WO2019119185A1 - 用于控制无人机的方法和设备 - Google Patents

用于控制无人机的方法和设备 Download PDF

Info

Publication number
WO2019119185A1
WO2019119185A1 PCT/CN2017/116866 CN2017116866W WO2019119185A1 WO 2019119185 A1 WO2019119185 A1 WO 2019119185A1 CN 2017116866 W CN2017116866 W CN 2017116866W WO 2019119185 A1 WO2019119185 A1 WO 2019119185A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
subtasks
parameter
task
flight
Prior art date
Application number
PCT/CN2017/116866
Other languages
English (en)
French (fr)
Inventor
黄宗继
徐节文
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780023543.7A priority Critical patent/CN109074097A/zh
Priority to PCT/CN2017/116866 priority patent/WO2019119185A1/zh
Publication of WO2019119185A1 publication Critical patent/WO2019119185A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the present disclosure relates to the field of drones, and more particularly, to a method and apparatus for controlling a drone.
  • drones are widely used. For example, a drone can take a picture for a desired object and transmit the captured image and/or video to the user in real time. In addition, drones can perform a variety of tasks, such as farmland mapping and spreading pesticides.
  • the drone may not be able to execute at one time. For example, if the area of the farmland where the pesticide is to be planted is large, the drone cannot carry enough pesticides at a time, or the power supply of the drone cannot guarantee that the drone is flying enough distance, so that the operation cannot be completed by the drone.
  • the present disclosure proposes a method and apparatus for controlling a drone.
  • a large work task can be divided into a plurality of subtasks, so that the drone can perform subtasks multiple times, or multiple drones can be used to respectively execute corresponding subtasks, thereby Complete larger assignments.
  • a control method for controlling a drone comprising: receiving information related to a flight mission of the drone; acquiring a first parameter related to the drone and a second parameter related to the flight task and a user operation instruction; combining the first parameter and the second parameter and dividing the flight task into a plurality of subtasks according to the user operation instruction.
  • a control apparatus for controlling a drone comprising: a task setting unit configured to receive information related to a flight task of the drone; a parameter acquisition unit configured Obtaining: a first parameter related to the drone and a second parameter related to the mission and a user operation instruction; and a task planning unit configured to combine the first parameter and the second parameter And dividing the flight task into multiple subtasks according to the user operation instruction.
  • a computer readable storage medium storing a computer program, when executed by at least one processor, causing at least one processor to perform the above-described control for unmanned Machine control method.
  • a large work task can be divided into subtasks that one or more drones can perform. Therefore, the application range of the drone is broadened, and the operating capability of the drone is improved.
  • FIG. 1A is a block diagram showing a control device according to an embodiment of the present disclosure.
  • FIG. 1B is a block diagram showing a control device according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing an example of task partitioning according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram showing an example of task partitioning according to an embodiment of the present disclosure.
  • FIG. 4 is a flow chart showing a method performed by a control device in accordance with one embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing a computer readable storage medium in accordance with one embodiment of the present disclosure.
  • FIG. 1A is a block diagram showing a control device 10 in accordance with one embodiment of the present disclosure.
  • the control device 10 includes a task setting unit 110, a parameter acquisition unit 120, and a task planning unit 130.
  • the task setting unit 110 is configured to receive information related to a flight of the drone.
  • a mission can include a farm work task.
  • the mission can also be a variety of other tasks, such as land exploration, geographic measurements, and the like.
  • the mission can be a farm work task.
  • the information related to the mission may include information such as the area of the farmland, the variety of the crop, and the type of farm work.
  • the type of farm work may include, for example, spreading pesticides, monitoring of crop growth conditions, and the like.
  • the parameter acquisition unit 120 is configured to acquire a first parameter related to the drone, a second parameter related to the flight task, and a user operation instruction.
  • the first parameter associated with the drone includes parameters related to the characteristics of the drone itself.
  • the first parameter related to the drone may include one or more of a flying distance of the drone, a flying speed of the drone, and a carrying capacity of the drone.
  • the flight distance of the drone reflects the maximum distance that the drone can fly.
  • the flight speed of the drone reflects the minimum/maximum speed at which the drone can fly.
  • the carrying capacity of the drone reflects the maximum weight of the drone carrying items, such as pesticides to be spread.
  • the second parameter associated with the mission includes a number of conditions associated with the mission.
  • the second parameter associated with the mission may include one or more of farmland work spacing, projected medication usage, crop height, and weather conditions.
  • the first parameters related to the drone mentioned above and the second parameter related to the mission affect the execution of the mission by the drone.
  • the task planning unit 130 is configured to combine the first parameter and the second parameter and divide the flight task into a plurality of subtasks according to user operation instructions.
  • the mission planning unit 130 is configured to calculate a vertex waypoint for the farm work task based on the first parameter and the second parameter, and divide the farm work task into a plurality of subtasks based on the vertex waypoint.
  • vertex waypoint refers to a number of waypoints that a drone passes during flight. Based on these waypoints, a corresponding flight route can be constructed so that the drone can follow the constructed flight path. Achieve total job tasks.
  • the mission planning unit 130 is configured to divide the subtasks in units of vertex waypoints.
  • the mission planning unit 130 can sequentially connect the vertex waypoints according to a predetermined rule, and take the flight path constructed by the connected specific number of vertex waypoints as one subtask. Thereby, a large flight task can be divided into a plurality of small subtasks. This is described in detail below in conjunction with specific examples.
  • FIG. 1B is a block diagram showing a control device 10 in accordance with one embodiment of the present disclosure.
  • the control device 10 includes a task setting unit 110, a parameter acquisition unit 120, a task planning unit 130, and a subtask selection unit 140.
  • the control device 10 shown in FIG. 1B is different from the control device 10 shown in FIG. 1A in that a subtask selection unit 140 is further included. Since the task setting unit 110, the parameter acquisition unit 120, and the task planning unit 130 shown in FIG. 1B are the same as the corresponding units in FIG. 1A, only the subtask selection unit 140 will be mainly described below.
  • the subtask selection unit 140 is configured to select one or more subtasks to be executed by the drone from among the plurality of subtasks. As described above, the mission planning unit 130 divides the flight task into a plurality of subtasks. Through the subtask selection unit 140, a subtask desired to be executed can be selected from the plurality of divided subtasks. In other words, one or more of the plurality of subtasks can be selected to be executed according to different situations.
  • the subtask selection unit 140 may be configured to control the drone to sequentially execute the selected at least one subtask.
  • the subtask selection unit 140 may be configured to control two or more drones to simultaneously execute the selected plurality of subtasks.
  • subtask selection unit 140 can include a display having an interface for selecting one or more subtasks from a plurality of subtasks.
  • the display can be a touch display such that the user can conveniently select a subtask desired to be performed by the touch of a finger.
  • the planned area of the farmland to be operated is 43.2 mu
  • the estimated flight time is 25 minutes and 9 seconds.
  • the estimated dose is 505 ml.
  • the working distance is 3.4 meters and the relative crop height is 3.2 meters.
  • the task setting unit 110 shown in FIG. 1A or 1B can receive "propagation pesticide” and "planned area (43.2 mu)" as information related to the mission, and the parameter acquisition unit 120 can obtain "expected dose (505 ml). ), "Working distance (3.4 meters)” and “relative crop height (3.2 meters)” as the second parameter related to the mission.
  • the parameter acquisition unit 120 also acquires the first parameters of the drone itself (such as the flight distance of the drone, the flight speed, etc.) and the user operation instructions.
  • the task planning unit 130 may combine the first parameter, the second parameter, and divide the farmland work task of the disseminated pesticide into a plurality of subtasks according to the user operation instruction.
  • the mission planning unit 130 may calculate a vertex waypoint for the farm work task and divide the farm work task into a plurality of subtasks according to the vertex waypoint.
  • the farm work task is divided into 36 longitudinal rows based on a number of vertex destinations (solid gray dots in Figure 2). Among them, lines 1-13, 14-23, 24-32, and 33-36 constitute a subtask (see the lower part of Fig. 2). In other words, in the example of Figure 2, the total farm work task is divided into 4 subtasks.
  • the subtask selection unit 140 is configured to select one or more subtasks to be executed by the drone from among the plurality of subtasks. As shown in Figure 2, the subtasks currently composed of lines 1-13 have been selected (1-13 of the bottom line in Figure 2 is white because it is selected, and other subtasks are not selected (pages 14-23). Lines, lines 24-32 and lines 33-36 are still grayed out). Thus, when the user clicks the "OK" button, the drone can perform the selected subtask (spreading pesticides according to the route planned on lines 1-13).
  • FIG. 3 shows a scenario in which two subtasks (lines 1-13 and 33-36) are simultaneously selected. It should be noted that the two selected subtasks can be executed sequentially by one drone or by two unmanned aerial vehicles. If the user wants to deselect multiple subtasks, he can click the "Cancel Multiple Selection” button below Figure 3.
  • a large task that cannot be performed by the drone at one time can be divided into subtasks that one or more drones can perform.
  • the user can conveniently select one or more subtasks to perform. Thereby, the operating capability of the drone is improved, and the user experience is improved.
  • FIG. 4 is a flow chart showing a method performed by a control device in accordance with one embodiment of the present disclosure.
  • the method can be performed by the control device 10 shown in FIG. 1A or 1B.
  • the description of the details of the control device 10 is omitted below for the sake of brevity.
  • step S410 information related to the flight mission of the drone is received.
  • the mission can be, for example, a farm work task.
  • the information related to the mission may include information such as the area of the farmland, the variety of the crop, and the type of farm work.
  • a first parameter related to the drone and a second parameter related to the flight task and a user operation instruction are acquired.
  • the first parameter related to the drone includes parameters related to the characteristics of the drone itself, such as the flying distance of the drone, the flying speed of the drone, and the carrying capacity of the drone. Item or more.
  • the second parameter associated with the mission includes a number of conditions associated with the mission, such as one or more of farmer spacing, projected medication usage, crop height, and weather conditions.
  • step S430 the flight task is divided into a plurality of subtasks according to the first parameter and the second parameter and according to a user operation instruction.
  • the vertex waypoint of the farm work task may be calculated according to the first parameter and the second parameter, and the farm work task is divided into multiple subtasks according to the vertex waypoint.
  • the vertex waypoints may be sequentially connected according to a predetermined rule, and the flight path constructed by the connected specific number of vertex waypoints is taken as one subtask. Thereby, a large flight task can be divided into a plurality of small subtasks.
  • the method can also include selecting one or more subtasks to be executed by the drone from among the plurality of subtasks.
  • the drone can be controlled to execute at least one of the selected subtasks in sequence.
  • two or more drones can also be controlled to simultaneously perform the selected subtasks.
  • an interface for selecting one or more subtasks from a plurality of subtasks can be provided on the touch display to facilitate user selection (eg, with reference to the interface shown in FIG. 3).
  • embodiments of the present disclosure may be implemented by means of a computer program product.
  • the computer program product can be a computer readable storage medium.
  • a computer program is stored on a computer readable storage medium, and when executed on a computing device, related operations can be performed to implement the above-described aspects of the present disclosure.
  • Figure 5 is a block diagram showing a computer readable storage medium 50 in accordance with one embodiment of the present disclosure.
  • computer readable storage medium 50 includes computer program 510.
  • the computer program 510 when executed by at least one processor, causes at least one processor to perform various steps of the method, such as described in accordance with FIG.
  • Examples of computer readable storage medium 50 include, but are not limited to, a semiconductor storage medium, an optical storage medium, a magnetic storage medium, or any other form of computer readable storage medium.
  • Such an arrangement of the present disclosure is typically provided as software, code, and/or other data structures, such as one or more, that are arranged or encoded on a computer readable medium such as an optical medium (eg, CD-ROM), floppy disk, or hard disk.
  • a computer readable medium such as an optical medium (eg, CD-ROM), floppy disk, or hard disk.
  • Software or firmware or such a configuration may be installed on the computing device such that one or more processors in the computing device perform the technical solutions described in the embodiments of the present disclosure.
  • each functional module or individual feature of the device used in each of the above embodiments may be implemented or executed by circuitry, typically one or more integrated circuits.
  • Circuitry designed to perform the various functions described in this specification can include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs) or general purpose integrated circuits, field programmable gate arrays (FPGAs), or others.
  • a general purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the above general purpose processor or each circuit may be configured by a digital circuit or may be configured by a logic circuit.
  • the present disclosure may also use integrated circuits obtained using the advanced technology.
  • the program running on the device may be a program that causes a computer to implement the functions of the embodiments of the present disclosure by controlling a central processing unit (CPU).
  • the program or information processed by the program may be temporarily stored in a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memory system.
  • a program for realizing the functions of the embodiments of the present disclosure may be recorded on a computer readable recording medium.
  • the corresponding functions can be realized by causing a computer system to read programs recorded on the recording medium and execute the programs.
  • the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (e.g., a peripheral device).

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

提供了一种用于控制无人机的控制方法。该方法包括:接收与所述无人机的飞行任务有关的信息;获取与所述无人机有关的第一参数和与所述飞行任务有关的第二参数以及用户操作指令;结合所述第一参数和所述第二参数并根据所述用户操作指令,将所述飞行任务划分为多个子任务。还提供了一种用于控制无人机的控制设备。

Description

用于控制无人机的方法和设备 技术领域
本公开涉及无人机的领域,更具体地,本公开涉及一种用于控制无人机的方法和设备。
背景技术
当前,无人机得到了广泛的应用。例如,无人机可以拍摄用于期望的对象,并将所拍摄的图像和/或视频实时传送给用户。此外,无人机还可以进行各种作业,例如农田测绘和播撒农药。
然而,如果某次作业任务较重,无人机可能无法一次执行完毕。例如,如果需要播撒农药的农田面积很大,无人机一次无法携带足够的农药,或者无人机的电源不能保证无人机飞行足够的距离,从而使得无法通过无人机完成作业任务。
发明内容
为了解决以上问题中的至少一部分,本公开提出一种用于控制无人机的方法和设备。在本公开提出的方法和设备中,能够将较大的作业任务划分为多个子任务,使得无人机能够多次执行子任务,或采用多个无人机来分别执行相应的子任务,从而完成较大的作业任务。
根据本公开的一个方面,提供了一种用于控制无人机的控制方法,包括:接收与所述无人机的飞行任务有关的信息;获取与所述无人机有关的第一参数和与所述飞行任务有关的第二参数以及用户操作指令;结合所述第一参数和所述第二参数并根据所述用户操作指令,将所述飞行任务划分为多个子任务。
根据本公开的另一个方面,提供了一种用于控制无人机的控制设备,包括:任务设置单元,被配置为接收与所述无人机的飞行任务有关的信息;参数获取单元被配置为:获取与所述无人机有关的第一参数和与所述飞行任务有关的第二参数以及用户操作指令;以及任务规划单元,被配置为结合所述第一参数和所述第二参数并根据所述用户操作指令,将所述飞行任 务划分为多个子任务。
根据本公开的另一个方面,提供了一种计算机可读存储介质,存储有计算机程序,当计算机程序由至少一个处理器运行时,使至少一个处理器执行上文所述的用于控制无人机的控制方法。
采用本公开的技术方案,可以将大的作业任务划分为一个或更多个无人机能够执行的子任务。因此,拓宽了无人机的应用范围,提高了无人机的作业能力。
附图说明
通过下文结合附图的详细描述,本公开的上述和其它特征将会变得更加明显,其中:
图1A是示出了根据本公开一个实施例的控制设备的框图。
图1B是示出了根据本公开一个实施例的控制设备的框图。
图2是示出了根据本公开一个实施例的任务划分的示例示意图。
图3是示出了根据本公开一个实施例的任务划分的示例示意图。
图4是示出了根据本公开一个实施例的由控制设备执行的方法的流程图。
图5是示出了根据本公开一个实施例的计算机可读存储介质的示意图。
需要注意的是,附图不一定按比例绘制,重点在于示出本文公开的技术的原理。另外,为了清楚起见,贯穿附图中的相似的附图标记指代相似的元素。
具体实施方式
下面结合附图和具体实施方式对本公开进行详细阐述。应当注意,本公开不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本公开没有直接关联的公知技术的详细描述,以防止对本公开的理解造成混淆。
控制设备的示例
图1A是示出了根据本公开一个实施例的控制设备10的框图。如图1A 所示,控制设备10包括任务设置单元110、参数获取单元120和任务规划单元130。
任务设置单元110被配置为接收与无人机的飞行任务有关的信息。例如,飞行任务可以包括农田作业任务。然而,本领域技术人员可以理解,飞行任务还可以是其他多种任务,例如土地勘探、地理测量等等。
在一个示例中,飞行任务可以是农田作业任务。此时,与飞行任务有关的信息可以包括农田的面积、农作物的品种以及农田作业的类型等信息。另外,农田作业的类型例如可以包括播撒农药、农作物生长状况监控等。
参数获取单元120被配置为获取与无人机有关的第一参数、与飞行任务有关的第二参数以及用户操作指令。
在本申请中,与无人机有关的第一参数包括与无人机本身的特性有关的参数。例如,与无人机有关的第一参数可以包括无人机的飞行距离、无人机的飞行速度和无人机的承载能力中的一项或更多项。具体地,无人机的飞行距离反映了无人机所能够飞行的最大距离。无人机的飞行速度反映了无人机所能够飞行的最小/最大速度。无人机的承载能力反映了无人机携带物品(例如要播撒的农药)的最大重量。
在本申请中,与飞行任务有关的第二参数包括与飞行任务相关联的若干条件。例如,与飞行任务有关的第二参数可以包括农田作业间距、预计用药量、农作物高度以及天气状况中的一项或更多项。
以上提到的与无人机有关的第一参数和与飞行任务有关的第二参数会对无人机执行作业任务产生影响。为了充分考虑这些因素来执行任务规划,任务规划单元130被配置为结合第一参数和第二参数并根据用户操作指令,将飞行任务划分为多个子任务。
在一个示例中,任务规划单元130被配置为根据第一参数和第二参数来计算农田作业任务的顶点航点,并且根据顶点航点将农田作业任务划分为多个子任务。
在本申请中,“顶点航点”是指无人机在飞行中所经过的若干航点,以这些航点为基础,可以构建相应的飞行路线,使得无人机沿所构建的飞行路线可以实现总的作业任务。
优选地,任务规划单元130被配置为以顶点航点为单位进行子任务的划分。换句话说,任务规划单元130可以按照预定规则将顶点航点依次连 接,并且将已连接的特定数量的顶点航点所构建的飞行路线作为一个子任务。由此,可以将大的飞行任务划分为多个小的子任务。下文结合具体示例对此进行详细描述。
图1B是示出了根据本公开一个实施例的控制设备10的框图。如图1B所示,控制设备10包括任务设置单元110、参数获取单元120、任务规划单元130和子任务选择单元140。
图1B所示的控制设备10与图1A所示的控制设备10的不同之处在于还包括子任务选择单元140。由于图1B中所示的任务设置单元110、参数获取单元120和任务规划单元130与图1A中的相应单元是相同的,因此下文仅重点描述子任务选择单元140。
子任务选择单元140被配置为从多个子任务中选择将由无人机执行的一个或更多个子任务。如上文所述,任务规划单元130将飞行任务划分为多个子任务。通过子任务选择单元140,可以从划分后的多个子任务中选择期望执行的子任务。换句话说,可以根据不同的情形,选择执行多个子任务中的一个或更多个。
优选地,子任务选择单元140可以被配置为控制无人机依次执行选中的至少一个子任务。备选地,子任务选择单元140可以被配置为控制两个或更多个无人机同时执行选中的多个子任务。
在一个示例中,子任务选择单元140可以包括显示器,其中该显示器具有用于从多个子任务中选择一个或更多个子任务的界面。例如,该显示器可以是触摸显示器,这样用户可以通过手指的触摸而方便地选择期望执行的子任务。
示例应用场景
下面,结合图2和图3来详细描述本申请的控制设备的一个示例应用场景。在图2-3中,以播撒农药作为无人机的飞行任务的示例。
如图2所示,假设待作业的农田的规划面积是43.2亩,预计飞行时间是25分9秒,预计用药量是505毫升。此外,作业间距是3.4米,而相对农作物高度是3.2米。那么,图1A或1B所示的任务设置单元110可以接收“播撒农药”和“规划面积(43.2亩)”作为与飞行任务有关的信息,而参数获取单元120可以获取“预计用药量(505毫升)”、“作业间距(3.4米)” 和“相对农作物高度(3.2米)”作为与飞行任务有关的第二参数。当然,参数获取单元120还会获取无人机自身的第一参数(例如无人机的飞行距离、飞行速度等)以及用户操作指令。
然后,任务规划单元130可以结合第一参数、第二参数并根据用户操作指令,将播散农药的农田作业任务划分为多个子任务。例如,任务规划单元130可以计算农田作业任务的顶点航点,并且根据顶点航点将农田作业任务划分为多个子任务。从图2中可以看出,该农田作业任务以若干顶点航点(图2中灰色的实心圆点)为基础,划分成36个纵向的行。其中,第1-13行、第14-23行、第24-32行以及第33-36行分别构成一个子任务(见图2下部)。换句话说,在图2的示例中,总的农田作业任务被划分为4个子任务。
子任务选择单元140被配置为从多个子任务中选择将由无人机执行的一个或更多个子任务。如图2所示,当前由第1-13行构成的子任务已经被选中(图2中最下一行的1-13由于被选中而呈现白色,而未选中的其他子任务(第14-23行、第24-32行以及第33-36行)仍旧呈灰色)。这样,当用户点击“确定”按钮后,无人机就可以执行选择的子任务(按照第1-13行规划的航线播撒农药)。
备选地,可以选择多于一个的子任务来执行,这可以通过点击图2下方的“多选”按钮来实现。当点击“多选”按钮后,弹出图3所示的界面。这里,图3示出了同时选择两个子任务(第1-13行和第33-36行)的情景。需要说明的是,这两个被选中的子任务可以由一架无人机来依次执行,也可以由两架无人机同时执行。如果用户想要取消选择多个子任务,则可以点击图3下方的“取消多选”按钮。
采用本申请的技术方案,可以将无人机无法一次执行的大的作业任务划分为一个或更多个无人机能够执行的子任务。此外,用户可以方便地选择要执行的一个或更多个子任务。由此,改进了无人机的作业能力,提升了用户的体验。
控制方法的示例
图4是示出了根据本公开一个实施例的由控制设备执行的方法的流程图。例如,该方法可以由图1A或1B所示的控制设备10来执行。以下为了 简便,省略了对控制设备10的细节的描述。
如图4所示,在步骤S410,接收与无人机的飞行任务有关的信息。如上文所述,飞行任务例如可以是农田作业任务。此时,与飞行任务有关的信息可以包括农田的面积、农作物的品种以及农田作业的类型等信息。
在步骤S420,获取与无人机有关的第一参数和与飞行任务有关的第二参数以及用户操作指令。如上文所述,与无人机有关的第一参数包括与无人机本身的特性有关的参数,例如无人机的飞行距离、无人机的飞行速度和无人机的承载能力中的一项或更多项。与飞行任务有关的第二参数包括与飞行任务相关联的若干条件,例如农田作业间距、预计用药量、农作物高度以及天气状况中的一项或更多项。
在步骤S430,结合第一参数、第二参数并根据用户操作指令,将所述飞行任务划分为多个子任务。例如,可以根据第一参数和第二参数来计算农田作业任务的顶点航点,并且根据顶点航点将农田作业任务划分为多个子任务。优选地,可以按照预定规则将顶点航点依次连接,并且将已连接的特定数量的顶点航点所构建的飞行路线作为一个子任务。由此,可以将大的飞行任务划分为多个小的子任务。
备选地,该方法还可以包括从多个子任务中选择将由无人机执行的一个或更多个子任务。可以控制无人机依次执行选中的至少一个子任务。备选地,也可以控制两个或更多个无人机同时执行所选择的子任务。
此外,可以在触摸显示器上提供用于从多个子任务中选择一个或更多个子任务的界面,以方便用户进行选择(例如参考图3所示的界面)。
计算机程序产品的示例
此外,本公开的实施例可以借助于计算机程序产品来实现。例如,该计算机程序产品可以是计算机可读存储介质。计算机可读存储介质上存储有计算机程序,当在计算设备上执行该计算机程序时,能够执行相关的操作以实现本公开的上述技术方案。
例如,图5是示出了根据本公开一个实施例的计算机可读存储介质50的框图。如图5所示,计算机可读存储介质50包括计算机程序510。计算机程序510在由至少一个处理器运行时,使得至少一个处理器执行例如根据图4所描述的方法的各个步骤。
本领域技术人员可以理解,计算机可读存储介质50的示例包括但不限于:半导体存储介质、光学存储介质、磁性存储介质、或任何其他形式的计算机可读存储介质。
上文已经结合优选实施例对本公开的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的。本公开的方法并不局限于上面示出的步骤和顺序。
应该理解,本公开的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。本公开的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本公开实施例所描述的技术方案。
此外,上述每个实施例中所使用的设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本公开也可以使用利用该先进技术得到的集成电路。
运行在根据本公开的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本公开的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。用于实现本公开各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备 中的计算机系统,可以包括操作系统或硬件(如外围设备)。
如上,已经参考附图对本公开的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本公开也包括不偏离本公开主旨的任何设计改动。另外,可以在权利要求的范围内对本公开的记载进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本公开的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (21)

  1. 一种用于控制无人机的控制方法,包括:
    接收与所述无人机的飞行任务有关的信息;
    获取与所述无人机有关的第一参数和与所述飞行任务有关的第二参数以及用户操作指令;
    结合所述第一参数和所述第二参数并根据所述用户操作指令,将所述飞行任务划分为多个子任务。
  2. 根据权利要求1所述的控制方法,还包括:从所述多个子任务中选择将由所述无人机执行的一个或更多个子任务。
  3. 根据权利要求2所述的控制方法,还包括:控制所述无人机依次执行选中的至少一个子任务。
  4. 根据权利要求1所述的控制方法,其中,所述飞行任务包括农田作业任务。
  5. 根据权利要求4所述的控制方法,其中,与所述无人机的飞行任务有关的信息包括以下一项或更多项:农田的面积、农作物的品种以及农田作业的类型。
  6. 根据权利要求4所述的控制方法,其中,与所述无人机有关的第一参数包括以下一项或更多项:所述无人机的飞行距离、飞行速度和承载能力。
  7. 根据权利要求4所述的控制方法,其中,与所述飞行任务有关的第二参数至少包括以下一项或更多项:农田作业间距、预计用药量、农作物高度以及天气状况。
  8. 根据权利要求4所述的控制方法,其中,根据所述第一参数和所述第二参数来计算农田作业任务的顶点航点,并且根据所述顶点航点将农田作业任务划分为多个子任务。
  9. 根据权利要求8所述的控制方法,其中:以所述顶点航点为单位进行子任务的划分。
  10. 根据权利要求2所述的控制方法,其中,显示用于从所述多个子任务中选择一个或更多个子任务的界面。
  11. 一种用于控制无人机的控制设备,包括:
    任务设置单元,被配置为:接收与所述无人机的飞行任务有关的信息;
    参数获取单元,被配置为:获取与所述无人机有关的第一参数和与所述飞行任务有关的第二参数以及用户操作指令;以及
    任务规划单元,被配置为:结合所述第一参数和所述第二参数并根据所述用户操作指令,将所述飞行任务划分为多个子任务。
  12. 根据权利要求11所述的控制设备,还包括:
    子任务选择单元,被配置为:从所述多个子任务中选择将由所述无人机执行的一个或更多个子任务。
  13. 根据权利要求12所述的控制设备,其中,所述子任务选择单元还被配置为:控制所述无人机依次执行选中的至少一个子任务。
  14. 根据权利要求11所述的控制设备,其中,所述飞行任务包括农田作业任务。
  15. 根据权利要求14所述的控制设备,其中,与所述无人机的飞行任务有关的信息包括以下一项或更多项:农田的面积、农作物的品种以及农田作业的类型。
  16. 根据权利要求14所述的控制设备,其中,与所述无人机有关的第一参数包括以下一项或更多项:所述无人机的飞行距离、飞行速度和承载能力。
  17. 根据权利要求14所述的控制设备,其中,与所述飞行任务有关的第二参数包括以下一项或更多项:农田作业间距、预计用药量、农作物高度以及天气状况。
  18. 根据权利要求14所述的控制设备,其中,所述任务规划单元被配置为:根据所述第一参数和所述第二参数来计算农田作业任务的顶点航点,并且根据所述顶点航点将农田作业任务划分为多个子任务。
  19. 根据权利要求18所述的控制设备,其中,所述任务规划单元被配置为:以所述顶点航点为单位进行子任务的划分。
  20. 根据权利要求12所述的控制设备,其中,所述子任务选择单元包括显示器,所述显示器具有用于从所述多个子任务中选择一个或更多个子任务的界面。
  21. 一种计算机可读存储介质,存储有计算机程序,当所述计算机程序 由至少一个处理器运行时,使所述至少一个处理器执行根据权利要求1-10中任一项所述的方法。
PCT/CN2017/116866 2017-12-18 2017-12-18 用于控制无人机的方法和设备 WO2019119185A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780023543.7A CN109074097A (zh) 2017-12-18 2017-12-18 用于控制无人机的方法和设备
PCT/CN2017/116866 WO2019119185A1 (zh) 2017-12-18 2017-12-18 用于控制无人机的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/116866 WO2019119185A1 (zh) 2017-12-18 2017-12-18 用于控制无人机的方法和设备

Publications (1)

Publication Number Publication Date
WO2019119185A1 true WO2019119185A1 (zh) 2019-06-27

Family

ID=64831279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116866 WO2019119185A1 (zh) 2017-12-18 2017-12-18 用于控制无人机的方法和设备

Country Status (2)

Country Link
CN (1) CN109074097A (zh)
WO (1) WO2019119185A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109407706A (zh) * 2018-12-24 2019-03-01 杭州瓦屋科技有限公司 无人机控制方法和装置
WO2020150862A1 (zh) * 2019-01-21 2020-07-30 深圳市大疆创新科技有限公司 任务显示方法及装置
WO2020154996A1 (zh) * 2019-01-31 2020-08-06 深圳市大疆创新科技有限公司 无人机的负载的任务管理方法及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105116913A (zh) * 2015-08-12 2015-12-02 北京农业智能装备技术研究中心 植保无人机作业航线规划方法及装置
CN105549619A (zh) * 2016-02-03 2016-05-04 苏州大势智慧信息科技有限公司 一种用于无人机续航能力的多起降点航线规划方法
CN106020237A (zh) * 2016-08-03 2016-10-12 浙江空行飞行器技术有限公司 植保无人机的多机作业航线规划及其喷洒作业方法和系统
CN106200678A (zh) * 2016-09-18 2016-12-07 中国空气动力研究与发展中心高速空气动力研究所 一种无人机作业自动编队系统及方法
WO2016209504A1 (en) * 2015-06-25 2016-12-29 Intel Corporation Personal sensory drones
CN106483975A (zh) * 2016-10-26 2017-03-08 广州极飞科技有限公司 确定无人机航线的方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101551744B (zh) * 2008-04-02 2013-05-29 西门子公司 一种提供子任务向导信息的方法及装置
CN105203097A (zh) * 2015-10-14 2015-12-30 中国矿业大学 一种适用于灾后环境的多机器人多目标点救援路径规划方法
CN106485429B (zh) * 2016-10-31 2020-06-26 广州极飞科技有限公司 一种无人机作业调度方法及装置
CN106970637A (zh) * 2017-05-23 2017-07-21 厦门南羽科技有限公司 航线规划方法及装置
CN107390715A (zh) * 2017-07-07 2017-11-24 深圳市华琥技术有限公司 一种基于无人机的喷药控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016209504A1 (en) * 2015-06-25 2016-12-29 Intel Corporation Personal sensory drones
CN105116913A (zh) * 2015-08-12 2015-12-02 北京农业智能装备技术研究中心 植保无人机作业航线规划方法及装置
CN105549619A (zh) * 2016-02-03 2016-05-04 苏州大势智慧信息科技有限公司 一种用于无人机续航能力的多起降点航线规划方法
CN106020237A (zh) * 2016-08-03 2016-10-12 浙江空行飞行器技术有限公司 植保无人机的多机作业航线规划及其喷洒作业方法和系统
CN106200678A (zh) * 2016-09-18 2016-12-07 中国空气动力研究与发展中心高速空气动力研究所 一种无人机作业自动编队系统及方法
CN106483975A (zh) * 2016-10-26 2017-03-08 广州极飞科技有限公司 确定无人机航线的方法及装置

Also Published As

Publication number Publication date
CN109074097A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
EP3900512B1 (en) Agricultural harvesting machine control using machine learning for variable delays
US9696162B2 (en) Mission and path planning using images of crop wind damage
WO2019119185A1 (zh) 用于控制无人机的方法和设备
US11334095B2 (en) Flight path determination method, information processing device, program, and storage medium
KR102639478B1 (ko) 영농 시스템
JP2020156390A (ja) 作業制御システム
WO2019085430A1 (zh) 无人飞行器的控制方法和终端
US20180257228A1 (en) Systems and methods for robotic assistance with retail location monitoring
WO2019127345A1 (zh) 农用机控制方法、装置及农用机
WO2018058268A1 (zh) 一种飞行控制方法及装置、控制设备
WO2018076372A1 (zh) 一种航点编辑方法、装置、设备及飞行器
WO2020133241A1 (zh) 农业植保无人机的控制方法、农业植保无人机和计算机可读存储介质
EP3616487A1 (en) Agricultural machine with resonance vibration response detection
WO2019174053A1 (zh) 可移动平台及其控制方法
WO2020133242A1 (zh) 农业植保无人机的控制方法、农业植保无人机和计算机可读存储介质
WO2022141221A1 (zh) 喷洒作业控制方法、装置、农业无人飞行器及存储介质
CN108885467A (zh) 一种控制方法、终端、管理平台、系统及存储介质
JP6181621B2 (ja) 写真管理装置および写真管理システム
Sorbelli et al. A drone-based application for scouting Halyomorpha halys bugs in orchards with multifunctional nets
US11300977B2 (en) Systems and methods for creating and using risk profiles for fleet management of a fleet of vehicles
WO2020237478A1 (zh) 一种飞行规划方法及相关设备
US20200066162A1 (en) Motion tracking interface for planning travel path
JP2023554240A (ja) 受粉のための方法及びシステム
WO2018053768A1 (zh) 一种航线生成方法、装置及终端
US20230101136A1 (en) Agricultural machine control using work quality based on in situ operation sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935188

Country of ref document: EP

Kind code of ref document: A1