WO2019120077A1 - 一种天线及通信装置 - Google Patents

一种天线及通信装置 Download PDF

Info

Publication number
WO2019120077A1
WO2019120077A1 PCT/CN2018/119257 CN2018119257W WO2019120077A1 WO 2019120077 A1 WO2019120077 A1 WO 2019120077A1 CN 2018119257 W CN2018119257 W CN 2018119257W WO 2019120077 A1 WO2019120077 A1 WO 2019120077A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
antenna
variable
radio frequency
area
Prior art date
Application number
PCT/CN2018/119257
Other languages
English (en)
French (fr)
Inventor
潘鑫
唐志勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18891956.7A priority Critical patent/EP3716396A4/en
Publication of WO2019120077A1 publication Critical patent/WO2019120077A1/zh
Priority to US16/906,071 priority patent/US20200321699A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element

Definitions

  • the present application relates to the field of radio frequency microwave technologies, and in particular, to an antenna and a communication device.
  • Impedance matching is mainly used on the transmission line.
  • the load impedance and the characteristic impedance of the transmission line are equal, so that all the high-frequency microwave signals can only be transmitted to the load point, and no signal is reflected back to the source point.
  • the signal has no energy loss during transmission. It can be seen that impedance matching can improve energy efficiency.
  • the impedance value of the normalized load point and the characteristic impedance value of the transmission line can be adjusted based on the Smith chart to achieve impedance matching. However, in a high-frequency circuit, if the characteristic impedance of the transmission line does not match the load impedance, reflection occurs at the load end.
  • the current RF front-end indicator debugging is based on an antenna with an impedance of 50 ⁇ , and the impedance of the antenna is limited by the size space, the actual impedance of the antenna will deviate far from 50 ohms.
  • the RF front-end and the antenna are impedance mismatched, a standing wave is formed, which ultimately leads to a significant decrease in the transmission efficiency of the transmission line, which is reflected in the Smith diagram as impedance divergence.
  • the present application provides an antenna and a communication device, which can solve the problem that the impedance matching adjustment mechanism in the prior art is low in efficiency.
  • a first aspect of the present application provides an antenna, including:
  • the invention includes a radiation area, a ground area and a feeding area, one end of the radiation area is electrically connected to the RF front end, and the RF front end is used for transmitting and receiving electromagnetic wave signals, wherein:
  • At least one impedance variable circuit is disposed in at least one of the radiation region, the ground region, and the feed region.
  • the impedance variable circuit can be used to adaptively adjust the impedance of the antenna when the impedance of the antenna does not match the impedance of the RF front end, or when the impedance of the RF front end changes.
  • the conjugate is matched to the impedance of the RF front end by controlling the impedance of the antenna.
  • the current antenna is to emit an electromagnetic wave signal.
  • At least one of the impedance variable circuits of the antenna can be adaptively adjusted, for example, by adjusting the radiation area and the At least one impedance variable circuit is disposed in at least one of the grounding area and the feeding area to achieve conjugate matching of the impedance of the adjusting antenna and the impedance of the RF front end, and specifically, the number and position of the variable impedance circuits to be adjusted, This application is not limited.
  • the impedance variable circuit is configured to adaptively adjust an impedance of the antenna to control an impedance of the antenna and the RF front end when an impedance of the antenna matches an impedance of the RF front end. Impedance mismatch. For example, when an antenna receives a spatial electromagnetic wave signal, the antenna needs to convert the received electromagnetic wave signal into a high frequency electronic signal.
  • At least one of the impedance variable circuits of the antenna may be adaptively adjusted during the conversion process, for example, by adjusting the radiation area, the ground area, and At least one impedance variable circuit is disposed in at least one of the feeding regions to adjust the impedance of the adjusting antenna and the impedance of the RF front end to a mismatch state.
  • the energy loss of the interference signal energy in the radio frequency link ie, the link loss of the interference frequency at which the antenna is located
  • the interference received by the communication device can be reduced.
  • the number and location of the impedance variable circuits that need to be adjusted are not limited in this application.
  • the impedance variable circuit can include a variable impedance element.
  • the variable impedance element includes at least a variable capacitance element, a variable resistance element or a variable inductance element, or the variable impedance element includes at least a variable capacitance element, a variable resistance element or A circuit in which at least one of the variable inductance elements is combined.
  • variable impedance element is configured to adaptively adjust a value of the variable impedance component when an impedance of the antenna does not match an impedance of the radio frequency front end, or when an impedance of the radio frequency front end changes
  • the impedance of the antenna is controlled to be conjugate matched to the impedance of the RF front end.
  • the existing mechanism it is necessary to adjust the adjustable components of the RF front end around a specific radiation frequency point, so that the impedance of the RF front end is close to 50 ⁇ , but this can only be targeted to a specific range of frequency bands, and can only be limited to a fixed characteristic impedance ( For example, a given standard impedance of 50 ⁇ ), the scalability is small. Or it is necessary to add an impedance variable circuit between the RF front end and the antenna to achieve impedance matching between the RF front end and the antenna, but it is necessary to change the circuit board and reduce the integration of the circuit board, and it is not easy to expand.
  • the embodiment of the present application by introducing an impedance variable circuit in a grounding area, a feeding area or a radiating area of the antenna, when the impedance of the RF front end does not match the impedance of the antenna, there is no need to adjust The adjustable component of the RF front end does not need to add an impedance variable circuit between the RF front end and the antenna.
  • the impedance variable circuit in the antenna of the present application adaptively adjusts the impedance of the antenna, so that the impedance of the RF front end and the impedance of the antenna Conjugate matching is achieved between them, as well as reducing energy loss in the RF link, ultimately improving the overall radiation efficiency of the communication device.
  • variable impedance component when the impedance of the RF front end does not match the impedance of the antenna, there is no need to adjust the adjustable component of the RF front end, and there is no need to add an impedance variable circuit between the RF front end and the antenna.
  • the antenna of the present application The variable impedance component in the adaptive adjustment adjusts the value of the antenna so that the impedance of the antenna is adjusted accordingly, so that the impedance of the RF front end and the impedance of the antenna are conjugate matched.
  • the antenna in the present application can adapt the RF signal in each frequency range, and does not need to adjust the impedance of the antenna to a fixed point of 50 ⁇ .
  • the antenna of the present application can adapt to any impedance value of the RF front end, compared to the original RF tuner (
  • the adjustable design of the tuner) the antenna of the present application is free from the standard impedance constraint of 50 ⁇ , is easier to adjust, has a large expansion space, and is easy to use in landing engineering.
  • variable impedance element adaptively adjusts the value of the variable impedance element to control the impedance of the antenna.
  • the coefficients are automatically adjusted to approximate or adjust to the current coefficient of impedance of the RF front end such that the impedance of the antenna matches the RF signal, ultimately causing the reflection coefficient of the antenna to approach zero, thereby improving transmission effectiveness.
  • the impedance variable circuit further includes at least one switching device disposed in the target region, wherein the target region is provided with at least one variable impedance element, the target region being At least one of a radiation area, the ground area, and the feed area.
  • a switching device is provided for connecting or disconnecting the variable impedance element and for switching a variable impedance element in communication with the target area.
  • a switching device for changing a variable impedance element that is in communication with the target region by changing at least one of a voltage, a temperature, a humidity, and a light intensity connected to the variable impedance element.
  • the antenna is configured to receive an instruction from a processor of the communication device to switch the state of each switching device to update the on-off combination of the switching device.
  • the antenna is configured to receive an instruction from a processor of the communication device to change at least one of a voltage, a temperature, a humidity, and a light intensity connected to the variable impedance element to change a variable impedance of the target region. element.
  • the switching device can include single-pole multi-throw, multi-tool multi-throw, transistors, controllers, and the like.
  • Each switching device can accept the control signal of the CPU of the radio frequency link to turn off or turn on, thereby presenting a combination of various switching devices to implement adaptive hardware adjustment, thereby controlling the impedance of the antenna.
  • the conjugate matching can be achieved by traversing various combinations of switching devices and then selecting an optimal combination of switching devices.
  • variable impedance element disposed in the antenna is a detachable element.
  • a second aspect of the present application provides a communication device comprising a radio frequency front end, and the antenna described in the first aspect.
  • FIG. 1 is a schematic structural diagram of an antenna in an embodiment of the present application.
  • FIG. 2a is a schematic structural diagram of an antenna in an embodiment of the present application.
  • 2b is a schematic structural diagram of an antenna in an embodiment of the present application.
  • 2c is a schematic structural diagram of an antenna in an embodiment of the present application.
  • 2d is a schematic structural diagram of an antenna in an embodiment of the present application.
  • 2 e is a schematic structural diagram of an antenna in an embodiment of the present application.
  • 2f is a schematic structural diagram of an antenna in an embodiment of the present application.
  • 2g is a schematic structural diagram of an antenna in an embodiment of the present application.
  • 3a is a schematic structural diagram of an antenna in an embodiment of the present application.
  • FIG. 3b is a schematic structural diagram of an antenna according to an embodiment of the present application.
  • 3c is a schematic structural diagram of an antenna in an embodiment of the present application.
  • 3d is a schematic structural diagram of an antenna in an embodiment of the present application.
  • FIG. 4a is a schematic structural diagram of an antenna in an embodiment of the present application.
  • 4b is a schematic structural diagram of an antenna in an embodiment of the present application.
  • 5a is an impedance characteristic Smith diagram of an antenna incorporating a 0 ⁇ variable resistor in the embodiment of the present application;
  • FIG. 5b is an impedance diagram of an impedance characteristic of an antenna with a 3 nh variable inductance introduced in the embodiment of the present application;
  • 5c is an impedance characteristic Smith diagram of an antenna with a 5.6nh variable inductance introduced in the embodiment of the present application;
  • 5d is an impedance characteristic Smith diagram of an antenna with a 8.2nh variable inductance introduced in the embodiment of the present application;
  • 5e is an impedance characteristic Smith diagram of an antenna with a 12nh variable inductance introduced in the embodiment of the present application;
  • 5f is an impedance characteristic Smith diagram of an antenna with an 18 nh variable inductance introduced in the embodiment of the present application;
  • 5g is an impedance characteristic Smith diagram of an antenna incorporating a 27nH variable inductor in the embodiment of the present application;
  • 5h is an impedance characteristic Smith diagram of an antenna with a 39nH variable inductor introduced in the embodiment of the present application;
  • 5i is an impedance characteristic Smith diagram of an antenna incorporating an open variable inductor in the embodiment of the present application
  • FIG. 5j is a Smith chart showing impedance characteristics of an antenna with multiple variable inductances in the embodiment of the present application.
  • 5k is a schematic diagram of changes in TRP after the antenna GND is introduced into a plurality of variable inductors and variable capacitors according to an embodiment of the present application;
  • FIG. 6a is a Smith chart showing impedance characteristics of an antenna with multiple variable inductances in an embodiment of the present application
  • FIG. 6b is a Smith chart showing impedance characteristics of an antenna with multiple variable inductances in an embodiment of the present application.
  • FIG. 7 is a schematic diagram showing changes in TRP and S11 before and after the capacitor and the inductor are introduced into the antenna GND according to the embodiment of the present application;
  • FIG. 8 is a schematic diagram showing impedance characteristics of a 50 ⁇ WI-FI antenna according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram showing impedance characteristics of a conjugate antenna according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram showing comparison of impedance characteristics of an antenna in a passive mode and a signaling mode test according to an embodiment of the present application;
  • FIG. 11 is a schematic diagram of conjugate matching between an antenna and a radio frequency front end before and after a conjugate antenna is introduced in the embodiment of the present application;
  • FIG. 12 and FIG. 13 are schematic diagrams showing the structure of a communication device according to an embodiment of the present application.
  • the coupling or direct coupling or communication connection between the various components shown or discussed may be through some interfaces, and the indirect coupling or communication connection between the modules may be electrical or the like, which is not limited in the present application.
  • the modules or sub-modules described as separate components may or may not be physically separated, may not be physical modules, or may be distributed to multiple circuit modules, and some or all of them may be selected according to actual needs. Modules are used to achieve the objectives of the present application.
  • the present application provides an antenna and communication device for radio frequency, antenna, radar, millimeter wave, mobile phone radio frequency, radio frequency integrated circuit (English name: radio frequency integrated circuit, English abbreviation: RFIC), power amplifier, software radio (English full name :software defined radio, English abbreviation: SDR). The details are described below.
  • the present application mainly provides the following technical solutions:
  • a variable impedance element is introduced into the antenna, and for example, a variable inductance, a variable capacitance, a variable resistance, or the like is provided in the ground region, the feed region, or the radiation region.
  • a variable inductance, a variable capacitance, a variable resistance, or the like is provided in the ground region, the feed region, or the radiation region.
  • the variable impedance element in the applied antenna adaptively adjusts its value so that the impedance of the antenna is adjusted accordingly, so that the impedance of the RF front end and the impedance of the antenna are conjugate matched.
  • the antenna in the embodiment of the present application may be referred to as a conjugate antenna.
  • the energy output device A can be regarded as a radio frequency front end in the embodiment of the present application, and the energy input device B can be regarded as an antenna for receiving a radio frequency signal.
  • the characteristic impedance represents such a characteristic or characteristic of a particular transmission line, which is the value of the instantaneous impedance seen by the signal as it propagates along the transmission line.
  • the Smith chart is a computational graph with a normalized input impedance (or admittance) equivalent family on the plane of the reflection system. It is a graph for electrical and electronic engineering, mainly used for transmission lines. Impedance matching.
  • the diagram consists of three circular systems used to solve the problem in the transmission line and some waveguide problems to avoid cumbersome operations.
  • an antenna in the embodiment of the present application is introduced, which may include:
  • At least one impedance variable circuit is disposed in at least one of the radiation region, the ground region, and the feed region.
  • Scene 1 When the antenna receives the electromagnetic wave signal at the front end of the RF, the antenna and the RF front end are in an impedance mismatch state.
  • the impedance variable circuit is configured to adaptively adjust the antenna when the impedance of the antenna does not match the impedance of the RF front end, or when the impedance of the RF front end changes. Impedance to control the impedance of the antenna to be conjugate matched to the impedance of the RF front end.
  • the impedance variable circuit may include a controller, a variable impedance element, various types of switching devices, and the like. The specific structure may be modified based on the structure shown in FIG. 1 , which is not limited in this application.
  • the current antenna is to emit an electromagnetic wave signal.
  • At least one of the impedance variable circuits of the antenna can be adaptively adjusted, for example, by adjusting the radiation area and the At least one impedance variable circuit is disposed in at least one of the grounding area and the feeding area to achieve conjugate matching of the impedance of the adjusting antenna and the impedance of the RF front end, and specifically, the number and position of the variable impedance circuits to be adjusted, This application is not limited.
  • Scenario 2 When the antenna receives the electromagnetic wave signal of the space, the antenna and the RF front end are in an impedance matching state.
  • the antenna When the antenna receives the electromagnetic wave signal of the space, the antenna needs to convert the received electromagnetic wave signal into a high frequency electronic signal. If the antenna system detects that the electromagnetic wave signal is an interference signal, if the impedance of the antenna matches the impedance of the radio frequency front end, the energy of the interference signal entering the communication device is hardly lost, which may cause strong interference to the communication device. Therefore, in this scenario, the impedance variable circuit can be configured to adaptively adjust an impedance of the antenna to match an impedance of the antenna to the impedance when the impedance of the antenna matches an impedance of the radio frequency front end. Impedance mismatch in the RF front end.
  • the antenna when the antenna receives the electromagnetic wave signal of the space, the antenna needs to convert the received electromagnetic wave signal into a high frequency electronic signal. If the antenna system detects that the electromagnetic wave signal is an interference signal, at least one of the impedance variable circuits of the antenna may be adaptively adjusted during the conversion process, for example, by adjusting the radiation area, the ground area, and At least one impedance variable circuit is disposed in at least one of the feeding regions to adjust the impedance of the adjusting antenna and the impedance of the RF front end to a mismatch state.
  • the energy loss of the interference signal energy in the radio frequency link ie, the link loss of the interference frequency at which the antenna is located
  • the interference received by the communication device can be reduced.
  • the number and location of the impedance variable circuits that need to be adjusted are not limited in this application.
  • the impedance variable circuit may include a variable impedance element, that is, at least one variable is set in at least one of the radiation area, the ground area, and the power feeding area.
  • the impedance element, or the variable impedance element includes at least a circuit that is combined by at least one of a variable capacitance element, a variable resistance element, or a variable inductance element.
  • variable impedance element can be used to adaptively adjust the variable impedance component when the impedance of the antenna does not match the impedance of the RF front end, or when the impedance of the RF front end changes. A value is obtained to control the impedance of the antenna to match the impedance of the RF front end.
  • variable impedance component is configured to adaptively adjust a value of the variable impedance component to match an impedance of the antenna when an impedance of the antenna matches an impedance of the radio frequency front end.
  • the impedance mismatch of the RF front end is configured to adaptively adjust a value of the variable impedance component to match an impedance of the antenna when an impedance of the antenna matches an impedance of the radio frequency front end.
  • the existing mechanism it is necessary to adjust the adjustable components of the RF front end around a specific radiation frequency point, so that the impedance of the RF front end is close to 50 ⁇ , but this can only be targeted to a specific range of frequency bands, and can only be limited to a fixed characteristic impedance ( For example, a given standard impedance of 50 ⁇ ), the scalability is small. Or it is necessary to add an impedance variable circuit between the RF front end and the antenna to achieve impedance matching between the RF front end and the antenna, but it is necessary to change the circuit board and reduce the integration of the circuit board, and it is not easy to expand.
  • the embodiment of the present application by introducing an impedance variable circuit in a grounding area, a feeding area or a radiating area of the antenna, when the impedance of the RF front end does not match the impedance of the antenna (ie, scene 1) There is no need to adjust the adjustable components of the RF front end, and there is no need to add an impedance variable circuit between the RF front end and the antenna.
  • the impedance variable circuit in the antenna of the present application adaptively adjusts the impedance of the antenna, thereby the impedance of the RF front end. Conjugate matching is achieved with the impedance of the antenna, and energy loss in the RF link is reduced, ultimately improving the radiation efficiency of the overall communication device. For scenario 2, the opposite is true, and no remarks are made.
  • variable impedance component when the impedance of the RF front end does not match the impedance of the antenna, there is no need to adjust the adjustable component of the RF front end, and there is no need to add an impedance variable circuit between the RF front end and the antenna.
  • the antenna of the present application The variable impedance component in the adaptive adjustment adjusts the value of the antenna so that the impedance of the antenna is adjusted accordingly, so that the impedance of the RF front end and the impedance of the antenna are conjugate matched.
  • the antenna in the present application can adapt the RF signal in each frequency range, and does not need to adjust the impedance of the antenna to a fixed point of 50 ⁇ .
  • the antenna of the present application can adapt to any impedance value of the RF front end, compared to the original RF tuner (
  • the adjustable design of the tuner) the antenna of the present application is free from the standard impedance constraint of 50 ⁇ , is easier to adjust, has a large expansion space, and is easy to use in landing engineering.
  • the antenna in the present application only needs to adaptively adjust its own impedance to achieve conjugate matching with the RF front end, without considering various states of the standard impedance characteristics agreed upon in the industry at different operating frequencies. Even if the antenna has a standard impedance characteristic, there is no correlation with the standard impedance characteristic of the antenna itself in the conjugate matching process.
  • the variable impedance element includes at least a variable capacitance element C, a variable resistance element R or a variable inductance element L, or an RC, RL derived from C, R, and L. Or RCL combination circuit.
  • a variable capacitance element, a variable resistance element or a variable inductance element may be respectively disposed in the radiation area, the ground area and the feeding area; or in the radiation area
  • a variable capacitance element, a variable resistance element or a variable inductance element is disposed in at least one of the grounding area and the feeding area.
  • variable impedance element disposed in the radiation area, the ground area or the feeding area is not limited in the application, nor is it limited to the radiation area, the ground area or the feeding area.
  • the number of variable impedance elements provided is defined, and the connection relationship between the variable impedance elements disposed in the radiation area, the ground area, or the feed area is not limited.
  • variable impedance component of a certain type or a range of values is disposed in the radiant region, the grounding region GND, or the feed region feed, and can be flexibly set according to the radio frequency signal, which is not limited in the present application.
  • the six antenna structures shown in Figures 2a - 2g are respectively described below.
  • variable impedance elements are provided in the radiation area, GND, and feed; in Fig. 2b, variable impedance elements are disposed in the radiation area and GND; in Fig. 2c, both the radiation area and the GND are set.
  • Variable impedance element in Figure 2d, a variable impedance element is provided in the radiation area and the feed; in Fig. 2e, a variable impedance element is set in GND; in Fig. 2f, a variable impedance is set in the feed.
  • a variable impedance element is provided in the radiation region.
  • the area of the antenna in which the variable impedance element is not disposed may be provided with other impedance elements, or may not be provided, which is not limited in the present application.
  • a range of values of each of the variable impedance elements disposed in the radiation region, the ground region, or the feed region may also be defined.
  • a variable impedance component of a corresponding value range can be set based on a fixed frequency band, and a plurality of jump fixed points can be set to facilitate fast traversal of a suitable fixed point.
  • variable impedance element disposed in the radiation region, the ground region, and the feed region is a detachable component. Due to its detachable features, when the frequency of the RF signal changes, or the impedance of the RF front end changes, there is no need to change the design of the board, only need to replace the new variable impedance component, or replace the new antenna to achieve conjugate Matching, compared with the existing mechanism, is more scalable and saves labor costs.
  • the antenna when the impedance of the RF front end changes greatly, and the installed antenna cannot be adapted thereto, the antenna may be replaced with an antenna that adapts the impedance of the current RF front end, or may be directly replaced.
  • the variable impedance component that has been set in the antenna is added or deleted, and is not limited in this application.
  • an antenna with a frequency band between 700 MHz and 1300 GHz is used.
  • the impedance of the RF front end is 50 ⁇ .
  • the grounding area and the feeding area of the antenna shown in FIG. 3a are respectively provided with a variable capacitor C1 and a variable inductor L1.
  • the antenna shown in Figure 3a is capable of adapting to RF impedances ranging from 50-100 ohms. If the current front-end RF impedance is 200 ⁇ , then the current antenna needs to replace the variable impedance component.
  • variable capacitor C1 of the feed region in FIG. 3a can be replaced with the variable capacitor C2
  • variable inductor L1 of the ground region can be replaced with the variable inductor L2, as shown in FIG. 3b.
  • variable capacitor C1 of the feed region in FIG. 3a with the variable inductor L3 and replace the variable inductor L1 of the ground region with the variable resistor R as shown in FIG. 3c.
  • variable capacitor C1 of the feed region in FIG. 3a with the variable capacitor C3 and replace the variable inductor L1 of the ground region with the variable capacitor C4 as shown in FIG. 3d.
  • variable range of L1 and L2 is different, and the two may be inclusive or cross-correlation.
  • variable ranges of C1, C2, C3, and C4 are different, and each variable range may be an inclusion or cross relationship, and may be based on an operating frequency band setting of the antenna. This application is not limited.
  • the value range of the originally set variable impedance component is updated, and the type of the originally set variable impedance component may be replaced.
  • DETAILED DESCRIPTION OF THE INVENTION The present application is not limited or described. The present application also does not limit the attributes of the variable impedance components that are added to the regions of the antennas, and may be calculated according to the impedance of the antennas required for adapting the current radio frequency signals, which is not described in detail in the embodiments of the present application.
  • the present application may also dynamically adjust the impedance of the antenna.
  • at least one switching device may be disposed in the antenna, and the switching device is disposed in the target area.
  • At least one variable impedance element is disposed in the target area, the target area being at least one of the radiation area, the ground area, and the power feeding area.
  • a switching device for connecting or disconnecting the variable impedance element, and for switching a variable impedance element in communication with the target area.
  • a switching device for changing a variable impedance element that is in communication with the target region by changing at least one of a voltage, a temperature, a humidity, and a light intensity connected to the variable impedance element.
  • the switching device can include single pole multi throw, multiple pole multi throw, transistor, controller, and the like.
  • Each switching device can accept the control signal of the central processing unit CPU of the radio frequency link to turn off or turn on, thereby presenting a combination of various switching devices to implement adaptive hardware adjustment, thereby controlling the impedance of the antenna.
  • the conjugate matching can be achieved by traversing various combinations of switching devices and then selecting an optimal combination of switching devices.
  • the antenna can be used to receive an instruction from a processor of the communication device to switch the state of each switching device to update the on-off combination of the switching device.
  • the antenna is configured to receive an instruction from a processor of the communication device to change at least one of a voltage, a temperature, a humidity, and a light intensity connected to the variable impedance element to change a variable impedance of the target region. element.
  • the switching device can be controlled by the CPU of the radio frequency link, and the CPU can adaptively adjust various pre-fabricated components of the corresponding variable impedance component through the FET-swith SPDT switch of the RF link through its reserved GPIO interface.
  • the state for example, can drive certain switching devices by voltage to obtain a set of switching device combinations.
  • a switching device such as a single-pole double-throw switch
  • two variable impedance elements of a variable capacitor and a variable resistor are disposed. If the current impedance mismatch occurs, the tester can be connected to the RF link to test the impedance characteristics of the RF front-end and antenna mapped to the Smith chart. Then, according to the Smith chart, the variable impedance component connected by the switching is adjusted by software, and the value of the connected variable impedance component can be manually adjusted outside the RF link, and compared with the Smith chart, so that the corresponding correspondence can be adjusted. The impedance of the antenna is matched until the conjugate.
  • a switching device and a variable resistor are provided at the GND terminal. If the current impedance mismatch occurs, the tester can be connected to the RF link to test the impedance characteristics of the RF front-end and antenna mapped to the Smith chart. Then, according to the Smith chart, the variable resistor can be adjusted by software, and the value of the variable resistor can be manually adjusted outside the RF link, and compared with the Smith chart, so that the impedance of the corresponding antenna can be adjusted until the conjugate is conjugated. match.
  • variable impedance element When the impedance of the RF front end becomes small, a variable impedance element can be introduced in the grounding region, which can reduce the impedance of the antenna, thereby achieving conjugate matching. When the impedance of the RF front end becomes large, a variable impedance element can be introduced in the feeding region, which can increase the impedance of the antenna, thereby achieving conjugate matching.
  • the biggest difference of the antenna introduced in the embodiment of the present application is that the S parameter of the RF front end does not need to be tuned to the corresponding frequency point, and the energy return sensor can be added before the radio frequency, and the antenna only needs to be
  • the Return loss value collected by the energy return sensor can be adaptively adjusted according to the change of the Return loss value.
  • the antenna in the embodiment of the present application does not need to be a standard impedance mode, and has no correlation with various parameters related to antenna performance (such as S11, standing wave ratio, standard impedance) and load traction of the RF front end, and can be adaptive. Adjust to the conjugate state with the RF front end.
  • the following is an example of setting a variable impedance component in the GND region of an antenna having a frequency band of 700 MHz to 1300 GHz, and marking three frequency points on the measured Smith chart: m1 (824 MHz), m2 (960 MHz), and m3 (1068 MHz). ).
  • the impedance characteristics of the antenna can be referred to the Smith diagram shown in FIG. 5a.
  • variable inductance When the variable inductance is connected in series with GND, for the antenna with the frequency band of 700MHz-1.3GHz, the following variable inductances can be connected in series at GND: 3 nanohenry (nH), 5.6nH, 8.2nH, 12nH, 18nH, 27nH, 39nH, and dangling (open, that is, the variable inductance is infinite). Finally, the impedance characteristics of the antenna at the above 3nH, 5.6nH, 8.2nH, 12nH, 18nH, 27nH, 39nH, and open can be referred to the Smith diagram shown in Figures 5b-5i, respectively.
  • variable capacitors when GND is connected in series, for antennas with a frequency band of 600MHz-1.2GHz, the following variable capacitors can be connected in series at GND: 33 picofarads (pf), 12pf, 8.2pf, 5.6pf And 3.9pf.
  • the impedance characteristics of the final antenna can be referred to the summarized Smith diagram as shown in Figure 6a. As can be seen from Fig. 6a, as the capacitance value changes from small to large, the ⁇ -ring continues to become larger, but the node orientation of the ⁇ -ring is also rotating at the same time, and a new ⁇ -ring is generated and approaches 0 ⁇ .
  • GND For antennas with a frequency band of 600MHz-1.2GHz, GND is connected in series with variable capacitors of the following values: 1.5pf, 1.2pf, 1.0pf, 0.7pf, and 0.5pf.
  • the impedance characteristics of the final antenna can be referred to the summarized Smith diagram as shown in Fig. 6b. As can be seen from Fig. 6b, as the capacitance value becomes smaller from small to large, the ⁇ -ring continues to become larger, and the node orientation of the ⁇ -turn is also rotated. When the capacitance value is increased, the ⁇ circle becomes larger.
  • the impedance characteristics change mainly shows the following rules:
  • the impedance loop of the low frequency band starts from the 0 ohm state and gradually becomes larger until the Open state. Then the end of the impedance line (ie, the low frequency point m1) is gradually drawn into the impedance loop from outside the impedance loop. Otherwise, the impedance loop becomes smaller.
  • variable capacitance and variable inductance The test result of variable capacitance and variable inductance is introduced comprehensively, and the whole impedance line changes a process to form a cycle.
  • the impedance characteristic change of the antenna caused by it is opposite to the direction in which the variable impedance element is disposed in the GND region.
  • the analysis is as follows: introducing a variable impedance component at GND is to reduce the impedance of the antenna, so connecting the first quadrant device in series with GND moves the impedance characteristic of the antenna to a short-circuit state, and the feed is just the opposite.
  • the first quadrant device is The impedance characteristic of the antenna moves to an open state.
  • the first quadrant device refers to a positively rotating first quadrant material belonging to the Smith chart in the right hand in the high frequency electronic circuit.
  • variable inductance when a variable inductance is added to the radiation area, it is equivalent to lengthening ⁇ and keeping C constant. Then, the corresponding frequency f becomes low, and the frequency point corresponding to the return loss continues the low frequency offset.
  • variable capacitance when a variable capacitance is added to the radiation area, it is equivalent to interrupting the radiation arm so that the length of the radiation arm becomes shorter, the corresponding frequency f becomes higher, and the frequency corresponding to the return loss continues to shift toward the high frequency. .
  • S11 parameter, the TRP and the S11 parameter and the TRP when the variable inductance and the variable capacitance are not added, respectively, in the radiation region refer to FIG. 7.
  • the conjugate antenna in the embodiment of the present application can work at any frequency point, and can also achieve conjugate matching at any impedance of the RF front end, without modifying the circuit board, and only need to replace or update the conjugate antenna.
  • the grounding area is provided with a variable capacitor or a variable inductor.
  • the impedance variation of the antenna in different frequency bands can be referred to FIG. 5k.
  • an appropriate one can be selected based on the impedance variation diagram shown in FIG. 5k. Variable capacitance or variable inductance.
  • the impedance mismatch will cause energy loss of the RF link.
  • the low, medium and high channels have low, medium and high channels when the conduction energy is 21 dB.
  • the output channel energies are:
  • the transmission power corresponding to the low, medium, and high channels is 21 dB
  • the low channel loss is 8.2 dB
  • the medium channel loss is 5.2 dB
  • the high channel loss is 2.8 dB.
  • 10log*(40%) ⁇ 4dB it can be seen that only the difference of the high channel is satisfied, while the low and medium channels have serious impedance mismatch.
  • the RF front end and the antenna can be adjusted to the conjugate matching state in the active mode. Since the impedance characteristic of the high-frequency device changes with the change of the operating frequency, the impedance characteristic of the antenna as the high-frequency device in the passive mode is inconsistent with the characteristic under the charged working state, and the active mode is in the working state, so The impedance characteristics of the antenna when testing the operating state in the electrical signaling mode.
  • the test instrument Connect the test instrument to the FEM terminal output, that is, reverse the output from the FEM terminal to test the active load pull, connect the test instrument to the FEM terminal output, use the test instrument to reversely check the impedance characteristics of the RF front end, and pass the RF front end through the instrument.
  • the impedance characteristic is converted into a Smith chart as shown in FIG. Figure 9 shows two results of testing in the single-board passive mode and the single-board electrical signaling mode.
  • the impedance characteristics of the WI-FI antenna range from 78 ⁇ + j 1.11 nH - 119 ⁇ + j 916 fF. It can be seen that the actual impedance characteristic of the WI-FI antenna is not 50 ⁇ .
  • the impedance characteristic of the RF front end can be set to Ra+jXa, and the impedance characteristic of the WI-FI antenna is Rb+jXa. Since b in the WI-FI antenna is a fixed value, b cannot follow the change of a of the RF front end and changes accordingly. This will cause the RF front end to mismatch with the WI-FI antenna.
  • the present application introduces a conjugate antenna having an impedance characteristic as shown in FIG.
  • the impedance characteristic of the conjugate antenna can be set to Rc+jXc. After the conjugate antenna is introduced, since c is a variable in the introduced conjugate antenna, c changes with the change of a in the RF front end.
  • the low- and medium-channel TRP wireless performance is improved by 5 dB compared to the existing standard impedance WI-FI antenna. It can be seen that by introducing a conjugate antenna, since the impedance characteristic of the conjugate antenna can follow the change of the impedance characteristics of the upstream device (ie, the RF front end) to form a conjugate matching, the energy loss on the link during the electromagnetic conversion can be reduced.
  • the Smith curve of the standard impedance WI-FI antenna, the Smith curve of the off-target front end, and the Smith curve of the conjugate antenna are compared.
  • the conjugate is introduced. Before the antenna, the Smith curve of the standard impedance WI-FI antenna and the Smith curve of the off-target front end are in a mismatch state. After the conjugate antenna is introduced, the Smith curve of the conjugate antenna is presented together with the Smith curve of the off-target front end. The yoke matches.
  • the embodiment of the present application further provides a communication device, which may include a radio frequency front end, and an antenna as described in the embodiment corresponding to any one of FIG. 1 to FIG.
  • the communication device can be used to handle interference from electromagnetic waves from space, and can also be used to address radiation efficiency issues within the communication device.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division.
  • there may be another division manner for example, multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or module, and may be electrical, mechanical or otherwise.
  • the modules described as separate components may or may not be physically separated.
  • the components displayed as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically separately, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may be stored in a computer readable storage medium.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Details Of Aerials (AREA)

Abstract

一种天线和通信装置,其中天线包括辐射区域、接地区域和馈电区域,辐射区域、接地区域和馈电区域中的至少一个中设置至少一个阻抗可变电路,阻抗可变电路用于在天线的阻抗与射频前端的阻抗不匹配时,或在射频前端的阻抗变化时,自适应调整天线的阻抗,以控制天线的阻抗与射频前端的阻抗共轭匹配。通过采用该天线,能够自适应地调整天线的阻抗,实现共轭匹配,以及减小射频链路中的能量损耗,最终提升通信装置整体的辐射效率。或者,阻抗可变电路用于在天线的阻抗与射频前端的阻抗匹配时,自适应调整天线的阻抗,以控制天线的阻抗与射频前端的阻抗失配。可见,通过将射频链路调整为阻抗失配,以增加干扰信号能量损耗,能够降低天线系统的干扰。

Description

一种天线及通信装置
本申请要求于2017年12月22日提交中国国家知识产权局、申请号为201711404750.5、发明名称为“一种天线及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及射频微波技术领域,尤其涉及一种天线及通信装置。
背景技术
阻抗匹配主要用于传输线上,在能量传输时,使得负载阻抗和传输线的特性阻抗相等,来达至所有高频的微波信号只能传至负载点的目的,不会有信号反射回来源点,信号在在传输中没有能量损失。可见,阻抗匹配可以提升能源效益。可基于史密斯图表(Smith chart)调整归一化的负载点的阻抗值和传输线的特性阻抗值,以实现阻抗匹配。但是,在高频电路中,如果传输线的特性阻抗跟负载阻抗不匹配时,在负载端就会产生反射。
在射频链路的射频前端,当检测到天线与射频前端出现阻抗失配时,优化天线阻抗的各项无线指标,若优化后的各项无线指标验证失败,则选择较好的天线匹配进行电路调试,再基于Smith测试放大器的输出点向天线端的有源阻抗分布。判断双工器的TX端是否需要收敛,若需要收敛,则调试双工器的Ant端口匹配RF端;若不需要收敛,则根据射频前端load pull调试功率放大器(英文全称:power amplify,英文简称:PA)的输出阻抗,然后对射频前端的传导性能和各项无线指标进行验证,若通过,则结束调试流程。
由于目前的射频前端指标调试都是基于阻抗为50Ω的天线,而天线的阻抗由于受尺寸空间制约,天线的实际阻抗会远偏离50欧姆。一旦射频前端与天线出现阻抗失配,就会形成驻波,最终导致传输线的传输效率显著降低,具体在Smith图上体现为阻抗发散。目前需要人工在传输链路上调整传输线的阻抗特性,才能保证传输链路各项传输指标符合产品设计需求。可见,整个射频链路的调整机制过于繁复,且需要对印制电路板进行改板加工、更换材料清单(英文全称:bill of material,英文简称:BOM)配置。并且,在调整过程中容易出现无法在保证射频的传导性能的前提下,满足宽频带信号下的标准阻抗特性。
发明内容
本申请提供了一种天线、通信装置,能够解决现有技术中阻抗匹配的调整机制效率较低的问题。
本申请第一方面提供一种天线,其包括:
包括辐射区域、接地区域和馈电区域,所述辐射区域的一端电气连接至射频前端,所述射频前端用于收发电磁波信号,其中:
所述辐射区域、所述接地区域和所述馈电区域中的至少一个中设置至少一个阻抗可变电路。
一些实施方式中,所述阻抗可变电路可用于在所述天线的阻抗与所述射频前端的阻 抗不匹配时,或在所述射频前端的阻抗变化时,自适应调整所述天线的阻抗,以控制所述天线的阻抗与所述射频前端的阻抗共轭匹配。例如,当前天线要发射电磁波信号,若当前的天线与射频前端处于阻抗失配,那么,该天线中的至少一个阻抗可变电路可自适应的调整,例如,可通过调整所述辐射区域、所述接地区域和所述馈电区域中的至少一个中设置至少一个阻抗可变电路,以实现调整天线的阻抗与射频前端的阻抗共轭匹配,具体需要调整的阻抗可变电路的数目和位置,本申请均不作限定。
一些实施方式中,所述阻抗可变电路可用于在所述天线的阻抗与所述射频前端的阻抗匹配时,自适应调整所述天线的阻抗,以控制所述天线的阻抗与所述射频前端的阻抗失配。例如,当天线接收到空间的电磁波信号,该天线需要将接收到的电磁波信号转换为高频电子信号。若天线系统检测到该电磁波信号为干扰信号,则在该转换过程中,该天线中的至少一个阻抗可变电路可自适应的调整,例如,可通过调整所述辐射区域、所述接地区域和所述馈电区域中的至少一个中设置至少一个阻抗可变电路,以实现调整天线的阻抗与射频前端的阻抗调整为失配状态。调整为失配状态后,能够增大该干扰信号能量在射频链路中的能量损耗(即增大天线所在干扰频点的链路差损),最终可降低通信装置受到的干扰。具体需要调整的阻抗可变电路的数目和位置,本申请均不作限定。
一些实施方式中,所述阻抗可变电路可包括可变阻抗元件。可选的,所述可变阻抗元件至少包括可变电容元件、可变电阻元件或可变电感元件,或者,所述可变阻抗元件至少包括由可变电容元件、可变电阻元件或可变电感元件中的至少一个组合的电路。
所述可变阻抗元件用于在所述天线的阻抗与所述射频前端的阻抗不匹配时,或在所述射频前端的阻抗变化时,自适应调整所述可变阻抗元件的取值,以控制所述天线的阻抗与所述射频前端的阻抗共轭匹配。
现有机制中,需要围绕特定的辐射频点去调整射频前端的可调元件,以实现射频前端的阻抗靠近50Ω,但这样只能针对特定范围的频段,并且只能限定在固定的特性阻抗(例如给定的50Ω的标准阻抗),可扩展性较小。或者需要在射频前端与天线之间增设阻抗可变电路,以实现射频前端与天线的阻抗匹配,但需要更改电路板,并且降低电路板的集成度,也不便于扩展。与现有机制相比,本申请实施例中,通过在天线的接地区域、馈电区域或辐射区域中引入阻抗可变电路,当射频前端的阻抗与该天线的阻抗不匹配时,无需通过调整射频前端的可调元件,也无需在射频前端与天线之间增设阻抗可变电路,本申请的天线中的阻抗可变电路自适应的调整天线的阻抗,从而射频前端的阻抗与该天线的阻抗之间实现共轭匹配,以及减小射频链路中的能量损耗,最终提升通信装置整体的辐射效率。
例如引入可变阻抗元件时,当射频前端的阻抗与该天线的阻抗不匹配时,无需调整射频前端的可调元件,也无需在射频前端与天线之间增设阻抗可变电路,本申请的天线中的可变阻抗元件自适应的调整其取值,使得该天线的阻抗相应调整,从而射频前端的阻抗与该天线的阻抗之间实现共轭匹配。并且,本申请中的天线能够适配各个频段范围的射频信号,不需要将天线的阻抗调整至50Ω这个固定点,本申请的天线能够适应射频前端的任意阻抗值,相对于原射频调谐器(tuner)的可调设计,本申请的天线摆脱了50Ω的标准阻抗束缚,更加易于调整,且可扩展空间大,也易于落地工程运用。
在一些可能的设计中,当所述天线的阻抗与所述射频前端的阻抗不匹配时,所述可变阻抗元件自适应调整所述可变阻抗元件的取值,以控制所述天线的阻抗的系数自动调整,以趋近于或调整至所述射频前端的阻抗当前的系数,以使所述天线的阻抗与所述射 频信号匹配,最终使得天线的反射系数趋近于0,从而提高传输效率。
在一些可能的设计中,所述阻抗可变电路还包括至少一个开关器件,所述开关器件设置在目标区域中,所述目标区域中设置了至少一个可变阻抗元件,所述目标区域为所述辐射区域、所述接地区域和所述馈电区域中的至少一个。
设置的开关器件用于连通或切断可变阻抗元件,以及用于切换与所述目标区域连通的可变阻抗元件。
或者,设置的开关器件用于通过改变连接可变阻抗元件上的电压、温度、湿度、光强中的至少一项属性以改变所述目标区域连通的可变阻抗元件。
在一些可能的设计中,所述天线用于接收来自通信装置的处理器的指令,切换各开关器件的状态,以更新开关器件的通断组合。或者,所述天线用于接收来自通信装置的处理器的指令,改变连接可变阻抗元件上的电压、温度、湿度、光强中的至少一项属性以改变所述目标区域连通的可变阻抗元件。
在一些可能的设计中,所述开关器件可包括单刀多掷,多刀多掷,晶体管、控制器等。各开关器件可以接受射频链路的CPU的控制信号,进行关断或导通,从而呈现多种开关器件的组合,以实现自适应的硬件调整,从而控制天线的阻抗。具体可通过遍历各种开关器件组合,然后选择一种最优的开关器件组合,以实现最优的共轭匹配效果。
在一些可能的设计中,在所述天线中设置的可变阻抗元件为可拆卸元件。
本申请第二方面提供一种通信装置,其包括射频前端、以及第一方面中所述的天线。
附图说明
图1为本申请实施例中天线的一种结构示意图;
图2a为本申请实施例中天线的一种结构示意图;
图2b为本申请实施例中天线的一种结构示意图;
图2c为本申请实施例中天线的一种结构示意图;
图2d为本申请实施例中天线的一种结构示意图;
图2e为本申请实施例中天线的一种结构示意图;
图2f为本申请实施例中天线的一种结构示意图;
图2g为本申请实施例中天线的一种结构示意图;
图3a为本申请实施例中天线的一种结构示意图;
图3b为本申请实施例中天线的一种结构示意图;
图3c为本申请实施例中天线的一种结构示意图;
图3d为本申请实施例中天线的一种结构示意图;
图4a为本申请实施例中天线的一种结构示意图;
图4b为本申请实施例中天线的一种结构示意图;
图5a为本申请实施例中引入0Ω可变电阻的天线的阻抗特性Smith图;
图5b为本申请实施例中引入3nh可变电感的天线的阻抗特性Smith图;
图5c为本申请实施例中引入5.6nh可变电感的天线的阻抗特性Smith图;
图5d为本申请实施例中引入8.2nh可变电感的天线的阻抗特性Smith图;
图5e为本申请实施例中引入12nh可变电感的天线的阻抗特性Smith图;
图5f为本申请实施例中引入18nh可变电感的天线的阻抗特性Smith图;
图5g为本申请实施例中引入27nH可变电感的天线的阻抗特性Smith图;
图5h为本申请实施例中引入39nH可变电感的天线的阻抗特性Smith图;
图5i为本申请实施例中引入open可变电感的天线的阻抗特性Smith图;
图5j为本申请实施例中引入多种可变电感的天线的阻抗特性Smith图;
图5k为本申请实施例中天线GND引入多种可变电感和可变电容后TRP的变化示意图;
图6a为本申请实施例中引入多种可变电感的天线的阻抗特性Smith图;
图6b为本申请实施例中引入多种可变电感的天线的阻抗特性Smith图;
图7为本申请实施例中在天线GND引入电容和电感前后的TRP、S11变化对比示意图;
图8为本申请实施例中50Ω的WI-FI天线的阻抗特性示意图;
图9为本申请实施例中共轭天线的阻抗特性示意图;
图10为本申请实施例中无源模式和信令模式测试下的天线的阻抗特性对比示意图;
图11为本申请实施例中引入共轭天线前后的天线与射频前端共轭匹配的示意图;
图12和图13为本申请实施例中通信装置的一种结构示意图。
具体实施方式
本申请的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块,本申请中所出现的模块的划分,仅仅是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个模块可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块之间的间接耦合或通信连接可以是电性或其他类似的形式,本申请中均不作限定。并且,作为分离部件说明的模块或子模块可以是也可以不是物理上的分离,可以是也可以不是物理模块,或者可以分布到多个电路模块中,可以根据实际的需要选择其中的部分或全部模块来实现本申请方案的目的。
本申请供了一种天线和通信装置,用于射频、天线、雷达、毫米波、手机射频、射频集成电路(英文全称:radio frequency integrated circuit,英文简称:RFIC)、功放、软件无线电(英文全称:software defined radio,英文简称:SDR)等。以下进行详细说明。
为解决上述技术问题,本申请主要提供以下技术方案:
在天线中引入可变阻抗元件,例如在接地区域、馈电区域或辐射区域分别设置可变电感、可变电容或可变电阻等。当该天线的射频前端的输出阻抗(即传输线的特性阻抗)与该天线的阻抗不匹配时,无需调整射频前端的可调元件,也无需在射频前端与天线之间增设阻抗可变电路,本申请的天线中的可变阻抗元件自适应的调整其取值,使得该天线的阻抗相应调整,从而射频前端的阻抗与该天线的阻抗之间实现共轭匹配。在一些实施方式中,可将本申请实施例中的天线称为共轭天线。
共轭匹配是指:在信号源给定的情况下,输出功率取决于负载电阻与信号源内阻之比K,当两者相等,即K=1时,输出功率最大。例如,对于能量输出器件A(Ra+jXa)和能量输入器件B(Rb+jXb)而言,Ra&Rb差值、Xa&Xb差值是否接近,若接近,则表示能量输出器件A和 能量输入器件B共轭。其中,能量输出器件A可看作本申请实施例中的射频前端,能量输入器件B可看作接收射频信号的天线。
特性阻抗表示特定的传输线的这种特征或者特性,其是指信号沿传输线传播时,信号看到的瞬间阻抗的值。
其中Smith chart是在反射系散平面上标绘有归一化输入阻抗(或导纳)等值圆族的计算图,其是一款用于电机与电子工程学的图表,主要用于传输线的阻抗匹配上。该图由三个圆系构成,用以在传输线和某些波导问题中利用图解法求解,以避免繁琐的运算。
参照图1所示,介绍本申请实施例中的一种天线,其可包括:
辐射区域、接地区域和馈电区域,所述辐射区域的一端电气连接至射频前端,所述射频前端用于收发电磁波信号。
其中,所述辐射区域、所述接地区域和所述馈电区域中的至少一个中设置至少一个阻抗可变电路。
本申请实施例的阻抗调整主要包括下述两种场景:
场景一、天线接收射频前端的电磁波信号时,天线与射频前端处于阻抗失配状态。
由于阻抗失配,所以会降低射频前端的传导性能和降低天线的辐射效率。因此,在该场景下,所述阻抗可变电路用于在所述天线的阻抗与所述射频前端的阻抗不匹配时,或在所述射频前端的阻抗变化时,自适应调整所述天线的阻抗,以控制所述天线的阻抗与所述射频前端的阻抗共轭匹配。该阻抗可变电路可包括控制器、可变阻抗元件、各类开关器件等,具体结构可基于图1所示的结构进行变形,具体本申请不作限定。例如,当前天线要发射电磁波信号,若当前的天线与射频前端处于阻抗失配,那么,该天线中的至少一个阻抗可变电路可自适应的调整,例如,可通过调整所述辐射区域、所述接地区域和所述馈电区域中的至少一个中设置至少一个阻抗可变电路,以实现调整天线的阻抗与射频前端的阻抗共轭匹配,具体需要调整的阻抗可变电路的数目和位置,本申请均不作限定。
场景二、天线接收空间的电磁波信号时,天线与射频前端处于阻抗匹配状态。
当天线接收到空间的电磁波信号,该天线需要将接收到的电磁波信号转换为高频电子信号。若天线系统检测到该电磁波信号为干扰信号,若所述天线的阻抗与所述射频前端的阻抗匹配,那么该干扰信号进入通信装置后的能量几乎没有损耗,会导致对通信装置的强烈干扰。因此,在该场景下,所述阻抗可变电路可用于在所述天线的阻抗与所述射频前端的阻抗匹配时,自适应调整所述天线的阻抗,以控制所述天线的阻抗与所述射频前端的阻抗失配。具体来说,当天线接收到空间的电磁波信号,该天线需要将接收到的电磁波信号转换为高频电子信号。若天线系统检测到该电磁波信号为干扰信号,则在该转换过程中,该天线中的至少一个阻抗可变电路可自适应的调整,例如,可通过调整所述辐射区域、所述接地区域和所述馈电区域中的至少一个中设置至少一个阻抗可变电路,以实现调整天线的阻抗与射频前端的阻抗调整为失配状态。调整为失配状态后,能够增大该干扰信号能量在射频链路中的能量损耗(即增大天线所在干扰频点的链路差损),最终可降低通信装置受到的干扰。具体需要调整的阻抗可变电路的数目和位置,本申请均不作限定。
可选的,在一些实施方式中,所述阻抗可变电路可包括可变阻抗元件,即在所述辐射区域、所述接地区域和所述馈电区域中的至少一个中设置至少一个可变阻抗元件,或 者所述可变阻抗元件至少包括由可变电容元件、可变电阻元件或可变电感元件中的至少一个组合的电路。
在场景一下,所述可变阻抗元件可用于在所述天线的阻抗与所述射频前端的阻抗不匹配时,或在所述射频前端的阻抗变化时,自适应调整所述可变阻抗元件的取值,以控制所述天线的阻抗与所述射频前端的阻抗匹配。
在场景二下,所述可变阻抗元件可用于在所述天线的阻抗与所述射频前端的阻抗匹配时,自适应调整所述可变阻抗元件的取值,以控制所述天线的阻抗与所述射频前端的阻抗失配。
现有机制中,需要围绕特定的辐射频点去调整射频前端的可调元件,以实现射频前端的阻抗靠近50Ω,但这样只能针对特定范围的频段,并且只能限定在固定的特性阻抗(例如给定的50Ω的标准阻抗),可扩展性较小。或者需要在射频前端与天线之间增设阻抗可变电路,以实现射频前端与天线的阻抗匹配,但需要更改电路板,并且降低电路板的集成度,也不便于扩展。与现有机制相比,本申请实施例中,通过在天线的接地区域、馈电区域或辐射区域中引入阻抗可变电路,当射频前端的阻抗与该天线的阻抗不匹配(即场景一)时,无需通过调整射频前端的可调元件,也无需在射频前端与天线之间增设阻抗可变电路,本申请的天线中的阻抗可变电路自适应的调整天线的阻抗,从而射频前端的阻抗与该天线的阻抗之间实现共轭匹配,以及减小射频链路中的能量损耗,最终提升通信装置整体的辐射效率。对于场景二,反之同理,不作赘述。
例如引入可变阻抗元件时,当射频前端的阻抗与该天线的阻抗不匹配时,无需调整射频前端的可调元件,也无需在射频前端与天线之间增设阻抗可变电路,本申请的天线中的可变阻抗元件自适应的调整其取值,使得该天线的阻抗相应调整,从而射频前端的阻抗与该天线的阻抗之间实现共轭匹配。并且,本申请中的天线能够适配各个频段范围的射频信号,不需要将天线的阻抗调整至50Ω这个固定点,本申请的天线能够适应射频前端的任意阻抗值,相对于原射频调谐器(tuner)的可调设计,本申请的天线摆脱了50Ω的标准阻抗束缚,更加易于调整,且可扩展空间大,也易于落地工程运用。
本申请中的天线仅需要去自适应调整自身的阻抗即可,以实现与射频前端的共轭匹配,无需考虑行业内约定的标准阻抗特性在不同的额工作频率下所呈现的多种状态。即使该天线具备标准阻抗特性,在共轭匹配过程中,也与天线自身的标准阻抗特性无相关性。
可选的,在一些实施方式中,所述可变阻抗元件至少包括可变电容元件C、可变电阻元件R或可变电感元件L,或者由C、R和L衍生得到的RC、RL或RCL组合电路。本申请实施例中,可以分别在所述辐射区域、所述接地区域和所述馈电区域中均设置可变电容元件、可变电阻元件或可变电感元件;或者,在所述辐射区域、所述接地区域和所述馈电区域中的至少一处中设置可变电容元件、可变电阻元件或可变电感元件。具体在所述辐射区域、所述接地区域或所述馈电区域设置的可变阻抗元件的类型本申请不作限定,也不限定在所述辐射区域、所述接地区域或所述馈电区域中设置的可变阻抗元件的数目作限定,同时也不限定设置在所述辐射区域、所述接地区域或所述馈电区域中的可变阻抗元件间的连接关系。
具体,在所述辐射区域、所述接地区域GND或所述馈电区域Feed中设置某个类型或者数值范围的可变阻抗元件,可根据射频信号灵活设置,具体本申请不作限定。下面分别介绍如图2a-图2g所示的6种天线结构。
图2a中,在辐射区域、GND、Feed中均设置了可变阻抗元件;图2b中,在辐射区域、GND中均设置了可变阻抗元件;图2c中,在辐射区域、GND中均设置了可变阻抗元件;图2d中,在辐射区域、Feed中均设置了可变阻抗元件;图2e中,在GND中设置了可变阻抗元件;图2f中,在Feed中设置了可变阻抗元件;图2g中,在辐射区域中设置了可变阻抗元件。其中,天线中未设置可变阻抗元件的区域分(例如辐射区域或GND或Feed)可以设置其它阻抗性元件,或者不设置,具体本申请不作限定。
在一些实施方式中,还可以限定设置在所述辐射区域、所述接地区域或所述馈电区域中的各可变阻抗元件的取值范围。例如,可以基于固定的频段设置对应的取值范围的可变阻抗元件,并设置多个跳变定点,便于快速遍历出合适的定点。
在一些实施方式中,在所述辐射区域、所述接地区域和所述馈电区域中设置的可变阻抗元件为可拆卸元件。由于其可拆卸的特点,所以当射频信号的频率变化,或者射频前端的阻抗变化时,无需更改电路板的设计,仅需更换新的可变阻抗元件,或者更换新的天线,以实现共轭匹配,与现有机制相比,可扩展性较强,且节约人力成本。
可选的,在本申请的一些实施例中,当射频前端的阻抗变化较大,已安装的天线无法与其适配时,还可以替换为适配当前射频前端的阻抗的天线,也可以直接替换、增加、删减等该天线中已设置的可变阻抗元件,具体本申请不作限定。
以频段在700MHz-1300GHz的天线为例,例如射频前端的阻抗为50Ω,当前图3a所示的天线的接地区域、馈电区域分别设置可变电容C1、可变电感L1。图3a所示的天线能够适配范围为50-100Ω的射频阻抗。若当前的前端射频的阻抗为200Ω,那么,当前的天线需要重新替换可变阻抗元件。
例如,可将图3a中馈电区域的可变电容C1替换为可变电容C2,以及将接地区域的可变电感L1替换为可变电感L2,如图3b所示。
例如,还可以将图3a中馈电区域的可变电容C1替换为可变电感L3,以及将接地区域的可变电感L1替换为可变电阻R,如图3c所示。
例如,还可以将图3a中馈电区域的可变电容C1替换为可变电容C3,以及将接地区域的可变电感L1替换为可变电容C4,如图3d所示。
L1与L2可变范围不同,二者可为包含或交叉关系,C1、C2、C3、C4的可变范围不同,各可变范围可为包含或交叉关系,具体可基于天线的工作频段设定,本申请不作限定。
由此可见,本申请实施例中,在更换天线中的各可变阻抗元件的BOM时,将更新原设置的可变阻抗元件的取值范围,也可以更换原设置的可变阻抗元件的类型,具体实施方式本申请不作限定和赘述。本申请也不对增加、删除天线的各区域分设置的可变阻抗元件的属性进行限定,具体可根据适配当前的射频信号所需要天线的阻抗来计算,本申请实施例不做细说。
可选的,在本申请的一些实施例中,考虑到射频前端输出的阻抗会随信号的电平大小变化而变化,当射频前端的输出阻抗的波动较大时,可能会存在当前的天线的阻抗无法与之共轭匹配的现象。为自适应的适配射频前端的输出阻抗,本申请还可以动态调整天线的阻抗,一些实施方式中,可以通过在所述天线中设置至少一个开关器件,所述开关器件设置在目标区域中,所述目标区域中设置了至少一个可变阻抗元件,所述目标区域为所述辐射区域、所述接地区域和所述馈电区域中的至少一个。
其中,设置的开关器件用于连通或切断可变阻抗元件,以及用于切换与所述目标区 域连通的可变阻抗元件。
或者,设置的开关器件用于通过改变连接可变阻抗元件上的电压、温度、湿度、光强中的至少一项属性以改变所述目标区域连通的可变阻抗元件。
在一些实施方式中,所述开关器件可包括单刀多掷,多刀多掷,晶体管、控制器等。各开关器件可以接受射频链路的中央处理器CPU的控制信号,进行关断或导通,从而呈现多种开关器件的组合,以实现自适应的硬件调整,从而控制天线的阻抗。具体可通过遍历各种开关器件组合,然后选择一种最优的开关器件组合,以实现最优的共轭匹配效果。
在一些实施方式中,所述天线可用于接收来自通信装置的处理器的指令,切换各开关器件的状态,以更新开关器件的通断组合。或者,所述天线用于接收来自通信装置的处理器的指令,改变连接可变阻抗元件上的电压、温度、湿度、光强中的至少一项属性以改变所述目标区域连通的可变阻抗元件。
具体来说,该开关器件可以受射频链路的CPU控制,CPU可通过其预留的GPIO接口连接射频链路的FET-swith SPDT开关自适应的调整对应的可变阻抗元件的各种预制的状态,例如可通过电压驱动某些开关器件,得到一组开关器件组合。
例如图4a和图4b所示,图4a中,在GND端设置了开关器件(如单刀双掷开关),以及设置了可变电容和可变电阻这两个可变阻抗元件。若当前出现阻抗不匹配时,可以将测试仪连接到射频链路上,测试射频前端和天线映射到Smith图上的阻抗特性。然后对照Smith图上,通过软件调整该切换连通的可变阻抗元件,也可以在射频链路之外,手动调整连通的可变阻抗元件的取值,并对照Smith图上,这样就可以调整对应的天线的阻抗,直至共轭匹配。
图4b中,在GND端设置了开关器件和可变电阻。若当前出现阻抗不匹配时,可以将测试仪连接到射频链路上,测试射频前端和天线映射到Smith图上的阻抗特性。然后对照Smith图上,通过软件调整可变电阻,也可以在射频链路之外,手动调整可变电阻的取值,并对照Smith图上,这样就可以调整对应的天线的阻抗,直至共轭匹配。
当射频前端的阻抗变小时,可在接地区域引入可变阻抗元件,这样能够减小天线的阻抗,从而实现共轭匹配。当射频前端的阻抗变大时,可在馈电区域引入可变阻抗元件,这样能够增大天线的阻抗,从而实现共轭匹配。
由此可见,与现有机制相比,本申请实施例中引入的天线最大的不同在于:射频前端的S参数无需tuner调谐在对应的频点,可在射频前增加能量返回传感器,天线只需要通过能量返回传感器采集的Return loss值,依据Return loss值的变化来自适应的调整即可。并且,本申请实施例中的天线不需要是标准阻抗模式,也与天线性能相关的各参数(例如S11、驻波比、标准阻抗)、射频前端的负载牵引均无关联性,能够自适应的调整到与射频前端的共轭状态。
一、下面以频段在700MHz-1300GHz的天线的GND区域设置可变阻抗元件为例,并在测量得到的Smith图上分别标记三个频点:m1(824MHz)、m2(960MHz)、m3(1068MHz)。
例如,在GNG串接0Ω的可变电阻时,该天线的阻抗特性可参考如图5a所示的Smith图。
在GND串接可变电感时,对于频段在700MHz-1.3GHz的天线而言,可在GND分别串接以下取值的可变电感:3纳亨(nH)、5.6nH、8.2nH、12nH、18nH、27nH、39nH、以及悬空(open,即该可变电感为无穷大)。最终该天线在上述3nH、5.6nH、8.2nH、12nH、 18nH、27nH、39nH、以及open时的阻抗特性可分别参考如图5b-5i所示的Smith图。
汇总图5a-5i所示的Smith图后,可得到如图5j所示的汇总后的Smith图。
由图5j分析可知,电感值越大,连续阻抗圈越发散。
又例如,在GND串接电容时,对于频段在600MHz-1.2GHz的天线而言,可在GND分别串接以下取值的可变电容:33皮法(pf)、12pf、8.2pf、5.6pf和3.9pf。最终天线的阻抗特性可以参考如图6a所示的汇总后的Smith图。由图6a可知,随电容值由小变大变化,α圈在继续变大,但且α圈的结点朝向也同时在旋转,并生成新的α形圈,并且趋近于0Ω。
对于频段在600MHz-1.2GHz的天线而言,GND分别串接以下取值的可变电容:1.5pf、1.2pf、1.0pf、0.7pf和0.5pf。最终天线的阻抗特性可以参考如图6b所示的汇总后的Smith图.由图6b可知,随电容值由小变大,α圈在继续变大,且α圈的结点朝向也在旋转。当加大电容值时,α圈变大。
综上所述,在IFA天线的接地区域加载不同取值范围的可变电感后,其阻抗特性变化主要表现出以下规律:
(1)标记的m1、m2、m3这3个点从来“不动”。
(2)随着可变电感的电感值变大,Smith圆图上,低频段的“α”形阻抗圈,从0欧姆状态开始,逐渐变大,直至Open状态。然后阻抗线的末端(即低频点m1)从阻抗圈外渐渐被卷进到阻抗圈内。反之则,阻抗圈变小。
3)而随着可变电容的电容值变大,Smith圆图上,低频段的“α”形阻抗圈,从Open状态开始,逐渐变大,“α”会散开成U形、C形等形状。
4)随着可变电容的电容值继续变大,阻抗线又缩回到原来“α”阻抗圈所在位置,重构成“α”形阻抗圈,然后阻抗圈逐渐变大,逼近到0欧姆状态。
综合引入可变电容、可变电感的测试结果,整个阻抗线的变化过程会形成一个循环。
二、对于馈电区域Feed引入可变阻抗元件时,其所引起的天线的阻抗特性变化与GND区域设置可变阻抗元件的方向正好相反。分析如下:在GND引入可变阻抗元件是减小天线的阻抗,所以在GND串联第一象限器件是使天线的阻抗特性往短路状态移动,而Feed正好相反,在Feed串联第一象限器件是使天线的阻抗特性往开路状态移动。其中,第一象限器件是指在高频电子电路中右手属于Smith图表的正向旋转第一象限材料。
三、对于辐射区域引入可变阻抗元件时,根据量子理论中的λxf=c,可知,只有当辐射臂长是λ/4的N倍(N为自然数)时,天线才能有效的辐射出对应频段的效率。其中λ是电磁波的波长,f是电磁波的频率,c是光速。
例如,在辐射区域增加可变电感时,即可等效于加长λ,且保持C不变。则对应频率f变低,return loss对应的频点持续低频偏移。例如,在辐射区域增加可变电容时,即可等效于打断辐射臂使得辐射臂的长度变短,对应频率f变高,反射损耗(return loss)对应的频点持续向高频偏移。具体在辐射区域分别设置可变电感、可变电容时的S11参数、TRP与不增加可变电感、可变电容时的S11参数、TRP对比示意图可参考图7。
由上可知,本申请实施例中的共轭天线可以在任意频点工作,也能够实现在射频前端的任意阻抗下的共轭匹配,无需改造电路板,仅需要更换或更新共轭天线即可。例如接地区域设置可变电容或可变电感,该天线在不同频段内的阻抗变化示意图可参考图5k,在引入共轭天线时,可基于该图5k所示的阻抗变化示意图选择合适的可变电容或可变电感。
为便于理解,下面以WI-FI AP链路中的阻抗为50Ω的WI-FI天线进行验证,其阻抗特性如图8所示。图8中从两种观测模式(Log Mag和Smith)测量S11变化特性,二者效果等效,S11是输入反射系数即输入回波损耗。
实际安装上述50Ω的WI-FI天线后,测试OTA TRP后,发现阻抗失配会造成射频链路的能量损失,例如低、中、高信道在传导能量均为21dB时,低、中、高信道的输出信道能量分别为:
低信道CH36TRP=12.8328,中信道CH100TRP=15.8913,高信道CH140TRP=18.2054。
由于低、中、高信道对应的传导功率均为21dB,则可知低信道损失8.2dB、中信道损失5.2dB、高信道损失2.8dB。基于天线效率不低于40%换算,10log*(40%)≈4dB,可见只有高信道的差值满足,而低、中信道则出现严重的阻抗失配。
考虑到调整共轭匹配在不知道工作频率的情况,需要先调试出无源模式,这样便于有源模式下将射频前端和天线调整为共轭匹配状态。由于高频器件的阻抗特性会随其工作频率变化而变化,所以无源模式下作为高频器件的天线的阻抗特性与带电工作状态下的特性并不一致,工作状态下都是有源模式,所以要测试电信令模式下的工作状态时天线的阻抗特性。
将测试仪器接入FEM端output,即反向从FEM端output接入测试Active load pull,将测试仪器接入FEM端output,采用测试仪表反向查验射频前端的阻抗特性,通过仪表将射频前端的阻抗特性转换为如图9所示的Smith图。图9为分别在单板无源模式下、单板电信令模式下测试的两种结果。其在5.1-5.7GHz时,该WI-FI天线的阻抗特性范围为78Ω+j1.11nH-119Ω+j916fF,可见该WI-FI天线的实际阻抗特性并不是50Ω。
可设射频前端的阻抗特性为Ra+jXa,WI-FI天线的阻抗特性为Rb+jXa,由于WI-FI天线中的b为定值,所以b无法跟随射频前端的a变化而对应变化,所以会导致射频前端与该WI-FI天线失配。
为解决该失配问题,本申请引入阻抗特性如图10所示的共轭天线。
可设该共轭天线的阻抗特性为Rc+jXc,引入共轭天线后,由于引入的共轭天线中的c是变量,所以c会随着射频前端中的a的变化而变化。
引入共轭天线后,再次测试TRP的结果如下:
低信道CH36TRP=18.7877,中信道CH100TRP=18.8225,高信道CH140TRP=19.0129
低、中信道的TRP无线性能相较于现有的标准阻抗WI-FI天线均提升5dB。可见,通过引入共轭天线,由于共轭天线的阻抗特性能够跟随其上游器件(即射频前端)的阻抗特性变化而形成共轭匹配,所以能够减少电磁转换过程中链路上的能量损耗。
如图11所示的Smith图,该图中将标准阻抗的WI-FI天线的Smith曲线、射偏前端的Smith曲线以及共轭天线的Smith曲线进行对比,由图11可看出,引入共轭天线之前,将标准阻抗的WI-FI天线的Smith曲线与射偏前端的Smith曲线处于失配状态,在引入共轭天线后,将共轭天线的Smith曲线则与射偏前端的Smith曲线呈现共轭匹配。
本申请实施例还提供一种通信装置,其可包括射频前端、以及如图1-图11中任一所对应的实施例中描述的天线。该通信装置可用于处理来自空间的电磁波的干扰,也可用于处理通信装置内部的辐射效率问题。具体来说,可参考图12所示的场景一,以及图 13所示的场景二。具体的调整阻抗的方式可参考前述部分针对天线的实施例中的介绍,此处不作赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上对本申请所提供的技术方案进行了详细介绍,本申请中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (8)

  1. 一种天线,所述天线包括辐射区域、接地区域和馈电区域,所述辐射区域的一端电气连接至射频前端,所述射频前端用于收发电磁波信号,其特征在于,所述辐射区域、所述接地区域和所述馈电区域中的至少一个中设置至少一个阻抗可变电路;
    所述阻抗可变电路用于在所述天线的阻抗与所述射频前端的阻抗不匹配时,或在所述射频前端的阻抗变化时,自适应调整所述天线的阻抗,以控制所述天线的阻抗与所述射频前端的阻抗共轭匹配;
    或者,所述阻抗可变电路用于在所述天线的阻抗与所述射频前端的阻抗匹配时,自适应调整所述天线的阻抗,以控制所述天线的阻抗与所述射频前端的阻抗失配。
  2. 根据权利要求1所述的天线,所述阻抗可变电路包括可变阻抗元件;
    所述可变阻抗元件用于在所述天线的阻抗与所述射频前端的阻抗不匹配时,或在所述射频前端的阻抗变化时,自适应调整所述可变阻抗元件的取值,以控制所述天线的阻抗与所述射频前端的阻抗共轭匹配。
  3. 根据权利要求2所述的天线,其特征在于,所述可变阻抗元件至少包括可变电容元件、可变电阻元件或可变电感元件,或者至少包括由可变电容元件、可变电阻元件或可变电感元件中的至少一个组合的电路。
  4. 根据权利要求2或3所述的天线,其特征在于,当所述天线的阻抗与所述射频前端的阻抗不匹配时,所述可变阻抗元件自适应调整所述可变阻抗元件的取值,以控制所述天线的阻抗的系数自动调整,以趋近于或调整至所述射频前端的阻抗当前的系数,以使所述天线的阻抗与所述射频信号共轭匹配。
  5. 根据权利要求4所述的天线,其特征在于,所述阻抗可变电路还包括至少一个开关器件,所述开关器件设置在目标区域中,所述目标区域中设置了至少一个可变阻抗元件,所述目标区域为所述辐射区域、所述接地区域和所述馈电区域中的至少一个;
    设置的开关器件用于连通或切断可变阻抗元件,以及用于切换与所述目标区域连通的可变阻抗元件;
    或者,设置的开关器件用于通过改变连接可变阻抗元件上的电压、温度、湿度、光强中的至少一项属性以改变所述目标区域连通的可变阻抗元件。
  6. 根据权利要求5所述的天线,其特征在于,所述天线用于接收来自通信装置的处理器的指令,切换各开关器件的状态,以更新开关器件的通断组合;
    或者,所述天线用于接收来自通信装置的处理器的指令,改变连接可变阻抗元件上的电压、温度、湿度、光强中的至少一项属性以改变所述目标区域连通的可变阻抗元件。
  7. 根据权利要求3所述的天线,其特征在于,在所述天线中设置的可变阻抗元件为可拆卸元件。
  8. 一种通信装置,其特征在于,其包括射频前端、如权利要求1-7中任一所述的天线。
PCT/CN2018/119257 2017-12-22 2018-12-05 一种天线及通信装置 WO2019120077A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18891956.7A EP3716396A4 (en) 2017-12-22 2018-12-05 ANTENNA AND COMMUNICATION DEVICE
US16/906,071 US20200321699A1 (en) 2017-12-22 2020-06-19 Antenna and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711404750.5 2017-12-22
CN201711404750.5A CN109962329A (zh) 2017-12-22 2017-12-22 一种天线及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/906,071 Continuation US20200321699A1 (en) 2017-12-22 2020-06-19 Antenna and communications apparatus

Publications (1)

Publication Number Publication Date
WO2019120077A1 true WO2019120077A1 (zh) 2019-06-27

Family

ID=66994375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119257 WO2019120077A1 (zh) 2017-12-22 2018-12-05 一种天线及通信装置

Country Status (4)

Country Link
US (1) US20200321699A1 (zh)
EP (1) EP3716396A4 (zh)
CN (1) CN109962329A (zh)
WO (1) WO2019120077A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3911120A1 (en) * 2020-05-11 2021-11-17 LG Electronics, Inc. Radio wave radiating device and oven having same
EP3977561A4 (en) * 2019-08-30 2022-08-10 Samsung Electronics Co., Ltd. ANTENNA AND ELECTRONIC DEVICE THEREOF

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082833B (zh) * 2019-12-27 2021-09-17 宇龙计算机通信科技(深圳)有限公司 射频前端电路和终端
CN113992215A (zh) * 2021-10-22 2022-01-28 闻泰通讯股份有限公司 射频前端发射模块及其带外杂散自适应调节方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329133A (zh) * 2015-07-02 2017-01-11 联发科技股份有限公司 可调天线模块和移动装置
CN206313756U (zh) * 2016-12-21 2017-07-07 珠海全志科技股份有限公司 一种可变阻抗调谐装置及带有该装置的射频系统
CN107040255A (zh) * 2015-12-29 2017-08-11 英飞凌科技股份有限公司 用于可切换电容的系统和方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4469632B2 (ja) * 2004-02-24 2010-05-26 富士通株式会社 アンテナ整合回路用制御装置
EP2710669B1 (en) * 2011-05-16 2017-07-12 BlackBerry Limited Method and apparatus for tuning a communication device
CN103187626A (zh) * 2013-03-08 2013-07-03 华南理工大学 一种陷波特性可重构的超宽带平面单极子天线
KR102116159B1 (ko) * 2013-04-01 2020-05-28 에이브이엑스 안테나 인코포레이티드 재구성 가능 다중 모드 능동 안테나 시스템
KR102229382B1 (ko) * 2013-08-23 2021-03-22 삼성전자주식회사 전자 장치 및 그를 동작하는 방법
CN104681984B (zh) * 2013-11-29 2019-05-21 深圳富泰宏精密工业有限公司 无线通信装置
TWI531115B (zh) * 2013-12-04 2016-04-21 宏碁股份有限公司 通訊裝置
CN104752833A (zh) * 2013-12-31 2015-07-01 深圳富泰宏精密工业有限公司 天线组件及具有该天线组件的无线通信装置
CN104885296B (zh) * 2013-12-31 2018-06-19 华为终端(东莞)有限公司 环形天线及移动终端
JP6528845B2 (ja) * 2015-07-31 2019-06-12 株式会社村田製作所 アンテナ整合回路、アンテナ回路、フロントエンド回路および通信装置
CN106921034B (zh) * 2015-12-26 2019-03-08 小米科技有限责任公司 天线组件及电子设备
CN206293622U (zh) * 2016-12-31 2017-06-30 惠州硕贝德无线科技股份有限公司 一种带阻抗匹配电路的天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329133A (zh) * 2015-07-02 2017-01-11 联发科技股份有限公司 可调天线模块和移动装置
CN107040255A (zh) * 2015-12-29 2017-08-11 英飞凌科技股份有限公司 用于可切换电容的系统和方法
CN206313756U (zh) * 2016-12-21 2017-07-07 珠海全志科技股份有限公司 一种可变阻抗调谐装置及带有该装置的射频系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3716396A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3977561A4 (en) * 2019-08-30 2022-08-10 Samsung Electronics Co., Ltd. ANTENNA AND ELECTRONIC DEVICE THEREOF
EP3911120A1 (en) * 2020-05-11 2021-11-17 LG Electronics, Inc. Radio wave radiating device and oven having same
US11950350B2 (en) 2020-05-11 2024-04-02 Lg Electronics Inc. Radio wave radiating device and oven having same

Also Published As

Publication number Publication date
EP3716396A4 (en) 2020-12-09
EP3716396A1 (en) 2020-09-30
CN109962329A (zh) 2019-07-02
US20200321699A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
WO2019120077A1 (zh) 一种天线及通信装置
US10062629B2 (en) Antenna impedance matching and aperture tuning circuitry
US8289102B2 (en) Directional coupler
TWI505566B (zh) 寬頻天線及其相關射頻裝置
US8525731B2 (en) Small antenna using SRR structure in wireless communication system and method for manufacturing the same
US20140253398A1 (en) Tunable antenna
CN105098354B (zh) 移动终端及天线装置
KR101664389B1 (ko) 직렬 급전 배열 안테나
CN104852148A (zh) 一种可调谐天线及终端
US9438200B2 (en) Compact broadband impedance transformer
TW201436368A (zh) 調頻天線
JP4642570B2 (ja) 高周波スイッチ回路、無線機器及び信号経路切り替え器
CN110504977A (zh) 一种多频段阻抗匹配电路及无线射频系统
WO2024045766A1 (zh) 一种天线组件及电子设备
US20180054185A1 (en) Antenna impedance matching using negative impedance converter and pre- and post-matching networks
US9819077B1 (en) Multi-feed antenna optimized for non-50 Ohm operation
CN110492951A (zh) 一种射频反馈检测电路、天线组件以及电子设备
US9947996B2 (en) Antenna device
TW201616807A (zh) 阻抗匹配電路
Best The inverse relationship between quality factor and bandwidth in multiple resonant antennas
JP7165188B2 (ja) 高周波スイッチ及びアンテナ装置
US3441935A (en) Loop antenna with negative resistance element at terminating gap
CN114069227B (zh) 多频段天线
TWI702810B (zh) 射頻設備
US20150180441A1 (en) Microwave switch and method of manufacturing microwave switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018891956

Country of ref document: EP

Effective date: 20200624