WO2019117096A1 - 複層型電磁鋼板 - Google Patents

複層型電磁鋼板 Download PDF

Info

Publication number
WO2019117096A1
WO2019117096A1 PCT/JP2018/045357 JP2018045357W WO2019117096A1 WO 2019117096 A1 WO2019117096 A1 WO 2019117096A1 JP 2018045357 W JP2018045357 W JP 2018045357W WO 2019117096 A1 WO2019117096 A1 WO 2019117096A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface layer
layer portion
content
steel sheet
inner layer
Prior art date
Application number
PCT/JP2018/045357
Other languages
English (en)
French (fr)
Inventor
善彰 財前
尾田 善彦
多津彦 平谷
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP18888348.2A priority Critical patent/EP3725907B1/en
Priority to KR1020207019447A priority patent/KR102394513B1/ko
Priority to CA3084975A priority patent/CA3084975C/en
Priority to RU2020122824A priority patent/RU2742291C1/ru
Priority to MX2020006108A priority patent/MX2020006108A/es
Priority to JP2019511515A priority patent/JP6519725B1/ja
Priority to US16/770,617 priority patent/US11401589B2/en
Priority to CN201880079793.7A priority patent/CN111465709B/zh
Publication of WO2019117096A1 publication Critical patent/WO2019117096A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2204/00End product comprising different layers, coatings or parts of cermet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Definitions

  • the present invention relates to a multilayer electromagnetic steel sheet, and more particularly, to a multilayer electromagnetic steel sheet in which low-frequency iron loss and high magnetic flux density are compatible.
  • Motors for hybrid electric vehicles and vacuum cleaners are driven in a high frequency range of 400 Hz to 2 kHz from the viewpoint of downsizing and high efficiency. Therefore, a non-oriented electrical steel sheet used as a core material of such a motor is required to have a high magnetic flux density and a low high frequency core loss.
  • Patent Document 1 proposes an electromagnetic steel sheet having a concentration gradient of Si in the thickness direction and having a higher Si concentration on the surface of the steel sheet than in the central portion of the thickness of the steel sheet.
  • the Si concentration in the central portion of the plate thickness is 3.4% or more
  • surface layer portions having a Si concentration of 5 to 8% by mass are provided on both surfaces of the steel plate.
  • the thickness of the surface layer portion is 10% or more of the plate thickness.
  • This invention is made in view of the said situation, and an object of this invention is to provide the multilayer electromagnetic steel sheet which made the low-frequency core loss and the high magnetic flux density make compatible.
  • the present inventors appropriately control the Si concentration difference between the surface layer portion and the inner layer portion of the steel sheet to reduce high frequency iron loss, and It has been found that it is important to add one or more selected from the group consisting of Sb.
  • the present invention has been made based on the above-described findings, and the summary of the invention is as follows.
  • a multilayer electromagnetic steel sheet comprising an inner layer portion and surface layer portions provided on both sides of the inner layer portion,
  • the surface layer is, by mass%, Si: 2.5 to 6.0%, and P: 0.01 to 0.1%, Sn: 0.001 to 0.1%, and Sb: 0.001 to 0.1% Containing one or more of It has a component composition in which the balance is Fe and unavoidable impurities,
  • the inner layer portion is, by mass%, Si: 1.5 to 5.0%, and P: 0.01 to 0.1%, Sn: 0.001 to 0.1%, and Sb: 0.001 to 0.1%.
  • the Si content in the surface layer portion The difference between the Si content in [Si] 1 and the Si content in the inner layer portion: [Si] 0 ([Si] 1- [Si] 0 ), ⁇ Si is 0.5 to 4.
  • FIG. 1 is a schematic view showing a structure of a multilayer electromagnetic steel sheet according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing an example of the Si content profile in the thickness direction of the multilayer electromagnetic steel sheet.
  • the vertical axis in FIG. 2 indicates the position in the thickness direction, where 0 represents one surface of the multilayer electromagnetic steel sheet, and t represents the other surface of the multilayer electromagnetic steel sheet.
  • the multilayer electromagnetic steel sheet 1 (hereinafter sometimes referred to simply as “steel sheet”) of the present invention comprises an inner layer portion 10 and surface layer portions 20 provided on both sides of the inner layer portion 10.
  • the surface layer 20 and the inner layer 10 have different Si contents.
  • the Si content may change continuously in the thickness direction of the steel plate (FIG. 2 (a)) or may change stepwise (FIG. 2 (b)).
  • the Si content changes stepwise, the Si content can be changed in any two or more stages.
  • the “surface layer portion” refers to the surface layer portions provided on the surfaces on both sides of the multilayer electromagnetic steel sheet. Therefore, in the present invention, both the first surface layer portion provided on one surface of the multi-layered electromagnetic steel sheet and the second surface layer portion provided on the other surface satisfy the conditions described below.
  • a portion in which the Si content is higher than the average value of the Si content in the entire thickness of the steel sheet is defined as a “surface layer portion”, and a portion in which the Si content is lower than the average value is defined as an “inner layer portion”.
  • the portion made of the high Si material is usually The surface layer portion and the portion made of the low Si material become the inner layer portion. In that case, the amount of Si in the surface layer portion is substantially constant, and the amount of Si in the inner layer portion is also substantially constant.
  • both the first surface layer portion provided on one surface of the multi-layered magnetic steel sheet and the second surface layer portion provided on the other surface have the component compositions described below.
  • the component composition of the first surface layer portion and the component composition of the second surface layer portion may be the same, but both may be different.
  • content of the element in a surface layer part shall refer to the average content of the said element in one surface layer part here.
  • Si 2.5 to 6.0% Si is an element having the function of increasing the electrical resistance of the steel plate and reducing the eddy current loss. If the Si content ([Si] 1 ) in the surface layer portion is less than 2.5%, the eddy current loss can not be effectively reduced. Therefore, the Si content in the surface layer portion is 2.5% or more, preferably 3.0% or more, and more preferably 3.5% or more. On the other hand, when the Si content in the surface layer portion exceeds 6.0%, the magnetic flux density decreases due to the decrease in saturation magnetization. Therefore, the Si content in the surface layer portion is 6.0% or less, preferably less than 5.5%, and more preferably 5.0% or less.
  • the average Si content in the first surface layer is 2.5 to 6.0%
  • the average Si content in the second surface layer is 2.5 to 6.0%
  • the average Si content in the first surface layer portion and the average Si content in the second surface layer portion may be the same or different. Similar definitions apply to other elements.
  • the component composition of the surface layer is further selected from the group consisting of P: 0.01 to 0.1%, Sn: 0.001 to 0.1%, and Sb: 0.001 to 0.1%. Or 2 or more.
  • P 0.01 to 0.1%
  • the texture can be greatly improved, the magnetic flux density can be improved, and the hysteresis loss can be reduced.
  • P the P content is made 0.01% or more in order to obtain the above effect.
  • the P content exceeds 0.1%, in addition to the effect being saturated, the productivity is lowered and the cost is increased. Therefore, the P content is 0.1% or less.
  • Sn 0.001 to 0.1% Similar to P, by adding Sn, the texture can be greatly improved, the magnetic flux density can be improved, and the hysteresis loss can be reduced. In the case of adding Sn, the Sn content is set to 0.001% or more in order to obtain the above effect. On the other hand, when the Sn content exceeds 0.1%, in addition to the effect being saturated, the productivity is lowered and the cost is increased. Therefore, the Sn content is 0.1% or less.
  • Sb 0.001 to 0.1% Similar to P and Sn, by adding Sb, the texture can be greatly improved, the magnetic flux density can be improved, and the hysteresis loss can be reduced.
  • Sb is added, the Sb content is made 0.001% or more in order to obtain the above effect.
  • the Sb content exceeds 0.1%, in addition to the effect being saturated, the productivity decreases and the cost increases. Therefore, the Sb content is 0.1% or less.
  • the surface layer portion has a component composition containing the above-described element, with the balance being Fe and unavoidable impurities.
  • Al is mentioned as an example of the element which may be contained in a multilayer electromagnetic steel sheet as said unavoidable impurity. If the Al content is suppressed to 0.1% or less, the magnetic flux density can be further improved. Therefore, it is preferable to suppress the Al content to 0.1% or less.
  • the component composition of the surface layer portion can further contain Mo in the following amounts.
  • Mo 0.001 to 0.1%
  • Mo is an element having the effect of further reducing iron loss by suppressing the oxidation of the surface layer of the steel sheet.
  • the Mo content is made 0.001% or more in order to obtain the above-mentioned effect.
  • the Mo content exceeds 0.1%, carbide is formed and iron loss increases. Therefore, the Mo content is 0.1% or less.
  • the surface layer in one embodiment of the present invention is, by mass%, Si: 2.5 to 6.0%, P: 0.01 to 0.1%, Sn: 0.001 to 0.1%, and Sb: one or more selected from the group consisting of 0.001 to 0.1%, Optionally contains Mo: 0.001 to 0.1%, It can have a component composition in which the remainder is composed of Fe and unavoidable impurities.
  • the surface layer portion in another embodiment of the present invention is, by mass%, Si: 2.5 to 6.0%, P: 0.01 to 0.1%, Sn: 0.001 to 0.1%, and Sb: one or more selected from the group consisting of 0.001 to 0.1%, Optionally, Mo: 0.001 to 0.1%, It can have a component composition consisting of the balance of Fe and unavoidable impurities.
  • the component composition of the inner layer portion refers to the average content of the element in the inner layer portion.
  • Si 1.5 to 5.0% If the Si content ([Si] 0 ) in the inner layer portion is less than 1.5%, high frequency iron loss increases. Therefore, the Si content in the inner layer portion is 1.5% or more. On the other hand, when the Si content in the inner layer portion exceeds 5.0%, there arises a problem that the core is broken at the time of punching the motor core. Therefore, the Si content in the inner layer portion is 5.0% or less.
  • the Si content of the inner layer portion is preferably 4.0% or less, more preferably 2.8% or less.
  • the component composition of the inner layer portion is further selected from the group consisting of P: 0.01 to 0.1%, Sn: 0.001 to 0.1%, and Sb: 0.001 to 0.1%. Or 2 or more.
  • P 0.01 to 0.1%
  • the texture can be greatly improved, the magnetic flux density can be improved, and the hysteresis loss can be reduced.
  • P the P content is made 0.01% or more in order to obtain the above effect.
  • the P content exceeds 0.1%, in addition to the effect being saturated, the productivity is lowered and the cost is increased. Therefore, the P content is 0.1% or less.
  • Sn 0.001 to 0.1% Similar to P, by adding Sn, the texture can be greatly improved, the magnetic flux density can be improved, and the hysteresis loss can be reduced. In the case of adding Sn, the Sn content is set to 0.001% or more in order to obtain the above effect. On the other hand, when the Sn content exceeds 0.1%, in addition to the effect being saturated, the productivity is lowered and the cost is increased. Therefore, the Sn content is 0.1% or less.
  • Sb 0.001 to 0.1% Similar to P and Sn, by adding Sb, the texture can be greatly improved, the magnetic flux density can be improved, and the hysteresis loss can be reduced.
  • Sb is added, the Sb content is made 0.001% or more in order to obtain the above effect.
  • the Sb content exceeds 0.1%, in addition to the effect being saturated, the productivity decreases and the cost increases. Therefore, the Sb content is 0.1% or less.
  • the inner layer portion has a component composition containing the above-described element, with the balance being Fe and unavoidable impurities.
  • Al is mentioned as an example of the element which may be contained in a multilayer electromagnetic steel sheet as said unavoidable impurity. If the Al content is suppressed to 0.1% or less, the magnetic flux density can be further improved. Therefore, it is preferable to suppress the Al content to 0.1% or less.
  • the component composition of the inner layer portion can further contain Mo in the following amounts.
  • Mo 0.001 to 0.1%
  • Mo is an element having an effect of further reducing iron loss by suppressing oxidation of the surface layer of the steel sheet.
  • Mo may be present in the surface layer portion of the steel sheet for the purpose of oxidation prevention, Mo may be added to the inner layer portion.
  • Mo may be added to the entire steel plate. Exists.
  • Mo may be added to the inner layer portion. From the viewpoint of production, when adding Mo to the inner layer part, the Mo content of the inner layer part is made 0.001% or more, similarly to the Mo content of the surface layer part. On the other hand, when the Mo content exceeds 0.1%, carbide is formed and iron loss increases. Therefore, the Mo content is 0.1% or less.
  • the inner layer portion in one embodiment of the present invention is, by mass%, Si: 1.5 to 5.0%, P: 0.01 to 0.1%, Sn: 0.001 to 0.1%, and Sb: one or more selected from the group consisting of 0.001 to 0.1%, Optionally contains Mo: 0.001 to 0.1%, It can have a component composition in which the remainder is composed of Fe and unavoidable impurities.
  • the inner layer portion in another embodiment of the present invention is, by mass%, Si: 1.5 to 5.0%, P: 0.01 to 0.1%, Sn: 0.001 to 0.1%, and Sb: one or more selected from the group consisting of 0.001 to 0.1%, Optionally, Mo: 0.001 to 0.1%, It can have a component composition consisting of the balance of Fe and unavoidable impurities.
  • the steel for the surface layer is attached to both sides of the steel for the inner layer so that the ratio of the thickness of the surface layer to the thickness (full thickness) of the multi-layer electromagnetic steel sheet is 0.30, and hot Rolled.
  • the steel for the surface layer portion and the steel for the inner layer portion are melted to have desired component compositions to form an ingot.
  • the Si content [Si] 0 of the inner layer portion was 2.0%, and the Si content [Si] 1 of the surface layer portion was changed in the range of 2.1% to 6.5%.
  • the Al content was 0.001% and the Sn content was 0.04% for both the surface layer portion and the inner layer portion.
  • the balance of all the component compositions of the surface layer portion and the inner layer portion was Fe and unavoidable impurities. Further, the component composition of the surface layer portion was the same on both sides.
  • the test piece of width 30 mm and length 180 mm was extract
  • L-direction test pieces collected such that the length direction of the test piece is the rolling direction (L direction), and collected such that the length direction of the test pieces is the rolling perpendicular direction (C direction)
  • Equal amounts of C direction test pieces were used to evaluate the average value of the magnetic characteristics in the L direction and the C direction.
  • FIG. 3 ⁇ Si (mass%) defined as the difference ([Si] 1- [Si] 0 ) of the Si content in the surface layer portion and the inner layer portion, and the total iron loss at 1.0 T, 1 kHz: W 10 / The correlation with 1 k (W / kg) is shown. Further, FIG. 4 shows the correlation between ⁇ Si and the magnetic flux density ratio.
  • the "magnetic flux density ratio” refers to the ratio of magnetic flux density at a magnetic field: B 10 to magnetic flux density at a magnetic field of 1000 A / m: B 10 : B 1 ratio (B 1 / B 10 It shall point to).
  • ⁇ Si which is defined as the difference between the Si content in the surface layer portion and the Si content in the inner layer portion ([Si] 1- [Si] 0 ), is 0.5 to 4.0 mass% I assume.
  • the magnetostriction of the surface layer portion and the inner layer portion is strongly influenced by the amount of Si, but is also influenced by the texture. For example, when the amounts of impurities in the surface layer portion and the inner layer portion are different, the formation of a texture at the time of finish annealing largely differs, so that the magnetostriction difference between the surface layer portion and the inner layer portion becomes large.
  • Al is an element that greatly affects the formation of texture.
  • the content of Al contained as an unavoidable impurity in the surface layer portion the content of [Al] 1 and the content of Al contained as an unavoidable impurity in the inner layer portion: [Al] 0 absolute value (
  • ) be 0.05% by mass or less.
  • the lower limit of ⁇ Al is not particularly limited, but may be 0.
  • the ratio (t 1 / t) of the total thickness of the surface layer portion to the thickness t of the multilayer electromagnetic steel sheet: t 1 (hereinafter sometimes referred to as “multilayer ratio”) affects the magnetic characteristics
  • the multi-layer type magnetic steel sheet from which multi-layer ratio differs was produced in the following procedures, and the magnetic characteristic was evaluated.
  • the total thickness of the surface layer portion refers to the sum of the thicknesses of the surface layer portions provided on both sides.
  • the steel for the surface layer portion and the steel for the inner layer portion were pasted together so as to have a multilayer ratio of 0.02 to 0.80 and hot-rolled.
  • the steel for the surface layer and the steel for the inner layer portion are melted to have desired component compositions to form an ingot.
  • the Si content [Si] 0 of the surface layer part was 4.5%
  • the Si content [Si] 1 of the inner layer part was 2.0%.
  • the balance was Fe and unavoidable impurities.
  • the component composition of the surface layer portion was the same on both sides.
  • FIG. 5 shows the correlation between the multilayer ratio (t 1 / t) and the total iron loss (W 10 / 1k ). From this result, it can be seen that the core loss is greatly reduced when the multilayer ratio is 0.10 to 0.70. This decrease in iron loss is considered to be due to the following reasons.
  • the multilayer ratio is less than 0.10, the ratio of the surface layer portion having high resistance is low, so that the eddy current concentrated on the surface layer portion can not be effectively reduced.
  • the multilayer ratio exceeds 0.70, the magnetic permeability difference between the surface layer portion and the inner layer portion decreases, so that the magnetic flux penetrates to the inner layer portion, and eddy current loss also occurs from the inner layer portion. Therefore, the core loss can be reduced by setting the multilayer ratio to 0.10 to 0.70. From the above reasons, in the present invention, the multilayer ratio (t 1 / t) is set to 0.10 to 0.70.
  • the thickness t of the multilayer electromagnetic steel sheet is not particularly limited, and can be any value. However, if the multilayer electromagnetic steel sheet is too thin, cold rolling and annealing in the production of the multilayer electromagnetic steel sheet become difficult, and there may be a problem of cost increase. Therefore, it is preferable to set t to 0.03 mm or more from the viewpoint of manufacturing cost reduction. On the other hand, if t is 0.3 mm or less, the eddy current loss can be further reduced, and as a result, the total iron loss can be further reduced. Therefore, t is preferably 0.3 mm or less.
  • the multilayer electromagnetic steel sheet of the present invention has a high magnetic flux density, specifically, the magnetic flux density at a magnetic field strength of 1000 A / m: B 10 is 1.3 T or more is there.
  • Increasing the magnetic flux density of the magnetic steel sheet is effective for improving the torque of a motor manufactured using the magnetic steel sheet. Further, when the magnetic flux density is high, the same torque can be obtained with a small current, and as a result, the copper loss can be reduced.
  • the magnetic field strength : B 1 / B 10 flux density at 100A / m: the ratio of B 1 to (B 1 / B 10) 0.45 or more.
  • the multilayer electromagnetic steel sheet of the present invention has high magnetic flux density and low iron which are contradictory properties by controlling the component composition and multilayer ratio of the surface layer portion and the inner layer portion of the steel plate as described above. It is compatible with the loss.
  • the multilayer electromagnetic steel sheet of the present invention is not particularly limited, and can be manufactured by any method.
  • a manufacturing method the method of cladding the steel raw material from which Si content differs is mentioned.
  • the component composition of the steel material can be adjusted, for example, by blowing materials having different components in a converter and degassing the molten steel.
  • the method of cladding is not particularly limited, for example, a steel slab for the surface layer portion and a steel slab for the inner layer portion having the above-described component composition are prepared, and a thickness such that the final double layer ratio becomes a desired value.
  • the steel slab for the surface layer may be bonded to both sides of the steel slab for the inner layer and then rolled.
  • the rolling may be, for example, one or more selected from the group consisting of hot rolling, warm rolling, and cold rolling. Generally, a combination of hot rolling and subsequent warm rolling, or a combination of hot rolling and subsequent cold rolling is preferred. It is preferable to perform hot-rolled sheet annealing after the said hot rolling. Moreover, the warm rolling and the cold rolling may be performed twice or more with the intermediate annealing interposed.
  • the finishing temperature and the coiling temperature in hot rolling are not particularly limited, and may be determined according to a conventional method. After the rolling, finish annealing is performed.
  • a multilayer electromagnetic steel sheet obtained by cladding steel materials different in Si content has, for example, a Si content profile as shown in FIG. 2 (b).
  • siliconizing treatment can also be used.
  • the silicon content of the surface layer portion on both sides of the steel plate can be increased by subjecting the steel plate having the Si content constant in the thickness direction to the siliconizing treatment.
  • the method of siliconization treatment is not particularly limited, and may be performed by any method. For example, a method of depositing Si on the surface of a steel plate by a chemical vapor deposition method (CVD method), and then performing heat treatment to diffuse Si into the inside of the steel plate can be used.
  • the Si content in the surface layer portion and the inner layer portion can be controlled by adjusting the deposition amount of Si by the CVD method and the heat treatment conditions.
  • the multilayer electromagnetic steel sheet obtained by the siliconizing treatment has, for example, a Si content profile as shown in FIG. 2 (a).
  • a multilayer electromagnetic steel sheet was manufactured according to the procedure described below, and its magnetic characteristics were evaluated.
  • the laminated steel slabs were heated at 1130 ° C. for 1 hour, and then hot-rolled to obtain a hot-rolled steel plate having a thickness of 2.0 mm.
  • the hot rolling finish temperature in the hot rolling was set to 800 ° C.
  • the hot rolled steel sheet was taken up at a winding temperature of 610 ° C., and then subjected to hot rolled sheet annealing at 940 ° C. ⁇ 30 s. Thereafter, pickling and cold rolling were performed, and annealing was performed at the finish annealing temperature shown in Table 1 to obtain a multilayer electromagnetic steel sheet.
  • the thickness of the finally obtained multilayered electromagnetic steel plates: t and the thickness of the surface layer portion to the t: the ratio of t 1 (multilayer ratio) was as shown in Table 2.
  • the 33 multilayer electromagnetic steel sheets were manufactured by the siliconizing method. Specifically, siliconizing treatment was performed at 1200 ° C. on a cold-rolled steel plate having a Si content of 2.0% and a plate thickness of 0.2 mm. The average value of the Si content in the entire thickness of the steel plate was calculated, and the portion where the Si concentration was higher than the average value was regarded as the surface layer portion, and the portion where the Si concentration was lower was regarded as the inner layer portion.
  • the Si content in the surface layer is an average value of the amount of Si in the surface layer.
  • magnetostriction of a surface layer part and an inner layer part the magnetostriction of the steel plate in which Si content is the same as the average value of said Si content, and the other component composition is the same is described.
  • Magnetic characteristics were measured for each of the obtained multilayer electromagnetic steel sheets.
  • the magnetic measurement was performed using a 25 cm Epstein frame according to JIS C 2550-1.
  • As the magnetic properties iron loss at 1.0 T, 1 kHz: W 10/1 k (W / kg), magnetic field strength: magnetic flux density at 1000 A / m: B 10 , and magnetic field strength: 100 A / m Magnetic flux density: B 1 was measured. The measurement results were as shown in Table 2.
  • the multilayer electromagnetic steel sheet of the invention example satisfying the conditions of the present invention has excellent properties such as low high frequency core loss and high magnetic flux density. There is. Therefore, the multilayer electromagnetic steel sheet of the present invention is used as a core material for a motor core such as a hybrid electric car, an electric car, a vacuum cleaner, a high speed generator, an air conditioner compressor, a machine tool, etc. It can be used very suitably.
  • a motor core such as a hybrid electric car, an electric car, a vacuum cleaner, a high speed generator, an air conditioner compressor, a machine tool, etc. It can be used very suitably.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

低高周波鉄損と高磁束密度を両立させた複層型電磁鋼板を提供する。 内層部と、前記内層部の両側に設けられた表層部とからなる複層型電磁鋼板であって、前記表層部および内層部が所定の成分組成を有し、前記表層部と内層部のSi含有量の差:ΔSiが0.5~4.0質量%であり、前記表層部と内層部のAl含有量の差の絶対値:ΔAlが0.05質量%以下であり、前記複層型電磁鋼板の板厚:tに対する前記表層部の厚さ:t1の比率(t1/t)が0.10~0.70であり、磁界の強さ:1000A/mにおける磁束密度:B10が1.3T以上であり、前記B10に対する、磁界の強さ:100A/mにおける磁束密度:B1の比(B1/B10)が0.45以上であり、かつ、周波数:1kHz、最大磁束密度:1.0Tにおける鉄損:W10/1k(W/kg)と、前記板厚:t(mm)とが、下記(1)式を満たす、複層型電磁鋼板。 W10/1k≦15+140×t …(1)

Description

複層型電磁鋼板
 本発明は、複層型電磁鋼板に関し、特に、低高周波鉄損と高磁束密度を両立させた複層型電磁鋼板に関する。
 ハイブリッド電気自動車用や掃除機用のモータは、小型化、高効率化の観点より、400Hz~2kHzといった高周波域での駆動が行われている。そのため、このようなモータのコア材として使用される無方向性電磁鋼板には、高周波鉄損が低く、磁束密度の高い電磁鋼板が要望されている。
 高周波鉄損を低減するためには固有抵抗の増大が効果的である。そのため、Si量を増加させることによって固有抵抗を増加させた高Si鋼の開発が行われてきた。しかし、Siは非磁性元素であるため、Si量の増加に伴って飽和磁化が低下するという問題があった。
 そこで、高周波鉄損低減と高磁束密度を両立させる手法として、電磁鋼板の板厚方向におけるSi濃度勾配を制御した、Si傾斜磁性材料が開発されている。例えば、特許文献1では、板厚方向にSiの濃度勾配を有し、鋼板表面のSi濃度が鋼板の板厚中心部のSi濃度よりも高い電磁鋼板が提案されている。具体的には、前記電磁鋼板では、板厚中心部のSi濃度が3.4%以上である一方、Si濃度が5~8質量%である表層部が鋼板の両表面に設けられている。そして、前記表層部の厚さが、板厚の10%以上とされている。
特開平11-293422号公報
 しかし、特許文献1で提案されているような従来のSi傾斜磁性材料には、最高周波数が数kHzである電気機器の鉄心材料として使用すると、ヒステリシス損が高いため、鉄損が十分に低下しないという問題があった。
 本発明は、上記事情に鑑みてなされたものであり、低高周波鉄損と高磁束密度を両立させた複層型電磁鋼板を提供することを目的とする。
 本発明者らは、上記課題を解決する方法について鋭意検討した結果、高周波鉄損を低減するためには、鋼板表層部と内層部におけるSi濃度差を適切に制御するとともに、P、Sn、およびSbからなる群より選択される1または2以上を添加することが重要であることを見出した。本発明は前記知見に基づいてなされたものであり、その要旨構成は以下のとおりである。
1.内層部と、前記内層部の両側に設けられた表層部からなる複層型電磁鋼板であって、
 前記表層部が、質量%で、
  Si:2.5~6.0%、ならびに
  P:0.01~0.1%、Sn:0.001~0.1%、およびSb:0.001~0.1%からなる群より選択される1または2以上を含み、
  残部がFeおよび不可避不純物からなる成分組成を有し、
 前記内層部が、質量%で、
  Si:1.5~5.0%、ならびに
  P:0.01~0.1%、Sn:0.001~0.1%、およびSb:0.001~0.1%からなる群より選択される1または2以上を含み、
  残部がFeおよび不可避不純物からなる成分組成を有し、
 前記表層部におけるSi含有量:[Si]1と前記内層部におけるSi含有量:[Si]0の差([Si]1-[Si]0)として定義されるΔSiが0.5~4.0質量%であり、
 前記表層部に不可避的不純物として含まれるAlの含有量:[Al]1と前記内層部に不可避的不純物として含まれるAlの含有量:[Al]0の差の絶対値(|[Al]1-[Al]0|)として定義されるΔAlが0.05質量%以下であり、
 前記複層型電磁鋼板の板厚:tに対する前記表層部の合計厚さ:t1の比率(t1/t)が0.10~0.70であり、
 磁界の強さ:1000A/mにおける磁束密度:B10が1.3T以上であり、
 前記B10に対する、磁界の強さ:100A/mにおける磁束密度:B1の比(B1/B10)が0.45以上であり、かつ、
 周波数:1kHz、最大磁束密度:1.0Tにおける鉄損:W10/1k(W/kg)と、前記板厚:t(mm)とが、下記(1)式を満たす、複層型電磁鋼板。
10/1k≦15+140×t …(1)
2.前記表層部の成分組成と前記内層部の成分組成のいずれか一方または両方が、さらに、質量%で、
  Mo:0.001~0.1%を含む、上記1に記載の複層型電磁鋼板。
 本発明によれば、低高周波鉄損と高磁束密度を両立させた複層型電磁鋼板を提供することが出来る。
本発明の一実施形態における複層型電磁鋼板の構造を示す模式図である。 複層型電磁鋼板の板厚方向における、Si含有量プロファイルの例を示す模式図である。 表層部と内層部におけるSi含有量の差(ΔSi)と全鉄損(W10/1k)との相関を示すグラフである。 表層部と内層部におけるSi含有量の差(ΔSi)と磁束密度比(B1/B10)との相関を示すグラフである。 複層型電磁鋼板の板厚:tに対する前記表層部の合計厚さ:t1の比として定義される複層比と全鉄損(W10/1k)との相関を示すグラフである。
 以下、本発明を実施する方法について具体的に説明する。なお、以下の説明は、本発明の好適な実施形態の例を示すものであって、本発明はこれに限定されない。
[複層型電磁鋼板]
 図1は、本発明の一実施形態における複層型電磁鋼板の構造を示す模式図である。また、図2は、複層型電磁鋼板の板厚方向における、Si含有量プロファイルの例を示す模式図である。図2における縦軸は板厚方向の位置を示しており、0が複層型電磁鋼板の一方の表面を、tが該複層型電磁鋼板の他方の表面を、それぞれ表している。
 図1に示したように、本発明の複層型電磁鋼板1(以下、単に「鋼板」という場合がある)は、内層部10と、内層部10の両側に設けられた表層部20からなり、表層部20と内層部10は、Si含有量が異なっている。Si含有量は、鋼板の板厚方向において、連続的に変化しいてもよく(図2(a))、段階的に変化していてもよい(図2(b))。Si含有量が段階的に変化している場合、2段階以上の任意の段階でSi含有量を変化させることができる。なお、以下の説明において「表層部」とは、複層型電磁鋼板の両側の表面に設けられた表層部を指すものとする。したがって、本発明においては、複層型電磁鋼板の一方の面に設けられた第1の表層部と他方の面に設けられた第2の表層部の両者が、以下に述べる条件を満たす。
 ここで、鋼板の全板厚におけるSi含有量の平均値よりもSi含有量が高い部分を「表層部」、前記平均値よりもSi含有量が低い部分を「内層部」と定義する。なお、後述するように、Si量の異なる2種の鋼材(高Si材と低Si材)をクラッドすることによって複層型電磁鋼板を製造した場合は、通常、前記高Si材からなる部分が表層部、前記低Si材からなる部分が内層部となる。そしてその場合、表層部内のSi量は実質的に一定であり、内層部内のSi量も実質的に一定である。
[成分組成]
 まず、前記表層部と内層部の成分組成について説明する。なお、以下の説明において、各元素の含有量を表す「%」は、特に断らない限り「質量%」を表すものとする。
[表層部の成分組成]
 まず、前記表層部の成分組成について説明する。本発明においては、複層型電磁鋼板の一方の面に設けられた第1の表層部と他方の面に設けられた第2の表層部の両者が、以下に述べる成分組成を有する。一般的には、第1の表層部の成分組成と第2の表層部の成分組成は同一とすればよいが、両者が異なっていてもよい。また、ここで表層部における元素の含有量とは、1つの表層部における当該元素の平均含有量を指すものとする。
Si:2.5~6.0%
 Siは、鋼板の電気抵抗を高め、渦電流損を低減する作用を有する元素である。表層部のSi含有量([Si]1)が2.5%未満であると、効果的に渦電流損を低減することができない。そのため、表層部のSi含有量は2.5%以上、好ましくは3.0%以上、より好ましくは3.5%超とする。一方、表層部のSi含有量が6.0%を超えると、飽和磁化の低下により磁束密度が低下する。そのため、表層部のSi含有量は6.0%以下、好ましくは5.5%未満、より好ましくは5.0%以下とする。なお、上述したように、表層部におけるSi含有量が2.5~6.0%であるとは、第1の表層部における平均Si含有量が2.5~6.0%であり、かつ第2の表層部における平均Si含有量が2.5~6.0%であることを意味する。第1の表層部における平均Si含有量と第2の表層部における平均Si含有量とは同じであっても、異なっていてもよい。他の元素についても同様の定義が適用される。
 上記表層部の成分組成は、さらにP:0.01~0.1%、Sn:0.001~0.1%、およびSb:0.001~0.1%からなる群より選択される1または2以上を含む。
P:0.01~0.1%
 Pを添加することにより、集合組織が大きく改善し、磁束密度が向上するとともにヒステリシス損を低下させることができる。Pを添加する場合、前記効果を得るためにP含有量を0.01%以上とする。一方、P含有量が0.1%を超えると効果が飽和することに加えて、製造性の低下およびコストの上昇を招く。そのため、P含有量は0.1%以下とする。
Sn:0.001~0.1%
 Pと同様に、Snを添加することにより、集合組織が大きく改善し、磁束密度が向上するとともにヒステリシス損を低下させることができる。Snを添加する場合、前記効果を得るためにSn含有量を0.001%以上とする。一方、Sn含有量が0.1%を超えると効果が飽和することに加えて、製造性の低下およびコストの上昇を招く。そのため、Sn含有量は0.1%以下とする。
Sb:0.001~0.1%
 PおよびSnと同様に、Sbを添加することにより、集合組織が大きく改善し、磁束密度が向上するとともにヒステリシス損を低下させることができる。Sbを添加する場合、前記効果を得るためにSb含有量を0.001%以上とする。一方、Sb含有量が0.1%を超えると効果が飽和することに加えて、製造性の低下およびコストの上昇を招く。そのため、Sb含有量は0.1%以下とする。
 本発明の一実施形態では、前記表層部が、上記元素を含み、残部がFeおよび不可避不純物からなる成分組成を有する。
 なお、前記不可避的不純物として複層型電磁鋼板に含まれうる元素の例としては、Alが挙げられる。Al含有量を0.1%以下に抑制すれば、磁束密度をさらに向上させることができる。そのため、Al含有量は0.1%以下に抑制することが好ましい。
 また、本発明の他の実施形態においては、上記表層部の成分組成が、さらにMoを、以下の量で含有することができる。
Mo:0.001~0.1%
 Moは、鋼板表層の酸化を抑制することによって鉄損をさらに低減する効果を有する元素である。Moを添加する場合、前記効果を得るために、Mo含有量を0.001%以上とする。一方、Mo含有量が0.1%を超えると、炭化物を形成し、鉄損が増加する。そのため、Mo含有量は0.1%以下とする。
 本発明の一実施形態における前記表層部は、質量%で、
  Si:2.5~6.0%と、
  P:0.01~0.1%、Sn:0.001~0.1%、およびSb:0.001~0.1%からなる群より選択される1または2以上と、
  任意に、Mo:0.001~0.1%とを含み、
  残部がFeおよび不可避不純物からなる成分組成を有することができる。
 また、本発明の他の実施形態における前記表層部は、質量%で、
  Si:2.5~6.0%と、
  P:0.01~0.1%、Sn:0.001~0.1%、およびSb:0.001~0.1%からなる群より選択される1または2以上と、
  任意に、Mo:0.001~0.1%と、
  残部のFeおよび不可避不純物とからなる成分組成を有することができる。
[内層部の成分組成]
 次に、内層部の成分組成について説明する。ここで内層部における元素の含有量とは、内層部における当該元素の平均含有量を指すものとする。
Si:1.5~5.0%
 内層部のSi含有量([Si]0)が1.5%未満であると高周波鉄損が増加する。そのため、内層部のSi含有量は1.5%以上とする。一方、内層部のSi含有量が5.0%を超えると、モータコアの打ち抜き時にコアが割れるといった問題が生じる。そのため、内層部のSi含有量は5.0%以下とする。内層部のSi含有量は、4.0%以下とすることが好ましく、2.8%以下とすることがより好ましい。
 上記内層部の成分組成は、さらにP:0.01~0.1%、Sn:0.001~0.1%、およびSb:0.001~0.1%からなる群より選択される1または2以上を含む。
P:0.01~0.1%
 Pを添加することにより、集合組織が大きく改善し、磁束密度が向上するとともにヒステリシス損を低下させることができる。Pを添加する場合、前記効果を得るためにP含有量を0.01%以上とする。一方、P含有量が0.1%を超えると効果が飽和することに加えて、製造性の低下およびコストの上昇を招く。そのため、P含有量は0.1%以下とする。
Sn:0.001~0.1%
 Pと同様に、Snを添加することにより、集合組織が大きく改善し、磁束密度が向上するとともにヒステリシス損を低下させることができる。Snを添加する場合、前記効果を得るためにSn含有量を0.001%以上とする。一方、Sn含有量が0.1%を超えると効果が飽和することに加えて、製造性の低下およびコストの上昇を招く。そのため、Sn含有量は0.1%以下とする。
Sb:0.001~0.1%
 PおよびSnと同様に、Sbを添加することにより、集合組織が大きく改善し、磁束密度が向上するとともにヒステリシス損を低下させることができる。Sbを添加する場合、前記効果を得るためにSb含有量を0.001%以上とする。一方、Sb含有量が0.1%を超えると効果が飽和することに加えて、製造性の低下およびコストの上昇を招く。そのため、Sb含有量は0.1%以下とする。
 本発明の一実施形態では、前記内層部が、上記元素を含み、残部がFeおよび不可避不純物からなる成分組成を有する。
 なお、前記不可避的不純物として複層型電磁鋼板に含まれうる元素の例としては、Alが挙げられる。Al含有量を0.1%以下に抑制すれば、磁束密度をさらに向上させることができる。そのため、Al含有量は0.1%以下に抑制することが好ましい。
 また、本発明の他の実施形態においては、上記内層部の成分組成が、さらにMoを、以下の量で含有することができる。
Mo:0.001~0.1%
 Moは、上述したように、鋼板表層の酸化を抑制することによって鉄損をさらに低減する効果を有する元素である。酸化防止のためには鋼板の表層部にMoが存在すればよいが、内層部にMoを添加してもよい。例えば、後述する浸珪処理によって複層型電磁鋼板を製造する場合、表層部にMoを添加するためには、鋼板全体にMoを添加すればよく、したがって、その場合、内層部にもMoが存在する。また、浸珪処理以外の方法で製造する場合でも、内層部にMoを添加してよい。製造上の観点から、内層部にMoを添加する場合、内層部のMo含有量を表層部のMo含有量と同様、0.001%以上とする。一方、Mo含有量が0.1%を超えると、炭化物を形成し、鉄損が増加する。そのため、Mo含有量は0.1%以下とする。
 本発明の一実施形態における前記内層部は、質量%で、
  Si:1.5~5.0%と、
  P:0.01~0.1%、Sn:0.001~0.1%、およびSb:0.001~0.1%からなる群より選択される1または2以上と、
  任意に、Mo:0.001~0.1%とを含み、
  残部がFeおよび不可避不純物からなる成分組成を有することができる。
 また、本発明の他の実施形態における前記内層部は、質量%で、
  Si:1.5~5.0%と、
  P:0.01~0.1%、Sn:0.001~0.1%、およびSb:0.001~0.1%からなる群より選択される1または2以上と、
  任意に、Mo:0.001~0.1%と、
  残部のFeおよび不可避不純物とからなる成分組成を有することができる。
[Si含有量の差]
 表層部と内層部のSi含有量の差(ΔSi)が磁気特性に与える影響について検討するために、ΔSiが異なる複層型電磁鋼板を以下の手順で作製し、その磁気特性を評価した。
 まず、複層型電磁鋼板の板厚(全厚)に対する表層部の厚さの比率が0.30となるように、内層部用の鋼の両面に表層部用の鋼を貼り合わせ、熱間圧延した。前記表層部用の鋼と内層部用の鋼は、いずれも所望の成分組成となるように溶製してインゴットとした。内層部のSi含有量[Si]0は2.0%とし、表層部のSi含有量[Si]1は2.1%~6.5%の範囲で変化させた。なお、表層部と内層部のいずれについても、Al含有量を0.001%、Sn含有量を0.04%とした。表層部および内層部のいずれの成分組成も、残部はFeおよび不可避的不純物とした。また、表層部の成分組成は、両面とも同じとした。
 前記熱間圧延後、950℃×30sの熱延板焼鈍を行い、次いで、冷間圧延により板厚を0.20mmとした。その後、1000℃×30sの仕上焼鈍を行って、複層型電磁鋼板を得た。
 得られた複層型電磁鋼板のそれぞれから、幅30mm、長さ180mmの試験片を採取し、エプスタイン試験を行って磁気特性を評価した。前記エプスタイン試験では、試験片の長さ方向が圧延方向(L方向)となるように採取したL方向試験片と、試験片の長さ方向が圧延直角方向(C方向)となるように採取したC方向試験片を等量用い、L方向とC方向における磁気特性の平均値を評価した。
 図3に、表層部と内層部におけるSi含有量の差([Si]1-[Si]0)として定義されるΔSi(質量%)と、1.0T、1kHzにおける全鉄損:W10/1k(W/kg)との相関を示す。また、図4に、ΔSiと、磁束密度比との相関を示す。ここで、前記「磁束密度比」とは、磁界の強さ:1000A/mにおける磁束密度:B10に対する、磁界の強さ:100A/mにおける磁束密度:B1の比(B1/B10)を指すものとする。
 図3に示した結果から分かるように、ΔSiが0.5質量%以上、4.0質量%以下であれば、鉄損を低く抑えることができる。また、図4に示した結果から分かるように、ΔSiが4.0質量%を超えると、磁束密度比が急激に低下する。これは、次のような理由によると考えられる。すなわち、表層部のSi量が内層部に比べて高い場合、表層部の透磁率が内層部より高くなる。その結果、磁束が表層部に集中し、渦電流損が低下する。しかし、ΔSiが過度に大きいと、それにともなって表層部と内層部との格子定数の差および磁歪の差が大きくなる。その結果、鋼板を磁化した際にかかる応力が増大するため、ヒステリシス損が増加し、低中磁場域における磁束密度は低下する。
 以上の理由により、本発明では表層部におけるSi含有量と前記内層部におけるSi含有量の差([Si]1-[Si]0)として定義されるΔSiを0.5~4.0質量%とする。
[Al含有量の差]
 表層部と内層部の磁歪はSi量の影響を強く受けるが、集合組織の影響も受ける。例えば、表層部と内層部の不純物量が異なっていると、仕上げ焼鈍時の集合組織形成が大きく異なってくるため、表層部と内層部の磁歪差が大きくなる。特にAlは集合組織形成に大きく影響する元素である。そのため、表層部に不可避的不純物として含まれるAlの含有量:[Al]1と内層部に不可避的不純物として含まれるAlの含有量:[Al]0の差の絶対値(|[Al]1-[Al]0|)として定義されるΔAlを0.05質量%以下とする。一方、ΔAlの下限についてはとくに限定されないが、0であってよい。
[複層比]
 次に、複層型電磁鋼板の板厚:tに対する表層部の合計厚さ:t1の比率(t1/t)(以下、「複層比」という場合がある)が磁気特性に与える影響について検討するために、複層比が異なる複層型電磁鋼板を以下の手順で作製し、その磁気特性を評価した。ここで、「表層部の合計厚さ」とは、両側に設けられている表層部の厚さの和を指す。
 まず、表層部用の鋼と内層部用の鋼を、複層比が0.02~0.80となるように貼り合わせ、熱間圧延した。前記表層用の鋼と内層部用の鋼は、いずれも所望の成分組成となるように溶製してインゴットとした。表層部のSi含有量[Si]0は4.5%、内層部のSi含有量[Si]1は2.0%とした。また、表層部および内層部のいずれにおいても、P含有量:0.05%、Sn含有量:0.05%、Sb含有量、不可避的不純物として含まれるAlの含有量:0.001%とし、残部はFeおよび不可避的不純物とした。また、表層部の成分組成は、両面とも同じとした。
 前記熱間圧延後、950℃×30sの熱延板焼鈍を行い、次いで、冷間圧延により板厚を0.10mmとした。その後、1000℃×30sの仕上焼鈍を行って、複層型電磁鋼板を得た。
 図5に、複層比(t1/t)と全鉄損(W10/1k)との相関を示す。この結果より、複層比が0.10~0.70の場合に鉄損が大きく低下していることがわかる。この鉄損の低下は、以下の理由によると考えられる。まず、複層比が0.10未満である場合、高抵抗である表層部の割合が低いため、表層部に集中する渦電流を効果的に低減することができない。一方、複層比が0.70を超える場合には表層部と内層部の透磁率差が小さくなるため、内層部にまで磁束が浸透し、内層部からも渦電流損が発生する。したがって、複層比を0.10~0.70とすることによって鉄損を低減できる。以上の理由から、本願発明では複層比(t1/t)を0.10~0.70とする。
[板厚]
 なお、上記複層型電磁鋼板の板厚:tは特に限定されず、任意の値とすることができる。しかし、複層型電磁鋼板が薄すぎると、該複層型電磁鋼板の製造における冷間圧延、焼鈍が困難となり、コストアップが問題となる場合がある。そのため、製造コスト削減の観点からは、tを0.03mm以上とすることが好ましい。一方、tを0.3mm以下とすれば、渦電流損をさらに低減し、その結果、全鉄損を一層低下させることができる。そのため、tは0.3mm以下とすることが好ましい。
[磁束密度]
10:1.3T以上
 本発明の複層型電磁鋼板は、高い磁束密度を備えており、具体的には、磁界の強さ:1000A/mにおける磁束密度:B10が1.3T以上である。電磁鋼板の高磁束密度化は、該電磁鋼板を用いて製造されるモータのトルク向上に有効である。また、磁束密度が高いと、少ない電流で同じトルクを得ることができるため、その結果、銅損を低減することができる。
1/B10:0.45以上
 前記B10に対する、磁界の強さ:100A/mにおける磁束密度:B1の比(B1/B10)を0.45以上とする。B1/B10を高くすることにより、小型モータで使用される設計磁束密度領域における磁化曲線の立ち上がりを良好にすることができる。これより、所定のトルクを得るために必要なモータ電流が少なくなるため、銅損を低減し、モータ効率を改善することができる。
[鉄損]
 本発明においては、周波数:1kHz、最大磁束密度:1.0Tにおける鉄損(全鉄損):W10/1k(W/kg)と、前記板厚:t(mm)とが、下記(1)式を満たす必要がある。
10/1k≦15+140×t …(1)
 上記(1)式の関係を満たさない場合、ステータコアの発熱が非常に大きくなり、モータ効率が著しく低下してしまうためである。なお、鉄損は板厚に依存するため、上記(1)式では板厚の影響を考慮して鉄損の上限値を規定した。
 電磁鋼板では、通常、磁束密度を高くすると鉄損が増大してしまうため、一般的なモータコアは磁束密度が1.0T程度となるように設計される。これに対して、本発明の複層型電磁鋼板は、上述したように鋼板の表層部と内層部の成分組成および複層比を制御することにより、相反する性質である高磁束密度と低鉄損とを両立させている。
[製造方法]
 本発明の複層型電磁鋼板は、特に限定されることなく、任意の方法で製造することができる。製造方法の一例としては、Si含有量の異なる鋼素材をクラッドする方法が挙げられる。前記鋼素材の成分組成は、例えば、成分の異なる材料を転炉で吹練し、溶鋼を脱ガス処理することによって調整することができる。
 クラッドする方法は特に限定されないが、例えば、上述した成分組成を有する表層部用の鋼スラブと内層部用の鋼スラブを用意し、最終的な複層比が所望の値となるような厚さで内層部用の鋼スラブの両面に表層部用の鋼スラブを貼り合わせ、圧延すればよい。前記圧延は、例えば、熱間圧延、温間圧延、および冷間圧延からなる群より選択される1または2以上とすることができる。一般的には、熱間圧延と、その後の温間圧延の組み合わせ、または熱間圧延と、その後の冷間圧延の組み合わせとすることが好ましい。前記熱間圧延の後には、熱延板焼鈍を行うことが好ましい。また、前記温間圧延および冷間圧延は、中間焼鈍を挟んで2回以上行うこともできる。熱間圧延における仕上温度、巻取り温度は特に限定されず、常法に従って決定すればよい。前記圧延の後、仕上焼鈍を行う。Si含有量の異なる鋼素材をクラッドすることによって得られる複層型電磁鋼板は、例えば、図2(b)に示したようなSi含有量プロファイルを有する。
 また、他の製造方法としては、浸珪処理を用いることもできる。浸珪処理を用いる場合は、Si含有量が厚さ方向に一定である鋼板に対して浸珪処理を施すことにより、鋼板両面の表層部のSi含有量を高めることができる。浸珪処理の方法は特に限定されず、任意の方法で行うことができる。例えば、化学気相蒸着法(CVD法)により鋼板表面にSiを堆積させ、その後、熱処理を行ってSiを鋼板の内部へ拡散させる方法を用いることができる。表層部と内層部のSi含有量は、CVD法によるSiの堆積量や、熱処理条件を調整することによって制御できる。浸珪処理によって得られる複層型電磁鋼板は、例えば、図2(a)に示したようなSi含有量プロファイルを有する。
 本発明の効果を確認するために、以下に述べる手順で複層型電磁鋼板を製造し、その磁気特性を評価した。
 まず、表1に示す成分組成を有する表層部用と内層部用の2種類の鋼スラブを用意した。次に、前記内層部用の鋼スラブの両面に前記表層部用の鋼スラブを積層し、積層された鋼スラブの外周を溶接した。したがって、表層部の成分組成は両側とも同じである。前記鋼スラブの成分組成は、転炉で吹練した後に脱ガス処理を行うことによって調整した。なお、前記成分組成は、最終的に得られる複層型電磁鋼板においても保持されている。
 次いで、積層された前記鋼スラブを1130℃で1hr加熱した後、熱間圧延を行って板厚2.0mmまでの熱延鋼板とした。前記熱間圧延における熱延仕上げ温度は800℃とした。前記熱延鋼板を巻取り温度:610℃で巻取り、次いで、940℃×30sの熱延板焼鈍を施した。その後、酸洗および冷間圧延を行い、表1に示した仕上焼鈍温度で焼鈍を行って複層型電磁鋼板を得た。最終的に得られた複層型電磁鋼板の板厚:tと、前記tに対する前記表層部の厚さ:t1の比率(複層比)は表2に示すとおりとした。
 なお、比較のために、クラッドしていない通常の電磁鋼板を用いて同様の試験を行った(No.1、2)。これらの比較例の電磁鋼板では、表層部と内層部の成分組成が等しい。
 また、No.33の複層型電磁鋼板は浸珪法により製造した。具体的には、Si含有量:2.0%、板厚0.2mmの冷延鋼板に対して、1200℃で浸珪処理を行った。鋼板の全板厚におけるSi含有量の平均値を算出し、前記平均値よりもSi濃度が高い部分を表層部、低い部分を内層部とした。表層部のSi含有量は、前記表層部におけるSi量の平均値である。また、表層部と内層部の磁歪としては、Si含有量が前記Si含有量の平均値と同じであり、かつ他の成分組成が同じである鋼板の磁歪を記載している。
(磁気特性)
 次いで、得られた複層型電磁鋼板のそれぞれについて、磁気特性を測定した。前記磁気測定は、JIS C 2550-1に準じて、25cmエプスタイン枠を用いて行った。前記磁気特性としては、1.0T、1kHzにおける鉄損:W10/1k(W/kg)、磁界の強さ:1000A/mにおける磁束密度:B10、および磁界の強さ:100A/mにおける磁束密度:B1を測定した。測定結果は、表2に示したとおりであった。
 表1および表2に示した結果から分かるように、本発明の条件を満たす発明例の複層型電磁鋼板は、高周波鉄損が低く、かつ磁束密度が高いという、優れた特性を有している。そのため、本発明の複層型電磁鋼板は、高周波で駆動されるハイブリッド電気自動車、電気自動車、掃除機、高速発電機、エアコンコンプレッサー、工作機械等のモータコアさらには変圧器、リアクトル等のコア材料として、極めて好適に用いることができる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
  1 複層型電磁鋼板
 10 内層部
 20 表層部

Claims (2)

  1.  内層部と、前記内層部の両側に設けられた表層部からなる複層型電磁鋼板であって、
     前記表層部が、質量%で、
      Si:2.5~6.0%、ならびに
      P:0.01~0.1%、Sn:0.001~0.1%、およびSb:0.001~0.1%からなる群より選択される1または2以上を含み、
      残部がFeおよび不可避不純物からなる成分組成を有し、
     前記内層部が、質量%で、
      Si:1.5~5.0%、ならびに
      P:0.01~0.1%、Sn:0.001~0.1%、およびSb:0.001~0.1%からなる群より選択される1または2以上を含み、
      残部がFeおよび不可避不純物からなる成分組成を有し、
     前記表層部におけるSi含有量:[Si]1と前記内層部におけるSi含有量:[Si]0の差([Si]1-[Si]0)として定義されるΔSiが0.5~4.0質量%であり、
     前記表層部に不可避的不純物として含まれるAlの含有量:[Al]1と前記内層部に不可避的不純物として含まれるAlの含有量:[Al]0の差の絶対値(|[Al]1-[Al]0|)として定義されるΔAlが0.05質量%以下であり、
     前記複層型電磁鋼板の板厚:tに対する前記表層部の合計厚さ:t1の比率(t1/t)が0.10~0.70であり、
     磁界の強さ:1000A/mにおける磁束密度:B10が1.3T以上であり、
     前記B10に対する、磁界の強さ:100A/mにおける磁束密度:B1の比(B1/B10)が0.45以上であり、かつ、
     周波数:1kHz、最大磁束密度:1.0Tにおける鉄損:W10/1k(W/kg)と、前記板厚:t(mm)とが、下記(1)式を満たす、複層型電磁鋼板。
    10/1k≦15+140×t …(1)
  2.  前記表層部の成分組成と前記内層部の成分組成のいずれか一方または両方が、さらに、質量%で、
      Mo:0.001~0.1%を含む、請求項1に記載の複層型電磁鋼板。
     
     
PCT/JP2018/045357 2017-12-12 2018-12-10 複層型電磁鋼板 WO2019117096A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP18888348.2A EP3725907B1 (en) 2017-12-12 2018-12-10 Multilayer electrical steel sheet
KR1020207019447A KR102394513B1 (ko) 2017-12-12 2018-12-10 복층형 전기 강판
CA3084975A CA3084975C (en) 2017-12-12 2018-12-10 Multilayer electrical steel sheet
RU2020122824A RU2742291C1 (ru) 2017-12-12 2018-12-10 Многослойный лист электротехнической стали
MX2020006108A MX2020006108A (es) 2017-12-12 2018-12-10 Chapa de acero electrico de multiples capas.
JP2019511515A JP6519725B1 (ja) 2017-12-12 2018-12-10 複層型電磁鋼板
US16/770,617 US11401589B2 (en) 2017-12-12 2018-12-10 Multilayer electrical steel sheet
CN201880079793.7A CN111465709B (zh) 2017-12-12 2018-12-10 多层型电磁钢板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017238063 2017-12-12
JP2017-238063 2017-12-12

Publications (1)

Publication Number Publication Date
WO2019117096A1 true WO2019117096A1 (ja) 2019-06-20

Family

ID=66819278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045357 WO2019117096A1 (ja) 2017-12-12 2018-12-10 複層型電磁鋼板

Country Status (6)

Country Link
US (1) US11401589B2 (ja)
CN (1) CN111465709B (ja)
CA (1) CA3084975C (ja)
RU (1) RU2742291C1 (ja)
TW (1) TWI675113B (ja)
WO (1) WO2019117096A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293422A (ja) 1988-05-23 1989-11-27 Hitachi Ltd 入力表示器利用のメニュー表示装置
JPH05195169A (ja) * 1992-01-14 1993-08-03 Nippon Steel Corp 冷延性、磁気特性に優れた複層高硅素軟磁性鋼板及びその製造方法
JPH08165520A (ja) * 1994-12-09 1996-06-25 Nippon Steel Corp 加工性に優れた高珪素無方向性電磁鋼板及びその製造方法
JPH11293415A (ja) * 1998-04-10 1999-10-26 Nkk Corp 残留磁束密度が低く加工性および高周波特性に優れる鉄心
JPH11293422A (ja) 1998-04-07 1999-10-26 Nkk Corp 高周波鉄損の極めて低い珪素鋼板
JP2010063252A (ja) * 2008-09-03 2010-03-18 Jfe Steel Corp 熱放散性に優れた高速モータ用コアおよび高速モータ用コア材料

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2541383B2 (ja) 1991-01-29 1996-10-09 日本鋼管株式会社 軟磁気特性に優れた高珪素鋼板
JPH11165520A (ja) * 1997-12-04 1999-06-22 Nissan Diesel Motor Co Ltd 車両の油圧サスペンション装置
KR100334860B1 (ko) 1998-03-12 2002-05-02 야마오카 요지로 규소강판 및 그 제조방법
US5993568A (en) * 1998-03-25 1999-11-30 Nkk Corporation Soft magnetic alloy sheet having low residual magnetic flux density
JP4106815B2 (ja) 1999-06-21 2008-06-25 Jfeスチール株式会社 方向性珪素鋼板およびその製造方法
DE10130308B4 (de) * 2001-06-22 2005-05-12 Thyssenkrupp Electrical Steel Ebg Gmbh Kornorientiertes Elektroblech mit einer elektrisch isolierenden Beschichtung
WO2004099457A1 (ja) 2003-05-06 2004-11-18 Nippon Steel Corporation 鉄損に優れた無方向性電磁鋼板及びその製造方法
BRPI0712594B1 (pt) 2006-05-19 2018-07-10 Nippon Steel & Sumitomo Metal Corporation Chapa de aço elétrica com grão orientado tendo uma película de isolamento de alta resistência à tração e método de tratamento de tal película de isolamento.
JP2008148469A (ja) 2006-12-12 2008-06-26 Hitachi Ltd スピンドルモータ,ディスク駆動装置及び固定子鉄心の製造方法
KR101259233B1 (ko) 2007-12-03 2013-05-07 신닛테츠스미킨 카부시키카이샤 고주파 철손이 낮은 무방향성 전자기 강판 및 그 제조 방법
JP5272688B2 (ja) * 2008-12-02 2013-08-28 Jfeスチール株式会社 クラッド型電磁鋼板
CN102650014B (zh) 2011-02-28 2014-08-13 新日铁住金株式会社 方向性电磁钢板的制造方法
JP5867713B2 (ja) 2012-01-27 2016-02-24 Jfeスチール株式会社 電磁鋼板
JP6024867B2 (ja) 2012-02-06 2016-11-16 Jfeスチール株式会社 打ち抜き加工後の鉄損特性に優れるモータコア用鋼板
JP6048282B2 (ja) 2013-03-29 2016-12-21 Jfeスチール株式会社 電磁鋼板
JP6123960B1 (ja) * 2015-09-17 2017-05-10 Jfeスチール株式会社 高けい素鋼板およびその製造方法
US20190112697A1 (en) * 2016-03-31 2019-04-18 Jfe Steel Corporation Electrical steel sheet and method of producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293422A (ja) 1988-05-23 1989-11-27 Hitachi Ltd 入力表示器利用のメニュー表示装置
JPH05195169A (ja) * 1992-01-14 1993-08-03 Nippon Steel Corp 冷延性、磁気特性に優れた複層高硅素軟磁性鋼板及びその製造方法
JPH08165520A (ja) * 1994-12-09 1996-06-25 Nippon Steel Corp 加工性に優れた高珪素無方向性電磁鋼板及びその製造方法
JPH11293422A (ja) 1998-04-07 1999-10-26 Nkk Corp 高周波鉄損の極めて低い珪素鋼板
JPH11293415A (ja) * 1998-04-10 1999-10-26 Nkk Corp 残留磁束密度が低く加工性および高周波特性に優れる鉄心
JP2010063252A (ja) * 2008-09-03 2010-03-18 Jfe Steel Corp 熱放散性に優れた高速モータ用コアおよび高速モータ用コア材料

Also Published As

Publication number Publication date
US20200308676A1 (en) 2020-10-01
TW201928088A (zh) 2019-07-16
RU2742291C1 (ru) 2021-02-04
US11401589B2 (en) 2022-08-02
CA3084975C (en) 2022-07-05
TWI675113B (zh) 2019-10-21
CA3084975A1 (en) 2019-06-20
CN111465709A (zh) 2020-07-28
CN111465709B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
TWI710647B (zh) 無方向性電磁鋼板
JP6555448B1 (ja) 複層型電磁鋼板
JP5646745B2 (ja) Ipmモータのロータ鉄心用鋼板及びその製造方法
WO2019117089A1 (ja) 複層型電磁鋼板
JP5939190B2 (ja) 電磁鋼板
JP6048282B2 (ja) 電磁鋼板
JP6519725B1 (ja) 複層型電磁鋼板
WO2019117096A1 (ja) 複層型電磁鋼板
JP7388597B1 (ja) 無方向性電磁鋼板
WO2023132197A1 (ja) 無方向性電磁鋼板
KR20240105431A (ko) 무방향성 전자 강판
KR20240110027A (ko) 무방향성 전자 강판
CN113853732A (zh) 电动机铁心的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019511515

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3084975

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207019447

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018888348

Country of ref document: EP

Effective date: 20200713