WO2019123786A1 - 合成開口レーダの信号処理装置及び信号処理方法 - Google Patents

合成開口レーダの信号処理装置及び信号処理方法 Download PDF

Info

Publication number
WO2019123786A1
WO2019123786A1 PCT/JP2018/037716 JP2018037716W WO2019123786A1 WO 2019123786 A1 WO2019123786 A1 WO 2019123786A1 JP 2018037716 W JP2018037716 W JP 2018037716W WO 2019123786 A1 WO2019123786 A1 WO 2019123786A1
Authority
WO
WIPO (PCT)
Prior art keywords
stable reflection
observation
reflection point
displacement
reflection points
Prior art date
Application number
PCT/JP2018/037716
Other languages
English (en)
French (fr)
Inventor
大典 生藤
大地 田中
宝珠山 治
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US16/771,450 priority Critical patent/US11460573B2/en
Priority to JP2019560820A priority patent/JP6879386B2/ja
Publication of WO2019123786A1 publication Critical patent/WO2019123786A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9023SAR image post-processing techniques combined with interferometric techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/885Radar or analogous systems specially adapted for specific applications for ground probing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/414Discriminating targets with respect to background clutter

Definitions

  • the present invention relates to a signal processing apparatus and signal processing method for performing signal processing on observation data in a synthetic aperture radar.
  • Synthetic Aperture Radar (SAR) technology artificially transmits and receives radio waves while a flying object (such as an artificial satellite or a plane) moves, and obtains an artificial image equivalent to that of an antenna with a large aperture. Is a technology to synthesize an opening.
  • the synthetic aperture radar is used, for example, to image the intensity of the reflected wave from the ground surface and to image the undulations and structures of the ground surface.
  • Non-Patent Document 1 microwave radar observation by a projectile such as an artificial satellite is carried out twice or more at different times at the same point on the earth surface, and a technique for analyzing the earth surface fluctuation by taking the phase difference of reflected waves.
  • An interference SAR is described.
  • Non-Patent Document 1 further describes a technique called 2.5-dimensional analysis (2.5-dimensional displacement analysis) corresponding to one method of three-dimensional analysis.
  • Non-Patent Document 2 also describes 2.5 dimensional analysis in detail. Strictly speaking, 2.5-dimensional analysis is different from three-dimensional analysis.
  • the displacement velocity of the ground surface is calculated from time-series observation data from two different directions.
  • the displacement velocity is the amount of fluctuation (displacement) on the ground surface during the observation period.
  • Surface displacements are, for example, ups and downs of the ground, as well as inclinations and deformations of structures such as roads and buildings.
  • Yamanaka Masayuki et al. "Detection of ground subsidence by time series SAR interferometry", Tokishigein, Toji, No. 124, 2013 Satoshi Fujiwara et al., "2.5-D surface deformation of M 6.1 earthquake near Mt information detected by SAR interferometry", Geophysical Research Letters, Vol. 27, No. 14, pp. 2049-2052, July 15, 2000 Alessandro Ferretti et al. "Permanent scatterers in SAR interferometry", IEEE Transactions on Geoscience and Remote Sensing, 39 (1), pp. 8-20, 2001 T. Tanaka et al., “Persistent Scatterer Clustering for Structure Displacement Analysis Based on Phase Correlation Network”, IEEE IGARSS 2017, pp. 4618-4621, 2017
  • the signal processing apparatus shown in FIG. 17 includes a displacement analysis unit 301, an interpolation processing unit 302, a displacement velocity analysis unit 304, and a 2.5 dimensional displacement analysis unit 305.
  • the displacement analysis unit 301 obtains a displacement velocity for each reflection point from observation data in each observation direction.
  • the interpolation processing unit 302 arranges reflection points appearing at different positions in the observation image at equal intervals for each observation direction.
  • the displacement velocity analysis unit 304 acquires the displacement velocity of each reflection point after interpolation.
  • the 2.5-dimensional displacement analysis unit 305 performs 2.5-dimensional analysis on the displacement velocity of each reflection point in each observation direction.
  • the displacement analysis unit 301 receives a plurality of data, that is, time-series observation data.
  • FIG. 18 is a flow chart showing the operation of the signal processing device shown in FIG.
  • the displacement analysis unit 301 performs time-series displacement analysis for each observation direction, using time-series observation data for each observation direction as input data (step S301).
  • a method of displacement analysis for example, a method called PSI (Persistent Scatterer Interferometry) as described in Non-Patent Document 3 is used.
  • PSI is a method of extracting a stable reflection point and performing displacement analysis on that point.
  • the stable reflection point is a point (scatterer) that reflects a stable signal without a decrease in coherence over a long period (at least the observation period).
  • the stable reflection point may be defined as a point at which the reflection intensity is stable (reflects a radio wave of a predetermined value or more) over a long period of time.
  • the stable reflection point may also be defined as a point whose phase is stable over a long period of time.
  • stable reflection points may be defined as points at which the backscattering properties do not change (including when they change to an acceptable degree) over time.
  • the interpolation processing unit 302 performs interpolation processing of arranging stable reflection points appearing in different pixels in each observation direction on a grid at equal intervals (step S302).
  • the displacement velocity analysis unit 304 calculates the displacement velocity of each stable reflection point after interpolation (step S304).
  • the 2.5-dimensional displacement analysis unit 305 performs 2.5-dimensional analysis on the displacement velocity of the stable reflection point at the same position in each observation direction (step S305).
  • the signal processing apparatus as shown in FIG. 17 performs 2.5-dimensional analysis as described above.
  • the signal processing apparatus performs 2.5-dimensional analysis for each of the corresponding stable reflection points after correlating pixels assumed to be at the same position or in the vicinity in each of the plurality of observation directions.
  • it is difficult to perform displacement analysis focusing on an analysis object having a wide spread such as a building.
  • the correspondence between the stable reflection point extracted from the time-series observation data in each observation direction and the analysis target that is, the stable reflection point in the analysis target.
  • the stable reflection point for the observation After finding the point), it is required to associate the observation target stable reflection point in a certain observation direction with the observation target stable reflection point in another observation direction.
  • analysis results of the signal processing device as shown in FIG. 17 were taken as the observation target (analytical target) where there is a low density of stable reflection points or where there is a stable reflection point that shows a displacement different from the surrounding Sometimes there is also the problem of including errors.
  • An object of the present invention is to improve the reliability of analysis results when performing displacement analysis by combining displacement analysis results based on a plurality of observation data from different directions (performing combined displacement analysis).
  • the signal processing apparatus for synthetic aperture radar is stable for extracting a plurality of stable reflection points for each observation direction from time-series observation data for each observation direction of an observation object observed from a plurality of observation directions by the radar.
  • a reflection point extraction unit, a stable reflection point grouping unit that groups a plurality of stable reflection points for each observation direction, and a stability that belongs to an analysis target from a group created by grouping for each observation direction It includes a group selection unit for selecting a stable reflection point group including a reflection point, and a displacement velocity processing unit for combining the displacement velocity of the selected stable reflection point group.
  • the signal processing method for synthetic aperture radar extracts a plurality of stable reflection points for each observation direction from time-series observation data for each observation direction of an observation target observed from a plurality of observation directions by radar.
  • a plurality of stable reflection points are grouped for each observation direction, and a stable reflection point group including stable reflection points belonging to an analysis target is selected and selected from the group created by grouping for each observation direction
  • the displacement velocity of the group of stable reflection points is synthesized.
  • the signal processing program for synthetic aperture radar uses a computer to generate a plurality of stable reflection points for each observation direction from time-series observation data for each observation direction for observation targets observed from a plurality of observation directions by the radar.
  • a process of extracting, a process of grouping a plurality of stable reflection points for each observation direction, and a stability including stable reflection points belonging to an analysis target from a group created by grouping for each observation direction A process of selecting a reflection point group and a process of combining the displacement velocity of the selected stable reflection point group are performed.
  • FIG. 1 is a block diagram showing an example of the configuration of a first embodiment of a signal processing device of a synthetic aperture radar.
  • the signal processing apparatus includes a stable reflection point extraction unit 101, a stable reflection point grouping unit 102, a group selection unit 103, a displacement velocity calculation unit 104, and a displacement velocity synthesis unit 105.
  • the stable reflection point extraction unit 101, the stable reflection point grouping unit 102, the group selection unit 103, the displacement velocity calculation unit 104, and the displacement velocity combining unit 105 are connected in a communicable (data transmission / reception possible) state.
  • the stable reflection point extraction unit 101 inputs time-series observation data (time-series observation data for each observation direction) observed from a plurality of directions by a radar (not shown).
  • the stable reflection point extraction unit 101 extracts, from each observation data, pixels for which stable reflection points that can be used for displacement analysis are obtained. In general, a plurality of stable reflection points are extracted.
  • a pixel from which a stable reflection point is obtained is referred to as a “stable reflection point”.
  • the stable reflection point extraction unit 101 uses, for example, the above-described PSI to extract a stable reflection point.
  • the stable reflection point extraction unit 101 inputs time-series observation data from two or more directions as time-series observation data for each observation direction.
  • the stable reflection point grouping unit 102 performs a grouping process of grouping a plurality of stable reflection points based on the feature amount of the stable reflection point for each observation direction.
  • the grouping of stable reflection points means that each stable reflection point is assigned to any group.
  • the stable reflection point grouping unit 102 groups a plurality of stable reflection points into, for example, groups of similar size or reflecting structures by grouping processing.
  • the displacement speed of the stable reflection point can be used as the feature quantity.
  • transform processing for each observation direction refers to processing for time-series observation data in one observation direction and processing for time-series observation data in one or more other observation directions. It means to carry out.
  • the group selection unit 103 selects a group including stable reflection points from the analysis target (for example, a group surrounding the stable reflection points from the analysis target) from one or more groups for each observation direction.
  • the group selection unit 103 may select a group including stable reflection points around the analysis target.
  • the group selection unit 103 may select a plurality of groups.
  • the object of analysis is specified in advance. In other words, in the present embodiment, analysis is performed on an object specified in advance.
  • the displacement velocity calculation unit 104 calculates the displacement velocity of the group selected for each observation direction.
  • the displacement speed obtained by the displacement speed calculation unit 104 is taken as the displacement speed of the analysis target in each observation direction.
  • the displacement velocity calculation unit 104 can use, for example, the displacement velocity of the stable reflection point in the selected group that is close to the analysis target when calculating the displacement velocity of the group. Further, the displacement velocity calculation unit 104 may use a statistic such as the average value or the median value of the displacement velocities of the plurality of stable reflection points belonging to the selected group as the displacement velocity of the group.
  • the displacement velocity synthesis unit 105 synthesizes the displacement velocity of the analysis target for each observation direction using, for example, the method described in Non-Patent Document 2.
  • each displacement velocity is synthesized on the plane formed by the vectors of each observation direction.
  • 2.5-dimensional analysis is performed on the object to be analyzed, whereby the displacement velocity is separated into components in the quasi-east-west direction and the quasi-vertical direction.
  • the displacement velocity combining unit 105 may calculate the combined displacement velocity that ensures the most consistency using the least squares method or the like. .
  • FIG. 2 is a flowchart showing the operation of the first embodiment.
  • the stable reflection point extraction unit 101 inputs time-series data in each observation direction by the synthetic aperture radar. As shown in FIG. 2, the stable reflection point extraction unit 101 extracts stable reflection points for each observation direction (step S101).
  • the stable reflection point grouping unit 102 groups a plurality of stable reflection points into a plurality of groups (step S102).
  • the stable reflection point grouping unit 102 performs grouping, for example, using the displacement speed of each stable reflection point as a feature quantity.
  • the group selection unit 103 selects a stable reflection point group from the plurality of groups (step S103).
  • the stable reflection point group is, for example, a group including the stable reflection point closest to the analysis target (including the stable reflection point on the analysis target).
  • the stable reflection point group may be that group.
  • the group selection unit 103 may color-code the reflection points for each group and display the reflection points on the display. In that case, when the user designates a group, the group selection unit 103 sets the designated group as the stable reflection point group.
  • the displacement velocity calculation unit 104 calculates the displacement velocity of the group selected as the stable reflection point group for each observation direction (step S104).
  • the displacement velocity calculation unit 104 can use, for example, the displacement velocity of a point close to the analysis target in the selected group.
  • the displacement velocity calculation unit 104 may calculate the displacement velocity of the group using a statistic such as the average value or the median value of the displacement velocity of the stable reflection points constituting the selected group.
  • the displacement velocity combining unit 105 combines the displacement velocities of the stable reflection point group for each observation method, and outputs the combined result (step S105).
  • a plurality of stable reflection points to be obtained are grouped for each observation direction. Then, synthetic displacement analysis is performed on the group corresponding to the analysis target. Therefore, when the positions of the stable reflection points obtained for each observation direction are different, it is possible to consider each group as one large stable reflection point and perform synthetic displacement analysis. Therefore, even if each stable reflection point is not associated, it is possible to execute combined displacement analysis focusing on the analysis target.
  • FIG. 3 is an explanatory view for explaining the effect of the present embodiment.
  • FIGS. 3A and 3B images of stable reflection points obtained when the same region is observed from different directions are illustrated.
  • FIG. 3 (a), (b), p1 and p2 show respective stable reflection points.
  • symbol of p1, p2 is attached
  • a signal processing apparatus of a general synthetic aperture radar has a plurality of stable reflection points exemplified in FIG. 3A and a plurality of plural reflection examples illustrated in FIG. One point by one point is associated with the stable reflection point of
  • the signal processing device of the synthetic aperture radar of this embodiment groups a plurality of stable reflection points as illustrated in FIGS. 3 (c) and 3 (d).
  • p3 to p10 represent respective groups. Each group is a set of stable reflection points having similar displacement information.
  • the group p3 and the group p7 are groups including reflection points from the analysis target
  • the group p3 and the group p7 are selected by the group selection unit 103.
  • the displacement velocity calculation unit 104 calculates the displacement velocity by regarding each of the group p3 and the group p7 as one stable reflection point. Thereafter, synthetic displacement analysis is performed to obtain a synthetic displacement velocity to be analyzed.
  • FIG. 4 is a block diagram showing a configuration example of a second embodiment of the signal processing device of the synthetic aperture radar.
  • the signal processing apparatus according to the second embodiment includes a stable reflection point extraction unit 101, a stable reflection point grouping unit 106, a group selection unit 103, a displacement velocity calculation unit 104, and a displacement velocity synthesis unit 105.
  • the stable reflection point extraction unit 101, the stable reflection point grouping unit 106, the group selection unit 103, the displacement velocity calculation unit 104, and the displacement velocity synthesis unit 105 are connected in a communicable (data transmission / reception possible) state.
  • the stable reflection point grouping unit 106 includes a distance calculation unit 116.
  • the stable reflection point grouping unit 106 groups the stable reflection points so that the sizes of the groups to be generated are substantially the same.
  • the stable reflection point grouping unit 106 performs grouping using, for example, the distance between stable reflection points (e.g., Euclidean distance in the present embodiment) as a feature amount, in order to make the size of the group be the same size. Do. Specifically, the stable reflection point grouping unit 106 performs grouping based on position information (e.g., coordinates) of the stable reflection points so that the respective groups have the same size.
  • position information e.g., coordinates
  • the distance calculation unit 116 sets the Euclidean distance between any two stable reflection points among the plurality of stable reflection points to between the two stable reflection points. Calculated as the distance of
  • the “same size” is, for example, a size that falls within a predetermined range with respect to a size set as a reference size by the user of the signal processing apparatus.
  • the predetermined range is, for example, ⁇ 30% (specifically, 70% to 130% of the reference size).
  • the predetermined range is not limited to ⁇ 30%, and can be set arbitrarily.
  • a range corresponding to the size (area) of the analysis target may be selected.
  • the stable reflection point grouping unit 102 can use hierarchical clustering based on the minimum variance method, for example, with the distance between the respective stable reflection points as a feature amount. Also, the stable reflection point grouping unit 102 can use a division optimization clustering method based on the k-means method, with the distance between the stable reflection points as a feature amount. Note that these are merely examples, and the stable reflection point grouping unit 102 may use another method for grouping.
  • the components other than the stable reflection point grouping unit 106 are the same as the components in the first embodiment.
  • FIG. 5 is a flowchart showing the operation of the second embodiment.
  • the stable reflection point extraction unit 101 performs the same process as the process in the first embodiment (step S101).
  • the stable reflection point grouping unit 106 inputs the stable reflection points extracted for each observation direction in the process of step S101. Then, the stable reflection point grouping unit 106 groups the stable reflection points so that the groups generated based on the distance between the stable reflection points have approximately the same size for each observation direction (step S106). .
  • the stable reflection point grouping unit 106 focuses on a certain stable reflection point, for example, so that one or more stable reflection points within a predetermined distance from the stable reflection point belong to the same group as the focused stable reflection point. Group The position information of the stable reflection point for obtaining the distance between the stable reflection points is input together with the observation data, for example.
  • the stable reflection points are grouped so that the size of each group becomes approximately the same based on the distance information between the stable reflection points.
  • the displacement velocity of each stable reflection point tends to be similar to the displacement velocity of nearby stable reflection points. Therefore, in the present embodiment, stable reflection points having, for example, comparable displacement speeds are grouped. Then, since the displacement velocity of the stable reflection point group including the analysis target is synthesized for each observation direction, the synthetic displacement analysis of the analysis target becomes possible.
  • the present embodiment is effective when analyzing, for example, the displacement of the ground.
  • the distance between two stable reflection points in the present embodiment, for example, the Euclidean distance
  • the two stable reflection points are likely to be related to the same object.
  • the distance between them is large, it is assumed that there is a high possibility that two stable reflection points are not related to the same object.
  • Being related to the same object is, for example, a stable reflection point on one object (such as a building).
  • FIG. 6 is a block diagram showing a configuration example of a third embodiment of the signal processing device of the synthetic aperture radar.
  • the signal processing apparatus includes a stable reflection point extraction unit 101, a stable reflection point grouping unit 107, a group selection unit 103, a displacement velocity calculation unit 104, and a displacement velocity synthesis unit 105.
  • the stable reflection point extraction unit 101, the stable reflection point grouping unit 107, the group selection unit 103, the displacement velocity calculation unit 104, and the displacement velocity synthesis unit 105 are connected in a communicable (data transmission / reception possible) state.
  • the stable reflection point grouping unit 107 includes a phase relationship calculation unit 117.
  • the stable reflection point grouping unit 107 groups each stable reflection point so that the size of the group to be generated becomes the same size.
  • the stable reflection point grouping unit 107 uses a feature amount dependent on the shape of the structure among the feature amounts possessed by the stable reflection point, in order to make the group size the same size.
  • the stable reflection point grouping unit 107 uses the phase of the stable reflection point as the feature amount.
  • the phase is an example, and another feature may be used as the feature depending on the shape of the structure.
  • the stable reflection point grouping unit 107 may group stable reflection points based on the shape of a known structure.
  • the phase relationship calculation unit 117 specifies the phase at each of the stable reflection points. Then, the phase relationship calculation unit 117 calculates a value that can specify the relationship of each phase. The phase relationship calculation unit 117, for example, pairs any two stable reflection points at all stable reflection points, and calculates the correlation coefficient of the phase of the stable reflection point for all pairs. Then, the stable reflection point grouping unit 107 focuses on a certain stable reflection point, and one or more stable reflection points having a phase with a large value of the correlation coefficient with respect to the phase of the stable reflection point pays attention to a stable reflection point Group to belong to the same group. Note that the fact that the value of the correlation coefficient is large means, for example, that a predetermined threshold value is exceeded.
  • FIG. 7 is a flow chart showing the operation of the third embodiment.
  • the stable reflection point extraction unit 101 performs the same process as the process in the first embodiment (step S101).
  • the stable reflection point grouping unit 107 inputs the stable reflection points extracted for each observation data in the process of step S101. Then, the stable reflection point grouping unit 107 groups the stable reflection points by the above-described processing, that is, based on the feature quantity (in the present embodiment, the phase) depending on the shape of the structure (step S107).
  • the stable reflection point grouping unit 107 performs grouping based on the feature quantities of the stable reflection points that depend on the shape of the structure in the observation area. Therefore, the stable reflection point grouping unit 107 can group the stable reflection points corresponding to the shape of a structure such as a building or a road among a plurality of stable reflection points into one group. As a result, when a structure is an analysis target, the group selection unit 103 can easily select a group including stable reflection points corresponding to the analysis target for each observation direction. Therefore, the process of performing combined displacement analysis focusing on only the structure becomes easy.
  • the present embodiment can be applied to detecting a structure showing a displacement different from that of the ground.
  • FIG. 8 is an explanatory diagram for explaining the effect of the present embodiment.
  • FIGS. 8A and 8B images of stable reflection points obtained when the same region is observed from different directions are illustrated.
  • q1 indicates a stable reflection point.
  • FIGS. 8 (a) and 8 (b) the symbol q1 is attached to each one place, but all the circles indicate stable reflection points.
  • q2 and q3 indicate structures in the observation area.
  • the signal processing device of the synthetic aperture radar according to the present embodiment is characterized in that a plurality of stable reflection points depend on the shape of the structure (in the present embodiment, as exemplified in FIGS. 8C and 8D). , For example, based on the phase).
  • q4 indicates a group of stable reflection points in the structure q2 as viewed from a certain observation direction X.
  • q5 indicates a group of stable reflection points in the structure q3 viewed from the observation direction X.
  • q6 and q7 indicate groups of stable reflection points in the structure q2 as viewed from another observation direction Y, respectively.
  • q8 indicates a group of stable reflection points in the structure q3 viewed from the observation direction Y.
  • the group selection unit 103 selects the group q5 in the observation direction X and the group q8 in the observation direction Y as the stable reflection point group for the analysis target.
  • the displacement velocity calculation unit 104 calculates the displacement velocity for each group, that is, for the group q5 and the group q8. Then, each displacement velocity is combined to obtain a combined displacement velocity.
  • phase correlation is also considered to be a distance
  • the distance between two stable reflection points for example, the phase correlation coefficient in the present embodiment
  • the phase similarity is high. It is assumed that two stable reflection points are likely to be associated with the same object. Also, it is assumed that when the distance between them is small, it is likely that the two stable reflection points are not related to the same object.
  • FIG. 9 is a block diagram showing a configuration example of a fourth embodiment of the signal processing device of the synthetic aperture radar.
  • the signal processing apparatus according to the fourth embodiment includes a stable reflection point extraction unit 101, a stable reflection point grouping unit 108, a group selection unit 103, a displacement velocity calculation unit 104, and a displacement velocity synthesis unit 105.
  • the stable reflection point extraction unit 101, the stable reflection point grouping unit 108, the group selection unit 103, the displacement velocity calculation unit 104, and the displacement velocity synthesis unit 105 are connected in a communicable (data transmission / reception possible) state.
  • the stable reflection point grouping unit 108 groups each stable reflection point so that the size of the group to be created is approximately the same, and the shape of the structure appears in the set of stable reflection points.
  • the present embodiment corresponds to an embodiment in which the second embodiment and the third embodiment are combined.
  • FIG. 10 is a block diagram showing a configuration example of the stable reflection point grouping unit 108.
  • the stable reflection point grouping unit 108 includes a distance calculation unit 116, a phase relationship calculation unit 117, and an integration unit 118.
  • the distance calculation unit 116 takes Euclidean distance between any two stable reflection points among the plurality of stable reflection points as the distance between the two stable reflection points. calculate.
  • the phase relationship calculating unit 117 calculates a value that can specify the relationship of each phase, as in the case of the third embodiment. As an example, the phase relationship calculation unit 117 pairs any two stable reflection points at all stable reflection points, and calculates the phase correlation coefficient of the stable reflection point for all pairs.
  • the integration unit 118 inputs the Euclidean distance between the stable reflection points from the distance calculation unit 116. Further, the integration unit 118 inputs, from the phase relationship calculation unit 117, a correlation coefficient which is an example of a value that can specify the relationship of the phase. Then, the integration unit 118 calculates a “distance” that reflects both the Euclidean distance and the phase correlation coefficient. The following calculation method is also described in Non-Patent Document 4.
  • the integration unit 118 sets a small value before integrating the Euclidean distance and the correlation coefficient, that is, before calculating the “distance” reflecting both the Euclidean distance and the phase correlation coefficient. Perform transformation of the phase correlation coefficient so that it is likely to be related to the object. Note that the integration unit 118 may perform conversion of the Euclidean distance so that the possibility of being related to the object is high when the value is large.
  • the integration unit 118 sets the Euclidean distance between the stable reflection point m and the stable reflection point n to l m, n , the phase of the stable reflection point m, and the phase and correlation coefficient value of the stable reflection point n. Assuming that c m, n , for example, the “distance” d m, n is calculated by the equation (1).
  • the integration unit 118 may calculate the “distance” d m, n by equation (2).
  • is a real number larger than a predetermined zero.
  • the equation (1) or (2) is used, but ( cm, n- ⁇ -1) in the equation (2) is also used as a feature amount in the third embodiment Good.
  • the stable reflection point grouping unit 107 determines that the correlation between the two stable reflection points is lower as the feature amount is larger.
  • FIG. 11 is a flowchart showing the operation of the fourth embodiment.
  • the stable reflection point extraction unit 101 performs the same process as the process in the first embodiment (step S101).
  • the stable reflection point grouping unit 108 inputs the stable reflection points extracted for each observation data in the process of step S101. Then, the stable reflection point grouping unit 108 groups the stable reflection points so that the groups to be created have the same size by the above-described processing, and are gathered along the shape of the structure ( Step S108). Specifically, in the present embodiment, the stable reflection point grouping unit 108 performs grouping by using “distance” reflecting both Euclidean distance and phase correlation coefficient as a feature quantity.
  • the size of a structure such as a building present in the observation area is not constant.
  • the stable reflection point grouping unit 108 performs grouping so that the size of each group is approximately the same, and the shape of the structure appears in the set of stable reflection points. Therefore, the signal processing apparatus according to the present embodiment can perform synthetic displacement analysis focusing on the structure matched to the size of the analysis target.
  • FIG. 12 is a block diagram showing a configuration example of a fifth embodiment of the signal processing device of the synthetic aperture radar.
  • the signal processing apparatus according to the fifth embodiment includes a stable reflection point extraction unit 101, a stable reflection point grouping unit 102, a group selection unit 103, a displacement velocity calculation unit 109, and a displacement velocity synthesis unit 105.
  • the stable reflection point extraction unit 101, the stable reflection point grouping unit 102, the group selection unit 103, the displacement velocity calculation unit 109, and the displacement velocity synthesis unit 105 are connected in a communicable (data transmission / reception possible) state.
  • the displacement velocity calculation unit 109 excludes a predetermined stable reflection point from the group.
  • the displacement velocity calculation unit 109 includes a stable reflection point exclusion unit 119.
  • the stable reflection point exclusion unit 119 excludes stable reflection points having greatly different displacement speeds among the stable reflection points belonging to the selected group of stable reflection points as outliers.
  • the stable reflection point exclusion unit 119 excludes, for example, stable reflection points having a displacement velocity far from the central displacement velocity in the group.
  • a greatly different displacement velocity is a displacement velocity that exceeds a predetermined threshold with respect to other displacement velocities.
  • the displacement velocity exceeding the predetermined threshold is, as an example, a displacement velocity exceeding ⁇ 20% from the other displacement velocities.
  • the displacement velocity calculation unit 109 uses, for example, only stable reflection points having a displacement velocity close to the average value of the displacement velocities of the stable reflection points belonging to the group selected by the group selection unit 103. Specifically, the stable reflection point excluding unit 119 calculates the average value and the standard deviation of the stable reflection points belonging to the group, as an example. Then, the stable reflection point exclusion unit 119 extracts a stable reflection point having a displacement velocity whose difference from the average value is within the standard deviation. The displacement velocity calculation unit 109 calculates the displacement velocity of the group using the extracted stable reflection point. Therefore, stable reflection points having displacement speeds far from the average value are excluded by the stable reflection point exclusion unit 119.
  • the displacement velocity far from the central displacement velocity in the group is within a predetermined range (one example for central displacement velocity).
  • the displacement speed is ⁇ 10%).
  • the other processes are the same as the processes in the first embodiment.
  • the method of excluding the above-mentioned stable reflection point is an example.
  • the stable reflection point exclusion unit 119 may exclude stable reflection points having a displacement velocity far from the central displacement velocity by another method.
  • FIG. 13 is a flowchart showing the operation of the fifth embodiment.
  • the stable reflection point extraction unit 101, the stable reflection point grouping unit 102, and the group selection unit 103 perform the same processing as the processing in the first embodiment (steps S101 to S103).
  • the displacement velocity calculation unit 109 calculates the displacement velocity of the group by the process as described above (step S109). That is, the displacement velocity of the group is calculated using the displacement velocity of each stable reflection point in the set of stable reflection points excluding a predetermined stable reflection point.
  • the displacement velocity calculation unit 109 calculates the displacement velocity of the group after excluding stable reflection points having largely different displacement velocities as outliers.
  • the displacement velocity calculation unit 109 uses stable reflection points close to the central displacement velocity (for example, an average value in the present embodiment) as the displacement velocity of each stable reflection point belonging to the selected group. Calculate the displacement speed of the group. Therefore, even if surrounding stable reflection points and stable reflection points whose displacement velocities are greatly different from each other are mistakenly included in one group during the grouping process, such stable reflection points are excluded as outliers. Therefore, the displacement speed of the group selected for each observation direction is calculated more accurately. That is, the accuracy of the combined displacement speed is also improved. As a result, displacement analysis by synthetic aperture radar with higher accuracy is performed.
  • the signal processing apparatus can perform displacement analysis focusing on only the analysis target.
  • the reason is that the stable reflection point is grouped for each land and structure in the observation area, so that it is possible to execute a reliable combined displacement analysis using the stable reflection point from the analysis target.
  • the signal processing device of each of the above embodiments can execute highly accurate combined displacement analysis.
  • the reason is that stable reflection points are grouped for each land and structure in the observation area, so synthetic displacement analysis can be performed excluding stable reflection points different from stable reflection points in the analysis target. is there.
  • Each component in the above embodiment can be configured by one piece of hardware, but can also be configured by one piece of software. Also, each component can be configured with a plurality of hardware and can also be configured with a plurality of software. In addition, some of the components can be configured by hardware, and other units can be configured by software.
  • Each function (each process) in the above embodiment can be realized by a computer having a processor such as a CPU (Central Processing Unit) or a memory.
  • a program for implementing the method (process) in the above embodiment may be stored in a storage device (storage medium), and each function may be realized by executing a program stored in the storage device by the CPU. Good.
  • FIG. 14 is a block diagram showing an example of a computer having a CPU.
  • the computer is implemented in the signal processing device of the synthetic aperture radar.
  • the CPU 1000 implements each function in the above-described embodiment by executing processing in accordance with a program stored in the storage device 1001. That is, the stable reflection point extraction unit 101, the stable reflection point grouping units 102, 106, 107, and 108, and the group selection unit 103 in the signal processing device shown in FIGS. 1, 4, 6, 9, and 12.
  • the functions of the displacement velocity calculation units 104 and 109 and the displacement velocity combining unit 105 are realized.
  • the storage device 1001 is, for example, a non-transitory computer readable medium.
  • Non-transitory computer readable media include various types of tangible storage media. Specific examples of non-transitory computer readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROM (Compact Disc-Read Only Memory) , CD-R (Compact Disc-Recordable), CD-R / W (Compact Disc-Rewritable), semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM).
  • magnetic recording media eg, flexible disks, magnetic tapes, hard disk drives
  • magneto-optical recording media eg, magneto-optical disks
  • CD-ROM Compact Disc-Read Only Memory
  • CD-R Compact Disc-Recordable
  • CD-R / W Compact Disc-Rewrit
  • the programs may also be stored on various types of transitory computer readable media.
  • the temporary computer readable medium is supplied with the program, for example, via a wired communication channel or a wireless communication channel, that is, via an electrical signal, an optical signal or an electromagnetic wave.
  • the memory 1002 is realized by, for example, a RAM (Random Access Memory), and is storage means for temporarily storing data when the CPU 1000 executes a process.
  • a form in which a program held by the storage device 1001 or a temporary computer readable medium is transferred to the memory 1002 and the CPU 1000 executes processing based on the program in the memory 1002 may be assumed.
  • FIG. 15 is a block diagram showing the main part of the signal processing system of the synthetic aperture radar.
  • the signal processing apparatus 10 shown in FIG. 15 is a stable reflection point for extracting a plurality of stable reflection points for each observation direction from time-series observation data for each observation direction of an observation object observed from a plurality of observation directions by radar.
  • An extraction unit 11 (implemented by the stable reflection point extraction unit 101 in the embodiment) and a stable reflection point grouping unit 12 (in the embodiment stable) that groups a plurality of stable reflection points for each observation direction This is realized by reflection point grouping units 102, 106, 107, and 108.) and stable reflection points obtained by reflection from an analysis target from a group created by grouping for each observation direction (for analysis target Group selection unit 13 (implemented by the group selection unit 103 in the embodiment) for selecting a stable reflection point group including the stable reflection point to which it belongs; And (in the embodiment. Realized in displacement velocity calculating unit 104 and 109, and the displacement velocity synthesizer 105) displacement speed processor 14 the displacement speed synthesizing stable reflection point groups and a
  • FIG. 16 is a block diagram showing the main part of the signal processing device of the synthetic aperture radar of another aspect.
  • the signal processing apparatus 20 shown in FIG. 16 includes a displacement velocity calculation unit 16 (in the embodiment, a displacement velocity calculation unit 104, and the displacement velocity processing unit 15 calculates the displacement velocity of the stable reflection point group selected for each observation direction). And a displacement velocity synthesizing unit 17 (in the embodiment, realized by the displacement velocity synthesizing unit 105) that synthesizes displacement velocities corresponding to the respective observation directions. There is.
  • a stable reflection point extraction unit that extracts a plurality of stable reflection points for each observation direction from time-series observation data for each observation direction of an observation target observed from a plurality of observation directions by radar.
  • a stable reflection point grouping unit that groups the plurality of stable reflection points for each of the observation directions;
  • a group selection unit for selecting a stable reflection point group including the stable reflection points belonging to an analysis target from the groups created by grouping for each of the observation directions;
  • a signal processing device for a synthetic aperture radar including: a displacement velocity processing unit that synthesizes displacement velocities of the selected group of stable reflection points.
  • the displacement velocity processing unit A displacement velocity calculation unit that calculates a displacement velocity of the stable reflection point group selected for each of the observation directions;
  • the displacement velocity calculation unit excludes, from the stable reflection points belonging to the selected stable reflection point group, a displacement velocity which exceeds a predetermined threshold value with respect to another displacement velocity.
  • the signal processing apparatus for synthetic aperture radar according to any one of appendices 1 to 4, wherein a displacement velocity is calculated for the stable reflection point.
  • a plurality of stable reflection points are extracted for each observation direction from time-series observation data for each observation direction of an observation target observed from a plurality of observation directions by radar. Grouping the plurality of stable reflection points for each of the observation directions; For each of the observation directions, a stable reflection point group including the stable reflection points belonging to an analysis target is selected from the groups created by grouping; A signal processing method for a synthetic aperture radar, which synthesizes displacement speeds of the selected group of stable reflection points.
  • the stable reflection points are excluded from displacement signals which exceed a predetermined threshold with respect to other displacement velocities from the stable reflection points belonging to the selected stable reflection point group.
  • the displacement speed is set for the stable reflection point after excluding the displacement speed which exceeds a predetermined threshold with respect to other displacement speeds from the stable reflection points belonging to the selected stable reflection point group.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

合成開口レーダの信号処理装置10は、レーダによって複数の観測方向から観測された観測対象についての観測方向ごとの時系列観測データから、観測方向ごとに、複数の安定反射点を抽出する安定反射点抽出部11と、各々の観測方向ごとに、複数の安定反射点をグループ化する安定反射点グルーピング部12と、各々の観測方向ごとに、グループ化で作成されたグループから、解析対象に属する安定反射点を含む安定反射点グループを選択するグループ選択部13と、選択された安定反射点グループの変位速度を合成する変位速度処理部14とを含む。

Description

合成開口レーダの信号処理装置及び信号処理方法
 本発明は、合成開口レーダにおける観測データに対する信号処理を行う信号処理装置及び信号処理方法に関する。
 合成開口レーダ(SAR:synthetic Aperture Radar)技術は、飛翔体(人工衛星や飛行機等)が移動しながら電波を送受信し、大きな開口を持ったアンテナの場合と等価な画像が得られるように人工的に開口を合成する技術である。合成開口レーダは、例えば、地表からの反射波の強弱を画像化して、地表の起伏や構造物等をイメージ化するために利用される。
 非特許文献1には、人工衛星等の飛翔体によるマイクロ波レーダ観測が地表の同一地点で異なる時期に2回以上実施され、反射波の位相の差をとることによって地表の変動を解析する技術である干渉SARが記載されている。非特許文献1には、さらに、3次元解析の一手法に相当する2.5次元解析(2.5次元変位解析)と称されている技術が記載されている。非特許文献2にも、2.5次元解析が詳述されている。なお、厳密には、2.5次元解析は、3次元解析とは異なる。
 2.5次元解析では、異なる2方向からの時系列観測データから、地表の変位速度が算出される。変位速度は、観測期間における地表の変動量(変位量)である。地表の変位は、例えば、地盤の隆起や沈降、ならびに、道路や建造物のような構造物の傾き及び変形である。
 さらに、2.5次元解析では、飛翔体の北行軌道(上昇軌道)と南行軌道(下降軌道)の2方向の解析結果が合成され、変位速度が準東西方向と準上下方向との成分に分離される。当該技術によれば、地表の各地点(2次元的に分布)について飛翔体の視線方向(観測方向)面上の変位(2次元成分)が得られるので、当該技術は、2.5次元解析と呼ばれる。
山中雅之他、"干渉SAR時系列解析による地盤沈下の検出"、国土地理院時報、No. 124、2013年 Satoshi Fujiwara et al.、"2.5-D surface deformation of M6.1 earthquake near Mt Iwate detected by SAR interferometry"、Geophysical Research Letters、Vol.27, No. 14、pp. 2049-2052、July 15, 2000 Alessandro Ferretti et al. "Permanent scatterers in SAR interferometry"、IEEE Transactions on Geoscience and Remote Sensing、39(1), pp. 8-20, 2001 T. Tanaka et al.、"Persistent Scatterer Clustering for Structure Displacement Analysis Based on Phase Correlation Network"、IEEE IGARSS 2017、pp. 4618-4621, 2017
 2.5次元解析では、対象を異なる2方向から観測した際に得られる変位速度がベクトル合成される。合成開口レーダの信号処理装置は、図17に例示されるように構成されると想定される。
 図17に示す信号処理装置は、変位解析部301、補間処理部302、変位速度解析部304及び2.5次元変位解析部305を含む。
 変位解析部301は、各観測方向における観測データから反射点ごとに変位速度を得る。補間処理部302は、観測方向ごとに観測画像内の異なる位置に現れる反射点を等間隔に配置する。変位速度解析部304は、補間後の各反射点の変位速度を取得する。2.5次元変位解析部305は、観測方向ごとの各反射点の変位速度について2.5次元解析を行う。なお、変位解析部301には、複数のデータすなわち時系列観測データが入力される。
 図18は、図17に示された信号処理装置の動作を示すフローチャートである。
 図18に示すように、変位解析部301は、観測方向ごとの時系列観測データを入力データとして、観測方向ごとに時系列変位解析を行う(ステップS301)。変位解析の方法として、例えば、非特許文献3に記載されているようなPSI(Persistent Scatterer Interferometry)と呼ばれる手法が利用される。PSIは、安定反射点を抽出して、その点に対して変位解析を行う手法である。
 なお、安定反射点は、長期間(少なくとも、観測期間)に亘ってコヒーレンスが低下せず、安定した信号を反射する点(散乱体)である。安定反射点は、長期間に亘って反射強度が安定している(所定値以上の強度の電波を反射する。)点であると規定されてもよい。また、安定反射点は、長期間に亘って位相が安定している点であると規定されてもよい。さらに、安定反射点は、長期間に亘って後方散乱特性が変化しない(許容可能な程度で変化する場合も含まれる。)点であると規定されてもよい。
 補間処理部302は、観測方向ごとに異なる画素に現れる安定反射点を、等間隔のグリッド上に配置する補間処理を行う(ステップS302)。変位速度解析部304は、補間後の各安定反射点の変位速度を算出する(ステップS304)。そして、2.5次元変位解析部305は、観測方向ごとに、同じ位置にある安定反射点の変位速度について2.5次元解析する(ステップS305)。
 図17に示されたような信号処理装置は、以上のように、2.5次元解析を実行する。
 時系列変位解析で得られる安定反射点が現れる画素は、観測方向ごとに異なる。したがって、信号処理装置は、複数の観測方向のそれぞれにおいて同位置又は近傍にあると思われる画素の対応付けを行った後に、対応する安定反射点ごとに2.5次元解析を行う。そのような解析手法が用いられる場合、建造物のような広がりのある解析対象に着目した変位解析を行うことは難しい。なぜなら、変位解析を行うときに、各々の観測方向における時系列観測データから抽出される安定反射点と解析対象との対応(すなわち、解析対象における安定反射点であること。以下、観測対象安定反射点ということがある。)を見いだした上で、ある観測方向における観測対象安定反射点と他の観測方向における観測対象安定反射点とを対応づけることが求められるからである。
 また、図17に示されたような信号処理装置の解析結果は、安定反射点の密度が少ない場所や、周囲と異なる変位を示す安定反射点がある場所が観測対象(解析対象)とされたときに、誤差を含んでいるという課題もある。
 本発明は、異なる方向からの複数の観測データに基づく変位解析結果を組み合わせて変位解析を行う(合成変位解析を行う。)ときに、解析結果の信頼性を高めることを目的とする。
 本発明による合成開口レーダの信号処理装置は、レーダによって複数の観測方向から観測された観測対象についての観測方向ごとの時系列観測データから、観測方向ごとに、複数の安定反射点を抽出する安定反射点抽出部と、各々の観測方向ごとに、複数の安定反射点をグループ化する安定反射点グルーピング部と、各々の観測方向ごとに、グループ化で作成されたグループから、解析対象に属する安定反射点を含む安定反射点グループを選択するグループ選択部と、選択された安定反射点グループの変位速度を合成する変位速度処理部とを含む。
 本発明による合成開口レーダの信号処理方法は、レーダによって複数の観測方向から観測された観測対象についての観測方向ごとの時系列観測データから、観測方向ごとに、複数の安定反射点を抽出し、各々の観測方向ごとに、複数の安定反射点をグループ化し、各々の観測方向ごとに、グループ化で作成されたグループから、解析対象に属する安定反射点を含む安定反射点グループを選択し、選択された安定反射点グループの変位速度を合成する。
 本発明による合成開口レーダの信号処理プログラムは、コンピュータに、レーダによって複数の観測方向から観測された観測対象についての観測方向ごとの時系列観測データから、観測方向ごとに、複数の安定反射点を抽出する処理と、各々の観測方向ごとに、複数の安定反射点をグループ化する処理と、各々の観測方向ごとに、グループ化で作成されたグループから、解析対象に属する安定反射点を含む安定反射点グループを選択する処理と、選択された安定反射点グループの変位速度を合成する処理とを実行させる。
 本発明によれば、異なる方向からの複数の観測データに基づく変位解析結果を組み合わせて変位解析を行うときの解析結果の信頼性を高めることができる。
合成開口レーダの信号処理装置の第1の実施形態の構成例を示すブロック図である。 第1の実施形態の動作を示すフローチャートである。 第1の実施形態の効果を説明するための説明図である。 合成開口レーダの信号処理装置の第2の実施形態の構成例を示すブロック図である。 第2の実施形態の動作を示すフローチャートである。 合成開口レーダの信号処理装置の第3の実施形態の構成例を示すブロック図である。 第3の実施形態の動作を示すフローチャートである。 第3の実施形態の効果を説明するための説明図である。 合成開口レーダの信号処理装置の第4の実施形態の構成例を示すブロック図である。 第4の実施形態における安定反射点グルーピング部の構成例を示すブロック図である。 第4の実施形態の動作を示すフローチャートである。 合成開口レーダの信号処理装置の第5の実施形態の構成例を示すブロック図である。 第5の実施形態の動作を示すフローチャートである。 CPUを有するコンピュータの一例を示すブロック図である。 合成開口レーダの信号処理装置の主要部を示すブロック図である。 他の態様の合成開口レーダの信号処理装置の主要部を示すブロック図である。 一般的な合成開口レーダの信号処理装置を示すブロック図である。 一般的な合成開口レーダの信号処理装置の動作を示すフローチャートである。
 以下、本発明の実施形態を図面を参照して説明する。
実施形態1.
 図1は、合成開口レーダの信号処理装置の第1の実施形態の構成例を示すブロック図である。第1の実施形態の信号処理装置は、安定反射点抽出部101、安定反射点グルーピング部102、グループ選択部103、変位速度算出部104、及び変位速度合成部105を備えている。安定反射点抽出部101、安定反射点グルーピング部102、グループ選択部103、変位速度算出部104、及び変位速度合成部105は、通信可能(データ送受信可能)に接続されている。
 安定反射点抽出部101は、レーダ(図示せず)によって複数方向から観測された時系列観測データ(観測方向ごとの時系列観測データ)を入力する。安定反射点抽出部101は、それぞれの観測データから、変位解析に利用できる安定反射点が得られる画素を抽出する。なお、一般に、複数の安定反射点が抽出される。以下、安定反射点が得られる画素を「安定反射点」と表現する。安定反射点抽出部101は、安定反射点を抽出するために、例えば、上述したPSIを用いる。なお、安定反射点抽出部101は、観測方向ごとの時系列観測データとして、2方向以上からの時系列観測データを入力する。
 安定反射点グルーピング部102は、観測方向ごとに、安定反射点の特徴量に基づいて、複数の安定反射点をグループ化するグルーピング処理を実行する。安定反射点のグループ化は、各々の安定反射点をいずれかのグループに割り当てることを意味する。安定反射点グルーピング部102は、グルーピング処理によって、複数の安定反射点を例えば、同程度の大きさのグループ、又は、反射する構造物ごとにグループ化する。特徴量として、安定反射点の変位速度を利用可能である。
 なお、「観測方向ごとに処理を実行する」ということは、ある観測方向の時系列観測データに対して処理を実行するとともに、他の1つ以上の観測方向の時系列観測データに対して処理を実行することを意味する。
 グループ選択部103は、観測方向ごとに、1つ又は複数のグループから、解析対象からの安定反射点を含むグループ(例えば、解析対象からの安定反射点を囲むようなグループ)を選択する。グループ選択部103は、解析対象周辺の安定反射点を含むグループを選択してもよい。グループ選択部103は、複数グループを選択してもよい。なお、一般に、解析の対象物は、あらかじめ特定されている。換言すれば、本実施形態では、あらかじめ特定されている対象物について解析が実行される。
 変位速度算出部104は、観測方向ごとに選択されたグループの変位速度を算出する。変位速度算出部104が得た変位速度は、観測方向ごとの解析対象の変位速度とされる。
 変位速度算出部104は、グループの変位速度を算出するときに、例えば、選択されたグループにおいて解析対象に近接する安定反射点の変位速度を利用ことができる。また、変位速度算出部104は、選択されたグループに属する複数の安定反射点の変位速度の平均値や中央値のような統計量を、グループの変位速度としてもよい。
 変位速度合成部105は、例えば非特許文献2に記載されている手法を用いて、観測方向ごとの解析対象の変位速度を合成する。2方向から観測データを利用する場合、各観測方向のベクトルが成す平面上に、それぞれの変位速度が合成される。その後、解析対象について2.5次元解析が実行されることによって、変位速度が準東西方向と準上下方向との成分に分離される。なお、視線方向が異なる3方向以上の観測データが利用される場合には、解析対象の3次元解析が実現される。また、4方向以上の観測データが利用される場合には、変位速度合成部105は、最小二乗法などを利用して、最も整合性が確保される合成変位速度を算出するようにしてもよい。
 次に、合成開口レーダの信号処理装置の第1の実施形態の動作を説明する。図2は、第1の実施形態の動作を示すフローチャートである。
 安定反射点抽出部101は、合成開口レーダによる観測方向ごとの時系列データを入力する。図2に示すように、安定反射点抽出部101は、観測方向ごとに、安定反射点を抽出する(ステップS101)。
 安定反射点グルーピング部102は、複数の安定反射点を複数のまとまりにグループ化する(ステップS102)。安定反射点グルーピング部102は、例えば、各安定反射点の変位速度を特徴量として、グループ化を行う。
 グループ選択部103は、複数のグループから、安定反射点グループを選択する(ステップS103)。安定反射点グループは、例えば、解析対象に最も近い安定反射点(解析対象における安定反射点を含む。)を含むグループである。また、解析対象を囲むような安定反射点を含むグループがある場合、安定反射点グループは、そのグループであってもよい。
 また、グループ選択部103は、グループごとに反射点を色分けしてディスプレイに表示してもよい。その場合、ユーザがグループを指定すると、グループ選択部103は、指定されたグループを安定反射点グループとする。
 変位速度算出部104は、観測方向ごとに、安定反射点グループとして選択されたグループの変位速度を算出する(ステップS104)。変位速度算出部104は、例えば、選択されたグループにおいて解析対象に近接する点の変位速度を利用できる。変位速度算出部104は、選択されたグループを構成する安定反射点の変位速度の平均値や中央値のような統計量を利用して、グループの変位速度を算出してもよい。
 変位速度合成部105は、観測方法ごとの安定反射点グループの変位速度を合成し、合成結果を出力する(ステップS105)。
 本実施形態では、観測方向ごとに、得られる複数の安定反射点をグループ化する。そして、解析対象に対応するグループを対象として合成変位解析が行われる。よって、観測方向ごとに得られる安定反射点の位置が異なる場合に、それぞれのグループを1つの大きな安定反射点として見なして、合成変位解析を行うことが可能になる。したがって、各々の安定反射点を対応付けなくても、解析対象に着目した合成変位解析を実行可能である。
 図3は、本実施形態の効果を説明するための説明図である。図3において、(a)及び(b)のそれぞれに、同じ領域を異なる方向から観測したときに得られる安定反射点の画像が例示されている。図3(a),(b)において、p1,p2は、それぞれの安定反射点を示す。なお、図3(a),(b)には、1箇所ずつ、p1,p2の符号が付されているが、全ての丸印が、安定反射点を示している。
 合成開口レーダで異なる方向から解析(観測)の対象物を含む領域が観測された場合、図3(a),(b)に示すように、各安定反射点が得られる位置は異なる。一般的な合成開口レーダの信号処理装置は、合成変位解析を行うために、安定反射点に関して、図3(a)に例示された複数の安定反射点と図3(b)に例示された複数の安定反射点との間で、1点1点の対応付けを行う。本実施形態の合成開口レーダの信号処理装置は、図3(c),(d)に例示されるように、複数の安定反射点をグループ化する。その結果、1点1点の対応付けを行うことなく、広さを持つ領域を対象として変位速度を算出して、合成変位解析を行うことができる。
 なお、図3(c),(d)において、p3~p10は、それぞれのグループを表す。各グループは、同様の変位情報を有する安定反射点の集合である。
 例えば、グループp3とグループp7とが解析対象からの反射点を含むグループである場合、グループp3とグループp7とがグループ選択部103で選択される。変位速度算出部104は、グループp3とグループp7とのそれぞれを一つの安定反射点とみなして変位速度を算出する。その後、合成変位解析が実行されることによって、解析対象の合成変位速度が得られる。
実施形態2.
 図4は、合成開口レーダの信号処理装置の第2の実施形態の構成例を示すブロック図である。第2の実施形態の信号処理装置は、安定反射点抽出部101、安定反射点グルーピング部106、グループ選択部103、変位速度算出部104、及び変位速度合成部105を備えている。安定反射点抽出部101、安定反射点グルーピング部106、グループ選択部103、変位速度算出部104、及び変位速度合成部105は、通信可能(データ送受信可能)に接続されている。安定反射点グルーピング部106は、距離算出部116を含む。
 安定反射点グルーピング部106は、生成されるグループの大きさが同程度の大きさになるように各安定反射点をグループ化する。安定反射点グルーピング部106は、グループの大きさを同程度の大きさにするために、例えば、安定反射点間の距離(本実施形態では、例えば、ユークリッド距離)を特徴量としてグループ化を実行する。具体的には、安定反射点グルーピング部106は、安定反射点の位置情報(例えば、座標)に基づいて、それぞれのグループが同程度の大きさになるようにグループ化を実行する。
 より具体的には、安定反射点グルーピング部106において、距離算出部116は、複数の安定反射点のうちの任意の2つの安定反射点の間のユークリッド距離を、当該2つの安定反射点の間の距離として算出する。
 なお、「同程度の大きさ」は、一例として、信号処理装置の使用者が基準となる大きさとして設定した大きさに対して、所定範囲内に収まるような大きさである。所定範囲は、例えば±30%(具体的には、基準となる大きさの70%~130%の大きさ)である。しかし、所定範囲は±30%に限定されず、任意に設定可能である。例えば、解析対象の大きさ(面積)に応じた範囲を選択してもよい。
 また、安定反射点グルーピング部102は、グループ化のために、例えば、それぞれの安定反射点間の距離を特徴量として、最小分散法に基づく階層的クラスタリングを使用できる。また、安定反射点グルーピング部102は、安定反射点間の距離を特徴量としてk-means法に基づく分割最適化クラスタリング手法を使用できる。なお、それらは、一例であって、安定反射点グルーピング部102は、グループ化のために他の手法を用いてもよい。
 安定反射点グルーピング部106以外の構成要素は、第1の実施形態における構成要素と同じである。
 次に、合成開口レーダの信号処理装置の第2の実施形態の動作を説明する。図5は、第2の実施形態の動作を示すフローチャートである。
 安定反射点抽出部101は、第1の実施形態における処理と同様の処理を行う(ステップS101)。
 安定反射点グルーピング部106は、ステップS101の処理で観測方向ごとに抽出された安定反射点を入力する。そして、安定反射点グルーピング部106は、観測方向ごとに、安定反射点間の距離を基に生成されるグループが同程度の大きさを持つように各安定反射点をグループ化する(ステップS106)。安定反射点グルーピング部106は、例えば、ある安定反射点に着目し、その安定反射点から所定距離内にある1つ又は複数の安定反射点が、着目した安定反射点と同グループに属するようにグループ化する。なお、安定反射点間の距離を得るための安定反射点の位置情報は、例えば、観測データとともに入力される。
 その他の処理は、第1の実施形態における処理と同じである。
 本実施形態では、安定反射点間の距離情報を基に、各グループの大きさが同程度になるよう安定反射点がグループ化される。地盤移動のような広範囲に影響を及ぼす変位に関して、それぞれの安定反射点の変位速度は、近傍の安定反射点の変位速度に類似する傾向がある。したがって、本実施形態では、例えば同程度の変位速度を有する安定反射点がグループ化されることになる。そして、観測方向ごとに、解析対象を含む安定反射点グループの変位速度が合成されるので、解析対象の合成変位解析が可能になる。本実施形態は、例えば地面の変位を解析するときに効果を発揮する。
 なお、2つの安定反射点の間の距離(本実施形態では、例えば、ユークリッド距離)が小さいときには、2つの安定反射点が同じ対象物に関連している可能性が高いと想定される。また、その間の距離が大きいときには、2つの安定反射点が同じ対象物に関連していない可能性が高いと想定される。同じ対象物に関連しているということは、例えば、1つの対象物(建造物など)における安定反射点であるということである。
実施形態3.
 図6は、合成開口レーダの信号処理装置の第3の実施形態の構成例を示すブロック図である。第3の実施形態の信号処理装置は、安定反射点抽出部101、安定反射点グルーピング部107、グループ選択部103、変位速度算出部104、及び変位速度合成部105を備えている。安定反射点抽出部101、安定反射点グルーピング部107、グループ選択部103、変位速度算出部104、及び変位速度合成部105は、通信可能(データ送受信可能)に接続されている。安定反射点グルーピング部107は、位相関係算出部117を含む。
 安定反射点グルーピング部107は、生成されるグループの大きさが同程度の大きさになるように各安定反射点をグループ化する。本実施形態では、安定反射点グルーピング部107は、グループの大きさを同程度の大きさにするために、安定反射点が有する特徴量のうち、構造物の形状に依存した特徴量を利用する。本実施形態では、安定反射点グルーピング部107は、特徴量として、安定反射点の位相を用いる。なお、位相は一例であり、構造物の形状に依存する特徴量として、別の特徴量を利用してもよい。また、安定反射点グルーピング部107は、既知である構造物の形状を基に、安定反射点をグループ化してもよい。
 具体的には、安定反射点グルーピング部107において、位相関係算出部117は、それぞれの安定反射点の各々における位相を特定する。そして、位相関係算出部117は、各々の位相の関連を特定可能な値を算出する。位相関係算出部117は、例えば、全ての安定反射点における任意の2つの安定反射点を対(ペア)にして、全ての対に関して、安定反射点の位相の相関係数を算出する。そして、安定反射点グルーピング部107は、ある安定反射点に着目し、その安定反射点の位相について相関係数の値が大きい位相を有する1つ又は複数の安定反射点が、着目した安定反射点と同グループに属するようにグループ化する。なお、相関係数の値が大きいということは、例えば、あらかじめ定められたしきい値を越えるということである。
 次に、合成開口レーダの信号処理装置の第3の実施形態の動作を説明する。図7は、第3の実施形態の動作を示すフローチャートである。
 安定反射点抽出部101は、第1の実施形態における処理と同様の処理を行う(ステップS101)。
 安定反射点グルーピング部107は、ステップS101の処理で観測データごとに抽出された安定反射点を入力する。そして、安定反射点グルーピング部107は、上述した処理によって、すなわち、構造物の形状に依存する特徴量(本実施形態では、位相)に基づいて、安定反射点をグループ化する(ステップS107)。
 その他の処理は、第1の実施形態における処理と同じである。
 本実施形態では、安定反射点グルーピング部107は、安定反射点の特徴量のうち、観測領域内の構造物の形状に依存する特徴量に基づいてグループ化を行う。したがって、安定反射点グルーピング部107は、複数の安定反射点のうち、建物や道路のような構造物の形状に対応する安定反射点を、1つのグループにまとめることができる。その結果、構造物を解析対象としたときに、グループ選択部103は、解析対象に対応する安定反射点を含むグループを観測方向ごとに容易に選択できる。よって、構造物のみに着目した合成変位解析を行う処理が容易になる。
 また、構造物のみに着目できるので、地面の変位と異なる変位を示す構造物を検知することにも本実施形態を応用できる。
 図8は、本実施形態の効果を説明するための説明図である。図8において、(a)及び(b)のそれぞれに、同じ領域を異なる方向から観測したときに得られる安定反射点の画像が例示されている。図8(a),(b)において、q1は、安定反射点を示す。なお、図8(a),(b)には、1箇所ずつ、q1の符号が付されているが、全ての丸印が、安定反射点を示している。図8(a),(b)において、q2,q3は、観測領域における構造物を示す。
 本実施形態の合成開口レーダの信号処理装置は、図8(c),(d)に例示されるように、複数の安定反射点を、構造物の形状に依存する特徴量(本実施形態では、例えば、位相)に基づいてグループ化する。図8(c)において、q4は、ある観測方向Xから見た構造物q2における安定反射点のグループを示す。q5は、観測方向Xから見た構造物q3における安定反射点のグループを示す。図8(d)において、q6,q7は、それぞれ、他の観測方向Yから見た構造物q2における安定反射点のグループを示す。q8は、観測方向Yから見た構造物q3における安定反射点のグループを示す。
 例えば、構造物q3が解析対象である場合、グループ選択部103は、観測方向Xにおけるグループq5と観測方向Yにおけるグループq8とを、解析対象についての安定反射点グループとして選択する。変位速度算出部104は、グループごとに、すなわち、グループq5とグループq8とに関して、変位速度を算出する。そして、各々の変位速度を組み合わせて合成変位速度を得る。このように、本実施形態では、構造物のみに着目した合成変位解析を行うことができる。
 なお、位相の相関も距離であると見なした場合、2つの安定反射点の間の距離(本実施形態では、例えば、位相の相関係数)が大きいときには、位相の類似度が高いので、2つの安定反射点が同じ対象物に関連している可能性が高いと想定される。また、その間の距離が小さいときには、2つの安定反射点が同じ対象物に関連していない可能性が高いと想定される。
実施形態4.
 図9は、合成開口レーダの信号処理装置の第4の実施形態の構成例を示すブロック図である。第4の実施形態の信号処理装置は、安定反射点抽出部101、安定反射点グルーピング部108、グループ選択部103、変位速度算出部104、及び変位速度合成部105を備えている。安定反射点抽出部101、安定反射点グルーピング部108、グループ選択部103、変位速度算出部104、及び変位速度合成部105は、通信可能(データ送受信可能)に接続されている。
 本実施形態では、安定反射点グルーピング部108は、作成されるグループの大きさが同程度になるように、かつ、安定反射点の集合に構造物の形状が現れるように各安定反射点をグループ化する。すなわち、本実施形態は、第2の実施形態と第3の実施形態とが組み合わされた実施形態に相当する。
 図10は、安定反射点グルーピング部108の構成例を示すブロック図である。図10に示すように、安定反射点グルーピング部108は、距離算出部116、位相関係算出部117、及び統合部118を含む。
 距離算出部116は、第2の実施形態の場合と同様に、複数の安定反射点のうちの任意の2つの安定反射点の間のユークリッド距離を、当該2つの安定反射点の間の距離として算出する。位相関係算出部117は、第3の実施形態の場合と同様に、各々の位相の関連を特定可能な値を算出する。位相関係算出部117は、一例として、全ての安定反射点における任意の2つの安定反射点を対(ペア)にして、全ての対に関して、安定反射点の位相の相関係数を算出する。
 統合部118は、距離算出部116から、安定反射点の間のユークリッド距離を入力する。また、統合部118は、位相関係算出部117から、位相の関連を特定可能な値の一例である相関係数を入力する。そして、統合部118は、ユークリッド距離と位相の相関係数との双方を反映した「距離」を算出する。なお、以下の算出方法は、非特許文献4にも記載されている。
 上述したように、ユークリッド距離が小さいときには、2つの安定反射点が同じ対象物に関連している可能性が高いと想定される。一方、位相の相関係数が大きいときには、2つの安定反射点が同じ対象物に関連している可能性が高いと想定される。
 そこで、統合部118は、ユークリッド距離と相関係数とを統合する前に、すなわち、ユークリッド距離と位相の相関係数との双方を反映した「距離」を算出する前に、値が小さいと対象物に関連している可能性が高くなるように、位相の相関係数の変換を行う。なお、統合部118は、値が大きいと対象物に関連している可能性が高くなるように、ユークリッド距離の値の変換を行うようにしてもよい。
 具体的には、統合部118は、安定反射点mと安定反射点nとの間のユークリッド距離をlm,n、安定反射点mの位相と安定反射点nの位相と相関係数の値をcm,nとしたとき、例えば、(1)式で、「距離」dm,nを算出する。
 dm,n=(1-cm,n)lm,n          (1)
 統合部118は、(2)式で、「距離」dm,nを算出してもよい。なお、γは、あらかじめ定められた0よりも大きい実数である。
 dm,n=(cm,n -γ-1)lm,n         (2)
 統合部118が(2)式を用いる場合には、cm,nが0に近づくとdm,nは無限大に発散する。すなわち、2つの安定反射点の相関が低いときに、dm,nは極端に大きくなる。したがって、相関が低い2つの安定反射点が1つのグループに属する可能性がより小さくなる。なお、cm,nの値は、0~1の範囲内にあることが想定されている。
 なお、本実施形態では、(1)式又は(2)が用いられるが、(2)式における(cm,n -γ-1)は、第3の実施形態における特徴量として用いられてもよい。その場合には、安定反射点グルーピング部107は、特徴量が大きいほど、2つの安定反射点の相関が低いと判定する。
 次に、合成開口レーダの信号処理装置の第4の実施形態の動作を説明する。図11は、第4の実施形態の動作を示すフローチャートである。
 安定反射点抽出部101は、第1の実施形態における処理と同様の処理を行う(ステップS101)。
 安定反射点グルーピング部108は、ステップS101の処理で観測データごとに抽出された安定反射点を入力する。そして、安定反射点グルーピング部108は、上述した処理によって、作成されるグループが同程度の大きさを有し、かつ、構造物の形状に沿ってまとまるように各安定反射点をグループ化する(ステップS108)。具体的には、本実施形態では、安定反射点グルーピング部108は、ユークリッド距離と位相の相関係数との双方を反映した「距離」を特徴量としてグループ化を実行する。
 その他の処理は、第1の実施形態における処理と同じである。
 一般に、観測領域内に存在する建物などの構造物の大きさは一定ではない。本実施形態では、安定反射点グルーピング部108は、各グループの大きさが同程度になるように、かつ、構造物の形状が安定反射点の集合に現れるようにグループ化を実行する。したがって、本実施形態の信号処理装置は、解析対象の大きさに合わせた構造物に着目した合成変位解析を行うことができる。
実施形態5.
 図12は、合成開口レーダの信号処理装置の第5の実施形態の構成例を示すブロック図である。第5の実施形態の信号処理装置は、安定反射点抽出部101、安定反射点グルーピング部102、グループ選択部103、変位速度算出部109、及び変位速度合成部105を備えている。安定反射点抽出部101、安定反射点グルーピング部102、グループ選択部103、変位速度算出部109、及び変位速度合成部105は、通信可能(データ送受信可能)に接続されている。
 本実施形態では、変位速度算出部109は、グループから、所定の安定反射点を除外する。変位速度算出部109は、安定反射点除外部119を含む。安定反射点除外部119は、選択された安定反射点グループに属する安定反射点のうち、大きく異なる変位速度を有する安定反射点を外れ値として除外する。安定反射点除外部119は、例えば、グループにおける中心的な変位速度からかけ離れた変位速度を有する安定反射点を除外する。なお、「大きく異なる変位速度」は、他の変位速度に対して所定のしきい値を越えるような変位速度である。所定のしきい値を越えるような変位速度は、一例として、他の変位速度から±20%の範囲を越える変位速度である。
 変位速度算出部109は、例えば、グループ選択部103によって選択されたグループに属する安定反射点の変位速度の平均値に近い変位速度を有する安定反射点のみを利用する。具体的には、安定反射点除外部119は、一例として、グループに属する安定反射点の平均値と標準偏差とを算出する。そして、安定反射点除外部119は、平均値からの差が標準偏差以内である変位速度を有する安定反射点を抽出する。変位速度算出部109は、抽出された安定反射点を使用してグループの変位速度を算出する。したがって、平均値からかけ離れた変位速度を有する安定反射点は、安定反射点除外部119によって除外される。
 なお、グループにおける中心的な変位速度からかけ離れた変位速度(本実施形態では、平均値からの差が標準偏差を越える変位速度)は、中心的な変位速度に対して、所定の範囲内(一例として、±10%)にある変位速度である。
 その他の処理は、第1の実施形態における処理と同じである。なお、上記の安定反射点を除外する方法は一例である。安定反射点除外部119は、他の方法によって、中心的な変位速度からかけ離れた変位速度を有する安定反射点を除外するようにしてもよい。
 次に、合成開口レーダの信号処理装置の第5の実施形態の動作を説明する。図13は、第5の実施形態の動作を示すフローチャートである。
 安定反射点抽出部101、安定反射点グルーピング部102及びグループ選択部103は、第1の実施形態における処理と同様の処理を行う(ステップS101~S103)。
 変位速度算出部109は、上記のような処理によって、グループの変位速度を算出する(ステップS109)。すなわち、所定の安定反射点が除外された安定反射点の集合における各安定反射点の変位速度を用いてグループの変位速度を算出する。
 本実施形態では、変位速度算出部109は、大きく異なる変位速度を有する安定反射点を外れ値として除外した上で、グループの変位速度を算出する。変位速度算出部109は、一例として、選択されたグループに属する各安定反射点の変位速度が中心的な変位速度(本実施形態では、例えば、平均値)に近い安定反射点を利用して、グループの変位速度を算出する。したがって、グルーピング処理の際に、周囲の安定反射点と変位速度が大きく異なる安定反射点が誤って1つのグループに入れられたとしても、そのような安定反射点は、外れ値として除外される。よって、観測方向ごとに選択されるグループの変位速度が、より正確に算出される。すなわち、合成された変位速度の精度も向上する。その結果、より高精度な合成開口レーダによる変位解析が実行される。
 なお、本実施形態は第1の実施形態と組み合わされたが、本実施形態は、第2~第5の実施形態のいずれかと組み合わされることも可能である。
 以上に説明したように、上記の各実施形態の信号処理装置は、解析対象のみに着目した変位解析を実施することができる。その理由は、観測領域内の土地や構造物ごとに安定反射点がグループ化されるので、解析対象からの安定反射点を利用した確実な合成変位解析が実行可能になるからである。
 また、上記の各実施形態の信号処理装置は、高精度な合成変位解析を実行できる。その理由は、観測領域内の土地や構造物ごとに安定反射点がグループ化されるので、解析対象における安定反射点とは異なる安定反射点を除外して合成変位解析が実行可能になるからである。
 上記の実施形態における各構成要素は、1つのハードウェアで構成可能であるが、1つのソフトウェアでも構成可能である。また、各構成要素は、複数のハードウェアでも構成可能であり、複数のソフトウェアでも構成可能である。また、各構成要素のうちの一部をハードウェアで構成し、他部をソフトウェアで構成することもできる。
 上記の実施形態における各機能(各処理)を、CPU(Central Processing Unit )等のプロセッサやメモリ等を有するコンピュータで実現可能である。例えば、記憶装置(記憶媒体)に上記の実施形態における方法(処理)を実施するためのプログラムを格納し、各機能を、記憶装置に格納されたプログラムをCPUで実行することによって実現してもよい。
 図14は、CPUを有するコンピュータの一例を示すブロック図である。コンピュータは、合成開口レーダの信号処理装置に実装される。CPU1000は、記憶装置1001に格納されたプログラムに従って処理を実行することによって、上記の実施形態における各機能を実現する。すなわち、図1,図4,図6,図9,図12に示された信号処理装置における、安定反射点抽出部101、安定反射点グルーピング部102,106,107,108、グループ選択部103、変位速度算出部104,109、及び変位速度合成部105の機能を実現する。
 記憶装置1001は、例えば、非一時的なコンピュータ可読媒体(non-transitory computer readable medium )である。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium )を含む。非一時的なコンピュータ可読媒体の具体例として、磁気記録媒体(例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Compact Disc-Read Only Memory )、CD-R(Compact Disc-Recordable )、CD-R/W(Compact Disc-ReWritable )、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM )、フラッシュROM)がある。
 また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium )に格納されてもよい。一時的なコンピュータ可読媒体には、例えば、有線通信路または無線通信路を介して、すなわち、電気信号、光信号または電磁波を介して、プログラムが供給される。
 メモリ1002は、例えばRAM(Random Access Memory)で実現され、CPU1000が処理を実行するときに一時的にデータを格納する記憶手段である。メモリ1002に、記憶装置1001または一時的なコンピュータ可読媒体が保持するプログラムが転送され、CPU1000がメモリ1002内のプログラムに基づいて処理を実行するような形態も想定しうる。
 図15は、合成開口レーダの信号処理装置の主要部を示すブロック図である。図15に示す信号処理装置10は、レーダによって複数の観測方向から観測された観測対象についての観測方向ごとの時系列観測データから、観測方向ごとに、複数の安定反射点を抽出する安定反射点抽出部11(実施形態では、安定反射点抽出部101で実現される。)と、各々の観測方向ごとに、複数の安定反射点をグループ化する安定反射点グルーピング部12(実施形態では、安定反射点グルーピング部102,106,107,108で実現される。)と、各々の観測方向ごとに、グループ化で作成されたグループから、解析対象からの反射によって得られる安定反射点(解析対象に属する安定反射点)を含む安定反射点グループを選択するグループ選択部13(実施形態では、グループ選択部103で実現される。)と、選択された安定反射点グループの変位速度を合成する変位速度処理部14(実施形態では、変位速度算出部104,109、及び変位速度合成部105で実現される。)とを備える
 図16は、他の態様の合成開口レーダの信号処理装置の主要部を示すブロック図である。図16に示す信号処理装置20は、変位速度処理部15が、観測方向ごとに選択された安定反射点グループの変位速度を算出する変位速度算出部16(実施形態では、変位速度算出部104,109で実現される。)と、観測方向のそれぞれに対応する変位速度を合成する変位速度合成部17(実施形態では、変位速度合成部105で実現される。)とを含むように構成されている。
 上記の実施形態の一部または全部は、以下の付記のようにも記載され得るが、以下に限定されるわけではない。
(付記1)レーダによって複数の観測方向から観測された観測対象についての該観測方向ごとの時系列観測データから、該観測方向ごとに、複数の安定反射点を抽出する安定反射点抽出部と、
 各々の前記観測方向ごとに、前記複数の安定反射点をグループ化する安定反射点グルーピング部と、
 各々の前記観測方向ごとに、グループ化で作成されたグループから、解析対象に属する前記安定反射点を含む安定反射点グループを選択するグループ選択部と、
 選択された前記安定反射点グループの変位速度を合成する変位速度処理部と
 を含む合成開口レーダの信号処理装置。
(付記2)前記変位速度処理部は、
 前記観測方向ごとに選択された前記安定反射点グループの変位速度を算出する変位速度算出部と、
 前記観測方向のそれぞれに対応する前記変位速度を合成する変位速度合成部とを含む
 付記1の合成開口レーダの信号処理装置。
(付記3)前記安定反射点グルーピング部は、グループの大きさが基準となる大きさに対して所定範囲内に収まるようにグループ化を行う
 付記1または付記2の合成開口レーダの信号処理装置。
(付記4)前記安定反射点グルーピング部は、観測領域内の構造物の形状を表す特徴量に基づいてグループ化を行う
 付記1から付記3のうちのいずれかの合成開口レーダの信号処理装置。
(付記5)前記変位速度算出部は、選択された前記安定反射点グループに属する前記安定反射点から、他の変位速度に対して所定のしきい値を越えるような変位速度を除外した上で、前記安定反射点を対象として変位速度を算出する
 付記1から付記4のうちのいずれかの合成開口レーダの信号処理装置。
(付記6)レーダによって複数の観測方向から観測された観測対象についての該観測方向ごとの時系列観測データから、該観測方向ごとに、複数の安定反射点を抽出し、
 各々の前記観測方向ごとに、前記複数の安定反射点をグループ化し、
 各々の前記観測方向ごとに、グループ化で作成されたグループから、解析対象に属する前記安定反射点を含む安定反射点グループを選択し、
 選択された前記安定反射点グループの変位速度を合成する
 合成開口レーダの信号処理方法。
(付記7)前記安定反射点グループの変位速度を合成するときに、
 前記観測方向ごとに選択された前記安定反射点グループの変位速度を算出し、
 前記観測方向のそれぞれに対応する前記変位速度を合成する
 付記6の合成開口レーダの信号処理方法。
(付記8)グループの大きさが基準となる大きさに対して所定範囲内に収まるように、前記複数の安定反射点のグループ化を行う
 付記6または付記7の合成開口レーダの信号処理方法。
(付記9)観測領域内の構造物の形状を表す特徴量に基づいて、前記複数の安定反射点のグループ化を行う
 付記6から付記8のうちのいずれかの合成開口レーダの信号処理方法。
(付記10)選択された前記安定反射点グループに属する前記安定反射点から、他の変位速度に対して所定のしきい値を越えるような変位速度を除外した上で、前記安定反射点を対象として変位速度を算出する
 付記6から付記9のうちのいずれかの合成開口レーダの信号処理方法。
(付記11)コンピュータに、
 レーダによって複数の観測方向から観測された観測対象についての該観測方向ごとの時系列観測データから、該観測方向ごとに、複数の安定反射点を抽出する処理と、
 各々の前記観測方向ごとに、前記複数の安定反射点をグループ化する処理と、
 各々の前記観測方向ごとに、グループ化で作成されたグループから、解析対象に属する前記安定反射点を含む安定反射点グループを選択する処理と、
 選択された前記安定反射点グループの変位速度を合成する処理と
 を実行させるための合成開口レーダの信号処理プログラム。
(付記12)コンピュータに、
 前記安定反射点グループの変位速度を合成するときに、
 前記観測方向ごとに選択された前記安定反射点グループの変位速度を算出する処理と、
 前記観測方向のそれぞれに対応する前記変位速度を合成する処理と
 を実行させる付記11の合成開口レーダの信号処理プログラム。
(付記13)コンピュータに、
 グループの大きさが基準となる大きさに対して所定範囲内に収まるように、前記複数の安定反射点のグループ化を行わせる
 付記11または付記12の合成開口レーダの信号処理プログラム。
(付記14)コンピュータに、
 観測領域内の構造物の形状を表す特徴量に基づいて、前記複数の安定反射点のグループ化を行わせる
 付記11から付記13のうちのいずれかの合成開口レーダの信号処理プログラム。
(付記15)コンピュータに、
 選択された前記安定反射点グループに属する前記安定反射点から、他の変位速度に対して所定のしきい値を越えるような変位速度を除外した上で、前記安定反射点を対象として変位速度を算出する
 付記11から付記14のうちのいずれかの合成開口レーダの信号処理プログラム。
(付記16)コンピュータに、
 付記6から付記10のいずれかの合成開口レーダの信号処理方法を実行させるためのプログラム。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記の実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2017年12月18日に出願された日本特許出願2017-241434を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 11  安定反射点抽出部
 12  安定反射点グルーピング部
 13  グループ選択部
 14,15 変位速度処理部
 16  変位速度算出部
 17  変位速度合成部
 101  安定反射点抽出部
 102,106,107,108 安定反射点グルーピング部
 103  グループ選択部
 104,109 変位速度算出部
 105  変位速度合成部
 116  距離算出部
 117  位相関係算出部
 118  統合部
 119  安定反射点除外部
 1000 CPU
 1001 記憶装置
 1002 メモリ

Claims (10)

  1.  レーダによって複数の観測方向から観測された観測対象についての該観測方向ごとの時系列観測データから、該観測方向ごとに、複数の安定反射点を抽出する安定反射点抽出部と、
     各々の前記観測方向ごとに、前記複数の安定反射点をグループ化する安定反射点グルーピング部と、
     各々の前記観測方向ごとに、グループ化で作成されたグループから、解析対象に属する前記安定反射点を含む安定反射点グループを選択するグループ選択部と、
     選択された前記安定反射点グループの変位速度を合成する変位速度処理部と
     を備える合成開口レーダの信号処理装置。
  2.  前記変位速度処理部は、
     前記観測方向ごとに選択された前記安定反射点グループの変位速度を算出する変位速度算出部と、
     前記観測方向のそれぞれに対応する前記変位速度を合成する変位速度合成部とを含む
     請求項1記載の合成開口レーダの信号処理装置。
  3.  前記安定反射点グルーピング部は、グループの大きさが基準となる大きさに対して所定範囲内に収まるようにグループ化を行う
     請求項1または請求項2記載の合成開口レーダの信号処理装置。
  4.  前記安定反射点グルーピング部は、観測領域内の構造物の形状を表す特徴量に基づいてグループ化を行う
     請求項1から請求項3のうちのいずれか1項に記載の合成開口レーダの信号処理装置。
  5.  前記変位速度算出部は、選択された前記安定反射点グループに属する前記安定反射点のうち、他の変位速度に対して所定のしきい値を越えるような変位速度を除外して前記安定反射点を対象として変位速度を算出する
     請求項1から請求項4のうちのいずれか1項に記載の合成開口レーダの信号処理装置。
  6.  レーダによって複数の観測方向から観測された観測対象についての該観測方向ごとの時系列観測データから、該観測方向ごとに、複数の安定反射点を抽出し、
     各々の前記観測方向ごとに、前記複数の安定反射点をグループ化し、
     各々の前記観測方向ごとに、グループ化で作成されたグループから、解析対象に属する前記安定反射点を含む安定反射点グループを選択し、
     選択された前記安定反射点グループの変位速度を合成する
     合成開口レーダの信号処理方法。
  7.  前記安定反射点グループの変位速度を合成するときに、
     前記観測方向ごとに選択された前記安定反射点グループの変位速度を算出し、
     前記観測方向のそれぞれに対応する前記変位速度を合成する
     請求項6記載の合成開口レーダの信号処理方法。
  8.  グループの大きさが基準となる大きさに対して所定範囲内に収まるように、前記複数の安定反射点のグループ化を行う
     請求項6または請求項7記載の合成開口レーダの信号処理方法。
  9.  観測領域内の構造物の形状を表す特徴量に基づいて、前記複数の安定反射点のグループ化を行う
     請求項6から請求項8のうちのいずれか1項に記載の合成開口レーダの信号処理方法。
  10.  コンピュータに、
     レーダによって複数の観測方向から観測された観測対象についての該観測方向ごとの時系列観測データから、該観測方向ごとに、複数の安定反射点を抽出する処理と、
     各々の前記観測方向ごとに、前記複数の安定反射点をグループ化する処理と、
     各々の前記観測方向ごとに、グループ化で作成されたグループから、解析対象に属する前記安定反射点を含む安定反射点グループを選択する処理と、
     選択された前記安定反射点グループの変位速度を合成する処理と
     を実行させるための合成開口レーダの信号処理プログラム。
PCT/JP2018/037716 2017-12-18 2018-10-10 合成開口レーダの信号処理装置及び信号処理方法 WO2019123786A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/771,450 US11460573B2 (en) 2017-12-18 2018-10-10 Synthetic aperture radar signal processing device and method
JP2019560820A JP6879386B2 (ja) 2017-12-18 2018-10-10 合成開口レーダの信号処理装置及び信号処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017241434 2017-12-18
JP2017-241434 2017-12-18

Publications (1)

Publication Number Publication Date
WO2019123786A1 true WO2019123786A1 (ja) 2019-06-27

Family

ID=66993304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037716 WO2019123786A1 (ja) 2017-12-18 2018-10-10 合成開口レーダの信号処理装置及び信号処理方法

Country Status (3)

Country Link
US (1) US11460573B2 (ja)
JP (1) JP6879386B2 (ja)
WO (1) WO2019123786A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986948A (zh) * 2021-04-20 2021-06-18 北京东方至远科技股份有限公司 基于InSAR技术的建筑形变监测方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11919479B2 (en) * 2021-05-18 2024-03-05 Ford Global Technologies, Llc Systems and methods for providing security to a vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189762A (ja) * 1996-01-08 1997-07-22 Mitsubishi Electric Corp レーダ装置を用いた地表変動観測方法並びにこの方法に用いる合成開口レーダ装置及びトランスポンダ
JP2017049089A (ja) * 2015-09-01 2017-03-09 清水建設株式会社 情報処理装置、情報処理方法およびプログラム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0083107B1 (en) * 1981-12-28 1989-03-29 Nec Corporation Synthetic aperture radar image processing system
US4723124A (en) * 1986-03-21 1988-02-02 Grumman Aerospace Corporation Extended SAR imaging capability for ship classification
FR2778747B1 (fr) * 1998-05-13 2000-08-04 Centre Nat Etd Spatiales Dispositif d'interferometrie radar utilisant des satellites
ITMI991154A1 (it) * 1999-05-25 2000-11-25 Milano Politecnico Procedimento per misure radar di spostamento di aere urbane e zone franose
US6512996B1 (en) * 2000-03-08 2003-01-28 University Corporation For Atmospheric Research System for measuring characteristic of scatterers using spaced receiver remote sensors
JP3631136B2 (ja) 2000-12-15 2005-03-23 三菱電機株式会社 レーダ装置
US7038618B2 (en) * 2004-04-26 2006-05-02 Budic Robert D Method and apparatus for performing bistatic radar functions
US7768442B2 (en) * 2005-07-18 2010-08-03 Groundprobe Pty. Ltd. Interferometric signal processing
GB0710209D0 (en) * 2007-05-29 2007-07-04 Cambridge Consultants Radar system
GB2497003B (en) * 2008-05-29 2013-08-07 Cambridge Consultants Radar system and method
ES2566132T3 (es) * 2008-07-04 2016-04-11 Telespazio S.P.A. Identificación y análisis de dispersores persistentes en series de imágenes de SAR
IT1394733B1 (it) * 2009-07-08 2012-07-13 Milano Politecnico Procedimento per il filtraggio di interferogrammi generati da immagini sar acquisite sulla stessa area.
US8384583B2 (en) * 2010-06-07 2013-02-26 Ellegi S.R.L. Synthetic-aperture radar system and operating method for monitoring ground and structure displacements suitable for emergency conditions
US8711028B2 (en) * 2010-08-26 2014-04-29 Lawrence Livermore National Security, Llc Buried object detection in GPR images
ITRM20130426A1 (it) * 2013-07-19 2015-01-20 Consiglio Nazionale Ricerche Metodo per il filtraggio di dati interferometrici acquisiti mediante radar ad apertura sintetica (sar).
GB2517710A (en) * 2013-08-28 2015-03-04 Aveillant Ltd Radar system and associated apparatus and methods
WO2016030656A1 (en) * 2014-08-28 2016-03-03 Aveillant Limited Radar system and associated apparatus and methods
JP6349938B2 (ja) * 2014-05-09 2018-07-04 日本電気株式会社 測定点情報提供装置、変動検出装置、方法およびプログラム
JP6349937B2 (ja) * 2014-05-09 2018-07-04 日本電気株式会社 変動検出装置、変動検出方法および変動検出用プログラム
KR101605450B1 (ko) * 2014-08-04 2016-03-22 서울시립대학교산학협력단 다중시기 mai 간섭도의 적층 방법 및 그 장치
JP2016090361A (ja) 2014-11-04 2016-05-23 国立研究開発法人情報通信研究機構 Sarインターフェログラムからの垂直構造の抽出方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189762A (ja) * 1996-01-08 1997-07-22 Mitsubishi Electric Corp レーダ装置を用いた地表変動観測方法並びにこの方法に用いる合成開口レーダ装置及びトランスポンダ
JP2017049089A (ja) * 2015-09-01 2017-03-09 清水建設株式会社 情報処理装置、情報処理方法およびプログラム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LU , PING: "Persistent Scatterers Interferometry Hotspot and Cluster Analysis (PSI-HCA) for detection of extremely slow-moving landslides", INTERNATIONAL JOURNAL OF REMOTE SENSING, vol. 33, no. 2, 20 January 2012 (2012-01-20), pages 466 - 489, XP055516816 *
TANAKA, TAICHI: "Persistent scatterer clustering for structure displacement analysis based on phase correlation network", 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS, 23 July 2017 (2017-07-23), pages 4618 - 4621, XP033275496 *
YAMANAKA, MASAYUKI ET AL.: "Detection of ground subsidence by InSAR time series analysis", REPORT OF THE GEOSPATIAL INFORMATION AUTHORITY OF JAPAN, vol. 124, 27 December 2013 (2013-12-27), pages 1 - 14 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986948A (zh) * 2021-04-20 2021-06-18 北京东方至远科技股份有限公司 基于InSAR技术的建筑形变监测方法和装置

Also Published As

Publication number Publication date
JP6879386B2 (ja) 2021-06-02
JPWO2019123786A1 (ja) 2020-11-26
US11460573B2 (en) 2022-10-04
US20210072376A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
US7898457B2 (en) System and method for processing imagery from synthetic aperture systems
Griffiths et al. Comparison of pre-and self-calibrated camera calibration models for UAS-derived nadir imagery for a SfM application
US9709673B2 (en) Method and system for rendering a synthetic aperture radar image
JP7448485B2 (ja) ポイントクラウドの着色において使用される方法及びシステム
Palm et al. Radargrammetric DEM extraction over urban area using circular SAR imagery
RU2364887C2 (ru) Способ навигации летательного аппарата по радиолокационным изображениям земной поверхности с использованием цифровых моделей местности
CN103472450B (zh) 基于压缩感知的非均匀空间构形分布式sar动目标三维成像方法
Huang et al. An efficient method of monitoring slow-moving landslides with long-range terrestrial laser scanning: a case study of the Dashu landslide in the Three Gorges Reservoir Region, China
JP6935847B2 (ja) 合成開口レーダ画像解析システム、合成開口レーダ画像解析方法および合成開口レーダ画像解析プログラム
Scaioni et al. Close-range photogrammetric techniques for deformation measurement: Applications to landslides
WO2019123786A1 (ja) 合成開口レーダの信号処理装置及び信号処理方法
US11754704B2 (en) Synthetic-aperture-radar image processing device and image processing method
Rigling et al. Three-dimensional surface reconstruction from multistatic SAR images
JP7006781B2 (ja) 合成開口レーダ信号解析装置、合成開口レーダ信号解析方法および合成開口レーダ信号解析プログラム
KR102185307B1 (ko) Sar 영상의 객체 응답 초해상도화 방법 및 객체 응답 초해상도화 장치
KR101546697B1 (ko) 표적 식별 정보 데이터베이스 구축 장치 및 방법
RU2643790C1 (ru) Способ измерения рельефа поверхности Земли
Domínguez et al. Deriving digital surface models from geocoded SAR images and back-projection tomography
André et al. Spatially variant incoherence trimming for improved bistatic SAR CCD
Woolard et al. Shoreline mapping from airborne lidar in Shilshole Bay, Washington
Aksu et al. 3D scene reconstruction from multi-sensor EO-SAR data
Murdoch Augmentation of visual odometry using radar
Hong et al. Evaluation of Rational Function Model for High-Resolution KOMPSAT-5 SAR Imagery with Different Sizes of Virtual Grid and Reference Coordinate Systems
Nguyen et al. Electronic scan strategy for phased array weather radar using a space–time characterization model
Cuccoli et al. Over the horizon sky-wave radar: simulation tool for coordinate registration method based on sea-land transitions identification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560820

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893134

Country of ref document: EP

Kind code of ref document: A1