WO2019116563A1 - 光学系、光学機器、および光学系の製造方法 - Google Patents

光学系、光学機器、および光学系の製造方法 Download PDF

Info

Publication number
WO2019116563A1
WO2019116563A1 PCT/JP2017/045183 JP2017045183W WO2019116563A1 WO 2019116563 A1 WO2019116563 A1 WO 2019116563A1 JP 2017045183 W JP2017045183 W JP 2017045183W WO 2019116563 A1 WO2019116563 A1 WO 2019116563A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
conditional expression
positive lens
optical system
νdp1
Prior art date
Application number
PCT/JP2017/045183
Other languages
English (en)
French (fr)
Inventor
雅史 山下
智希 伊藤
洋 籔本
山本 浩史
哲史 三輪
啓介 坪野谷
歩 槇田
健 上原
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66819147&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019116563(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2017/045183 priority Critical patent/WO2019116563A1/ja
Priority to JP2019558853A priority patent/JP6881602B2/ja
Publication of WO2019116563A1 publication Critical patent/WO2019116563A1/ja
Priority to JP2021073055A priority patent/JP2021105744A/ja
Priority to JP2023032732A priority patent/JP2023065618A/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the present invention relates to an optical system, an optical apparatus, and a method of manufacturing an optical system.
  • the imaging lens provided in an imaging apparatus using such an imaging element has good chromatic aberration so that the color of the image is not blurred in the white light source It is desirable that the lens be corrected to have a high resolution. In particular, in the correction of the chromatic aberration, in addition to the first-order achromatism, it is desirable that the second-order spectrum be well corrected.
  • the optical system according to the first aspect has an aperture stop, and a positive lens which is disposed on the object side of the aperture stop and which satisfies the following conditional expression.
  • ndP1 refractive index of the positive lens with respect to d line
  • ddP1 Abbe number based on the d line of the positive lens
  • ⁇ gFP1 partial dispersion ratio of the positive lens, the refractive index of the positive lens with respect to g line ngP1
  • nFP1 refractive index of the positive lens for the F-line
  • nFP1-nCP1 defined by the following equation
  • An optical apparatus includes the above optical system.
  • each lens is provided in the lens barrel so as to have an aperture stop and a positive lens disposed on the object side of the aperture stop and satisfying the following conditional expression.
  • ndP1 refractive index of the positive lens with respect to d line ddP1: Abbe number based on the d line of the positive lens
  • ⁇ gFP1 partial dispersion ratio of the positive lens, the refractive index of the positive lens with respect to g line ngP1
  • ⁇ gFP1 (ngP1-nFP1) / (nFP1-nCP1) defined by the following equation
  • FIG. 5 shows various aberrations that occurred in the infinity in-focus condition of the optical system according to the first example. It is a lens block diagram in the infinite point focusing state of the optical system concerning 2nd Example.
  • FIG. 7 shows various aberrations that occurred in the infinity in-focus condition of the optical system according to the second example. It is a lens block diagram in the infinite point focusing state of the optical system which concerns on 3rd Example.
  • FIG. 7 shows various aberrations that occurred in the infinity in-focus condition of the optical system according to the third example. It is a lens block diagram in the infinite point focusing state of the optical system which concerns on 4th Example.
  • FIG. 5 shows various aberrations that occurred in the infinity in-focus condition of the optical system according to the first example. It is a lens block diagram in the infinite point focusing state of the optical system concerning 2nd Example.
  • FIG. 7 shows various aberrations that occurred in the infinity in-focus condition of the optical system according to the second example. It is a lens block diagram in the
  • FIG. 13 shows various aberrations that occurred in the infinity in-focus condition of the optical system according to the fourth example. It is a lens block diagram in the infinite point focusing state of the optical system which concerns on 5th Example. 10 (A), 10 (B), and 10 (C) show various conditions at the time of infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the fifth embodiment, respectively.
  • FIG. It is a lens block diagram in the infinite point focusing state of the optical system which concerns on 6th Example. 12 (A), 12 (B), and 12 (C) show various conditions at the time of infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the sixth embodiment, respectively.
  • FIG. It is a lens block diagram in the infinite point focusing state of the optical system which concerns on 7th Example.
  • FIGS. 14A, 14B, and 14C respectively show various conditions at the time of infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the seventh embodiment.
  • FIG. It is a lens block diagram in the infinite point focusing state of the optical system which concerns on 8th Example.
  • 16 (A), 16 (B), and 16 (C) show various conditions at the time of infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the eighth embodiment, respectively.
  • the camera 1 is a digital camera provided with an optical system according to the present embodiment as a photographing lens 2 as shown in FIG.
  • the camera 1 light from an object (a subject) (not shown) is collected by the photographing lens 2 and reaches the image pickup element 3.
  • the imaging device 3 light from the subject is captured by the imaging device 3 and recorded as a subject image in a memory (not shown).
  • the camera may be a mirrorless camera or a single-lens reflex camera having a quick return mirror.
  • the optical system LS (1) as an example of the optical system (photographing lens) LS according to the present embodiment has the aperture stop S and the following conditional expressions disposed closer to the object side than the aperture stop S as shown in FIG. And a positive lens (L13) satisfying (1) to (3).
  • ndP1 refractive index of the positive lens to d-line
  • ddP1 Abbe number based on the d-line of the positive lens
  • ⁇ gFP1 partial dispersion ratio of the positive lens
  • the optical system LS according to this embodiment may be the optical system LS (2) shown in FIG. 3, the optical system LS (3) shown in FIG. 5, or the optical system LS (4) shown in FIG.
  • An optical system LS (5) shown in 9 may be used.
  • the optical system LS according to the present embodiment may be the optical system LS (6) shown in FIG. 11, an optical system LS (7) shown in FIG. 13, or an optical system LS (8) shown in FIG.
  • Conditional expression (1) defines an appropriate relationship between the refractive index for the d-line of the positive lens and the Abbe number based on the d-line.
  • the corresponding value of the conditional expression (1) exceeds the upper limit value, for example, the Petzval sum becomes small, which is not preferable because correction of curvature of field becomes difficult.
  • the upper limit value of the conditional expression (1) it is preferable to set the upper limit value of the conditional expression (1) to 2.10, 2.09, 2.08, 2.07, and further 2.06.
  • Conditional expression (2) defines an appropriate range of Abbe number based on the d-line of the positive lens. By satisfying conditional expression (2), correction of reference aberrations such as spherical aberration and coma aberration and correction (achromatization) of first-order chromatic aberration can be favorably performed.
  • conditional expression (2) If the corresponding value of the conditional expression (2) exceeds the upper limit value, for example, correction of axial chromatic aberration becomes difficult in a partial group on the object side of the aperture stop S, which is not preferable.
  • the upper limit value of conditional expression (2) By setting the upper limit value of the conditional expression (2) to 32.5, the effect of the present embodiment can be made more reliable.
  • the upper limit value of conditional expression (2) should be set to 32.0, 31.5, 31.0, 30.5, 30.0, and further 29.5. Is preferred.
  • the lower limit value of conditional expression (2) is set to 23.0, 23.5, 24.0, 24.5, 25.0, 25.5, 26.0. , 26.5, 27.0, 27.5, and further preferably 27.7.
  • conditional expression (3) appropriately defines the anomalous dispersion of the positive lens.
  • conditional expression (3) When the corresponding value of the conditional expression (3) falls below the lower limit value, the anomalous dispersion of the positive lens becomes small, so that the correction of the chromatic aberration becomes difficult.
  • the lower limit value of conditional expression (3) By setting the lower limit value of conditional expression (3) to 0.704, the effect of the present embodiment can be made more reliable.
  • the positive lens satisfies the following conditional expression (4). 1.83 ⁇ ndP1 + (0.00787 ⁇ ⁇ dP1) (4)
  • Conditional expression (4) defines an appropriate relationship between the refractive index to the d-line of the positive lens and the Abbe number based on the d-line.
  • conditional expression (4) When the corresponding value of the conditional expression (4) falls below the lower limit value, for example, the refractive index of the positive lens decreases, which makes it difficult to correct the reference aberration, particularly the spherical aberration, which is not preferable.
  • the lower limit value of conditional expression (4) By setting the lower limit value of conditional expression (4) to 1.84, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, it is preferable to set the lower limit value of conditional expression (4) to 1.85, further 1.86.
  • the positive lens may satisfy the following conditional expression (2-1) and conditional expression (4-1). 18.0 ⁇ dP1 ⁇ 26.5 (2-1) 1.83 ⁇ ndP1 + (0.00787 ⁇ ⁇ dP1) (4-1)
  • Conditional expression (2-1) is the same expression as conditional expression (2), and the same effect as conditional expression (2) can be obtained.
  • the upper limit value of the conditional expression (2-1) is set to 26.0, the effect of the present embodiment can be made more reliable.
  • the lower limit value of the conditional expression (2-1) to 23.5 the effect of the present embodiment can be made more reliable.
  • conditional expression (4-1) is the same as the conditional expression (4), and the same effect as the conditional expression (4) can be obtained.
  • the lower limit value of conditional expression (4-1) is set to 1.90, the effect of the present embodiment can be made more reliable.
  • the positive lens may satisfy the following conditional expression (2-2) and conditional expression (4-2). 25.0 ⁇ dP1 ⁇ 35.0 (2-2) 1.83 ⁇ ndP1 + (0.00787 ⁇ ⁇ dP1) (4-2)
  • Conditional expression (2-2) is the same expression as conditional expression (2), and the same effect as conditional expression (2) can be obtained.
  • the upper limit value of the conditional expression (2-2) is set to 32.5, the effect of the present embodiment can be made more reliable.
  • the lower limit value of the conditional expression (2-2) to 26.2 the effect of the present embodiment can be made more reliable.
  • Conditional expression (4-2) is the same as conditional expression (4), and the same effect as conditional expression (4) can be obtained.
  • the lower limit value of conditional expression (4-2) is set to 1.84, the effect of the present embodiment can be made more reliable.
  • the positive lens satisfies the following conditional expression (5).
  • Conditional expression (5) defines an appropriate range of the thickness on the optical axis of the positive lens.
  • various aberrations such as coma aberration and chromatic aberration (axial chromatic aberration and lateral chromatic aberration) can be corrected well.
  • conditional expression (5) falls below the lower limit value, it becomes difficult to correct various aberrations such as coma aberration and chromatic aberration (axial chromatic aberration and lateral chromatic aberration), which is not preferable.
  • the lower limit value of the conditional expression (5) it is preferable to set the lower limit value of conditional expression (5) to 1.00, 1.10, 1.20, and further 1.30.
  • the optical system of the present embodiment has an object side lens arranged closest to the object side, the aperture stop S is arranged on the image side of the object side lens, and the positive lens is the aperture stop S on the image side of the object side lens. It is desirable to be placed closer to the object side. Thereby, various aberrations such as coma aberration and chromatic aberration (axial chromatic aberration and magnification chromatic aberration) can be corrected well.
  • various aberrations such as coma aberration and chromatic aberration (axial chromatic aberration and magnification chromatic aberration) can be corrected well.
  • the positive lens is preferably a glass lens.
  • the positive lens is preferably a glass lens.
  • the positive lens satisfies the following conditional expressions (6) to (7).
  • ndP1 ⁇ 1.63
  • ndP1- 0.040 ⁇ ⁇ dP1-2.470
  • ⁇ ⁇ dP1 ⁇ 39.809
  • Condition (6) defines an appropriate range of the refractive index for the d-line of the positive lens.
  • various aberrations such as coma aberration and chromatic aberration (axial chromatic aberration and lateral chromatic aberration) can be corrected well.
  • conditional expression (6) When the corresponding value of the conditional expression (6) exceeds the upper limit, it becomes difficult to correct various aberrations such as coma aberration and chromatic aberration (axial chromatic aberration and lateral chromatic aberration), which is not preferable.
  • the upper limit value of the conditional expression (6) By setting the upper limit value of the conditional expression (6) to 1.62, the effect of the present embodiment can be made more reliable.
  • Conditional expression (7) defines an appropriate relationship between the refractive index for the d-line of the positive lens and the Abbe number based on the d-line.
  • the upper limit value of conditional expression (7) should be 39.500, 39,000, 38.500, 38.000, 37.500, and further 36.800. Is preferred.
  • the positive lens satisfies the following conditional expression (8).
  • ndP1- (0.020 x vdP1-1. 080) x vdP1 ⁇ 16. 260 (8)
  • Conditional expression (8) defines an appropriate relationship between the refractive index for the d-line of the positive lens and the Abbe number based on the d-line.
  • the upper limit value of the conditional expression (8) is set to 16,000, 15.800, 15.500, 15.300, 15.000, 14.800, 14.500. , 14.000, and further preferably 13.500.
  • a method of manufacturing the above-described optical system LS will be outlined with reference to FIG.
  • a positive lens is disposed on the object side of the aperture stop S and at least the aperture stop S (step ST1).
  • each lens is disposed in the lens barrel so that at least one of the positive lenses disposed on the object side of the aperture stop S satisfies the above-described conditional expressions (1) to (3) (step ST2).
  • FIGS. 1, 3, 5, 7, 9, 11, 13, 15, and 15 show optical systems LS ⁇ LS (1) to LS (9) according to the first to ninth examples. It is sectional drawing which shows the structure and refractive power distribution of ⁇ .
  • the focusing lens unit is engaged with the near distance object from infinity. The moving direction at the time of focusing is indicated by an arrow together with the text "focus".
  • the optical axes of the respective lens units upon zooming from the wide-angle end state (W) to the telephoto end state (T) The direction of movement along is indicated by arrows.
  • each lens group is a combination of a letter G and a numeral, and each lens is a combination of a letter L and a numeral By each.
  • the lens group and the like are represented using combinations of codes and numbers independently for each embodiment. For this reason, even if the combination of the same code
  • Tables 1 to 9 are shown below. Among these, Table 1 is the first embodiment, Table 2 is the second embodiment, Table 3 is the third embodiment, Table 4 is the fourth embodiment, and Table 5 is the fourth embodiment. Table 6 shows the sixth embodiment, Table 7 shows the seventh embodiment, Table 8 shows the eighth embodiment, and Table 9 shows the respective specification data in the ninth embodiment.
  • f is the focal length of the whole lens system
  • FN o is the f-number
  • 2 ⁇ is the angle of view (unit is ° ( ⁇ )
  • is the half angle of view
  • Y is the image height Show.
  • TL represents a distance obtained by adding BF to the distance from the lens front surface to the lens final surface on the optical axis at infinity focusing
  • BF represents an image from the lens final surface on the optical axis at infinity focusing
  • the distance to the plane I (back focus) is shown. Note that when the optical system is a variable magnification optical system, these values are shown for each of the wide angle end (W), the intermediate focal length (M), and the telephoto end (T) in respective variable power states.
  • the surface number indicates the order of the optical surface from the object side along the traveling direction of the light ray
  • R indicates the radius of curvature of each optical surface (the surface on which the center of curvature is located on the image side)
  • a positive value D is the distance on the optical axis from each optical surface to the next optical surface (or image surface)
  • nd is the refractive index for the d-line of the material of the optical member
  • ⁇ d is the optical
  • ⁇ gF indicates the partial dispersion ratio of the material of the optical member.
  • the radius of curvature “ ⁇ ” indicates a plane or an aperture, and the (diaphragm S) indicates the aperture stop S, respectively.
  • the description of the refractive index nd 1.00000 of air is omitted.
  • the optical surface is an aspheric surface, the surface number is marked with * a, and when the optical surface is a diffractive optical surface, the surface number is marked with * b, and the radius of curvature R column is near.
  • the axis radius of curvature is shown.
  • the partial dispersion ratio ⁇ gF of the material of the optical member is defined by the following equation (A).
  • ⁇ (h, m) ⁇ 2 ⁇ / (m ⁇ ⁇ 0) ⁇ ⁇ (C2 ⁇ h 2 + C 4 ⁇ h 4 + C 6 ⁇ h 6 ...)
  • h height in the direction perpendicular to the optical axis
  • m diffraction order of diffracted light
  • ⁇ 0 design wavelength
  • the refractive power ⁇ D of the diffractive surface at an arbitrary wavelength ⁇ and an arbitrary diffraction order m can be expressed as the following equation (D) using the lowest order phase coefficient C 2.
  • ⁇ D (h, m) ⁇ 2 ⁇ C 2 ⁇ m ⁇ ⁇ / ⁇ 0 (D)
  • f represents the focal length of the entire lens system
  • represents the imaging magnification, as [variable-distance data during close-up imaging]. Also, in the table of [Near-distance shooting variable distance data], the surface distance at the surface number at which the surface distance is “variable” in [lens specification] corresponding to each focal length and shooting magnification is shown. .
  • the optical system When the optical system is a variable magnification optical system, it corresponds to each variable magnification state at the wide angle end (W), the intermediate focal length (M), and the telephoto end (T) as [variable interval data at variable magnification shooting].
  • Lens specification] indicates the surface separation at the surface number at which the surface separation is “variable”. Further, the table of [lens group data] shows the focal length and the respective starting surface (surface closest to the object) of each lens unit.
  • the table of [conditional expression corresponding value] shows values corresponding to the respective conditional expressions.
  • mm is generally used unless otherwise specified for the focal length f, radius of curvature R, surface distance D, other lengths, etc. listed, but the optical system is proportionally expanded. Alternatively, since the same optical performance can be obtained by proportional reduction, it is not limited to this.
  • FIG. 1 is a diagram showing a lens configuration in an infinity in-focus condition of an optical system according to a first example of the present embodiment.
  • the optical system LS (1) according to the first embodiment is a converter lens, a first lens group G1 having an extremely weak positive refractive power (nearly zero refractive power), arranged in order from the object side;
  • the second lens unit G2 has a refractive power.
  • the aperture stop S is disposed in the second lens group G2.
  • the sign (+) or (-) attached to each lens group symbol indicates the refractive power of each lens group, which is the same in all the following embodiments.
  • the first lens group G1 includes, in order from the object side, a negative meniscus lens L11 with a convex surface facing the object side, a negative meniscus lens L12 with a concave surface facing the object side, a biconvex positive lens L13, and the object side And a cemented lens formed of a biconcave negative lens L15 and a biconvex positive lens L16.
  • the negative meniscus lens L11 of the first lens group G1 corresponds to the object side lens
  • the positive lens L13 of the first lens group G1 corresponds to a positive lens satisfying the conditional expressions (1) to (3).
  • the second lens group G2 includes a biconcave negative lens L21, a biconvex positive lens L22, and a biconvex positive lens L23 and a biconcave negative lens L24, which are arranged in order from the object side
  • a cemented lens including a lens, a biconcave negative lens L25, and a biconvex positive lens L26, and a biconvex positive lens L27.
  • An image plane I is disposed on the image side of the second lens group G2.
  • An aperture stop S is disposed between the positive lens L22 and the positive lens L23 in the second lens group G2.
  • the positive lens L23 has an aspheric lens surface on the object side.
  • the negative lens L25 has an aspheric lens surface on the object side.
  • the positive lens L26 has an aspheric lens surface on the image side.
  • Table 1 below provides values of specifications of the optical system according to the first example.
  • FIG. 2 is a diagram of various types of aberration when in focus at infinity of the optical system according to the first example.
  • FNO denotes an F number
  • Y denotes an image height.
  • the f-number or numerical aperture value corresponding to the maximum aperture is shown, in the astigmatism diagram and the distortion diagram, the maximum value of the image height is shown, and in the coma aberration diagram, the value of each image height is shown. .
  • a solid line indicates a sagittal image plane
  • a broken line indicates a meridional image plane. Also in the aberration charts of the examples shown below, the same reference numerals as in the present example are used, and the redundant description is omitted.
  • the optical system according to the first example has various aberrations corrected well and has excellent imaging performance.
  • FIG. 3 is a diagram showing a lens configuration in an infinity in-focus condition of an optical system according to a second example of the present embodiment.
  • the optical system LS (2) according to the second embodiment includes a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, and a positive refractive power, which are arranged in order from the object side And a third lens group G3 having a force.
  • the second lens group G2 and the third lens group G3 move to the object side along the optical axis by different amounts of movement.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3, and moves along the optical axis together with the third lens group G3 during focusing.
  • the first lens group G1 includes, in order from the object side, a positive meniscus lens L11 having a convex surface facing the object side, a biconcave negative lens L12, and a positive meniscus lens L13 having a concave surface facing the object side. And a cemented lens including a negative lens L14 of a shape and a positive lens L15 of a biconvex shape.
  • the positive meniscus lens L11 of the first lens group G1 corresponds to the object side lens.
  • the second lens group G2 is composed of, in order from the object side, a double convex positive lens L21, and a cemented lens including a double convex positive lens L22 and a double concave negative lens L23.
  • the positive lens L21 of the second lens group G2 corresponds to a positive lens satisfying the conditional expressions (1) to (3) and the like.
  • the third lens group G3 has a cemented lens consisting of a biconcave negative lens L31 and a biconvex positive lens L32 arranged in order from the object side, and a concave surface facing the biconvex positive lens L33 and the object side It consists of a cemented lens consisting of a negative meniscus lens L34 and a positive lens L35 with a convex surface facing the object side.
  • An image plane I is disposed on the image side of the third lens group G3.
  • the positive lens L35 has aspheric lens surfaces on both sides.
  • Table 2 below presents values of specifications of the optical system according to the second example.
  • FIG. 4 is a diagram of various types of aberration when in focus at infinity of the optical system according to the second example. From the respective aberration diagrams, it is understood that the optical system according to the second example has various aberrations corrected well and has excellent imaging performance.
  • FIG. 5 is a diagram showing a lens configuration in an infinity in-focus condition of an optical system according to a third example of the present embodiment.
  • the optical system LS (3) according to the third example includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, and positive refractive power, which are arranged in order from the object side And a third lens group G3 having a force.
  • the second lens group G2 moves to the image side along the optical axis.
  • the aperture stop S is disposed in the third lens group G3.
  • the first lens group G1 includes, in order from the object side, a positive meniscus lens L11 with a convex surface facing the object side, a biconvex positive lens L12, a biconvex positive lens L13, and a biconcave negative lens And a cemented lens made of L14.
  • the positive meniscus lens L11 of the first lens group G1 corresponds to the object side lens.
  • the second lens group G2 is composed of, in order from the object side, a cemented lens consisting of a positive meniscus lens L21 having a concave surface facing the object side and a negative lens L22 having a biconcave shape.
  • the positive meniscus lens L21 of the second lens group G2 corresponds to a positive lens that satisfies the conditional expressions (1) to (3) and the like.
  • the third lens group G3 is a biconvex positive lens L31, a biconvex positive lens L32, and a biconcave negative lens L33, which are arranged in order from the object side, and a biconvex positive lens A cemented lens including a lens L34, a biconcave negative lens L35 and a biconvex positive lens L36, and a cemented lens including a biconcave negative lens L37 and a biconvex positive lens L38.
  • An image plane I is disposed on the image side of the third lens group G3.
  • the aperture stop S is disposed between the negative lens L33 and the positive lens L34 in the third lens group G3.
  • Table 3 below presents values of specifications of the optical system according to the third example.
  • FIG. 6 shows various aberrations of the optical system in the infinity in-focus condition according to the third example. From the respective aberration diagrams, it is understood that the optical system according to the third example has various aberrations corrected well, and has excellent imaging performance.
  • FIG. 7 is a diagram showing a lens configuration in an infinity in-focus condition of an optical system according to a fourth example of the present embodiment.
  • the optical system LS (4) according to the fourth example includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, and positive refractive power, which are arranged in order from the object side And a third lens group G3 having a force.
  • the second lens group G2 moves to the image side along the optical axis.
  • the aperture stop S is disposed in the vicinity of the object side of the third lens group G3 and is fixed to the image plane I at the time of focusing, similarly to the first lens group G1 and the third lens group G3.
  • the first lens group G1 includes, in order from the object side, a protective glass HG having extremely weak refractive power, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13. And a cemented lens including a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
  • the positive lens L11 of the first lens group G1 corresponds to the object side lens.
  • the second lens group G2 is composed of a biconcave negative lens L21 and a cemented lens composed of a positive meniscus lens L22 concave on the object side and a biconcave negative lens L23 arranged in order from the object side Be done.
  • the positive meniscus lens L22 of the second lens group G2 corresponds to a positive lens satisfying the conditional expressions (1) to (3) and the like.
  • the third lens group G3 includes, in order from the object side, a first partial group G31 having positive refractive power, a second partial group G32 having negative refractive power, and a third partial group having positive refractive power. And G33.
  • the first partial group G31 is composed of a cemented lens consisting of a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side, which are arranged in order from the object side.
  • the second partial group G32 is composed of a cemented lens composed of a biconvex positive lens L33 and a biconcave negative lens L34 arranged in order from the object side, and a biconcave negative lens L35.
  • the third partial group G33 is composed of a biconvex positive lens L36 and a cemented lens composed of a biconvex positive lens L37 and a biconcave negative lens L38 arranged in order from the object side.
  • the second partial group G33 of the third lens group G3 constitutes a vibration reduction lens group (partial group) movable in a direction perpendicular to the optical axis, and displacement of the imaging position due to camera shake or the like (image plane I Correct the image blur).
  • a fixed stop (flare cut stop) Sa is disposed between the second partial group G32 and the third partial group G33 in the third lens group G3.
  • An image plane I is disposed on the image side of the third lens group G3.
  • a removable optical filter FL is disposed between the third lens group G3 and the image plane I.
  • an NC filter neutral color filter
  • a color filter a color filter
  • a polarizing filter a polarizing filter
  • an ND filter light reduction filter
  • an IR filter infrared cut filter
  • Table 4 below presents values of specifications of the optical system according to the fourth example.
  • FIG. 8 shows various aberrations that occurred in the infinity in-focus condition of the optical system according to the fourth example. From the respective aberration diagrams, it is understood that the optical system according to the fourth example has the various imaging properties corrected well and the excellent imaging performance.
  • FIG. 9 is a diagram showing a lens configuration in an infinity in-focus condition of an optical system according to a fifth example of the present embodiment.
  • the optical system LS (5) according to the fifth example includes, in order from the object side, a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, and a negative refractive index. It comprises a third lens group G3 having a force and a fourth lens group G4 having a positive refractive power.
  • the first to fourth lens groups G1 to G4 move in the directions shown by the arrows in FIG.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3, and moves along the optical axis together with the second lens group G2 during zooming.
  • the first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a negative biconcave lens L13. And a convex positive lens L14.
  • the negative meniscus lens L11 of the first lens group G1 corresponds to the object side lens
  • the positive lens L14 of the first lens group G1 corresponds to a positive lens satisfying the conditional expressions (1) to (3).
  • the negative meniscus lens L11 has aspheric lens surfaces on both sides.
  • the negative lens L13 has an aspheric lens surface on the image side.
  • the second lens group G2 includes, in order from the object side, a cemented lens including a negative meniscus lens L21 having a convex surface facing the object side and a positive meniscus lens L22 having a convex surface facing the object side, and a biconvex positive lens L23. And consists of
  • the third lens group G3 includes, in order from the object side, a cemented lens including a positive meniscus lens L31 having a concave surface facing the object side and a biconcave negative lens L32, and a negative meniscus lens L33 having a concave surface facing the object side And a biconvex positive lens L34.
  • a cemented lens including a positive meniscus lens L31 having a concave surface facing the object side and a biconcave negative lens L32, and a negative meniscus lens L33 having a concave surface facing the object side And a biconvex positive lens L34.
  • the fourth lens group G4 includes, in order from the object side, a cemented lens including a double convex positive lens L41 and a negative meniscus lens L42 having a concave surface facing the object side, a double convex positive lens L43, and an object side And a cemented lens including a positive meniscus lens L44 having a concave surface and a negative meniscus lens L45 having a concave surface facing the object side.
  • An image plane I is disposed on the image side of the fourth lens group G4.
  • the negative meniscus lens L45 has an aspheric lens surface on the image side.
  • Table 5 below presents values of specifications of the optical system according to the fifth example.
  • FIG. 10 (A), 10 (B), and 10 (C) show various conditions at the time of infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the fifth embodiment, respectively.
  • FIG. 11 is a diagram showing a lens configuration in an infinity in-focus condition of an optical system according to a sixth example of the present embodiment.
  • the optical system LS (6) according to the sixth example includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, and positive refractive power, which are arranged in order from the object side
  • the third lens group G3 having a force
  • the fourth lens group G4 having a negative refractive power
  • the fifth lens group G5 having a positive refractive power.
  • the first to fourth lens groups G1 to G4 move in the directions shown by the arrows in FIG. 11, respectively.
  • the aperture stop S is disposed on the most object side of the third lens group G3, and moves along the optical axis together with the third lens group G3 during zooming.
  • the first lens group G1 has a convex surface facing the object side, and a cemented lens consisting of a negative meniscus lens L11 with a convex surface facing the object side and a positive meniscus lens L12 with a convex surface facing the object side, arranged in order from the object side And a positive meniscus lens L13.
  • the negative meniscus lens L11 of the first lens group G1 corresponds to the object side lens.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a negative meniscus lens L22 having a concave surface facing the object side, a biconvex positive lens L23, and an object And a negative meniscus lens L24 having a concave surface directed to the side.
  • the positive lens L23 of the second lens group G2 corresponds to a positive lens satisfying the conditional expressions (1) to (3) and the like.
  • the negative meniscus lens L21 has an aspheric lens surface on the object side.
  • the negative meniscus lens L24 has an aspheric lens surface on the image side.
  • the third lens group G3 is a cemented lens including, in order from the object side, a double convex positive lens L31, a positive meniscus lens L32 with a concave surface facing the object side, and a negative meniscus lens L33 with a concave surface facing the object side And a cemented lens composed of a negative meniscus lens L34 having a convex surface facing the object side and a positive lens L35 having a biconvex shape.
  • the positive lens L35 has an aspheric lens surface on the image side.
  • the fourth lens group G4 is composed of, in order from the object side, a negative meniscus lens L41 with a concave surface facing the object side, and a cemented lens consisting of a biconvex positive lens L42 and a biconcave negative lens L43. Be done. In this embodiment, focusing is performed by moving a cemented lens including the positive lens L42 and the negative lens L43 of the fourth lens group G4 along the optical axis.
  • the fifth lens group G5 is composed of a biconvex positive lens L51 and a negative meniscus lens L52 having a convex surface facing the object, which are arranged in order from the object.
  • An image plane I is disposed on the image side of the fifth lens group G5.
  • Table 6 below presents values of specifications of the optical system according to the sixth example.
  • FIG. 12 (A), 12 (B), and 12 (C) show various conditions at the time of infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the sixth embodiment, respectively.
  • FIG. 13 is a diagram showing a lens configuration in an infinity in-focus condition of an optical system according to a seventh example of the present embodiment.
  • the optical system LS (7) according to the seventh example includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, and positive refractive power, which are arranged in order from the object side
  • the third lens group G3 having a power
  • the fourth lens group G4 having a positive refractive power
  • the fifth lens group G5 having a negative refractive power
  • the sixth lens group G6 having a negative refractive power It is done.
  • the first to fifth lens groups G1 to G5 move in the directions shown by the arrows in FIG.
  • the aperture stop S is disposed in the second lens group G2.
  • the first lens group G1 is a cemented lens consisting of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side, and a positive meniscus lens L13 having a convex surface facing the object side And consists of
  • the negative meniscus lens L11 of the first lens group G1 corresponds to the object side lens.
  • a diffractive optical element DOE is disposed on the image-side lens surface of the positive meniscus lens L13.
  • the diffractive optical element DOE is, for example, an adhesive multilayer type diffractive optical element in which two types of diffractive element elements made of different materials are in contact in the same diffraction grating groove, and a predetermined grating height is made A first-order diffraction grating (a diffraction grating of rotational symmetry shape with respect to the optical axis) is formed.
  • the second lens group G2 includes, in order from the object side, a double concave negative lens L21 and a cemented lens including a positive meniscus lens L22 having a convex surface facing the object side, and a positive meniscus lens L23 having a concave surface facing the object side And a positive meniscus lens L24 having a convex surface facing the object side.
  • An aperture stop S is disposed between the positive meniscus lens L23 and the positive meniscus lens L24 in the second lens group G2.
  • the positive meniscus lens L22 of the second lens group G2 corresponds to a positive lens satisfying the conditional expressions (1) to (3) and the like.
  • the cemented lens composed of the negative lens L21 and the positive meniscus lens L22 of the second lens group G2 and the positive meniscus lens L23 constitute an anti-vibration lens group (sub-group) movable in the direction perpendicular to the optical axis.
  • the displacement of the imaging position (image blur on the image plane I) due to blur or the like is corrected.
  • the third lens group G3 is composed of, in order from the object side, a negative meniscus lens L31 with a convex surface facing the object side, and a biconvex positive lens L32.
  • the fourth lens group G4 is composed of, in order from the object side, a cemented lens including a double convex positive lens L41 and a negative meniscus lens L42 having a concave surface facing the object side.
  • the fifth lens group G5 is composed of a cemented lens composed of a biconvex positive lens L51 and a biconcave negative lens L52 arranged in order from the object side. In this embodiment, focusing is performed by moving the entire fifth lens group G5 along the optical axis.
  • the sixth lens group G6 includes, in order from the object side, a cemented lens consisting of a negative meniscus lens L61 with a convex surface facing the object side and a biconvex positive lens L62, a biconcave negative lens L63, and an object side And a negative meniscus lens L64 having a concave surface facing the lens.
  • An image plane I is disposed on the image side of the sixth lens group G6.
  • Table 7 below presents values of specifications of the optical system according to the seventh example.
  • FIGS. 14A, 14B, and 14C respectively show various conditions at the time of infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the seventh embodiment.
  • FIG. From the respective aberration diagrams, it is understood that the optical system according to the seventh example has various aberrations corrected well, and has excellent imaging performance.
  • FIG. 15 is a diagram showing a lens configuration of the optical system in an infinity in-focus condition according to an eighth example of the present embodiment.
  • the optical system LS (8) according to the eighth example includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, and a positive refractive power, which are arranged in order from the object side
  • the third lens group G3 having a force
  • the fourth lens group G4 having a positive refractive power
  • the fifth lens group G5 having a negative refractive power.
  • the second lens group G2 and the fourth lens group G4 move in the directions shown by the arrows in FIG.
  • the aperture stop S is disposed in the vicinity of the object side of the third lens group G3, and during zooming, like the first lens group G1, the third lens group G3 and the fifth lens group G5, the image plane I Fixed against
  • the first lens group G1 is a cemented lens consisting of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side, and a positive meniscus lens L13 having a convex surface facing the object side And consists of
  • the negative meniscus lens L11 of the first lens group G1 corresponds to the object side lens.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a negative biconcave lens L22, a positive meniscus lens L23 having a convex surface facing the object side, and And a concave negative lens L24.
  • the positive meniscus lens L23 of the second lens group G2 corresponds to a positive lens satisfying the conditional expressions (1) to (3) and the like.
  • the third lens group G3 includes, in order from the object side, a double convex positive lens L31, a half flat positive lens L32 with a convex surface facing the object side, and a positive meniscus lens L33 with a convex surface facing the object side And a cemented lens including a biconcave negative lens L34 and a biconvex positive lens L35 and a biconcave negative lens L36.
  • the fourth lens group G4 is a cemented lens including, in order from the object side, a double convex positive lens L41, a negative meniscus lens L42 with the convex surface facing the object side, and a positive meniscus lens L43 with the convex surface facing the object side And consists of In this embodiment, at the time of focusing from an infinite distance object to a close distance (finite distance) object, the entire fourth lens group G4 moves to the object side along the optical axis.
  • the fifth lens group G5 is a cemented lens consisting of a negative meniscus lens L51 with a convex surface facing the object side, a biconvex positive lens L52, and a biconcave negative lens L53 arranged in order from the object side, and the image side And a positive lens L55 having a biconvex shape and a positive meniscus lens L56 having a convex surface facing the object side.
  • An image plane I is disposed on the image side of the fifth lens group G5.
  • Table 8 below presents values of specifications of the optical system according to the eighth example.
  • 16 (A), 16 (B), and 16 (C) show various conditions at the time of infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the eighth embodiment, respectively.
  • FIG. 17 is a diagram showing a lens configuration in an infinity in-focus condition of an optical system according to a ninth example of the present embodiment.
  • the optical system LS (9) according to the ninth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive index, which are arranged in order from the object side And a third lens group G3 having a force.
  • the second lens group G2 moves to the image side along the optical axis.
  • the aperture stop S is disposed in the vicinity of the object side of the third lens group G3 and is fixed to the image plane I at the time of focusing, similarly to the first lens group G1 and the third lens group G3.
  • the first lens group G1 includes, in order from the object side, a protective glass HG having extremely weak refractive power, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13. And a cemented lens including a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
  • the positive lens L11 of the first lens group G1 corresponds to the object side lens.
  • the second lens group G2 is composed of a biconcave negative lens L21 and a cemented lens composed of a positive meniscus lens L22 concave on the object side and a biconcave negative lens L23 arranged in order from the object side Be done.
  • the positive meniscus lens L22 of the second lens group G2 corresponds to a positive lens satisfying the conditional expressions (1) to (3) and the like.
  • the third lens group G3 includes, in order from the object side, a first partial group G31 having positive refractive power, a second partial group G32 having negative refractive power, and a third partial group having positive refractive power. And G33.
  • the first partial group G31 is composed of a cemented lens consisting of a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side, which are arranged in order from the object side.
  • the second partial group G32 is composed of a cemented lens composed of a biconvex positive lens L33 and a biconcave negative lens L34 arranged in order from the object side, and a biconcave negative lens L35.
  • the third partial group G33 is composed of a biconvex positive lens L36 and a cemented lens composed of a biconvex positive lens L37 and a biconcave negative lens L38 arranged in order from the object side.
  • the second partial group G33 of the third lens group G3 constitutes a vibration reduction lens group (partial group) movable in a direction perpendicular to the optical axis, and displacement of the imaging position due to camera shake or the like (image plane I Correct the image blur).
  • An image plane I is disposed on the image side of the third lens group G3.
  • Table 9 below presents values of specifications of the optical system according to the ninth example.
  • FIG. 18 shows various aberrations that occurred in the infinity in-focus condition of the optical system according to the ninth example. From the respective aberration diagrams, it is understood that the optical system according to the ninth example has various aberrations corrected well, and has excellent imaging performance.
  • the focusing lens group indicates a portion having at least one lens separated by an air gap that changes at the time of focusing. That is, a single or a plurality of lens groups or a partial lens group may be moved in the optical axis direction to provide a focusing lens group for focusing from an infinite distance object to a near distance object.
  • This focusing lens group can also be applied to auto focusing, and is also suitable for motor drive (using an ultrasonic motor or the like) for auto focusing.
  • the present invention is not limited to this, and the configuration does not have the anti-vibration function. It can also be done. Further, the other embodiment having no vibration isolation function can also be configured to have the vibration isolation function.
  • the lens surface may be formed as a spherical surface, a flat surface, or an aspherical surface.
  • the lens surface is spherical or flat, it is preferable because lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to processing and assembly adjustment errors can be prevented. In addition, even when the image plane shifts, it is preferable because there is little deterioration in the imaging performance.
  • the aspheric surface is an aspheric surface formed by grinding, a glass mold aspheric surface formed of glass into an aspheric surface shape, or a composite aspheric surface formed of resin on the surface of glass with an aspheric surface shape. Any one is fine.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • Each lens surface may be provided with an anti-reflection film having high transmittance over a wide wavelength range in order to reduce flare and ghost and to achieve optical performance with high contrast. This can reduce flare and ghost and achieve high contrast and high optical performance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

光学系(LS)は、開口絞り(S)と、開口絞り(S)より物体側に配置された以下の条件式を満足する正レンズ(L13)とを有している。 ndP1+(0.01425×νdP1)<2.12 18.0<νdP1<35.0 0.702<θgFP1+(0.00316×νdP1) 但し、ndP1:正レンズのd線に対する屈折率 νdP1:正レンズのd線を基準とするアッベ数 θgFP1:正レンズの部分分散比であり、正レンズのg線に対する屈折率をngP1とし、正レンズのF線に対する屈折率をnFP1とし、正レンズのC線に対する屈折率をnCP1としたとき、次式で定義される θgFP1=(ngP1-nFP1)/(nFP1-nCP1)

Description

光学系、光学機器、および光学系の製造方法
 本発明は、光学系、光学機器、および光学系の製造方法に関する。
 近年、デジタルカメラやビデオカメラ等の撮像装置に用いられる撮像素子は、高画素化が進んでいる。このような撮像素子を用いた撮像装置に設けられる撮影レンズは、球面収差、コマ収差等の基準収差(単一波長の収差)に加え、白色光源において像の色にじみがないように色収差も良好に補正された、高い解像力を有するレンズであることが望まれている。特に、色収差の補正においては、1次の色消しに加え、2次スペクトルが良好に補正されていることが望ましい。色収差の補正の手段として、例えば、異常分散性を有する樹脂材料を用いる方法(例えば、特許文献1を参照)が知られている。このように、近年の撮像素子の高画素化に伴い、諸収差が良好に補正された撮影レンズが望まれている。
特開2016-194609号公報
 第1の態様に係る光学系は、開口絞りと、前記開口絞りより物体側に配置された以下の条件式を満足する正レンズとを有する。
 ndP1+(0.01425×νdP1)<2.12
 18.0<νdP1<35.0
 0.702<θgFP1+(0.00316×νdP1)
 但し、ndP1:前記正レンズのd線に対する屈折率
    νdP1:前記正レンズのd線を基準とするアッベ数
    θgFP1:前記正レンズの部分分散比であり、前記正レンズのg線に対する屈折率をngP1とし、前記正レンズのF線に対する屈折率をnFP1とし、前記正レンズのC線に対する屈折率をnCP1としたとき、次式で定義される
 θgFP1=(ngP1-nFP1)/(nFP1-nCP1)
 第2の態様に係る光学機器は、上記光学系を備えて構成される。
 第3の態様に係る光学系の製造方法は、開口絞りと、前記開口絞りより物体側に配置された以下の条件式を満足する正レンズとを有するように、レンズ鏡筒内に各レンズを配置する。
 ndP1+(0.01425×νdP1)<2.12
 18.0<νdP1<35.0
 0.702<θgFP1+(0.00316×νdP1)
 但し、ndP1:前記正レンズのd線に対する屈折率
    νdP1:前記正レンズのd線を基準とするアッベ数
    θgFP1:前記正レンズの部分分散比であり、前記正レンズのg線に対する屈折率をngP1とし、前記正レンズのF線に対する屈折率をnFP1とし、前記正レンズのC線に対する屈折率をnCP1としたとき、次式で定義される
 θgFP1=(ngP1-nFP1)/(nFP1-nCP1)
第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 第1実施例に係る光学系の無限遠合焦状態における諸収差図である。 第2実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 第2実施例に係る光学系の無限遠合焦状態における諸収差図である。 第3実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 第3実施例に係る光学系の無限遠合焦状態における諸収差図である。 第4実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 第4実施例に係る光学系の無限遠合焦状態における諸収差図である。 第5実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図10(A)、図10(B)、および図10(C)はそれぞれ、第5実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第6実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図12(A)、図12(B)、および図12(C)はそれぞれ、第6実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第7実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図14(A)、図14(B)、および図14(C)はそれぞれ、第7実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第8実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図16(A)、図16(B)、および図16(C)はそれぞれ、第8実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第9実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 第9実施例に係る光学系の無限遠合焦状態における諸収差図である。 本実施形態に係る光学系を備えたカメラの構成を示す図である。 本実施形態に係る光学系の製造方法を示すフローチャートである。
 以下、本実施形態に係る光学系および光学機器について図を参照して説明する。まず、本実施形態に係る光学系を備えたカメラ(光学機器)を図19に基づいて説明する。このカメラ1は、図19に示すように撮影レンズ2として本実施形態に係る光学系を備えたデジタルカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、撮像素子3へ到達する。これにより被写体からの光は、当該撮像素子3によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。
 本実施形態に係る光学系(撮影レンズ)LSの一例としての光学系LS(1)は、図1に示すように、開口絞りSと、開口絞りSより物体側に配置された以下の条件式(1)~(3)を満足する正レンズ(L13)とを有している。
 ndP1+(0.01425×νdP1)<2.12   ・・・(1)
 18.0<νdP1<35.0             ・・・(2)
 0.702<θgFP1+(0.00316×νdP1) ・・・(3)
 但し、ndP1:正レンズのd線に対する屈折率
    νdP1:正レンズのd線を基準とするアッベ数
    θgFP1:正レンズの部分分散比であり、正レンズのg線に対する屈折率をngP1とし、正レンズのF線に対する屈折率をnFP1とし、正レンズのC線に対する屈折率をnCP1としたとき、次式で定義される
 θgFP1=(ngP1-nFP1)/(nFP1-nCP1)
 なお、正レンズのd線を基準とするアッベ数νdP1は、次式で定義される
 νdP1=(ndP1-1)/(nFP1-nCP1)
 本実施形態によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系、およびこの光学系を備えた光学機器を得ることが可能になる。本実施形態に係る光学系LSは、図3に示す光学系LS(2)でも良く、図5に示す光学系LS(3)でも良く、図7に示す光学系LS(4)でも良く、図9に示す光学系LS(5)でも良い。また、本実施形態に係る光学系LSは、図11に示す光学系LS(6)でも良く、図13に示す光学系LS(7)でも良く、図15に示す光学系LS(8)でも良く、図17に示す光学系LS(9)でも良い。
 条件式(1)は、正レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(1)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
 条件式(1)の対応値が上限値を上回ると、例えばペッツバール和が小さくなることで、像面湾曲の補正が困難になるため、好ましくない。条件式(1)の上限値を2.11に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(1)の上限値を、2.10、2.09、2.08、2.07、さらに2.06とすることが好ましい。
 条件式(2)は、正レンズのd線を基準とするアッベ数の適切な範囲を規定するものである。条件式(2)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
 条件式(2)の対応値が上限値を上回ると、例えば、開口絞りSより物体側の部分群において軸上色収差の補正が困難となるため、好ましくない。条件式(2)の上限値を32.5に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2)の上限値を、32.0、31.5、31.0、30.5、30.0、さらに29.5とすることが好ましい。
 条件式(2)の対応値が下限値を下回ると、例えば、開口絞りSより物体側の部分群において軸上色収差の補正が困難となるため、好ましくない。条件式(2)の下限値を20.0に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2)の下限値を、23.0、23.5、24.0、24.5、25.0、25.5、26.0、26.5、27.0、27.5、さらに27.7とすることが好ましい。
 条件式(3)は、正レンズの異常分散性を適切に規定するものである。条件式(3)を満足することで、色収差の補正において、1次の色消しに加え、2次スペクトルを良好に補正することができる。
 条件式(3)の対応値が下限値を下回ると、正レンズの異常分散性が小さくなるため、色収差の補正が困難となる。条件式(3)の下限値を0.704に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3)の下限値を、0.708、0.710、0.712、さらに0.715とすることが好ましい。
 本実施形態の光学系において、正レンズは、以下の条件式(4)を満足することが望ましい。
 1.83<ndP1+(0.00787×νdP1) ・・・(4)
 条件式(4)は、正レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(4)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
 条件式(4)の対応値が下限値を下回ると、例えば正レンズの屈折率が小さくなることで、基準収差、特に球面収差の補正が困難になるため、好ましくない。条件式(4)の下限値を1.84に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4)の下限値を、1.85、さらに1.86とすることが好ましい。
 本実施形態の光学系において、正レンズは、以下の条件式(2-1)および条件式(4-1)を満足してもよい。
 18.0<νdP1<26.5           ・・・(2-1)
 1.83<ndP1+(0.00787×νdP1) ・・・(4-1)
 条件式(2-1)は、条件式(2)と同様の式であり、条件式(2)と同様の効果を得ることができる。条件式(2-1)の上限値を26.0に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2-1)の上限値を、25.5、さらに25.0とすることが好ましい。一方、条件式(2-1)の下限値を23.5に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2-1)の下限値を、24.0、さらに24.5とすることが好ましい。
 条件式(4-1)は、条件式(4)と同様の式であり、条件式(4)と同様の効果を得ることができる。条件式(4-1)の下限値を1.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4-1)の下限値を、1.92、さらに1.94とすることが好ましい。
 本実施形態の光学系において、正レンズは、以下の条件式(2-2)および条件式(4-2)を満足してもよい。
 25.0<νdP1<35.0           ・・・(2-2)
 1.83<ndP1+(0.00787×νdP1) ・・・(4-2)
 条件式(2-2)は、条件式(2)と同様の式であり、条件式(2)と同様の効果を得ることができる。条件式(2-2)の上限値を32.5に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2-2)の上限値を、31.5、さらに29.5とすることが好ましい。一方、条件式(2-2)の下限値を26.2に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2-2)の下限値を、26.7、さらに27.7とすることが好ましい。
 条件式(4-2)は、条件式(4)と同様の式であり、条件式(4)と同様の効果を得ることができる。条件式(4-2)の下限値を1.84に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4-2)の下限値を1.85とすることが好ましい。
 本実施形態の光学系において、正レンズは、以下の条件式(5)を満足することが望ましい。
 DP1>0.80 ・・・(5)
 但し、DP1:正レンズの光軸上の厚さ[mm]
 条件式(5)は、正レンズの光軸上の厚さの適切な範囲を規定するものである。条件式(5)を満足することで、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。
 条件式(5)の対応値が下限値を下回ると、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を補正することが困難になり、好ましくない。条件式(5)の下限値を0.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5)の下限値を、1.00、1.10、1.20、さらに1.30とすることが好ましい。
 本実施形態の光学系は、最も物体側に配置された物体側レンズを有し、開口絞りSが物体側レンズより像側に配置され、物体側レンズより像側で、正レンズが開口絞りSより物体側に配置されることが望ましい。これにより、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。
 本実施形態の光学系において、正レンズは、ガラスレンズであることが望ましい。これにより、材料が樹脂である場合と比較して、経年変化に強く、温度変化等の環境変化に強いレンズを得ることができる。
 本実施形態の光学系において、正レンズは、以下の条件式(6)~(7)を満足することが望ましい。
 ndP1<1.63 ・・・(6)
 ndP1-(0.040×νdP1-2.470)×νdP1<39.809・・・(7)
 条件式(6)は、正レンズのd線に対する屈折率の適切な範囲を規定するものである。条件式(6)を満足することで、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。
 条件式(6)の対応値が上限値を上回ると、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を補正することが困難になり、好ましくない。条件式(6)の上限値を1.62に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(7)は、正レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(7)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
 条件式(7)の対応値が上限値を上回ると、例えばペッツバール和が小さくなることで、像面湾曲の補正が困難になるため、好ましくない。条件式(7)の上限値を39.800に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(7)の上限値を、39.500、39.000、38.500、38.000、37.500、さらに36.800とすることが好ましい。
 本実施形態の光学系において、正レンズは、以下の条件式(8)を満足することが望ましい。
 ndP1-(0.020×νdP1-1.080)×νdP1<16.260・・・(8)
 条件式(8)は、正レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(8)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
 条件式(8)の対応値が上限値を上回ると、例えばペッツバール和が小さくなることで、像面湾曲の補正が困難になるため、好ましくない。条件式(8)の上限値を16.240に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(8)の上限値を、16.000、15.800、15.500、15.300、15.000、14.800、14.500、14.000、さらに13.500とすることが好ましい。
 続いて、図20を参照しながら、上述の光学系LSの製造方法について概説する。まず、開口絞りSと、少なくとも開口絞りSより物体側に正レンズを配置する(ステップST1)。このとき、開口絞りSより物体側に配置された正レンズのうち少なくとも1枚が上記条件式(1)~(3)等を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST2)。このような製造方法によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系を製造することが可能になる。
 以下、本実施形態の実施例に係る光学系LSを図面に基づいて説明する。図1、図3、図5、図7、図9、図11、図13、図15、図17は、第1~第9実施例に係る光学系LS{LS(1)~LS(9)}の構成及び屈折力配分を示す断面図である。第1~第4実施例に係る光学系LS(1)~LS(4)および第9実施例に係る光学系LS(9)の断面図では、合焦レンズ群が無限遠から近距離物体に合焦する際の移動方向を、「合焦」という文字とともに矢印で示している。第5~第8実施例に係る光学系LS(5)~LS(8)の断面図では、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群の光軸に沿った移動方向を矢印で示している。
 これら図1、図3、図5、図7、図9、図11、図13、図15、図17において、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。
 以下に表1~表9を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例、表4は第4実施例、表5は第5実施例、表6は第6実施例、表7は第7実施例、表8は第8実施例、表9は第9実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)、g線(波長λ=435.8nm)、C線(波長λ=656.3nm)、F線(波長λ=486.1nm)を選んでいる。
 [全体諸元]の表において、fはレンズ全系の焦点距離、FNОはFナンバー、2ωは画角(単位は°(度)で、ωが半画角である)、Yは像高を示す。TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離にBFを加えた距離を示し、BFは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離(バックフォーカス)を示す。なお、光学系が変倍光学系である場合、これらの値は、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態におけるそれぞれについて示している。
 [レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材料のd線に対する屈折率、νdは光学部材の材料のd線を基準とするアッベ数を、θgFは光学部材の材料の部分分散比をそれぞれ示す。曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りSをそれぞれ示す。空気の屈折率nd=1.00000の記載は省略している。光学面が非球面である場合には面番号に*a印を付し、光学面が回折光学面である場合には面番号に*b印を付して、曲率半径Rの欄には近軸曲率半径を示している。
 光学部材の材料のg線(波長λ=435.8nm)に対する屈折率をngとし、光学部材の材料のF線(波長λ=486.1nm)に対する屈折率をnFとし、光学部材の材料のC線(波長λ=656.3nm)に対する屈折率をnCとする。このとき、光学部材の材料の部分分散比θgFは次式(A)で定義される。
 θgF=(ng-nF)/(nF-nC)  …(A)
 [非球面データ]の表には、[レンズ諸元]に示した非球面について、その形状を次式(B)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離(ザグ量)を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。
 X(y)=(y2/R)/{1+(1-κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10 …(B)
 光学系が回折光学素子を有する場合、[回折光学面データ]において示す回折光学面の位相形状ψは、次式(C)によって表わされる。
 ψ(h,m)={2π/(m×λ0)}×(C2×h2+C4×h4+C6×h6…) …(C)
 但し、
 h:光軸に対して垂直な方向の高さ、
 m:回折光の回折次数、
 λ0:設計波長、
 Ci:位相係数(i=2,4,…)。
 なお、任意の波長λおよび任意の回折次数mにおける回折面の屈折力φDは、最も低次の位相係数C2を用いて、次式(D)のように表わすことができる。
 φD(h,m)=-2×C2×m×λ/λ0 …(D)
 [回折光学面データ]の表には、[レンズ諸元]に示した回折光学面について、式(C)における設計波長λ0、回折次数m、2次の位相係数C2、4次の位相係数C4を示す。「E-n」は、[非球面データ]の表と同様、「×10-n」を示す。
 光学系が変倍光学系でない場合、[近距離撮影時可変間隔データ]として、fはレンズ全系の焦点距離を、βは撮影倍率をそれぞれ示す。また、[近距離撮影時可変間隔データ]の表には、各焦点距離および撮影倍率に対応する、[レンズ諸元]において面間隔が「可変」となっている面番号での面間隔を示す。
 光学系が変倍光学系である場合、[変倍撮影時可変間隔データ]として、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態に対応する、[レンズ諸元]において面間隔が「可変」となっている面番号での面間隔を示す。また、[レンズ群データ]の表には、各レンズ群のそれぞれの始面(最も物体側の面)と焦点距離を示す。
 [条件式対応値]の表には、各条件式に対応する値を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
 ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。
 (第1実施例)
 第1実施例について、図1~図2および表1を用いて説明する。図1は、本実施形態の第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第1実施例に係る光学系LS(1)は、物体側から順に並んだ、コンバータレンズであり極めて弱い正の屈折力を有する(屈折力がほぼ零の)第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動する。開口絞りSは、第2レンズ群G2内に配設されている。各レンズ群記号に付けている符号(+)もしくは(-)は各レンズ群の屈折力を示し、このことは以下の全ての実施例でも同様である。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凹面を向けた負メニスカスレンズL12と、両凸形状の正レンズL13および物体側に凹面を向けた負メニスカスレンズL14からなる接合レンズと、両凹形状の負レンズL15および両凸形状の正レンズL16からなる接合レンズと、から構成される。本実施例では、第1レンズ群G1の負メニスカスレンズL11が物体側レンズに該当し、第1レンズ群G1の正レンズL13が条件式(1)~(3)等を満足する正レンズに該当する。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、両凸形状の正レンズL22と、両凸形状の正レンズL23および両凹形状の負レンズL24からなる接合レンズと、両凹形状の負レンズL25および両凸形状の正レンズL26からなる接合レンズと、両凸形状の正レンズL27と、から構成される。第2レンズ群G2の像側に、像面Iが配置される。第2レンズ群G2における正レンズL22と正レンズL23との間に、開口絞りSが配置される。正レンズL23は、物体側のレンズ面が非球面である。負レンズL25は、物体側のレンズ面が非球面である。正レンズL26は、像側のレンズ面が非球面である。
 以下の表1に、第1実施例に係る光学系の諸元の値を掲げる。
(表1)
[全体諸元]
  f    12.568
FNO     2.794
 2ω    153.703
  Y    14.20
 TL    97.296
 BF    15.046
[レンズ諸元]
 面番号     R     D     nd    νd   θgF
  1     436.92554   3.000   1.77250   49.62   0.552
  2     26.88525   15.423
  3     -58.29931   2.500   1.58913   61.22   0.540
  4    -127.59160   4.516
  5     43.18494   13.500   1.65940   26.87   0.633
  6     -26.22295   2.500   1.89190   37.13   0.578
  7    -107.86651   5.711
  8    -317.61480   2.500   1.84666   23.80   0.622
  9     46.68711   4.829   1.48749   70.31   0.529
  10    -32.19991   D10(可変)
  11    -35.15627   0.900   1.60342   38.03   0.583
  12     28.26677   1.124
  13     14.91232   2.972   1.88300   40.66   0.567
  14   -1328.42940   1.500
  15      ∞     2.573             (絞りS)
  16*a    28.76052   4.393   1.85135   40.10   0.569
  17     -8.90872   0.900   1.69895   30.13   0.602
  18     17.48905   3.478
  19*a    -8.68242   0.900   1.68893   31.16   0.604
  20    3943.13000   2.750   1.85135   40.10   0.569
  21*a   -14.56098   0.200
  22     83.48162   2.582   1.88300   40.66   0.567
  23    -48.89245   BF
[非球面データ]
 第16面
 κ=4.4706
 A4=-1.52E-04,A6=-1.27E-06,A8=-9.7E-09,A10=-5.1E-11
 第19面
 κ=-0.8841
 A4=1.54E-05,A6=2.22E-06,A8=-4.7E-09,A10=-7.7E-11
 第21面
 κ=1.1801
 A4=1.70E-04,A6=2.80E-09,A8=4.4E-09,A10=-6.6E-11
[近距離撮影時可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=12.568    β=-0.047
 D10    3.500      2.914
[条件式対応値]
 条件式(1)
  ndP1+(0.01425×νdP1)=2.042
 条件式(2),(2-1),(2-2)
  νdP1=26.87
 条件式(3)
  θgFP1+(0.00316×νdP1)=0.7179
 条件式(4),(4-1),(4-2)
  ndP1+(0.00787×νdP1)=1.871
 条件式(5)
  DP1=13.500
 条件式(6)
  ndP1=1.65940
 条件式(7)
  ndP1-(0.040×νdP1-2.470)×νdP1=35.830
 条件式(8)
  ndP1-(0.020×νdP1-1.080)×νdP1=12.920
 図2は、第1実施例に係る光学系の無限遠合焦状態における諸収差図である。各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図および歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(波長λ=587.6nm)、gはg線(波長λ=435.8nm)、CはC線(波長λ=656.3nm)、FはF線(波長λ=486.1nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。
 各諸収差図より、第1実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第2実施例)
 第2実施例について、図3~図4および表2を用いて説明する。図3は、本実施形態の第2実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第2実施例に係る光学系LS(2)は、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2と第3レンズ群G3とが異なる移動量で光軸に沿って物体側に移動する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設され、合焦の際、第3レンズ群G3とともに光軸に沿って移動する。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、両凹形状の負レンズL12と、物体側に凹面を向けた正メニスカスレンズL13、両凹形状の負レンズL14および両凸形状の正レンズL15からなる接合レンズと、から構成される。本実施例では、第1レンズ群G1の正メニスカスレンズL11が物体側レンズに該当する。
 第2レンズ群G2は、物体側から順に並んだ、両凸形状の正レンズL21と、両凸形状の正レンズL22および両凹形状の負レンズL23からなる接合レンズと、から構成される。本実施例では、第2レンズ群G2の正レンズL21が条件式(1)~(3)等を満足する正レンズに該当する。
 第3レンズ群G3は、物体側から順に並んだ、両凹形状の負レンズL31および両凸形状の正レンズL32からなる接合レンズと、両凸形状の正レンズL33および物体側に凹面を向けた負メニスカスレンズL34からなる接合レンズと、物体側に凸面を向けた正レンズL35と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。正レンズL35は、両側のレンズ面が非球面である。
 以下の表2に、第2実施例に係る光学系の諸元の値を掲げる。
(表2)
[全体諸元]
  f    47.001
FNO     1.402
 2ω    50.082
  Y    21.70
 TL    145.051
 BF    37.594
[レンズ諸元]
 面番号     R     D     nd    νd   θgF
  1     75.90770   6.887   1.95375   32.31   0.590
  2    1131.20200   6.023
  3    -189.73300   1.000   1.67270   32.19   0.597
  4     30.09380   14.422
  5     -46.99510   8.691   1.55332   71.67   0.540
  6     -22.85880   1.000   1.56732   42.58   0.575
  7     56.89480   8.513   1.88300   40.80   0.565
  8     -77.92800   D8(可変)
  9     59.38050   6.435   1.74971   24.66   0.627
  10    -274.17620   0.899
  11     41.10570   10.372   1.72916   54.66   0.545
  12    -50.03390   1.000   1.72825   28.38   0.607
  13     28.62810   D13(可変)
  14      ∞     9.166             (絞りS)
  15    -32.16080   1.000   1.61266   44.46   0.564
  16     26.85940   5.514   1.59282   68.69   0.544
  17    -602.32680   4.123
  18     37.58510   9.916   1.59282   68.69   0.544
  19    -36.02000   1.000   1.55298   55.07   0.545
  20    -147.30460   1.318
  21*a    81.53680   5.553   1.77250   49.49   0.554
  22*a  -7038.98050   BF
[非球面データ]
 第21面
 κ=1.0000
 A4=1.15E-05,A6=8.53E-09,A8=3.03E-11,A10=-6.3E-14
 第22面
 κ=1.0000
 A4=2.11E-05,A6=1.38E-08,A8=6.67E-11,A10=-7.4E-14
[近距離撮影時可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=47.001    β=-0.170
 D8    7.446       0.200
 D13    5.930       4.428
[条件式対応値]
 条件式(1)
  ndP1+(0.01425×νdP1)=2.101
 条件式(2),(2-1),(2-2)
  νdP1=24.66
 条件式(3)
  θgFP1+(0.00316×νdP1)=0.7049
 条件式(4),(4-1),(4-2)
  ndP1+(0.00787×νdP1)=1.944
 条件式(5)
  DP1=6.435
 条件式(6)
  ndP1=1.74971
 条件式(7)
  ndP1-(0.040×νdP1-2.470)×νdP1=34.836
 条件式(8)
  ndP1-(0.020×νdP1-1.080)×νdP1=12.721
 図4は、第2実施例に係る光学系の無限遠合焦状態における諸収差図である。各諸収差図より、第2実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第3実施例)
 第3実施例について、図5~図6並びに表3を用いて説明する。図5は、本実施形態の第3実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第3実施例に係る光学系LS(3)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って像側に移動する。開口絞りSは、第3レンズ群G3内に配設されている。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、両凸形状の正レンズL12と、両凸形状の正レンズL13および両凹形状の負レンズL14からなる接合レンズと、から構成される。本実施例では、第1レンズ群G1の正メニスカスレンズL11が物体側レンズに該当する。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL21および両凹形状の負レンズL22からなる接合レンズ、から構成される。本実施例では、第2レンズ群G2の正メニスカスレンズL21が条件式(1)~(3)等を満足する正レンズに該当する。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32および両凹形状の負レンズL33からなる接合レンズと、両凸形状の正レンズL34と、両凹形状の負レンズL35および両凸形状の正レンズL36からなる接合レンズと、両凹形状の負レンズL37および両凸形状の正レンズL38からなる接合レンズと、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3における負レンズL33と正レンズL34との間に、開口絞りSが配置される。
 以下の表3に、第3実施例に係る光学系の諸元の値を掲げる。
(表3)
[全体諸元]
  f    102.148
FNO     1.450
 2ω    23.842
  Y    21.63
 TL    150.819
 BF    39.632
[レンズ諸元]
 面番号     R     D     nd    νd   θgF
  1     228.14790   4.915   1.59349   67.00   0.537
  2    6415.62050   0.100
  3     98.03190   9.004   1.49700   81.61   0.539
  4    -860.70550   0.100
  5     70.05610   11.648   1.49700   81.61   0.539
  6    -266.98950   3.500   1.72047   34.71   0.583
  7     168.27370   D7(可変)
  8    -156.94440   4.000   1.65940   26.87   0.633
  9     -74.82770   2.500   1.51680   63.88   0.536
  10     48.83690   D10(可変)
  11     59.41150   7.084   2.00100   29.13   0.599
  12   -9603.99850   0.100
  13    101.99880   8.889   1.69680   55.52   0.543
  14    -54.38990   1.800   1.71736   29.57   0.604
  15     28.02300   5.843
  16      ∞     1.600             (絞りS)
  17    118.55000   5.540   1.49700   81.61   0.539
  18    -59.97360   0.100
  19    -74.13900   1.600   1.72047   34.71   0.583
  20     23.56120   8.119   1.76684   46.78   0.558
  21    -400.50550   2.828
  22    -39.02080   1.600   1.58144   40.98   0.576
  23    124.06960   5.332   2.00100   29.13   0.599
  24    -52.63590   BF
[近距離撮影時可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=102.148   β=-0.132
 D7    7.956      19.956
 D10    17.029      5.029
[条件式対応値]
 条件式(1)
  ndP1+(0.01425×νdP1)=2.042
 条件式(2),(2-1),(2-2)
  νdP1=26.87
 条件式(3)
  θgFP1+(0.00316×νdP1)=0.7179
 条件式(4),(4-1),(4-2)
  ndP1+(0.00787×νdP1)=1.871
 条件式(5)
  DP1=4.000
 条件式(6)
  ndP1=1.65940
 条件式(7)
  ndP1-(0.040×νdP1-2.470)×νdP1=35.830
 条件式(8)
  ndP1-(0.020×νdP1-1.080)×νdP1=12.920
 図6は、第3実施例に係る光学系の無限遠合焦状態における諸収差図である。各諸収差図より、第3実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第4実施例)
 第4実施例について、図7~図8および表4を用いて説明する。図7は、本実施形態の第4実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第4実施例に係る光学系LS(4)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って像側に移動する。開口絞りSは、第3レンズ群G3の物体側近傍に配設され、合焦の際、第1レンズ群G1および第3レンズ群G3と同様に、像面Iに対して固定される。
 第1レンズ群G1は、物体側から順に並んだ、極めて弱い屈折力を有する保護ガラスHGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13と、物体側に凸面を向けた負メニスカスレンズL14および物体側に凸面を向けた正メニスカスレンズL15からなる接合レンズと、から構成される。本実施例では、第1レンズ群G1の正レンズL11が物体側レンズに該当する。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22および両凹形状の負レンズL23からなる接合レンズと、から構成される。本実施例では、第2レンズ群G2の正メニスカスレンズL22が条件式(1)~(3)等を満足する正レンズに該当する。
 第3レンズ群G3は、物体側から順に並んだ、正の屈折力を有する第1部分群G31と、負の屈折力を有する第2部分群G32と、正の屈折力を有する第3部分群G33とを有している。第1部分群G31は、物体側から順に並んだ、両凸形状の正レンズL31および物体側に凹面を向けた負メニスカスレンズL32からなる接合レンズ、から構成される。第2部分群G32は、物体側から順に並んだ、両凸形状の正レンズL33および両凹形状の負レンズL34からなる接合レンズと、両凹形状の負レンズL35と、から構成される。第3部分群G33は、物体側から順に並んだ、両凸形状の正レンズL36と、両凸形状の正レンズL37および両凹形状の負レンズL38からなる接合レンズと、から構成される。第3レンズ群G3の第2部分群G33は、光軸と垂直な方向へ移動可能な防振レンズ群(部分群)を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。なお、第3レンズ群G3における第2部分群G32と第3部分群G33との間に、固定絞り(フレアカット絞り)Saが配置される。
 第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。抜き差し交換可能な光学フィルターFLとして、例えば、NCフィルター(ニュートラルカラーフィルター)や、カラーフィルター、偏光フィルター、NDフィルター(減光フィルター)、IRフィルター(赤外線カットフィルター)等が用いられる。
 以下の表4に、第4実施例に係る光学系の諸元の値を掲げる。
(表4)
[全体諸元]
  f    392.000
FNO     2.881
 2ω     6.245
  Y    21.63
 TL    396.319
 BF    74.502
[レンズ諸元]
 面番号     R     D     nd    νd   θgF
  1    1200.37020   5.000   1.51680   63.88   0.536
  2    1199.78950   1.000
  3     250.71590   16.414   1.43385   95.25   0.540
  4    -766.97150   45.000
  5     158.99440   18.720   1.43385   95.25   0.540
  6    -400.00000   2.261
  7    -377.29180   6.000   1.61266   44.46   0.564
  8     461.79700   95.451
  9     70.05760   4.000   1.79500   45.31   0.560
  10     47.57190   11.944   1.49782   82.57   0.539
  11    1223.84820   D11(可変)
  12    -546.41280   2.500   1.80610   40.97   0.569
  13     76.73180   6.996
  14    -241.81680   4.500   1.65940   26.87   0.633
  15    -56.62280   2.500   1.48749   70.32   0.529
  16    234.80990   D16(可変)
  17      ∞     5.100             (絞りS)
  18     95.57020   6.000   1.75500   52.33   0.548
  19    -75.36620   1.800   1.80809   22.74   0.629
  20    -757.80810   4.500
  21    279.80870   4.700   1.74971   24.66   0.627
  22    -82.76070   1.800   1.59319   67.90   0.544
  23     50.04470   3.390
  24    -226.07440   1.800   1.83481   42.73   0.565
  25    105.63280   4.250
  26      ∞     0.250
  27    105.07290   3.700   1.69680   55.52   0.543
    28    -158.46840   0.100
  29     92.25180   4.000   1.72047   34.71   0.583
  30    -129.17240   1.800   1.92119   23.96   0.620
  31    404.52160   7.500
  32      ∞     1.500   1.51680   63.88   0.536
  33      ∞     BF
[近距離撮影時可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=392.000    β=-0.173
 D11    13.847       29.047
 D16    33.495       18.295
[条件式対応値]
 条件式(1)
  ndP1+(0.01425×νdP1)=2.042
 条件式(2),(2-1),(2-2)
  νdP1=26.87
 条件式(3)
  θgFP1+(0.00316×νdP1)=0.7179
 条件式(4),(4-1),(4-2)
  ndP1+(0.00787×νdP1)=1.871
 条件式(5)
  DP1=4.500
 条件式(6)
  ndP1=1.65940
 条件式(7)
  ndP1-(0.040×νdP1-2.470)×νdP1=35.830
 条件式(8)
  ndP1-(0.020×νdP1-1.080)×νdP1=12.920
 図8は、第4実施例に係る光学系の無限遠合焦状態における諸収差図である。各諸収差図より、第4実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第5実施例)
 第5実施例について、図9~図10および表5を用いて説明する。図9は、本実施形態の第5実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第5実施例に係る光学系LS(5)は、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第4レンズ群G1~G4がそれぞれ図9の矢印で示す方向に移動する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設され、変倍の際、第2レンズ群G2とともに光軸に沿って移動する。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、両凹形状の負レンズL13と、両凸形状の正レンズL14と、から構成される。本実施例では、第1レンズ群G1の負メニスカスレンズL11が物体側レンズに該当し、第1レンズ群G1の正レンズL14が条件式(1)~(3)等を満足する正レンズに該当する。負メニスカスレンズL11は、両側のレンズ面が非球面である。負レンズL13は、像側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21および物体側に凸面を向けた正メニスカスレンズL22からなる接合レンズと、両凸形状の正レンズL23と、から構成される。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL31および両凹形状の負レンズL32からなる接合レンズと、物体側に凹面を向けた負メニスカスレンズL33と、両凸形状の正レンズL34と、から構成される。本実施例では、無限遠物体から近距離(有限距離)物体への合焦の際、第3レンズ群G3の負メニスカスレンズL33および正レンズL34が光軸に沿って像側に移動する。
 第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41および物体側に凹面を向けた負メニスカスレンズL42からなる接合レンズと、両凸形状の正レンズL43と、物体側に凹面を向けた正メニスカスレンズL44および物体側に凹面を向けた負メニスカスレンズL45からなる接合レンズと、から構成される。第4レンズ群G4の像側に、像面Iが配置される。負メニスカスレンズL45は、像側のレンズ面が非球面である。
 以下の表5に、第5実施例に係る光学系の諸元の値を掲げる。
(表5)
[全体諸元]
 変倍比 2.07
        W      M       T
  f    16.65     24.00     34.45
FNO     4.14      4.15      4.15
 2ω    53.79     41.95     31.59
  Y    21.60     21.60     21.60
 TL    245.879    245.879    245.879
 BF    39.00     49.01     65.28
[レンズ諸元]
 面番号     R     D     nd    νd   θgF
  1*a    174.00980   3.000   1.76684   46.78   0.5576
  2*a    19.00290   9.504
  3    2467.43120   1.550   1.88300   40.66   0.5668
  4     47.79750   5.082
  5     -58.98140   1.500   1.88300   40.66   0.5668
  6     131.38830   0.400   1.55389   38.09   0.5928
  7*a    338.15080   2.275
  8     58.67000   6.011   1.65940   26.87   0.6327
  9     -53.33540   D9(可変)
  10     48.43770   1.050   1.84666   23.80   0.6215
  11     18.35690   4.400   1.62004   36.40   0.5833
  12     86.30180   0.100
  13     29.42080   4.920   1.54270   46.52   0.5649
  14    -60.41780   13.037
  15      ∞     D15(可変)          (絞りS)
  16    -123.25200   2.504   1.62004   36.40   0.5833
  17    -25.39870   1.000   1.88300   40.66   0.5668
  18    172.17000   2.118
  19    -23.38080   0.800   1.88300   40.66   0.5668
  20    -107.86150   0.150
  21     95.70770   4.746   1.75520   27.58   0.6036
  22    -27.47760   D22(可変)
  23     35.36650   10.703   1.49782   82.57   0.5386
  24    -20.32710   1.100   1.83400   37.18   0.5778
  25    -937.90680   0.100
  26     42.41910   9.349   1.49782   82.57   0.5386
  27    -30.37810   0.100
  28    -82.86330   8.406   1.69981   48.62   0.5611
  29    -18.48470   1.600   1.80610   40.97   0.5688
  30*a   -514.67980   BF
[非球面データ]
 第1面
 κ=1.0000
 A4=3.80E-06,A6=3.24E-09,A8=0.00E+00,A10=0.00E+00
 第2面
 κ=1.0000
 A4=-2.16E-05,A6=0.00E+00,A8=0.00E+00,A10=0.00E+00
 第7面
 κ=1.0000
 A4=1.52E-05,A6=-1.98E-08,A8=4.77E-12,A10=0.00E+00
 第30面
 κ=1.0000
 A4=1.68E-05,A6=1.29E-08,A8=0.00E+00,A10=0.00E+00
[変倍撮影時可変間隔データ]
       W     M     T
 D9    31.945   14.177    2.000
 D15    3.000    8.124   13.036
 D22    9.233    5.684    1.200
[レンズ群データ]
 群   始面   焦点距離
 G1    1    -23.300
 G2    10    40.700
 G3    16   -100.700
 G4    23    71.100
[条件式対応値]
 条件式(1)
  ndP1+(0.01425×νdP1)=2.042
 条件式(2),(2-1),(2-2)
  νdP1=26.87
 条件式(3)
  θgFP1+(0.00316×νdP1)=0.7176
 条件式(4),(4-1),(4-2)
  ndP1+(0.00787×νdP1)=1.871
 条件式(5)
  DP1=6.011
 条件式(6)
  ndP1=1.65940
 条件式(7)
  ndP1-(0.040×νdP1-2.470)×νdP1=35.830
 条件式(8)
  ndP1-(0.020×νdP1-1.080)×νdP1=12.920
 図10(A)、図10(B)、および図10(C)はそれぞれ、第5実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第5実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第6実施例)
 第6実施例について、図11~図12および表6を用いて説明する。図11は、本実施形態の第6実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第6実施例に係る光学系LS(6)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第4レンズ群G1~G4がそれぞれ図11の矢印で示す方向に移動する。開口絞りSは、第3レンズ群G3の最も物体側に配設され、変倍の際、第3レンズ群G3とともに光軸に沿って移動する。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および物体側に凸面を向けた正メニスカスレンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。本実施例では、第1レンズ群G1の負メニスカスレンズL11が物体側レンズに該当する。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24と、から構成される。本実施例では、第2レンズ群G2の正レンズL23が条件式(1)~(3)等を満足する正レンズに該当する。負メニスカスレンズL21は、物体側のレンズ面が非球面である。負メニスカスレンズL24は、像側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凹面を向けた正メニスカスレンズL32および物体側に凹面を向けた負メニスカスレンズL33からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL34および両凸形状の正レンズL35からなる接合レンズと、から構成される。正レンズL35は、像側のレンズ面が非球面である。
 第4レンズ群G4は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL41と、両凸形状の正レンズL42および両凹形状の負レンズL43からなる接合レンズと、から構成される。本実施例では、第4レンズ群G4の正レンズL42および負レンズL43からなる接合レンズを光軸に沿って移動させることにより、合焦を行う。
 第5レンズ群G5は、物体側から順に並んだ、両凸形状の正レンズL51と、物体側に凸面を向けた負メニスカスレンズL52と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。
 以下の表6に、第6実施例に係る光学系の諸元の値を掲げる。
(表6)
[全体諸元]
 変倍比 7.85
        W      M       T
  f    24.72     58.06     194.00
FNO     3.6      5.5      6.5
 2ω    85.214     39.016     12.106
  Y    21.60     21.60     21.60
 TL    149.280    177.480    204.279
 BF    41.57417    41.57416    41.57414
[レンズ諸元]
 面番号     R     D     nd    νd   θgF
  1     106.2691    1.50009  1.948329   29.38  0.5986
  2     55.80163   7.30993  1.49782    82.57  0.5386
  3     721.044    0.50000
  4     56.41199   6.09566  1.755124   52.3   0.5546
  5     228.7709    D5(可変)
  6*a    351.2249    1.50017  1.766453   49.52  0.5595
  7     14.18364   9.01226
  8     -33.6001    1.66909  1.765555   50.3   0.5581
  9    -897.93     0.56126
  10     84.50917   4.54086  1.749714   24.66  0.6272
  11    -27.578    0.72854
  12    -25.0651    1.60720  1.85108    40.12  0.5685
  13*a   -68.5357    D13(可変)
  14      ∞     0.50000            (絞りS)
  15     22.36461   5.76460  1.622737   37.84  0.5805
  16    -41.5197    0.53608
  17    -49.778    2.77298  1.601161   59.42  0.5426
  18    -25.8168    1.50000  1.949966   29.37  0.5987
  19    -488.723    0.73221
  20     21.29787   1.55564  1.949962   29.19  0.5991
  21     12.32916   7.99913  1.514583   66.9   0.5319
  22*a   -34.5982    D22(可変)
  23    -18.915    3.76687  1.659561   33.71  0.5887
  24    -20.5674   20.49954
  25    125.1181    2.44870  1.717883   32.43  0.5914
  26    -28.3836    1.50000  1.722329   53.46  0.5526
  27     25.2098    D27(可変)
  28     43.35023   4.87974  1.526294   53.27  0.5529
  29    -77.8742    0.50000
  30     65.86578   1.50000  1.95     29.37  0.5987
  31     31.35903   BF
[非球面データ]
 第6面
 κ=2.0000
 A4=8.04557E-06,A6=-1.75069E-08,A8=2.16280E-11,A10=-1.75432E-14
 第13面
 κ=0.7223
 A4=-4.49448E-06,A6=-9.55340E-09,A8=-2.86951E-12,A10=-1.24795E-13
 第22面
 κ=1.5559
 A4=2.87124E-05,A6=-2.90386E-08,A8=-2.57823E-10,A10=5.13004E-13
[変倍撮影時可変間隔データ]
       W     M     T
 D5    0.5    18.19587  50.27128
 D13   32.59041  16.20141   0.50004
 D22    1.55479   5.41058  12.0062
 D27    1.57961  24.6165   28.44611
[レンズ群データ]
 群   始面   焦点距離
 G1    1    96.6403
 G2    6    -16.9148
 G3    14    25.6849
 G4    23    -40.1664
 G5    28    233.4501
[条件式対応値]
 条件式(1)
  ndP1+(0.01425×νdP1)=2.101
 条件式(2),(2-1),(2-2)
  νdP1=24.66
 条件式(3)
  θgFP1+(0.00316×νdP1)=0.7051
 条件式(4),(4-1),(4-2)
  ndP1+(0.00787×νdP1)=1.944
 条件式(5)
  DP1=4.54086
 条件式(6)
  ndP1=1.749714
 条件式(7)
  ndP1-(0.040×νdP1-2.470)×νdP1=34.836
 条件式(8)
  ndP1-(0.020×νdP1-1.080)×νdP1=12.721
 図12(A)、図12(B)、および図12(C)はそれぞれ、第6実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第6実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第7実施例)
 第7実施例について、図13~図14および表7を用いて説明する。図13は、本実施形態の第7実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第7実施例に係る光学系LS(7)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第5レンズ群G1~G5がそれぞれ図13の矢印で示す方向に移動する。開口絞りSは、第2レンズ群G2内に配設されている。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。本実施例では、第1レンズ群G1の負メニスカスレンズL11が物体側レンズに該当する。正メニスカスレンズL13における像側のレンズ面に、回折光学素子DOEが配設される。回折光学素子DOEは、例えば、互いに異なる材質の2種類の回折素子要素が同一の回折格子溝で接する密着複層型の回折光学素子であり、2種類の紫外線硬化樹脂によって所定の格子高さを有する1次の回折格子(光軸に対して回転対称形状の回折格子)が形成される。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21および物体側に凸面を向けた正メニスカスレンズL22からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズL23と、物体側に凸面を向けた正メニスカスレンズL24と、から構成される。第2レンズ群G2における正メニスカスレンズL23と正メニスカスレンズL24との間に、開口絞りSが配置される。本実施例では、第2レンズ群G2の正メニスカスレンズL22が条件式(1)~(3)等を満足する正レンズに該当する。第2レンズ群G2の負レンズL21および正メニスカスレンズL22からなる接合レンズと、正メニスカスレンズL23とは、光軸と垂直な方向へ移動可能な防振レンズ群(部分群)を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL31と、両凸形状の正レンズL32と、から構成される。
 第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41および物体側に凹面を向けた負メニスカスレンズL42からなる接合レンズ、から構成される。
 第5レンズ群G5は、物体側から順に並んだ、両凸形状の正レンズL51および両凹形状の負レンズL52からなる接合レンズ、から構成される。本実施例では、第5レンズ群G5の全体を光軸に沿って移動させることにより、合焦を行う。
 第6レンズ群G6は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL61および両凸形状の正レンズL62からなる接合レンズと、両凹形状の負レンズL63と、物体側に凹面を向けた負メニスカスレンズL64と、から構成される。第6レンズ群G6の像側に、像面Iが配置される。
 以下の表7に、第7実施例に係る光学系の諸元の値を掲げる。
(表7)
[全体諸元]
 変倍比 2.00
        W      M       T
  f    199.985    300.128    400.487
FNO     5.770     5.773     7.777
 2ω    12.088     8.032     3.016
  Y    21.60     21.60     21.60
 TL    218.509    276.018    309.437
 BF    63.575     63.605     63.797
[レンズ諸元]
 面番号     R     D     nd    νd  θgF
  1     338.9295   3.0000   1.806100   33.34  0.5904
  2     157.1292   7.1098   1.487490   70.32
  3    -645.1901   0.1000
  4     127.7241   6.3846   1.516800   64.13
  5*b   1000.0000   D5(可変)
  6    -122.6329   1.7000   1.743997   44.79
  7     65.7202   3.5689   1.659398   26.87  0.6323
  8     249.7691   15.0000
  9     -47.9778   3.5000   1.756462   24.89  0.6196
  10    -45.0509   2.2932
  11      ∞    0.5000             (絞りS)
  12     43.2479   2.9936   1.620041   36.26
  13     64.4050   D13(可変)
  14     82.9323   1.7000   1.808090   22.74
  15     46.2622   3.6463
  16     71.4836   4.1939   1.612720   58.54
  17    -405.4059   D17(可変)
  18     56.3851   6.9255   1.497820   82.57
  19    -60.8758   1.7000   1.755000   52.33
  20    -374.3030   D20(可変)
  21    102.7274   2.4918   1.592701   35.31
  22    -125.8788   1.0000   1.755000   52.33
  23     40.8982   D23(可変)
  24    121.6273   1.7000   1.659398   26.87  0.6323
  25     52.1810   5.7438   1.595510   39.21
  26    -42.4345   0.1000
  27    -97.3797   1.5000   1.456000   91.37
  28     59.1706   12.2493
  29    -26.6286   1.5000   1.755000   52.33  0.5476
  30    -37.6940   BF
[回折光学面データ]
 第5面
 λ0=587.6
 m=1
 C2=-2.57E-05
 C4=-2.04E-11
[変倍撮影時可変間隔データ]
       W     M     T
 D5    11.860   93.192   119.742
 D13   10.900    0.500    3.244
 D17    0.600    5.172    0.600
 D20   34.411   13.877    0.200
 D23    6.561    9.070   31.254
[レンズ群データ]
 群   始面   焦点距離
 G1    1    213.671
 G2    6   -546.584
 G3    14    370.319
 G4    18    149.206
 G5    21    -72.703
 G6    24   -875.523
[条件式対応値]
 条件式(1)
  ndP1+(0.01425×νdP1)=2.042
 条件式(2),(2-1),(2-2)
  νdP1=26.87
 条件式(3)
  θgFP1+(0.00316×νdP1)=0.7172
 条件式(4),(4-1),(4-2)
  ndP1+(0.00787×νdP1)=1.871
 条件式(5)
  DP1=3.5689
 条件式(6)
  ndP1=1.659398
 条件式(7)
  ndP1-(0.040×νdP1-2.470)×νdP1=35.830
 条件式(8)
  ndP1-(0.020×νdP1-1.080)×νdP1=12.920
 図14(A)、図14(B)、および図14(C)はそれぞれ、第7実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第7実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第8実施例)
 第8実施例について、図15~図16および表8を用いて説明する。図15は、本実施形態の第8実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第8実施例に係る光学系LS(8)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第2レンズ群G2と第4レンズ群G4とがそれぞれ図15の矢印で示す方向に移動する。開口絞りSは、第3レンズ群G3の物体側近傍に配設され、変倍の際、第1レンズ群G1と、第3レンズ群G3と、第5レンズ群G5と同様に、像面Iに対して固定される。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。本実施例では、第1レンズ群G1の負メニスカスレンズL11が物体側レンズに該当する。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けた正メニスカスレンズL23と、両凹形状の負レンズL24と、から構成される。本実施例では、第2レンズ群G2の正メニスカスレンズL23が条件式(1)~(3)等を満足する正レンズに該当する。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けた片平形状の正レンズL32と、物体側に凸面を向けた正メニスカスレンズL33と、両凹形状の負レンズL34と、両凸形状の正レンズL35および両凹形状の負レンズL36からなる接合レンズと、から構成される。
 第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41と、物体側に凸面を向けた負メニスカスレンズL42および物体側に凸面を向けた正メニスカスレンズL43からなる接合レンズと、から構成される。本実施例では、無限遠物体から近距離(有限距離)物体への合焦の際、第4レンズ群G4の全体が光軸に沿って物体側に移動する。
 第5レンズ群G5は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52および両凹形状の負レンズL53からなる接合レンズと、像側に凹面を向けた片平形状の負レンズL54と、両凸形状の正レンズL55と、物体側に凸面を向けた正メニスカスレンズL56と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。
 以下の表8に、第8実施例に係る光学系の諸元の値を掲げる。
(表8)
[全体諸元]
 変倍比 2.74
        W      M       T
  f    71.5     135.0     196.0
FNO     2.859     2.902     2.881
 2ω    33.642     17.738     12.209
  Y    21.60     21.60     21.60
 TL    245.879    245.770    245.789
 BF    53.966     53.966     53.966
[レンズ諸元]
 面番号     R     D     nd    νd   θgF
  1     123.4009    2.8    1.95     29.37   0.600
  2     87.56469   9.9    1.49782   82.57   0.539
  3    -1181.09     0.1
  4     93.41088   7.7    1.433852   95.25   0.540
  5     711.1154    D5(可変)
  6     70.14635   2.4    1.71999   50.27   0.553
  7     33.21159   10.25
  8    -115.534    2     1.618    63.34   0.541
  9     123.4243    2
  10     53.14446   4.4    1.749714   24.66   0.627
  11    333.2994    3.55
  12    -77.3115    2.2    1.603    65.44   0.539
  13    202.6654    D13(可変)
  14      ∞     2.5              (絞りS)
  15    581.5556    3.7    1.83481   42.73   0.565
  16    -130.482    0.2
  17     90.3298    3.85    1.59319   67.9    0.544
  18      ∞     0.2
  19     52.76588   4.9    1.49782   82.57   0.539
  20    448.6586    2.04364
  21    -118.745    2.2    2.001    29.12   0.600
  22    173.2289    4.55
  23    114.6359    5.75    1.90265   35.73   0.580
  24    -66.799    2.2    1.58144   40.98   0.576
  25     41.99665   D25(可変)
  26     57.83565   4.8    1.49782   82.57   0.539
  27    -190.077    0.1
  28     44.19055   2     1.95     29.37   0.600
  29     28.478    5.55    1.59319   67.9    0.544
  30    166.4062    D30(可変)
  31     52.69825   1.8    1.804    46.6    0.557
  32     31.18732   5.15
  33    102.8337    3.35    1.84666   23.83   0.620
  34    -102.758    1.6    1.71999   50.27   0.553
  35     42.05936   2.58303
  36      ∞     1.6    1.95375   32.33   0.591
  37     68.58142   3.75
  38    101.2296    3.85    1.59319   67.9    0.544
  39    -172.177    0.15
  40     47.98548   3.9    1.71999   50.27   0.553
  41    137.9944    BF
[変倍撮影時可変間隔データ]
       W     M     T
 D5    3.223   34.216   51.137
 D13   50.289   19.296    2.375
 D25   16.922   14.139   16.940
 D30    1.903    4.686    1.884
[レンズ群データ]
 群   始面   焦点距離
 G1    1    143.981
 G2    6    -45.565
 G3    14    94.464
 G4    26    58.195
 G5    31   -109.088
[条件式対応値]
 条件式(1)
  ndP1+(0.01425×νdP1)=2.101
 条件式(2),(2-1),(2-2)
  νdP1=24.66
 条件式(3)
  θgFP1+(0.00316×νdP1)=0.7049
 条件式(4),(4-1),(4-2)
  ndP1+(0.00787×νdP1)=1.944
 条件式(5)
  DP1=4.4
 条件式(6)
  ndP1=1.749714
 条件式(7)
  ndP1-(0.040×νdP1-2.470)×νdP1=34.836
 条件式(8)
  ndP1-(0.020×νdP1-1.080)×νdP1=12.721
 図16(A)、図16(B)、および図16(C)はそれぞれ、第8実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第8実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第9実施例)
 第9実施例について、図17~図18および表9を用いて説明する。図17は、本実施形態の第9実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第9実施例に係る光学系LS(9)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って像側に移動する。開口絞りSは、第3レンズ群G3の物体側近傍に配設され、合焦の際、第1レンズ群G1および第3レンズ群G3と同様に、像面Iに対して固定される。
 第1レンズ群G1は、物体側から順に並んだ、極めて弱い屈折力を有する保護ガラスHGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13と、物体側に凸面を向けた負メニスカスレンズL14および物体側に凸面を向けた正メニスカスレンズL15からなる接合レンズと、から構成される。本実施例では、第1レンズ群G1の正レンズL11が物体側レンズに該当する。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22および両凹形状の負レンズL23からなる接合レンズと、から構成される。本実施例では、第2レンズ群G2の正メニスカスレンズL22が条件式(1)~(3)等を満足する正レンズに該当する。
 第3レンズ群G3は、物体側から順に並んだ、正の屈折力を有する第1部分群G31と、負の屈折力を有する第2部分群G32と、正の屈折力を有する第3部分群G33とを有している。第1部分群G31は、物体側から順に並んだ、両凸形状の正レンズL31および物体側に凹面を向けた負メニスカスレンズL32からなる接合レンズ、から構成される。第2部分群G32は、物体側から順に並んだ、両凸形状の正レンズL33および両凹形状の負レンズL34からなる接合レンズと、両凹形状の負レンズL35と、から構成される。第3部分群G33は、物体側から順に並んだ、両凸形状の正レンズL36と、両凸形状の正レンズL37および両凹形状の負レンズL38からなる接合レンズと、から構成される。第3レンズ群G3の第2部分群G33は、光軸と垂直な方向へ移動可能な防振レンズ群(部分群)を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。第3レンズ群G3の像側に、像面Iが配置される。
 以下の表9に、第9実施例に係る光学系の諸元の値を掲げる。
(表9)
[全体諸元]
  f    392.000
FNO     2.880
 2ω     6.240
  Y    21.63
 TL    395.808
 BF    82.991
[レンズ諸元]
 面番号     R     D     nd    νd   θgF
  1    1200.37020   5.000   1.51680   63.88   0.536
  2    1199.78950   1.000
  3     240.22360   17.017   1.43385   95.25   0.540
  4    -729.29990   45.000
  5     160.88120   18.323   1.43385   95.25   0.540
  6    -400.00000   2.375
  7    -367.69050   6.000   1.61266   44.46   0.564
  8     428.09960   94.771
  9     69.79560   4.000   1.79500   45.31   0.560
  10     47.51370   11.999   1.49782   82.57   0.539
  11    1422.36780   D11(可変)
  12    -535.33080   2.500   1.79500   45.31   0.560
  13     77.99670   4.269
  14    -254.93650   4.500   1.61155   31.26   0.618
  15    -52.91530   2.500   1.48749   70.32   0.529
  16    239.57030   D16(可変)
  17      ∞     5.100             (絞りS)
  18    102.03190   6.000   1.75500   52.33   0.548
  19    -79.94970   1.800   1.80809   22.74   0.629
  20    -555.10010   4.500
  21    216.25360   4.700   1.74971   24.66   0.627
  22    -92.01210   1.800   1.59319   67.90   0.544
  23     49.75230   3.446
  24    -226.07440   1.800   1.83481   42.73   0.565
  25    106.00750   4.500
  26    105.90030   3.700   1.69680   55.52   0.543
  27    -165.71400   0.100
  28     91.71790   4.000   1.72047   34.71   0.583
  29    -129.60590   1.800   1.92119   23.96   0.620
  30    366.08650   BF
[近距離撮影時可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=392.000    β=-0.173
 D11    13.810       29.010
 D16    36.508       21.308
[条件式対応値]
 条件式(1)
  ndP1+(0.01425×νdP1)=2.057
 条件式(2),(2-1),(2-2)
  νdP1=31.26
 条件式(3)
  θgFP1+(0.00316×νdP1)=0.7173
 条件式(4),(4-1),(4-2)
  ndP1+(0.00787×νdP1)=1.858
 条件式(5)
  DP1=4.500
 条件式(6)
  ndP1=1.61155
 条件式(7)
  ndP1-(0.040×νdP1-2.470)×νdP1=36.513
 条件式(8)
  ndP1-(0.020×νdP1-1.080)×νdP1=12.605
 図18は、第9実施例に係る光学系の無限遠合焦状態における諸収差図である。各諸収差図より、第9実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
 上記各実施例によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系を実現することができる。
 ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
 なお、以下の内容は、本実施形態の光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 合焦レンズ群とは、合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示すものとする。すなわち、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。この合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。
 本実施形態の光学系の第4、第7、第9実施例において、防振機能を有する構成のものを示したが、本願はこれに限られず、防振機能を有していない構成とすることもできる。また、防振機能を有していない他の実施例についても、防振機能を有する構成とすることができる。
 レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。
 レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。
 各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
 G1 第1レンズ群          G2 第2レンズ群
 G3 第3レンズ群          G4 第4レンズ群
 G5 第5レンズ群          G6 第6レンズ群
  I 像面               S 開口絞り

Claims (9)

  1.  開口絞りと、前記開口絞りより物体側に配置された以下の条件式を満足する正レンズとを有する光学系。
     ndP1+(0.01425×νdP1)<2.12
     18.0<νdP1<35.0
     0.702<θgFP1+(0.00316×νdP1)
     但し、ndP1:前記正レンズのd線に対する屈折率
        νdP1:前記正レンズのd線を基準とするアッベ数
        θgFP1:前記正レンズの部分分散比であり、前記正レンズのg線に対する屈折率をngP1とし、前記正レンズのF線に対する屈折率をnFP1とし、前記正レンズのC線に対する屈折率をnCP1としたとき、次式で定義される
     θgFP1=(ngP1-nFP1)/(nFP1-nCP1)
  2.  前記正レンズは、以下の条件式を満足する請求項1に記載の光学系。
     1.83<ndP1+(0.00787×νdP1)
  3.  前記正レンズは、以下の条件式を満足する請求項1に記載の光学系。
     18.0<νdP1<26.5
     1.83<ndP1+(0.00787×νdP1)
  4.  前記正レンズは、以下の条件式を満足する請求項1に記載の光学系。
     25.0<νdP1<35.0
     1.83<ndP1+(0.00787×νdP1)
  5.  前記正レンズは、以下の条件式を満足する請求項1~4のいずれか一項に記載の光学系。
     DP1>0.80
     但し、DP1:前記正レンズの光軸上の厚さ[mm]
  6.  最も物体側に配置された物体側レンズを有し、
     前記開口絞りが前記物体側レンズより像側に配置され、
     前記物体側レンズより像側で、前記正レンズが前記開口絞りより物体側に配置される請求項1~5のいずれか一項に記載の光学系。
  7.  前記正レンズは、ガラスレンズである請求項1~6のいずれか一項に記載の光学系。
  8.  請求項1~7のいずれか一項に記載の光学系を備えて構成される光学機器。
  9.  開口絞りと、前記開口絞りより物体側に配置された以下の条件式を満足する正レンズとを有するように、
     レンズ鏡筒内に各レンズを配置する光学系の製造方法。
     ndP1+(0.01425×νdP1)<2.12
     18.0<νdP1<35.0
     0.702<θgFP1+(0.00316×νdP1)
     但し、ndP1:前記正レンズのd線に対する屈折率
        νdP1:前記正レンズのd線を基準とするアッベ数
        θgFP1:前記正レンズの部分分散比であり、前記正レンズのg線に対する屈折率をngP1とし、前記正レンズのF線に対する屈折率をnFP1とし、前記正レンズのC線に対する屈折率をnCP1としたとき、次式で定義される
     θgFP1=(ngP1-nFP1)/(nFP1-nCP1)
PCT/JP2017/045183 2017-12-15 2017-12-15 光学系、光学機器、および光学系の製造方法 WO2019116563A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/045183 WO2019116563A1 (ja) 2017-12-15 2017-12-15 光学系、光学機器、および光学系の製造方法
JP2019558853A JP6881602B2 (ja) 2017-12-15 2017-12-15 光学系および光学機器
JP2021073055A JP2021105744A (ja) 2017-12-15 2021-04-23 光学系および光学機器
JP2023032732A JP2023065618A (ja) 2017-12-15 2023-03-03 光学系、光学機器、および光学系の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045183 WO2019116563A1 (ja) 2017-12-15 2017-12-15 光学系、光学機器、および光学系の製造方法

Publications (1)

Publication Number Publication Date
WO2019116563A1 true WO2019116563A1 (ja) 2019-06-20

Family

ID=66819147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045183 WO2019116563A1 (ja) 2017-12-15 2017-12-15 光学系、光学機器、および光学系の製造方法

Country Status (2)

Country Link
JP (3) JP6881602B2 (ja)
WO (1) WO2019116563A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021117429A1 (ja) * 2019-12-10 2021-06-17
CN114270238A (zh) * 2019-08-30 2022-04-01 株式会社尼康 光学系统、光学设备及光学系统的制造方法以及变倍光学系统、光学设备及变倍光学系统的制造方法
CN114755806A (zh) * 2022-06-10 2022-07-15 深圳市雷影光电科技有限公司 一种大光圈长焦镜头
JP7495119B2 (ja) 2020-10-28 2024-06-04 株式会社シグマ 単焦点レンズ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349948A (ja) * 2005-06-15 2006-12-28 Canon Inc 光学系及びそれを有する光学機器
JP2007025653A (ja) * 2005-06-15 2007-02-01 Canon Inc 光学系
JP2009280724A (ja) * 2008-05-23 2009-12-03 Olympus Corp 光学用の材料組成物およびそれを用いた光学素子
JP2017190280A (ja) * 2016-04-15 2017-10-19 株式会社オハラ 光学ガラス

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249501A (ja) * 2008-04-07 2009-10-29 Kao Corp 香料組成物
JP5253043B2 (ja) * 2008-08-27 2013-07-31 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5624963B2 (ja) * 2011-09-06 2014-11-12 東芝テック株式会社 情報処理装置及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349948A (ja) * 2005-06-15 2006-12-28 Canon Inc 光学系及びそれを有する光学機器
JP2007025653A (ja) * 2005-06-15 2007-02-01 Canon Inc 光学系
JP2009280724A (ja) * 2008-05-23 2009-12-03 Olympus Corp 光学用の材料組成物およびそれを用いた光学素子
JP2017190280A (ja) * 2016-04-15 2017-10-19 株式会社オハラ 光学ガラス

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114270238A (zh) * 2019-08-30 2022-04-01 株式会社尼康 光学系统、光学设备及光学系统的制造方法以及变倍光学系统、光学设备及变倍光学系统的制造方法
JPWO2021117429A1 (ja) * 2019-12-10 2021-06-17
WO2021117429A1 (ja) * 2019-12-10 2021-06-17 株式会社ニコン 光学系、光学機器、および光学系の製造方法
JP7495119B2 (ja) 2020-10-28 2024-06-04 株式会社シグマ 単焦点レンズ
CN114755806A (zh) * 2022-06-10 2022-07-15 深圳市雷影光电科技有限公司 一种大光圈长焦镜头
CN114755806B (zh) * 2022-06-10 2022-09-02 深圳市雷影光电科技有限公司 一种大光圈长焦镜头

Also Published As

Publication number Publication date
JP2021105744A (ja) 2021-07-26
JP6881602B2 (ja) 2021-06-02
JP2023065618A (ja) 2023-05-12
JPWO2019116563A1 (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
JP2021105744A (ja) 光学系および光学機器
WO2018235881A1 (ja) 変倍光学系、光学装置および変倍光学系の製造方法
WO2020105104A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法
JP2021105747A (ja) 光学系および光学機器
JP2021105746A (ja) 光学系および光学機器
WO2017057662A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
WO2018074413A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP2022060546A (ja) 光学系、光学機器、および光学系の製造方法
JP2021105745A (ja) 光学系および光学機器
CN111465881B (zh) 光学系统以及光学设备
JPWO2017131223A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
WO2020105103A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法
CN111512203B (zh) 光学系统以及光学设备
CN112136068B (zh) 光学系统以及光学设备
WO2014069447A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP7218814B2 (ja) 変倍光学系および光学機器
JP2017102201A (ja) ズームレンズ、光学機器、およびズームレンズの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934655

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558853

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934655

Country of ref document: EP

Kind code of ref document: A1