WO2019119390A1 - 一种双通道空气质量检测装置 - Google Patents

一种双通道空气质量检测装置 Download PDF

Info

Publication number
WO2019119390A1
WO2019119390A1 PCT/CN2017/117892 CN2017117892W WO2019119390A1 WO 2019119390 A1 WO2019119390 A1 WO 2019119390A1 CN 2017117892 W CN2017117892 W CN 2017117892W WO 2019119390 A1 WO2019119390 A1 WO 2019119390A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
fan
air quality
air
quality detecting
Prior art date
Application number
PCT/CN2017/117892
Other languages
English (en)
French (fr)
Inventor
林阳新
林长平
林敏松
Original Assignee
美时美克(上海)汽车电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美时美克(上海)汽车电子有限公司 filed Critical 美时美克(上海)汽车电子有限公司
Priority to PCT/CN2017/117892 priority Critical patent/WO2019119390A1/zh
Priority to JP2020542480A priority patent/JP7098737B2/ja
Priority to DE112017007941.1T priority patent/DE112017007941B4/de
Publication of WO2019119390A1 publication Critical patent/WO2019119390A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N2001/222Other features
    • G01N2001/2223Other features aerosol sampling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0038Investigating nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles

Definitions

  • the invention relates to the technical field of air quality detecting devices, in particular to a dual channel air quality detecting device for a dual fan for vehicle use.
  • the early on-board air purifier detects the air quality inside the vehicle through the PM2.5 air sensor, and is an in-car air purifier.
  • the air purifier can only detect the air quality inside the vehicle, and cannot detect the air quality outside the vehicle. .
  • a dual channel air quality detecting device including a housing, a first laser module, and a first silicon.
  • the PCB assembly is mounted in the housing, the first laser module and The first silicon photodiode is mounted on the PCB assembly and electrically connected to the PCB assembly, the first laser module emitting end is located in the first air inlet channel, the first silicon photodiode is disposed in the first air inlet channel;
  • the second laser The module and the second silicon photodiode are mounted on the PCB assembly and electrically connected to the PCB assembly, the second laser module emitting end is located in the second air inlet channel, and the second silicon photodiode is disposed in the second air inlet
  • one of the intake passages When detecting the air quality, one of the intake passages is connected to the air inside the vehicle, and the other intake passage is connected to the outside air to form two independent air passages, which are exhausted by the fan, and the laser module is arranged on the PCB assembly.
  • the scattered light of the dust particles in the airway is fed back to the silicon photodiode, and the potential change of the silicon photodiode is processed by the circuit data to obtain the PM2.5 value.
  • the dual-channel air quality detection module uses a single fan to simultaneously extract two channels.
  • the airflow formed by the air conditioner has a great influence on the detection accuracy of the module, and cannot take both channels into consideration. Stability of detection.
  • the first laser module and the second laser module of the prior patent are arranged in parallel.
  • the same side of the housing the distance between the two is small, when the strength of the two laser modules is verified, it is easy to interfere with each other, which is not conducive to the verification of the strength of the laser module, and the two laser modules are arranged in parallel.
  • the large vertical space occupied is not conducive to the miniaturization of the product, and this structural design is only suitable for placing a single fan and not for a dual fan.
  • the existing fan has lead terminals, and the assembled type requires manual plug-in terminals, which cannot meet the automatic assembly process.
  • the central control device Since the sampling port of the air quality detecting module is usually set at the central control position of the vehicle, the central control device has an engine. When the engine is running during the running of the vehicle, the temperature of the surrounding air rises. When sampling, the air is When the sampling tube enters, it will be heated when passing around the engine, and then enter the colder pipe (especially when the air conditioner is turned on in the car), the air will form condensed water when it is cold, so that the detected air quality and the actual air quality have a larger Deviation, affecting the accuracy of the detection.
  • the present inventors have developed and designed the present invention in view of the many shortcomings and inconveniences caused by the above-mentioned two-channel air quality detecting device design improvement, and intensively conceived and actively researched and improved the trial.
  • the main object of the present invention is to provide a dual-channel air quality detecting device which has high detection precision, can take into consideration the stability of detection of two channels, and has a smaller overall structure and can facilitate laser intensity detection.
  • Another object of the present invention is to provide a dual channel air quality detecting device that can achieve automated assembly.
  • the solution of the present invention is:
  • a dual-channel air quality detecting device comprises a casing, an air quality detecting module disposed in the casing, a fan and a main control PCB board connecting the control quality detecting module and the fan, and forming an air quality detecting module
  • the first channel and the second channel respectively have a sampling port and an air outlet
  • the fan includes a first fan and a second fan corresponding to the first channel and the second channel, and the first fan
  • the air inlet detecting end is connected to the air outlet of the first channel
  • the air inlet end of the second fan is connected to the air outlet of the second channel
  • the air outlet ends of the two fans are connected to the external atmosphere
  • the air quality detecting module includes a corresponding first channel.
  • the emitting ends of the two laser modules are arranged in an outer eight shape, and one of the laser module emitting ends is located in the first channel, the first channel
  • the first photodiode is disposed at a position of the transmitting end of the laser module
  • the emitting end of the second laser module is located in the second channel
  • the second channel is provided with a second light at a position of the laser module.
  • Diode laser modules and two two photodiodes are connected to the circuit board, and is connected through the circuit board and the main board PCB.
  • the air quality detecting module has a body with a rectangular parallelepiped structure and the circuit board, and the first channel, the second channel, the first laser module and the second laser module are all disposed in the body.
  • sampling ports of the first channel and the second channel are disposed on the same side of the body, and the first channel and the second channel are respectively L-shaped or J-shaped, and the first laser module and the second laser module are emitted. Correct the corner of the L-shaped or J-shaped channel.
  • sampling ports of the first channel and the second channel are respectively disposed on two sides of the body, and the first channel and the second channel are respectively Z-shaped, and the transmitting ends of the first laser module and the second laser module are positive
  • the Z-shaped channel is away from the corner of the sampling port.
  • sampling ports of the first channel and the second channel are respectively connected to the sampling tube through a joint, one end of each joint is connected to the sampling port, the other end is connected to the sampling tube, a cavity is arranged in the joint, and a filter element is arranged in the cavity.
  • the filter element is provided with a plurality of air holes for the gas to flow, and the cavity is further provided with a water tank for storing the condensed water below the air holes.
  • the connector includes a plug connected to the sampling port and a pipe plug connected to the sampling tube, the plug is inserted into the tube, and the connection between the plug and the tube forms the cavity, and the filter is disposed in the cavity
  • the upper end of one end of the filter element and the pipe plug is provided with a gas hole, and the filter core directly forms the water tank below the air hole, and the cavity is further provided with a gasket between the filter element and the end of the pipe plug connection.
  • the connector includes a plug connected to the sampling port and a pipe plug connected to the sampling pipe.
  • the plug is inserted into the pipe, and one end of the pipe is connected with the sampling pipe, and the other end is connected with the plug, between the two ends.
  • the cavity is provided, and one end of the tube and the plug is protruded into the cavity to form a tenon, so that the inner cavity of the cavity forms a concave inner tank in the outer circumference of the tenon, and the filter element is arranged in an arch shape.
  • a gasket is disposed between the filter plug and the plug, and between the plug and the plug.
  • first fan and the second fan respectively comprise a fan shell, and each of the fan shells is respectively provided with a rotor and a wind wheel, and the fan shells of the two fans are connected by a connecting plate, and the connecting plate is provided with a a thimble connector, each of which is provided with a plurality of leads, each lead is respectively connected to the thimble connector, the thimble connector is provided with a plurality of ejector pins, and the main control PCB board is provided with a plurality of conductive contacts corresponding to the thimbles,
  • the circuit board of the air quality detecting module is provided with a plurality of metal contact contacts, and the main control PCB board is provided with a plurality of pins corresponding to the metal contacts.
  • a fan sealing cover is disposed on the top of the fan casing, and the fan sealing cover is respectively provided with a connecting hole at a position corresponding to the first fan and the second fan, and a fan damping pad is matched at a bottom of the fan casing.
  • the air outlet ends of the first fan and the second fan are respectively connected to a smooth noise reduction joint of the inner wall, and the noise reduction joint is tapered outward by the air outlet ends of the first fan and the second fan.
  • the housing comprises an upper cover, a middle cover and a lower cover, the upper cover is fitted on the upper part of the middle cover, the lower cover is fitted on the lower part of the middle cover, and the middle cover is provided with a middle cover partitioning into the upper chamber and the lower cover a partition of the chamber, the air quality detecting module is disposed in the upper chamber of the middle cover, the first fan and the second fan are disposed in the lower chamber of the middle cover, and the main control PCB is disposed in the upper chamber of the middle cover Or in the lower chamber, the partition plate is provided with two through holes corresponding to the first passage and the second passage, and the partition plate is further provided with a main control PCB board connected with the first fan, the second fan or the air quality detecting module. Through hole.
  • the two-channel air quality detecting device of the present invention is provided with two fans, and the two fans respectively sample the air inside and outside the vehicle without affecting each other, which can effectively reduce the opening of the air conditioner.
  • the influence of the sampling airflow of the module ensures the accuracy of the detection.
  • the present invention sets the emitting ends of the two laser modules in an outer eight shape, which not only can effectively reduce the longitudinal length of the air detecting module, but also has a large spacing of the outer eight-shaped emitting ends, and uses laser calibration. When the instrument verifies the laser intensity of the laser module, it does not interfere with each other and is convenient for detection.
  • the two laser modules have an outer eight-shaped design, so that the two air outlets of the first channel and the second channel are spaced apart.
  • two large suction fans can be arranged to effectively reduce the influence of the sampled airflow on the sampling performance of the wind turbine and improve the accuracy of air quality detection inside and outside the vehicle.
  • the present invention is disposed at the sampling port of the first channel and the second channel at a joint connected by the sampling tube, and the filter is provided with a filter element for removing the condensed water in the sampling tube, especially when sampling the air outside the vehicle.
  • the condensed water formed after the engine is heated and then cooled in the sampling tube further ensures the accuracy of the detection.
  • the present invention replaces the lead terminal of the existing fan, and the manual insertion terminal is replaced with a thimble connector and a metal contact and a conductive contact and a pin insertion on the main control PCB. With the cooperation, the production and assembly efficiency can be greatly improved, and inspection and maintenance are convenient.
  • the air outlets of the first fan and the second fan of the present invention are connected to the noise reduction joint, and the suction force is large, the noise is low, and the user experience is improved.
  • the fan sealing cover is covered on the upper part of the fan casing, and the fan damping pad is arranged on the lower part of the fan casing to effectively reduce the noise generated when the first fan and the second fan work.
  • Figure 1 is a perspective exploded view of the present invention.
  • FIG. 2 is an exploded view of the air quality detecting module of the present invention.
  • Figure 3 is a schematic diagram of the strength of the laser calibrator verification module.
  • FIG. 4 is a cross-sectional view showing a first embodiment of the air quality detecting module of the present invention.
  • Figure 5 is a cross-sectional view showing a second embodiment of the air quality detecting module of the present invention.
  • Figure 6 is an exploded view of the first embodiment of the sampling port joint of the present invention.
  • Figure 7 is a cross-sectional view showing the operation of the first embodiment of the sampling port joint of the present invention.
  • Figure 8 is an exploded view of a second embodiment of a sampling port joint of the present invention.
  • Figure 9 is a cross-sectional view showing the operation of the second embodiment of the sampling port joint of the present invention.
  • Figure 10 is an exploded view of the fan of the present invention.
  • Figure 11 is a top plan view of a first embodiment of a fan of the present invention.
  • Figure 12 is a cross-sectional view of Figure 11 .
  • Figure 13 is a plan view of a second embodiment of the fan of the present invention.
  • Figure 14 is a perspective view showing the arrangement of the fan shown in Figure 13 of the present invention.
  • Figure 15 is a schematic view showing the structure of the fan-connected noise reduction joint of Figure 11 of the present invention.
  • Figure 16 is a perspective view showing the arrangement of the fan shown in Figure 15 of the present invention.
  • Figure 17 is a third embodiment of the fan of the present invention.
  • Figure 19 is an exploded cross-sectional view of the fan and air quality sensing module of the present invention.
  • Figure 20 is a schematic view of the operation of the present invention.
  • the present invention discloses a dual-channel air quality detecting device 100 including a casing 1 , an air quality detecting module 2 disposed in the casing 1 , a fan 3 , and a connection control quality detecting module. 2 with the main control PCB board 4 of the fan 3.
  • the housing 1 includes an upper cover 11 , a middle cover 12 and a lower cover 13 .
  • the upper cover 11 is fitted to the upper part of the middle cover 12
  • the lower cover 13 is fitted to the lower part of the middle cover 12 .
  • a partition 123 is defined which partitions the middle cover 12 into an upper chamber 121 and a lower chamber 122.
  • the air quality detecting module 2 is disposed in the upper chamber 121 of the middle cover 12, and the fan 3 is disposed therein.
  • the main control PCB 4 is disposed in the upper chamber 121 or the lower chamber 122 of the middle cover 12.
  • the partition 123 is provided with two through holes 124, and the partition 123 is also provided. The through hole of the PCB board 4 connected to the fan 3 or the air quality detecting module 2.
  • the air quality detecting module 2 has a body 21 having a rectangular parallelepiped structure, two laser modules 22 , two photodiodes 23 , a sealing pad 24 , and a circuit board 25 , and two laser modules 22 .
  • the two photodiodes 23 are disposed in the body 21, the circuit board 25 is covered on the top surface of the body 21.
  • the gasket 24 is disposed in the body 21 and is located on the bottom surface of the circuit board 25.
  • the first channel is disposed in the body 21.
  • the two laser modules 22 are the first laser module 221 and the second laser mode
  • the main body 21 is further provided with a mounting slot 211 for the first laser module 221 and the second laser module 222.
  • One end of the first laser module 221 and the second laser module 222 is a transmitting end, and the other end is
  • the first laser module 221 and the second laser module 222 are provided for the first laser module 221 and the second laser module 222.
  • the first laser module 221 and the second laser module 222 are disposed corresponding to the first channel 26 and the second channel 27, and the first laser module is disposed.
  • the transmitting end of 221 is located in the first channel 26, and the transmitting end of the second laser module 222 is located in the second pass. 27, and the emitting ends of the two laser modules 221, 222 are arranged in an outer shape, the photodiode 23 includes a first photodiode 231 and a second photodiode 232, and the first laser 26 is facing the first laser A first photodiode 231 is disposed at a position of the transmitting end of the module 221, and a second photodiode 232, two laser modules 22 and two photodiodes 23 are disposed in the second channel 27 at a position of the second laser module 222. Both of them are electrically connected to the circuit board 25, and one side of the circuit board 25 is provided with a plurality of metal contacts 251 for connecting with the main control PCB board 4.
  • the laser intensity of the first laser module 221 and the second laser module 222 needs to be verified to ensure that The accuracy of the air quality is detected.
  • the first laser module 221 and the second laser module 222 with the battery 223 are mounted in an outer shape on the first channel 26 and the second channel 27 of the body 21, and two The laser calibrators 200 are respectively placed in front of the emitting ends of the first laser module 221 and the second laser module 222, and the laser intensities of the first laser module 221 and the second laser module 222 are verified.
  • the first laser module 221 and the second laser module 222 can also be verified by a laser calibrator 200.
  • the sampling ports 261 and 271 of the first channel 26 and the second channel 27 are respectively disposed on both sides of the body 21.
  • the first channel 26 and the second channel 27 are respectively Z-shaped, and the emitting ends of the first laser module 221 and the second laser module 222 are opposite to the corners of the Z-channels away from the sampling ports 261 and 271.
  • a second embodiment of the air quality detecting module 2 of the present invention wherein the sampling ports 261 and 271 of the first channel 26 and the second channel 27 are disposed on the same side of the body 21,
  • One channel 26 and the second channel 27 are respectively L or J type, and the emitting ends of the first laser module 221 and the second laser module 222 are opposite to the corners of the L or J channel.
  • the first laser module 221 and the second laser module 222 are disposed in the outer body 18 in an outer shape, so that the first channel 26 and the second channel 27 are arranged in the outer shape of the body.
  • the longitudinal length of the air detecting module 2 is reduced, and the outer eight-shaped design can make the emitting end of the two laser modules 22 have a larger spacing, and the laser intensity of the laser module 22 is corrected by using the laser calibrator 200.
  • the two laser modules 22 have an outer eight-shaped design, so that the two air outlets 262 and 272 of the first passage 26 and the second passage 27 have a large spacing, and two large ones can be arranged.
  • the suction fan 3 effectively reduces the influence of the sampling airflow on the sampling performance of the environment and improves the accuracy of the air quality detection inside and outside the vehicle.
  • the sampling ports 261 and 271 of the first channel 26 and the second channel 27 are respectively connected to the sampling tube 300 through a joint 5 (as shown in FIG. 17), and the joints 5 are respectively One end is connected to the sampling port 261, 271, and the other end is connected to the sampling tube 300.
  • the connector 5 is provided with a cavity 51.
  • the cavity 51 is provided with a filter element 52.
  • the filter element 52 is provided with a plurality of air holes 521 for gas circulation, and the cavity 51 is A water tank 53 for storing condensed water is also provided below the air hole 521.
  • the filter element 52 is disposed in the joint 5 for removing the condensed water in the sampling tube 300, especially when sampling the outside air of the vehicle, and effectively removing the condensed water formed in the sampling tube 300 after being heated by the engine and then being cooled, thereby ensuring entry into the air.
  • the gas in the quality detecting module 2 is not given by the condensed water, and the accuracy of the detection is ensured.
  • air is introduced by the sampling tube 300. When passing through a relatively high temperature section, the air is heated, and when the heated air enters the colder pipeline again, condensed water is formed with condensed water. The air enters the pipe insert 55 of the joint 5 together.
  • the gas in the air When passing through the filter element 52, the gas in the air enters the inner cavity 51 from the air hole 521 in the filter element 52, enters into the plug, and finally enters the first passage 26I and the second passage 27 Inside, the condensed water in the air is directly attached to the water tank 53 in the joint 5 by the filter element 52 when entering the pipe insert 55.
  • the connector 5 includes a plug 54 connected to the sampling ports 261 and 271 and a pair.
  • the pipe insertion tube 55 connected to the sampling pipe 300, the plug 54 and the pipe insertion 55 are cooperatively connected, and the connection manner thereof may be a screw connection as shown in the figure, or a card connection, a splicing connection or the like, the plug 54 and the pipe insertion 55 may be adopted.
  • the connecting portion is formed in the cavity 51, the filter element 52 is disposed in the cavity 51, and the air hole 521 is disposed at an upper end of the end of the filter element 52 connected to the pipe plug 55.
  • the filter element 52 directly forms the water tank below the air hole 521.
  • the cavity 51 is further provided with a gasket 56 between the end of the filter element 52 and the tube insert 55.
  • the connector 5 includes a plug 54 connected to the sampling ports 261 and 271 and a pair.
  • the pipe plug 55 connected to the sampling pipe 300 is connected to the pipe plug 55.
  • One end of the pipe plug 55 is connected to the sampling pipe 300, and the other end is connected to the plug 54, and between the two ends of the pipe plug 55 is provided.
  • the cavity 51, the end of the tube insertion 55 and the plug 54 is protruded into the cavity 51 to form a protrusion 57, so that the cavity 51 forms a concave groove 53 in the outer periphery of the protrusion 57.
  • the filter element 52 is disposed in an arch shape between the tenon 57 of the pipe insert 55 and the plug 54.
  • the plurality of the air holes 521 are directly formed on the arched filter element 52.
  • the filter element 52 is disposed between the filter pin 52 and the tenon 57 of the pipe insert 55.
  • a gasket 56 is also provided.
  • the fan 3 includes a first fan 3A and a second fan 3B.
  • the first fan 3A and the second fan 3B are the first channel 26 corresponding to the air quality detecting module 2 .
  • the second channel 27 is disposed, the first fan 3A and the second fan 3B are respectively disposed in a fan casing 31, the fan casing 31 has an air outlet end 311, and the first fan 3A and the second fan 3B respectively comprise a rotor 32.
  • the two fan shells 31 are connected together by a connecting plate 37.
  • the connecting plate 37 is provided with a thimble connector 371 connected thereto.
  • a fan sealing cover 38 is disposed on the top of the two fan casings 31.
  • the fan sealing cover 38 is respectively provided with a connecting hole 381 corresponding to the positions of the first fan 3A and the second fan 3B, and the connecting hole 381 is the first fan.
  • the air inlets of the 3A and the second fan 3B are connected to the air outlets 262 and 272 of the first channel 26 and the second channel 27, and the bottom of the fan casing 31 is fitted with a fan cushion 39.
  • the rotor 32 is fixed to the fan casing 31, and the magnetic cake 33 and the wind wheel 34 are fixed together and rotatably sleeved outside the rotor 32.
  • the wind wheel 34 is provided.
  • the bearing housing 35 and the snap ring 36 are rotatably fixed to the fan casing 31.
  • a plurality of leads 321 are disposed on the rotor 32, and the leads 321 are respectively connected to the thimble connector 371, and the thimble connector 371 is provided with a plurality of thimbles 372.
  • the air outlets 311 of the two fans 3 of the present invention can be arranged in various manners, as shown in FIG. 11 , which is a first embodiment of the fan, as shown in the figure, two fans.
  • the air outlet ends 311 of 3 may be disposed on both sides of the housing 1.
  • the outlet ends 311 of the two fans 3 may be disposed on the same side of the casing 1.
  • the air outlet end 311 of the fan 3 may be disposed on an adjacent side of the casing 1.
  • a noise reduction joint 6 having a smooth inner wall may be added to the air outlet 311 of the first fan 3A and the second fan 3B, and the noise reduction joint 6 is composed of the first fan 3A and the The outlet end 311 of the second fan 3B is tapered outward.
  • the flow rate is 3.1 L/min, and the flow outlet return rate is 33%.
  • the flow rate was 3.2 L/min, and the flow outlet recirculation rate was 1.2%. It can be seen that after the noise reduction joint 6 is added, the suction force of the first fan 3A and the second fan 3B is significantly increased, and the noise can be significantly reduced.
  • the fan of the present invention no longer uses the lead terminal, but integrates the circuit directly on the thimble connector 371.
  • the plurality of ejector pins 372 on the thimble connector 371 are directly connected to the main control PCB board.
  • the main control PCB board 4 is provided with a plurality of conductive contacts 41 corresponding to the ejector pins 372 and a plurality of corresponding air quality detecting modes.
  • the main control PCB board 4 is mounted on the middle cover 12, the air quality detecting module 2 is assembled and installed in the upper chamber 121 of the middle cover 12, and the fan 3 is assembled and installed in the lower chamber of the middle cover 12.
  • the plurality of ejector pins 372 on the thimble connector 371 of the fan 3 are correspondingly docked with the metal contacts 41 of the main control PCB board 4, and the metal contacts 251 of the circuit board 25 of the air quality detecting module 2 and the main control PCB
  • the plurality of pins 42 of the board are docked.
  • one of the intake passages When detecting the air quality, one of the intake passages is connected to the air inside the vehicle, and the other intake passage is connected to the outside air of the vehicle to form two independent detection air passages. Each channel corresponds to one fan 3 and the independent sampling does not affect each other.
  • the exhaust is exhausted, the laser of the laser component 22 passes through the air passage, and the scattered light of the dust particles in the air passage is fed back to the photodiode, and the potential change of the photodiode is processed by the circuit data to obtain the PM2.5 value.
  • the two-channel air quality detecting device of the present invention is provided with two fans 3, and the two fans 3 respectively sample the air inside and outside the vehicle without affecting each other, which can effectively reduce the sampling airflow of the module when the air conditioner is turned on.
  • the impact of the inspection guarantees the accuracy.
  • the present invention sets the emitting ends of the two laser modules 22 in an outer eight shape, which can effectively reduce the longitudinal length of the air detecting module and reduce the overall volume of the product.
  • the present invention can satisfy the fully automatic assembly process, and the thimble connector 371 of the fan 3 and the metal contact 251 of the air quality detecting module 2 are plugged and matched with the conductive contacts 41 and the pins 42 on the main control PCB 4 board. It can greatly improve the production and assembly efficiency, and is convenient for inspection and maintenance.
  • the air outlets of the first fan 3A and the second fan 3B of the present invention are connected to the noise reduction joint 6, which has large suction force and low noise, and can improve the user experience.
  • the fan sealing cover 38 is closed on the upper part of the fan casing 31, and the fan damping pad 39 is disposed in the lower part of the fan casing 31 to effectively reduce the noise generated when the first fan 3A and the second fan 3B work.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明公开了一种双通道空气质量检测装置,其包括壳体、空气质量检测模组、风机及主控PCB板,所述空气质量检测模组内形成第一通道及第二通道,所述风机包括第一风机及第二风机,空气质量检测模组包括两个呈外八状设置的激光模组及两光电二极管,其中一通道连接车内空气,另一通道连接车外大气,形成两路独立检测气道,每个通道对应一个风机独立采样相互不影响,通过风机抽气排出,激光组件的激光穿过气道,气道内的粉尘微粒散射光反馈到光电二极管,光电二极管电位变化通过电路数据处理得出PM2.5数值。

Description

一种双通道空气质量检测装置 技术领域
本发明涉及空气质量检测设备的技术领域,特别是指一种车载用的双风机的双通道空气质量检测装置。
背景技术
现有技术中,早期的车载空气净化器,通过PM2.5空气传感器检测车内空气质量,为车内空气净化器,该空气净化器只能检测车内空气质量,而无法检测车外空气质量。
为了解决上述问题,申请号为201720077961.1的在先申请为本发明申请人提出的一种改进方案,其公开了一种双通道空气质量检测装置,包括壳体、第一激光模组、第一硅光电二极管、第二激光模组、第二硅光电二极管、PCB组件和风机;壳体中形成第一进气通道和第二进气通道;PCB组件安装在壳体中,第一激光模组和第一硅光电二极管安装在PCB组件上,分别与PCB组件电连接,第一激光模组发射端位于第一进气通道中,第一硅光电二极管置于第一进气通道中;第二激光模组和第二硅光电二极管安装在PCB组件上,分别与PCB组件电连接,第二激光模组发射端位于第二进气通道中,第二硅光电二极管置于第二进气通道中;风机安装在壳体中,风机的进气端同时连接第一进气通道和第二进气通道的出气端,风机的排气端连接外部大气。在检测空气质量时,其中一进气通道连接车内空气,另一进气通道连接车外大气,形成两路独立检测气道,通过风机抽气排出,PCB组件布置激光模组,激光穿过气道,气道内的粉尘微粒散射光反馈到硅光电二极管,硅光电二极管电位变化通过电路数据处理得出PM2.5数值。
虽然,该在先专利相较于其之前的车载空气净化器具有明显的优点,但仍存在以下不足:
1、该双通道空气质量检测模块采用单个风机同时抽取两个通道,这种结构在采样车外空气时,空调开启形成的气流对该模块的检测精度产生较大的影响,无法兼顾两个通道检测的稳定性。
2、激光模组在使用之前,必须校验其激光强度是否符合要求,从而保证该空气质量检测模组的正常运作,该在先专利的第一激光模组及第二激光模组平行设置在壳体的同一边,两者的距离较小,在对两激光模组强度进行校验时,容易相互干扰,不利于对激光模组强度的校验,并且,两激光模组呈平行设置会占用的竖直空间较大,不利于产品的小型化设计,并且这种结构设计仅适合放置单个风机,无法放置双风机。
3、现有的风机带有引线端子,组装式需要人工插接端子,无法满足自动化装配工艺。
4、由于该在先专利的风机未设计降噪机构,在风机使用时,特别是受到气流的干扰时,会产生较大的噪音,影响产品的体验。
5、由于空气质量检测模组的采样口通常是设置在车辆的中控位置,中控装置上具有发动机,在车辆运行过程中发动机发热,会使其周围的空气温度上升,采样时,空气由采样管进入,经过发动机周围时被会加热,再进入较冷的管道(特别是车内开启空调时),空气遇冷会形成冷凝水,使得检测到的空气质量与实际空气质量具有较大的偏差,影响检测的精度。
有鉴于此,本设计人针对上述双通道空气质量检测装置设计上未臻完善所导致的诸多缺失及不便,而深入构思,且积极研究改良试做而开发设计出本发明。
发明内容
本发明的主要目的在于提供一种检测精度高,可兼顾两个通道检测稳定性,并且整体结构更加小巧,也可便于激光强度检测的双通道空气质量检测装置。
本发明的另一目的在于提供一种可实现自动化装配的双通道空气质量检测装置。
本发明的又一目的在于提供一种可降低噪音的双通道空气质量检测装置。
为了达成上述目的,本发明的解决方案是:
一种双通道空气质量检测装置,其包括一壳体、设置在壳体内的空气质量检测模组、风机及连接控制质量检测模组与风机的主控PCB板,空气质量检测模组内形成第一通道及第二通道,第一通道及第二通道分别具有一采样口及一出风口,所述风机包括对应第一通道及第二通道设置的第一风机及第二风机,第一风机的进气端与第一通道的出风口连接,第二风机的进气端与第二通道的出风口连接,两风机的出气端均连接外部大气,所述空气质量检测模组包括对应第一通道及第二通道设置的第一激光模组及第二激光模组,两个激光模组的发射端呈外八状设置,且其中一激光模组发射端位于第一通道中,该第一通道中正对该激光模组发射端的位置处设有第一光电二极管,第二激光模组发射端位于第二通道中,该第二通道中正对该激光模组的位置处设有第二光电二极管,两激光模组和两光电二极管均与电路板连接,并通过电路板与主控PCB板电连接。
进一步,所述空气质量检测模组具有长方体结构的本体及所述电路板,所述第一通道、第二通道、第一激光模组、第二激光模组均设置在该本体内。
进一步,所述第一通道及第二通道的采样口设置在该本体的同一边,第一通道及第二通道分别为L型或J型,第一激光模组及第二激光模组的发射端正对L型或J型通道的拐角处。
进一步,所述第一通道及第二通道的采样口分别设置在该本体的两侧,该第一通道及第二通道分别为Z型,第一激光模组及第二激光模组的发射端正对Z型通道远离采样口的拐角处。
进一步,所述第一通道及第二通道的采样口分别通过一接头连接采样管,各接头的一端连接采样口,另一端连接采样管,接头内设有一容腔,容腔内设置有一滤芯,滤芯设有多个供气体流通的气孔,容腔于气孔的下方还设有供冷凝水存放的水槽。
进一步,所述接头包括一与采样口连接的插头及一与采样管连接的管插,插头与管插配合连接,插头与管插的连接处形成所述容腔,所述滤芯设置在容腔中,滤芯与管插连接的一端上部设有气孔,滤芯于气孔的下方直接成型所述水槽,该容腔于滤芯与管插连接的一端之间还设有一密封垫。
所述接头包括一与采样口连接的插头及一与采样管连接的管插,插头与管插配合连接,所述管插的一端与采样管连接,另一端与插头连接,在两端之间设有所述容腔,该管插与插头连接的一端凸伸至容腔内形成凸垣,使容腔内于凸垣的外周形成一内凹的所述水槽,所述滤芯呈拱状设置在管插的凸垣与插头之间,该滤芯与管插的凸垣之间还设有一密封垫。
进一步,所述第一风机及第二风机分别包括一风机壳,各风机壳内分别设置有转子及风轮,两风机的风机壳通过一连接板连接在一起,连接板上设有一顶针连接器,各转子上设置有多条引线,各引线分别连接至顶针连接器,顶针连接器上设有多个顶针,所述主控PCB板上设有对应顶针的多个导电触点,所述空气质量检测模组的电路板上设有多个金属触点触点,所述主控PCB板上设有对应金属触点的多个引脚。
进一步,所述风机壳的顶部配合有一风机密封盖,该风机密封盖对应第一风机及第二风机的位置处分别设有一连接孔,风机壳的底部配合有一风机减震垫。
进一步,所述第一风机及第二风机的出气端分别连接一内壁光滑的降噪接头,该降噪接头是由第一风机及第二风机的出气端往外渐缩。
进一步,所述壳体包括上盖、中盖及下盖,上盖配合在中盖的上部,下盖配合在中盖的下部,中盖内设有一将中盖区隔成上腔室及下腔室的隔板,所述空气质量检测模组设置在中盖的上腔室内,第一风机及第二风机设置在中盖的下腔室内,主控PCB板设于中盖的上腔室或者下腔室内,隔板上设有对应第一通道及第二通道的两通孔,该隔板还设有供主控PCB板与第一风机、第二风机或空气质量检测模组连接的通孔。
采用上述结构后,相较于现有结构,本发明双通道空气质量检测装置设置两个风机,两个风机分别对车内及车外的空气进行采样,相互不影响,可以有效降低空调开启时对模块采样气流的影响,保证检测的精度。并且,本发明将两个激光模组的发射端呈外八状设置,不但可以有效的缩小该空气检测模组的纵向长度,而且呈外八状的发射端间距较大,在使用激光校验仪对激光模组的激光强度进行校验时,不会相互干扰,方便检测,再者本发明由于两激光模组呈外八状设计,使第一通道及第二通道的两个出风口间距较大,可以布置两个大吸力风机,有效降低采样气流对环境对风机采样性能的影响,提高车内外空气质量检测的精度。
进一步,本发明在第一通道及第二通道的采样口处设置于采样管连接的接头,该接头内设置滤芯用以除掉采样管内的冷凝水,特别是在采样车外空气时可有效去除采样管内经发动机加热再遇冷后形成的冷凝水,进一步保证检测的精度。
进一步,本发明将现有风机的带引线端子,组装时需人工插接端子替换为可满足全自动装配工艺的顶针连接器及金属触点与主控PCB板上的导电触点及引脚插接配合,可大幅度提高生产及组装效率,方便检查及维修。
进一步,本发明的第一风机及第二风机的出风端连接降噪接头,其吸力大,噪音低,提高用户的体验。另外,在风机壳的上部盖合风机密封盖,风机壳的下部设置风机减震垫均可以有效降低第一风机及第二风机工作时产生的噪音。
附图说明
图1为本发明的立体分解图。
图2为本发明空气质量检测模组的分解图。
图3为激光校验仪校验模组强度的示意图。
图4为本发明空气质量检测模组第一实施方式的剖视图。
图5为本发明空气质量检测模组第二实施方式的剖视图。
图6为本发明采样口接头第一实施方式的分解图。
图7为本发明采样口接头第一实施方式的动作剖视图。
图8为本发明采样口接头第二实施方式的分解图。
图9为本发明采样口接头第二实施方式的动作剖视图。
图10为本发明风机的分解图。
图11为本发明风机第一实施例的俯视图。
图12为图11的剖视图。
图13为本发明风机第二实施方式的俯视图。
图14为本发明设置如图13所示风机的立体图。
图15为本发明图11所示风机连接降噪接头的结构示意图。
图16为本发明设置如图15所示风机的立体图。
图17为本发明风机的第三实施方式。
图18为本发明空气质量检测模组、主控PCB板及风机的分解图。
图19本发明风机与空气质量检测模组的分解剖视图。
图20为本发明的动作示意图。
具体实施方式
为了进一步解释本发明的技术方案,下面通过具体实施例来对本发明进行详细阐述。
如图1所示,本发明揭示了一种双通道空气质量检测装置100,其包括一壳体1、设置在壳体1内的空气质量检测模组2、风机3及连接控制质量检测模组2与风机3的主控PCB板4。
如图1所示,所述壳体1包括上盖11、中盖12及下盖13,上盖11配合在中盖12的上部,下盖13配合在中盖12的下部,中盖12内设有一将中盖12区隔成上腔室121及下腔室122的隔板123,所述空气质量检测模组2设置在中盖12的上腔室121内,所述风机3设置在中盖12的下腔室122内,主控PCB板4设于中盖12的上腔室121或者下腔室122内,隔板123上设有两通孔124,该隔板123还设有供PCB板4与风机3或空气质量检测模组2连接的通孔。
如图2所示,所述空气质量检测模组2具有长方体结构的本体21、两个激光模组22、两个光电二极管23、一密封垫24及一电路板25,两个激光模组22及两个光电二极管23设置在本体21内,电路板25盖合在本体21的顶面,密封垫24置于本体21内,且位于电路板25的底面,该本体21内设有第一通道26、第二通道27,第一通道26及第二通道27分别具有一采样口261、271及一出风口262、272,两激光模组22分别为第一激光模组221及第二激光模组222,本体21还设有供第一激光模组221及第二激光模组222配合的安装槽211,第一激光模组221及第二激光模组222的其中一端为发射端,另一端设有电池223为第一激光模组221及第二激光模组222供电,第一激光模组221及第二激光模组222对应第一通道26及第二通道27设置,第一激光模组221的发射端位于第一通道26中,第二激光模组222的发射端位于第二通道27中,且两个激光模组221、222的发射端呈外八状设置,所述光电二极管23包括第一光电二极管231及第二光电二极管232,该第一通道26中正对该第一激光模组221发射端的位置处设有第一光电二极管231,该第二通道27中正对该第二激光模组222的位置处设有第二光电二极管232,两激光模组22和两光电二极管23均与电路板25电连接,该电路板25的一侧设有多个金属触点251,金属触点251用以与主控PCB板4连接。
如图3所示,在第一激光模组221及第二激光模组222装配后使用之前,需要对第一激光模组221及第二激光模组222的激光强度进行校验,以保证其检测空气质量的准确度,检测时,将装有电池223的第一激光模组221及第二激光模组222呈外八状安装在本体21的第一通道26及第二通道27,将两个激光校验仪200分别放置在正对第一激光模组221及第二激光模组222发射端的前方位置,对第一激光模组221及第二激光模组222的激光强度进行校验,当然也可以通过一个激光校验仪200分别对第一激光模组221及第二激光模组222进行校验。
如图4所示,为本发明空气质量检测模组2的第一种实施方式,其中,所述第一通道26及第二通道27的采样口261、271分别设置在该本体21的两侧,该第一通道26及第二通道27分别为Z型,第一激光模组221及第二激光模组222的发射端正对Z型通道远离采样口261、271的拐角处。
如图5所示,为本发明空气质量检测模组2的第二种实施方式,其中,所述第一通道26及第二通道27的采样口261、271设置在本体21的同一边,第一通道26及第二通道27分别为L或J型,第一激光模组221及第二激光模组222的发射端正对L或J型通道的拐角处。
无论第一通道26及第二通道27采用图4或者图5哪种结构设置,所述第一激光模组221及第二激光模组222均呈外八状设置在本体21内,这样可以有效的缩小该空气检测模组2的纵向长度,而且呈外八状的设计可以使得两激光模组22的发射端间距较大,在使用激光校验仪200对激光模组22的激光强度进行校验时,不会相互干扰,方便检测,并且两激光模组22呈外八状设计,使第一通道26及第二通道27的两个出风口262、272间距较大,可以布置两个大吸力风机3,有效降低采样气流对环境对风机采样性能的影响,提高车内外空气质量检测的精度。
如图2、配合图6至图9所示,在第一通道26及第二通道27的采样口261、271分别通过一接头5连接采样管300(如图17所示),各接头5的一端连接采样口261、271,另一端连接采样管300,接头5内设有一容腔51,容腔51内设置有一滤芯52,滤芯52设有多个供气体流通的气孔521,容腔51于气孔521的下方还设有供冷凝水存放的水槽53。该接头5内设置滤芯52用以除掉采样管300内的冷凝水,特别是在采样车外空气时可有效去除采样管300内经发动机加热再遇冷后形成的冷凝水,从而保证进入至空气质量检测模组2内的气体不受冷凝水的应县给,保证检测的精度。当本发明进行采样时,空气由采样管300进入,在经过温度较高的路段时,空气会被加热,当被加热的空气再次进入较冷的管道时,会形成冷凝水,带有冷凝水的空气一起进入接头5的管插55中,通过滤芯52时,空气中的气体由滤芯52中的气孔521进入中内腔51在进入至插头中,最后进入第一通道26I及第二通道27内,而空气中的冷凝水在进入管插55时,被滤芯52隔离直接附着在该接头5中的水槽53中。
如图6及图7所示,为本发明接头5的第一种实施方式,如图所示,本实施例中,所述接头5包括一与采样口261、271连接的插头54及一与采样管300连接的管插55,插头54与管插55配合连接,其连接的方式可采用如图所示的螺纹连接,也可采用卡接,榫接等其他方式,插头54与管插55的连接处形成所述容腔51,所述滤芯52设置在容腔51中,滤芯52与管插55连接的一端上部设有所述气孔521,滤芯52于气孔521的下方直接成型所述水槽53,该容腔51于滤芯52与管插55连接的一端之间还设有一密封垫56。
如图8及图9所示,为本发明接头5的第二种实施方式,如图所示,本实施例中,所述接头5包括一与采样口261、271连接的插头54及一与采样管300连接的管插55,插头54与管插55配合连接,所述管插55的一端与采样管300连接,另一端与插头54连接,在该管插55的两端之间设有所述容腔51,该管插55与插头54连接的一端凸伸至容腔51内形成凸垣57,使容腔51内于凸垣57的外周形成一内凹的所述水槽53,所述滤芯52呈拱状设置在管插55的凸垣57与插头54之间,拱状的滤芯52上直接成型有多个所述气孔521,该滤芯52与管插55的凸垣57之间还设有一密封垫56。
如图1配合图10至图14所示,所述风机3包括对第一风机3A及第二风机3B,第一风机3A及第二风机3B是对应空气质量检测模组2的第一通道26及第二通道27设置,第一风机3A及第二风机3B分别设置在一风机壳31内,该风机壳31具有一出气端311,第一风机3A及第二风机3B分别包括一转子32、一磁饼33、一风轮34、一轴承35及一卡环36,两风机壳31之间通过一连接板37连接在一起,连接板37上设有一顶针连接器371,连接在一起的两风机壳31的顶部配合有一风机密封盖38,该风机密封盖38对应第一风机3A及第二风机3B的位置处分别设有一连接孔381,该连接孔381即为第一风机3A及第二风机3B的进气口,两连接孔381与第一通道26及第二通道27的出风口262、272连接,风机壳31的底部配合有一风机减震垫39。
如图10及图12所示,所述转子32与风机壳31固定在一起,所述磁饼33及风轮34固定在一起,并呈可转动的套设在转子32外,风轮34通过轴承35及卡环36可转动的固定在风机壳31上。转子32上设置有多条引线321,各引线321分别连接至顶针连接器371,顶针连接器371上设有多个顶针372。
如图11至图17所示,为本发明两个风机3的出气端311可以有多种设置方式,如图11所示,为风机的第一种实施方式,如图所示,两个风机3的出气端311可设置在壳体1的两侧。如图13及图14所示,为风机3的第二种实施方式,两个风机3的出气端311也可设置在壳体1的同一边。再如图17所示,为风机3的第三种实施方式,所述风机3的出气端311可以设置在壳体1的相邻边。
进一步,如图15及图17所示,在第一风机3A及第二风机3B的出气端311还可增加一内壁光滑的降噪接头6,该降噪接头6是由第一风机3A及第二风机3B的出气端311往外渐缩,经实验,在第一风机3A及第二风机3B未增加降噪接头6时,其流量为3.1L/min,流量出口回流率为33%,而增加降噪弯头6后,其流量为3.2L/min,流量出口回流率为1.2%。由此可见,增加降噪接头6后,第一风机3A及第二风机3B的吸力明显增加,噪音可明显降低。
如图1配合图18及图19所示,为了便于本发明双通道空气质量检测装置的全自动化装配,本发明的风机不再使用引线端子,而是将电路直接集成在顶针连接器371上,顶针连接器371上的多个顶针372用以与主控PCB板直接对位连接,所述主控PCB板4上设有对应顶针372的多个导电触点41及多个对应空气质量检测模组2的金属触点251的多个引脚42。组装时,将主控PCB板4安装在中盖12上,将空气质量检测模组2组装后安装在中盖12的上腔室121中,风机3组装后安装在中盖12的下腔室122中,将风机3的顶针连接器371上的多个顶针372与主控PCB板4的金属触点41对应对接,而空气质量检测模组2电路板25的金属触点251与主控PCB板的多个引脚42对接。
在检测空气质量时,其中一进气通道连接车内空气,另一进气通道连接车外大气,形成两路独立检测气道,每个通道对应一个风机3独立采样相互不影响,通过风机3抽气排出,激光组件22的激光穿过气道,气道内的粉尘微粒散射光反馈到光电二极管,光电二极管电位变化通过电路数据处理得出PM2.5数值。
如图20所示,本发明双通道空气质量检测装置设置两个风机3,两个风机3分别对车内及车外的空气进行采样,相互不影响,可以有效降低空调开启时对模块采样气流的影响,保证检测的精度。并且,本发明将两个激光模组22的发射端呈外八状设置,不但可以有效的缩小该空气检测模组的纵向长度,减小产品的整体体积。
其次,本发明可满足全自动装配工艺,将风机3的顶针连接器371及空气质量检测模组2的金属触点251与主控PCB4板上的导电触点41及引脚42插接配合,可大幅度提高生产及组装效率,方便检查及维修。
再者,本发明的第一风机3A及第二风机3B的出风端连接降噪接头6,其吸力大,噪音低,可提高用户的体验。在风机壳31的上部盖合风机密封盖38,风机壳31的下部设置风机减震垫39均可以有效降低第一风机3A及第二风机3B工作时产生的噪音。
上述实施例和图式并非限定本发明的产品形态和式样,任何所属技术领域的普通技术人员对其所做的适当变化或修饰,皆应视为不脱离本发明的专利范畴。

Claims (11)

  1. 一种双通道空气质量检测装置,其包括一壳体、设置在壳体内的空气质量检测模组、风机及连接控制质量检测模组与风机的主控PCB板,所述空气质量检测模组内形成第一通道及第二通道,第一通道及第二通道分别具有一采样口及一出风口,其特征在于:所述风机包括对应第一通道及第二通道设置的第一风机及第二风机,第一风机的进气端与第一通道的出风口连接,第二风机的进气端与第二通道的出风口连接,两风机的出气端均连接外部大气,所述空气质量检测模组包括对应第一通道及第二通道设置的第一激光模组及第二激光模组,两个激光模组的发射端呈外八状设置,且第一激光模组的发射端位于第一通道中,该第一通道中正对该第一激光模组发射端的位置处设有第一光电二极管,第二激光模组发射端位于第二通道中,该第二通道中正对该激光模组的位置处设有第二光电二极管,两激光模组和两光电二极管均与空气质量检测模组的电路板连接,电路板与主控PCB板电连接。
  2. 如权利要求1所述的一种双通道空气质量检测装置,其特征在于:所述空气质量检测模组具有长方体结构的本体及所述电路板,所述第一通道、第二通道、两激光模组及两光电二极管均设置在该本体内。
  3. 如权利要求2所述的一种双通道空气质量检测装置,其特征在于:所述第一通道及第二通道的采样口设置在该本体的同一边,第一通道及第二通道分别为L型或J型,第一激光模组及第二激光模组的发射端正对L型或J型通道的拐角处。
  4. 如权利要求2所述的一种双通道空气质量检测装置,其特征在于:所述第一通道及第二通道的采样口分别设置在该本体的两侧,该第一通道及第二通道分别为Z型,第一激光模组及第二激光模组的发射端正对Z型通道远离采样口的拐角处。
  5. 如权利要求1所述的一种双通道空气质量检测装置,其特征在于:所述第一通道及第二通道的采样口分别通过一接头连接采样管,各接头的一端连接采样口,另一端连接采样管,接头内设有一容腔,容腔内设置有一滤芯,滤芯设有多个供气体流通的气孔,容腔于气孔的下方还设有供冷凝水存放的水槽。
  6. 如权利要求5所述的一种双通道空气质量检测装置,其特征在于:所述接头包括一与采样口连接的插头及一与采样管连接的管插,插头与管插配合连接,插头与管插的连接处形成所述容腔,所述滤芯设置在容腔中,滤芯与管插连接的一端上部设有所述气孔,滤芯于气孔的下方直接成型所述水槽,该容腔于滤芯与管插连接的一端之间还设有一密封垫。
  7. 如权利要求5所述的一种双通道空气质量检测装置,其特征在于:所述接头包括一与采样口连接的插头及一与采样管连接的管插,插头与管插配合连接,所述管插的一端与采样管连接,另一端与插头连接,在两端之间设有所述容腔,该管插与插头连接的一端凸伸至容腔内形成凸垣,使容腔内于凸垣的外周形成一内凹的所述水槽,所述滤芯呈拱状设置在管插的凸垣与插头之间,该滤芯与管插的凸垣之间还设有一密封垫。
  8. 如权利要求2所述的一种双通道空气质量检测装置,其特征在于:所述第一风机及第二风机分别包括一风机壳,各风机壳内分别设置有转子及风轮,两风机的风机壳通过一连接板连接在一起,连接板上设有一顶针连接器,各转子上设置有多条引线,各引线分别连接至顶针连接器,顶针连接器上设有多个顶针,所述主控PCB板上设有对应顶针的多个导电触点,所述空气质量检测模组的电路板上设有多个金属触点触点,所述主控PCB板上设有对应金属触点的多个引脚。
  9. 如权利要求8所述的一种双通道空气质量检测装置,其特征在于:所述风机壳的顶部配合有一风机密封盖,该风机密封盖对应第一风机及第二风机的位置处分别设有一连接孔,风机壳的底部配合有一风机减震垫。
  10. 如权利要求1所述的一种双通道空气质量检测装置,其特征在于:所述第一风机及第二风机的出气端分别连接一内壁光滑的降噪接头,该降噪接头是由第一风机及第二风机的出气端往外渐缩。
  11. 如权利要求1所述的一种双通道空气质量检测装置,其特征在于:所述壳体包括上盖、中盖及下盖,上盖配合在中盖的上部,下盖配合在中盖的下部,中盖内设有一将中盖区隔成上腔室及下腔室的隔板,所述空气质量检测模组设置在中盖的上腔室内,第一风机及第二风机设置在中盖的下腔室内,主控PCB板设于中盖的上腔室或者下腔室内,隔板上设有对应第一通道及第二通道的两通孔,该隔板还设有供主控PCB板与第一风机、第二风机或空气质量检测模组连接的通孔。
PCT/CN2017/117892 2017-12-22 2017-12-22 一种双通道空气质量检测装置 WO2019119390A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/117892 WO2019119390A1 (zh) 2017-12-22 2017-12-22 一种双通道空气质量检测装置
JP2020542480A JP7098737B2 (ja) 2017-12-22 2017-12-22 デュアルチャネル空気質検査装置
DE112017007941.1T DE112017007941B4 (de) 2017-12-22 2017-12-22 Doppelkanal-Luftqualitätsmessvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117892 WO2019119390A1 (zh) 2017-12-22 2017-12-22 一种双通道空气质量检测装置

Publications (1)

Publication Number Publication Date
WO2019119390A1 true WO2019119390A1 (zh) 2019-06-27

Family

ID=66993001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117892 WO2019119390A1 (zh) 2017-12-22 2017-12-22 一种双通道空气质量检测装置

Country Status (3)

Country Link
JP (1) JP7098737B2 (zh)
DE (1) DE112017007941B4 (zh)
WO (1) WO2019119390A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112326518A (zh) * 2020-09-19 2021-02-05 宁波爱立德汽车部件有限公司 一种pm2.5传感器装置
CN116499846A (zh) * 2023-06-27 2023-07-28 潍坊优特检测服务有限公司 一种基于激光散射法的道路扬尘监测系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204789516U (zh) * 2015-05-26 2015-11-18 深圳华盛昌机械实业有限公司 空气质量检测仪
CN206002419U (zh) * 2016-08-25 2017-03-08 厦门美时美克空气净化有限公司 多通道空气质量检测模块
CN206470249U (zh) * 2017-01-19 2017-09-05 厦门美时美克空气净化有限公司 一种双通道空气质量检测装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576821U (ja) * 1992-03-25 1993-10-19 松下電器産業株式会社 車載用空気清浄機
JPH1048101A (ja) * 1996-07-31 1998-02-20 Dkk Corp ガス分析計
JP2002176239A (ja) * 2000-12-06 2002-06-21 Agilent Technologies Japan Ltd 高周波回路基板の接続装置及び接続方法
JP2005186826A (ja) * 2003-12-26 2005-07-14 Zexel Valeo Climate Control Corp 空調装置
JP2007005228A (ja) * 2005-06-27 2007-01-11 Matsushita Electric Works Ltd 照明装置
JP5552001B2 (ja) * 2010-08-31 2014-07-16 大阪瓦斯株式会社 ウイルス捕集装置及びウイルス検査システム
US9823237B2 (en) 2015-06-05 2017-11-21 Automotive Coalition For Traffic Safety, Inc. Integrated breath alcohol sensor system
JP2018528384A (ja) * 2015-10-30 2018-09-27 広東美的環境電器制造有限公司 空気処理装置
EP3168604B1 (en) * 2015-11-10 2021-12-01 LG Electronics Inc. Device for measuring floating micro-organisms
CN205860431U (zh) * 2016-05-20 2017-01-04 惠州市德赛工业研究院有限公司 一种智能式空气净化器
CN206067440U (zh) * 2016-10-09 2017-04-05 陈润锦 带有空气循环净化设备的车载遮阳板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204789516U (zh) * 2015-05-26 2015-11-18 深圳华盛昌机械实业有限公司 空气质量检测仪
CN206002419U (zh) * 2016-08-25 2017-03-08 厦门美时美克空气净化有限公司 多通道空气质量检测模块
CN206470249U (zh) * 2017-01-19 2017-09-05 厦门美时美克空气净化有限公司 一种双通道空气质量检测装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112326518A (zh) * 2020-09-19 2021-02-05 宁波爱立德汽车部件有限公司 一种pm2.5传感器装置
CN112326518B (zh) * 2020-09-19 2022-11-25 宁波爱立德汽车部件有限公司 一种pm2.5传感器装置
CN116499846A (zh) * 2023-06-27 2023-07-28 潍坊优特检测服务有限公司 一种基于激光散射法的道路扬尘监测系统
CN116499846B (zh) * 2023-06-27 2023-09-12 潍坊优特检测服务有限公司 一种基于激光散射法的道路扬尘监测系统

Also Published As

Publication number Publication date
DE112017007941T5 (de) 2020-07-23
DE112017007941B4 (de) 2023-06-15
JP2021500581A (ja) 2021-01-07
JP7098737B2 (ja) 2022-07-11

Similar Documents

Publication Publication Date Title
WO2019119390A1 (zh) 一种双通道空气质量检测装置
US10807440B2 (en) Dual-passage air quality detection device
WO2017057924A1 (ko) 냉각 덕트의 실링성이 개선된 전지 모듈
CN110365820B (zh) 一种移动终端
WO2023113210A1 (ko) 연료전지용 막가습기
WO2020246763A1 (ko) 에너지 저장시스템
CN214225082U (zh) 一种气体检测装置
CN105378443A (zh) 温湿度传感器
WO2015178636A1 (ko) 모터 유닛, 펌프 유닛, 및 이를 이용한 전동식 오일펌프
JP4041604B2 (ja) 電子部品試験装置
WO2022173219A1 (ko) 워터펌프 및 밸브 통합장치
WO2020226346A1 (ko) 차량용 공조장치
CN207703679U (zh) 一种双通道空气质量检测装置
WO2020153699A1 (ko) 공기조화기의 실내기
CN111413471A (zh) 空气质量监测装置
CN220175106U (zh) 内置式气体检测组件及呼出气体检测装置
WO2019088567A2 (ko) 전자장치용 가스센서 모듈 및 이를 포함하는 전자장치
CN216669100U (zh) 电子式差压传感器
CN221239743U (zh) 电池装置
CN214252205U (zh) 一种气体检测装置
WO2014129705A1 (ko) 서버 방열시스템
WO2018056558A1 (ko) 프로파일을 이용한 진공 펌프
CN209728599U (zh) 一种用于计算机的节电型电脑外接装置
WO2023054852A1 (ko) 의류 건조기
CN210108681U (zh) 一种电气性能光感测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542480

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17935183

Country of ref document: EP

Kind code of ref document: A1