WO2019117677A2 - 황화 금속촉매의 제조방법, 성능 유지 방법 및 재생방법 - Google Patents
황화 금속촉매의 제조방법, 성능 유지 방법 및 재생방법 Download PDFInfo
- Publication number
- WO2019117677A2 WO2019117677A2 PCT/KR2018/015942 KR2018015942W WO2019117677A2 WO 2019117677 A2 WO2019117677 A2 WO 2019117677A2 KR 2018015942 W KR2018015942 W KR 2018015942W WO 2019117677 A2 WO2019117677 A2 WO 2019117677A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- sulfide
- metal
- hydrogen
- metal sulfide
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/08—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/90—Regeneration or reactivation
- B01J23/94—Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/28—Regeneration or reactivation
- B01J27/30—Regeneration or reactivation of catalysts comprising compounds of sulfur, selenium or tellurium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/20—Sulfiding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
- B01J38/10—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using elemental hydrogen
Definitions
- the present invention relates to a process for preparing a metal sulfide catalyst, a method for maintaining the performance of an active metal sulfide catalyst, and a method for regenerating an inert metal sulfide catalyst with an active metal sulfide catalyst. More particularly, the present invention relates to a process for preparing a metal sulfide catalyst using hydrogen sulfide, a method for maintaining the performance of a metal sulfide catalyst, and a method for regenerating an inert metal sulfide catalyst with an active metal sulfide catalyst.
- a metal catalyst or a metal sulfide catalyst is used in a water gas reaction.
- the catalytic reaction using a sour gas containing a sulfur compound uses a sulfide-type metal catalyst which is used as an active site by substituting sulfur in a metal catalyst.
- the sulfur compound contained in the reaction gas, which is the feedstock continuously replaces the metal active site of the catalyst to maintain the sulfur active site.
- FIG. 1 shows a steady state metal sulfide catalyst and a metal catalyst in an oxidized state (the metal can be oxidized in air to exist in a metal oxide state such as FIG. 1 (B)).
- Figure 2 shows the deactivated catalyst state in which the active site is lost due to the loss of elemental sulfur.
- the use of a metal sulfide catalyst must maintain a sulfur active site by continuously feeding sulfur compounds to the metal sulfide catalyst to maintain catalytic performance.
- the amount of sulfur contained in the feed gas is not sufficient, a low amount of sulfur compound is continuously supplied and the sulfur can not maintain the active site of the sulfur metal catalyst, so that the catalyst is seriously inactivated.
- the catalyst is continuously deactivated as shown in FIG. 2, so that it is transformed into a metal form, and a catalyst reaction is not performed or an undesired reaction occurs.
- Korean Patent Laid-Open Publication No. 2016-0090303 proposes a method of sulfiding a catalyst by generating H 2 S from an anti-oxidant using a sulfiding module and feeding it into a catalyst bed in a reactor, but the cost of sulfurization is high by using an expensive sulfiding agent.
- Japanese Patent No. 3110838 discloses a method for regenerating an inactivated catalyst, such as a method for burning off carbon impregnated on a surface of a catalyst coated with oxygen to remove the catalyst.
- the regeneration method also has a problem in that it is necessary to separately supply a predetermined gas containing oxygen for regeneration of the catalyst.
- the present invention solves the above problems, and one embodiment of the present invention can produce a metal sulfide catalyst, maintain its performance, and / or regenerate a metal catalyst by supplying hydrogen sulfide to a metal catalyst or the like. That is, according to the present invention, by continuously supplying hydrogen sulfide to a metal catalyst or the like to maintain the active site of sulfur, the procedure of manufacturing, maintaining and / or regenerating the metal sulfide catalyst is simplified. In addition, catalyst damage due to exposure to external air can be minimized.
- sulfurization of the catalyst leads to active ignition of sulfur, and / or maintaining the active site of sulfur, whereby the metal sulfide catalyst is produced, maintained and / or regenerated.
- a process for producing a metal sulfide catalyst comprising the steps of supplying hydrogen sulfide to a metal catalyst to sulfidize the metal catalyst.
- a method of maintaining the performance of an active metal sulfide catalyst comprising the steps of feeding hydrogen sulfide to an active metal sulfide catalyst to maintain the performance of the active metal sulfide catalyst.
- a method of regenerating an inert metal sulfide catalyst with an active sulfided inactive metal sulfide catalyst comprising feeding hydrogen sulfide to an inactive metal sulfide catalyst to convert the inactive metal sulfide catalyst to an active metal sulfide catalyst, A method of regenerating with a metal sulfide catalyst is provided.
- the sulfur compounds are DMDS (dimethyl disulfide, C 2 H 6 S 2), DMS (dimethyl sulfide, C 2 H 6 S), DMSO (dimethyl sulfoxide, C 2 H 6 SO), N- butyl mercaptan (C 4 H 10 S), methyl mercaptan (CH 4 S), and TBPS (di-t-butyl polysulfide, C 8 H 1 8 S 4 ).
- the step of producing the hydrogen sulfide may be performed at a temperature of 110 ° C to 450 ° C.
- the elemental sulfur may have a concentration of 80 wt% or more.
- the volume ratio of hydrogen to nitrogen in the mixed gas may be 0.5: 9.5-1.5: 8.5.
- the metal in the metal catalyst or the like is one selected from the group consisting of nickel (Ni), cobalt (Co), tungsten (W), molybdenum (Mo) Or more.
- the supply of hydrogen sulfide to the metal catalyst or the like can be performed in the reaction system. This can also be done continuously.
- the step of sulfiding the metal catalyst, maintaining the performance of the active metal sulfide catalyst, or regenerating the active metal sulfide catalyst may be performed at a temperature of 220 ° C to 310 ° C.
- the inactive metal sulfide catalyst is M x S m
- the active metal sulfide catalyst is M x S n
- x and n are the number of each element that causes the oxidation number of all atoms to be zero
- m can be from 0 to n-1.
- the M may be at least one selected from the group consisting of nickel (Ni), cobalt (Co), tungsten (W), molybdenum (Mo) and oxides thereof as the metal.
- the catalyst may be supported on a porous carrier comprising at least one selected from the group consisting of silica, alumina and titania.
- the method comprising: sulfiding the metal catalyst; maintaining the performance of the active metal sulfide catalyst; or regenerating the active metal sulfide catalyst, the hydrogen sulfide that is not used for the sulfidation of the catalyst is sulfided Maintaining the performance of the active metal sulfide catalyst, or re-supplying to the regeneration step with the active metal sulfide catalyst.
- Figure 1 shows the structure of a steady state metal sulfide catalyst (A) and a metal oxide catalyst (B).
- Figure 2 shows the structure of an inactivated metal sulfide catalyst.
- FIG. 3 is a schematic diagram schematically illustrating the preparation of an exemplary sulfide metal catalyst of the present invention, the maintenance of its activity (performance) and / or the regeneration of an inactive metal catalyst.
- FIG. 4 is a schematic diagram schematically illustrating the production of an exemplary sulfide metal catalyst of the present invention, a process for regenerating an activity maintaining and / or an inert metal catalyst.
- FIG. 5 is a schematic diagram schematically illustrating an exemplary inactive metal sulfide catalyst regeneration process of the present invention.
- Figure 6 is a schematic representation of a reactor that may be used in exemplary hydrogen sulfide production of the present invention.
- FIG. 7 is a schematic diagram showing the production and supply conditions of hydrogen sulfide using elemental sulfur in Example 1.
- FIG. 8 is a schematic diagram showing the production and supply conditions of hydrogen sulfide using DMDS of Example 2.
- FIG. 9 is a graph showing CO conversion in an aqueous gas reaction following the preparation and / or regeneration of the active metal catalyst of Example 1.
- FIG. 10 is a graph showing the CO conversion using the metal sulfide catalyst of Example 2.
- a process for preparing a metal sulfide catalyst comprising the steps of feeding hydrogen sulfide to a metal catalyst to sulfidize the metal catalyst.
- a method for supplying hydrogen sulfide to an active metal sulfide catalyst to maintain the performance of the active metal sulfide catalyst is provided.
- a method of regenerating an inert metal sulfide catalyst with an active metal sulfide catalyst comprising feeding hydrogen sulfide to an inactive metal sulfide catalyst to convert said inactive metal sulfide catalyst to an active metal sulfide catalyst / RTI >
- the method of preparing the metal sulfide catalyst of the present invention the method of maintaining the performance of the active metal sulfide catalyst and / or the method of regenerating the inactive metal sulfide catalyst with an active metal sulfide catalyst, respectively, , Or an inert metal sulfide catalyst, thereby sulfiding the metal catalyst or the like.
- the step of preparing hydrogen sulfide may be further carried out prior to the step of supplying hydrogen sulfide or supplying hydrogen sulfide to the metal catalyst to provide hydrogen sulfide.
- the hydrogen sulfide can be produced by reacting (1) an elemental sulfur or a sulfur compound and (2) a hydrogen gas or a mixed gas of hydrogen and nitrogen.
- a step of producing hydrogen sulfide by reacting (1) an elemental sulfur or a sulfur compound and (2) a hydrogen gas or a mixed gas of hydrogen and nitrogen is performed prior to the step of supplying hydrogen sulfide to a metal catalyst May be further included.
- the sulfurization of the catalyst is to sulphate the metal catalyst or the like
- the performance maintenance method is to maintain the performance of the active metal sulphide metal catalyst
- the metal catalyst to which hydrogen sulfide is supplied, the active metal sulfide catalyst, and the inert metal sulfide catalyst may be collectively referred to as " metal catalyst "
- FIGS. 3 to 5 schematically illustrate the process for preparing the exemplary sulfide metal catalyst of the present invention, the process for maintaining the active metal sulfide catalyst performance, and / or the regeneration process for the inactive metal sulfide catalyst. That is, as shown in FIG. 3, hydrogen sulfide is produced by reacting an elemental sulfur or a sulfur compound with a hydrogen gas or a mixed gas containing hydrogen and nitrogen, and the hydrogen sulfide is supplied to a metal catalyst or the like to produce a sulfide metal catalyst. It is possible to maintain the performance of the metal sulfide catalyst and / or regenerate the inactive metal sulfide catalyst as the active metal sulfide catalyst.
- a method for preparing a metal sulfide catalyst of the present invention a method for maintaining the performance of an active metal sulfide catalyst, and / or a method for regenerating an inert metal sulfide catalyst as an active metal sulfide catalyst will be described.
- hydrogen and nitrogen are mixed and supplied to a hydrogen sulfide production reactor (when hydrogen is used, hydrogen is supplied), wherein (1) And (2) a hydrogen gas or a mixed gas containing hydrogen and nitrogen to produce hydrogen sulfide.
- the metal catalyst or the like By supplying the hydrogen sulfide thus produced to a metal catalyst or the like, the metal catalyst or the like is sulfided, whereby a metal sulfide catalyst can be produced, a performance-maintaining and / or an inert metal sulfide catalyst can be regenerated.
- Hydrogen sulfide can be produced by the reaction of an elemental sulfur or sulfur compound with a hydrogen gas or a mixed gas comprising hydrogen and nitrogen.
- the formation of hydrogen sulfide by the reaction of an elemental sulfur or a sulfur compound with hydrogen gas proceeds as shown in the following reaction formula (1).
- the elemental sulfur uses at least 80 wt%, preferably at least 95 wt%, of high sulfur.
- concentration of sulfur in the elemental sulfur is small, undesired compounds are generated when hydrogen sulfide is produced by the impurities due to the impurities, which may cause the sulfidation of the catalyst and poisoning. Therefore, the elemental sulfur is used in an amount of 80 wt% % Or more of sulfur is preferably used.
- the sulfur compound may be at least one selected from the group consisting of a sulfide series, a polysulfide series and a mercaptan series, and the hydrogen sulfide (H 2 S) is not particularly limited as long as it is a sulfur compound capable of providing sulfur.
- DMDS dimethyl disulfide, C 2 H 6 S 2
- DMS dimethyl sulfide, C 2 H 6 S
- DMSO dimethyl sulfoxide, C 2 H 6 SO
- TBPS di-t-butyl polysulfide, Hydrogen sulfide
- Hydrogen sulfide can be produced using at least one selected from the group consisting of C 8 H 18 S 4 , N-butyl mercaptan (C 4 H 10 S) and methyl mercaptan (CH 4 S) have.
- the volume ratio of the hydrogen: nitrogen gas in the mixed gas is 0.5: 9.5 to 1.5: 8.5 -1.5: 8.5-9.5 by volume).
- the volume ratio of hydrogen and nitrogen may be adjusted to 1: 9.
- the ratio of the hydrogen volume is less than 0.5, hydrogen sufficient in the formation of hydrogen sulfide can not be supplied.
- it exceeds 1.5 a large amount of H 2 S is generated, and it is difficult to control the generation of heat during the subsequent sulfation reaction. Is also undesirable in that it can be heated above the temperature required for the reaction.
- the ratio of the volume of nitrogen is less than 8.5, it is not desirable from the standpoint of stabilization of the reaction.
- the ratio of nitrogen is more than 9.5, it is not preferable from the viewpoint of supplying more than necessary in consideration of the fact that it must be removed in the sulfurization reaction step of the catalyst.
- the above hydrogen sulfide can also be produced by using H 2 generated from a gasification reaction of coal or biomass producing hydrogen and carbon monoxide or a reforming reaction of methane.
- a gas such as methane or carbon monoxide contained in the gas generated in the above reaction may be mixed and contained in a mixed gas containing hydrogen and nitrogen.
- the concentration of hydrogen in the step of producing hydrogen sulfide does not exceed the concentration of hydrogen sulfide produced. If the amount of hydrogen sulfide produced is less than the amount of hydrogen supplied and the amount of hydrogen unreacted with the elemental sulfur is remarkably large, then it is not reacted with the elemental sulfur or sulfur compound in the reaction step of hydrogen sulfide with a catalyst or the like Sulfur substituted on the catalyst surface by hydrogen can be desorbed.
- the elemental sulfur or the sulfur compound is supplied so that the concentration of hydrogen sulfide can be kept higher than the concentration of the hydrogen gas measured at the time when the hydrogen gas or the mixed gas reacts with the elemental sulfur or the sulfur compound and is converted into hydrogen sulfide,
- the concentration of hydrogen, nitrogen and elemental sulfur or sulfur compounds is not particularly limited, provided that the concentration is maintained.
- the hydrogen sulfide production step is performed at a temperature of 110 ° C to 450 ° C, for example, 200 ° C to 450 ° C, and further, for example, 220 ° C to 450 ° C. If the temperature is lower than 110 ° C., the reaction starting temperature of elemental sulfur and hydrogen or mixed gas for generating hydrogen sulfide is not sufficient. If the temperature exceeds 450 ° C., the boiling point of elemental sulfur is exceeded It is difficult to control the hydrogen sulfide production apparatus. In view of this viewpoint and condensation, it may be carried out at a temperature of 200 ° C to 450 ° C, and also at a temperature of 220 ° C to 450 ° C, for example. It is also preferable to produce hydrogen sulfide at a temperature above the melting point of the elemental sulfur (solid) and below the boiling point.
- FIG. 6 shows a schematic view of a reaction apparatus usable in the hydrogen sulfide production process.
- the reaction apparatus includes a supply unit 100 for supplying a hydrogen gas or a mixed gas, an elemental sulfur or sulfur compound heating unit 200, an elemental sulfur or sulfur compound storage unit and a hydrogen sulfide generating unit 300, And a transfer portion 400 of hydrogen sulfide to the catalyst.
- the reaction of the elemental sulfur or the sulfur compound with the hydrogen gas or the mixed gas is performed at a temperature of 110 ° C to 450 ° C, for example, 200 ° C to 450 ° C, and further at 220 ° C to 450 ° C
- the hydrogen gas or the mixed gas can be supplied by heating to the above temperature, which is preferable.
- the elemental sulfur or sulfur compound storage portion and the hydrogen sulfide generating portion 300 may also be heated to a desired temperature (for example, 110 to 450 ° C) using the elemental sulfur or sulfur compound heating portion 200 Deg.] C, for example, 200 [deg.] C to 450 [deg.] C, for example, 220 [deg.] C to 450 [deg.] C).
- the hydrogen gas or mixed gas supplying part 100 may be constituted by a pipe so as to be easily brought into contact with the elemental sulfur or sulfur compound, as shown in Fig.
- the production of the active metal catalyst, maintenance of the activity (activity), and / or maintenance of the activity of the metal catalyst can be achieved by introducing (supplying) the hydrogen sulfide produced as described above into the metal catalyst, the active metal sulfide metal catalyst and / Can be reproduced.
- hydrogen sulfide is supplied in the system in which the metal catalyst or the like is present, specifically in the reactor, preferably continuously. That is, the metal catalyst or the like is produced by the reaction of the metal catalyst with the hydrogen sulfide due to the contact with the hydrogen sulfide, whereby the metal oxide in the metal catalyst or the like is replaced with sulfur and sulfidized to thereby produce the metal sulfide catalyst, And / or reproduced.
- a metal sulfide catalyst by binding sulfur to the metal and sulfiding, a metal sulfide catalyst can be produced, performance can be maintained and / or regenerated.
- the catalyst which has lost the sulfur active site can be maintained and / or activated by the sulfurization of the active site of sulfur by sulfiding with hydrogen sulfide as shown in the following reaction formula (2).
- a metal catalyst or the like By such a reaction, a metal catalyst or the like can be produced, maintained in activity and / or regenerated by a metal sulfide catalyst.
- the metal in the metal catalyst, the active metal sulfide metal catalyst and / or the inert metal sulfide catalyst, the metal may be in the form of a metal and / or a metal oxide, and may also be referred to herein as a " metal ".
- the metal may comprise one or more metals or oxides thereof selected from Groups 4 to 12 of the Periodic Table. Is not particularly limited as long as it can be used as a composition of a catalyst capable of utilizing the active site of sulfur.
- the metal catalyst may be at least one selected from the group consisting of nickel (Ni), cobalt (Co), tungsten (W) and molybdenum (Mo), or may be at least one selected from the group consisting of nickel (Ni), cobalt (W), and molybdenum (Mo).
- the metal may be in the form of an oxide since it may be oxidized during the reaction by moisture (H 2 O) and / or oxygen-containing material contained in the feed gas.
- the active metal sulfide catalyst may be represented by M x S m , wherein the active sulphide metal catalyst is M x S n , where x and n are the oxidation number of each element, ie, the metal (M) Where m is a number from 0 to n-1, for example, 0 or greater than 0 and n-1 is an integer.
- the metal M may be at least one selected from the group consisting of nickel (Ni), cobalt (Co), tungsten (W), molybdenum (Mo), and oxides thereof.
- NiS nickel sulphide
- NiS 2 nickel sulphide
- cobalt sulfide catalyst it is Co 0 in the inactive catalyst state and CoS in the normal catalyst state.
- tungsten sulphide catalysts WS, W 0 S and mixtures thereof in the deactivated catalyst state and WS 2 in the normal catalytic state.
- MoS molybdenum sulfide catalyst
- MoS molybdenum sulfide catalyst
- the carrier is not particularly limited as long as the activity of the metal catalyst can be stably maintained and is a porous carrier capable of supporting the metal catalyst.
- a carrier containing at least one selected from the group consisting of silica, alumina and titania is a carrier containing at least one selected from the group consisting of silica, alumina and titania.
- Supplying the hydrogen sulfide to a metal catalyst, an active metal sulfide metal catalyst and / or an inert metal sulfide catalyst to sulfurize the metal catalyst, to maintain performance or to convert an inert metal sulfide catalyst to an active metal sulfide catalyst (Regenerated with a metal sulfide catalyst) can be carried out at a temperature ranging from 220 ° C to 310 ° C, preferably at a temperature within the above range for a sufficient time to allow the sulfidation reaction, performance maintenance or regeneration to proceed completely.
- the temperature is lower than 220 ° C, it is not preferable because it is not a sufficient reaction temperature for the replacement of oxygen with sulfur by the reaction with hydrogen sulfide and the metal oxide catalyst. If the temperature exceeds 310 ° C, Is undesirable in that it happens.
- the catalyst and the like for the sulfidation reaction can accelerate the exothermic reaction by forming methane by reaction of gas or carbon monoxide or carbon dioxide contained in the reactor with hydrogen.
- catalyst and the like are exposed to high temperature and deactivation of the catalyst and the like is seriously caused by sintering.
- the temperature of the reactor may be set to 220 to 310 ° C, for example, 220 to 300 ° C.
- the present invention can be performed by setting the temperature range in the step of supplying hydrogen sulfide to the metal catalyst, the active metal sulfide metal catalyst and / or the inert metal sulfide catalyst and activating them.
- the temperature at which the sulfidation proceeds on the surface of the catalyst may be different.
- the metal element on the surface of the catalyst metal of the present invention in relation to the case where the temperature at which the sulfidation reaction proceeding different from the catalyst most 4 + or a valence of 5 +, a metal having a valence of the 4 + or 5 +
- the element can generally initiate a sulphurization reaction at 220 ° C and can be heated to about 270 ° C due to the exotherm during the sulfidation reaction.
- the sulfidation reaction of the catalyst surface can be actively performed at a temperature of 220 to 270 ° C.
- the catalyst also includes other metal elements of valence, and the sulfidation reaction using them proceeds at a temperature slightly higher than that of the metal element having a valence of 4 + or 5 + . Therefore, the sulfurized reaction can be carried out at different temperature ranges to activate 100% of the inactivated sulfur.
- the reaction is preferably carried out for a sufficient time so that the sulfidation reaction proceeds completely, and the time of the sulfidation reaction is determined by the amount of sulfur necessary for the metal amount of the catalyst.
- the hydrogen sulfide slip at the catalyst end is measured by a hydrogen sulfide analyzer, or hydrogen generation is measured by a hydrogen analyzer to determine whether or not the sulfurization reaction of the catalyst has completely progressed. Therefore, the sulfidation reaction can be performed until the time when hydrogen sulfide or hydrogen is not generated by the analyzer.
- hydrogen sulfide is introduced into a metal catalyst or the like, A step of reacting for 2 to 3 hours at 200 ° C to 230 ° C, preferably 220 ° to 230 ° C, and subsequent step B for 2 to 3 hours at a temperature of 270 ° C to 310 ° C As shown in FIG.
- the hydrogen sulfide may further be heated to a temperature of 220 to 310 ° C, for example, 220 to 300 ° C, which is a sulphurization, performance maintenance or regeneration reaction temperature before supplying the hydrogen sulfide to the metal catalyst or the like.
- the deactivated metal sulfide catalyst in the method of regenerating the deactivated metal sulfide catalyst, can be heated to 350-600 deg. C, for example, 350-450 deg. C, before hydrogen sulfide is supplied to the deactivated metal sulfide catalyst. Which can additionally be done to remove contaminants in the deactivated metal sulfide catalyst. It is preferable to heat the catalyst to the above range in terms of prevention of contamination from the deactivated metal sulfide catalyst, that is, desorption of the solid solution and catalyst damage.
- the step of feeding the elemental sulfur or sulfur compound to the inert sulfur metal catalyst may be further carried out by heating the obtained hydrogen sulfide to a temperature at which the sulfur sulfide metal catalyst can be converted into the active site of sulfur upon reaction with the metal sulfide metal catalyst.
- the heating is not particularly limited as long as the generated hydrogen sulfide does not condense, and can be heated, for example, at 350-450 ⁇ ⁇ .
- the hydrogen sulfide When the hydrogen sulfide is supplied to the metal catalyst, the active metal sulfide metal catalyst and / or the inert metal sulfide catalyst and the sulfurization reaction is completed, hydrogen sulfide which is not used for sulfurization, performance maintenance and / The metal catalyst, the metal sulfide catalyst (including the activated metal sulfide catalyst) and / or the inert metal sulfide catalyst. That is, the discharged hydrogen sulfide can be recycled back to the metal catalyst, the metal sulfide catalyst (including the activated metal sulfide catalyst) and / or the inert metal sulfide catalyst.
- the metal sulfide catalyst including the activated metal sulfide catalyst
- the inert metal sulfide catalyst a sufficient amount of sulfur necessary for the activity of the catalyst is repeatedly supplied to the catalyst So that the inactive state of the catalyst can be prevented.
- the pressure, flow rate and the like for introducing hydrogen sulfide into the catalyst are not particularly limited as long as the hydrogen sulfide reacts with the catalyst to enable sulfurization, performance maintenance and / or regeneration of the catalyst, It can be suitably selected in the applicable range.
- the process of the present invention can be used in the conventional sulphation, performance (activity) maintenance and / or regeneration of any metal catalyst.
- hydrogen sulfide produced from the elemental sulfur or sulfur compound of the present invention may be used for sulfurization, performance maintenance, regeneration, and water gas reaction of a sour gas, in a metal catalyst used in a sour gas .
- Hydrogen sulfide was produced using 99% elemental sulfur (by weight) and a mixed gas of hydrogen and nitrogen under the reaction conditions shown in FIG. 7 and continuously supplied to the catalyst system of the following item (B) in the reactor.
- Example 1 In order to confirm the activity of the metal sulfide catalyst regenerated by the sulfidation, performance maintenance and / or regeneration of the catalyst according to the present invention, a sour gas shift reaction using a CoMo catalyst was carried out in the same manner as in Example 1 (a) The produced hydrogen sulfide was supplied to the catalyst system to sulfurize, maintain and / or regenerate the metal catalyst, and the CO conversion rate thereof was measured. The specific conditions and the CO conversion according to the progress of the reaction are shown in Fig.
- C234 actiCAT ⁇ commercial catalyst (containing 3 to 6 wt% of cobalt and 10 to 15 wt% of molybdenum, hereinafter referred to as CoMo catalyst) was used as a catalyst.
- the process proceeded to a total of four sections, 1 pre-catalyst sulphurization section, 2 catalyst sulphurization section, 3 stopping and inactivating section of H 2 S, and 4 catalyst regeneration section.
- the reaction conditions and the sulphide treatment conditions in each section are shown in Fig.
- the progress of the reaction in each reaction zone is as follows.
- the catalyst used in the pre-catalyst sulphide reaction zone was a non-sulphated CoMo catalyst.
- a non-sulphided CoMo catalyst is fed to the sour gas composition, the water gas conversion reaction takes place with CO conversion of about 40%.
- Example 1 (a) The hydrogen sulfide produced in Example 1 (a) was continuously supplied to the CoMo catalyst to sulfidize the CoMo catalyst.
- a water gas conversion reaction occurred to generate hydrogen and showed a CO conversion of about 70%.
- the supply of H 2 S in the reaction gas was stopped.
- the hydrogen sulfide produced by using the elemental sulfur again was supplied to the inactivated catalyst (manufactured by Example 1 (a)), so that the CoMo catalyst was reactivated and showed a CO conversion of about 70% .
- Table 1 The state of the inactivated molybdenum sulfide catalyst which lost the active site of sulfur to regenerate the inert metal sulfide catalyst was prepared as shown in Table 1 below.
- Table 1 below shows that when H 2 S is not supplied to the molybdenum sulfide catalyst, 14 bar of H 2 , 25 vol% of CO, 10 vol% of CO 2 , 5 vol% of N 2 and H 2 O 45% by volume of the catalyst.
- Inert metal catalyst Pressure 10 bar Temperature: 400 o C Gas hourly space velocity (GHSV): 5,000 h -1 Feed: H 2 14%, CO 25 %, CO 2 10%, N 2 5%, H 2 O 46% and H 2 S 0% Ratio of steam / carbon monoxide volume: 1.8
- Hydrogen sulfide is supplied to a metal sulfide catalyst containing molybdenum (FIG. 2) in which the active site of S is lost as shown in the following formulas (3) and (4)
- the metal catalyst can be regenerated.
- FIG. 10 shows the CO conversion (%) of the sour gas and the CO conversion (%) of the molybdenum sulfide catalyst recovering the activity in the deactivated molybdenum sulfide catalyst state.
- the molybdenum catalyst was found to have a CO conversion of 80% or more. That is, when hydrogen sulfide was supplied to the surface of the inactive metal catalyst, it was confirmed that the CO conversion (%) recovered to the same performance as the active state of the metal sulfide catalyst.
- the concentration of sulfur can be maintained at a high level to maintain the activity of the catalyst, while the sulfur concentration of the deactivated metal sulfur compound decreases. Therefore, as a conventional method for regenerating a metal sulfide catalyst, the method of continuously supplying sulfur to the catalyst instead of removing and replacing the catalyst may be employed, so that the replacement of the catalyst may not be accompanied. That is, there is a difference in the regeneration method of the catalyst, and the procedure is very simple.
- a metal sulfide catalyst is efficiently produced by supplying hydrogen sulfide to a metal catalyst or the like.
- the activity of the metal sulfide catalyst is maintained by feeding hydrogen sulfide to the active metal sulfide catalyst.
- hydrogen sulfide is regenerated as an active metal sulfide catalyst by feeding it to an inactive sulfur metal catalyst.
- the hydrogen sulfide may be produced by the reaction of (1) elemental sulfur or a sulfur compound and (2) hydrogen or a mixed gas of hydrogen and nitrogen. Particularly, when elemental sulfur is used, it has excellent cost competitiveness because of low cost of elemental sulfur.
- the hydrogen sulfide which is a conventional method for regenerating a metal sulfide catalyst, which is not a post-removal treatment method, is continuously fed into a metal catalyst, an active metal catalyst, or an inert metal catalyst, specifically in a reaction system, And the active site of the sulfur is maintained by sulfurization of the catalyst and the like, so that catalyst oxidation and damage can be prevented, and the procedure is very simple, so that the metal sulfide catalyst can be produced, maintained and / or regenerated at low cost .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
Abstract
본 발명은 황화수소를 이용하여 황화 금속촉매를 제조하는 방법, 황화 금속촉매의 성능을 유지하는 방법 및 비활성 황화 금속촉매를 활성 황화 금속촉매로 재생하는 방법에 관한 것이다. 본 발명에 의하면, 상기 황화수소는 원소 황 또는 황화합물과 수소 가스 또는 수소와 질소를 포함하는 혼합 가스의 반응으로 제조된다. 또한, 황화수소를 촉매에 공급함으로써 금속촉매가 효율적으로 황화, 성능 유지 및/또는 재생된다. 나아가, 본 발명에서는 촉매 반응계내의 금속 촉매 등에 황화수소를 공급하여 촉매를 황화함으로써 황의 활성점이 유지되며, 이에 따라, 황화 금속촉매가 제조, 활성 유지 및/또는 재생된다.
Description
본 발명은 황화 금속촉매를 제조하는 방법, 활성 황화 금속촉매의 성능을 유지하는 방법, 및 비활성 황화 금속촉매를 활성 황화 금속촉매로 재생하는 방법에 관한 것이다. 보다 상세하게, 본 발명은 황화수소를 이용하여 황화 금속촉매를 제조하는 방법, 황화 금속촉매의 성능을 유지하는 방법 및 비활성 황화 금속촉매를 활성 황화 금속촉매로 재생하는 방법에 관한 것이다.
황 화합물을 포함하는 합성 가스를 이용한 반응에 있어서, 촉매로 금속 황화물을 사용하는 경우, 황 화합물은 촉매 피독 물질로 공정 가스내에 존재하는 경우에, 극소량에도 촉매의 성능을 저하시키고, 활성점에 비가역적으로 흡착하여 수명을 줄이는 현상을 일으킨다. 따라서, 황 화합물을 흡착제나 산 가스 공정을 거쳐 제거한 후에 촉매 반응을 하는 방법을 주로 사용하였으나, 공정이 번거롭고 비경제적인 문제가 있다. 이러한 문제를 해결하기 위하여 금속 황 화합물에 포함된 황의 활성점을 이용하고 황을 별도로 제거하지 않은 상태의 금속 황화물로 이루어진 촉매를 이용하는 방법이 있다.
구체적으로는, 수성가스반응 (water gas reaction)에서는 금속촉매 또는 황화 금속촉매가 사용된다. 황화합물을 포함하는 반응가스(Sour Gas)를 이용한 촉매 반응은 금속촉매에 황을 치환하여 활성점으로 이용하는 황화된(sulfide) 형태의 금속촉매를 사용한다. 공급원료인 반응가스내에 포함된 황화합물은 촉매의 금속 활성점과 지속적으로 치환하여 황 활성점을 유지한다.
그러나, 이러한 수성가스 반응에서, 수소나 일산화탄소 등이 촉매 중의 황과 반응하여, 황 함유 생성물이 생성되고, 이로 인하여, 도 2에 나타낸 바와 같이, 황화 금속촉매는 활성점을 상실하고 촉매 성능이 저하된다. 따라서, 결국 황화 금속촉매는 비활성화된다. 도 1에 정상상태의 황화금속촉매 및 산화상태의 금속촉매 (금속은 공기중에서 산화하여 도 1(B)와 같은 산화금속상태로 존재할 수 있다)를 도시하였다. 그리고 도 2에 황원소 상실로 활성점을 상실한 비활성화된 촉매 상태를 나타내었다. 따라서, 이와 같이 황화 금속촉매가 황을 손실하여 비활성화된 경우에, 황화 금속촉매를 황화시킬 필요가 있다. 이는 또한, 황화 금속촉매 제조, 활성 유지 및/또는 재생에 해당한다.
한편, 황화 금속촉매의 사용은 촉매 성능을 유지하기 위해 황화 금속촉매에 황 화합물을 지속적으로 공급하여 황 활성점을 유지해야 한다. 특히, 공급 가스내에 포함된 황의 양이 충분하지 못하면 지속적으로 낮은 양의 황 화합물이 공급되고 결국 황화 금속촉매에 있는 황의 활성점을 유지할 수 없어 상기 촉매는 비활성화가 심각하게 일어난다. 이와 같은 성능저하가 지속적으로 진행된 촉매는 결국엔 도 2와 같이 비활성화가 진행되어 금속 형태로 변형되고 촉매 반응을 하지 않던가 원하지 않는 반응이 일어난다.
한국 특허공개 제2016-0090303호는 황화모듈을 이용하여 항화제로부터 H2S를 생성시키고 반응기내 촉매층으로 공급하여 촉매를 황화하는 방법을 제안하였으나 고가의 황화제를 사용하여 황화 비용이 높다.
일본 특허등록 제3110838호의 비활성화된 촉매를 재생하는 방법은 산소를 이용하여 코팅된 촉매 표면에 침척된 탄소를 연소하여 제거하는 방법과 같이 촉매를 재생하는 방법을 제공한다. 하지만 상기 재생 방법 또한 촉매의 재생을 위하여 산소를 포함하는 소정의 가스를 별도로 공급해야 하는 공정상의 번거로운 문제점이 있다.
또한, 저가의 원소 황을 이용한 금속촉매의 황화 방법, 비활성화된 촉매의 재생 방법 및 반응 중 촉매 성능을 유지하는 방법에 대한 발명은 전무한 실정이다.
본 발명은 상기 문제를 해결하기 위한 것으로, 본 발명의 일 구현은 황화수소를 금속촉매 등에 공급함으로써 황화 금속촉매를 제조, 성능 유지 및/또는 금속촉매를 재생할 수 있다. 즉, 본 발명에 의하면, 황화수소를 금속촉매 등에 지속적으로 공급하여 황의 활성점을 유지함으로써, 황화 금속촉매를 제조, 성능 유지 및/또는 재생하는 절차가 간소화된다. 또한, 외부 공기 노출에 의한 촉매 손상을 최소화할 수 있다. 나아가, 본 발명에서는 촉매 반응계내의 금속 촉매 등에 황화수소를 공급하여 촉매를 황화함으로써 황의 활성점화 되거나, 및/또는 황의 활성점이 유지되며, 이에 따라, 황화 금속촉매가 제조, 활성 유지 및/또는 재생된다.
본 발명의 일 견지에 의하면,
황화 금속촉매의 제조 방법으로서, 황화수소를 금속촉매에 공급하여 상기 금속촉매를 황화시키는 단계를 포함하는, 황화 금속촉매의 제조 방법이 제공된다.
본 발명의 다른 견지에 의하면,
활성 황화 금속촉매의 성능 유지방법으로서, 황화수소를 활성 황화 금속촉매에 공급하여 상기 활성 황화 금속촉매의 성능을 유지시키는 단계를 포함하는, 활성 황화 금속촉매의 성능 유지방법이 제공된다.
본 발명의 또 다른 견지에 의하면,
비활성 황화 금속촉매를 활성 황화 비활성 황화 금속촉매로 재생하는 방법으로서, 황화수소를 비활성 황화 금속촉매에 공급하여 상기 비활성 황화 금속촉매를 활성 황화 금속촉매로 전환하는 단계를 포함하는, 비활성 황화 금속촉매를 활성 황화 금속촉매로 재생하는 방법이 제공된다.
상기 금속 촉매 등에 황화수소를 공급하여 황화, 성능 유지, 또는 전환하는 단계 전에 (1) 원소 황 또는 황 화합물과 (2) 수소 가스 또는 수소와 질소를 포함하는 혼합 가스의 반응으로 황화수소를 제조하는 단계를 추가로 포함할 수 있다.
상기 황 화합물은 DMDS(dimethyl disulfide, C2H6S2), DMS(dimethyl sulfide, C2H6S), DMSO(dimethyl sulfoxide, C2H6SO), N-부틸 메르캅탄 (C4H10S), 메틸 메르캅탄 (CH4S) 및 TBPS(di-t-butyl polysulfide, C8H18S4)로 구성되는 그룹으로부터 선택되는 하나 이상일 수 있다.
상기 황화수소를 제조하는 단계는 110℃ 내지 450℃의 온도에서 행하여질 수 있다.
상기 원소 황은 농도가 80중량% 이상일 수 있다.
상기 혼합가스에서 수소:질소의 부피비는 0.5:9.5-1.5:8.5일 수 있다.
상기 황화시키는 방법 및 성능을 유지하는 방법에서, 상기 금속 촉매 등에서 금속은 니켈 (Ni), 코발트(Co), 텅스텐(W), 몰리브덴(Mo) 및 이들의 금속 산화물로 구성되는 그룹으로부터 선택되는 하나 이상일 수 있다.
상기 금속촉매 등에 대한 황화수소의 공급은 반응계내에서 행하여질 수 있다. 이는 또한 연속적으로 행하여질 수 있다.
상기 금속 촉매를 황화시키는 단계, 상기 활성 황화 금속 촉매의 성능을 유지시키는 단계, 또는 상기 활성 황화 금속 촉매로 재생하는 단계는 220℃ 내지 310℃의 온도에서 행해질 수 있다.
상기 재생시키는 방법에서, 비활성 황화 금속 촉매는 MxSm이고, 상기 활성 황화 금속 촉매는 MxSn이며, 상기 x 및 n은 모든 원자의 산화수의 값이 0이 되도록 하는 각 원소의 수이고, 이때 m은 0 내지 n-1일 수 있다. 이 경우에, 상기 M은 금속으로서, 니켈 (Ni), 코발트(Co), 텅스텐(W), 몰리브덴(Mo) 및 이들의 산화물로 구성되는 그룹으로부터 선택되는 하나 이상일 수 있다.
상기 촉매는 실리카, 알루미나 및 타이타니아로 이루어진 그룹에서 선택되는 하나 이상을 포함하는 다공성 담체 상에 담지될 수 있다.
상기 황화수소를 촉매에 공급하기 전에 220℃ 내지 310℃로 가열하는 단계를 추가로 포함할 수 있다.
상기 금속 촉매를 황화시키는 단계, 상기 활성 황화 금속 촉매의 성능을 유지시키는 단계, 또는 상기 활성 황화 금속 촉매로 재생하는 단계에서, 상기 촉매의 황화에 사용되지 않고 배출된 황화수소를 상기 금속 촉매를 황화시키는 단계, 상기 활성 황화 금속 촉매의 성능을 유지시키는 단계, 또는 상기 활성 황화 금속 촉매로 재생하는 단계에 다시 공급하는 단계를 추가로 포함할 수 있다.
도 1은 정상상태의 황화금속촉매 (A) 및 금속산화물 형태의 촉매 (B)의 구조를 나타낸다.
도 2는 비활성화된 황화 금속촉매의 구조를 나타낸다.
도 3은 본 발명의 예시적인 황화 금속촉매의 제조, 활성(성능) 유지 및/또는 비활성 금속촉매의 재생공정을 개략적으로 나타낸 모식도이다.
도 4는 본 발명의 예시적인 황화 금속촉매의 제조, 활성 유지 및/또는 비활성 금속촉매의 재생공정을 개략적으로 나타낸 모식도이다.
도 5는 본 발명의 예시적인 비활성 황화 금속촉매 재생공정을 개략적으로 나타낸 모식도이다.
도 6은 본 발명의 예시적인 황화수소 제조에 사용될 수 있는 반응기를 개략적으로 나타낸 도면이다.
도 7은 실시예 1의 원소 황을 이용한 황화수소의 제조 및 공급 조건을 나타내는 개략도이다.
도 8은 실시예 2의 DMDS를 이용한 황화수소의 제조 및 공급 조건을 나타내는 개략도이다.
도 9는 실시예 1의 활성 금속촉매의 제조 및/또는 재생에 따른 수성가스 반응에서의 CO 전환율을 나타낸 도면이다.
도 10은 실시예 2의 황화 금속촉매를 이용한 CO 전환율을 나타내는 도면이다.
본 발명의 일 구현에 의하면, 황화수소를 금속촉매에 공급하여 금속촉매를 황화시키는 단계를 포함하는, 황화 금속촉매를 제조하는 방법이 제공된다.
본 발명의 다른 구현에 의하면, 황화수소를 활성 황화 금속촉매에 공급하여 활성 황화 금속촉매의 성능을 유지하는 방법이 제공된다.
본 발명의 또 다른 구현에 의하면, 황화수소를 비활성 황화 금속촉매에 공급하여 상기 비활성 황화 금속촉매를 활성 황화 금속촉매로 전환하는 단계를 포함하는, 비활성 황화 금속촉매를 활성 황화 금속촉매로 재생하는 방법이 제공된다.
상기한 본 발명의 황화 금속촉매를 제조하는 방법, 활성 황화 금속촉매의 성능을 유지하는 방법 및/또는 비활성 황화 금속촉매를 활성 황화 금속촉매로 재생하는 방법은 각각 황화수소를 금속촉매, 활성 황화 금속촉매, 또는 비활성 황화 금속촉매에 공급하여, 금속촉매 등을 황화함으로써 달성된다.
상기 금속 촉매 등에 황화수소를 제공하기 위해 이미 제조된 황화수소를 공급하거나 또는 황화수소를 공급하는 단계에 앞서 황화수소를 제조하는 단계를 추가로 수행할 수 있다.
상기 황화수소는 (1) 원소 황 또는 황 화합물과 (2) 수소 가스 또는 수소 및 질소의 혼합 가스의 반응으로 황화수소를 제조될 수 있다.
따라서, 후자의 경우에는 예를 들어, 금속 촉매 등에 황화수소를 공급하는 단계에 앞서 (1) 원소 황 또는 황 화합물과 (2) 수소 가스 또는 수소 및 질소의 혼합 가스의 반응으로 황화수소를 제조하는 단계를 추가로 포함할 수 있다.
촉매의 제조방법, 성능 유지 방법 및/또는 재생방법에서, 촉매의 황화는 금속촉매 등을 황화하는 것이고, 성능 유지 방법은 활성황화 금속촉매의 성능을 유지하는 것이며, 재생방법은 비활성 황화 금속촉매의 활성을 재생하는 것이지만, 편의상, 황화수소가 공급되는 금속촉매, 활성 황화 금속촉매, 비활성 황화 금속촉매를 「금속촉매 등」 또는 「촉매 등」으로 통칭하기도 한다.
도 3 내지 도 5에 본 발명의 예시적인 황화 금속촉매의 제조 공정, 활성 황화 금속촉매 성능 유지 공정 및/또는 비활성 황화 금속촉매의 재생공정을 개략적으로 나타내었다. 즉, 도 3에 나타낸 바와 같이, 원소 황 또는 황 화합물과 수소가스 또는 수소와 질소를 포함하는 혼합가스를 반응시켜 황화수소를 제조하고 이를 금속촉매 등에 공급하여 황화함으로써, 황화 금속촉매를 제조하거나, 활성 황화 금속촉매의 성능을 유지하거나 및/또는 비활성 황화 금속촉매를 활성 황화 금속촉매로 재생할 수 있다.
이하, 도 4 및 5를 참고하여, 본 발명의 황화 금속촉매의 제조 방법, 활성 황화 금속촉매의 성능을 유지하는 방법 및/또는 비활성 황화 금속촉매의 활성 황화 금속촉매로의 재생 방법을 설명한다. 도 4 및 도 5에 도시한 바와 같이, 예를 들어, 수소와 질소를 혼합하고, 황화수소 제조 반응기에 공급하고 (수소가 사용되는 경우에는 수소가 공급된다), 여기서 (1) 원소 황 또는 황 화합물과 (2) 수소가스 또는 수소와 질소를 포함하는 혼합가스의 반응으로 황화수소가 제조된다. 이와 같이 제조된 황화수소를 금속촉매 등에 공급함으로써, 금속촉매 등이 황화되며, 이에 따라, 황화 금속 촉매가 제조, 성능 유지 및/또는 비활성 황화 금속촉매가 재생될 수 있다.
황화수소는 원소 황 또는 황 화합물과 수소 가스 또는 수소와 질소를 포함하는 혼합 가스의 반응으로 제조될 수 있다. 원소 황 또는 황 화합물과 수소 가스의 반응에 의한 황화수소의 생성은 하기 반응식 (1)과 같이 진행된다.
S+H2 → H2S (1)
상기 원소 황은 80중량% 이상, 바람직하게는 95중량% 이상의 고농도 황을 이용한다. 원소 황에서 황의 농도가 적으면 분순물에 의해 황화수소 생성시 원치 않는 화합물을 생성하게 되고, 이에 의한 촉매의 황화 방해작용이나 피독을 일으킬 수 있으므로, 원소 황으로 80중량% 이상, 바람직하게는 95중량% 이상의 고농도 황을 이용하는 것이 바람직하다.
상기 황 화합물이 사용되는 경우에, 황 화합물은 설파이드 계열(sulfide 계열), 폴리설파이드 계열(polysulfide 계열) 및 메르캅탄 계열(mercaptan 계열)로 이루어진 그룹에서 선택되는 하나 이상일 수 있으며, 상기 황화수소(H2S)를 형성하는 공정에서 황을 제공할 수 있는 황 화합물이면 특히 제한하지 않는다.
예를 들어, DMDS(dimethyl disulfide, C2H6S2), DMS(dimethyl sulfide, C2H6S), DMSO(dimethyl sulfoxide, C2H6SO), TBPS(di-t-butyl polysulfide, C8H18S4), 부틸메르캅탄(N-butyl mercaptan, C4H10S) 및 메틸메르캅탄(Methyl Mercaptan, CH4S)으로 이루어진 그룹에서 선택된 하나 이상을 이용하여 황화수소를 제조할 수 있다.
한편, 수소와 질소를 포함하는 혼합가스(이하, 단지 「혼합가스」라 하기도 한다)가 사용되는 경우에, 혼합가스 중 상기 수소:질소 가스의 부피비는 0.5:9.5 내지 1.5:8.5 (즉, 0.5-1.5:8.5-9.5 부피비)일 수 있다. 예를 들어, 상기 수소 및 질소의 부피의 비를 1:9로 조절하여 공급할 수 있다. 상기 수소 부피의 비가 0.5 미만인 경우에는 황화수소 형성에 충분한 양의 수소를 공급할 수 없고, 1.5를 초과하는 경우에는 다량의 H2S가 생성되어 이후 황화 반응시 발열을 제어하기 어렵고, 발열에 의한 승온 효과도 동반되어 반응에 필요한 온도 이상으로 승온될 수 있는 점에서 바람직하지 않다. 또한, 상기 질소의 부피의 비가 8.5 미만인 경우에는 반응의 안정화 측면에서 바람직하지 않고, 9.5를 초과하는 경우에는 촉매의 황화 반응 단계에서 제거되어야 하는 것을 고려하면 필요 이상의 공급인 점에서 바람직하지 않다.
또한, 수소와 일산화탄소를 제조하는 석탄 또는 바이오매스의 가스화반응이나 메탄의 개질반응으로부터 발생하는 H2를 이용하여, 상기한 황화수소를 제조할 수도 있다. 이 경우에, 상기의 반응에서 발생하는 가스 중에 포함되어 있는 메탄, 일산화탄소 등의 가스가 수소와 질소를 포함하는 혼합가스에 혼입되어 포함되어 있을 수도 있다.
상기 황화수소를 제조하는 단계에서 수소의 농도는 제조된 황화수소의 농도를 초과하지 않는 것이 바람직하다. 이는 제조된 황화수소의 양이 공급되는 수소의 양보다 적은 상태이고, 원소 황과 미반응한 수소의 양이 현저히 많다면, 이후 황화수소와 촉매 등의 반응 단계에서 상기 원소 황 또는 황 화합물과 미반응한 수소에 의해 촉매 표면에 치환된 황이 탈리될 수 있다.
따라서, 수소가스 또는 혼합가스가 원소 황 또는 황 화합물과 반응하여 황화수소로 변환되는 시점에 측정되는 수소 가스의 농도보다 황화수소의 농도를 높게 유지될 수 있도록 원소 황 또는 황 화합물이 공급되는 것이 바람직하며, 상기 농도가 유지되는 조건이라면 수소, 질소 및 원소 황 또는 황 화합물의 농도를 특히 제한하지 않는다.
상기 황화수소 제조 단계는 110℃ 내지 450℃, 예를 들어, 200℃ 내지 450℃, 또한 예를 들어, 220℃ 내지 450℃의 온도에서 행하여진다. 상기 반응 단계에서 온도가 110℃ 미만이면 원소 황의 녹는점 이하로 황화수소 생성을 위한 원소 황과 수소 또는 혼합가스의 반응 시작온도로 충분치 않은 점에서 바람직하지 않고, 450℃를 초과하면 원소 황의 끓는점을 초과하여 황화수소 제조장치를 제어하기 어려운 점에서 바람직하지 않다. 이러한 관점 및 응축에 대한 대비로, 200℃ 내지 450℃, 또한 예를 들어, 220℃ 내지 450℃의 온도에서 행할 수도 있다. 또한, 원소 황 (고체)의 녹는점 이상 그리고 끓는점 미만의 온도에서 황화수소를 제조하는 것이 바람직하다.
기타, 황화수소 제조시의 압력, 가스의 유량, 반응시간 등은 특히 한정하지 않으며, 수소와 원소 황이 충분히 반응하여, 황화수소가 제조될 수 있는 한, 어떠한 조건일 수 있다. 이 기술분야의 기술자는 수소와 황의 반응을 고려하여, 필요한 사항을 적합하게 선택할 수 있다.
한편, 도 6에 황화수소 제조 공정에 이용가능한 반응 장치의 개략도를 나타내었다. 도 6에 도시한 바와 같이, 상기 반응 장치는 수소가스 또는 혼합가스를 공급하는 공급부 (100), 원소 황 또는 황 화합물 가열부 (200), 원소 황 또는 황 화합물 저장부 및 황화수소 생성부 (300) 및 황화수소의 촉매로의 이송부 (400)을 포함하여 구성될 수 있다.
상기한 바와 같이 원소 황 또는 황 화합물과 수소가스 또는 혼합가스의 반응은 110℃ 내지 450℃, 예를 들어, 200℃ 내지 450℃, 또한 예를 들어, 220℃ 내지 450℃의 온도에서 행하여지므로, 수소 가스 또는 혼합가스는 상기 온도로 가열하여 공급할 수 있으며, 이것이 바람직하다. 또한, 황이 담긴 용기, 예를 들어, 상기 원소 황 또는 황 화합물 저장부 및 황화수소 생성부 (300)도 원소 황 또는 황 화합물 가열부 (200)를 이용하여 원하는 온도 (예를 들어, 110℃ 내지 450℃, 예를 들어, 200℃ 내지 450℃, 또한 예를 들어, 220℃ 내지 450℃)로 유지하는 것이 바람직하다. 또한, 수소 가스 또는 혼합가스의 공급부 (100)는 도 6에 나타낸 바와 같이, 원소 황 또는 황 화합물과 용이하게 접촉가능하도록 배관으로 구성될 수도 있다.
상기와 같이 제조된 황화수소를 금속촉매, 활성 황화 금속촉매 및/또는 비활성 황화 금속촉매에 도입(공급)하여, 금속촉매 등을 황화함으로써, 활성 금속촉매의 제조, 성능(활성) 유지, 및/또는 재생할 수 있다. 이때, 황화수소는 금속 촉매 등이 존재하는 계내, 구체적으로 반응기내에 공급, 바람직하게는 지속적으로 공급된다. 즉, 금속촉매 등은 황화수소와의 접촉함에 따른, 금속촉매와 황화수소의 반응에 의해, 금속촉매 등 중의 금속 산화물에서 산소가 황으로 치환되어 황화됨으로써, 황화 금속 촉매가 제조되거나, 성능이 유지되거나, 및/또는 재생될 수 있다. 또한, 금속에 황이 결합되어 황화됨으로써, 황화 금속 촉매가 제조되거나, 성능이 유지되거나, 및/또는 재생될 수 있다. 일 예로, 황 활성점을 상실한 촉매는 하기 반응식 (2)와 같이 황화수소에 의해 황화됨으로써 황의 활성점이 유지 및/또는 활성화될 수 있다. 이러한 반응에 의해, 금속촉매 등은 황화 금속촉매로 제조, 활성 유지 및/또는 재생될 수 있다.
S 활성점 상실 촉매 (MoS 또는 Mo0) + 2H2S → MoS2 (2)
상기 금속촉매, 활성 황화 금속촉매 및/또는 비활성 황화 금속촉매에서, 금속은 금속 및/또는 금속 산화물 형태일 수 있으며, 본 명세서에서 「금속」으로 통칭하기도 한다. 금속은 주기율표 4 내지 12족으로부터 선택되는 하나 이상의 금속 또는 이의 산화물을 포함할 수 있다. 바람직하게, 황의 활성점을 이용할 수 있는 촉매의 조성물로 사용될 수 있는 것이면 특히 한정하지 않는다. 예를 들어, 상기 금속촉매는 니켈(Ni), 코발트(Co), 텅스텐(W) 및 몰리브덴(Mo)으로 이루어진 그룹에서 선택되는 하나 이상일 수 있고, 또는 니켈(Ni), 코발트(Co), 텅스텐(W) 및 몰리브덴(Mo)으로 이루어진 그룹에서 선택되는 하나 이상으로 이루어진 금속의 산화물 형태일 수 있다. 상기 금속은 공급 가스 내에 포함되어 있는 수분(H2O) 및/또는 산소 함유 물질에 의해 반응시 산화될 수 있으므로 산화물 형태일 수 있다.
상기 비활성 황화 금속촉매는, 촉매는 MxSm으로 나타낼 수 있고, 이의 상기 활성 황화 금속촉매는 MxSn이며, 상기 x 및 n은 각 원소, 즉, 금속 (M) 및 황원자의 산화수의 값이 0이 되도록 하는 각 원소의 수이고, 이때 m은 0 내지 n-1의 수이며, 예를 들어 0 또는 0 초과 내지 n-1는 정수이다. 상기 금속 (M)은 니켈(Ni), 코발트(Co), 텅스텐(W), 몰리브덴(Mo) 및 이들의 산화물로 구성되는 그룹으로 부터 선택되는 하나 이상일 수 있다.
예를 들어, 황화 니켈 촉매의 경우, 비활성화된 촉매 상태에서는 NiS, Ni0 및 이들의 혼합이며, 정상 촉매 상태에서는 NiS2이다. 황화 코발트 촉매의 경우, 비활성화된 촉매 상태에서는 Co0이고, 정상 촉매 상태에서는 CoS이다. 황화 텅스텐 촉매의 경우, 비활성화된 촉매 상태에서는 WS, W0S 및 이들의 혼합이며, 정상 촉매 상태에서는 WS2이다. 또한, 황화 몰리브덴 촉매의 경우, 비활성화된 촉매 상태에서는 MoS, Mo0 및 이들의 혼합이며, 정상 촉매 상태에서는 MoS2인 것이다.
나아가, 상기 금속촉매의 활성을 안정적으로 유지하기 위해 다공성 담체 상에 담지될 수 있다. 상기 담체는 금속촉매의 활성이 안정적으로 유지될 수 있는 것으로서 금속촉매를 담지할 수 있는 다공성의 담체이면 특히 제한하지 않는다. 예를 들어 실리카, 알루미나 및 타이타니아로 이루어진 그룹에서 선택되는 하나 이상을 포함하는 담체일 수 있다.
상기 황화수소를 금속촉매, 활성 황화 금속촉매 및/또는 비활성 황화 금속촉매에 공급하여 금속촉매를 황화하는 단계, 성능을 유지하는 단계 또는 비활성 황화 금속촉매를 활성 황화 금속촉매로 전환하는 단계 (전환함으로써 활성 황화 금속촉매로 재생됨)는 220℃ 내지 310℃의 온도 범위에서 수행할 수 있으며, 바람직하게는 상기 온도 범위에서 황화 반응, 성능 유지 또는 재생이 완전히 진행될 수 있는 충분한 시간 동안 반응시키는 것이 바람직하다. 온도가 220℃ 미만이면 황화수소와 산화금속촉매와 반응에 의한 산소의 황으로의 치환을 위한 충분한 반응온도가 아닌 점에서 바람직하지 않고, 310℃를 초과하면 황화시 발생하는 발열에 의해 메탄화 반응이 일어나는 점에서 바람직하지 않다.
보다 상세하게, 황화 반응을 위한 상기 촉매 등은 가스나 반응기 내에 포함된 일산화탄소 또는 이산화탄소 등이 수소와의 반응에 의해 메탄을 형성하여 발열 반응을 촉진시킬 수 있다. 이로 인해 촉매 등이 고온에 노출되고 소결로 인해 촉매 등의 비활성화가 심각하게 일어나는 바, 상기 금속촉매에 황화수소를 공급하기 위한 범위를 설정하는 것이 바람직하다. 따라서, 황화수소를 상기한 바와 같이, 220℃ 내지 310℃, 또한, 예를 들어, 220℃ 내지 300℃로 가열하여 공급할 수 있다. 또한, 반응기의 온도를 220℃ 내지 310℃, 또한, 예를 들어, 220℃ 내지 300℃로 할 수도 있다.
상기와 같은 문제를 방지하기 위해, 본 발명은 황화수소를 금속촉매, 활성 황화 금속촉매 및/또는 비활성 황화 금속촉매에 공급하여 활성화시키는 단계에서 온도 범위를 설정하여 수행할 수 있다. 다만, 상기 금속촉매에는 다양한 전자가를 포함하는 금속 원소가 존재하고 상기 원자가가 상이한 경우, 촉매 표면에서 황화 반응이 진행되는 온도가 상이할 수 있다.
예를 들어, 상기 촉매 표면에서 황화 반응이 진행되는 온도가 상이한 경우와 관련하여 본 발명의 금속촉매 상의 금속 원소는 대부분 4+ 또는 5+의 원자가이며, 상기 4+ 또는 5+의 원자가를 가진 금속 원소는 일반적으로 220℃에서 황화 반응을 시작할 수 있고, 황화 반응이 진행되는 동안 발열 현상으로 인해 약 270℃까지 승온될 수 있다. 상기와 같이 본 발명의 촉매는 일반적으로 220 내지 270℃ 온도에서 촉매 표면의 황화 반응이 활발하게 진행될 수 있다.
나아가, 상기 촉매는 다른 원자가의 금속 원소도 포함하며 이들을 이용한 황화 반응이 4+ 또는 5+인 원자가를 가진 금속 원소보다 조금 더 높은 온도에서 진행된다. 따라서 상이한 온도 범위에서 황화 반응을 진행함으로써 비활성화된 황을 100% 활성화시킬 수 있다.
한편, 상기 반응은 황화 반응이 완전히 진행하도록 충분한 시간 동안 반응시키는 것이 바람직한데, 황화 반응의 시간은 촉매의 금속량에 따라 정해지는 필요한 황의 양으로 결정된다. 일반적으로 황화수소 분석기에 의해 촉매 후단의 황화수소 슬립을 측정하거나, 수소 분석기에 의해 수소 발생 여부를 측정함으로써, 촉매의 황화 반응이 완전히 진행되었는지 여부를 알 수 있다. 따라서, 상기 분석기에 의해 황화수소 또는 수소가 발생하지 않는 시점까지 황화 반응을 진행할 수 있다.
예를 들어, 황화수소를 금속촉매 등의 내로 투입하고 상압에서 200℃ 내지 230℃, 바람직하게는 220℃ 내지 230℃에서 2 내지 3시간 동안 반응시키는 A 단계 및 후속적으로 A 단계의 온도를 승온하여 270℃ 내지 310℃에서 2 내지 3시간 동안 반응시키는 B 단계를 포함하는 두 단계로 수행될 수 있다.
상기와 같이 두 단계로 수행되는 경우, 다양한 산화 상태의 금속을 황화, 성능유지 및/또는 재생시킬 수 있을 뿐만 아니라, 촉매의 안정화를 위한 소킹(soaking, 초기의 반응 조건을 유지한 채로 체류 숙성시켜 목적하는 반응을 완결)을 수행하여 100% 황화를 완료할 수 있는 효과가 있는 점에서 바람직하다.
또한, 상기 황화수소를 상기 금속촉매 등에 공급하기 전에 황화, 성능 유지 또는 재생 반응 온도인 220℃ 내지 310℃, 또한, 예를 들어, 220℃ 내지 300℃로 가열하는 단계를 추가로 포함할 수 있다.
한편, 비활성화 황화 금속촉매를 재생하는 방법에서, 황화수소를 비활성화 황화 금속 촉매에 공급하기 전에, 비활성화 황화 금속 촉매를 350-600℃, 또한, 예를 들어, 350-450℃로 가열할 수 있다. 이는 비활성화된 황화 금속촉매 중의 오염 물질을 제거하기 위해 추가적으로 행하여질 수 있다. 비활성화 황화 금속 촉매로부터 오염물질, 즉, 고용 물질의 탈착 및 촉매 손상의 방지 측면에서 상기 범위로 가열하는 것이 바람직하다.
원소 황 또는 황 화합물을 비활성 황화 금속촉매에 공급하는 단계에 앞서 상기 획득한 황화수소와 비활성 황화 금속촉매의 반응시 황의 활성점으로 변환이 가능한 온도로 가열하는 단계를 추가로 수행할 수 있다. 상기 가열은 생성된 황화수소가 응축되지 않는 온도 범위라면 특히 제한하지 않으며, 예를 들어, 350-450℃에서 가열할 수 있다.
상기 황화수소를 금속촉매, 활성 황화 금속촉매 및/또는 비활성 황화 금속촉매에 공급하여 황화 반응이 완료되면 후속적으로 공급한 황화수소 중 촉매의 황화, 성능 유지 및/또는 재생 등에 사용되지 않고 배출된 황화수소를 상기 금속촉매, 황화 금속촉매(활성화된 황화 금속촉매 포함) 및/또는 비활성 황화 금속촉매에 다시 공급할 수 있다. 즉, 배출된 황화수소를 상기 금속촉매, 황화 금속촉매(활성화된 황화 금속촉매 포함) 및/또는 비활성 황화 금속촉매에 다시 재순환시킬 수 있다. 따라서, 상기 배출된 황화수소를 상기 금속촉매, 황화 금속촉매(활성화된 황화 금속촉매 포함) 및/또는 비활성 황화 금속촉매에 지속적으로 공급함으로써 촉매의 활성에 필요한 충분한 양의 황을 반복하여 연속적으로 촉매에 공급하여 촉매의 비활성 상태를 방지할 수 있다.
황화수소를 상기 촉매에 도입하는 압력, 유량 등은 황화수소가 촉매와 반응하여, 촉매를 황화, 성능 유지 및/또는 재생할 수 있는 한 특히 한정하지 않으며, 이 기술분야의 기술자는 통상적으로 촉매의 재생을 위해 적용되는 범위에서 적합하게 선택할 수 있다.
본 발명의 방법은 종래 어떠한 금속촉매의 황화, 성능(활성)유지 및/또는 재생에 사용될 수 있다. 이로서 한정하는 것은 아니지만, 예를 들어, 사워 가스 (Sour gas)에 사용되는 금속촉매의 황화, 성능 유지, 재생 및 사워가스의 수성 가스 반응에 본 발명의 원소 황 또는 황 화합물로부터 제조된 황화수소를 이용할 수 있다.
이하, 실시예를 통해 본 발명에 대하여 설명한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 것으로 이로써 본 발명을 한정하는 것은 아니다.
[실시예]
실시예 1
(가) 원소 황을 이용한 황화수소의 제조 및 공급
도 7에 나타낸 바와 같은 반응 조건으로 99% 원소 황 (중량기준)과 수소 및 질소의 혼합가스를 사용하여, 황화수소가 제조되고 하기 항목 (나)의 촉매계에 반응기내에서 연속적으로 공급되었다.
(나) 금속촉매의 황화 (즉, 황화 금속촉매의 제조), 성능 유지 및/또는 재생과 수성 가스 반응에서의 성능 시험
본 발명에 따른 촉매의 황화, 성능 유지 및/또는 재생 방법에 의해 재생된 황화 금속촉매의 활성도를 확인하고자, CoMo 촉매를 사용한 수성 가스 반응(sour gas shift 반응)에 상기 실시예 1 (가)에서 제조된 황화수소를 촉매계에 공급하여 금속촉매를 황화, 성능유지 및/또는 재생하고 이에 따른 CO의 전환율을 측정하였다. 구체적인 조건 및 반응 경과에 따른 CO 전환율은 도 9에 도시하였다.
본 실시예에서 촉매로는 CRITERION사 C234 actiCAT® 상용 촉매 (코발트 3~6wt%, 몰리브덴 10~15wt% 함유, 이하 CoMo촉매라 함)를 사용하였다.
도 9에 도시한 바와 같이, 총 4개의 구간, ①촉매 황화 전 반응구간, ② 촉매 황화 후 반응구간, ③ H2S 공급 중단 및 비활성화 구간, 및 ④ 촉매 재생 후 반응구간으로 진행하였다. 또한 각 구간의 반응 조건 및 황화 처리 조건은 도 9에 나타내었다. 각 반응 구간에서 반응의 진행은 다음과 같다.
① 촉매 황화 전 반응구간
촉매 황화 전 반응구간에서 촉매는 황화되지 않은 CoMo 촉매가 사용되었다. 사워 가스(sour gas) 조성에 황화되지 않은 CoMo 촉매를 공급하면 수성가스전환 반응이 약 40%의 CO 전환율로 일어난다.
② 촉매 황화 후 반응구간
상기 실시예 1 (가)에서 제조한 황화수소를 상기 CoMo 촉매에 연속적으로 공급하여, CoMo 촉매를 황화하였다. 충분히 황화를 진행하고 질소로 퍼지 후, 이를 사워 가스 조건으로 반응기에 공급하였을 때, 수성가스전환 반응이 일어나 수소를 생성하였으며, 약 70%의 CO 전환율을 보였다. 이를 약 10시간 정도 유지 후 반응가스 내 H2S 공급을 중단하였다.
③ H2S 공급 중단 및 비활성화 구간
H2S의 공급을 중단하고 40시간 정도 반응을 진행하였다. H2S 공급의 중단으로 황화된 금속촉매의 황 활성점이 점차 소실되어 비활성화되었다. 이에 따라, CO 전환율은 62%까지 감소하였다.
④ 촉매 재생 후 반응구간
상기 비활성화된 촉매에 다시 원소 황을 이용하여 생성된 황화수소 (상기 실시예 1(가)에사 제조)를 공급하였으며, 이에 따라, CoMo 촉매가 재활성화되어 구간 ②와 같이 약 70%의 CO 전환율을 나타내었다.
본 실시예 1(나)로부터, 원소 황으로부터 제조된 황화수소를 반응계내에 연속적으로 공급함으로써, CoMo 촉매가 황화될 뿐만 아니라, 비활성화된 후에도 다시 활성화되어 활성 황화 금속촉매로서 활성을 회복하여, 우수한 CO 전환율을 나타냄을 확인할 수 있었다. 또한, 원소 황으로부터 제조된 황화수소를 반응계내에 연속적으로 공급함으로써, 촉매의 성능이 유지시킬 수 있음을 확인하였다.
실시예 2
(1) 비활성화 단계
비활성 황화 금속촉매를 재생하기 위하여 황의 활성점을 상실한 비활성화된 황화 몰리브덴 촉매의 상태를 하기 표 1과 같이 조성해 보았다. 하기 표 1은 황화 몰리브덴 촉매에 H2S가 공급되지 않은 경우, 10bar를 유지하며 400℃에서 H2 14부피%, CO 25부피%, CO2 10부피%, N2 5부피% 및 H2O 45부피%를 공급한 비활성 상태의 촉매 조건을 나타낸 것이다.
비활성 금속촉매 | 압력: 10bar |
온도: 400oC | |
기체 공간 속도(GHSV, gas hourly space velocity): 5,000h-1 | |
공급: H2 14%, CO 25%, CO2 10%, N2 5%, H2O 46% 및 H2S 0% | |
스팀/일산화탄소 부피의 비율: 1.8 |
(2) 황화수소의 제조 및 공급
도 8 및 하기 표 2에 나타낸 바와 같이, 1기압에서 220℃에서 2시간 그리고 300℃로 승온하여 2시간 동안 H2 50ml/min 및 N2 450ml/min로 공급하고 H2 10부피% 및 N2 90부피%의 혼합 가스와 DMDS(dimethyl disulfide, C2H6S2)를 0.021g/min로 반응시켜 황화수소를 제조하고, 이를 반응기내에서 촉매에 연속적으로 공급하여 황화 반응을 진행하였다.
상기 황화 반응을 진행한 후, 25oC에서 24시간 동안 혼합 가스에 포함된 질소 가스를 제거하는 공정을 수행하였다.
DMDS 처리 조건 | 압력: 1atm |
온도: 220~300oC | |
공급: H2 10%, N2 90%, DMDS 0.021g/min | |
제거: N2 100%, 25oC, 24h |
(3) 비활성 황화 금속촉매의 재생
비활성 황화 금속촉매 표면의 황을 재생하는 경우, 하기 식(3) 및 식(4)와 같이 S의 활성점을 상실한 몰리브덴 (도 2)을 포함하는 황화 금속촉매에 황화수소를 공급함으로써, 비활성 상태의 금속촉매를 재생할 수 있는 것이다.
3H2 + C2H6S2 → 2H2S + 2CH4 ----(3)
S 활성점 상실 촉매 (MoS 또는 Mo0) + 2H2S -> MoS2 ---- (4)
(4) 재생된 황화 금속촉매의 CO 전환율 측정
본 발명에 따른 재생 방법에 의해 재생된 황화 금속촉매의 활성도를 확인하고자, 10bar에서 400oC의 온도를 유지하며 CO 전환에 사용되고 있는 촉매에 하기 표 3과 같이 H2 13%, CO 25%, CO2 10%, N2 3.2%, H2O 45% 및 H2S 2000ppm을 공급하였다. 상기의 조건에서 공급된 황화수소에 의해 재생된 황화 금속촉매를 이용하여 H2, CO 및 CO2를 포함하는 사워 가스(Sour gas)의 CO 전환율을 측정한 결과를 도 10에 나타내었다.
CO 전환율 | 압력: 10bar |
온도: 400oC | |
기체 공간 속도(GHSV, gas hourly space velocity): 5,000h-1 | |
공급: H2 13%, CO 25%, CO2 10%, N2 3.2%, H2O: 45%, H2S: 2000ppm | |
스팀/일산화탄소 부피의 비율: 1.8 |
도 10은 비활성화 상태의 황화 몰리브덴 촉매 상태에서 사워 가스의 CO 전환율(%) 및 활성도를 회복한 황화 몰리브덴 촉매의 CO 전환율(%)을 나타낸 것으로서, 본 발명의 일 실시예에 따르면 활성을 회복한 황화 몰리브덴 촉매는 80% 이상의 CO 전환율(%)을 확인할 수 있었다. 즉, 황화수소를 비활성 금속촉매 표면에 공급한 경우 CO 전환율(%)이 황화 금속촉매의 활성 상태와 동일한 성능으로 회복하였음을 확인할 수 있었다.
이는 상기 비활성화된 금속 황 화합물의 황의 농도가 감소하면서 촉매의 비활성화가 진행된 경우, 황의 농도를 높은 양으로 유지시켜, 촉매의 활성을 유지할 수 있기 때문이다. 따라서, 기존의 황화 금속촉매 재생방법으로서, 촉매를 탈거 후 교체하는 방식이 아닌, 촉매에 황을 지속적으로 공급하는 방식을 취함으로써 촉매의 교체가 수반되지 않을 수 있다. 즉 촉매의 재생 방법에 차이가 있고, 그 절차가 매우 간소한 효과가 있다.
본 발명에서는 황화수소를 금속촉매 등에 공급함으로써 황화 금속촉매가 효율적으로 제조된다. 또한, 황화수소를 활성 황화 금속촉매에 공급함으로써 황화 금속촉매의 활성이 유지된다. 뿐만 아니라, 황화수소를 비활성 황화 금속촉매에 공급함으로써 활성 황화 금속촉매로 재생된다. 상기 황화수소는 (1) 원소 황 또는 황 화화물과 (2) 수소 또는 수소와 질소의 혼합가스의 반응으로 생성된 것이 이용될 수 있다. 특히, 원소 황을 이용하는 경우에는 원소 황의 저렴한 비용으로 인하여, 우수한 원가 경쟁력을 갖는다.
뿐만 종래의 황화 금속촉매 재생방법인, 탈거 후 처리방식이 아닌 황화수소를 금속촉매, 활성 금속촉매, 또는 비활성 금속촉매에, 구체적으로는 반응계내에, 또한, 촉매를 이용한 화합반응이 일어나는 반응기내에 지속적으로 공급하여 촉매 등을 황화함으로써 황의 활성점이 유지됨으로, 촉매 산화 및 손상을 방지할 수 있을 뿐 아니라 절차가 매우 간소하여 저렴한 비용으로, 황화 금속촉매를 제조, 활성(성능) 유지 및/또는 재생할 수 있다.
(부호의 설명)
(100)...수소 또는 혼합가스 공급부
(200)...원소 황 또는 황 화합물 가열부
(300)...원소 황 또는 황 화합물 저장부 및 황화수소 생성부
(400)...황화수소의 촉매로의 이송부
Claims (21)
- 황화 금속촉매의 제조 방법으로서,황화수소를 금속촉매에 공급하여 상기 금속촉매를 황화시키는 단계를 포함하는, 황화 금속촉매의 제조 방법.
- 제1항에 있어서,상기 금속촉매를 황화시키는 단계 전에 (1) 원소 황 또는 황 화합물과 (2) 수소 가스 또는 수소와 질소를 포함하는 혼합 가스의 반응으로 황화수소를 제조하는 단계를 추가로 포함하는, 황화 금속촉매의 제조 방법.
- 제2항에 있어서,상기 황 화합물은 DMDS(dimethyl disulfide, C2H6S2), DMS(dimethyl sulfide, C2H6S), DMSO(dimethyl sulfoxide, C2H6SO), N-부틸 메르캅탄 (C4H10S), 메틸 메르캅탄 (CH4S) 및 TBPS(di-t-butyl polysulfide, C8H18S4)로 구성되는 그룹으로부터 선택되는 하나 이상인, 황화 금속촉매의 제조 방법.
- 제2항에 있어서,상기 황화수소를 제조하는 단계는 110℃ 내지 450℃의 온도에서 행하여지는 황화 금속촉매의 제조 방법.
- 제2항에 있어서,상기 혼합가스에서 수소:질소의 부피비는 0.5:9.5-1.5:8.5인, 황화 금속촉매의 제조 방법.
- 제1항에 있어서,상기 금속촉매에 대한 황화수소의 공급은 반응계내에서 행하여지는, 황화 금속촉매의 제조 방법.
- 제1항에 있어서,상기 금속촉매를 황화시키는 단계는 220℃ 내지 310℃의 온도에서 행하여지는, 황화 금속촉매의 제조 방법.
- 활성 황화 금속촉매의 성능 유지방법으로서,황화수소를 활성 황화 금속촉매에 공급하여 상기 활성 황화 금속촉매의 성능을 유지시키는 단계를 포함하는, 활성 황화 금속촉매의 성능 유지방법.
- 제8항에 있어서,상기 활성 황화 금속촉매의 성능을 유지시키는 단계 전에 (1) 원소 황 또는 황 화합물과 (2) 수소 가스 또는 수소와 질소를 포함하는 혼합 가스의 반응으로 황화수소를 제조하는 단계를 추가로 포함하는, 활성 황화 금속촉매의 성능 유지방법.
- 제9항에 있어서,상기 황 화합물은 DMDS(dimethyl disulfide, C2H6S2), DMS(dimethyl sulfide, C2H6S), DMSO(dimethyl sulfoxide, C2H6SO), N-부틸 메르캅탄 (C4H10S), 메틸 메르캅탄 (CH4S) 및 TBPS(di-t-butyl polysulfide, C8H18S4)로 구성되는 그룹으로부터 선택되는 하나 이상인, 활성 황화 금속촉매의 성능 유지방법.
- 제9항에 있어서,상기 황화수소를 제조하는 단계는 110℃ 내지 450℃의 온도에서 행하여지는 활성 황화 금속촉매의 성능 유지방법.
- 제9항에 있어서,상기 혼합가스에서 수소:질소의 부피비는 0.5:9.5-1.5:8.5인, 활성 황화 금속촉매의 성능 유지방법.
- 제8항에 있어서,상기 활성 금속촉매에 대한 황화수소의 공급은 반응계내에서 행하여지는, 활성 황화 금속촉매의 성능 유지 방법.
- 제8항에 있어서,상기 활성 황화 금속촉매의 성능을 유지시키는 단계는 220℃ 내지 310℃의 온도에서 행하여지는, 활성 황화 금속촉매의 성능 유지방법.
- 비활성 황화 금속촉매를 활성 황화 비활성 황화 금속촉매로 재생하는 방법으로서,황화수소를 비활성 황화 금속촉매에 공급하여 상기 비활성 황화 금속촉매를 활성 황화 금속촉매로 전환화는 단계를 포함하는, 비활성 황화 금속촉매를 활성 황화 금속촉매로 재생하는 방법.
- 제15항에 있어서,상기 비활성 황화 금속촉매를 활성 황화 금속촉매로 전환하는 단계 전에 (1) 원소 황 또는 황 화합물과 (2) 수소 가스 또는 수소와 질소를 포함하는 혼합 가스의 반응으로 황화수소를 제조하는 단계를 추가로 포함하는, 활성 황화 금속촉매로 재생하는 방법.
- 제16항에 있어서,상기 황 화합물은 DMDS(dimethyl disulfide, C2H6S2), DMS(dimethyl sulfide, C2H6S), DMSO(dimethyl sulfoxide, C2H6SO), N-부틸 메르캅탄 (C4H10S), 메틸 메르캅탄 (CH4S) 및 TBPS(di-t-butyl polysulfide, C8H18S4)로 구성되는 그룹으로부터 선택되는 하나 이상인, 활성 황화 금속촉매로 재생하는 방법.
- 제16항에 있어서,상기 황화수소를 제조하는 단계는 110℃ 내지 450℃의 온도에서 행하여지는 활성 황화 금속촉매로 재생하는 방법.
- 제16항에 있어서,상기 혼합가스에서 수소:질소의 부피비는 0.5:9.5-1.5:8.5인, 활성 황화 금속촉매로 재생하는 방법.
- 제15항에 있어서,상기 비활성 황화 금속촉매에 대한 황화수소의 공급은 반응계내에서 행하여지는, 황화 금속촉매의 제조 방법.
- 제15항에 있어서,상기 비활성 황화 금속촉매를 활성 황화 금속촉매로 전환하는 단계는 220℃ 내지 310℃의 온도에서 행하여지는, 활성 황화 금속촉매로 재생하는 방법.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170172356A KR102085613B1 (ko) | 2017-12-14 | 2017-12-14 | 황화 금속 촉매의 계내 재생 방법 |
KR10-2017-0172356 | 2017-12-14 | ||
KR1020170180092A KR102045550B1 (ko) | 2017-12-26 | 2017-12-26 | 촉매의 황화방법, 성능 유지 방법 및 재생방법 |
KR10-2017-0180092 | 2017-12-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2019117677A2 true WO2019117677A2 (ko) | 2019-06-20 |
WO2019117677A3 WO2019117677A3 (ko) | 2019-08-01 |
Family
ID=66820941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/015942 WO2019117677A2 (ko) | 2017-12-14 | 2018-12-14 | 황화 금속촉매의 제조방법, 성능 유지 방법 및 재생방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019117677A2 (ko) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4260531B2 (ja) * | 2002-04-26 | 2009-04-30 | 住友精化株式会社 | 硫化水素の製造方法 |
FR2845014B1 (fr) * | 2002-09-27 | 2006-01-13 | Eurecat Europ Retrait Catalys | Passivation par traitement thermique oxydant de catalyseur d'hydrotraitement |
FR2874838B1 (fr) * | 2004-09-08 | 2006-11-24 | Inst Francais Du Petrole | Procede de sulfuration de catalyseurs d'hydrotraitement |
MY190960A (en) * | 2013-10-31 | 2022-05-24 | Reactor Resources Llc | In-situ catalyst sulfiding, passivating and coking methods and systems |
-
2018
- 2018-12-14 WO PCT/KR2018/015942 patent/WO2019117677A2/ko active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2019117677A3 (ko) | 2019-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1773473B1 (en) | Process for removing mercaptans from an inert gas gas stream | |
EA012470B1 (ru) | Устройство и способ для удаления soиз кислородсодержащих газов | |
SU1291025A3 (ru) | Способ получени серы из сероводородсодержащего газа | |
CA2597301A1 (en) | Apparatus and catalytic partial oxidation process for recovering sulfur from an h2s-containing gas stream | |
EP2928819B1 (en) | Process for sulphur recovery with simultaneous hydrogen production from nh3 and h2s containing feed gas | |
US20020114750A1 (en) | Method of removing mercury from flue gases | |
PL188511B1 (pl) | Sposób zmniejszania całkowitej zawartości siarki w gazach zawierających siarkowodór i inne składniki siarkowe | |
RU2001107824A (ru) | Способ извлечения серы из газа, содержащего сероводород | |
FI56320C (fi) | Foerfarande foer att reducera den totala svavelhalten i avgaser vid en clausprocess | |
WO2019117677A2 (ko) | 황화 금속촉매의 제조방법, 성능 유지 방법 및 재생방법 | |
KR101752510B1 (ko) | 수소 풍부 가스 혼합물의 제조방법 | |
JPH11500403A (ja) | ガス中に低濃度にて存在するh▲下2▼sを接触経路により硫黄に酸化するための方法および触媒 | |
RU2002111560A (ru) | Способ извлечения сернистых соединений из газа | |
KR970006836B1 (ko) | 가스 스트림으로부터 h₂s를 제거시키는 방법 | |
US3554689A (en) | Methods of removing carbon oxysulfide from gases | |
JP3602268B2 (ja) | 天然ガス等に含まれる硫黄化合物の除去方法およびその装置 | |
US4994257A (en) | Method for purifying high-temperature reducing gas | |
KR19990077362A (ko) | 가스로부터 황-함유 불순물, 방향족계 및 탄화수소류를 제거하는 방법 | |
JP2007009068A (ja) | 改質ガスを利用するシステム及び方法 | |
US3798315A (en) | Treatment of gases | |
KR102085613B1 (ko) | 황화 금속 촉매의 계내 재생 방법 | |
KR102045550B1 (ko) | 촉매의 황화방법, 성능 유지 방법 및 재생방법 | |
CN104073288A (zh) | 从流体中去除硫的方法 | |
US7708967B2 (en) | Process for disposal of mercaptans | |
ES2945993T3 (es) | Proceso para la producción de gas de síntesis enriquecido en hidrógeno |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18889606 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18889606 Country of ref document: EP Kind code of ref document: A2 |