WO2019119716A1 - 一种间接蒸发精密空调 - Google Patents

一种间接蒸发精密空调 Download PDF

Info

Publication number
WO2019119716A1
WO2019119716A1 PCT/CN2018/086608 CN2018086608W WO2019119716A1 WO 2019119716 A1 WO2019119716 A1 WO 2019119716A1 CN 2018086608 W CN2018086608 W CN 2018086608W WO 2019119716 A1 WO2019119716 A1 WO 2019119716A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat exchanger
circulation
air conditioner
air inlet
Prior art date
Application number
PCT/CN2018/086608
Other languages
English (en)
French (fr)
Inventor
白本通
许军强
Original Assignee
深圳易信科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳易信科技股份有限公司 filed Critical 深圳易信科技股份有限公司
Priority to US16/331,458 priority Critical patent/US20200378632A1/en
Publication of WO2019119716A1 publication Critical patent/WO2019119716A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/032Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
    • F24F1/0323Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/022Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/117Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using wet filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B7/00Combinations of two or more condensers, e.g. provision of reserve condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20827Liquid cooling with phase change within rooms for removing heat from cabinets, e.g. air conditioning devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/22Cleaning ducts or apparatus
    • F24F2221/225Cleaning ducts or apparatus using a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/90Cleaning of purification apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Definitions

  • the invention relates to the field of precision air conditioning technology, in particular to a precision air conditioner comprising an indirect evaporation module for a data center.
  • a new indirect evaporative precision air conditioner which combines indirect evaporative cooling and mechanical refrigeration in series, so that indirect evaporative cooling can be run all year round, air conditioning refrigeration efficiency is high, and mechanical cooling is used for secondary cooling in summer. The desired temperature is reached. And the condenser of the precision air conditioner is also upgraded to an indirect evaporative condenser, and the mechanical refrigeration efficiency can be greatly improved.
  • An indirect evaporation precision air conditioner comprising:
  • Gas-gas heat exchanger external circulation fan, internal circulation fan, gas filtration module, gas humidification module, evaporator, condenser, condenser fan, compressor, air conditioner housing;
  • the gas-gas heat exchanger is provided with a circulating air inlet in the heat exchanger, a circulating air outlet in the heat exchanger, an air inlet outside the heat exchanger, a circulating air outlet outside the heat exchanger, a circulation passage in the heat exchanger, and a change a heat exchanger outer circulation passage, a heat exchange plate;
  • the gas-gas heat exchanger is a partition wall gas-gas heat exchanger, wherein the heat exchanger inner circulation passage and the heat exchanger outer circulation passage are subjected to the heat exchange a plate is formed; the external gas and the internal gas exchange heat on the heat exchange plate in the gas-gas heat exchanger;
  • the air conditioner casing is distributed around the indirect evaporation precision air conditioner; the air conditioner casing is provided with an inner circulation air inlet, an inner circulation air outlet, an outer circulation air inlet, an outer circulation air inlet passage, and an outer circulation air outlet passage;
  • the inner circulation air inlet is connected to the circulating air inlet in the heat exchanger;
  • the outer circulation air inlet channel is connected to the outer air inlet of the heat exchanger;
  • the outer circulation fan is located above the gas-gas heat exchanger
  • the inner circulation fan is located below the gas-gas heat exchanger
  • the gas filtering module is located at a position of the outer circulation air inlet passage connecting the outer circulation air inlet; the gas filtering module is placed vertically or nearly vertically;
  • the gas humidification module is located between the gas filtration module and the gas-gas heat exchanger;
  • the condenser is located below or above the outer circulation air inlet passage and communicates with the outer circulation air inlet passage;
  • the condenser fan is located below or above the condenser
  • the compressor is connected to the evaporator and the condenser
  • the indirect evaporation precision air conditioner has a complete external gas circulation process: the external gas enters the outer circulation air inlet passage through the gas filtration module, and then enters the heat exchange after being humidified by the gas humidification module.
  • An external circulation passage the outside air is heat-exchanged with the internal gas of the circulation passage in the heat exchanger through the heat exchange plate, and then enters the outer circulation air outlet passage, and then is used by the outer circulation fan Send out
  • the indirect evaporation precision air conditioner has a complete internal gas circulation process: the internal gas enters the circulation passage in the heat exchanger through the internal circulation air inlet, and the internal gas passes through the heat exchange plate and the The external gas of the outer circulation passage of the heat exchanger is heat exchanged, then passed through the evaporator and cooled, and then enters the inner circulation air outlet passage, and is sent into the chamber by the inner circulation fan;
  • the indirect evaporation precision air conditioner has a complete condenser cooling gas circulation process: the external gas enters the outer circulation air inlet passage through the gas filtration module, and then enters the condensation after being humidified by the humidification module The external gas is heat-exchanged with the condenser and sent out of the outdoor by the condenser fan.
  • the gas-gas heat exchanger is a rectangular parallelepiped having a rectangular cross section, and the outer annular outlet of the heat exchanger is above the gas-gas heat exchanger; the heat exchanger is circulated An air outlet is below the gas-gas heat exchanger; an outer air inlet of the heat exchanger is at a right lower side of the gas-gas heat exchanger; and an air inlet is circulated in the heat exchanger to the gas- The upper left of the gas heat exchanger.
  • the gas-gas heat exchanger has a hexagonal cross section, and the outer gas and the inner gas are in a countercurrent mode in a middle section of the gas-gas heat exchanger.
  • the direction of the position is in a cross-flow mode.
  • the gas-gas heat exchanger has a pentagonal cross section, and the external gas and the internal gas are in a countercurrent mode in a middle portion of the gas-gas heat exchanger, at an inlet and outlet position. The trend is in a cross-flow mode.
  • the gas-gas heat exchanger has a cross section of two quadrangles, and the external gas and the internal gas are both in the middle of the gas-gas heat exchanger and in the inlet and outlet positions. Crossflow mode.
  • the gas-gas heat exchanger internally contains a water spray cleaning nozzle.
  • the gas humidification module further comprises a variable frequency water pump, wherein the water pressure is adjusted by adjusting a working load of the variable frequency water pump when the air conditioning system is in operation; the gas humidification module further comprises a plurality of sets of nozzles, each The group nozzle corresponds to a specific starting pressure, and the corresponding nozzle will work when the pressure is greater than or equal to the starting pressure of the corresponding nozzle.
  • the outer circulation air passage of the air conditioner casing is curved, and the outer circulation air is distributed to both sides of the air conditioner casing to be discharged outside.
  • the inner circulation fan and the outer circulation fan are both centrifugal EC fans, and the gas flow direction changes by 90 degrees or nearly 90 degrees after the gas passes through the fan.
  • the invention combines two cooling modes of mechanical refrigeration and indirect evaporative cooling, and develops a new device, which can cool the air outlet of the server by indirect evaporative cooling in spring, autumn and winter, and adopts indirect evaporative cooling in the summer. Cooling and then using mechanical refrigeration to cool the air that does not reach the expected 23 °C for the second time to achieve energy saving. It can be done in most parts of the Yangtze River in China.
  • the annual start-up time of the compressor is less than 3 months, which greatly improves the energy efficiency of the whole year.
  • the summer variable frequency compressor is started, it is a low-load operation, and the indirect evaporation condenser can also greatly improve the mechanical refrigeration efficiency.
  • the invention designs a novel gas-gas heat exchanger with built-in automatic cleaning function.
  • the invention designs an automatic dust removing device, which can adapt to the natural environment of the north wind and sand.
  • FIG. 1 is a schematic view of an indirect evaporation precision air conditioner according to an embodiment of the present invention
  • Figure 2 is a perspective view of the gas-gas heat exchanger shown in Figure 1;
  • Figure 3 is a schematic cross-sectional view showing a shape of a gas-gas heat exchanger

Abstract

一种间接蒸发精密空调,包含气体-气体热交换器(56)、外循环风机(62)、内循环风机(61)、气体过滤模块(54)、气体加湿模块(55)、蒸发器(51)、冷凝器(52)、压缩机(53)、冷凝器风机(63)、空调外壳。内部气体通过内循环进风口(11)进入到精密空调中,再从内循环出风口(14)送到室内,外部气体通过外循环进风口(21)进入精密空调中,从外循环出风口(24)和冷凝器出风口(32)送到室外。

Description

一种间接蒸发精密空调
本申请要求了2017年12月20日提交中国专利局的,申请号201711379371.5,发明名称为“一种间接蒸发精密空调”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及精密空调技术领域,特别是涉及一种用于数据中心的含有间接蒸发模块的精密空调。
背景技术
精密空调经过几十年的发展,各方面技术都趋向成熟。由于使用方便、操作简单、可靠性高,普遍应用于中小数据中心或者对温湿度要求比较高的场合。该产品目前面临的主要问题是能效差,不进行根本性的创新,使用面会越来越窄。
数据中心需要全年冷却制冷,一般数据中心全年温湿度控制标准为温度23±1℃、湿度50±10%,而数据中心产生的热风温度在35-44℃,同时无论中国南方还是中国北方,最高湿球温度都小于30℃,因此数据中心可以利用通风或者换热的方式利用室外低温冷源来进行冷却。从这个角度可以看出理论上全年都可以利用室外冷源对服务器排出的热风进行降温,但是实际上无论是直接利用新风进行冷却,还是单利用间接蒸发冷却都不能做到全年利用室外冷源。
单利用精密空调,能效很差。单利用新风,由于国内空气质量差,常规处理手段达不到预期效果,并且利用季节也比较短。利用间接蒸发冷却方式,可加长利用室外冷源的时间,中国北方大部分地区全年只有不到3个月需要用压缩机机械制冷,但如何和传统空调结合存在很多问题。
由于国内空气品质差,原本在国外正常运转的间接蒸发冷却设备在国内会遇到很多麻烦,除尘和换热器清洗都需要用人工方式处理,工作量大,也影响设备正常运转。
发明内容
基于上述技术问题,提出了一种新型间接蒸发精密空调,将间接蒸发冷却和机械制冷串联结合在一起,使得间接蒸发冷却能够全年运行,空调制冷效率高,夏季则利用机械制冷进行二次降温达到预期温度。并且精密空调的冷凝器也升级为间接蒸发冷凝器,机械制冷效率可大幅提升。
本发明实施例的技术方案如下:
一种间接蒸发精密空调,包含:
气体-气体热交换器、外循环风机、内循环风机、气体过滤模块、气体加湿模块、蒸发器、冷凝器、冷凝器风机、压缩机、空调外壳;
所述气体-气体热交换器设有换热器内循环进风口、换热器内循环出风口、换热器外循环进风口、换热器外循环出风口、换热器内循环通道、换热器外循环通道、热交换板;所述气体-气体热交换器为间壁式气体-气体热交换器,所述换热器内循环通道和所述换热器外循环通道由所述热交换板隔离形成;外部气体和内部气体在所述气体-气体热交换器内的所述热交换板上交换热量;
所述空调外壳分布在所述间接蒸发精密空调外围;所述空调外壳设有内循环进风口、内循环出风通道、外循环进风口、外循环进风通道、外循环出风通道;
所述内循环进风口连接所述换热器内循环进风口;所述外循环进风通道连接所述换热器外循环进风口;
所述外循环风机位于所述气体-气体热交换器的上方;
所述内循环风机位于所述气体-气体热交换器的下方;
所述气体过滤模块位于所述外循环进风通道内连接所述外循环进风口的位置;所述气体过滤模块垂直或接近垂直放置;
所述气体加湿模块位于所述气体过滤模块和所述气体-气体热交换器之间的位置;
所述蒸发器位于所述气体-气体热交换器的下方的所述内循环出风通道内;
所述冷凝器位于所述外循环进风通道下方或者上方,并连通所述外循环进风通道;
所述冷凝器风机位于所述冷凝器下方或者上方;
所述压缩机连接所述蒸发器和所述冷凝器;
所述间接蒸发精密空调一个完整的外部气体循环过程是这样的:所述外部气体经过所述气体过滤模块进入所述外循环进风通道,然后经过所述气体加湿模块加湿后进入所述换热器外循环通道,所述外部气体通过所述热交换板与所述换热器内循环通道的所述内部气体进行热交换后,进入所述外循环出风通道,然后被所述外循环风机送出室外;
所述间接蒸发精密空调一个完整的内部气体循环过程是这样的:所述内部气体经过所述内循环进风口进入所述换热器内循环通道,所述内部气体通过所述热交换板与所述换热器外循环通道的所述外部气体进行热交换,然后通过所述蒸发器并被冷却,再进入所述内循环出风通道,被所述内循环风机送入室内;
所述间接蒸发精密空调一个完整的冷凝器冷却气体循环过程是这样的:所述外部气体经过所述气体过滤模块进入所述外循环进风通道,然后经过所述加湿模块加湿后进入所述冷凝器,所述外部气体与所述冷凝器进行热交换后被所述冷凝器风机送出室外。
在另一实施例中,所述气体-气体热交换器为长方体,截面为矩形,所述换热器外循环出风口在所述气体-气体热交换器的上方;所述换热器内循环出风口在所述气体-气体热交换器的下方;所述换热器外循环进风口在所述气体-气体热交换器的右下方;所述换热器内循环进风口在所述气体-气体热交换器的左上方。
在另一实施例中,所述气体-气体热交换器截面为六边形,所述外部气体和所述内部气体在所述气体-气体热交换器内部中段的走向呈逆流模式,在进出口位置的走向呈交叉流模式。
在另一实施例中,所述气体-气体热交换器截面为五边形,所述外部气体和所述内部气体在所述气体-气体热交换器内部中段走向呈逆流模式,在进出口位置的走向呈交叉流模式。
在另一实施例中,所述气体-气体热交换器截面为两个四边形组合,所述外部气体和所述内部气体在所述气体-气体热交换器内部中段和进出口位置的走向均为交叉流模式。
在另一实施例中,所述气体-气体热交换器内部含有水喷淋清洗喷头。
在另一实施例中,所述气体过滤模块包含自动除尘组件,用于定期清除滤网上的灰尘。
在另一实施例中,所述气体加湿模块还包含变频水泵,在空调系统运行时,通过调整所述变频水泵的工作负荷来调整水压;所述的气体加湿模块还包含多组喷头,每组喷头对应特定的启动压力,当压力大于等于对应喷头的启动压力时,所述对应喷头才会工作。
在另一实施例中,所述空调外壳的所述外循环出风通道呈弯曲状,外循环出风被分到所述空调外壳两边排出室外。
在另一实施例中,,所述内循环风机和所述外循环风机均为离心式EC风机, 气体经过风机后气体流向发生了90度或者接近90度的变化。
本发明的技术效果如下:
本发明将机械制冷和间接蒸发冷却两种冷却方式结合在一起,研发了一款全新设备,可以在春季、秋季、冬季利用间接蒸发冷却对服务器出风进行降温,夏季先利用间接蒸发冷却进行初步降温然后再利用机械制冷对未达到预期23℃的空气进行二次降温,来达到节能降耗的目的。可以做到在国内长江以北大部分地区,全年压缩机启动时间不超过3个月,大幅提高全年制冷能效。同时夏季变频压缩机启动的时候因为是低负荷运转,并且使用间接蒸发冷凝器,也可大幅提升机械制冷效率。本发明设计了一种新型气体-气体热交换器,内置自动清洗功能。本发明设计了一个自动除尘装置,可适应北方风沙大的自然环境。
附图说明
图1为本发明的一种实施方式的间接蒸发精密空调的示意图;
图2为图1所示的气体-气体热交换器的立体示意图;
图3为气体-气体热交换器一种形状的横截面示意图;
图4为气体-气体热交换器另一种形状的横截面示意图;
图5为气体-气体热交换器另一种形状的横截面示意图;
图6为气体-气体热交换器另一种形状的横截面示意图;
附图中各标号的含义为:
11-内循环进风口,12-换热器内循环进风口,13-换热器内循环出风口,14-内循环出风口,21-外循环进风口,22-换热器外循环进风口,23-换热器外循环出风口,24-外循环出风口,31-冷凝器进风口,32-冷凝器出风口,41-外循环进风通道,42-换热器外循环通道,43-外循环出风通道,44-换热器内循环通道,45- 内循环出风通道,46-冷凝器出风通道;
51-蒸发器,52-冷凝器,53-压缩机,54-气体过滤模块,55-气体加湿模块,56-气体-气体热交换器,61-内循环风机,62-外循环风机,63-冷凝器风机。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
如图1所示,本发明实施例的间接蒸发精密空调包含气体-气体热交换器56、内循环风机61、外循环风机62、气体过滤模块54、气体加湿模块55、蒸发器51、冷凝器52、压缩机53、冷凝风机63,空调外壳,整个精密空调被空调外壳包围,含有内循环进风口11、换热器内循环进风口12、换热器内循环出风口13、内循环出风口14、外循环进风口21、换热器外循环进风口22、换热器外循环出风口23、外循环出风口24、冷凝器进风口31、冷凝器出风口32。其中内循环风机61位于换热器56的下方,外循环风机62位于换热器56上方,冷凝器风机63位于冷凝器52的上方或下方,并连通外循环进风通道41。内部气体通过内循环进风口11进入到精密空调中,再从内循环出风口14送到室内,外部气体通过外循环进风口21进入精密空调中,从外循环出风口24和冷凝器出风口32送到室外。
在本实施例中,外部气体指通过外循环进风口进入室外的空气,内部气体 指通过内循环进风口进入室内的空气。
本实施例中一个完整的外部气体循环过程是这样的:外部气体经过气体过滤模块54过滤和气体加湿模块55加湿后进入外循环进风通道41,然后该外部气体进入到气体-气体热交换器56的换热器外循环通道42中,在换热壁上与内部气体进行热交换,然后进入外循环出风通道43,被外循环风机62送出室外。
一个完整的内部气体循环过程是这样的:内部气体经过内循环进风口11的进入气体-气体热交换器56的换热器内循环通道44中,与外部气体在换热壁上进行热交换,然后该内部气体被蒸发器51冷却,然后进入内循环出风通道45,被内循环风机61送入室内;
气体-气体热交换器56为间壁式气体-气体热交换器,换热器外循环通道42和换热器内循环通道44被气体-气体热交换器56上的热交换板完全隔离,外部气体和内部气体在热交换板上仅进行热量交换;
一个完整的冷凝器冷却气体循环过程是这样的:外部气体经过气体过滤模块54过滤和气体加湿模块55加湿后进入外循环进风通道41,再进入冷凝器52中,与冷凝器进行热交换,进入冷凝器出风通道46,然后被冷凝器风机63送出室外。一般地,室外空气通过气体加湿模块55后会降低温度变成低温室外空气,这样本实施例的冷凝器工作温度比室外空气低,能使得机械制冷获得更好的制冷效果。
如图2所示,气体-气体热交换器56为间壁式气体-气体热交换器,含有热交换板、换热器外循环进风口22、换热器外循环出风口23、换热器内循环进风口12、换热器内循环出风口13,其中换热器外循环通道42和换热器内循环通道44是被热交换板的相互间隔设置隔开形成的通道,并设置进出风口。其中内部气体在热交换器里面的通道为换热器内循环通道44,从换热器内循环进风口12流入,从换热器内循环出风口13流出;外部气体在热交换器里面的通道为换热器外循环通道42,从换热器外循环进风口22流入,从换热器外循环出风口23流出。
例如,运行本间接蒸发精密空调的某数据中心的内循环回风温度为35℃,室内需要控制的送风温度为23℃。夏季时,当外部气体温度37℃,相对湿度50%时(此时湿球温度为28℃),此时仅仅利用间接蒸发冷却无法将内循环回风冷却到预期的23℃,需要压缩机工作进行二次冷却。具体工作过程为:该外部气体进入间接蒸发精密空调的外部循环通道时,通过气体加湿模块加湿后相对湿度接近100%,气体温度接近28℃,通过气体-气体热交换器后外部气体温度升为34.3℃。在内部循环中,35℃内部气体,通过气体-气体热交换器后被冷却为28.7℃,再通过蒸发器被冷却为23℃,这一过程中通过气体-气体热交换器获得的相对制冷量近似为(35℃-28.7℃)/(35℃-23℃)=52.5%,即间接蒸发冷却承担了此数据中心总制冷负荷的52.5%,而机械制冷需要提供的制冷量仅为47.5%,变频压缩机在此种工况下,能效比比满负荷高很多。另外,当外部气体温度30℃,相对湿度40%时,此时湿球温度为20℃,当该外部气体经过间接蒸发精密空调时,通过气体加湿模块的加湿相对湿度接近100%,温度接近20℃,通过气体-气体热交换器后外部气体温度为33.5℃。内部气体35℃,通过气体-气体热交换器后的温度可以达到21.5℃,即这种情形下通过间接蒸发冷却已能够满足对内部气体的降温需求,压缩机可以不工作。
本实施例将机械制冷和间接蒸发冷却两种冷却方式串联结合在一起,研发了一款全新设备,可以在春季、秋季、冬季利用间接蒸发冷却对服务器出风进行降温,夏季先利用间接蒸发冷却进行初步降温然后再利用机械制冷对未达到预期23℃的空气进行二次降温,来达到节能降耗的目的。可以做到在国内长江以北大部分地区,全年压缩机启动时间不超过3个月,大幅提高全年制冷能效。同时夏季变频压缩机启动的时候因为是低负荷运转,并且使用间接蒸发冷凝器,也可大幅提升机械制冷效率。
在一个实施例中,如图1所示上述换热器外循环进风口22、换热器外循环出风口23、换热器内循环进风口12、换热器内循环出风口13依次分布在上述气体-气体热交换器56的右下方、上方、左上方、下方。在其他实施例中,内部 气体和外部气体的进出风口可以设置在其他地方,只要保证内部气体和外部气体在气体-气体热交换器56内部呈逆流模式即可。所谓的逆流模式,是指换热器内循环通道44和换热器外循环通道42呈相对平行的分布。
在本发明中,气体-气体热交换器56可以为其他形状,如图3、图4、图5、图6所示。其含有热交换板、换热器外循环进风口22、换热器外循环出风口23、换热器内循环进风口12、换热器内循环出风口13,换热器外循环通道42和换热器内循环通道44。
如图3所示的气体-气体热交换器为长方体,截面为矩形,其中换热器外循环通道42和换热器内循环通道44在内部走向呈逆流模式,在进出口位置走向呈交叉模式。
如图4和图5所示的气体-气体热交换器的截面为五边形或六边形,其中换热器外循环通道42和换热器内循环通道44在内部走向呈逆流模式,在进出口位置走向呈交叉模式。
如图6所示的气体-气体热交换器的截面为两个四边形通过交换器的腔室壁组合而成,这种情形下,换热器外循环通道42和换热器内循环通道44在内部走向呈交叉模式,在进出口位置走向呈交叉模式。
优选地,气体-气体热交换器56内部含有水喷淋清洗喷头,在通过水喷淋喷头既可以对热交换器56内部进行定期的清洗,防止热交换器外循环通道结垢。
优选地,气体过滤模块54还包括含有自动除尘组件,可定期清除滤网上的灰尘,这样可以远程定期地对空气过滤模块进行除尘,不需要人工换过滤网。
优选地,气体加湿模块55还包含变频水泵,在空调系统运行时通过调整变频水泵的工作负荷来调整水压。气体加湿模块55上还包括若干组喷头,每组喷头对应每组喷头对应特定的启动水压,只有在水压大于等于该组喷头的启动水压该喷头才会工作。采用多组喷头设置,实现了在一个较宽的水压范围内,喷头都能正常工作。
优选地,空调外壳的外循环出风通道43呈弯曲状,外循环出风被分到设备 两边排出室外。
优选地,压缩机53为变频压缩机,可以通过控制压缩机的频率来改变压缩量的大小,从而实现制冷量的精密控制和压缩机低负荷工作。
优选地,内循环风机61和外循环风机63均为离心式EC风机,气体经过风机后气体流向发生了90度或者接近90度的变化。通过气流近90度的转弯使得整个精密空调布置的更加紧密,节省了精密空调的占用空间。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的优选的实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种间接蒸发精密空调,包含气体-气体热交换器、外循环风机、内循环风机、气体过滤模块、气体加湿模块、蒸发器、冷凝器、冷凝器风机、压缩机、空调外壳,其特征在于:
    所述气体-气体热交换器设有换热器内循环进风口、换热器内循环出风口、换热器外循环进风口、换热器外循环出风口、换热器内循环通道、换热器外循环通道、热交换板;所述气体-气体热交换器为间壁式气体-气体热交换器,所述换热器内循环通道和所述换热器外循环通道由所述热交换板隔离形成;外部气体和内部气体在所述气体-气体热交换器内的所述热交换板上交换热量;
    所述空调外壳分布在所述间接蒸发精密空调外围;所述空调外壳设有内循环进风口、内循环出风通道、外循环进风口、外循环进风通道、外循环出风通道;
    所述内循环进风口连接所述换热器内循环进风口;所述外循环进风通道连接所述换热器外循环进风口;
    所述外循环风机位于所述气体-气体热交换器的上方;
    所述内循环风机位于所述气体-气体热交换器的下方;
    所述气体过滤模块位于所述外循环进风通道内连接所述外循环进风口的位置;所述气体过滤模块垂直或接近垂直放置;
    所述气体加湿模块位于所述气体过滤模块和所述气体-气体热交换器之间的位置;
    所述蒸发器位于所述气体-气体热交换器的下方的所述内循环出风通道内;
    所述冷凝器位于所述外循环进风通道下方或者上方,并连通所述外循环进 风通道;
    所述冷凝器风机位于所述冷凝器下方或者上方;
    所述压缩机连接所述蒸发器和所述冷凝器;
    所述间接蒸发精密空调一个完整的外部气体循环过程是这样的:所述外部气体经过所述气体过滤模块进入所述外循环进风通道,然后经过所述气体加湿模块加湿后进入所述换热器外循环通道,所述外部气体通过所述热交换板与所述换热器内循环通道的所述内部气体进行热交换后,进入所述外循环出风通道,然后被所述外循环风机送出室外;
    所述间接蒸发精密空调一个完整的内部气体循环过程是这样的:所述内部气体经过所述内循环进风口进入所述换热器内循环通道,所述内部气体通过所述热交换板与所述换热器外循环通道的所述外部气体进行热交换,然后通过所述蒸发器并被冷却,再进入所述内循环出风通道,被所述内循环风机送入室内;
    所述间接蒸发精密空调一个完整的冷凝器冷却气体循环过程是这样的:所述外部气体经过所述气体过滤模块进入所述外循环进风通道,然后经过所述加湿模块加湿后进入所述冷凝器,所述外部气体与所述冷凝器进行热交换后被所述冷凝器风机送出室外。
  2. 根据权利要求1所述的气体-气体热交换器,其特征在于,所述气体-气体热交换器为长方体,截面为矩形,所述换热器外循环出风口在所述气体-气体热交换器的上方;所述换热器内循环出风口在所述气体-气体热交换器的下方;所述换热器外循环进风口在所述气体-气体热交换器的右下方;所述换热器内循环进风口在所述气体-气体热交换器的左上方。
  3. 根据权利要求1所述的间接蒸发精密空调,其特征在于,所述气体-气体热交换器截面为六边形,所述外部气体和所述内部气体在所述气体-气体热交换 器内部中段的走向呈逆流模式,在进出口位置的走向呈交叉流模式。
  4. 根据权利要求1所述的间接蒸发精密空调,其特征在于,所述气体-气体热交换器截面为五边形,所述外部气体和所述内部气体在所述气体-气体热交换器内部中段走向呈逆流模式,在进出口位置的走向呈交叉流模式。
  5. 根据权利要求1所述的间接蒸发精密空调,其特征在于,所述气体-气体热交换器截面为两个四边形组合,所述外部气体和所述内部气体在所述气体-气体热交换器内部中段和进出口位置的走向均为交叉流模式。
  6. 根据权利要求1所述的间接蒸发精密空调,其特征在于,所述气体-气体热交换器内部含有水喷淋清洗喷头。
  7. 根据权利要求1所述的间接蒸发精密空调,其特征在于,所述气体过滤模块包含自动除尘组件,用于定期清除滤网上的灰尘。
  8. 根据权利要求1所述的间接蒸发精密空调,其特征在于,所述气体加湿模块还包含变频水泵,在空调系统运行时,通过调整所述变频水泵的工作负荷来调整水压;所述的气体加湿模块还包含多组喷头,每组喷头对应特定的启动压力,当压力大于等于对应喷头的启动压力时,所述对应喷头才会工作。
  9. 根据权利要求1所述的间接蒸发精密空调,其特征在于,所述空调外壳的所述外循环出风通道呈弯曲状,外循环出风被分到所述空调外壳两边排出室外。
  10. 根据权利要求1所述的间接蒸发精密空调,其特征在于,所述内循环风机和所述外循环风机均为离心式EC风机,气体经过风机后气体流向发生了90度或者接近90度的变化。
PCT/CN2018/086608 2017-12-20 2018-05-11 一种间接蒸发精密空调 WO2019119716A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/331,458 US20200378632A1 (en) 2017-12-20 2018-05-11 Precision air conditioner with an indirect evaporative unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711379371.5A CN108204644A (zh) 2017-12-20 2017-12-20 一种间接蒸发精密空调
CN201711379371.5 2017-12-20

Publications (1)

Publication Number Publication Date
WO2019119716A1 true WO2019119716A1 (zh) 2019-06-27

Family

ID=62605837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086608 WO2019119716A1 (zh) 2017-12-20 2018-05-11 一种间接蒸发精密空调

Country Status (3)

Country Link
US (1) US20200378632A1 (zh)
CN (1) CN108204644A (zh)
WO (1) WO2019119716A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114034091A (zh) * 2021-10-22 2022-02-11 广东美的暖通设备有限公司 一种间接蒸发换热系统及其控制方法、冷却机组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759360A (zh) * 2014-01-20 2014-04-30 新疆绿色使者干空气能源有限公司 多工况复合间接空气处理装置及其空调方法
CN203893343U (zh) * 2014-05-30 2014-10-22 西安工程大学 蒸发冷却与机械制冷联合的一体化空调机组
CN204329216U (zh) * 2014-11-11 2015-05-13 西安工程大学 蒸发冷却与机械制冷相结合的一体化空调机组
CN204421246U (zh) * 2014-12-30 2015-06-24 西安工程大学 干燥地区用蒸发冷却与机械制冷联合的洁净空调机组
CN106642445A (zh) * 2016-09-22 2017-05-10 新疆绿色使者干空气能源有限公司 干式间接蒸发制冷与机械制冷复合供冷装置及其空调制冷方法
WO2017094649A1 (ja) * 2015-12-02 2017-06-08 株式会社デンソー 空調機
CN206514438U (zh) * 2016-09-22 2017-09-22 新疆绿色使者干空气能源有限公司 利用室外风冷却室内循环风的空调装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6742217B2 (ja) * 2015-12-02 2020-08-19 株式会社デンソー 空調機
CN207763165U (zh) * 2017-12-20 2018-08-24 深圳易信科技股份有限公司 一种间接蒸发精密空调

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759360A (zh) * 2014-01-20 2014-04-30 新疆绿色使者干空气能源有限公司 多工况复合间接空气处理装置及其空调方法
CN203893343U (zh) * 2014-05-30 2014-10-22 西安工程大学 蒸发冷却与机械制冷联合的一体化空调机组
CN204329216U (zh) * 2014-11-11 2015-05-13 西安工程大学 蒸发冷却与机械制冷相结合的一体化空调机组
CN204421246U (zh) * 2014-12-30 2015-06-24 西安工程大学 干燥地区用蒸发冷却与机械制冷联合的洁净空调机组
WO2017094649A1 (ja) * 2015-12-02 2017-06-08 株式会社デンソー 空調機
CN106642445A (zh) * 2016-09-22 2017-05-10 新疆绿色使者干空气能源有限公司 干式间接蒸发制冷与机械制冷复合供冷装置及其空调制冷方法
CN206514438U (zh) * 2016-09-22 2017-09-22 新疆绿色使者干空气能源有限公司 利用室外风冷却室内循环风的空调装置

Also Published As

Publication number Publication date
US20200378632A1 (en) 2020-12-03
CN108204644A (zh) 2018-06-26

Similar Documents

Publication Publication Date Title
CN105444310B (zh) 一种双板双冷源智能新风机组
CN103776116A (zh) 蒸发冷却与传统制冷相结合的空调装置及其空调方法
CN110748974B (zh) 空调系统及空调系统控制方法
CN205316557U (zh) 一种双板双冷源智能新风机组
CN103562657A (zh) 温湿度独立控制空调系统的冷热源
CN111637569A (zh) 一种间接蒸发空气冷却装置
WO2019119716A1 (zh) 一种间接蒸发精密空调
CN203857596U (zh) 蒸发冷却与传统制冷相结合的空调装置
CN209763409U (zh) 一种可冬夏季调温的新风机
CN207763165U (zh) 一种间接蒸发精密空调
CN207649412U (zh) 一种便于拆卸的空气热交换装置
CN216977021U (zh) 一种基于太阳能驱动的溶液除湿型间接蒸发新风机组
CN103712301B (zh) 复合蒸发冷型温湿分控空气处理器
CN107355920B (zh) 一种能量回收型智能全新风处理机组
CN1322273C (zh) 带有新风的小型中央空调系统
CN110243034A (zh) 一种基于能源塔的节能型全新风空调装置
CN111998437B (zh) 一种加新风的温湿度独立控制空调系统
CN111121173A (zh) 一种新风空调机
WO2009071028A1 (fr) Dispositif de traitement d'air frais avec refroidisseur de surface à deux étages
CN212132753U (zh) 一种电池车间新风空调系统
CN104061638A (zh) 免过滤全年运行空调装置及其空调方法
CN214406272U (zh) 一种基于梯级利用原理的双冷源深度调湿空气处理机组
CN208419034U (zh) 一种间接蒸发冷却装置
CN103196192B (zh) 蒸发式空气冷却器及空气冷却方法
CN208025703U (zh) 一种多功能新风空调一体机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892516

Country of ref document: EP

Kind code of ref document: A1