WO2019116786A1 - 無線通信装置、位置検知システム、無線通信方法、および位置検知データ通信方法 - Google Patents

無線通信装置、位置検知システム、無線通信方法、および位置検知データ通信方法 Download PDF

Info

Publication number
WO2019116786A1
WO2019116786A1 PCT/JP2018/041216 JP2018041216W WO2019116786A1 WO 2019116786 A1 WO2019116786 A1 WO 2019116786A1 JP 2018041216 W JP2018041216 W JP 2018041216W WO 2019116786 A1 WO2019116786 A1 WO 2019116786A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
reception strength
radio wave
communication device
wave reception
Prior art date
Application number
PCT/JP2018/041216
Other languages
English (en)
French (fr)
Inventor
西村 哲
央樹 本庄
由貴 丸野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019558970A priority Critical patent/JP6923002B2/ja
Publication of WO2019116786A1 publication Critical patent/WO2019116786A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to a wireless communication device, a position detection system, a wireless communication method, and a position detection data communication method, and more particularly, to a technique for saving network resources for transmitting data used for position detection.
  • the distance from the fixed station to the moving body is measured based on, for example, the Received Signal Strength Indicator (RSSI) of the radio wave when the radio wave emitted by one of the fixed station and the moving body is received by the other.
  • RSSI Received Signal Strength Indicator
  • Patent Document 1 discloses a technique for estimating the position of a mobile using a RSSI in a plurality of fixed stations of radio waves emitted by one mobile based on the concept of three-side survey. Specifically, the estimated position of the mobile body is centered on each of a plurality of fixed stations, and narrowed down to overlapping portions of a plurality of annular regions defined by the minimum distance and the maximum distance based on the RSSI. In addition, the difference in distance from each of the plurality of fixed stations to the mobile unit is obtained based on the difference in RSSI, and the estimated position of the mobile unit is further narrowed down to the area where the calculated difference in distance occurs.
  • the estimation of the position of the mobile may be performed by, for example, a server.
  • the server may collect RSSI data from a plurality of fixed stations via the wireless network and estimate the position of the mobile using the collected RSSI data.
  • Patent Document 2 discloses a technique for saving network resources in a wireless ad hoc network that transfers wireless packets by flooding. Specifically, the reception power is leveled to a predetermined number according to the reception power of the received packet, the waiting time before flooding is calculated according to each level, and the node far from the departure point node is prioritized Do the flooding. This more reliably prevents radio packet collisions, increases packet transmission speed, and saves network resources.
  • Patent Document 2 saves network resources by reducing the possibility of collision of radio packets by providing a difference depending on the distance from the departure node to the waiting time of flooding. Therefore, when a large number of radio packets to be flooded are generated, it is not possible to sufficiently prevent radio packet collisions, and there is a possibility that a sufficient saving effect on network resources can not be obtained.
  • the present invention provides a wireless communication device that can configure a wireless network together with one or more other wireless communication devices and can save network resources more reliably.
  • a wireless communication apparatus is a wireless communication apparatus that configures a wireless network together with one or more other wireless communication apparatuses, and a measurement signal is transmitted from one mobile unit.
  • a receiving unit that receives and measures the reception strength of the received measurement signal, a transmission unit that transmits radio wave reception strength information including the reception strength to another wireless communication device, and reception of the measurement signal measured in the past New radio wave reception strength information including the second reception strength indicating the reception strength of the newly received measurement signal based on the first storage strength storing the first reception strength and the first reception strength
  • a control unit that controls whether to transmit or not transmit.
  • a wireless communication apparatus is a wireless communication apparatus that configures a wireless network together with two or more other wireless communication apparatuses, and another wireless signal of a measurement signal emitted from one mobile body.
  • a receiver for receiving radio wave reception intensity information including reception intensity at the communication device, a transmitter for transmitting the received radio wave reception intensity information to another wireless communication device, and radio wave reception intensity information received in the past And transmitting new radio wave reception strength information including the second reception strength included in the newly received radio wave reception strength information based on the first storage strength storing the first reception strength and the first reception strength.
  • a control unit that controls whether to transmit or not transmit.
  • the position detection system is installed at mutually different known positions, and a plurality of wireless communication devices and a plurality of wireless communication devices that measure the reception intensity of the measurement signal emitted from the mobile body. And a calculator configured to calculate an estimated position of the mobile based on the reception strength measured by one of the apparatuses in the wireless communication apparatus.
  • the above-described wireless communication device is used for each of the plurality of wireless communication devices.
  • a wireless communication method is a wireless communication method in a wireless communication device that configures a wireless network together with one or more other wireless communication devices, and receives a measurement signal from one mobile unit. , Measuring the reception strength of the received measurement signal, transmitting radio wave reception strength information including the reception strength to another wireless communication device, and indicating a first reception strength indicating the reception strength of the measurement signal measured in the past And control whether to transmit or not transmit new radio wave reception intensity information including the second reception intensity indicating the reception intensity of the newly measured measurement signal based on the first reception intensity. Do.
  • the reception strengths of the measurement signals emitted from one mobile unit are measured by a plurality of wireless communication devices installed at different known positions.
  • the reception strength of the wireless communication apparatus is measured, and it is determined based on at least two reception strengths of the measured reception strength whether the mobile body is approaching, away from, or staying at the wireless communication device.
  • the radio wave reception intensity information When it is determined that the radio wave reception intensity information is approaching, the radio wave reception intensity information is transmitted at a first frequency, and when it is determined that the radio wave reception intensity information is away, the radio wave reception intensity information is transmitted at a second frequency lower than the first frequency. If it is determined that the radio wave reception intensity information is stagnant, the radio wave reception intensity information is transmitted at a third frequency lower than the first frequency and higher than the second frequency.
  • the present invention based on the reception strength of the past measurement signal, it controls whether to transmit or not transmit radio wave reception strength information including the reception strength of a new measurement signal, or the transmission frequency. Since the control is performed, it is possible to obtain a wireless communication device, a position detection system, a wireless communication method, and a position detection data communication method that can save network resources more reliably than ever.
  • FIG. 1 is a conceptual view showing an installation example of the position detection system according to the first embodiment.
  • FIG. 2 is a schematic view showing a configuration example of the communication network according to the first embodiment.
  • FIG. 3 is a graph showing an example of the correspondence between the RSSI and the distance according to the first embodiment.
  • FIG. 4 is a diagram showing an example of the concept of the estimated position according to the first embodiment.
  • FIG. 5 is a diagram showing an example of sequential processing of estimated positions according to the first embodiment.
  • FIG. 6 is a diagram showing an example of position movement of the mobile unit with respect to the wireless communication apparatus according to the first embodiment.
  • FIG. 7 is a diagram showing an example of the transmission frequency of the radio wave reception strength information according to the first embodiment.
  • FIG. 8 is a block diagram showing an example of a functional configuration of the wireless communication apparatus according to the first embodiment.
  • FIG. 9 is a diagram showing an example of the format of the RSSI measurement packet according to the first embodiment.
  • FIG. 10 is a diagram showing an example of the format of the RSSI report packet according to the first embodiment.
  • FIG. 11 is a diagram of an example of threshold information according to the first embodiment.
  • FIG. 12 is a flowchart showing an example of the wireless communication method according to the first embodiment.
  • FIG. 13 is a diagram showing an example of transmission and non-transmission of radio wave reception strength information according to the first embodiment.
  • FIG. 14 is a diagram showing an example of transmission and non-transmission of radio wave reception strength information according to the first embodiment.
  • FIG. 15 is a diagram of an example of transmission history information according to the second embodiment.
  • FIG. 16 is a diagram showing an example of transmission suppression reference information according to the second embodiment.
  • FIG. 17 is a flowchart showing an example of a wireless communication method according to the second embodiment.
  • FIG. 18 is a diagram showing an example of transmission and non-transmission of radio wave reception strength information according to the second embodiment.
  • FIG. 19 is a diagram showing an example of transmission and non-transmission of radio wave reception strength information according to the second embodiment.
  • Embodiment 1 The position detection system according to the first embodiment measures and measures the signal strength of a measurement signal (hereinafter referred to as a beacon signal) emitted from a mobile by a plurality of wireless communication devices installed at mutually different known positions. It is a system which detects the position of the mobile concerned concerned based on the signal strength which was carried out.
  • a measurement signal hereinafter referred to as a beacon signal
  • FIG. 1 is a conceptual view showing an installation example of a position detection system.
  • transmitters transmitting beacon signals are attached to the mobile units 10a to 10c moving in the facility.
  • the wireless communication devices 20a to 20g are installed in the facility.
  • Each of the wireless communication devices 20a to 20g has a receiving unit that measures the signal strength of the beacon signal emitted from the mobile units 10a to 10c.
  • the signal strength is typically represented by the received signal strength indicator RSSI.
  • FIG. 2 is a schematic view showing a configuration example of a communication network provided in the position detection system 100.
  • the wireless communication devices 20a to 20g constitute a wireless mesh network 40
  • the wireless communication device 20g has a gateway device (router) connected to a server 30 on the Internet.
  • the gateway device may be included in any of the wireless communication devices 20a to 20g, and may be provided separately from the wireless communication devices 20a to 20g.
  • the wireless communication devices 20a to 20g and the server 30 are communicably connected to each other via the wireless mesh network 40.
  • FIG. 3 is a graph showing an example of the correspondence between the RSSI and the distance.
  • the horizontal axis represents the distance from the wireless communication device to the moving body
  • the vertical axis represents the RSSI of the beacon signal measured by the wireless communication device, with the actual measured value of the RSSI being represented by dots.
  • the correspondence is represented by a regression curve.
  • the regression curve is determined by applying the physical equation followed by the RSSI to the maximum value of the measured value. Among the measured values, there are significantly smaller measured values due to, for example, the effects of multipath. Therefore, by applying the physical formula to the maximum value of the actual measurement values, the correspondence between the original RSSI and the distance in the operating environment can be obtained. According to the example of FIG. 3, for example, when the RSSI is measured to be ⁇ 60 dBm, the distance to the moving object is calculated to be 4 m.
  • the server 30 collects the positions of the mobile units 10a to 10c by collecting the RSSIs of the beacon signals emitted by the mobile units 10a to 10c in the plurality of wireless communication devices 20a to 20g by the server 30 via the wireless mesh network 40. It can be estimated.
  • the position estimation of the moving object in the position detection system 100 can be performed, for example, using the position estimation method proposed by the present inventors and proposed in the related patent application Japanese Patent Application No. 2016-231688 (unpublished at the time of the present application). It may be based on.
  • the position estimation method is performed by the server 30 each time the RSSI of the beacon signal emitted by one of the mobile units 10a to 10c is acquired in any one of the wireless communication devices 20a to 20g.
  • the estimated position of the moving object is successively updated.
  • FIG. 4 is a diagram showing an example of one-time update processing of the estimated position of the moving object.
  • the update process of FIG. 4 is performed using the RSSI measured by one wireless communication device of the beacon signal emitted by the mobile.
  • d the distance corresponding to the RSSI
  • the mobile body is estimated to be on a circle with a radius of distance d (so-called estimated circle) centered on the wireless communication device. Ru. Therefore, the estimated position of the mobile body is updated from the current estimated position P0 to the position P1 on the estimated presence circle toward the wireless communication device.
  • the estimated position of the mobile Is kept away from the wireless communication device, and maintained at the current estimated position P0.
  • FIG. 5 shows an example of an update process performed using the RSSI measured by the wireless communication device a, the wireless communication device b, and the wireless communication device c sequentially.
  • the wireless communication device a, the wireless communication device b, and the wireless communication device c may correspond to, for example, the wireless communication device 20a, the wireless communication device 20b, and the wireless communication device 20c in FIG.
  • FIG. 5 starting from each of different estimated positions P0, Q0, R0, an example of movement of the estimated position in the case where the update processing of FIG. 4 is sequentially performed is shown at once.
  • the estimated position of the mobile moves to points P3, Q3 and R3 in the overlapping area (hatched portion) of the presence estimation circle defined for each wireless communication device regardless of the initial position. .
  • the above-described process is an example of calculation for obtaining the estimated position of the mobile based on the reception strength measured by one of the plurality of wireless communication devices, and is executed in the server 30.
  • the estimated position of the moving object is not updated if the current estimated position is already within the estimated presence circle.
  • the estimated position of the mobile body is updated when the mobile body approaches the wireless communication device, but is not updated when moving away from the wireless communication device. Therefore, although the RSSI increased compared to the previous time is used to estimate the position of the mobile, the RSSI decreased compared to the previous time is not used to update the estimated position of the mobile.
  • RSSI in the situation where the mobile approaches the wireless communication device is more important information than RSSI in the situation where the mobile moves away from the wireless communication device. May be used.
  • the present inventors control the transmission or non-transmission of the radio wave reception strength information including the RSSI in consideration of the importance in the position detection of the mobile body, thereby the radio wave reception strength information transmitted in the entire wireless network.
  • FIG. 6 is a view showing an example of position movement of the mobile unit 10 with respect to the wireless communication device 20.
  • the mobile unit 10 approaches the wireless communication device 20, stays near the wireless communication device 20, and leaves the wireless communication device 20.
  • approaching, staying and separating means approaching, staying approximately the same distance, and moving away, respectively.
  • the wireless communication device 20 transmits to the server 30 radio wave reception strength information including the RSSI of the beacon signal emitted from the mobile unit 10.
  • FIG. 7 is a diagram showing an example of the transmission frequency of the radio wave reception intensity information.
  • the mobile unit 10 approaches the wireless communication device 20 while periodically transmitting a beacon signal, and stays and departs.
  • a plurality of RSSIs as shown in FIG. 7 as an example are sequentially measured.
  • the wireless communication device 20 sets the radio wave reception intensity information including the RSSI measured when the mobile object 10 is approaching, staying, and leaving the wireless communication device 20 at high frequency, medium frequency, and low frequency, respectively. It transmits to the server 30 by frequency.
  • the wireless communication device 20 determines whether the mobile object 10 is approaching, staying, or leaving the wireless communication device 20 by at least two RSSIs of the plurality of RSSIs measured in the past or newly. You may judge based on.
  • the high frequency is an example of the first frequency
  • the low frequency is an example of the second frequency lower than the first frequency
  • the medium frequency is lower than the first frequency and higher than the second frequency. It is an example of the frequency.
  • the wireless communication device 20 having such features will be described by taking a specific configuration example.
  • FIG. 8 is a block diagram showing an example of a functional configuration of the wireless communication device 20. As shown in FIG. The configuration of the wireless communication device 20 is applied to the wireless communication devices 20a to 20g of FIG. As shown in FIG. 8, the wireless communication device 20 includes a receiving unit 21, a transmitting unit 22, a storage unit 23, and a control unit 24.
  • the receiving unit 21 receives a beacon signal periodically transmitted from the mobile unit 10, and measures the RSSI of the beacon signal each time it is received.
  • the transmission unit 22 transmits radio wave reception intensity information including the measurement value of the RSSI of the beacon signal received by the reception unit 21.
  • the receiving unit 21 and the transmitting unit 22 may be, for example, a network adapter connected to a wired LAN (Local Area Network).
  • the wireless device may be a wireless device that configures the wireless mesh network 40 in accordance with a short-distance wireless communication standard with excellent power saving properties such as Zigbee (registered trademark) or Bluetooth (registered trademark) low energy.
  • the storage unit 23 stores a first reception strength related to the RSSI of the beacon signal measured in the past.
  • the received strength to be stored may not be the RSSI itself, but may be one processed by a function or one to which other information is added.
  • Control unit 24 transmits new radio wave reception intensity information including the second reception intensity which is the RSSI measured for the newly received beacon signal based on the first reception intensity stored in storage unit 23 Control whether to send or not send.
  • the storage unit 23 and the control unit 24 may be configured by, for example, a one-chip microcomputer having a processor, a memory, an input / output port and the like.
  • the control unit 24 may control the operation of the wireless communication device 20 by a software function achieved by the processor executing a program stored in the memory.
  • FIG. 9 is a diagram illustrating an example of a packet format of a beacon signal.
  • the beacon signal is a broadcast packet including four fields of a preamble P, a transmission source ID, a broadcast flag B, and data for RSSI measurement.
  • the preamble P is a bit string indicating the beginning of a packet.
  • the transmission source ID is information indicating the ID of the mobile unit 10 that has transmitted the beacon signal.
  • the broadcast flag B indicates that the packet does not include a specific destination ID and that all nodes are addressed.
  • the RSSI measurement data is any data used to measure the RSSI.
  • the beacon signal may include a mobile ID for identifying a mobile.
  • the mobile unit 10 periodically transmits the radio packet shown in FIG. 9 as a beacon signal.
  • FIG. 10 is a diagram showing an example of a packet format of radio wave reception intensity information.
  • the radio wave reception strength information is a unicast packet including four fields of a preamble P, a transmission source ID, a destination ID, and a measurement result.
  • the transmission source ID is information indicating the ID of the wireless communication device 20 that has received the beacon signal and measured the RSSI.
  • the destination ID is information indicating the ID of the wireless communication device 20g having the gateway device.
  • the measurement result is data representing the measurement value of the ID and RSSI of the mobile unit 10 included in the beacon signal.
  • the radio wave reception strength information may include a mobile ID for identifying a mobile that has transmitted a beacon signal.
  • the radio wave reception intensity information is relayed between the wireless communication devices 20a to 20g, and transmitted from the wireless communication device 20g to the server 30.
  • FIG. 11 is a diagram showing an example of threshold information.
  • the threshold information in FIG. 11 may be recorded in the storage unit 23.
  • the threshold value information holds the mobile unit ID and the threshold value in association with each entry.
  • the mobile ID indicates the ID of the mobile 10 that has transmitted the beacon signal.
  • the threshold is a value to be compared with the RSSI of the newly received beacon signal to control transmission or non-transmission of radio wave reception strength information, and the first threshold value regarding the RSSI of the beacon signal measured in the past It is an example of reception strength.
  • FIG. 12 is a flowchart illustrating an example of the operation of the wireless communication device 20.
  • FIG. 12 is an example of processing for controlling transmission or non-transmission of radio wave reception intensity information for one mobile unit 10. The process of FIG. 12 may be performed in parallel for each of a plurality of different mobile units 10.
  • the wireless communication device 20 When the beacon signal is received (YES in S100), the wireless communication device 20 adds an entry including the ID of the mobile unit 10 and the initial value of the threshold to the threshold information (S101).
  • the initial value of the threshold may be, for example, a value smaller than the minimum value of measurable RSSI.
  • the RSSI of the received beacon signal is measured (S102).
  • the wireless communication device 20 transmits radio wave reception strength information including the measured value of RSSI to the server 30 (S104), and measures the transmitted RSSI.
  • the threshold value is updated according to the value (S105). That is, the threshold value is based on the RSSI measured this time, the RSSI included in the past radio wave reception strength information, and the radio wave reception strength information including the RSSI measured this time to another radio communication device. It will be updated.
  • the threshold may be updated to a value obtained by adding 6 (dB) to the measurement value of the transmitted RSSI, as an example.
  • the wireless communication device 20 waits while decreasing the threshold every fixed time until a subsequent beacon signal is received (NO in S106).
  • the threshold may be decremented by 1 (dB) for each transmission period of the beacon signal, as an example.
  • step S106 If the subsequent beacon signal is received (YES in S106), the process proceeds to step S102 to repeat the process.
  • FIG. 13 and 14 are diagrams showing an example of transmission and non-transmission of radio wave reception strength information controlled according to the flowchart of FIG.
  • the threshold in FIG. 11 is increased by, for example, 6 (dB), and then, for example, 1 (dB) per transmission period of the beacon signal. ) To reduce one by one. If the newly measured RSSI is larger than the stored threshold, radio wave reception strength information including the newly measured RSSI is transmitted. In this way, the radio wave reception strength information is transmitted frequently when the RSSI is increasing, and when the change in the RSSI is only slightly increased or decreased, or less frequently. As a result, the total amount of radio wave reception strength information transmitted in the entire wireless mesh network 40 is flexibly reduced according to the increase or decrease of the RSSI.
  • control of transmitting or not transmitting radio wave reception intensity information according to the increase or decrease of such RSSI can be performed in the wireless communication apparatus 20 as the transmission source of the radio wave reception intensity information, effectively saving network resources. Is effective, but not limited to the example.
  • the radio wave reception intensity information received this time based on the radio wave reception intensity information received for transfer in the past and the information indicating that the radio communication device 20 for transferring the radio wave reception intensity information has transferred the radio wave reception intensity information May be transferred or not transferred. That is, it stores the first reception strength included in the radio wave reception strength information received in the past, and includes the second reception strength indicated by the newly received radio wave reception strength information based on the first reception strength. It may control whether new radio wave reception intensity information is transferred or not transferred.
  • the wireless communication device 20 functioning as a relay node in the wireless mesh network 40 may discard the radio wave reception intensity information without transferring it. Such a configuration can also save network resources.
  • the wireless communication device 20 functioning as a relay node may have a function of measuring the signal strength of the beacon signal.
  • the radio communication apparatus transmits radio wave reception intensity information including the RSSI of the beacon signal measured this time based on the RSSI of the beacon signal measured in the past and information indicating that the radio wave reception intensity information has been transmitted. Or control not sending.
  • the radio communication apparatus according to the second embodiment is the same as the radio communication apparatus 20 according to the first embodiment in the functional configuration (see FIG. 8), and transmission or non-transmission of radio wave reception intensity information is performed. The details of the procedures and data to control are different.
  • FIG. 15 is a diagram illustrating an example of transmission history information.
  • the transmission history information of FIG. 15 may be recorded in the storage unit 23.
  • the transmission history information holds the mobile unit ID, the transmitted RSSI, and the number of non-transmissions in association with each entry.
  • the mobile ID indicates the ID of the mobile 10 that has transmitted the beacon signal.
  • the transmitted RSSI is the RSSI finally transmitted to the server 30 in the radio wave reception intensity information.
  • the number of non-transmissions indicates the number of times the radio wave reception intensity information is not transmitted.
  • FIG. 16 is a diagram illustrating an example of non-transmission upper limit information.
  • the non-transmission upper limit information of FIG. 16 may be recorded in the storage unit 23.
  • the non-transmission upper limit information associates and holds the RSSI difference value range and the non-transmission upper limit number for each entry.
  • the RSSI difference value range indicates the classification condition of the difference value between the transmitted RSSI and the RSSI measured this time.
  • the non-transmission upper limit number indicates the upper limit number of times that radio wave reception strength information may be continuously non-transmitted corresponding to the classified difference value.
  • FIG. 17 is a flowchart according to Embodiment 2 of the wireless communication device 20. An example of a process which controls transmission or non-transmission of reception signal strength information about one mobile 10 is shown. The process of FIG. 17 may be performed in parallel for each of a plurality of different mobile units 10.
  • the wireless communication device 20 When the beacon signal is received (YES in S200), the wireless communication device 20 adds an entry including the ID of the mobile unit 10, the initial value of the transmitted RSSI, and the initial value of the number of non-transmissions to the transmission history information. (S201).
  • the initial value of the transmitted RSSI may be, for example, a value smaller than the minimum value of the RSSI measurement value, and the initial value of the number of non-transmissions may be, for example, 0.
  • the RSSI of the received beacon signal is measured (S202), and the difference value from the transmitted RSSI of the measured value of the RSSI is calculated (S203).
  • the non-transmission upper limit number corresponding to the RSSI difference value range in which the calculated difference value is classified is referred to from the non-transmission upper limit information (S204).
  • radio wave reception strength information including the measured value of RSSI is transmitted to the server 30 (S206), and the transmitted RSSI of transmission history information Is updated with the transmitted RSSI measurement value, and the number of non-transmissions is initialized (S207).
  • the process waits until the subsequent beacon signal is received (NO in S209), and when the subsequent beacon signal is received (YES in S209), the process proceeds to step S202 and the process is repeated.
  • 18 and 19 are diagrams showing an example of transmission and non-transmission of radio wave reception intensity information controlled according to the flowchart of FIG.
  • the number of non-transmission upper limit is set smaller and the number of non-transmission times of radio wave reception intensity information is not transmitted
  • the radio wave reception strength information is transmitted.
  • the radio wave reception strength information is transmitted frequently when the RSSI is increasing, and when the change in the RSSI is only slightly increased or decreased, or less frequently.
  • the total amount of radio wave reception strength information transmitted in the entire wireless mesh network 40 is flexibly reduced according to the increase or decrease of the RSSI.
  • the wireless communication device, the position detection system, the wireless communication method, and the position detection data communication method according to the embodiments of the present invention have been described above, but the present invention is not limited to the individual embodiments. Without departing from the spirit of the present invention, various modifications that can be conceived by a person skilled in the art may be applied to the present embodiment, or a form constructed by combining components in different embodiments may be one or more of the present invention. It may be included within the scope of the embodiments.
  • the radio wave reception strength information is transmitted and not increased. Then, the radio wave reception intensity information may not be transmitted.
  • whether or not the measured value of the RSSI is increased may be determined according to the differential value of the plurality of measured values of the RSSI, in addition to the determination of only the comparison of the two RSSIs.
  • the wireless communication apparatus is a wireless communication apparatus that configures a wireless network together with one or more other wireless communication apparatuses, and receives a measurement signal from one mobile unit.
  • a receiver for measuring the reception strength of the received measurement signal a transmitter for transmitting radio wave reception strength information including the reception strength to another wireless communication device, and the reception strength of the measurement signal measured in the past And transmitting new radio wave reception strength information including a second reception strength indicating the reception strength of the newly received measurement signal based on the first storage strength storing the first reception strength and the first reception strength.
  • a control unit that controls whether to transmit or not transmit.
  • new radio wave reception strength information including the second reception strength can be made non-transmission based on the first reception strength indicating the reception strength of the measurement signal measured in the past. That is, the wireless communication device that first receives the measurement signal from the moving body can make the radio wave reception intensity information not transmit to the other wireless communication devices. As a result, the total amount of radio wave reception intensity information transmitted by the wireless communication device is reduced, and therefore network resources can be saved more reliably than in the past.
  • a wireless communication apparatus is a wireless communication apparatus that configures a wireless network together with two or more other wireless communication apparatuses, and another wireless signal of a measurement signal emitted from one mobile body.
  • a receiver for receiving radio wave reception intensity information including reception intensity at the communication device, a transmitter for transmitting the received radio wave reception intensity information to another wireless communication device, and radio wave reception intensity information received in the past And transmitting new radio wave reception strength information including the second reception strength included in the newly received radio wave reception strength information based on the first storage strength storing the first reception strength and the first reception strength.
  • a control unit that controls whether to transmit or not transmit.
  • new radio wave reception strength information including the second reception strength can be made non-transmission based on the first reception strength included in the radio wave reception strength information received in the past. That is, the wireless communication device that relays the radio wave reception intensity information can make the radio wave reception intensity information not transmit to the other wireless communication devices. As a result, the total amount of radio wave reception intensity information transmitted by the wireless communication device is reduced, and therefore network resources can be saved more reliably than in the past.
  • control unit obtains a difference between the second reception strength and the first reception strength, and controls to transmit new radio wave reception strength information when the difference is equal to or more than the first predetermined value, and the difference is the first If less than the predetermined value, control may be performed so as not to transmit new radio wave reception intensity information.
  • the first and second reception strengths in which the difference between the second reception strength and the first reception strength is equal to or greater than the first predetermined value are generally obtained when the mobile body approaches the wireless communication apparatus. is there.
  • radio wave reception intensity information in the situation where the mobile body approaches the wireless communication device in position detection of the mobile body is more compared to the radio wave reception intensity information in the situation where the mobile body moves away from the wireless communication device. It may be used as important information.
  • the control unit updates the first predetermined value to a second predetermined value smaller than the first predetermined value, and transmits new radio wave reception intensity information.
  • the first predetermined value may be updated to a value corresponding to the second reception strength.
  • the radio wave reception intensity information can be configured to be transmitted at a relatively high frequency when the mobile body approaches the wireless communication device.
  • the radio wave reception intensity information can be configured to be transmitted at a relatively low frequency.
  • the transmission frequency of the radio wave reception intensity information can be controlled using the threshold value updated according to the transmission and non-transmission of the radio wave reception intensity information.
  • the position detection system is installed at mutually different known positions, and a plurality of wireless communication devices and a plurality of wireless communication devices that measure the reception intensity of the measurement signal emitted from the mobile body. And a calculator configured to calculate an estimated position of the mobile based on the reception strength measured by one of the apparatuses in the wireless communication apparatus.
  • the above-described wireless communication device is used for each of the plurality of wireless communication devices.
  • a wireless communication method is a wireless communication method in a wireless communication device that configures a wireless network together with one or more other wireless communication devices, and receives a measurement signal from one mobile unit. , Measuring the reception strength of the received measurement signal, transmitting radio wave reception strength information including the reception strength to another wireless communication device, and indicating a first reception strength indicating the reception strength of the measurement signal measured in the past And control whether to transmit or not transmit new radio wave reception intensity information including the second reception intensity indicating the reception intensity of the newly measured measurement signal based on the first reception intensity. Do.
  • new radio wave reception intensity information including the second reception intensity can be made non-transmission based on the first reception intensity related to the reception intensity of the measurement signal measured in the past.
  • the total amount of radio wave reception intensity information transmitted by the wireless communication device is reduced, and therefore network resources can be saved more reliably than in the past.
  • the reception strengths of the measurement signals emitted from one mobile unit are measured by a plurality of wireless communication devices installed at different known positions.
  • the reception strength of the wireless communication apparatus is measured, and it is determined based on at least two reception strengths of the measured reception strength whether the mobile body is approaching, away from, or staying at the wireless communication device.
  • the radio wave reception intensity information When it is determined that the radio wave reception intensity information is approaching, the radio wave reception intensity information is transmitted at a first frequency, and when it is determined that the radio wave reception intensity information is away, the radio wave reception intensity information is transmitted at a second frequency lower than the first frequency. If it is determined that the radio wave reception intensity information is stagnant, the radio wave reception intensity information is transmitted at a third frequency lower than the first frequency and higher than the second frequency.
  • the radio wave reception intensity information in the situation where the mobile approaches the wireless communication device is the radio wave reception intensity information in the situation where the mobile moves away from the wireless communication device. It may be used as more important information than it is.
  • the transmission frequency of the radio wave reception intensity information in the situation where the mobile unit approaches the wireless communication apparatus is maximized, and the mobile unit stays in the wireless communication apparatus.
  • the transmission frequency can be reduced in the order of the radio wave reception intensity information and the radio wave reception intensity information in a situation where the moving object moves away from the wireless communication device. As a result, it is possible to save network resources by reducing the total amount of radio wave reception strength information transmitted in the entire wireless network based on a standard suitable for position detection of a mobile.
  • the present invention can be widely used for position estimation of a mobile body, for example, management of the positions of articles and personnel in various facilities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線通信装置(20)は、1つの移動体から測定用信号を受信し、受信された測定用信号の受信強度を測定する受信部(21)と、受信強度を含む電波受信強度情報を他の無線通信装置へ送信する送信部(22)と、過去に測定された測定用信号の受信強度を示す第1の受信強度を記憶する記憶部(23)と、第1の受信強度に基づき、新たに受信された測定用信号の受信強度を示す第2の受信強度を含む新たな電波受信強度情報を送信するかまたは非送信とするかを制御する制御部(24)と、を備える。

Description

無線通信装置、位置検知システム、無線通信方法、および位置検知データ通信方法
 本発明は無線通信装置、位置検知システム、無線通信方法、および位置検知データ通信方法に関し、特には、位置検知に用いられるデータを伝送するためのネットワーク資源を節約する技術に関する。
 位置が既知である複数の固定局のそれぞれから移動体までの距離を測定し、測定された距離に基づいて当該移動体の位置を推定する技術がある。固定局から移動体までの距離は、例えば、固定局及び移動体の一方が発した電波を他方で受信したときの当該電波の受信強度(RSSI:Received Signal Strength Indicator)に基づいて測定される。
 特許文献1では、3辺測量の考え方に基づいて、1つの移動体が発した電波の複数の固定局におけるRSSIを用いて移動体の位置を推定する技術を開示している。具体的に、移動体の推定位置を、複数の固定局の各々を中心とし、RSSIに基づく最小距離と最大距離とで規定される複数の円環領域の重複部分に絞り込んでいる。また、RSSIの差に基づいて複数の固定局の各々から移動体までの距離差を求め、移動体の推定位置を、求めた距離差が生じる領域にさらに絞り込んでいる。
 移動体の位置の推定は、例えば、サーバで行ってもよい。サーバは、複数の固定局から無線ネットワークを介してRSSIデータを収集し、収集したRSSIデータを用いて移動体の位置を推定してもよい。
 無線ネットワークを介してRSSIデータを収集する場合、無線パケットの衝突の可能性を低減し、ネットワーク資源を有効利用することは重要である。
 特許文献2では、無線パケットをフラッディングによって転送する無線アドホックネットワークにおいて、ネットワーク資源を節約する技術を開示している。具体的に、受信されたパケットの受信パワーに応じて受信パワーを所定数にレベル化し、各レベルに応じてフラッディング前の待機時間を計算して、出発地ノードから遠く離れたノードから優先的にフラッディングを行う。これにより、無線パケットの衝突をより確実に防止し、パケットの送信速度を増加させ、ネットワーク資源を節約している。
特開2012-255673号公報 特開2004-336782号公報
 しかしながら、特許文献2の技術は、フラッディングの待機時間に出発地ノードからの距離に応じた差を設けることにより無線パケットが衝突する可能性を減らして、ネットワーク資源を節約している。そのため、フラッディングされるべき無線パケットが大量に発生する場合、無線パケットの衝突を十分に防止することができず、ネットワーク資源の節約効果が十分に得られない可能性がある。
 そこで、本発明は、他の1以上の無線通信装置とともに無線ネットワークを構成し、ネットワーク資源をより確実に節約することができる無線通信装置を提供する。
 上記目的を達成するために、本発明の一態様に係る無線通信装置は、他の1以上の無線通信装置とともに無線ネットワークを構成する無線通信装置であって、1つの移動体から測定用信号を受信し、受信された測定用信号の受信強度を測定する受信部と、受信強度を含む電波受信強度情報を他の無線通信装置へ送信する送信部と、過去に測定された測定用信号の受信強度を示す第1の受信強度を記憶する記憶部と、第1の受信強度に基づき、新たに受信された測定用信号の受信強度を示す第2の受信強度を含む新たな電波受信強度情報を送信するかまたは非送信とするかを制御する制御部と、を備える。
 また、本発明の一態様に係る無線通信装置は、他の2以上の無線通信装置とともに無線ネットワークを構成する無線通信装置であって、1つの移動体から発せられた測定用信号の他の無線通信装置での受信強度を含む電波受信強度情報を受信する受信部と、受信された電波受信強度情報をさらに他の無線通信装置へ送信する送信部と、過去に受信された電波受信強度情報に含まれる第1の受信強度を記憶する記憶部と、第1の受信強度に基づき、新たに受信された電波受信強度情報に含まれる第2の受信強度を含む新たな電波受信強度情報を送信するかまたは非送信とするかを制御する制御部と、を備える。
 また、本発明の一態様に係る位置検知システムは、互いに異なる既知の位置に設置され、移動体から発せられた測定用信号の受信強度を測定する、複数の無線通信装置と、複数の無線通信装置のうちの1つの無線通信装置で測定された受信強度に基づき、移動体の推定位置を求める計算部と、を備える。複数の無線通信装置の各々には前述した無線通信装置が用いられる。
 また、本発明の一態様に係る無線通信方法は、他の1以上の無線通信装置とともに無線ネットワークを構成する無線通信装置における無線通信方法であって、1つの移動体から測定用信号を受信し、受信された測定用信号の受信強度を測定し、受信強度を含む電波受信強度情報を他の無線通信装置へ送信し、過去に測定された測定用信号の受信強度を示す第1の受信強度を記憶し、第1の受信強度に基づき、新たに測定された測定用信号の受信強度を示す第2の受信強度を含む新たな電波受信強度情報を送信するかまたは非送信とするかを制御する。
 また、本発明の一態様に係る位置検知データ通信方法は、1つの移動体から発せられた測定用信号の受信強度を、互いに異なる既知の位置に設置された複数の無線通信装置で測定し、当該測定された受信強度を含む電波受信強度情報を送信する位置検知データ通信方法であって、複数の無線通信装置の各々は、1つの移動体から逐次に発せられた複数の測定用信号の各々の受信強度を測定し、当該測定された受信強度のうちの少なくとも2つの受信強度に基づき、移動体が無線通信装置に対して接近しているか、遠ざかっているか、滞留しているかを判断する。
 接近していると判断した場合には、第1頻度で電波受信強度情報を送信し、遠ざかっていると判断した場合には、第1頻度よりも低い第2頻度で電波受信強度情報を送信し、滞留していると判断した場合には、第1頻度よりも低く第2頻度よりも高い第3頻度で電波受信強度情報を送信する。
 本発明によれば、過去の測定用信号の受信強度に基づいて、新たな測定用信号の受信強度を含む電波受信強度情報を送信するかまたは非送信とするかを制御し、もしくは送信頻度を制御するので、ネットワーク資源を従来よりも確実に節約できる無線通信装置、位置検知システム、無線通信方法、および位置検知データ通信方法が得られる。
図1は、実施の形態1に係る位置検知システムの設置例を示す概念図である。 図2は、実施の形態1に係る通信ネットワークの構成例を示す模式図である。 図3は、実施の形態1に係るRSSIと距離との対応関係の一例を示すグラフである。 図4は、実施の形態1に係る推定位置の考え方の一例を示す図である。 図5は、実施の形態1に係る推定位置の逐次の処理の一例を示す図である。 図6は、実施の形態1に係る移動体の無線通信装置に対する位置移動の一例を示す図である。 図7は、実施の形態1に係る電波受信強度情報の送信頻度の一例を示す図である。 図8は、実施の形態1に係る無線通信装置の機能的な構成の一例を示すブロック図である。 図9は、実施の形態1に係るRSSI測定用パケットのフォーマットの一例を示す図である。 図10は、実施の形態1に係るRSSI報告用パケットのフォーマットの一例を示す図である。 図11は、実施の形態1に係るしきい値情報の一例を示す図である。 図12は、実施の形態1に係る無線通信方法の一例を示すフローチャートである。 図13は、実施の形態1に係る電波受信強度情報の送信および非送信の一例を示す図である。 図14は、実施の形態1に係る電波受信強度情報の送信および非送信の一例を示す図である。 図15は、実施の形態2に係る送信履歴情報の一例を示す図である。 図16は、実施の形態2に係る送信抑制基準情報の一例を示す図である。 図17は、実施の形態2に係る無線通信方法の一例を示すフローチャートである。 図18は、実施の形態2に係る電波受信強度情報の送信および非送信の一例を示す図である。 図19は、実施の形態2に係る電波受信強度情報の送信および非送信の一例を示す図である。
 以下、本発明に係る実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 実施の形態1に係る位置検知システムは、互いに異なる既知の位置に設置された複数の無線通信装置で移動体から発せられる測定用信号(以下、ビーコン信号と言う)の信号強度を測定し、測定された信号強度に基づいて当該移動体の位置を検知するシステムである。
 図1は、位置検知システムの設置例を示す概念図である。図1の例では、施設内を移動する移動体10a~10cに、ビーコン信号を送信する送信器が取り付けられる。また、施設内に、無線通信装置20a~20gが設置される。無線通信装置20a~20gは、移動体10a~10cから発せられたビーコン信号の信号強度を測定する受信部を有している。信号強度は、典型的には、受信信号強度指標RSSIで表される。
 図2は、位置検知システム100に設けられる通信ネットワークの構成例を示す模式図である。図2に示されるように、無線通信装置20a~20gは、無線メッシュネットワーク40を構成しており、無線通信装置20gは、インターネット上のサーバ30と接続するゲートウェイ装置(ルータ)を有する。ゲートウェイ装置は、無線通信装置20a~20gの何れが有していてもよく、また無線通信装置20a~20gとは別体に設けられてもよい。無線通信装置20a~20g及びサーバ30は、無線メッシュネットワーク40を介して、互いに通信可能に接続される。
 図3は、RSSIと距離との対応関係の一例を示すグラフである。図3では、横軸を無線通信装置から移動体までの距離とし、縦軸を無線通信装置で測定されるビーコン信号のRSSIとして、RSSIの事前の実測値をドットで表し、RSSIと距離との対応関係を回帰曲線で表している。回帰曲線は、RSSIが従う物理式を、実測値の最大値に当てはめて決定されている。実測値の中には、例えばマルチパスなどの影響のために、著しく小さい実測値がある。そのため、物理式を実測値の最大値に当てはめることで、運用環境での本来のRSSIと距離との対応関係が得られる。図3の例によれば、例えば、RSSIが-60dBmと測定されたとき、移動体までの距離は4mと算出される。
 移動体10a~10cが発したビーコン信号の複数の無線通信装置20a~20gにおけるRSSIを、無線メッシュネットワーク40を介してサーバ30で収集することにより、サーバ30において、移動体10a~10cの位置を推定することができる。
 位置検知システム100での移動体の位置推定は、例えば、本発明者らが考案し、関連特許出願である特願2016-231688号(本件出願時において未公開)にて提案した位置推定方法に基づいて行ってもよい。
 当該位置推定方法は、無線通信装置20a~20gの何れか1つにおいて、移動体10a~10cのうちの1つの移動体が発したビーコン信号のRSSIが取得されるたびに、サーバ30にて当該移動体の推定位置を逐次に更新していくものである。
 図4は、移動体の推定位置の1回の更新処理の一例を示す図である。図4の更新処理は、当該移動体が発したビーコン信号の1つの無線通信装置で測定されたRSSIを用いて行われる。図4に示されるように、RSSIに対応する距離をdと表記するとき、移動体は、無線通信装置を中心とし半径が距離dの円(いわゆる、存在推定円)上にあるものと推定される。そこで、移動体の推定位置を、現在の推定位置P0から、無線通信装置へ向かって存在推定円上の位置P1へ更新する。このとき、現在の推定位置P0がすでに存在推定円内にある場合、つまり、無線通信装置から移動体の現在の推定位置P0までの距離Dが距離dよりも小さい場合は、移動体の推定位置を無線通信装置から遠ざけることはせず、現在の推定位置P0に維持する。
 図5は、無線通信装置a、無線通信装置b、無線通信装置cで測定されたRSSIを逐次に用いて行われる更新処理の一例を示している。無線通信装置a、無線通信装置b、無線通信装置cは、限定はされないが、例えば、図1の無線通信装置20a、無線通信装置20b、無線通信装置20cにそれぞれ対応してもよい。
 図5では、互いに異なる推定位置P0、Q0、R0の各々から開始して、図4の更新処理を逐次行った場合の推定位置の移動例を一度に示している。図5に示されるように、移動体の推定位置は、初期位置に依らず、無線通信装置ごとに規定される存在推定円の重複領域(斜線部分)にある点P3、Q3、R3に移動する。
 前述した処理は、複数の無線通信装置のうちの1つの無線通信装置で測定された受信強度に基づき、移動体の推定位置を求める計算の一例であり、サーバ30内で実行される。
 上述した位置推定方法によれば、移動体の推定位置は、現在の推定位置がすでに存在推定円の内にある場合には更新されない。言い換えると、移動体の推定位置は、移動体が無線通信装置に近づいていく場合には更新されるが、無線通信装置から遠ざかっていく場合には更新されない。そのため、前回と比べて増加したRSSIは、移動体の位置推定に用いられるが、前回と比べて減少したRSSIは、移動体の推定位置の更新には用いられないことになる。
 このように、移動体の位置検知において、移動体が無線通信装置に近づいていく状況でのRSSIが、移動体が無線通信装置から遠ざかっていく状況でのRSSIと比べて、より重要な情報として利用されることがある。
 そこで、本発明者らは、RSSIを含む電波受信強度情報の送信または非送信を、移動体の位置検知における重要性を考慮して制御することにより、無線ネットワーク全体で伝送される電波受信強度情報の総量を削減し、ネットワーク資源を節約する技術を提案する。当該技術は、次のように説明される。
 図6は、移動体10の無線通信装置20に対する位置移動の一例を示す図である。図6に示されるように、移動体10は、無線通信装置20に接近し、無線通信装置20の傍で滞留し、無線通信装置20から離反する。ここで、接近し、滞留し、離反するとは、近づいていくこと、略同じ距離に留まること、遠ざかっていくことを、それぞれ意味する。無線通信装置20は、移動体10から発せられるビーコン信号のRSSIを含む電波受信強度情報を、サーバ30へ送信する。
 図7は、電波受信強度情報の送信頻度の一例を示す図である。移動体10は、ビーコン信号を周期的に送信しながら、無線通信装置20に接近し、滞留し、離反する。無線通信装置20では、一例として図7に示されるような複数のRSSIが逐次に測定される。無線通信装置20は、移動体10が無線通信装置20に対して接近中、滞留中、および離反中の場合に測定されたRSSIを含む電波受信強度情報を、それぞれ高頻度、中頻度、および低頻度でサーバ30へ送信する。
 無線通信装置20は、移動体10が無線通信装置20に対して接近中、滞留中、および離反中のいずれであるかを、過去または新たに測定された複数のRSSIのうちの少なくとも2つのRSSIに基づいて判断してもよい。
 ここで高頻度は、第1頻度の一例であり、低頻度は、第1頻度よりも低い第2頻度の一例であり、中頻度は、第1頻度よりも低く第2頻度よりも高い第3頻度の一例である。
 以下では、このような特徴を備えた無線通信装置20について、具体的な構成例を挙げて説明する。
 図8は、無線通信装置20の機能的な構成の一例を示すブロック図である。無線通信装置20の構成は、図1の無線通信装置20a~20gに適用される。図8に示されるように、無線通信装置20は、受信部21、送信部22、記憶部23、および制御部24を有している。
 受信部21は、移動体10から周期的に送信されるビーコン信号を受信し、受信のつど、ビーコン信号のRSSIを測定する。
 送信部22は、受信部21で受信されたビーコン信号のRSSIの測定値を含む電波受信強度情報を送信する。
 受信部21および送信部22は、一例として、有線LAN(Local Area Network)に接続するネットワークアダプタであってもよい。また、Zigbee(登録商標)やBluetooth(登録商標) low energyといった、省電力性に優れた近距離無線通信規格に従って無線メッシュネットワーク40を構成する無線装置であってもよい。
 記憶部23は、過去に測定されたビーコン信号のRSSIに関する第1の受信強度を記憶する。記憶される受信強度は、RSSIそのものではなく、関数で処理されたもの、他の情報が付加されたものであってもよい。
 制御部24は、記憶部23に記憶されている第1の受信強度に基づき、新たに受信されたビーコン信号について測定されたRSSIである第2の受信強度を含む新たな電波受信強度情報を送信するかまたは非送信とするかを制御する。
 記憶部23および制御部24は、一例として、プロセッサ、メモリ、入出力ポートなどを有するワンチップマイコンで構成されてもよい。制御部24は、メモリに記録されているプログラムをプロセッサが実行することにより果たされるソフトウェア機能によって、無線通信装置20の動作を制御してもよい。
 図9は、ビーコン信号のパケットフォーマットの一例を示す図である。図9の例では、ビーコン信号は、プリアンブルP、送信元ID、ブロードキャストフラグB、及びRSSI測定用データの4つのフィールドを含むブロードキャストパケットである。
 プリアンブルPは、パケットの開始端を示すビット列である。
 送信元IDは、ビーコン信号を送信した移動体10のIDを示す情報である。
 ブロードキャストフラグBは、パケットが特定の宛先IDを含まず、すべてのノードを宛先としていることを示す。
 RSSI測定用データは、RSSIの測定に用いられる任意のデータである。
 このように、ビーコン信号は、移動体を識別するための移動体IDを含んでいてもよい。
 移動体10は、ビーコン信号として、図9に示される無線パケットを周期的に送信する。
 図10は、電波受信強度情報のパケットフォーマットの一例を示す図である。図10の例では、電波受信強度情報は、プリアンブルP、送信元ID、宛先ID、及び測定結果の4つのフィールドを含むユニキャストパケットである。
 送信元IDは、ビーコン信号を受信してRSSIを測定した無線通信装置20のIDを示す情報である。
 宛先IDは、ゲートウェイ装置を有する無線通信装置20gのIDを示す情報である。
 測定結果は、ビーコン信号に含まれる移動体10のIDおよびRSSIの測定値を表すデータである。
 このように、電波受信強度情報は、ビーコン信号を送信した移動体を識別するための移動体IDを含んでいてもよい。
 電波受信強度情報は、無線通信装置20a~20g間で中継され、無線通信装置20gからサーバ30へ送信される。
 図11は、しきい値情報の一例を示す図である。図11のしきい値情報は、記憶部23に記録されてもよい。しきい値情報は、エントリごとに、移動体IDとしきい値とを対応付けて保持している。移動体IDは、ビーコン信号を送信した移動体10のIDを示す。しきい値は、電波受信強度情報の送信または非送信を制御するために、新たに受信されたビーコン信号のRSSIと比較される値であり、過去に測定されたビーコン信号のRSSIに関する第1の受信強度の一例である。
 図12は、無線通信装置20の動作の一例を示すフローチャートである。図12は、1つの移動体10について電波受信強度情報の送信または非送信を制御する処理の一例である。図12の処理は、異なる複数の移動体10の各々について並行して行われてもよい。
 無線通信装置20は、ビーコン信号が受信されると(S100でYES)、しきい値情報に、移動体10のIDとしきい値の初期値とを含むエントリを追加する(S101)。しきい値の初期値は、例えば、測定可能なRSSIの最小値よりも小さい値としてもよい。
 続いて、受信したビーコン信号のRSSIを測定する(S102)。
 無線通信装置20は、RSSIの測定値がしきい値よりも大きければ(S103でYES)、RSSIの測定値を含む電波受信強度情報をサーバ30へ送信し(S104)、送信されたRSSIの測定値に応じてしきい値を更新する(S105)。つまり、しきい値は、今回測定されたRSSI、過去の電波受信強度情報に含まれるRSSI、今回測定されたRSSIを含む電波受信強度情報を他の無線通信装置へ送信したこと、に基づいて、更新される。しきい値は、一例として、送信されたRSSIの測定値に6(dB)を加算した値に更新してもよい。
 無線通信装置20は、後続のビーコン信号が受信されるまで(S106でNO)、一定時間ごとにしきい値を減らしながら、待機する。しきい値は、一例として、ビーコン信号の送信周期ごとに1(dB)デクリメントしてもよい。
 後続のビーコン信号が受信されると(S106でYES)、ステップS102へ進み、処理を繰り返す。
 図13および図14は、図12のフローチャートに従って制御される電波受信強度情報の送信および非送信の一例を示す図である。
 図13および図14に示されるように、図11のしきい値を、電波受信強度情報を送信したときに、例えば6(dB)上昇させ、その後ビーコン信号の送信周期ごとに、例えば1(dB)ずつ減じていく。新たに測定されたRSSIが記憶されたしきい値より大きい場合、新たに測定されたRSSIを含む電波受信強度情報が送信される。このようにすることで、RSSIが増加しているときは高い頻度で、RSSIの変化がわずかな増減にとどまるとき、または減少しているときは低い頻度で、電波受信強度情報が送信される。これにより、無線メッシュネットワーク40全体で伝送される電波受信強度情報の総量がRSSIの増減に応じて柔軟に削減される。
 なお、このようなRSSIの増減に応じて電波受信強度情報を送信または非送信とする制御は、電波受信強度情報の送信元となる無線通信装置20において行うことが、ネットワーク資源の効果的な節約に有効であるが、その例には限られない。
 例えば、電波受信強度情報を転送する無線通信装置20が、過去に転送のために受信した電波受信強度情報、および電波受信強度情報を転送したことを示す情報に基づき、今回受信した電波受信強度情報を転送するかまたは非転送としてもよい。すなわち、過去に受信された電波受信強度情報に含まれる第1の受信強度を記憶し、第1の受信強度に基づき、新たに受信された電波受信強度情報で示される第2の受信強度を含む新たな電波受信強度情報を転送するかまたは非転送とするかを制御してもよい。
 このように、無線メッシュネットワーク40において中継ノードとして機能する無線通信装置20が、電波受信強度情報を転送せずに破棄してもよい。このような構成によっても、ネットワーク資源を節約することができる。なお、中継ノードとして機能する無線通信装置20は、ビーコン信号の信号強度を測定する機能を備えていてもよい。
 (実施の形態2)
 実施の形態2に係る無線通信装置は、過去に測定したビーコン信号のRSSI、および電波受信強度情報を送信したことを示す情報に基づき、今回測定したビーコン信号のRSSIを含む電波受信強度情報の送信または非送信を制御する。
 実施の形態2に係る無線通信装置は、実施の形態1に係る無線通信装置20と比べて、機能的な構成(図8を参照)において同一であり、電波受信強度情報の送信または非送信を制御するための手順およびデータの細部が相違する。
 以下では、実施の形態2に係る無線通信装置の細部に関して、実施の形態1に係る無線通信装置と相違する事項を主に説明する。
 図15は、送信履歴情報の一例を示す図である。図15の送信履歴情報は、記憶部23に記録されてもよい。送信履歴情報は、エントリごとに、移動体IDと、送信済RSSIと、非送信回数とを対応付けて保持している。移動体IDは、ビーコン信号を送信した移動体10のIDを示す。送信済RSSIは、電波受信強度情報に含めて最後にサーバ30へ送信したRSSIである。非送信回数は、電波受信強度情報を非送信とした回数を示す。
 図16は、非送信上限情報の一例を示す図である。図16の非送信上限情報は、記憶部23に記録されてもよい。非送信上限情報は、エントリごとに、RSSI差分値範囲と、非送信上限数とを対応付けて保持している。RSSI差分値範囲は、送信済RSSIと今回測定されたRSSIとの差分値の分類条件を示す。非送信上限数は、分類された差分値に対応して電波受信強度情報を連続して非送信としてよい上限回数を示す。
 図17は、無線通信装置20の実施の形態2に係るフローチャートである。1つの移動体10について受信信号強度情報の送信または非送信を制御する処理の一例を示す。図17の処理は、異なる複数の移動体10の各々について並行して行われてもよい。
 無線通信装置20は、ビーコン信号が受信されると(S200でYES)、送信履歴情報に、移動体10のIDと送信済RSSIの初期値と非送信回数の初期値とを含むエントリを追加する(S201)。送信済RSSIの初期値は、例えば、RSSIの測定値の最小値よりも小さい値としてもよく、また、非送信回数の初期値は、例えば、0としてもよい。
 受信したビーコン信号のRSSIを測定し(S202)、RSSIの測定値の送信済RSSIからの差分値を算出する(S203)。非送信上限情報から、算出された差分値が分類されるRSSI差分値範囲に対応する非送信上限数を参照する(S204)。
 非送信回数が非送信上限数に達しているかまたは上回っていれば(S205でYES)、RSSIの測定値を含む電波受信強度情報をサーバ30へ送信し(S206)、送信履歴情報の送信済RSSIを送信されたRSSIの測定値で更新し、非送信回数を初期化する(S207)。
 他方、非送信回数が非送信上限数に達していなければ(S205でNO)、非送信回数を1インクリメントする(S208)。
 その後、後続のビーコン信号が受信されるまで待ち合わせ(S209でNO)、後続のビーコン信号が受信されると(S209でYES)、ステップS202へ進み、処理を繰り返す。
 図18および図19は、図17のフローチャートに従って制御される電波受信強度情報の送信および非送信の一例を示す図である。
 図18および図19に示されるように、電波受信強度情報に含めて最後に送信したRSSIからの差分値が大きいほど少ない非送信上限数を設定し、電波受信強度情報の非送信回数が非送信上限数に到達したときに、電波受信強度情報を送信している。このようにすることで、RSSIが増加しているときは高い頻度で、RSSIの変化がわずかな増減にとどまるとき、または減少しているときは低い頻度で、電波受信強度情報が送信される。これにより、無線メッシュネットワーク40全体で伝送される電波受信強度情報の総量がRSSIの増減に応じて柔軟に削減される。
 以上、本発明の実施の形態に係る無線通信装置、位置検知システム、無線通信方法、および位置検知データ通信方法について説明したが、本発明は、個々の実施の形態には限定されない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つ又は複数の態様の範囲内に含まれてもよい。
 例えば、より単純に、無線通信装置20で受信したビーコン信号のRSSIの測定値が、前回受信したビーコン信号のRSSIの測定値よりも増加していたら電波受信強度情報を送信し、増加していなかったら電波受信強度情報を非送信としてもよい。
 また、RSSIの測定値が増加しているか否かは、2つのRSSIの比較だけで判断する他にも、RSSIの複数の測定値の微分値に応じて判断してもよい。
 (まとめ)
 以上説明したように、本発明の一態様に係る無線通信装置は、他の1以上の無線通信装置とともに無線ネットワークを構成する無線通信装置であって、1つの移動体から測定用信号を受信し、受信された測定用信号の受信強度を測定する受信部と、受信強度を含む電波受信強度情報を他の無線通信装置へ送信する送信部と、過去に測定された測定用信号の受信強度を示す第1の受信強度を記憶する記憶部と、第1の受信強度に基づき、新たに受信された測定用信号の受信強度を示す第2の受信強度を含む新たな電波受信強度情報を送信するかまたは非送信とするかを制御する制御部と、を備える。
 この構成によれば、第2の受信強度を含む新たな電波受信強度情報を、過去に測定された測定用信号の受信強度を示す第1の受信強度に基づき、非送信とすることができる。つまり、移動体から測定用信号を最初に受信した無線通信装置が、電波受信強度情報を他の無線通信装置に対して非送信とすることができる。その結果、無線通信装置が送信する電波受信強度情報の総量が削減されるので、ネットワーク資源を従来よりも確実に節約できる。
 また、本発明の一態様に係る無線通信装置は、他の2以上の無線通信装置とともに無線ネットワークを構成する無線通信装置であって、1つの移動体から発せられた測定用信号の他の無線通信装置での受信強度を含む電波受信強度情報を受信する受信部と、受信された電波受信強度情報をさらに他の無線通信装置へ送信する送信部と、過去に受信された電波受信強度情報に含まれる第1の受信強度を記憶する記憶部と、第1の受信強度に基づき、新たに受信された電波受信強度情報に含まれる第2の受信強度を含む新たな電波受信強度情報を送信するかまたは非送信とするかを制御する制御部と、を備える。
 この構成によれば、第2の受信強度を含む新たな電波受信強度情報を、過去に受信された電波受信強度情報に含まれる第1の受信強度に基づき、非送信とすることができる。つまり、電波受信強度情報を中継する無線通信装置が、電波受信強度情報を他の無線通信装置に対して非送信とすることができる。その結果、無線通信装置が送信する電波受信強度情報の総量が削減されるので、ネットワーク資源を従来よりも確実に節約できる。
 また、制御部は、第2の受信強度の第1の受信強度に対する差を求め、差が第1の所定値以上の場合、新たな電波受信強度情報を送信するよう制御し、差が第1の所定値未満の場合、新たな電波受信強度情報を送信しないよう制御してもよい。
 第2の受信強度の第1の受信強度に対する差が第1の所定値以上となる第1及び第2の受信強度は、一般に、移動体が無線通信装置に近づいていく状況で得られるものである。例えば、移動体の位置検知において、移動体が無線通信装置に近づいていく状況での電波受信強度情報は、移動体が無線通信装置から遠ざかっていく状況での電波受信強度情報と比べて、より重要な情報として利用されることがある。その点、この構成によれば、移動体の位置検知においてより重要な電波受信強度情報を送信し、重要ではない電波受信強度情報を非送信とすることができる。これにより、無線ネットワーク全体で伝送される電波受信強度情報の総量を、移動体の位置検知に適した基準で削減して、ネットワーク資源を節約できる。
 また、制御部は、新たな電波受信強度情報を送信しなかった場合、第1の所定値を、第1の所定値より小さい第2の所定値に更新し、新たな電波受信強度情報を送信した場合、第1の所定値を、第2の受信強度に応じた値に更新してもよい。
 この構成によれば、移動体が無線通信装置に近づいていく状況において、電波受信強度情報が比較的高い頻度で送信されるよう構成することができる。一方、移動体が無線通信装置に対して滞留するか遠ざかっていく状況において、電波受信強度情報が比較的低い頻度で送信されるよう構成することができる。このように、電波受信強度情報の送信および非送信に応じて更新されるしきい値を用いて、電波受信強度情報の送信頻度を制御できる。
 また、本発明の一態様に係る位置検知システムは、互いに異なる既知の位置に設置され、移動体から発せられた測定用信号の受信強度を測定する、複数の無線通信装置と、複数の無線通信装置のうちの1つの無線通信装置で測定された受信強度に基づき、移動体の推定位置を求める計算部と、を備える。複数の無線通信装置の各々には前述した無線通信装置が用いられる。
 この構成によれば、前述した無線通信装置の効果に基づき、ネットワーク資源を従来よりも確実に節約することができる位置検知システムが得られる。
 また、本発明の一態様に係る無線通信方法は、他の1以上の無線通信装置とともに無線ネットワークを構成する無線通信装置における無線通信方法であって、1つの移動体から測定用信号を受信し、受信された測定用信号の受信強度を測定し、受信強度を含む電波受信強度情報を他の無線通信装置へ送信し、過去に測定された測定用信号の受信強度を示す第1の受信強度を記憶し、第1の受信強度に基づき、新たに測定された測定用信号の受信強度を示す第2の受信強度を含む新たな電波受信強度情報を送信するかまたは非送信とするかを制御する。
 この方法によれば、第2の受信強度を含む新たな電波受信強度情報を、過去に測定された測定用信号の受信強度に関する第1の受信強度に基づき、非送信とすることができる。その結果、無線通信装置が送信する電波受信強度情報の総量が削減されるので、ネットワーク資源を従来よりも確実に節約できる。
 また、本発明の一態様に係る位置検知データ通信方法は、1つの移動体から発せられた測定用信号の受信強度を、互いに異なる既知の位置に設置された複数の無線通信装置で測定し、当該測定された受信強度を含む電波受信強度情報を送信する位置検知データ通信方法であって、複数の無線通信装置の各々は、1つの移動体から逐次に発せられた複数の測定用信号の各々の受信強度を測定し、当該測定された受信強度のうちの少なくとも2つの受信強度に基づき、移動体が無線通信装置に対して接近しているか、遠ざかっているか、滞留しているかを判断する。
 接近していると判断した場合には、第1頻度で電波受信強度情報を送信し、遠ざかっていると判断した場合には、第1頻度よりも低い第2頻度で電波受信強度情報を送信し、滞留していると判断した場合には、第1頻度よりも低く第2頻度よりも高い第3頻度で電波受信強度情報を送信する。
 前述したように、例えば、移動体の位置検知において、移動体が無線通信装置に近づいていく状況での電波受信強度情報は、移動体が無線通信装置から遠ざかっていく状況での電波受信強度情報と比べて、より重要な情報として利用されることがある。その点、この方法によれば、移動体が無線通信装置に近づいていく状況での電波受信強度情報の送信頻度を最も高くし、移動体が無線通信装置に対して滞留している状態での電波受信強度情報、移動体が無線通信装置から遠ざかっていく状況での電波受信強度情報の順に送信頻度を低下させることができる。これにより、無線ネットワーク全体で伝送される電波受信強度情報の総量を、移動体の位置検知に適した基準で削減することにより、ネットワーク資源を節約できる。
 本発明は、例えば、各種施設における物品及び人員の位置の管理など、移動体の位置推定に広く利用できる。
  10、10a~10c  移動体
  20、20a~20g  無線通信装置
  21  受信部
  22  送信部
  23  記憶部
  24  制御部
  30  サーバ
  40  無線メッシュネットワーク
  100  位置検知システム

Claims (7)

  1.  他の1以上の無線通信装置とともに無線ネットワークを構成する無線通信装置であって、
     1つの移動体から測定用信号を受信し、受信された測定用信号の受信強度を測定する受信部と、
     前記受信強度を含む電波受信強度情報を他の無線通信装置へ送信する送信部と、
     過去に測定された測定用信号の受信強度を示す第1の受信強度を記憶する記憶部と、
     前記第1の受信強度に基づき、新たに受信された測定用信号の受信強度を示す第2の受信強度を含む新たな電波受信強度情報を送信するかまたは非送信とするかを制御する制御部と、
     を備える無線通信装置。
  2.  他の2以上の無線通信装置とともに無線ネットワークを構成する無線通信装置であって、
     1つの移動体から発せられた測定用信号の他の無線通信装置での受信強度を含む電波受信強度情報を受信する受信部と、
     受信された前記電波受信強度情報をさらに他の無線通信装置へ送信する送信部と、
     過去に受信された電波受信強度情報に含まれる第1の受信強度を記憶する記憶部と、
     前記第1の受信強度に基づき、新たに受信された電波受信強度情報で示される第2の受信強度を含む新たな電波受信強度情報を送信するかまたは非送信とするかを制御する制御部と、
     を備える無線通信装置。
  3.  前記制御部は、前記第2の受信強度の前記第1の受信強度に対する差を求め、前記差が第1の所定値以上の場合、前記新たな電波受信強度情報を送信するよう制御し、前記差が前記第1の所定値未満の場合、前記新たな電波受信強度情報を送信しないよう制御する、
     請求項1または2に記載の無線通信装置。
  4.  前記制御部は、前記新たな電波受信強度情報を送信しなかった場合、前記第1の所定値を、前記第1の所定値より小さい第2の所定値に更新し、前記新たな電波受信強度情報を送信した場合、前記第1の所定値を、前記第2の受信強度に応じた値に更新する、
     請求項1から3のいずれか1項に記載の無線通信装置。
  5.  互いに異なる既知の位置に設置され、移動体から発せられた測定用信号の受信強度を測定する、請求項1に記載の複数の無線通信装置と、
     前記複数の無線通信装置のうちの1つの無線通信装置で測定された受信強度に基づき、前記移動体の推定位置を求める計算部と、
     を備える位置検知システム。
  6.  他の1以上の無線通信装置とともに無線ネットワークを構成する無線通信装置における無線通信方法であって、
     1つの移動体から測定用信号を受信し、受信された測定用信号の受信強度を測定し、
     前記受信強度を含む電波受信強度情報を他の無線通信装置へ送信し、
     過去に受信された測定用信号の受信強度を示す第1の受信強度を記憶し、
     前記第1の受信強度に基づき、新たに測定された測定用信号の受信強度を示す第2の受信強度を含む新たな電波受信強度情報を送信するかまたは非送信とするかを制御する、
     無線通信方法。
  7.  1つの移動体から発せられた測定用信号の受信強度を、互いに異なる既知の位置に設置された複数の無線通信装置で測定し、当該測定された受信強度を含む電波受信強度情報を送信する位置検知データ通信方法であって、
     前記複数の無線通信装置の各々は、
     1つの移動体から逐次に発せられた複数の測定用信号の各々の受信強度を測定し、
     当該測定された受信強度のうちの少なくとも2つの受信強度に基づき、前記移動体が前記無線通信装置に対して接近しているか、遠ざかっているか、滞留しているかを判断し、
     接近していると判断した場合には、第1頻度で前記電波受信強度情報を送信し、
     遠ざかっていると判断した場合には、第1頻度よりも低い第2頻度で前記電波受信強度情報を送信し、
     滞留していると判断した場合には、第1頻度よりも低く第2頻度よりも高い第3頻度で前記電波受信強度情報を送信する、
     位置検知データ通信方法。
PCT/JP2018/041216 2017-12-15 2018-11-06 無線通信装置、位置検知システム、無線通信方法、および位置検知データ通信方法 WO2019116786A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019558970A JP6923002B2 (ja) 2017-12-15 2018-11-06 無線通信装置、位置検知システム、無線通信方法、および位置検知データ通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-240977 2017-12-15
JP2017240977 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019116786A1 true WO2019116786A1 (ja) 2019-06-20

Family

ID=66820126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041216 WO2019116786A1 (ja) 2017-12-15 2018-11-06 無線通信装置、位置検知システム、無線通信方法、および位置検知データ通信方法

Country Status (2)

Country Link
JP (1) JP6923002B2 (ja)
WO (1) WO2019116786A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220159546A1 (en) * 2019-08-06 2022-05-19 Panasonic Intellectual Property Management Co., Ltd. Wireless communication system, wireless communication device, and wireless communication control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613959A (ja) * 1992-06-24 1994-01-21 Hitachi Ltd 移動無線通信の電界強度検出手順制御方法
US20110018769A1 (en) * 2008-04-02 2011-01-27 Ekahau Oy Positioning of mobile objects based on mutually transmitted signals
JP2011239420A (ja) * 2006-07-04 2011-11-24 Hitachi Information & Communication Engineering Ltd アドホックネットワーク
JP2012202747A (ja) * 2011-03-24 2012-10-22 Toshiba Corp 無線システム、中継端末、車両および位置推定機
JP2016063424A (ja) * 2014-09-18 2016-04-25 株式会社東芝 情報処理装置、通信装置、端末、通信処理方法およびコンピュータプログラム
JP2016070917A (ja) * 2014-09-30 2016-05-09 ダイキン工業株式会社 測位システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5503774B1 (ja) * 2013-04-23 2014-05-28 株式会社Nttドコモ 無線タグ捜索方法およびその装置
US9635690B2 (en) * 2014-06-24 2017-04-25 Nokia Technologies Oy Method, apparatus, and computer program product for improving security for wireless communication

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613959A (ja) * 1992-06-24 1994-01-21 Hitachi Ltd 移動無線通信の電界強度検出手順制御方法
JP2011239420A (ja) * 2006-07-04 2011-11-24 Hitachi Information & Communication Engineering Ltd アドホックネットワーク
US20110018769A1 (en) * 2008-04-02 2011-01-27 Ekahau Oy Positioning of mobile objects based on mutually transmitted signals
JP2012202747A (ja) * 2011-03-24 2012-10-22 Toshiba Corp 無線システム、中継端末、車両および位置推定機
JP2016063424A (ja) * 2014-09-18 2016-04-25 株式会社東芝 情報処理装置、通信装置、端末、通信処理方法およびコンピュータプログラム
JP2016070917A (ja) * 2014-09-30 2016-05-09 ダイキン工業株式会社 測位システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220159546A1 (en) * 2019-08-06 2022-05-19 Panasonic Intellectual Property Management Co., Ltd. Wireless communication system, wireless communication device, and wireless communication control method

Also Published As

Publication number Publication date
JPWO2019116786A1 (ja) 2020-12-03
JP6923002B2 (ja) 2021-08-18

Similar Documents

Publication Publication Date Title
JP6597918B2 (ja) 位置検知システム
US8825103B2 (en) Transmission power control
US20150373639A1 (en) SYSTEMS AND METHODS FOR POWER SAVING VIA ENHANCED SCANNING AND BEACONING FOR CO-LOCATED APs AND ASSOCIATED STAs
JP2012070324A (ja) 車載装置および輻輳制御方法
US10976403B2 (en) Position detection system and receiver
US9144006B2 (en) Multi-hop communication terminal, multi-hop communication system, and multi-hop communication method
EP2507646B1 (en) Message-based location of mobile network nodes
KR20200025666A (ko) 로라 네트워크 멀티 채널 구현방법
WO2019116786A1 (ja) 無線通信装置、位置検知システム、無線通信方法、および位置検知データ通信方法
JP5751150B2 (ja) 無線通信装置および無線通信方法
JP6727725B2 (ja) 無線通信システム、制御装置、アクセスポイント及び無線端末
JP2011254191A (ja) 無線通信装置、および無線通信システム
JP2010016561A (ja) 無線通信装置
Hu et al. Analysis of wireless energy harvesting relay throughput in Rician channel
EP2989480B1 (en) Space-based rss localization
JP5594189B2 (ja) 干渉判定方法、通信装置、通信システム
JP5849851B2 (ja) 無線端末装置、無線通信システム及び無線端末装置制御方法
Bakhtin et al. Control traffic transmission period minimization for routing in resource constrained MANET
JP6315310B2 (ja) ノード、無線センサーネットワークシステム、無線通信方法
US10687244B2 (en) Methods, first transmit device and relay device for supporting wireless communication
JP6458571B2 (ja) 無線通信装置及び無線通信プログラム
JP2018007203A (ja) 無線センサネットワークのセンサノード及び収集装置、並びに、無線センサネットワークシステム
Siddikov et al. Data Transfer Methods and Algorithms in Wireless Sensor Networks for IoT-based Remote Monitoring System of Hybrid Energy Supply Sources
JP5846276B2 (ja) 移動体無線通信装置および輻輳制御方法
KR20150001399A (ko) 무선 센서 노드 및 이를 이용한 무선 통신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558970

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887291

Country of ref document: EP

Kind code of ref document: A1