiliary liquid valve 25, the hydrogen gas valve 35, and the nitrogen gas valve 45 are closed, and the chuck pin 57 is opened by an open / close mechanism (not shown).
 未処理の基板91が、図示しない基板搬入出手段によって基板処理装置1内に搬入され、基板保持部55のチャックピン57上に載置される。すると、図示しない開閉機構によりチャックピン57が閉状態とされる。 An unprocessed substrate 91 is carried into the substrate processing apparatus 1 by a substrate carrying in / out means (not shown), and placed on the chuck pin 57 of the substrate holding unit 55. Then, the chuck pin 57 is closed by an open / close mechanism (not shown).
 未処理の基板91が基板保持部55に保持された後、基板91に対して、図示しない湿式洗浄手段により、湿式洗浄工程(S11)を行う。湿式洗浄工程としては、例えば、基板91の表面へSC-1(アンモニア、過酸化水素水、及び水を含む液体)やSC-2(塩酸、過酸化水素水、及び水を含む液体)などの洗浄液を供給した後、リンス液としてDIWを基板91の表面へ供給する工程が挙げられる。 After the unprocessed substrate 91 is held by the substrate holding unit 55, the substrate 91 is subjected to a wet cleaning step (S11) by a wet cleaning unit (not shown). As the wet cleaning step, for example, SC-1 (a liquid containing ammonia, hydrogen peroxide and water) or SC-2 (a liquid containing hydrochloric acid, hydrogen peroxide and water) on the surface of the substrate 91, etc. After supplying the cleaning liquid, a process of supplying DIW as a rinse liquid to the surface of the substrate 91 can be mentioned.
 本実施形態においては、図示しない湿式洗浄手段により、基板91の表面にSC-1が供給され、基板91の洗浄を行った後、基板91の表面にDIWを供給し、SC-1を除去する。 In the present embodiment, SC-1 is supplied to the surface of the substrate 91 by wet cleaning means (not shown), and after cleaning the substrate 91, DIW is supplied to the surface of the substrate 91 to remove the SC-1. .
 次に、基板処理装置1は、DIWが付着している基板91の表面へIPAを供給するIPAリンス工程(S12)を行う。まず、制御ユニット13がモータ51へ動作指令を行い、基板91を一定速度で回転させる。次に、制御ユニット13が図示しないリンス手段により、基板91の表面の中心付近にIPAを供給する。 Next, the substrate processing apparatus 1 performs an IPA rinse step (S12) of supplying IPA to the surface of the substrate 91 to which DIW is attached. First, the control unit 13 issues an operation command to the motor 51 to rotate the substrate 91 at a constant speed. Next, the control unit 13 supplies IPA near the center of the surface of the substrate 91 by a rinse unit (not shown).
 基板91の表面に供給されたIPAは、基板91が回転することにより生ずる遠心力により、基板91の中心付近から基板91の周縁部に向かって流動し、基板91の表面全面に拡散する。これにより、基板91の表面のDIWがIPAによって置換され、基板91の表面全面がIPAで覆われる。 The IPA supplied to the surface of the substrate 91 flows from near the center of the substrate 91 toward the peripheral edge of the substrate 91 by the centrifugal force generated by the rotation of the substrate 91 and diffuses over the entire surface of the substrate 91. Thus, DIW on the surface of the substrate 91 is replaced by IPA, and the entire surface of the substrate 91 is covered with IPA.
 次に、基板91の表面へ乾燥補助液を供給する乾燥補助液供給工程(S13)を行う。まず、制御ユニット13がモータ51へ動作指令を行い、基板91を一定速度で回転させる。次に、制御ユニット13が乾燥補助液バルブ25へ動作指令を行い、乾燥補助液バルブ25を開成する。これにより、乾燥補助液が、乾燥補助液タンク29から乾燥補助液供給管23及び乾燥補助液ノズル27を介して、基板91の表面の中心付近に供給される。 Next, a drying auxiliary liquid supplying step (S13) of supplying the drying auxiliary liquid to the surface of the substrate 91 is performed. First, the control unit 13 issues an operation command to the motor 51 to rotate the substrate 91 at a constant speed. Next, the control unit 13 issues an operation command to the drying auxiliary liquid valve 25 and opens the drying auxiliary liquid valve 25. Thereby, the drying auxiliary liquid is supplied from the drying auxiliary liquid tank 29 to the vicinity of the center of the surface of the substrate 91 through the drying auxiliary liquid supply pipe 23 and the drying auxiliary liquid nozzle 27.
 基板91の表面に供給された乾燥補助液は、基板91が回転することにより生ずる遠心力により、基板91の中心付近から基板91の周縁部に向かって流動し、基板91の表面全面に拡散する。乾燥補助液供給工程終了後の基板91の表面の様子を図6に示す。 The drying auxiliary liquid supplied to the surface of the substrate 91 flows toward the peripheral portion of the substrate 91 from the vicinity of the center of the substrate 91 by the centrifugal force generated by the rotation of the substrate 91 and diffuses over the entire surface of the substrate 91 . The appearance of the surface of the substrate 91 after the completion of the drying auxiliary liquid supply step is shown in FIG.
 図6の例では、基板91の表面にパターン93が形成されている。パターン93は、凸部95と凹部97とを備えている。図6は、パターン93の凹部97に、乾燥補助液としてのポリイソブチレン溶液61が充填している様子を模式的に示している。乾燥補助液供給工程において、基板91の回転速度を制御ユニット13により制御し、基板91の表面に形成されるポリイソブチレン溶液61の液膜の膜厚が凸部95の高さよりも厚くなるように調整する。これにより、後述する析出工程において、基板91の表面にアモルファスの状態で析出するポリイソブチレン63の膜厚を十分厚く保つことができる。なお、パターン倒壊の防止及び基板91の表面に付着した液体除去を達成できれば、ポリイソブチレン溶液61の液膜の膜厚を必ずしも凸部95の高さよりも厚くする必要はない。 In the example of FIG. 6, the pattern 93 is formed on the surface of the substrate 91. The pattern 93 is provided with a convex portion 95 and a concave portion 97. FIG. 6 schematically shows how the polyisobutylene solution 61 as the drying auxiliary liquid is filled in the concave portions 97 of the pattern 93. As shown in FIG. In the drying auxiliary liquid supplying step, the rotation speed of the substrate 91 is controlled by the control unit 13 so that the film thickness of the liquid film of the polyisobutylene solution 61 formed on the surface of the substrate 91 becomes thicker than the height of the convex portion 95. adjust. Thus, the film thickness of the polyisobutylene 63 deposited in an amorphous state on the surface of the substrate 91 can be kept sufficiently thick in the deposition step described later. It is not necessary to make the film thickness of the liquid film of the polyisobutylene solution 61 thicker than the height of the projections 95 as long as prevention of pattern collapse and removal of liquid adhering to the surface of the substrate 91 can be achieved.
 図5に戻る。乾燥補助液供給工程の終了後、制御ユニット13が乾燥補助液バルブ25へ動作指令を行い、乾燥補助液バルブ25を閉成する。 Return to FIG. After the completion of the drying auxiliary liquid supplying step, the control unit 13 instructs the drying auxiliary liquid valve 25 to operate and closes the drying auxiliary liquid valve 25.
 次に、析出工程(S14)を行う。まず、制御ユニット13がモータ51へ動作指令を行い、基板91を一定速度で回転させる。次に、制御ユニット13が窒素ガスバルブ45へ動作指令を行い、窒素ガスバルブ45を開成する。これにより、窒素ガスタンク49から気体供給管43及び気体ノズル47を介して、基板91の表面に窒素ガスが供給される。 Next, a precipitation step (S14) is performed. First, the control unit 13 issues an operation command to the motor 51 to rotate the substrate 91 at a constant speed. Next, the control unit 13 issues an operation command to the nitrogen gas valve 45 and opens the nitrogen gas valve 45. Thereby, nitrogen gas is supplied from the nitrogen gas tank 49 to the surface of the substrate 91 through the gas supply pipe 43 and the gas nozzle 47.
 本実施形態で使用される窒素ガスは、当該窒素ガス中のIPA蒸気の分圧が、基板91の表面におけるポリイソブチレン溶液の溶媒としてのIPAの蒸気圧よりも低い。このような窒素ガスの供給により、基板91の表面のIPAが蒸発により除去されると、アモルファス状態のポリイソブチレン63が基板91の表面に析出する。析出工程終了後の基板91の表面の様子を図7に示す。 In the nitrogen gas used in the present embodiment, the partial pressure of IPA vapor in the nitrogen gas is lower than the vapor pressure of IPA as a solvent of the polyisobutylene solution on the surface of the substrate 91. When IPA on the surface of the substrate 91 is removed by evaporation by the supply of such nitrogen gas, polyisobutylene 63 in an amorphous state is deposited on the surface of the substrate 91. The appearance of the surface of the substrate 91 after completion of the deposition step is shown in FIG.
 図7は、パターン93の凹部97に、ポリイソブチレン63が充填している様子を模式的に示している。前工程である乾燥補助液供給工程において、基板91の回転速度を制御することにより、基板91の表面におけるポリイソブチレン溶液61の液膜の膜厚が、凸部95の高さよりも厚くなるように調整される(図6参照)。そのため、析出工程後のポリイソブチレン63の膜厚も、凸部95の高さよりも大きくなっている。 FIG. 7 schematically shows how the polyisobutylene 63 is filled in the concave portions 97 of the pattern 93. By controlling the rotation speed of the substrate 91 in the drying auxiliary liquid supply step, which is the previous step, the film thickness of the liquid film of the polyisobutylene solution 61 on the surface of the substrate 91 becomes thicker than the height of the convex portion 95. Adjusted (see FIG. 6). Therefore, the film thickness of the polyisobutylene 63 after the deposition step is also larger than the height of the convex portion 95.
 図5に戻る。析出工程の終了後、制御ユニット13が窒素ガスバルブ45へ動作指令を行い、窒素ガスバルブ45を閉成する。 Return to FIG. After completion of the deposition process, the control unit 13 issues an operation command to the nitrogen gas valve 45 and closes the nitrogen gas valve 45.
 本実施形態では溶媒としてのIPAの蒸発により乾燥補助物質であるポリイソブチレン63を析出させているが、冷却による析出や、化学反応による析出など他の方式を用いてもよい。 In the present embodiment, polyisobutylene 63, which is a drying auxiliary substance, is deposited by evaporation of IPA as a solvent, but other methods such as deposition by cooling or deposition by a chemical reaction may be used.
 次に、ポリイソブチレン63の昇華除去工程(S15)を行う。まず、制御ユニット13が加熱部54へ動作指令を行い、加熱部54は加熱を行う。図8は、加熱部54が加熱している様子を模式的に示している。これにより、基板91の裏面から昇温が始まる。制御ユニット13は、基板91の表面とポリイソブチレン63が100℃~138℃の温度で維持されるよう加熱部54の加熱処理を制御する。制御方法としては、予め、搬入される基板91の表面と析出されるポリイソブチレン63の温度が100℃~138℃の範囲になる場合の加熱部54の温度を測定し、以降、加熱部54がその温度になるように制御してもよい。あるいは、温度センサで基板91とポリイソブチレン63との温度を測定し、基板91の表面とポリイソブチレン63との温度が100℃~138℃の範囲になるようフィードバック制御を行ってもよい。 Next, the sublimation removal process (S15) of polyisobutylene 63 is performed. First, the control unit 13 issues an operation command to the heating unit 54, and the heating unit 54 performs heating. FIG. 8 schematically shows how the heating unit 54 is heating. Thus, the temperature rise starts from the back surface of the substrate 91. The control unit 13 controls the heat treatment of the heating unit 54 so that the surface of the substrate 91 and the polyisobutylene 63 are maintained at a temperature of 100 ° C. to 138 ° C. As a control method, the temperature of the heating unit 54 when the temperature of the surface of the substrate 91 carried in and the temperature of the polyisobutylene 63 deposited is in the range of 100 ° C. to 138 ° C. is measured in advance. You may control so that it may become the temperature. Alternatively, the temperature of the substrate 91 and the polyisobutylene 63 may be measured by a temperature sensor, and feedback control may be performed so that the temperature of the surface of the substrate 91 and the polyisobutylene 63 is in the range of 100 ° C to 138 ° C.
 基板91の表面とポリイソブチレン63とがこの温度の範囲内で安定すれば、制御ユニット13がモータ51へ動作指令を行い、基板91を一定速度で回転させる。次に、制御ユニット13が水素ガスバルブ35へ動作指令を行い、水素ガスバルブ35を開成する。さらに、制御ユニット13がプラズマ発生部37へ動作指令を行い、プラズマ発生部37の放電電極に高電圧が印加されることで、放電が開始する。このように、水素ガスの供給後に放電を開始することで、放電により生成された水素ラジカルが供給される。即ち、放電が発生する絶縁管内を酸素成分が存在しない雰囲気にすることで、酸素成分より発生するOHラジカル(ヒドロキシルラジカル)による基板91の酸化を防止することができる。本実施形態ではスポット照射型のプラズマ発生部を用いるため、基板91を回転させて基板表面全体に水素ラジカルを供給する。ただし、基板表面全体に水素ラジカルを供給できれば、必ずしも基板91を回転させる必要はない。 When the surface of the substrate 91 and the polyisobutylene 63 are stabilized within this temperature range, the control unit 13 issues an operation command to the motor 51 to rotate the substrate 91 at a constant speed. Next, the control unit 13 issues an operation command to the hydrogen gas valve 35, and opens the hydrogen gas valve 35. Furthermore, the control unit 13 issues an operation command to the plasma generation unit 37, and a high voltage is applied to the discharge electrode of the plasma generation unit 37 to start the discharge. Thus, by starting the discharge after the supply of the hydrogen gas, the hydrogen radicals generated by the discharge are supplied. That is, by setting the inside of the insulating tube in which discharge occurs to an atmosphere in which no oxygen component is present, oxidation of the substrate 91 by OH radicals (hydroxyl radicals) generated from the oxygen component can be prevented. In this embodiment, since the spot irradiation type plasma generation unit is used, the substrate 91 is rotated to supply hydrogen radicals to the entire surface of the substrate. However, as long as hydrogen radicals can be supplied to the entire surface of the substrate, it is not necessary to rotate the substrate 91.
 図9はポリイソブチレン63に水素ラジカルが供給されている様子を模式的に示している。基板91の表面とポリイソブチレン63とは加熱部54により100℃~138℃の範囲内の温度に保持されている。水素ラジカルの供給により、アモルファス状のポリイソブチレン63は、水素ラジカルと反応してメタンガスとなる。 FIG. 9 schematically shows how hydrogen radicals are supplied to the polyisobutylene 63. The surface of the substrate 91 and the polyisobutylene 63 are maintained at a temperature in the range of 100 ° C. to 138 ° C. by the heating unit 54. Due to the supply of hydrogen radicals, the amorphous polyisobutylene 63 reacts with the hydrogen radicals to form methane gas.
 析出されたポリイソブチレン63には少量の酸素が不純物として含まれている場合がある。ポリイソブチレン63の昇華除去時に、酸素が水素ラジカルと反応して液体の水が発生すると、液体の表面張力により、パターン中の隣接する凸部同士が引き寄せられて倒壊する可能性がある。そこで、基板91の表面とポリイソブチレン63との温度を、水の沸点である100℃以上かつポリイソブチレン63の融点である138℃以下の状態にする。それにより、水素ラジカルを供給しても、ポリイソブチレン63をメタンガスおよび水蒸気に分解することができる。特に、ポリイソブチレン63だけでなく、基板91の表面もこの温度範囲内に維持することが好ましい。さもなければ、基板91の表面に接するポリイソブチレン63の分解時に、基板91の表面温度により冷やされてしまう可能性がある。この場合、基板91の表面に近接するポリイソブチレン63に酸素が不純物として含まれていれば、水素ラジカルと反応して液体の水が基板91に付着してしまう可能性が生じる。 The precipitated polyisobutylene 63 may contain a small amount of oxygen as an impurity. At the time of sublimation removal of the polyisobutylene 63, if oxygen reacts with hydrogen radicals to generate liquid water, the surface tension of the liquid may cause adjacent convex portions in the pattern to be attracted and collapse. Therefore, the temperature of the surface of the substrate 91 and the polyisobutylene 63 is brought into the state of 100 ° C. or more which is the boiling point of water and 138 ° C. or less which is the melting point of the polyisobutylene 63. Thereby, even if hydrogen radicals are supplied, polyisobutylene 63 can be decomposed into methane gas and water vapor. In particular, it is preferable to maintain not only the polyisobutylene 63 but also the surface of the substrate 91 within this temperature range. Otherwise, when the polyisobutylene 63 in contact with the surface of the substrate 91 is decomposed, the surface temperature of the substrate 91 may cool it. In this case, if oxygen is contained as an impurity in the polyisobutylene 63 close to the surface of the substrate 91, there is a possibility that liquid water may be adhered to the substrate 91 by reacting with hydrogen radicals.
 加熱部54は、基板91の表面とポリイソブチレン63を昇温し、温度保持できれば基板91の下面への配置に限定されない。例えば、チャンバ11内に配置し、基板91とポリイソブチレン63を昇温・温度維持できればよい。 The heating unit 54 is not limited to the arrangement on the lower surface of the substrate 91 as long as the temperature of the surface of the substrate 91 and the polyisobutylene 63 can be maintained by raising the temperature. For example, the substrate 91 and the polyisobutylene 63 may be placed in the chamber 11 so that the temperature rise and the temperature can be maintained.
 また、本実施形態における基板91の表面とポリイソブチレン63との温度範囲はポリイソブチレン63の融点である138℃以下に定めている。しかし、他の乾燥補助物質を用いるときには、ガラス転移温度よりも高くなると、ゴム状になり、流動性があがるため、パターン倒壊が発生する可能性がある。従って、基板表面と乾燥補助物質をガラス転移温度以下に保持してもよい。一般的な物質のガラス転移温度は、その物質の融点より低いため、ガラス転移温度以下に保持した場合、基板保持部55の耐熱性は、その物質の融点に対するものより低くてもよい。 Further, the temperature range of the surface of the substrate 91 and the polyisobutylene 63 in the present embodiment is set at 138 ° C. or less, which is the melting point of the polyisobutylene 63. However, when other drying auxiliary substances are used, if the temperature is higher than the glass transition temperature, they may become rubbery and have fluidity so that pattern collapse may occur. Thus, the substrate surface and the drying aid may be kept below the glass transition temperature. Since the glass transition temperature of a general substance is lower than the melting point of the substance, the heat resistance of the substrate holder 55 may be lower than that for the melting point of the substance when it is kept below the glass transition temperature.
 さらに、昇華除去工程は真空中で実施してもよい。真空中であれば、昇華速度が上がり、パターン倒壊の可能性がさらに下がる。また、残渣の基板91への再付着も防止できる。 Furthermore, the sublimation removal step may be performed in a vacuum. If in vacuum, the sublimation rate is increased and the possibility of pattern collapse is further reduced. In addition, it is possible to prevent the reattachment of the residue to the substrate 91.
 図5に戻る。昇華除去工程の終了後、制御ユニット13がプラズマ発生部37へ動作指令を行い、プラズマ発生部37の放電電極への高電圧印加を停止する。その後、制御ユニット13が水素ガスバルブ35へ動作指令を行い、水素ガスバルブ35を閉成する。これにより、放電中の絶縁管内に酸素成分が入り込むことがなくなり、酸素成分より発生するOHラジカル(ヒドロキシルラジカル)の発生を抑えることができる。従って、基板91の表面の酸化を防止することが可能となる。 Return to FIG. After completion of the sublimation removal step, the control unit 13 issues an operation command to the plasma generation unit 37 and stops high voltage application to the discharge electrode of the plasma generation unit 37. Thereafter, the control unit 13 issues an operation command to the hydrogen gas valve 35, and closes the hydrogen gas valve 35. This prevents the oxygen component from entering the insulating tube during discharge, and can suppress the generation of OH radicals (hydroxyl radicals) generated from the oxygen component. Therefore, oxidation of the surface of the substrate 91 can be prevented.
 次に、常温化工程(S16)を行う。図10は基板91の表面で析出されたポリイソブチレン63が昇華除去された様子を模式的に示している。まず、制御ユニット13が加熱部54へ動作指令を行い、加熱部54は加熱を停止する。次に、制御ユニット13が窒素ガスバルブ45(図3参照)へ動作指令を行い、窒素ガスバルブ45を開成する。これにより、窒素ガスタンク49から気体供給管43及び気体ノズル47を介して、基板91の表面に窒素ガスが供給される。供給される窒素ガスは常温または常温より低い温度の不活性ガスであり、かつ加熱部54は既に停止しているので、基板91は当該工程により早急に常温に戻る。これにより、基板処理のスループットが向上する。加えて、基板91の熱膨張による寸法変化に起因する搬送障害を回避できる。具体的には、基板乾燥処理の後、図示しない基板搬入出手段による搬出時において、基板搬入出手段の搬送アームに乗らない、チャックピンの保持が緩い、などの不具合を回避できる。また、基板91は常温の状態で搬出されるので、搬送アームなどの部材の耐熱性も低くできる。 Next, the room temperature raising step (S16) is performed. FIG. 10 schematically shows how the polyisobutylene 63 deposited on the surface of the substrate 91 is removed by sublimation. First, the control unit 13 issues an operation command to the heating unit 54, and the heating unit 54 stops heating. Next, the control unit 13 issues an operation command to the nitrogen gas valve 45 (see FIG. 3), and the nitrogen gas valve 45 is opened. Thereby, nitrogen gas is supplied from the nitrogen gas tank 49 to the surface of the substrate 91 through the gas supply pipe 43 and the gas nozzle 47. The supplied nitrogen gas is an inert gas at a normal temperature or a temperature lower than the normal temperature, and since the heating unit 54 has already stopped, the substrate 91 promptly returns to the normal temperature by the process. This improves the throughput of substrate processing. In addition, it is possible to avoid transport failure due to dimensional change of the substrate 91 due to thermal expansion. Specifically, after the substrate drying process, at the time of unloading by the substrate loading and unloading means (not shown), it is possible to avoid problems such as not being on the transport arm of the substrate loading and unloading means and loose holding of the chuck pins. Further, since the substrate 91 is carried out at a normal temperature, the heat resistance of members such as the transfer arm can be lowered.
 図5に戻る。常温化工程の終了後、制御ユニット13が窒素ガスバルブ45へ動作指令を行い、窒素ガスバルブ45を閉成する。以上により、一連の基板乾燥処理が終了する。 Return to FIG. After the end of the temperature control step, the control unit 13 issues an operation command to the nitrogen gas valve 45 and closes the nitrogen gas valve 45. Thus, a series of substrate drying processes are completed.
 以上のように、本実施形態では、基板91の表面で析出した乾燥補助物質を、水素ラジカルで除去することで、基板の酸化が抑制される。従って、基板の酸化を抑制しながら、基板の表面に形成されたパターンの倒壊を防止しつつ、基板の表面に付着した液体を除去することができる。 As described above, in the present embodiment, oxidation of the substrate is suppressed by removing the drying auxiliary material deposited on the surface of the substrate 91 with hydrogen radicals. Therefore, the liquid adhering to the surface of the substrate can be removed while preventing the collapse of the pattern formed on the surface of the substrate while suppressing the oxidation of the substrate.
 上述した本実施形態は、全ての点で例示であって、制限的なものではないと理解されるべきである。本発明の範囲は、特許請求の範囲内での全ての変更を含み、さらに特許請求の範囲と均等の範囲を含む。また、本発明の効果が得られる限りにおいては、本実施形態の説明において具体的に言及されていない構成要素が含まれる基板処理装置及び基板処理方法も、本発明の範囲に包含される。 It should be understood that the present embodiment described above is illustrative in all respects and not restrictive. The scope of the present invention includes all modifications within the scope of the claims, and further includes the scope equivalent to the scope of the claims. Moreover, as long as the effects of the present invention can be obtained, a substrate processing apparatus and a substrate processing method including components not specifically mentioned in the description of the present embodiment are also included in the scope of the present invention.
 1    基板処理装置
 13   制御ユニット
 21   乾燥補助液供給ユニット
 31   水素ラジカル供給ユニット
 41   気体供給ユニット
 37   プラズマ発生部
 39   水素ガスタンク
 51   モータ
 53   回転駆動部
 55   基板保持部
 57   チャックピン
 91   基板 
DESCRIPTION OF SYMBOLS 1 substrate processing apparatus 13 control unit 21 drying auxiliary liquid supply unit 31 hydrogen radical supply unit 41 gas supply unit 37 plasma generation unit 39 hydrogen gas tank 51 motor 53 rotation drive unit 55 substrate holding unit 57 chuck pin 91 substrate

Claims (6)

  1.  昇華性を有する乾燥補助物質を溶媒に溶解させた乾燥補助液を、処理液が付着した基板に供給する乾燥補助液供給手段と、
     前記乾燥補助液に含まれる前記乾燥補助物質を前記基板表面に析出させる析出手段と、
     前記乾燥補助物質を水素ラジカルとの反応により昇華させ、前記基板表面から除去する昇華除去手段と、
    を含む、基板処理装置。
    Drying auxiliary liquid supply means for supplying a drying auxiliary liquid in which a drying auxiliary substance having sublimation properties is dissolved in a solvent, to a substrate to which the processing liquid has adhered;
    Precipitation means for precipitating the drying auxiliary substance contained in the drying auxiliary liquid on the substrate surface;
    Sublimation removal means for sublimating the dry auxiliary substance by reaction with hydrogen radicals and removing the dry auxiliary substance from the substrate surface;
    Substrate processing equipment, including:
  2.  前記昇華除去手段は、貯留された水素ガスを供給する供給管の流路を開閉する水素ガスバルブと、前記供給管に管路接続されたプラズマ発生部と、を含み、
     前記水素ガスバルブを開成した後、前記プラズマ発生部で放電を開始する、請求項1に記載の基板処理装置。
    The sublimation removal means includes a hydrogen gas valve for opening and closing a flow path of a supply pipe for supplying stored hydrogen gas, and a plasma generation unit connected to the supply pipe.
    The substrate processing apparatus according to claim 1, wherein discharge is started in the plasma generation unit after opening the hydrogen gas valve.
  3.  前記昇華除去手段は、前記基板表面と前記乾燥補助物質とを昇温させる加熱手段を含む、請求項1または2に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the sublimation removal unit includes a heating unit that raises the temperature of the substrate surface and the drying auxiliary substance.
  4.  前記加熱手段は、少なくとも前記乾燥補助物質の温度を水の沸点よりも高く、前記乾燥補助物質の融点よりも低い温度にする、請求項3に記載の基板処理装置。 The substrate processing apparatus according to claim 3, wherein the heating unit makes the temperature of the drying auxiliary substance at least higher than the boiling point of water and lower than the melting point of the drying auxiliary substance.
  5.  前記昇華除去手段によって前記乾燥補助物質を前記基板表面から除去した後、前記加熱手段を停止し、常温または常温より低い温度のガスを前記基板表面に供給することで前記基板表面の温度を常温にする常温化手段をさらに含む、請求項3または4に記載の基板処理装置。 After the drying auxiliary substance is removed from the substrate surface by the sublimation removal means, the heating means is stopped, and a gas at normal temperature or a temperature lower than normal temperature is supplied to the substrate surface to bring the temperature of the substrate surface to normal temperature. 5. The substrate processing apparatus according to claim 3, further comprising a temperature control unit.
  6.  昇華性を有する乾燥補助物質を溶媒に溶解させた乾燥補助液を、処理液が付着した基板に供給する乾燥補助液供給工程と、
     前記乾燥補助液に含まれる前記乾燥補助物質を前記基板表面に析出させる析出手段と、
     前記乾燥補助物質を水素ラジカルとの反応により昇華させて、前記基板表面から除去する昇華除去工程と、
    を含む、基板処理方法。
    A drying auxiliary liquid supply step of supplying a drying auxiliary liquid in which a drying auxiliary substance having sublimation properties is dissolved in a solvent to a substrate to which the processing liquid has adhered;
    Precipitation means for precipitating the drying auxiliary substance contained in the drying auxiliary liquid on the substrate surface;
    A sublimation removal step of removing the drying auxiliary substance from the substrate surface by sublimation by reaction with hydrogen radicals;
    And a substrate processing method.
PCT/JP2018/040553 2017-12-22 2018-10-31 Substrate processing apparatus and substrate processing method WO2019123852A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017246788A JP7033912B2 (en) 2017-12-22 2017-12-22 Board processing equipment and board processing method
JP2017-246788 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019123852A1 true WO2019123852A1 (en) 2019-06-27

Family

ID=66994533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040553 WO2019123852A1 (en) 2017-12-22 2018-10-31 Substrate processing apparatus and substrate processing method

Country Status (3)

Country Link
JP (1) JP7033912B2 (en)
TW (1) TW201936277A (en)
WO (1) WO2019123852A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837176A (en) * 1994-07-25 1996-02-06 Fujitsu Ltd Method of cleaning hydrogen-plasma down-flow apparatus and manufacture of semiconductor device
JP2010010573A (en) * 2008-06-30 2010-01-14 Hitachi High-Technologies Corp Semiconductor processing method
JP2013016699A (en) * 2011-07-05 2013-01-24 Toshiba Corp Substrate processing method and substrate processing apparatus
WO2014157321A1 (en) * 2013-03-28 2014-10-02 芝浦メカトロニクス株式会社 Carrying stand and plasma processing device
JP2015037128A (en) * 2013-08-14 2015-02-23 株式会社Screenホールディングス Substrate drying apparatus and substrate drying method
JP2015162486A (en) * 2014-02-26 2015-09-07 株式会社Screenホールディングス Substrate drying device and substrate drying method
US20160086829A1 (en) * 2014-09-18 2016-03-24 Lam Research Corporation Systems and methods for drying high aspect ratio structures without collapse using stimuli-responsive sacrificial bracing material
US20160097590A1 (en) * 2014-10-06 2016-04-07 Lam Research Corporation Systems and methods for drying high aspect ratio structures without collapse using sacrificial bracing material that is removed using hydrogen-rich plasma
JP2017045850A (en) * 2015-08-26 2017-03-02 株式会社東芝 Substrate processing method and substrate processing apparatus
JP2017139279A (en) * 2016-02-02 2017-08-10 株式会社東芝 Substrate drier and substrate processing system
JP2017224783A (en) * 2016-06-17 2017-12-21 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837176A (en) * 1994-07-25 1996-02-06 Fujitsu Ltd Method of cleaning hydrogen-plasma down-flow apparatus and manufacture of semiconductor device
JP2010010573A (en) * 2008-06-30 2010-01-14 Hitachi High-Technologies Corp Semiconductor processing method
JP2013016699A (en) * 2011-07-05 2013-01-24 Toshiba Corp Substrate processing method and substrate processing apparatus
WO2014157321A1 (en) * 2013-03-28 2014-10-02 芝浦メカトロニクス株式会社 Carrying stand and plasma processing device
JP2015037128A (en) * 2013-08-14 2015-02-23 株式会社Screenホールディングス Substrate drying apparatus and substrate drying method
JP2015162486A (en) * 2014-02-26 2015-09-07 株式会社Screenホールディングス Substrate drying device and substrate drying method
US20160086829A1 (en) * 2014-09-18 2016-03-24 Lam Research Corporation Systems and methods for drying high aspect ratio structures without collapse using stimuli-responsive sacrificial bracing material
US20160097590A1 (en) * 2014-10-06 2016-04-07 Lam Research Corporation Systems and methods for drying high aspect ratio structures without collapse using sacrificial bracing material that is removed using hydrogen-rich plasma
JP2017045850A (en) * 2015-08-26 2017-03-02 株式会社東芝 Substrate processing method and substrate processing apparatus
JP2017139279A (en) * 2016-02-02 2017-08-10 株式会社東芝 Substrate drier and substrate processing system
JP2017224783A (en) * 2016-06-17 2017-12-21 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
JP7033912B2 (en) 2022-03-11
JP2019114654A (en) 2019-07-11
TW201936277A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
US11735437B2 (en) Apparatus and method for treating substrate
JP6216188B2 (en) Substrate drying apparatus and substrate drying method
CN109496346B (en) Pattern collapse recovery method, substrate processing method, and substrate processing apparatus
JP2013033963A (en) Substrate processing apparatus and substrate processing method
CN109560014B (en) Substrate processing method, substrate processing liquid, and substrate processing apparatus
JP2019102698A (en) Substrate processing method and substrate processing device
CN110098137B (en) Substrate processing method and substrate processing apparatus
KR102006552B1 (en) Substrate processing method and substrate processing apparatus
CN112640057B (en) Substrate processing method and substrate processing apparatus
JP2020004908A (en) Substrate processing method and substrate processing apparatus
WO2020021903A1 (en) Substrate processing method and substrate processing device
JP5497114B2 (en) Substrate processing apparatus and substrate processing method
CN109564858B (en) Sacrificial film forming method, substrate processing method, and substrate processing apparatus
WO2019123852A1 (en) Substrate processing apparatus and substrate processing method
TWI667076B (en) Substrate processing method and substrate processing apparatus
JP4230840B2 (en) Substrate processing method and substrate processing apparatus
WO2020059286A1 (en) Substrate processing method and substrate processing device
TWI813174B (en) Substrate gripping mechanism and substrate processing apparatus
JP7126429B2 (en) Substrate processing method and substrate processing apparatus
WO2020021797A1 (en) Substrate processing method and substrate processing device
US20130081658A1 (en) Apparatus and method for treating substrate
JP2022035122A (en) Substrate processing device and substrate processing method
JP2024047257A (en) SUBSTRATE PROCESSING METHOD, SUBSTRATE PROCESSING APPARATUS, AND SUBSTRATE PROCESSING LIQUID
JP2019186388A (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892936

Country of ref document: EP

Kind code of ref document: A1