WO2019115637A1 - Torsion damper with phasing means - Google Patents

Torsion damper with phasing means Download PDF

Info

Publication number
WO2019115637A1
WO2019115637A1 PCT/EP2018/084610 EP2018084610W WO2019115637A1 WO 2019115637 A1 WO2019115637 A1 WO 2019115637A1 EP 2018084610 W EP2018084610 W EP 2018084610W WO 2019115637 A1 WO2019115637 A1 WO 2019115637A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling body
pinion
rolling
toothed
notched
Prior art date
Application number
PCT/EP2018/084610
Other languages
French (fr)
Inventor
Ivan Dutier
Christophe Dhalleine
Original Assignee
Valeo Embrayages
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Embrayages filed Critical Valeo Embrayages
Publication of WO2019115637A1 publication Critical patent/WO2019115637A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/1336Leaf springs, e.g. radially extending
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/13157Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses with a kinematic mechanism or gear system, e.g. planetary

Definitions

  • the invention relates to the field of torsion dampers intended to equip motor vehicle transmissions.
  • Motor vehicle transmissions are generally equipped with a torsion damper enabling the vibrations upstream of the gearbox to be filtered in such a way as to avoid particularly undesirable shocks, noises or noise.
  • damping systems include damping dual flywheels (DVA) and / or clutch friction, in the case of a manual or robotic transmission, or locking clutches, also called “lock-up” clutches, equipping the hydraulic coupling devices, in the case of an automatic transmission.
  • the damping systems comprise resilient damping means rotatably coupling an input member and an output member so as to allow torque transmission and damping of rotational acyclisms.
  • the document FR3000155 discloses a damping system in which the elastic damping means are formed of two flexible blades.
  • the two flexible blades are mounted on one of the input and output elements of the damping system and each cooperate with an associated cam follower.
  • This cam follower comprises a roller rotatably mounted on the other of the input and output elements.
  • the document FR3032248 discloses a damping system offering a large clearance between the input element and the output element.
  • the damping system described in document FR3032248 comprises two flexible blades mounted on one of the input and output elements, these flexible blades being similar to the flexible blades described above with reference to the document FR3000155.
  • the other input and output element has two additional cam surfaces.
  • the cam followers are formed by rolling bodies moving both on the cam surfaces carried by the blades and on the cam surfaces carried by the other one of the input and output elements, thereby increasing the possible angular movement between the input element and the output element.
  • the document FR3032248 discloses a rolling body in the form of a toothed wheel, the cam surfaces being made in the form of toothed portions meshing with the toothed wheels.
  • the stiffness of the blade is difficult to control because of the presence of teeth on the cam surface on which the rolling body moves.
  • the torque transmitted between the output member and the input member is limited by the presence of meshing teeth between the rolling body and the cam surface.
  • these teeth undergo significant stresses when transmitting the torque between the input member and the output member, these stresses being able to degrade the teeth of the cam surface and / or the rolling body.
  • the blade described in FR3032248 is difficult to achieve.
  • An idea underlying the invention is to provide a torsion damper having good characteristics of damping and torque transmission in a reliable and simple manner.
  • An idea underlying the invention is to control the displacements of the rolling body with respect to the input element and / or the output element.
  • An idea underlying the invention is to provide a torsion damper with a low risk of degradation during the transmission of torque.
  • the invention provides a torsion damper for a motor vehicle transmission chain comprising:
  • an elastic damping device coupling the first member and the second member to provide vibration damping torque transmission between the first member and the second member
  • said elastic damping device comprising:
  • a rolling body cooperating with the first rolling track and with the second rolling track, said rolling body having an axis of rotation of said rolling body, said rolling body being able to move by rolling on said first and second raceways during rolling. a relative rotation between the first element and the second element;
  • said first and second race tracks being arranged such that, for relative rotation between the first member and the second member from an angular rest position, the first rolling body moving on the first and second raceways exerts a bending force on the elastic connection and that the elastic connection produces a reaction force on the rolling body so as to return the first element and the second element to the angular position of rest;
  • the resilient damping device further comprising a toothed pinion integral in rotation with the rolling body about the X axis, said toothed pinion being axially offset with the rolling body, said notched pinion being arranged to mesh with a toothed member carried by the one among the first element and the second element.
  • the displacement of the rolling body on the rolling track carried by said one of the first element and the second element is synchronized with a rotation of the rolling body around its axis of rotation.
  • the rolling tracks with which the rolling body cooperates are simple to perform, these race tracks being dissociated from the synchronization system of the rotation of the rolling body and its displacement along said raceway.
  • such a damping system may have one or more of the following characteristics.
  • the cooperation between the rolling body and said one of the first element and the second element is without sliding when the notched pinion meshes with the toothed member.
  • the meshing of the rolling body with the toothed member carried by said one of the first element and the second element prevents the sliding of the rolling body with respect to said one of the first element and the second element.
  • toothed body and the rolling body By cooperation, between the toothed body and the rolling body is meant the interpenetration of the teeth of the rolling body and the toothed member, with or without circumferential play.
  • the rolling body and the notched pinion are coaxial.
  • the notched pinion cooperates with the toothed member with a set of meshing.
  • the torsion damper and in particular the notched pinion and the toothed member, presents a low risk of degradation. Indeed, such a game limit or even completely avoids the possibility of support between the teeth of the notched pinion and the teeth of the toothed member so that the torque transmitted between the first element and the second element transits mainly, ideally integrally, by the rolling body and the rolling tracks and transits little, ideally not, by the toothed member and the notched pinion.
  • sliding of the rolling body on the rolling track carried by said one of the first element and the second element is slaved to the meshing clearance between the notched pinion and the toothed member, this corresponding slip and being limited play necessary for a support takes place between the teeth of the toothed member and the teeth of the notched pinion.
  • the clearance between the teeth of the toothed pinion and the teeth of the toothed member determines the amplitude of the permitted sliding of the rolling body on said raceway.
  • the teeth of the toothed member and the toothed pinion limit the sliding of the rolling body on said raceway to the only slip necessary to fill the game present between said teeth.
  • the notched pinion can be secured in rotation to the rolling body in many ways.
  • the notched pinion is integral with the rolling body.
  • the notched pinion is fitted on the rolling body.
  • the notched pinion is overmolded on the rolling body.
  • the notched pinion is a first notched pinion and the toothed member is a first toothed member
  • the elastic damping device further comprises a second toothed pinion integral in rotation with the rolling body, said second toothed pinion being axially offset relative to the rolling body, said second toothed pinion being arranged to mesh with a second toothed member carried by the other among the first element and the second element.
  • the cooperation between the rolling body and said other one of the first element and the second element is non-slip when the second notched pinion meshes with the second toothed element.
  • the second notched pinion and the rolling body are axially offset.
  • the second notched pinion and the rolling body are coaxial.
  • the rolling body is axially interposed between the first notched pinion and the second notched pinion.
  • each of the toothed members can be carried directly by the first element or the corresponding second element.
  • the second notched pinion cooperates with the second toothed member with a second set of meshing.
  • the sliding of the rolling body on the rolling track carried by the other one of the first element and the second element is slaved to the meshing clearance between the second notched pinion and the second toothed member, this corresponding slip and being limited to the clearance necessary for a circumferential support to take place between the teeth of the second toothed member and the teeth of the second toothed pinion.
  • the clearance between the teeth of the second toothed pinion and the teeth of the second toothed member determines the amplitude of the permitted sliding of the rolling body on said raceway.
  • the teeth of the second toothed member and the second toothed pinion limit the sliding of the rolling body on said runway only slip required to fill the game present between said teeth.
  • the rolling body is a first rolling body and the elastic connection connecting the first raceway and the second element is a first elastic connection, the notched pinion being a first notched pinion and the toothed member being a first toothed member, the elastic damping device further comprising A third rolling track connected to the first element,
  • a fourth rolling track connected by a second elastic connection to the second element
  • a second rolling body cooperating with the third and fourth rolling track and able to move on said third and fourth raceways during a relative rotation between the first element and the second element
  • Said third and fourth raceways being arranged such that, for a relative rotation between the first and the second element from the angular position of rest, the second rolling body moving on the third and fourth raceways exerts a force bending on the second elastic connection and that the second elastic connection produces a reaction force on the second rolling body so as to return the first element and the second element to the angular position of rest,
  • the elastic device further comprising a third toothed pinion rotationally integral with the second rolling body, said third pinion being axially offset relative to the second rolling body, said third pinion being arranged to mesh with a third toothed member carried by said one of the first element and the second element.
  • the displacement of the second rolling body on the rolling track carried by said one of the first element and the second element is synchronized with a rotation of the second rolling body around its axis of rotation.
  • the cooperation between the second rolling body and the corresponding raceway connected to said one of the first element and second element is non-slip when the third toothed pin meshes with the third toothed member.
  • the resilient damping device comprises a flexible blade mounted on the second element, said flexible blade having a face carrying the first rolling track, a flexible portion of the flexible blade forming the elastic connection connecting the first track. rolling on the second element.
  • the toothed member is carried by the second element, this toothed member being fixed on the flexible blade.
  • the face bearing the first raceway is a radially outer face of the flexible blade.
  • the rolling body has a contact surface with the rolling tracks.
  • smooth running surface means a substantially smooth surface, having no edge on its surface cooperating with the raceway, for example not crenellated, the rolling body having for example a cylindrical or elliptical cylinder shape.
  • the toothed member is formed in a sheet.
  • the toothed member is carried by the second element, this toothed element being fixed on the flexible blade mounted on the second element.
  • the toothed member is carried by the second element via the flexible blade.
  • the second toothed member is fixed on the flexible blade.
  • the first raceway and / or the second raceway is circular or non-circular.
  • FIG. 1 is a front view of a torsion damper according to a first embodiment of the invention wherein the secondary flywheel is not shown;
  • FIG. 2 is a sectional view of the torsion damper of Figure 1;
  • - Figure 3 is a front view of the torsion damper of Figure 1 illustrating by transparency the cooperation between the notched pinion and the notched portion carried by the primary flywheel;
  • FIG. 4 is a detailed view illustrating the cooperation between the notched pinion and the notched portion carried by the primary flywheel
  • FIG. 5 is a schematic perspective view of a rolling body according to the second embodiment
  • FIG. 6 is a front view of a torsion damper according to the second embodiment wherein the secondary flywheel is only partially illustrated;
  • FIG. 7 is a sectional view of the torsion damper of FIG. 6.
  • the terms "external” and “internal” as well as the “axial” and “radial” orientations will be used to designate, according to the definitions given in the description, elements of the torsion damper.
  • the "radial” orientation is directed orthogonally to the X axis of rotation of the torsion damper determining the "axial” orientation and, from the inside towards the outside away from said axis, the "circumferential” orientation is directed orthogonally to the axis of the torsion damper and orthogonal to the radial direction.
  • a double damping flywheel as illustrated in Figures 1 to 4 comprises a primary flywheel 1, hereinafter primary flywheel 1, and a secondary flywheel 2 (shown in Figure 2), hereinafter flying secondary 2, which are arranged in the transmission chain of a motor vehicle, respectively engine side and gearbox side.
  • the primary flywheel 1 constitutes an input element of the double damping flywheel and is intended to be fixed at the end of a driving shaft, such as the crankshaft of an engine.
  • the secondary flywheel 2 constitutes an output element of the double damping flywheel and forms a reaction plate of a coupling clutch to a driven shaft, such as the input shaft of a gearbox.
  • the primary flywheel 1 and the secondary flywheel 2 comprise an inner and outer hub respectively.
  • the primary flywheel 1 and the secondary flywheel 2 are rotatably mounted around a common axis of rotation X via a bearing interposed radially between the inner hub and the outer hub.
  • the primary flywheel 1 comprises a plate developing radially from the inner hub. A peripheral portion of the plate carries a skirt 3 protruding axially towards the secondary flywheel 2.
  • the primary flywheel 1 and the secondary flywheel 2 are coupled in rotation by a damping means.
  • This damping means comprises two flexible and resilient blades 4 each cooperating with a respective rolling body 5.
  • the blades 4 are manufactured independently, each blade 4 having a mounting portion 6 and a flexible portion 7 which are specific thereto.
  • the two blades 4 as illustrated in Figures 1 to 3 are symmetrical with respect to the axis of rotation X. This symmetry of the blades 4 allows to advantageously achieve the two blades 4 identically.
  • the characteristics described below for one of the blades 4 apply by analogy to the other blade 4.
  • the description given below for a rolling body 5 and its arrangement in the double damping flywheel s applies by analogy to both rolling bodies 5.
  • Each blade 4 is mounted on and secured in rotation with the secondary flywheel
  • the blades 4 are mounted on the secondary flywheel by any suitable means, for example by riveting the mounting portion 6 on the secondary flywheel 2.
  • radially outer face of the flexible portion 7 of each blade 4 comprises a raceway forming a cam surface 8, hereinafter referred to as the first cam surface 8, cooperating with a respective rolling body 5.
  • Each blade 4 is elastically deformable.
  • the blades 4 are for example made of a spring material such as spring steel, for example by a thin cutting process on a sheet of 12 mm thick.
  • a radially inner face of the skirt 3 also forms two raceways or cam surfaces 9, hereinafter called second cam surfaces 9, each cooperating with a respective rolling body 5.
  • Each rolling body 5 comprises a circular cylindrical roller radially interposed between one of the first cam surfaces 8 and one of the second respective cam surfaces 9.
  • the roller face cooperating with the first and second cam surfaces 8, 9 as well as said first and second cam surfaces 8, 9 are preferably substantially smooth, that is, smooth and boneless surfaces.
  • the rolling bodies 5 are rotatably mounted around the axis of rotation X both with respect to the primary flywheel 1 and the secondary flywheel 2. As illustrated in FIG. 3, the rolling bodies 5 are held radially in abutment against the first and second cam surfaces 8, 9 with which they cooperate.
  • the blades 4 each resiliently cooperate with a respective rolling body 5 to keep said rolling body 5 radially in abutment against the corresponding second cam surface 9.
  • the blades 4 are arranged so that the flexible portion 7 of each blade elastically presses the first cam surface radially against the corresponding rolling body 5, this support of the first cam surface 8 against the rolling body 5 supporting said rolling body 5 against the corresponding second cam surface 9.
  • the rolling bodies 5 can be made of many materials, for example steel.
  • the double damping flywheel further comprises two axial retaining plates 10. These axial retaining plates 10 are fixed on one face of the skirt 3 axially facing the secondary flywheel 2. Each plate Axial retainer 10 develops circumferentially in an angular sector corresponding to the angular sector of a respective second cam surface 9. In addition, these axial retaining plates 10 protrude radially inwardly beyond said second cam surface 9. Thus, the rolling body 5 bears against said second cam surface 9 is axially interposed between the plate of the primary flywheel 1 and the corresponding axial retaining plate 10 of axially holding said rolling body 5 on the primary flywheel 1.
  • the torsion damper illustrated in FIG. 1 is in a rest position in which no torque passes between the primary flywheel 1 and the secondary flywheel 2.
  • a transmission of torque between the primary flywheel 1 and the secondary flywheel 2 is accompanied by relative movement between the primary flywheel 1 and the secondary flywheel 2.
  • each rolling body 5 moves along one part of the first cam surface 8 and, on the other hand, the second cam surface 9 with which it cooperates.
  • the angular displacement between the primary flywheel 1 and the secondary flywheel 2 corresponds to a travel of the rolling bodies 5 at the same time on the first cam surfaces 8 and on the second cam surfaces 9.
  • the displacement of the rolling bodies 5 along the first cam surfaces 8 from the rest position causes the flexible portions 7 of the blades 4 to bend.
  • the bending of the flexible portions 7 of the blade 4 generates a reaction force tending to bring the rolling bodies back. 5, and therefore the primary flywheel 1 and the secondary flywheel 2, in the rest position.
  • the blades 4 develop an elastic return torque tending to return the primary flywheel 1 and the secondary flywheel 2 to a relative angular position of rest.
  • the damping means is thus capable of transmitting a driving torque from the primary flywheel 1 to the secondary flywheel 2 (forward direction) and a resistant torque of the secondary flywheel 2 to the primary flywheel 1 (retro direction).
  • the documents FR3008152 and FR3032248 describe the general operation of the cooperation between the rolling body 5 and the flexible blade 4 of such a torsion damper with flexible and resilient blades.
  • the assembly of the blades 4 and the rolling bodies 5 is reversed so that the element carrying the blades 4 is the primary flywheel 1.
  • the blades 4 are joined by a common mounting portion 6, for example in the form of an annular mounting portion 6 from which the flexible portions 7 of each of the blades 4 develop.
  • the blades 4 can be made using a plurality of lamellae superimposed axially for example by clinching.
  • the cooperation between the rolling body 5 and the first and second cam surfaces 8, 9 is non-slip.
  • the rolling bodies 5 are not rotatably connected to either the primary flywheel 1 or the secondary flywheel 2, it is important to ensure that the transmission of torque between the primary flywheel 1 and the secondary flywheel 2 is correctly balanced when the double damping flywheel comprises a plurality of rolling bodies 5 each cooperating with a respective blade 4, as illustrated in FIGS. 1 to 3. In other words, it is necessary to ensure that each rolling body 5 causes the same deformation of the blade 4 with which it cooperates to ensure that all the blades 4 generate the same reaction force.
  • the reaction force generated by the flexible portion 7 of each blade 4 depends directly on the flexion of said flexible portion 7.
  • this flexion of the flexible portion 7 is directly related to the bearing position of the corresponding rolling body 5 on the first cam surface 8 of said flexible portion 7. Therefore, if one of the rolling bodies 5 cooperates slidably with one of the corresponding first and / or second cam surface 8, 9 while the other or the other rolling bodies 5 cooperate with the corresponding first and / or second cam surfaces 9 without slipping, an angular offset occurs between the different rolling bodies 5 of the double damping flywheel. Because of this angular offset between the rolling bodies 5, said rolling bodies 5 are not in contact at the same locations of the first cam surfaces 8 with which they cooperate.
  • the reaction forces generated by the different blades 4 are not symmetrical and the transmission of torque between the primary flywheel 1 and the secondary flywheel 2 is not balanced.
  • Such imbalance in the torque transmission between the primary flywheel 1 and the secondary flywheel 2 is detrimental to the proper functioning of the torsion damper. Therefore, it is important to limit, if not prevent, slippage of the rolling bodies 5 on the first and / or second cam surfaces 8, 9 to ensure that the rolling bodies 5 maintain a stable relative angular position and therefore cooperate. in a uniform manner with the flexible blades 4 and generate a substantially uniform and balanced bending of the flexible portions 7 of the different blades 4.
  • the torsion damper illustrated in FIGS. 1 to 4 comprises, for each rolling body 5, a device for synchronizing said rolling body 5.
  • This synchronization device comprises a notched pinion 11 and a toothed member 12 cooperating together to synchronize the rotation. of the corresponding rolling body 5 and the displacement of said rolling body 5 on the second cam surface 9 with which it cooperates.
  • the toothed pinion 11 is rotatably connected to the rolling body 5.
  • the rolling body 5 forms a first smooth-walled circular cylindrical section and is fixed coaxially to a second circular cylindrical section with a notched wall.
  • the notched pinion 11 and the rolling body 5 can be made in many ways. According to one embodiment, the rolling body 5 and the notched pinion 11 are made in one piece in the same material. In another embodiment, the rolling body 5 and the notched pinion 11 are made in two separate pieces joined by any suitable fastening means, such as for example by gluing, pegging, welding, sintering or other fitting.
  • the notched pinion 11 can be made of many materials.
  • the toothed pinion 11 is made of plastic. Such a toothed pinion 11 of plastic material limits the noise that may result from the contacts with the toothed member 12.
  • the toothed pinion 11 is for example overmolded on the rolling body 5.
  • the rolling body 5 comprises a housing and the notched pinion 11 comprises a pin fitted into said housing of the rolling body 5.
  • the notched pinion 11 is coaxial with the rolling body 5.
  • the notched pinion 11 and the rolling body 5 have a circular shape, the notched pinion 11 having a diameter smaller than the diameter. of the rolling body 5.
  • the notched pinion 11 is axially offset with the rolling body 5.
  • the toothed pinion 11 is axially interposed between the primary flywheel 1 and the rolling body 5.
  • the toothed member 12 is fixedly mounted on the primary flywheel 1, on the primary flywheel plate 1 in the embodiment illustrated in FIGS. 1 to 4.
  • the toothed member 12 is arranged radially on the outside of the notched pinion
  • This toothed member 12 has a shape of an arc of a circle. A radially outer face of the toothed member 12 is joined to the radially inner face of the peripheral skirt 3 of the primary flywheel 1. In other words, the toothed member 12 extends radially inwardly the radially inner face of the skirt. .
  • the toothed member 12 develops in an angular sector around the axis of rotation X corresponding to the angular sector of the corresponding second cam surface 9.
  • the toothed member 12 is mounted on the primary flywheel 1 axially offset with the second cam surface 9. More particularly, the toothed member 12 is axially interposed between the second cam surface 9 and the primary flywheel plate 1
  • the second cam surface 9 is in radial relation with the rolling body 5 and the toothed element 12 is in radial relation with the notched pinion 11.
  • a radially inner face of the toothed member 12 comprises a row of teeth.
  • the notched pinion 11 and the toothed member 12 are arranged in such a way that the notched pinion 11 moves along the toothed member 12 during a relative deflection between the primary flywheel 1 and the secondary flywheel 2, otherwise said when the rolling body 5 moves on the second cam surface 9.
  • the rolling body 5 moves on the second cam surface 9 without sliding, the rolling body 5 rotates about its axis of rotation.
  • the notched pinion 1 1 being rotationally integral with the rolling body 5, the notched pinion 11 then moves along the toothed member 12 by rotating about the axis of rotation of the rolling body 5. During its displacement, the teeth of the toothed pinion 1 1 cooperate with the teeth of the toothed member 12.
  • the sliding between the rolling body and the second cam surface 9 is limited by a circumferential contact between the teeth of the toothed pinion 11 and the teeth of the toothed member 12.
  • the teeth of the notched pinion 11 then mesh the teeth of the toothed tooth. toothed member 12 so as to impose the rotation of the toothed pinion 11 around the axis of rotation of the rolling body 5.
  • the notched pinion 1 1 and the rolling body 5 being integral in rotation, the engagement of the teeth of the notched pinion 11 with the teeth of the toothed member 12 impose the rotation of the rolling body 5 and therefore interrupts the sliding phenomenon between the rolling body 5 and the second cam surface 9.
  • the notched pinion 11 meshes the toothed member 12 so as to to prevent sliding of the rolling body 5 on the second cam surface 9.
  • the engagement of the toothed pinion 11 on the toothed member 12 ensures that the displacement of the rolling body 5 on the second cam surface 9 is synchronized with the rotation of the rolling body 5 about its axis of rotation. .
  • a clearance can be present between the teeth of the toothed pinion 11 and the teeth of the toothed member 12.
  • the rolling body 5 moves along the second cam surface 9 without sliding, the rolling body 5 and the toothed pinion 11 are rotated by the non-slip cooperation between the rolling body 5 and the second cam surface 9. Due to the clearance between the teeth of the toothed pinion 11 and the teeth the toothed member 12 and the rotational drive of the toothed pinion 11 by the rolling body 5, the teeth of the toothed pinion 11 do not undergo circumferential force by meshing with the teeth of the toothed member 12.
  • this game ensures that the rotation of the notched pinion January 1 is imposed by the rotation of the rolling body 5 when the rolling body 5 cooperates with the second cam surface 9 without sliding. This makes it possible to transmit most or all of the torque between the rolling body and the cam surface and not between the pinion and the toothed member.
  • the teeth of the notched pinion 11 mesh the teeth of the toothed member 12 to impose a rotation on the notched pinion 11 only after a sliding between the rolling body 5 and the second cam surface 9.
  • This sliding is then automatically interrupted when the teeth of the toothed pinion 11 bear circumferentially against the teeth of the toothed member 12.
  • the teeth 1 1 toothed gear meshes with the teeth of the toothed member 12, this meshing requires a rotation of the notched piston 1 1 and thus a rotation of the rolling body 5 moving on the second cam surface 9.
  • Such a sliding between the body 5 and the second cam surface 9 is therefore present only on a restricted portion of the second cam surface 9, said restricted portion corresponding to the clearance between the tooth of the notched pinion 11 and the teeth of the toothed member 12.
  • this game does not interfere with the synchronization of the rotation of the rolling body 5 with its displacement along the second cam surface 9.
  • such a game ensures that the torque transiting between the primary flywheel 1 and the steering wheel secondary 2 passes essentially through the rolling body 5 and the first and second cam surfaces 8, 9, without passing through the notched pinion 11 and the toothed member 12.
  • the notched pinion 11 and the toothed member 12 engage only to synchronize the rotation of the rolling body with its displacement along the second cam surface 9.
  • the risk of shear at the toothed pinion 11 is limited since the torque transiting between the primary flywheel 1 and the secondary flywheel 2 exerts little or no stress on said notched pinion 11.
  • FIGS. 5 to 8 illustrate a second embodiment in which the rotation of the rolling body 5 is synchronized on the one hand with its displacement along the second cam surface 9 and, on the other hand, with its displacement along the first cam surface 8.
  • the same elements or exercising the same function as those described above with respect to the first embodiment bear the same reference.
  • the notched pinion 11 is a first toothed pinion 11 and the toothed member is a first toothed member 12.
  • the synchronization between the rotation of the rolling body 5 and its displacement along the second cam surface 9 is carried out as described above with respect to the first embodiment, the first toothed pinion 11 integral in rotation with the rolling body 5 cooperating, with or without play, with the first toothed member 12 mounted on the primary flywheel 1.
  • the synchronization of the rotation of the rolling body 5 with its displacement along the first cam surface 8 is analogous to the synchronization between the rotation of the rolling body 5 with its displacement along the second cam surface 9.
  • this second embodiment comprises a second synchronization device similar to the first synchronization device.
  • This second synchronization device comprises a second toothed pinion 13 and a second toothed element 14 cooperating together to synchronize the displacement of the rolling body 5 on the first cam surface 8.
  • the second notched pinion 13 is integral in rotation with the rolling body 5.
  • the second notched pinion 13 can be secured to the rolling body 5 in many ways, for example by being integral, in two separate parts joined by any suitable fastening means such as gluing, welding, fitting, overmolding, sintering etc.
  • the second notched pinion 13 is coaxial with the rolling body 5.
  • the second notched pinion is preferably made of plastic in order to limit the contact noise between the second notched pinion 13 and the second toothed member 14.
  • the second notched pinion 13 and the rolling body 5 have a circular shape, the second notched pinion 13 having a diameter smaller than the diameter of the rolling body 5.
  • the second toothed gear 13 is axially offset with the rolling body 5.
  • the second toothed gear 13 is axially interposed between the secondary flywheel 2 and the rolling body 5.
  • the rolling body 5 is coaxially interposed between the first notched pinion 10 and the second notched pinion 13.
  • the second toothed member 14 is fixedly mounted on the secondary flywheel 2.
  • This second toothed member 14 has a circular shape. In the embodiment illustrated in FIGS. 5 to 8, this second toothed element 14 is fixed on a radially intermediate portion of a face of the plate of the secondary flywheel 2 facing the primary flywheel 1. A radially outer face the second toothed member 14 has a row of teeth.
  • the second toothed member 14 is arranged in an angular sector around the axis of rotation X corresponding to the angular sector around said axis of rotation X in which the first cam surface 8 develops.
  • the second toothed element 14 is axially offset with respect to the first cam surface 8. More particularly, the second toothed element 14 is axially interposed between the first cam surface 8 and the secondary flywheel plate 2 so that the first surface of cam 8 is vis-à-vis the radial rolling body 5 and the second toothed member 14 is vis-à-vis the radial second toothed pinion 13.
  • the second toothed pinion 13 and the second toothed element 14 are arranged in such a way that the second toothed pinion 13 moves along the second toothed element 14 when the rolling body 5 moves on the first cam surface 8.
  • the second toothed pinion 13 is rotated and displaced along the second toothed member 14 by the rolling body 5 when the rolling body 5 moves on the first cam surface 8 without sliding.
  • the second toothed pinion 13 then cooperates with the second toothed element 14 with a limited torque transmission, preferably without torque transmission, between the second toothed pinion 13 and the second toothed element 14.
  • the second toothed pinion 13 moves along the second toothed member 14 and meshes with the second toothed member 14 to force the rotation of said second notched pinion 13, and thus the rolling body 5.
  • the second toothed pinion 13 and the second toothed member 14 prevent the rolling body 5 from continuing to cooperate with the first cam surface 8 with sliding.
  • the displacement of the rolling body 5 on the first cam surface 8 is synchronized with the rotation of the rolling body 5 about its axis of rotation.
  • FIGS. 8 and 9 show a preferred variant of this second embodiment in which the second toothed element 14 is fixed on the flexible blade 4.
  • the second toothed element can in particular be riveted on the blade 4.
  • This toothed member 14 is formed in a sheet and has the advantage of being compact radially.
  • the double damping flywheel comprises the second synchronization device only, without having the first synchronization device.
  • the rotation of the rolling body 5 about its axis of rotation is synchronized with its displacement along the first cam surface 8 only, without being synchronized with its displacement along the second surface. of cam 9.
  • the invention is described above in connection with an elastic damping device comprising two sliding bodies each cooperating with two raceways, the invention is not limited to such an embodiment and the resiliently damping device is also likely to comprise a greater number of rolling bodies, each of the rolling bodies being mounted in rotation on the phasing element.

Abstract

The invention concerns a torsion damper comprising: ° a first element (1) and a second element that are able to rotate; °an elastic damping device coupling the first element (1) and the second element and comprising: a first raceway linked to the first element (1); a second raceway (8) elastically linked to the second element; °a rolling body (5) cooperating with the first and second raceways, and a toothed wheel (11) secured to the rolling body (5) in an axially offset manner and arranged to mesh with a toothed member (12) carried by one of the first element (1) and the second element (2) such that the movement of the rolling body (5) on the raceway carried by said one of the first element (1) and the second element (2) is synchronised with the rotation of the rolling body (5) about the axis of rotation of same.

Description

AMORTISSEUR DE TORSION A MOYENS DE PHASAGE  TORSION DAMPER WITH PHASE MEANS
Domaine technique L’invention se rapporte au domaine des amortisseurs de torsion destinés à équiper les transmissions de véhicule automobile. TECHNICAL FIELD The invention relates to the field of torsion dampers intended to equip motor vehicle transmissions.
Arrière-plan technologique Les transmissions de véhicule automobile sont généralement équipées d’un amortisseur de torsion permettant de filtrer les vibrations en amont de la boîte de vitesses de manière à éviter des chocs, bruits ou nuisances sonores particulièrement indésirables. De tels systèmes d’amortissement équipent notamment les doubles volants amortisseurs (DVA) et/ou les frictions d’embrayage, dans le cas d’une transmission manuelle ou robotisée, ou les embrayages de verrouillage, également appelés embrayages « lock-up », équipant les dispositifs d’accouplement hydraulique, dans le cas d’une transmission automatique. BACKGROUND TECHNOLOGY Motor vehicle transmissions are generally equipped with a torsion damper enabling the vibrations upstream of the gearbox to be filtered in such a way as to avoid particularly undesirable shocks, noises or noise. Such damping systems include damping dual flywheels (DVA) and / or clutch friction, in the case of a manual or robotic transmission, or locking clutches, also called "lock-up" clutches, equipping the hydraulic coupling devices, in the case of an automatic transmission.
Les systèmes d’amortissement comportent des moyens élastiques d’amortissement accouplant en rotation un élément d’entrée et un élément de sortie de manière à permettre une transmission du couple et un amortissement des acyclismes de rotation.  The damping systems comprise resilient damping means rotatably coupling an input member and an output member so as to allow torque transmission and damping of rotational acyclisms.
Le document FR3000155 divulgue un système d’amortissement dans lequel les moyens élastiques d’amortissement sont formés de deux lames flexibles. Les deux lames flexibles sont montées sur l’un des éléments d’entrée et de sortie du système d’amortissement et coopèrent chacune avec un suiveur de came associé. Ce suiveur de came comporte un galet monté mobile en rotation sur l’autre des éléments d’entrée et de sortie.  The document FR3000155 discloses a damping system in which the elastic damping means are formed of two flexible blades. The two flexible blades are mounted on one of the input and output elements of the damping system and each cooperate with an associated cam follower. This cam follower comprises a roller rotatably mounted on the other of the input and output elements.
Le document FR3032248 divulgue un système d’amortissement offrant un débattement important entre l’élément d’entrée et l’élément de sortie. Le système d’amortissement décrit dans le document FR3032248 comporte deux lames flexibles montées sur l’un des éléments d’entrée et de sortie, ces lames flexibles étant analogues aux lames flexibles décrites ci-dessus en regard du document FR3000155. L’autre des éléments d’entrée et de sortie comporte deux surfaces de cames supplémentaires. Les suiveurs de came sont formés par des corps roulant se déplaçant à la fois sur les surfaces de came portées par les lames et sur les surfaces de came portées par ledit autre des éléments d’entrée et de sortie, augmentant ainsi le débattement angulaire possible entre l’élément d’entrée et l’élément de sortie. The document FR3032248 discloses a damping system offering a large clearance between the input element and the output element. The damping system described in document FR3032248 comprises two flexible blades mounted on one of the input and output elements, these flexible blades being similar to the flexible blades described above with reference to the document FR3000155. The other input and output element has two additional cam surfaces. The cam followers are formed by rolling bodies moving both on the cam surfaces carried by the blades and on the cam surfaces carried by the other one of the input and output elements, thereby increasing the possible angular movement between the input element and the output element.
Cependant, des glissements entre les corps roulant et les surfaces de came peuvent survenir. Les corps roulant étant mobiles par rapport à l’élément d’entrée et à l’élément de sortie, de tels glissements peuvent entraîner un déplacement angulaire des corps roulants l’un par rapport à l’autre. Ce décalage angulaire entre les corps roulant peut déséquilibrer la coopération entre les corps roulant et les lames et donc dégrader les performances du système de transmission. Pour éviter cela, le document FR3032248 divulgue un corps roulant sous la forme d’une roue dentée, les surfaces de came étant réalisées sous la forme de portions dentées engrenant avec les roues dentées.  However, slippage between the rolling bodies and the cam surfaces may occur. Since the rolling bodies are movable relative to the input member and the output member, such sliding can cause angular displacement of the rolling bodies relative to each other. This angular offset between the rolling bodies can unbalance the cooperation between the rolling bodies and the blades and thus degrade the performance of the transmission system. To avoid this, the document FR3032248 discloses a rolling body in the form of a toothed wheel, the cam surfaces being made in the form of toothed portions meshing with the toothed wheels.
La raideur de la lame est difficilement maîtrisable du fait de la présence des dents sur la surface de came sur laquelle se déplace le corps roulant. En outre, le couple transmis entre l’élément de sortie et l’élément d’entrée est limité par la présence des dents d’engrènement entre le corps roulant et la surface de came. Enfin, ces dents subissent des contraintes importantes lors de la transmission du couple entre l’élément d’entrée et l’élément de sortie, ces contraintes pouvant dégrader les dents de la surface de came et/ou du corps roulant. Par ailleurs, la lame décrite dans FR3032248 est difficile à réaliser.  The stiffness of the blade is difficult to control because of the presence of teeth on the cam surface on which the rolling body moves. In addition, the torque transmitted between the output member and the input member is limited by the presence of meshing teeth between the rolling body and the cam surface. Finally, these teeth undergo significant stresses when transmitting the torque between the input member and the output member, these stresses being able to degrade the teeth of the cam surface and / or the rolling body. Moreover, the blade described in FR3032248 is difficult to achieve.
Résumé summary
Une idée à la base de l’invention est de fournir un amortisseur de torsion présentant de bonnes caractéristiques d’amortissement et de transmission de couple de façon fiable et simple. Une idée à la base de l’invention est de maîtriser les déplacements du corps roulant par rapport à l’élément d’entrée et/ou l’élément de sortie. Une idée à la base de l’invention est de fournir un amortisseur de torsion présentant un faible risque de dégradation lors de la transmission de couple. Pour cela, l’invention fournit un amortisseur de torsion pour une chaîne de transmission de véhicule automobile comportant : An idea underlying the invention is to provide a torsion damper having good characteristics of damping and torque transmission in a reliable and simple manner. An idea underlying the invention is to control the displacements of the rolling body with respect to the input element and / or the output element. An idea underlying the invention is to provide a torsion damper with a low risk of degradation during the transmission of torque. For this, the invention provides a torsion damper for a motor vehicle transmission chain comprising:
un premier élément et un deuxième élément mobiles en rotation l’un par rapport à l’autre autour d’un axe de rotation X ;  a first element and a second element movable in rotation relative to each other about an axis of rotation X;
un dispositif élastique d’amortissement accouplant le premier élément et le deuxième élément de manière à permettre une transmission de couple avec amortissement des vibrations entre le premier élément et le deuxième élément ;  an elastic damping device coupling the first member and the second member to provide vibration damping torque transmission between the first member and the second member;
ledit dispositif élastique d’amortissement comportant : said elastic damping device comprising:
une première piste de roulement reliée par une liaison élastique au deuxième élément ;  a first rolling track connected by an elastic connection to the second element;
une deuxième piste de roulement reliée au premier élément ;  a second rolling track connected to the first element;
un corps roulant coopérant avec la première piste de roulement et avec la deuxième piste de roulement, ledit corps roulant présentant un axe de rotation dudit corps roulant, ledit corps roulant étant apte à se déplacer en roulant sur lesdites première et deuxième pistes de roulement lors d’une rotation relative entre le premier élément et le deuxième élément ;  a rolling body cooperating with the first rolling track and with the second rolling track, said rolling body having an axis of rotation of said rolling body, said rolling body being able to move by rolling on said first and second raceways during rolling. a relative rotation between the first element and the second element;
lesdites première et deuxième pistes de roulement étant agencées de telle sorte que, pour une rotation relative entre le premier élément et le deuxième élément depuis une position angulaire de repos, le premier corps roulant en se déplaçant sur les première et deuxième pistes de roulement exerce un effort de flexion sur la liaison élastique et que la liaison élastique produise une force de réaction sur le corps roulant de manière à rappeler le premier élément et le deuxième élément vers la position angulaire de repos ; said first and second race tracks being arranged such that, for relative rotation between the first member and the second member from an angular rest position, the first rolling body moving on the first and second raceways exerts a bending force on the elastic connection and that the elastic connection produces a reaction force on the rolling body so as to return the first element and the second element to the angular position of rest;
le dispositif élastique d’amortissement comportant en outre un pignon cranté solidaire en rotation du corps roulant autour de l’axe X, ledit pignon cranté étant axialement décalé avec le corps roulant, ledit pignon cranté étant agencé pour engrener avec un organe denté porté par l’un parmi le premier élément et le deuxième élément.  the resilient damping device further comprising a toothed pinion integral in rotation with the rolling body about the X axis, said toothed pinion being axially offset with the rolling body, said notched pinion being arranged to mesh with a toothed member carried by the one among the first element and the second element.
La présence de dents permet de limiter voire empêcher le glissement du corps roulant sur la piste de roulement. Grâce à ces caractéristiques, la position du corps roulant le long de la piste de roulement portée par l’élément portant l’organe denté est maîtrisée. En effet, la synchronisation de la rotation du corps roulant autour de son axe de rotation avec son déplacement le long de ladite piste de roulement assure que les glissements du corps roulant sur ladite piste de roulement sont maîtrisés. Ainsi, un tel amortisseur de torsion permet une transmission de couple entre le premier élément et le deuxième élément maîtrisée. Un tel amortisseur de torsion offre une bonne fiabilité de transmission de couple entre le premier élément et le deuxième élément. The presence of teeth makes it possible to limit or even prevent the sliding of the rolling body on the rolling track. Thanks to these characteristics, the position of the rolling body along the rolling track carried by the element carrying the organ dentate is mastered. Indeed, the synchronization of the rotation of the rolling body about its axis of rotation with its displacement along said raceway ensures that the sliding of the rolling body on said raceway are controlled. Thus, such a torsion damper allows a transmission of torque between the first element and the second controlled element. Such a torsion damper provides good torque transmission reliability between the first element and the second element.
Ainsi, le déplacement du corps roulant sur la piste de roulement portée par ledit un parmi le premier élément et le deuxième élément est synchronisé avec une rotation du corps roulant autour de son axe de rotation.  Thus, the displacement of the rolling body on the rolling track carried by said one of the first element and the second element is synchronized with a rotation of the rolling body around its axis of rotation.
En outre, les pistes de roulement avec lesquelles coopère le corps roulant sont simples à réaliser, ces pistes de roulement étant dissociées du système de synchronisation de la rotation du corps roulant et de son déplacement le long de ladite piste de roulement.  In addition, the rolling tracks with which the rolling body cooperates are simple to perform, these race tracks being dissociated from the synchronization system of the rotation of the rolling body and its displacement along said raceway.
De plus, un tel amortisseur de torsion est fiable, le couple transitant par les pistes de roulement et le corps roulant ne risquant pas de dégrader le pignon cranté et l’organe denté.  In addition, such a torsion damper is reliable, the torque passing through the raceways and the rolling body does not risk degrading the notched pinion and the toothed member.
Selon d’autres modes de réalisation avantageux, un tel système d'amortissement peut présenter une ou plusieurs des caractéristiques suivantes.  According to other advantageous embodiments, such a damping system may have one or more of the following characteristics.
Selon un mode de réalisation, la coopération entre le corps roulant et ledit un parmi le premier élément et le deuxième élément est sans glissement lorsque le pignon cranté engrène avec l’organe denté. Autrement dit, l’engrènement du corps roulant avec l’organe denté porté par ledit un parmi le premier élément et le deuxième élément empêche le glissement du corps roulant par rapport audit un parmi le premier élément et le deuxième élément  According to one embodiment, the cooperation between the rolling body and said one of the first element and the second element is without sliding when the notched pinion meshes with the toothed member. In other words, the meshing of the rolling body with the toothed member carried by said one of the first element and the second element prevents the sliding of the rolling body with respect to said one of the first element and the second element.
On entend par coopération, entre l’organe denté et le corps roulant, l’interpénétration des dents du corps roulant et de l’organe denté, avec ou sans jeu circonférentiel.  By cooperation, between the toothed body and the rolling body is meant the interpenetration of the teeth of the rolling body and the toothed member, with or without circumferential play.
On entend par engrener le fait qu’un appui circonférentiel soit présent entre des dents du pignon cranté et des dents de l’organe denté, cet appui circonférentiel tendant à entraîner en rotation autour de son axe de rotation le pignon cranté.  It is understood by meshing the fact that a circumferential support is present between teeth of the notched pinion and teeth of the toothed member, this circumferential support tending to drive in rotation about its axis of rotation the notched pinion.
Selon un mode de réalisation, le corps roulant et le pignon cranté sont coaxiaux. Selon un mode de réalisation, le pignon cranté coopère avec l’organe denté avec un jeu d’engrènement. According to one embodiment, the rolling body and the notched pinion are coaxial. According to one embodiment, the notched pinion cooperates with the toothed member with a set of meshing.
Grâce à ces caractéristiques, l’amortisseur de torsion, et en particulier le pignon cranté et l’organe denté, présente un risque de dégradation faible. En effet, un tel jeu limite voire évite complètement la possibilité d’appui entre les dents du pignon cranté et les dents de l’organe denté de sorte que le couple transmis entre le premier élément et le deuxième élément transite principalement, idéalement intégralement, par le corps roulant et les pistes de roulement et ne transite que peu, idéalement pas, par l’organe denté et le pignon cranté.  Due to these characteristics, the torsion damper, and in particular the notched pinion and the toothed member, presents a low risk of degradation. Indeed, such a game limit or even completely avoids the possibility of support between the teeth of the notched pinion and the teeth of the toothed member so that the torque transmitted between the first element and the second element transits mainly, ideally integrally, by the rolling body and the rolling tracks and transits little, ideally not, by the toothed member and the notched pinion.
Selon un mode de réalisation, un glissement du corps roulant sur la piste de roulement portée par ledit un parmi le premier élément et le deuxième élément est asservi au jeu d’engrènement entre le pignon cranté et l’organe denté, ce glissement correspondant et étant limité au jeu nécessaire pour qu’un appui ait lieu entre les dents de l’organe denté et les dents du pignon cranté.  According to one embodiment, sliding of the rolling body on the rolling track carried by said one of the first element and the second element is slaved to the meshing clearance between the notched pinion and the toothed member, this corresponding slip and being limited play necessary for a support takes place between the teeth of the toothed member and the teeth of the notched pinion.
Selon un mode de réalisation, le jeu entre les dents du pignon cranté et les dents de l’organe denté détermine l’amplitude du glissement autorisé du corps roulant sur ladite piste de roulement. Ainsi, les dents de l’organe denté et du pignon cranté permettent de limiter le glissement du corps roulant sur ladite piste de roulement au seul glissement nécessaire à combler le jeu présent entre lesdites dents.  According to one embodiment, the clearance between the teeth of the toothed pinion and the teeth of the toothed member determines the amplitude of the permitted sliding of the rolling body on said raceway. Thus, the teeth of the toothed member and the toothed pinion limit the sliding of the rolling body on said raceway to the only slip necessary to fill the game present between said teeth.
Le pignon cranté peut être solidarisé en rotation au corps roulant de nombreuses manières. Selon un mode de réalisation, le pignon cranté est monobloc avec le corps roulant. Selon un mode de réalisation, le pignon cranté est emmanché sur le corps roulant. Selon un mode de réalisation, le pignon cranté est surmoulé sur le corps roulant.  The notched pinion can be secured in rotation to the rolling body in many ways. According to one embodiment, the notched pinion is integral with the rolling body. According to one embodiment, the notched pinion is fitted on the rolling body. According to one embodiment, the notched pinion is overmolded on the rolling body.
Selon un mode de réalisation, le pignon cranté est un premier pignon cranté et l’organe denté est un premier organe denté,  According to one embodiment, the notched pinion is a first notched pinion and the toothed member is a first toothed member,
et le dispositif élastique d’amortissement comporte en outre un deuxième pignon cranté solidaire en rotation du corps roulant, ledit deuxième pignon cranté étant axialement décalé par rapport au corps roulant, ledit deuxième pignon cranté étant agencé pour engrener avec un deuxième organe denté porté par l’autre parmi le premier élément et le deuxième élément. Ainsi, le déplacement du corps roulant sur la piste de roulement portée par ledit autre parmi le premier élément et le deuxième élément est synchronisé avec la rotation du corps roulant autour de son axe de rotation. and the elastic damping device further comprises a second toothed pinion integral in rotation with the rolling body, said second toothed pinion being axially offset relative to the rolling body, said second toothed pinion being arranged to mesh with a second toothed member carried by the other among the first element and the second element. Thus, the displacement of the rolling body on the rolling track carried by the other one of the first element and the second element is synchronized with the rotation of the rolling body around its axis of rotation.
Selon un mode de réalisation, la coopération entre le corps roulant et ledit autre parmi le premier élément et le deuxième élément est sans glissement lorsque le deuxième pignon cranté engrène avec le deuxième organe denté.  According to one embodiment, the cooperation between the rolling body and said other one of the first element and the second element is non-slip when the second notched pinion meshes with the second toothed element.
Selon un mode de réalisation, le deuxième pignon cranté et le corps roulant sont axialement décalés.  According to one embodiment, the second notched pinion and the rolling body are axially offset.
Selon un mode de réalisation, le deuxième pignon cranté et le corps roulant sont coaxiaux.  According to one embodiment, the second notched pinion and the rolling body are coaxial.
Selon un mode de réalisation, le corps roulant est axialement intercalé entre le premier pignon cranté et le deuxième pignon cranté.  According to one embodiment, the rolling body is axially interposed between the first notched pinion and the second notched pinion.
Grâce à ces caractéristiques, le positionnement des organes dentés est simple à réaliser. Ainsi, par exemple, chacun des organes dentés peut être porté directement par le premier élément ou le deuxième élément correspondant.  Thanks to these characteristics, the positioning of the toothed members is simple to perform. Thus, for example, each of the toothed members can be carried directly by the first element or the corresponding second element.
Selon un mode de réalisation, le deuxième pignon cranté coopère avec le deuxième organe denté avec un deuxième jeu d’engrènement.  According to one embodiment, the second notched pinion cooperates with the second toothed member with a second set of meshing.
Selon un mode de réalisation, le glissement du corps roulant sur la piste de roulement portée par ledit autre parmi le premier élément et le deuxième élément est asservi au jeu d’engrènement entre le deuxième pignon cranté et le deuxième organe denté, ce glissement correspondant et étant limité au jeu nécessaire pour qu’un appui circonférentiel ait lieu entre les dents du deuxième organe denté et les dents du deuxième pignon cranté.  According to one embodiment, the sliding of the rolling body on the rolling track carried by the other one of the first element and the second element is slaved to the meshing clearance between the second notched pinion and the second toothed member, this corresponding slip and being limited to the clearance necessary for a circumferential support to take place between the teeth of the second toothed member and the teeth of the second toothed pinion.
Selon un mode de réalisation, le jeu entre les dents du deuxième pignon cranté et les dents du deuxième organe denté détermine l’amplitude du glissement autorisé du corps roulant sur ladite piste de roulement. Ainsi, les dents du deuxième organe denté et du deuxième pignon cranté permettent de limiter le glissement du corps roulant sur ladite piste de roulement au seul glissement nécessaire à combler le jeu présent entre lesdites dents.  According to one embodiment, the clearance between the teeth of the second toothed pinion and the teeth of the second toothed member determines the amplitude of the permitted sliding of the rolling body on said raceway. Thus, the teeth of the second toothed member and the second toothed pinion limit the sliding of the rolling body on said runway only slip required to fill the game present between said teeth.
Selon un mode de réalisation, le corps roulant est un premier corps roulant et la liaison élastique reliant la première piste de roulement et le deuxième élément est une première liaison élastique, le pignon cranté étant un premier pignon cranté et l’organe denté étant un premier organe denté, le dispositif élastique d’amortissement comportant en outre Une troisième piste de roulement reliée au premier élément, According to one embodiment, the rolling body is a first rolling body and the elastic connection connecting the first raceway and the second element is a first elastic connection, the notched pinion being a first notched pinion and the toothed member being a first toothed member, the elastic damping device further comprising A third rolling track connected to the first element,
Une quatrième piste de roulement reliée par une deuxième liaison élastique au deuxième élément,  A fourth rolling track connected by a second elastic connection to the second element,
Un deuxième corps roulant coopérant avec la troisième et la quatrième piste de roulement et apte à se déplacer sur lesdites troisième et quatrième pistes de roulement lors d’une rotation relative entre le premier élément et le deuxième élément,  A second rolling body cooperating with the third and fourth rolling track and able to move on said third and fourth raceways during a relative rotation between the first element and the second element,
Lesdites troisième et quatrième pistes de roulement étant agencées de telle sorte que, pour une rotation relative entre le premier et le deuxième élément depuis la position angulaire de repos, le deuxième corps roulant en se déplaçant sur les troisième et quatrième pistes de roulement exerce un effort de flexion sur la deuxième liaison élastique et que la deuxième liaison élastique produise une force de réaction sur le deuxième corps roulant de manière à rappeler le premier élément et le deuxième élément vers la position angulaire de repos,  Said third and fourth raceways being arranged such that, for a relative rotation between the first and the second element from the angular position of rest, the second rolling body moving on the third and fourth raceways exerts a force bending on the second elastic connection and that the second elastic connection produces a reaction force on the second rolling body so as to return the first element and the second element to the angular position of rest,
Le dispositif élastique comportant en outre un troisième pignon cranté solidaire en rotation du deuxième corps roulant, ledit troisième pignon cranté étant axialement décalé par rapport au deuxième corps roulant, ledit troisième pignon cranté étant agencé pour engrener avec un troisième organe denté porté par ledit un parmi le premier élément et le deuxième élément.  The elastic device further comprising a third toothed pinion rotationally integral with the second rolling body, said third pinion being axially offset relative to the second rolling body, said third pinion being arranged to mesh with a third toothed member carried by said one of the first element and the second element.
Ainsi, le déplacement du deuxième corps roulant sur la piste de roulement portée par ledit un parmi le premier élément et le deuxième élément est synchronisé avec une rotation du deuxième corps roulant autour de son axe de rotation  Thus, the displacement of the second rolling body on the rolling track carried by said one of the first element and the second element is synchronized with a rotation of the second rolling body around its axis of rotation.
Selon un mode de réalisation, la coopération entre le deuxième corps roulant et la piste de roulement correspondante reliée audit un parmi le premier élément et deuxième élément est sans glissement lorsque le troisième pignon cranté engrène avec le troisième organe denté.  According to one embodiment, the cooperation between the second rolling body and the corresponding raceway connected to said one of the first element and second element is non-slip when the third toothed pin meshes with the third toothed member.
Selon un mode de réalisation, le dispositif élastique d’amortissement comporte une lame flexible montée sur le deuxième élément, ladite lame flexible comportant une face portant la première piste de roulement, une portion flexible de la lame flexible formant la liaison élastique reliant la première piste de roulement au deuxième élément. Selon un mode de réalisation, l’organe denté est porté par le deuxième élément, cet organe denté étant fixé sur la lame flexible. According to one embodiment, the resilient damping device comprises a flexible blade mounted on the second element, said flexible blade having a face carrying the first rolling track, a flexible portion of the flexible blade forming the elastic connection connecting the first track. rolling on the second element. According to one embodiment, the toothed member is carried by the second element, this toothed member being fixed on the flexible blade.
Selon un mode de réalisation, la face portant la première piste de roulement est une face radialement externe de la lame flexible.  According to one embodiment, the face bearing the first raceway is a radially outer face of the flexible blade.
Selon un mode de réalisation, le corps roulant présente une surface de contact avec les pistes de roulement régulière.  According to one embodiment, the rolling body has a contact surface with the rolling tracks.
On entend par surface de roulement régulière une surface sensiblement lisse, ne présentant pas d’arête sur sa surface coopérant avec la piste de roulement, par exemple non crénelée, le corps roulant ayant par exemple une forme de cylindre de révolution ou elliptique.  The term "smooth running surface" means a substantially smooth surface, having no edge on its surface cooperating with the raceway, for example not crenellated, the rolling body having for example a cylindrical or elliptical cylinder shape.
Selon un mode de réalisation, l’organe denté est formé dans une tôle. According to one embodiment, the toothed member is formed in a sheet.
Selon un mode de réalisation, l’organe denté est porté par le deuxième élément, cet organe denté étant fixé sur la lame flexible montée sur le deuxième élément. Autrement dit, l’organe denté est porté par le deuxième élément par l’intermédiaire de la lame flexible. According to one embodiment, the toothed member is carried by the second element, this toothed element being fixed on the flexible blade mounted on the second element. In other words, the toothed member is carried by the second element via the flexible blade.
Selon un mode de réalisation, le deuxième organe denté est fixé sur la lame flexible.  According to one embodiment, the second toothed member is fixed on the flexible blade.
Selon un mode de réalisation, la première piste de roulement et/ou la deuxième piste de roulement est circulaire ou non circulaire.  According to one embodiment, the first raceway and / or the second raceway is circular or non-circular.
Brève description des figures  Brief description of the figures
L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés. The invention will be better understood, and other objects, details, characteristics and advantages thereof will appear more clearly in the course of the following description of several particular embodiments of the invention, given solely for illustrative and non-limiting purposes. with reference to the accompanying drawings.
- La figure 1 est une vue de face d’un amortisseur de torsion selon un premier mode de réalisation de l’invention dans lequel le volant secondaire n’est pas illustré ;  - Figure 1 is a front view of a torsion damper according to a first embodiment of the invention wherein the secondary flywheel is not shown;
- La figure 2 est une vue en coupe de l’amortisseur de torsion de la figure 1 ; - La figure 3 est une vue de face de l’amortisseur de torsion de la figure 1 illustrant par transparence la coopération entre le pignon cranté et la portion crantée portée par le volant primaire ; - Figure 2 is a sectional view of the torsion damper of Figure 1; - Figure 3 is a front view of the torsion damper of Figure 1 illustrating by transparency the cooperation between the notched pinion and the notched portion carried by the primary flywheel;
- La figure 4 est une vue de détail illustrant la coopération entre le pignon cranté et la portion crantée portée par le volant primaire ;  - Figure 4 is a detailed view illustrating the cooperation between the notched pinion and the notched portion carried by the primary flywheel;
- La figure 5 est une vue en perspective schématique d’un corps roulant selon le deuxième mode de réalisation ;  FIG. 5 is a schematic perspective view of a rolling body according to the second embodiment;
- La figure 6 est une vue de face d’un amortisseur de torsion selon le deuxième mode de réalisation dans lequel le volant secondaire n’est que partiellement illustré ;  - Figure 6 is a front view of a torsion damper according to the second embodiment wherein the secondary flywheel is only partially illustrated;
- La figure 7 est une vue en coupe de l’amortisseur de torsion de la figure 6.  FIG. 7 is a sectional view of the torsion damper of FIG. 6.
- La figure 8 et la figure 9 représentent une variante du deuxième mode de réalisation.  - Figure 8 and Figure 9 show a variant of the second embodiment.
Description détaillée de modes de réalisation Detailed description of embodiments
Dans la description et les revendications, on utilisera, les termes "externe" et "interne" ainsi que les orientations "axiale" et "radiale" pour désigner, selon les définitions données dans la description, des éléments de l’amortisseur de torsion. Par convention, l'orientation "radiale" est dirigée orthogonalement à l'axe X de rotation de l’amortisseur de torsion déterminant l'orientation "axiale" et, de l'intérieur vers l'extérieur en s'éloignant dudit axe, l'orientation "circonférentielle" est dirigée orthogonalement à l'axe de l’amortisseur de torsion et orthogonalement à la direction radiale. Les termes "externe" et "interne" sont utilisés pour définir la position relative d'un élément par rapport à un autre, par référence à l'axe X de rotation de l’amortisseur de torsion, un élément proche de l'axe est ainsi qualifié d'interne par opposition à un élément externe situé radialement en périphérie.  In the description and the claims, the terms "external" and "internal" as well as the "axial" and "radial" orientations will be used to designate, according to the definitions given in the description, elements of the torsion damper. By convention, the "radial" orientation is directed orthogonally to the X axis of rotation of the torsion damper determining the "axial" orientation and, from the inside towards the outside away from said axis, the "circumferential" orientation is directed orthogonally to the axis of the torsion damper and orthogonal to the radial direction. The terms "external" and "internal" are used to define the relative position of one element relative to another, with reference to the X axis of rotation of the torsion damper, an element close to the axis is thus described as internal as opposed to an external element located radially at the periphery.
La suite de la description est réalisée en regard des figures dans le cadre d’un amortisseur de torsion de type double volant amortisseur. Cette description n’est pas limitative et l’invention est applicable par analogie à tout autre type d’amortisseur de torsion. Un double volant amortisseur tel qu’illustré sur les figures 1 à 4 comporte un volant d’inertie primaire 1 , ci-après volant primaire 1 , et un volant d’inertie secondaire 2 (illustré sur la figure 2), ci-après volant secondaire 2, qui sont disposés dans la chaîne de transmission d’un véhicule automobile, respectivement côté moteur et côté boîte de vitesses. Le volant primaire 1 constitue un élément d’entrée du double volant amortisseur et est destiné à être fixé au bout d’un arbre menant, tel que le vilebrequin d’un moteur. Le volant secondaire 2 constitue un élément de sortie du double volant amortisseur et forme un plateau de réaction d’un embrayage de couplage à un arbre mené, tel que l’arbre d’entrée d’une boîte de vitesses. Le volant primaire 1 et le volant secondaire 2 comportent un moyeu respectivement interne et externe. Le volant primaire 1 et le volant secondaire 2 sont montés mobiles en rotation autour d’un axe de rotation X commun par l’intermédiaire d’un palier intercalé radialement entre le moyeu interne et le moyeu externe. Le volant primaire 1 comporte un plateau se développant radialement depuis le moyeu interne. Une portion périphérique du plateau porte une jupe 3 faisant saillie axialement en direction du volant secondaire 2. The remainder of the description is made with reference to the figures in the context of a torsion damper of the double damping flywheel type. This description is not limiting and the invention is applicable by analogy to any other type of torsion damper. A double damping flywheel as illustrated in Figures 1 to 4 comprises a primary flywheel 1, hereinafter primary flywheel 1, and a secondary flywheel 2 (shown in Figure 2), hereinafter flying secondary 2, which are arranged in the transmission chain of a motor vehicle, respectively engine side and gearbox side. The primary flywheel 1 constitutes an input element of the double damping flywheel and is intended to be fixed at the end of a driving shaft, such as the crankshaft of an engine. The secondary flywheel 2 constitutes an output element of the double damping flywheel and forms a reaction plate of a coupling clutch to a driven shaft, such as the input shaft of a gearbox. The primary flywheel 1 and the secondary flywheel 2 comprise an inner and outer hub respectively. The primary flywheel 1 and the secondary flywheel 2 are rotatably mounted around a common axis of rotation X via a bearing interposed radially between the inner hub and the outer hub. The primary flywheel 1 comprises a plate developing radially from the inner hub. A peripheral portion of the plate carries a skirt 3 protruding axially towards the secondary flywheel 2.
Le volant primaire 1 et le volant secondaire 2 sont couplés en rotation par un moyen d’amortissement. Ce moyen d’amortissement comporte deux lames 4 flexibles et élastiques coopérant chacune avec un corps roulant 5 respectif. The primary flywheel 1 and the secondary flywheel 2 are coupled in rotation by a damping means. This damping means comprises two flexible and resilient blades 4 each cooperating with a respective rolling body 5.
Dans le mode de réalisation illustré sur les figures 1 à 3, les lames 4 sont fabriquées de manière indépendante, chaque lame 4 comportant une portion de montage 6 et une portion flexible 7 qui lui sont propres. Les deux lames 4 telles qu’illustrées sur les figures 1 à 3 sont symétriques par rapport à l’axe de rotation X. Cette symétrie des lames 4 permet de réaliser avantageusement les deux lames 4 de façon identique. Ainsi, les caractéristiques décrites ci-après pour l’une des lames 4 s’appliquent par analogie à l’autre lame 4. De même, la description réalisée ci- après pour un corps roulant 5 et son agencement dans le double volant amortisseur s’applique par analogie aux deux corps roulant 5.  In the embodiment illustrated in Figures 1 to 3, the blades 4 are manufactured independently, each blade 4 having a mounting portion 6 and a flexible portion 7 which are specific thereto. The two blades 4 as illustrated in Figures 1 to 3 are symmetrical with respect to the axis of rotation X. This symmetry of the blades 4 allows to advantageously achieve the two blades 4 identically. Thus, the characteristics described below for one of the blades 4 apply by analogy to the other blade 4. Similarly, the description given below for a rolling body 5 and its arrangement in the double damping flywheel s applies by analogy to both rolling bodies 5.
Chaque lame 4 est montée sur et solidaire en rotation du volant secondaire Each blade 4 is mounted on and secured in rotation with the secondary flywheel
2. Les lames 4 sont montées sur le volant secondaire par tout moyen adapté, par exemple par rivetage de la portion de montage 6 sur le volant secondaire 2. Une face radialement externe de la portion flexible 7 de chaque lame 4 comporte une piste de roulement formant une surface de came 8, ci-après appelée première surface de came 8, coopérant avec un corps roulant 5 respectif. Chaque lame 4 est élastiquement déformable. Les lames 4 sont par exemple réalisées dans un matériau à ressort tel qu’un acier à ressort, par exemple par un procédé de découpage fin sur une tôle de 12 mm d’épaisseur. 2. The blades 4 are mounted on the secondary flywheel by any suitable means, for example by riveting the mounting portion 6 on the secondary flywheel 2. radially outer face of the flexible portion 7 of each blade 4 comprises a raceway forming a cam surface 8, hereinafter referred to as the first cam surface 8, cooperating with a respective rolling body 5. Each blade 4 is elastically deformable. The blades 4 are for example made of a spring material such as spring steel, for example by a thin cutting process on a sheet of 12 mm thick.
Comme illustré sur les figures 2 et 3, une face radialement interne de la jupe 3 forme également deux pistes de roulement ou surfaces de came 9, ci-après appelées deuxièmes surfaces de came 9, coopérant chacune avec un corps roulant 5 respectif.  As illustrated in Figures 2 and 3, a radially inner face of the skirt 3 also forms two raceways or cam surfaces 9, hereinafter called second cam surfaces 9, each cooperating with a respective rolling body 5.
Chaque corps roulant 5 comporte un galet cylindrique circulaire intercalé radialement entre l’une des premières surfaces de came 8 et l’une des deuxièmes surfaces de came 9 respectives. La face du galet coopérant avec les premières et deuxièmes surfaces de came 8, 9 de même que lesdites premières et deuxièmes surfaces de came 8, 9 sont de préférence des surfaces sensiblement lisses, c’est-à- dire régulières et sans arêtes. Les corps roulant 5 sont montés mobiles en rotation autour de l’axe de rotation X à la fois par rapport au volant primaire 1 et au volant secondaire 2. Comme illustré sur la figure 3, les corps roulant 5 sont maintenus radialement en appui contre les première et deuxième surfaces de came 8, 9 avec lesquelles ils coopèrent. Par exemple, les lames 4 coopèrent chacune élastiquement avec un corps roulant 5 respectif afin de maintenir ledit corps roulant 5 radialement en appui contre la deuxième surface de came 9 correspondante. Autrement dit, les lames 4 sont agencées de sorte que la portion flexible 7 de chaque lame appuie élastiquement radialement la première surface de came 8 contre le corps roulant 5 correspondant, cet appui de la première surface de came 8 contre le corps roulant 5 appuyant ledit corps roulant 5 contre la deuxième surface de came 9 correspondante. Les corps roulant 5 peuvent être réalisés en de nombreux matériaux, par exemple en acier.  Each rolling body 5 comprises a circular cylindrical roller radially interposed between one of the first cam surfaces 8 and one of the second respective cam surfaces 9. The roller face cooperating with the first and second cam surfaces 8, 9 as well as said first and second cam surfaces 8, 9 are preferably substantially smooth, that is, smooth and boneless surfaces. The rolling bodies 5 are rotatably mounted around the axis of rotation X both with respect to the primary flywheel 1 and the secondary flywheel 2. As illustrated in FIG. 3, the rolling bodies 5 are held radially in abutment against the first and second cam surfaces 8, 9 with which they cooperate. For example, the blades 4 each resiliently cooperate with a respective rolling body 5 to keep said rolling body 5 radially in abutment against the corresponding second cam surface 9. In other words, the blades 4 are arranged so that the flexible portion 7 of each blade elastically presses the first cam surface radially against the corresponding rolling body 5, this support of the first cam surface 8 against the rolling body 5 supporting said rolling body 5 against the corresponding second cam surface 9. The rolling bodies 5 can be made of many materials, for example steel.
Comme illustré sur la figure 1 , le double volant amortisseur comporte en outre deux plaques de retenue axiale 10. Ces plaques de retenue axiale 10 sont fixées sur une face de la jupe 3 axialement en vis-à-vis du volant secondaire 2. Chaque plaque de retenue axiale 10 se développe circonférentiellement dans un secteur angulaire correspondant au secteur angulaire d’une deuxième surface de came 9 respective. En outre, ces plaques de retenue axiale 10 font saillie radialement vers l’intérieur au-delà de ladite deuxième surface de came 9. Ainsi, le corps roulant 5 en appui contre ladite deuxième surface de came 9 est axialement intercalé entre le plateau du volant primaire 1 et la plaque de retenue axiale 10 correspondante de manière à maintenir axialement ledit corps roulant 5 sur le volant primaire 1. As illustrated in FIG. 1, the double damping flywheel further comprises two axial retaining plates 10. These axial retaining plates 10 are fixed on one face of the skirt 3 axially facing the secondary flywheel 2. Each plate Axial retainer 10 develops circumferentially in an angular sector corresponding to the angular sector of a respective second cam surface 9. In addition, these axial retaining plates 10 protrude radially inwardly beyond said second cam surface 9. Thus, the rolling body 5 bears against said second cam surface 9 is axially interposed between the plate of the primary flywheel 1 and the corresponding axial retaining plate 10 of axially holding said rolling body 5 on the primary flywheel 1.
L’amortisseur de torsion illustré sur la figure 1 est dans une position de repos dans laquelle aucun couple ne transite entre le volant primaire 1 et le volant secondaire 2. Une transmission de couple entre le volant primaire 1 et le volant secondaire 2 s’accompagne d’un débattement relatif entre le volant primaire 1 et le volant secondaire 2. Lors de ce débattement relatif, chaque corps roulant 5 se déplace le long d’une part de la première surface de came 8 et, d’autre part, de la deuxième surface de came 9 avec lesquelles il coopère. Ainsi, lors d’une transmission de couple, le débattement angulaire entre le volant primaire 1 et le volant secondaire 2 correspond à une course des corps roulant 5 à la fois sur les premières surfaces de came 8 et sur les deuxièmes surfaces de came 9. Le déplacement des corps roulant 5 le long des premières surfaces de came 8 depuis la position de repos entraînent le fléchissement des portions flexibles 7 des lames 4. La flexion des portions flexibles 7 des lame 4 génère une force de réaction tendant à ramener les corps roulant 5, et donc le volant primaire 1 et le volant secondaire 2, dans la position de repos. Autrement dit, les lames 4 développent un couple de rappel élastique tendant à rappeler le volant primaire 1 et le volant secondaire 2 vers une position angulaire relative de repos.  The torsion damper illustrated in FIG. 1 is in a rest position in which no torque passes between the primary flywheel 1 and the secondary flywheel 2. A transmission of torque between the primary flywheel 1 and the secondary flywheel 2 is accompanied by relative movement between the primary flywheel 1 and the secondary flywheel 2. During this relative travel, each rolling body 5 moves along one part of the first cam surface 8 and, on the other hand, the second cam surface 9 with which it cooperates. Thus, during a torque transmission, the angular displacement between the primary flywheel 1 and the secondary flywheel 2 corresponds to a travel of the rolling bodies 5 at the same time on the first cam surfaces 8 and on the second cam surfaces 9. The displacement of the rolling bodies 5 along the first cam surfaces 8 from the rest position causes the flexible portions 7 of the blades 4 to bend. The bending of the flexible portions 7 of the blade 4 generates a reaction force tending to bring the rolling bodies back. 5, and therefore the primary flywheel 1 and the secondary flywheel 2, in the rest position. In other words, the blades 4 develop an elastic return torque tending to return the primary flywheel 1 and the secondary flywheel 2 to a relative angular position of rest.
Le moyen d’amortissement est ainsi apte à transmettre un couple entraînant du volant primaire 1 vers le volant secondaire 2 (sens direct) et un couple résistant du volant secondaire 2 vers le volant primaire 1 (sens rétro). Les documents FR3008152 et FR3032248 décrivent le fonctionnement général de la coopération entre le corps roulant 5 et la lame 4 flexible d’un tel amortisseur de torsion à lames flexibles et élastiques. The damping means is thus capable of transmitting a driving torque from the primary flywheel 1 to the secondary flywheel 2 (forward direction) and a resistant torque of the secondary flywheel 2 to the primary flywheel 1 (retro direction). The documents FR3008152 and FR3032248 describe the general operation of the cooperation between the rolling body 5 and the flexible blade 4 of such a torsion damper with flexible and resilient blades.
Dans un mode de réalisation non représenté, le montage des lames 4 et des corps roulant 5 est inversé de sorte que l’élément portant les lames 4 est le volant primaire 1. Dans un autre mode de réalisation non illustré, les lames 4 sont jointes par une portion de montage 6 commune, par exemple sous la forme d’une portion de montage 6 annulaire depuis laquelle se développent les portions flexibles 7 de chacune des lames 4. Par ailleurs, les lames 4 peuvent être réalisées à l’aide d’une pluralité de lamelles superposées axialement par exemple par clinchage. In an embodiment not shown, the assembly of the blades 4 and the rolling bodies 5 is reversed so that the element carrying the blades 4 is the primary flywheel 1. In another embodiment not illustrated, the blades 4 are joined by a common mounting portion 6, for example in the form of an annular mounting portion 6 from which the flexible portions 7 of each of the blades 4 develop. elsewhere, the blades 4 can be made using a plurality of lamellae superimposed axially for example by clinching.
Idéalement, la coopération entre le corps roulant 5 et les première et deuxième surfaces de came 8, 9 se fait sans glissement. Notamment, il est préférable d’assurer la transmission du couple en faisant rouler le corps roulant plutôt qu’en le faisant glisser pour limiter l’usure du dispositif et le rendre plus stable. De plus, les corps roulant 5 n’étant solidaires en rotation ni du volant primaire 1 ni du volant secondaire 2, il est important de s’assurer que la transmission de couple entre le volant primaire 1 et le volant secondaire 2 est correctement équilibrée lorsque le double volant amortisseur comporte plusieurs corps roulant 5 coopérant chacun avec une lame 4 respective, comme illustré sur les figures 1 à 3. Autrement dit, il est nécessaire de s’assurer que chaque corps roulant 5 engendre la même déformation de la lame 4 avec laquelle il coopère afin de s’assurer que toutes les lames 4 génèrent la même force de réaction.  Ideally, the cooperation between the rolling body 5 and the first and second cam surfaces 8, 9 is non-slip. In particular, it is preferable to ensure the transmission of torque by rolling the rolling body rather than sliding to limit the wear of the device and make it more stable. In addition, since the rolling bodies 5 are not rotatably connected to either the primary flywheel 1 or the secondary flywheel 2, it is important to ensure that the transmission of torque between the primary flywheel 1 and the secondary flywheel 2 is correctly balanced when the double damping flywheel comprises a plurality of rolling bodies 5 each cooperating with a respective blade 4, as illustrated in FIGS. 1 to 3. In other words, it is necessary to ensure that each rolling body 5 causes the same deformation of the blade 4 with which it cooperates to ensure that all the blades 4 generate the same reaction force.
En effet, la force de réaction générée par la portion flexible 7 de chaque lame 4 dépend directement de la flexion de ladite portion flexible 7. Or cette flexion de la portion flexible 7 est directement liée à la position d’appui du corps roulant 5 correspondant sur la première surface de came 8 de ladite portion flexible 7. Dès lors, si l’un des corps roulant 5 coopère avec glissement avec l’une des première et/ou deuxième surface de came 8, 9 correspondante alors que l’autre ou les autres corps roulant 5 coopèrent avec les premières et/ou deuxièmes surfaces de came 9 correspondantes sans glissement, un décalage angulaire apparaît entre les différents corps roulant 5 du double volant amortisseur. Du fait de ce décalage angulaire entre les corps roulant 5, lesdits corps roulant 5 ne sont pas en contact aux même endroits des premières surfaces de came 8 avec lesquelles ils coopèrent. Ainsi, les forces de réactions générées par les différentes lames 4 ne sont pas symétriques et la transmission de couple entre le volant primaire 1 et le volant secondaire 2 n’est pas équilibrée. Un tel déséquilibre dans la transmission de couple entre le volant primaire 1 et le volant secondaire 2 est préjudiciable au bon fonctionnement de l’amortisseur de torsion. Par conséquent, il est important de limiter, voire empêcher, le glissement des corps roulant 5 sur les premières et/ ou deuxièmes surfaces de came 8, 9 afin de s’assurer que les corps roulant 5 conservent une position angulaire relative stable et donc coopèrent de façon uniforme avec les lames 4 flexibles et génèrent une flexion sensiblement uniforme et équilibrée des portions flexibles 7 des différentes lames 4. Indeed, the reaction force generated by the flexible portion 7 of each blade 4 depends directly on the flexion of said flexible portion 7. However, this flexion of the flexible portion 7 is directly related to the bearing position of the corresponding rolling body 5 on the first cam surface 8 of said flexible portion 7. Therefore, if one of the rolling bodies 5 cooperates slidably with one of the corresponding first and / or second cam surface 8, 9 while the other or the other rolling bodies 5 cooperate with the corresponding first and / or second cam surfaces 9 without slipping, an angular offset occurs between the different rolling bodies 5 of the double damping flywheel. Because of this angular offset between the rolling bodies 5, said rolling bodies 5 are not in contact at the same locations of the first cam surfaces 8 with which they cooperate. Thus, the reaction forces generated by the different blades 4 are not symmetrical and the transmission of torque between the primary flywheel 1 and the secondary flywheel 2 is not balanced. Such imbalance in the torque transmission between the primary flywheel 1 and the secondary flywheel 2 is detrimental to the proper functioning of the torsion damper. Therefore, it is important to limit, if not prevent, slippage of the rolling bodies 5 on the first and / or second cam surfaces 8, 9 to ensure that the rolling bodies 5 maintain a stable relative angular position and therefore cooperate. in a uniform manner with the flexible blades 4 and generate a substantially uniform and balanced bending of the flexible portions 7 of the different blades 4.
Pour cela, l’amortisseur de torsion illustré sur les figures 1 à 4 comporte pour chaque corps roulant 5 un dispositif de synchronisation dudit corps roulant 5. Ce dispositif de synchronisation comporte un pignon cranté 11 et un organe denté 12 coopérant ensemble pour synchroniser la rotation du corps roulant 5 correspondant et le déplacement dudit corps roulant 5 sur la deuxième surface de came 9 avec laquelle il coopère.  For this, the torsion damper illustrated in FIGS. 1 to 4 comprises, for each rolling body 5, a device for synchronizing said rolling body 5. This synchronization device comprises a notched pinion 11 and a toothed member 12 cooperating together to synchronize the rotation. of the corresponding rolling body 5 and the displacement of said rolling body 5 on the second cam surface 9 with which it cooperates.
Le pignon cranté 1 1 est solidaire en rotation du corps roulant 5. Typiquement, le corps roulant 5 forme un premier tronçon cylindrique circulaire à paroi lisse et est fixé coaxialement à un deuxième tronçon cylindrique circulaire à paroi crantée.  The toothed pinion 11 is rotatably connected to the rolling body 5. Typically, the rolling body 5 forms a first smooth-walled circular cylindrical section and is fixed coaxially to a second circular cylindrical section with a notched wall.
Le pignon cranté 11 et le corps roulant 5 peuvent être réalisés de nombreuses manières. Selon un mode de réalisation, le corps roulant 5 et le pignon cranté 11 sont réalisés monobloc dans un même matériau. Dans un autre mode de réalisation, le corps roulant 5 et le pignon cranté 1 1 sont réalisé en deux pièces distinctes jointes par tout moyen de fixation adapté, comme par exemple par collage, chevillage, soudage, emmanchement frittage ou autre.  The notched pinion 11 and the rolling body 5 can be made in many ways. According to one embodiment, the rolling body 5 and the notched pinion 11 are made in one piece in the same material. In another embodiment, the rolling body 5 and the notched pinion 11 are made in two separate pieces joined by any suitable fastening means, such as for example by gluing, pegging, welding, sintering or other fitting.
En outre, le pignon cranté 1 1 peut être réalisé en de nombreux matériaux. Selon un mode de réalisation, le pignon cranté 11 est réalisé en matière plastique. Un tel pignon cranté 11 en matière plastique limite les nuisances sonores pouvant résulter des contacts avec l’organe denté 12. Dans un mode de réalisation, le pignon cranté 11 est par exemple surmoulé sur le corps roulant 5. Dans un autre mode de réalisation, le corps roulant 5 comporte un logement et le pignon cranté 1 1 comporte un pion emmanché dans ledit logement du corps roulant 5.  In addition, the notched pinion 11 can be made of many materials. According to one embodiment, the toothed pinion 11 is made of plastic. Such a toothed pinion 11 of plastic material limits the noise that may result from the contacts with the toothed member 12. In one embodiment, the toothed pinion 11 is for example overmolded on the rolling body 5. In another embodiment, the rolling body 5 comprises a housing and the notched pinion 11 comprises a pin fitted into said housing of the rolling body 5.
Le pignon cranté 1 1 est coaxial du corps roulant 5. Dans le mode de réalisation illustré sur les figures 1 à 4, le pignon cranté 11 et le corps roulant 5 ont une forme circulaire, le pignon cranté 1 1 présentant un diamètre inférieur au diamètre du corps roulant 5. Le pignon cranté 1 1 est axialement décalé avec le corps roulant 5. Le pignon cranté 11 est axialement intercalé entre le volant primaire 1 et le corps roulant 5. The notched pinion 11 is coaxial with the rolling body 5. In the embodiment illustrated in FIGS. 1 to 4, the notched pinion 11 and the rolling body 5 have a circular shape, the notched pinion 11 having a diameter smaller than the diameter. of the rolling body 5. The notched pinion 11 is axially offset with the rolling body 5. The toothed pinion 11 is axially interposed between the primary flywheel 1 and the rolling body 5.
L’organe denté 12 est monté fixe sur le volant primaire 1 , sur le plateau du volant primaire 1 dans le mode de réalisation illustré sur les figures 1 à 4.  The toothed member 12 is fixedly mounted on the primary flywheel 1, on the primary flywheel plate 1 in the embodiment illustrated in FIGS. 1 to 4.
L’organe denté 12 est agencé radialement à l’extérieur du pignon cranté The toothed member 12 is arranged radially on the outside of the notched pinion
1 1. Cet organe denté 12 présente une forme d’arc de cercle. Une face radialement externe de l’organe denté 12 est jointive de la face radialement interne de la jupe 3 périphérique du volant primaire 1. Autrement dit, l’organe denté 12 prolonge radialement vers l’intérieur la face radialement interne de la jupe.3. 1 1. This toothed member 12 has a shape of an arc of a circle. A radially outer face of the toothed member 12 is joined to the radially inner face of the peripheral skirt 3 of the primary flywheel 1. In other words, the toothed member 12 extends radially inwardly the radially inner face of the skirt. .
L’organe denté 12 se développe dans un secteur angulaire autour de l’axe de rotation X correspondant au secteur angulaire de la deuxième surface de came 9 correspondante. En outre, l’organe denté 12 est monté sur le volant primaire 1 axialement décalé avec la deuxième surface de came 9. Plus particulièrement, l’organe denté 12 est axialement intercalé entre la deuxième surface de came 9 et le plateau du volant primaire 1. Ainsi, la deuxième surface de came 9 est en vis-à- vis radial du corps roulant 5 et l’organe denté 12 est en vis-à-vis radial du pignon cranté 11.  The toothed member 12 develops in an angular sector around the axis of rotation X corresponding to the angular sector of the corresponding second cam surface 9. In addition, the toothed member 12 is mounted on the primary flywheel 1 axially offset with the second cam surface 9. More particularly, the toothed member 12 is axially interposed between the second cam surface 9 and the primary flywheel plate 1 Thus, the second cam surface 9 is in radial relation with the rolling body 5 and the toothed element 12 is in radial relation with the notched pinion 11.
Une face radialement interne de l’organe denté 12 comporte une rangée de dents. Le pignon cranté 11 et l’organe denté 12 sont agencés de manière à ce que le pignon cranté 1 1 se déplace le long de l’organe denté 12 lors d’un débattement relatif entre le volant primaire 1 et le volant secondaire 2, autrement dit lorsque le corps roulant 5 se déplace sur la deuxième surface de came 9.  A radially inner face of the toothed member 12 comprises a row of teeth. The notched pinion 11 and the toothed member 12 are arranged in such a way that the notched pinion 11 moves along the toothed member 12 during a relative deflection between the primary flywheel 1 and the secondary flywheel 2, otherwise said when the rolling body 5 moves on the second cam surface 9.
Lorsque le corps roulant 5 se déplace sur la deuxième surface de came 9 sans glissement, le corps roulant 5 tourne autour de son axe de rotation. Le pignon cranté 1 1 étant solidaire en rotation du corps roulant 5, le pignon cranté 1 1 se déplace alors le long de l’organe denté 12 en tournant autour de l’axe de rotation du corps roulant 5. Lors de son déplacement, les dents du pignon cranté 1 1 coopèrent avec les dents de l’organe denté 12. Cependant, cette coopération peut se faire sans transmission de couple entre le pignon cranté 1 1 et l’organe denté 12, c’est-à- dire sans appui circonférentiel entre les dents du pignon cranté 11 et les dents de l’organe cranté 12, du fait que le pignon cranté 1 1 est entraîné en rotation par la rotation du corps roulant 5 se déplaçant sans glissement le long de la deuxième surface de came 9. Ainsi, le couple transitant entre le volant primaire 1 et le volant secondaire 2 est transmis principalement par le corps roulant 5 et les premières et deuxièmes surfaces de came 8, 9, et de façon limité ou nulle par le pignon cranté 11 et l’organe denté 12. When the rolling body 5 moves on the second cam surface 9 without sliding, the rolling body 5 rotates about its axis of rotation. The notched pinion 1 1 being rotationally integral with the rolling body 5, the notched pinion 11 then moves along the toothed member 12 by rotating about the axis of rotation of the rolling body 5. During its displacement, the teeth of the toothed pinion 1 1 cooperate with the teeth of the toothed member 12. However, this cooperation can be done without transmission of torque between the notched pinion 11 and the toothed member 12, that is to say without support circumferential between the teeth of the toothed pinion 11 and the teeth of the toothed member 12, because the toothed pinion January 1 is rotated by the rotation of the rolling body 5 moving without sliding along the second cam surface 9 Thus, the couple transiting between the primary steering wheel 1 and the steering wheel secondary 2 is transmitted mainly by the rolling body 5 and the first and second cam surfaces 8, 9, and in a limited or no way by the toothed pinion 11 and the toothed member 12.
Le glissement entre le corps roulant et la deuxième surface de came 9 est limité par un contact circonférentiel entre les dents du pignon cranté 11 et les dents de l’organe denté 12. Les dents du pignon cranté 1 1 engrènent alors les dents de l’organe denté 12 de manière à imposer la rotation du pignon cranté 11 autour de l’axe de rotation du corps roulant 5. Le pignon cranté 1 1 et le corps roulant 5 étant solidaires en rotation, l’engrènement des dents du pignon cranté 11 avec les dents de l’organe denté 12 impose la rotation du corps roulant 5 et interrompt donc le phénomène de glissement entre le corps roulant 5 et la deuxième surface de came 9. Autrement dit, le pignon cranté 11 engrène l’organe denté 12 de manière à empêcher le glissement du corps roulant 5 sur la deuxième surface de came 9.  The sliding between the rolling body and the second cam surface 9 is limited by a circumferential contact between the teeth of the toothed pinion 11 and the teeth of the toothed member 12. The teeth of the notched pinion 11 then mesh the teeth of the toothed tooth. toothed member 12 so as to impose the rotation of the toothed pinion 11 around the axis of rotation of the rolling body 5. The notched pinion 1 1 and the rolling body 5 being integral in rotation, the engagement of the teeth of the notched pinion 11 with the teeth of the toothed member 12 impose the rotation of the rolling body 5 and therefore interrupts the sliding phenomenon between the rolling body 5 and the second cam surface 9. In other words, the notched pinion 11 meshes the toothed member 12 so as to to prevent sliding of the rolling body 5 on the second cam surface 9.
Ainsi, l’engrènement du pignon cranté 11 sur l’organe denté 12 permet de garantir que le déplacement du corps roulant 5 sur la deuxième surface de came 9 se fait de façon synchronisée avec la rotation du corps roulant 5 autour de son axe de rotation.  Thus, the engagement of the toothed pinion 11 on the toothed member 12 ensures that the displacement of the rolling body 5 on the second cam surface 9 is synchronized with the rotation of the rolling body 5 about its axis of rotation. .
Si on le souhaite, un jeu peut donc être présent entre les dents du pignon cranté 11 et les dents de l’organe denté 12. Comme expliqué ci-dessus, lorsque le corps roulant 5 se déplace le long de la deuxième surface de came 9 sans glissement, le corps roulant 5 et le pignon cranté 1 1 sont entraînés en rotation par la coopération sans glissement entre le corps roulant 5 et la deuxième surface de came 9. Du fait du jeu entre les dents du pignon cranté 1 1 et les dents de l’organe denté 12 et de l’entraînement en rotation du pignon cranté 11 par le corps roulant 5, les dents du pignon cranté 11 ne subissent pas d’effort circonférentiel par engrènement avec les dents de l’organe denté 12. Autrement dit, ce jeu permet de garantir que la rotation du pignon cranté 1 1 est imposée par la rotation du corps roulant 5 lorsque le corps roulant 5 coopère avec la deuxième surface de came 9 sans glissement. Cela permet de transmettre en grande partie voire totalement le couple entre le corps roulant et la surface de came et non entre le pignon et l’organe denté.  If so desired, a clearance can be present between the teeth of the toothed pinion 11 and the teeth of the toothed member 12. As explained above, when the rolling body 5 moves along the second cam surface 9 without sliding, the rolling body 5 and the toothed pinion 11 are rotated by the non-slip cooperation between the rolling body 5 and the second cam surface 9. Due to the clearance between the teeth of the toothed pinion 11 and the teeth the toothed member 12 and the rotational drive of the toothed pinion 11 by the rolling body 5, the teeth of the toothed pinion 11 do not undergo circumferential force by meshing with the teeth of the toothed member 12. In other words , this game ensures that the rotation of the notched pinion January 1 is imposed by the rotation of the rolling body 5 when the rolling body 5 cooperates with the second cam surface 9 without sliding. This makes it possible to transmit most or all of the torque between the rolling body and the cam surface and not between the pinion and the toothed member.
Ainsi, les dents du pignon cranté 1 1 n’engrènent les dents de l’organe denté 12 pour imposer une rotation au pignon cranté 11 qu'après un glissement entre le corps roulant 5 et la deuxième surface de came 9. Ce glissement est alors automatiquement interrompu dès lors que les dents du pignon cranté 11 s’appuient circonférentiellement contre les dents de l’organe denté 12. En effet, dès lors que les dents du pignon cranté 1 1 engrènent avec les dents de l’organe denté 12, cet engrènement impose une rotation du piston cranté 1 1 et donc une rotation du corps roulant 5 se déplaçant sur la deuxième surface de came 9. Un tel glissement entre le corps roulant 5 et la deuxième surface de came 9 n’est donc présent que sur une portion restreinte de la deuxième surface de came 9, ladite portion restreinte correspondant au jeu entre la dent du pignon cranté 11 et les dents de l’organe denté 12. Thus, the teeth of the notched pinion 11 mesh the teeth of the toothed member 12 to impose a rotation on the notched pinion 11 only after a sliding between the rolling body 5 and the second cam surface 9. This sliding is then automatically interrupted when the teeth of the toothed pinion 11 bear circumferentially against the teeth of the toothed member 12. In effect, since the teeth 1 1 toothed gear meshes with the teeth of the toothed member 12, this meshing requires a rotation of the notched piston 1 1 and thus a rotation of the rolling body 5 moving on the second cam surface 9. Such a sliding between the body 5 and the second cam surface 9 is therefore present only on a restricted portion of the second cam surface 9, said restricted portion corresponding to the clearance between the tooth of the notched pinion 11 and the teeth of the toothed member 12.
La présence de ce jeu ne perturbe donc pas la synchronisation de la rotation du corps roulant 5 avec son déplacement le long de la deuxième surface de came 9. En outre, un tel jeu garantit que le couple transitant entre le volant primaire 1 et le volant secondaire 2 transite essentiellement par le corps roulant 5 et par les première et deuxième surfaces de came 8, 9, sans transiter par le pignon cranté 1 1 et l’organe denté 12. En effet, le pignon cranté 11 et l’organe denté 12 n’engrènent que pour assurer la synchronisation de la rotation du corps 5 roulant avec son déplacement le long de la deuxième surface de came 9. En conséquence, le risque de cisaillement au niveau du pignon cranté 1 1 est limité puisque le couple transitant entre le volant primaire 1 et le volant secondaire 2 n’exerce pas ou peu de contraintes sur ledit pignon cranté 11.  The presence of this game does not interfere with the synchronization of the rotation of the rolling body 5 with its displacement along the second cam surface 9. In addition, such a game ensures that the torque transiting between the primary flywheel 1 and the steering wheel secondary 2 passes essentially through the rolling body 5 and the first and second cam surfaces 8, 9, without passing through the notched pinion 11 and the toothed member 12. Indeed, the notched pinion 11 and the toothed member 12 engage only to synchronize the rotation of the rolling body with its displacement along the second cam surface 9. As a result, the risk of shear at the toothed pinion 11 is limited since the torque transiting between the primary flywheel 1 and the secondary flywheel 2 exerts little or no stress on said notched pinion 11.
Les figures 5 à 8 illustrent un deuxième mode de réalisation dans lequel la rotation du corps roulant 5 est synchronisée d’une part avec son déplacement le long de la deuxième surface de came 9 et, d’autre part, avec son déplacement le long de la première surface de came 8. Dans ce deuxième mode de réalisation, les éléments identiques ou exerçants la même fonction que ceux décrits ci-dessus en regard du premier mode de réalisation portent la même référence.  FIGS. 5 to 8 illustrate a second embodiment in which the rotation of the rolling body 5 is synchronized on the one hand with its displacement along the second cam surface 9 and, on the other hand, with its displacement along the first cam surface 8. In this second embodiment, the same elements or exercising the same function as those described above with respect to the first embodiment bear the same reference.
Dans ce deuxième mode de réalisation, le pignon cranté 11 est un premier pignon cranté 11 et l’organe denté est un premier organe denté 12. La synchronisation entre la rotation du corps roulant 5 et son déplacement le long de la deuxième surface de came 9 est réalisée comme décrit ci-dessus en regard du premier mode de réalisation, le premier pignon cranté 11 solidaire en rotation du corps roulant 5 coopérant, avec ou sans jeu, avec le premier organe denté 12 monté sur le volant primaire 1. La synchronisation de la rotation du corps roulant 5 avec son déplacement le long de la première surface de came 8 se fait de façon analogue à la synchronisation entre la rotation du corps roulant 5 avec son déplacement le long de la deuxième surface de came 9. En effet, ce deuxième mode de réalisation comporte un deuxième dispositif de synchronisation analogue au premier dispositif de synchronisation. Ce deuxième dispositif de synchronisation comporte un deuxième pignon cranté 13 et un deuxième organe denté 14 coopérant ensemble pour synchroniser le déplacement du corps roulant 5 sur la première surface de came 8. In this second embodiment, the notched pinion 11 is a first toothed pinion 11 and the toothed member is a first toothed member 12. The synchronization between the rotation of the rolling body 5 and its displacement along the second cam surface 9 is carried out as described above with respect to the first embodiment, the first toothed pinion 11 integral in rotation with the rolling body 5 cooperating, with or without play, with the first toothed member 12 mounted on the primary flywheel 1. The synchronization of the rotation of the rolling body 5 with its displacement along the first cam surface 8 is analogous to the synchronization between the rotation of the rolling body 5 with its displacement along the second cam surface 9. Indeed, this second embodiment comprises a second synchronization device similar to the first synchronization device. This second synchronization device comprises a second toothed pinion 13 and a second toothed element 14 cooperating together to synchronize the displacement of the rolling body 5 on the first cam surface 8.
Le deuxième pignon cranté 13 est solidaire en rotation du corps roulant 5. The second notched pinion 13 is integral in rotation with the rolling body 5.
De façon analogue au premier pignon cranté 10, le deuxième pignon cranté 13 peut être solidarisé au corps roulant 5 de nombreuses manières, par exemple en étant monobloc, en deux pièces distinctes jointes par tout moyen de fixation adapté tel que collage, soudage, emmanchement, surmoulage, frittage etc. Le deuxième pignon 13 cranté est coaxial du corps roulant 5. De même, le deuxième pignon cranté est préférentiellement en plastique afin de limiter les bruits de contacts entre le deuxième pignon cranté 13 et le deuxième organe denté 14. Dans le mode de réalisation illustré sur les figures 5 à 8, le deuxième pignon cranté 13 et le corps roulant 5 ont une forme circulaire, le deuxième pignon cranté 13 présentant un diamètre inférieur au diamètre du corps roulant 5. In a similar manner to the first notched pinion 10, the second notched pinion 13 can be secured to the rolling body 5 in many ways, for example by being integral, in two separate parts joined by any suitable fastening means such as gluing, welding, fitting, overmolding, sintering etc. The second notched pinion 13 is coaxial with the rolling body 5. Likewise, the second notched pinion is preferably made of plastic in order to limit the contact noise between the second notched pinion 13 and the second toothed member 14. In the embodiment illustrated in FIG. Figures 5 to 8, the second notched pinion 13 and the rolling body 5 have a circular shape, the second notched pinion 13 having a diameter smaller than the diameter of the rolling body 5.
Le deuxième pignon cranté 13 est axialement décalé avec le corps roulant 5. Le deuxième pignon cranté 13 est axialement intercalé entre le volant secondaire 2 et le corps roulant 5. Autrement dit, le corps roulant 5 est coaxialement intercalé entre le premier pignon cranté 10 et le deuxième pignon cranté 13.  The second toothed gear 13 is axially offset with the rolling body 5. The second toothed gear 13 is axially interposed between the secondary flywheel 2 and the rolling body 5. In other words, the rolling body 5 is coaxially interposed between the first notched pinion 10 and the second notched pinion 13.
Le deuxième organe denté 14 est montée fixe sur le volant secondaire 2. The second toothed member 14 is fixedly mounted on the secondary flywheel 2.
Ce deuxième organe denté 14 présente une forme circulaire. Dans le mode de réalisation illustré sur les figures 5 à 8, ce deuxième organe denté 14 est fixé sur une portion radialement intermédiaire d’une face du plateau du volant secondaire 2 en vis-à-vis du volant primaire 1. Une face radialement externe du deuxième organe denté 14 présente une rangée de dents. This second toothed member 14 has a circular shape. In the embodiment illustrated in FIGS. 5 to 8, this second toothed element 14 is fixed on a radially intermediate portion of a face of the plate of the secondary flywheel 2 facing the primary flywheel 1. A radially outer face the second toothed member 14 has a row of teeth.
Le deuxième organe denté 14 est agencée dans un secteur angulaire autour de l’axe de rotation X correspondant au secteur angulaire autour dudit axe de rotation X dans lequel se développe la première surface de came 8. Le deuxième organe denté 14 est axialement décalé par rapport à la première surface de came 8. Plus particulièrement, le deuxième organe denté 14 est axialement intercalé entre la première surface de came 8 et le plateau du volant secondaire 2 de sorte que la première surface de came 8 soit en vis-à-vis radial du corps roulant 5 et que le deuxième organe denté 14 soit en vis-à-vis radial du deuxième pignon cranté 13. The second toothed member 14 is arranged in an angular sector around the axis of rotation X corresponding to the angular sector around said axis of rotation X in which the first cam surface 8 develops. The second toothed element 14 is axially offset with respect to the first cam surface 8. More particularly, the second toothed element 14 is axially interposed between the first cam surface 8 and the secondary flywheel plate 2 so that the first surface of cam 8 is vis-à-vis the radial rolling body 5 and the second toothed member 14 is vis-à-vis the radial second toothed pinion 13.
Le deuxième pignon cranté 13 et le deuxième organe denté 14 sont agencés de manière à ce que le deuxième pignon cranté 13 se déplace le long du deuxième organe denté 14 lorsque le corps roulant 5 se déplace sur la première surface de came 8.  The second toothed pinion 13 and the second toothed element 14 are arranged in such a way that the second toothed pinion 13 moves along the second toothed element 14 when the rolling body 5 moves on the first cam surface 8.
De façon analogue à la coopération entre le premier pignon cranté 11 et le premier organe denté 12 décrits ci-dessus en regard des figures 1 à 4, le deuxième pignon cranté 13 est entraîné en rotation et en déplacement le long du deuxième organe denté 14 par le corps roulant 5 lorsque le corps roulant 5 se déplace sur la première surface de came 8 sans glissement. Le deuxième pignon cranté 13 coopère alors avec le deuxième organe denté 14 avec une transmission de couple limité, de préférence sans transmission couple, entre le deuxième pignon cranté 13 et le deuxième organe denté 14.  In a similar way to the cooperation between the first toothed pinion 11 and the first toothed member 12 described above with reference to FIGS. 1 to 4, the second toothed pinion 13 is rotated and displaced along the second toothed member 14 by the rolling body 5 when the rolling body 5 moves on the first cam surface 8 without sliding. The second toothed pinion 13 then cooperates with the second toothed element 14 with a limited torque transmission, preferably without torque transmission, between the second toothed pinion 13 and the second toothed element 14.
Inversement, lorsque le corps roulant 5 se déplace sur la première surface de came 8 avec glissement, le deuxième pignon cranté 13 se déplace le long du deuxième organe denté 14 et engrène avec le deuxième organe denté 14 afin de forcer la rotation dudit deuxième pignon cranté 13, et donc du corps roulant 5. Ainsi, le deuxième pignon cranté 13 et le deuxième organe denté 14 empêchent le corps roulant 5 de continuer à coopérer avec la première surface de came 8 avec glissements. En conséquence, le déplacement du corps roulant 5 sur la première surface de came 8 se fait de façon synchronisée avec la rotation du corps roulant 5 autour de son axe de rotation.  Conversely, when the rolling body 5 moves on the first cam surface 8 with sliding, the second toothed pinion 13 moves along the second toothed member 14 and meshes with the second toothed member 14 to force the rotation of said second notched pinion 13, and thus the rolling body 5. Thus, the second toothed pinion 13 and the second toothed member 14 prevent the rolling body 5 from continuing to cooperate with the first cam surface 8 with sliding. As a result, the displacement of the rolling body 5 on the first cam surface 8 is synchronized with the rotation of the rolling body 5 about its axis of rotation.
De façon analogue au premier mode de réalisation décrit ci-dessus en regard des figures 1 à 4, un jeu peut donc être présent entre les dents du deuxième pignon cranté 13 et les dents du deuxième organe denté 14. Un tel jeu permet de limiter la transmission de couple par le deuxième pignon cranté 13 et le deuxième organe denté 14 lors de la transmission de couple entre le volant primaire 1 et le volant secondaire 2. Les figures 8 et 9 présentent une variante préférée de ce second mode de réalisation dans lequel le deuxième organe denté 14 est fixé sur la lame flexible 4. Le deuxième organe denté peut notamment être riveté sur la lame 4. In a similar manner to the first embodiment described above with reference to FIGS. 1 to 4, a clearance can therefore be present between the teeth of the second notched pinion 13 and the teeth of the second toothed member 14. Such a game makes it possible to limit the transmission of torque by the second notched pinion 13 and the second toothed member 14 during transmission of torque between the primary flywheel 1 and the secondary flywheel 2. FIGS. 8 and 9 show a preferred variant of this second embodiment in which the second toothed element 14 is fixed on the flexible blade 4. The second toothed element can in particular be riveted on the blade 4.
Ainsi il n’est pas nécessaire de prendre en compte le débattement radial de la lame pour gérer l’interpénétration des dents du pignon denté 13 et du deuxième organe denté 14.  Thus it is not necessary to take into account the radial displacement of the blade to manage the interpenetration of the teeth of the pinion gear 13 and the second toothed member 14.
Cet organe denté 14 est formé dans une tôle et présente l’avantage d’être peu encombrant radialement.  This toothed member 14 is formed in a sheet and has the advantage of being compact radially.
Dans un mode de réalisation non illustré, le double volant amortisseur comporte le deuxième dispositif de synchronisation uniquement, sans comporter le premier dispositif de synchronisation. Ainsi, dans ce mode de réalisation non illustré, la rotation du corps roulant 5 autour de son axe de rotation est synchronisée avec son déplacement le long de la première surface de came 8 seulement, sans être synchronisée avec son déplacement le long de la deuxième surface de came 9.  In a non-illustrated embodiment, the double damping flywheel comprises the second synchronization device only, without having the first synchronization device. Thus, in this non-illustrated embodiment, the rotation of the rolling body 5 about its axis of rotation is synchronized with its displacement along the first cam surface 8 only, without being synchronized with its displacement along the second surface. of cam 9.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.  Although the invention has been described in connection with several particular embodiments, it is obvious that it is not limited thereto and that it comprises all the technical equivalents of the means described and their combinations if they are within the scope of the invention.
En particulier, bien que l’invention soit décrite ci-dessus en relation avec un dispositif élastique d’amortissement comportant deux corps coulants coopérant chacun avec deux pistes de roulement, l’invention n’est pas limitée à un tel mode de réalisation et le dispositif élastiquement d’amortissement est également susceptible de comprendre un nombre supérieur de corps roulants, chacun des corps roulants étant monté en rotation sur l’élément de phasage.  In particular, although the invention is described above in connection with an elastic damping device comprising two sliding bodies each cooperating with two raceways, the invention is not limited to such an embodiment and the resiliently damping device is also likely to comprise a greater number of rolling bodies, each of the rolling bodies being mounted in rotation on the phasing element.
L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication.  The use of the verb "to include", "to understand" or "to include" and its conjugated forms does not exclude the presence of other elements or steps other than those set out in a claim.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.  In the claims, any reference sign in parentheses can not be interpreted as a limitation of the claim.

Claims

REVENDICATIONS
1. Amortisseur de torsion pour une chaîne de transmission de véhicule automobile comportant : A torsion damper for a motor vehicle drive chain comprising:
un premier élément (1 ) et un deuxième élément (2) mobiles en rotation l’un par rapport à l’autre autour d’un axe de rotation X ;  a first element (1) and a second element (2) rotatable relative to each other about an axis of rotation X;
un dispositif élastique d’amortissement accouplant le premier élément (1 ) et le deuxième élément (2) de manière à permettre une transmission de couple avec amortissement des vibrations entre le premier élément (1 ) et le deuxième élément (2) ;  an elastic damping device coupling the first element (1) and the second element (2) so as to allow vibration damping torque transmission between the first element (1) and the second element (2);
ledit dispositif élastique d’amortissement comportant : said elastic damping device comprising:
une première piste de roulement (8) reliée par une liaison élastique au deuxième élément (2) ;  a first raceway (8) connected by an elastic connection to the second element (2);
une deuxième piste de roulement (9) reliée au premier élément (1 ) ;  a second raceway (9) connected to the first element (1);
un corps roulant (5) coopérant avec la première piste de roulement (8) et avec la deuxième piste de roulement (9), ledit corps roulant (5) présentant un axe de rotation dudit corps roulant (5), ledit corps roulant étant apte à se déplacer en roulant sur lesdites première et deuxième pistes de roulement (8, 9) lors d’une rotation relative entre le premier élément (1 ) et le deuxième élément (2) ;  a rolling body (5) cooperating with the first rolling track (8) and with the second rolling track (9), said rolling body (5) having an axis of rotation of said rolling body (5), said rolling body being suitable moving rolling on said first and second raceways (8, 9) during relative rotation between the first member (1) and the second member (2);
lesdites première et deuxième pistes de roulement (8, 9) étant agencées de telle sorte que, pour une rotation relative entre le premier élément (1 ) et le deuxième élément (2) depuis une position angulaire de repos, le premier corps (5) roulant en se déplaçant sur les première et deuxième pistes de roulement exerce un effort de flexion sur la liaison élastique et que la liaison élastique produise une force de réaction sur le corps roulant (5) de manière à rappeler le premier élément (1 ) et le deuxième élément (2) vers la position angulaire de repos ; said first and second raceways (8, 9) being arranged such that for relative rotation between the first element (1) and the second element (2) from an angular position of rest, the first body (5) traveling on the first and second rolling tracks exerts a bending force on the elastic connection and that the elastic connection produces a reaction force on the rolling body (5) so as to recall the first element (1) and the second element (2) to the angular position of rest;
le dispositif élastique d’amortissement comportant en outre un pignon cranté (11 , 13) solidaire en rotation du corps roulant (5) autour de l’axe X, ledit pignon cranté (1 1 , 13) étant axialement décalé avec le corps roulant (5), ledit pignon cranté (11 , 13) étant agencé pour engrener avec un organe denté (12, 14) portée par l’un parmi le premier élément (1 ) et le deuxième élément (2). the resilient damping device further comprising a notched pinion (11, 13) integral in rotation with the rolling body (5) about the X axis, said notched pinion (1 1, 13) being axially offset with the rolling body ( 5), said notched pinion (11, 13) being arranged to mesh with a toothed member (12, 14) carried by one of the first member (1) and the second member (2).
2. Amortisseur de torsion selon la revendication 1 , dans lequel le pignon cranté (11 , 13) coopère avec l’organe denté (12, 14) avec un jeu d’engrènement. 2. torsion damper according to claim 1, wherein the notched pinion (11, 13) cooperates with the toothed member (12, 14) with a set of meshing.
3. Amortisseur de torsion selon l’une des revendications précédentes, dans lequel le pignon cranté est surmoulé sur le corps roulant.  3. torsion damper according to one of the preceding claims, wherein the notched pinion is overmolded on the rolling body.
4. Amortisseur de torsion selon l’une des revendications précédentes, dans lequel le pignon cranté est un premier pignon cranté (1 1 ) et l’organe denté est un premier organe denté (12),  4. torsion damper according to one of the preceding claims, wherein the notched pinion is a first toothed pinion (1 1) and the toothed member is a first toothed member (12),
et dans lequel le dispositif élastique d’amortissement comporte en outre un deuxième pignon cranté (13) solidaire en rotation du corps roulant (5), ledit deuxième pignon cranté (13) étant axialement décalé par rapport au corps roulant (5), ledit deuxième pignon cranté (13) étant agencé pour engrener avec un deuxième organe denté (14) porté par l’autre parmi le premier élément (1 ) et le deuxième élément (2). and wherein the resilient damping device further comprises a second notched pinion (13) rotationally integral with the rolling body (5), said second pinion (13) being axially offset relative to the rolling body (5), said second pinion pinion gear (13) being arranged to mesh with a second toothed member (14) carried by the other of the first element (1) and the second element (2).
5. Amortisseur de torsion selon la revendication précédente, dans lequel le corps roulant (5) est axialement intercalé entre le premier pignon cranté (1 1 ) et le deuxième pignon cranté (13).  5. torsion damper according to the preceding claim, wherein the rolling body (5) is axially interposed between the first toothed pinion (1 1) and the second notched pinion (13).
6. Amortisseur de torsion selon l’une des revendications 4 à 5, dans lequel le deuxième pignon cranté (13) coopère avec le deuxième organe denté (14) avec un deuxième jeu d’engrènement.  6. torsion damper according to one of claims 4 to 5, wherein the second toothed pinion (13) cooperates with the second toothed member (14) with a second set of meshing.
7. Amortisseur de torsion selon l’une des revendications précédentes, dans lequel le corps roulant est un premier corps roulant et la liaison élastique reliant la première piste de roulement (8) et le deuxième élément (2) est une première liaison élastique, le pignon cranté étant un premier pignon cranté et l’organe denté étant un premier organe denté, le dispositif élastique d’amortissement comportant en outre  Torsion damper according to one of the preceding claims, wherein the rolling body is a first rolling body and the elastic connection connecting the first rolling track (8) and the second element (2) is a first elastic connection, the toothed pinion being a first notched pinion and the toothed member being a first toothed member, the elastic damping device further comprising
Une troisième piste de roulement reliée au premier élément (1 ), A third rolling track connected to the first element (1),
Une quatrième piste de roulement reliée par une deuxième liaison élastique au deuxième élément (2), A fourth rolling track connected by a second elastic connection to the second element (2),
Un deuxième corps roulant coopérant avec la troisième et la quatrième piste de roulement et apte à se déplacer sur lesdites troisième et quatrième pistes de roulement lors d’une rotation relative entre le premier élément (1 ) et le deuxième élément (2), A second rolling body cooperating with the third and fourth rolling track and able to move on said third and fourth rolling tracks during a relative rotation between the first element (1) and the second element (2),
Lesdites troisième et quatrième pistes de roulement étant agencées de telle sorte que, pour une rotation relative entre le premier et le deuxième élément depuis la position angulaire de repos, le deuxième corps roulant en se déplaçant sur les troisième et quatrième pistes de roulement exerce un effort de flexion sur la deuxième liaison élastique et que la deuxième liaison élastique produise une force de réaction sur le deuxième corps roulant de manière à rappeler le premier élément et le deuxième élément vers la position angulaire de repos,  Said third and fourth raceways being arranged such that, for a relative rotation between the first and the second element from the angular position of rest, the second rolling body moving on the third and fourth raceways exerts a force bending on the second elastic connection and that the second elastic connection produces a reaction force on the second rolling body so as to return the first element and the second element to the angular position of rest,
Le dispositif élastique comportant en outre un troisième pignon cranté solidaire en rotation du deuxième corps roulant, ledit troisième pignon cranté étant axialement décalé par rapport au deuxième corps roulant, ledit troisième pignon cranté étant agencé pour engrener avec un troisième organe denté porté par ledit un parmi le premier élément et le deuxième élément.  The elastic device further comprising a third toothed pinion rotationally integral with the second rolling body, said third pinion being axially offset relative to the second rolling body, said third pinion being arranged to mesh with a third toothed member carried by said one of the first element and the second element.
8. Amortisseur de torsion selon l’une des revendications précédentes, dans lequel le dispositif élastique d’amortissement comporte une lame flexible (4) montée sur le deuxième élément (2), ladite lame flexible (4) comportant une face portant la première piste de roulement (8), une portion flexible de la lame flexible (4) formant la liaison élastique reliant la première piste de roulement (8) au deuxième élément (2).  8. torsion damper according to one of the preceding claims, wherein the elastic damping device comprises a flexible blade (4) mounted on the second member (2), said flexible blade (4) having a face carrying the first track rolling member (8), a flexible portion of the flexible blade (4) forming the elastic connection connecting the first raceway (8) to the second element (2).
9. Amortisseur de torsion selon la revendication précédente, dans lequel l’organe denté est porté par le deuxième élément (2), cet organe denté étant fixé sur la lame flexible (4).  9. torsion damper according to the preceding claim, wherein the toothed member is carried by the second member (2), the toothed member being fixed on the flexible blade (4).
10. Amortisseur de torsion selon l’une des revendications précédentes, dans lequel le corps roulant présente une surface de contact avec les pistes de roulement régulière.  Torsion damper according to one of the preceding claims, wherein the rolling body has a contact surface with the rolling tracks.
PCT/EP2018/084610 2017-12-13 2018-12-12 Torsion damper with phasing means WO2019115637A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1762088A FR3074865B1 (en) 2017-12-13 2017-12-13 TORSION DAMPER WITH PHASE MEANS
FR1762088 2017-12-13

Publications (1)

Publication Number Publication Date
WO2019115637A1 true WO2019115637A1 (en) 2019-06-20

Family

ID=61028035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/084610 WO2019115637A1 (en) 2017-12-13 2018-12-12 Torsion damper with phasing means

Country Status (2)

Country Link
FR (1) FR3074865B1 (en)
WO (1) WO2019115637A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019209276A1 (en) * 2019-06-26 2020-12-31 Zf Friedrichshafen Ag Torsional vibration damper

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3926384A1 (en) * 1989-08-10 1991-02-14 Fichtel & Sachs Ag Torsional oscillation damper in vehicle drive-line - has input and output part, with two torsional spring arrangements and stops
FR3000155A1 (en) 2012-12-21 2014-06-27 Valeo Embrayages TORSION DAMPER FOR A TORQUE TRANSMISSION DEVICE OF A MOTOR VEHICLE
FR3008152A1 (en) 2013-07-08 2015-01-09 Valeo Embrayages DOUBLE FLYWHEEL DAMPER WITH IMPROVED AMORTIZATION MEANS
FR3032248A1 (en) 2015-01-29 2016-08-05 Valeo Embrayages DEVICE FOR DAMPING VIBRATIONS FOR A TRANSMISSION CHAIN OF A MOTOR VEHICLE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3926384A1 (en) * 1989-08-10 1991-02-14 Fichtel & Sachs Ag Torsional oscillation damper in vehicle drive-line - has input and output part, with two torsional spring arrangements and stops
FR3000155A1 (en) 2012-12-21 2014-06-27 Valeo Embrayages TORSION DAMPER FOR A TORQUE TRANSMISSION DEVICE OF A MOTOR VEHICLE
FR3008152A1 (en) 2013-07-08 2015-01-09 Valeo Embrayages DOUBLE FLYWHEEL DAMPER WITH IMPROVED AMORTIZATION MEANS
FR3032248A1 (en) 2015-01-29 2016-08-05 Valeo Embrayages DEVICE FOR DAMPING VIBRATIONS FOR A TRANSMISSION CHAIN OF A MOTOR VEHICLE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019209276A1 (en) * 2019-06-26 2020-12-31 Zf Friedrichshafen Ag Torsional vibration damper

Also Published As

Publication number Publication date
FR3074865B1 (en) 2019-11-08
FR3074865A1 (en) 2019-06-14

Similar Documents

Publication Publication Date Title
EP2286103B1 (en) Friction clutch device comprising a double shock-absorbing steering wheel for which a secondary assembly is fixedly mounted axially relative to a reactive plate
FR2990736A1 (en) TORQUE TRANSMISSION DEVICE FOR MOTOR VEHICLE
FR3074865B1 (en) TORSION DAMPER WITH PHASE MEANS
WO2017149161A1 (en) Torque transmission device
FR2993330A1 (en) MECHANICAL SYSTEM WITH A UNIDIRECTIONAL CLUTCH AND ALTERNATOR COMPRISING SUCH A SYSTEM
FR3011598A1 (en) MECHANICAL SYSTEM WITH A UNIDIRECTIONAL CLUTCH AND ALTERNATOR COMPRISING SUCH A SYSTEM
FR3011600A1 (en) MECHANICAL SYSTEM WITH A UNIDIRECTIONAL CLUTCH AND ALTERNATOR COMPRISING SUCH A SYSTEM
WO2018037180A1 (en) Torque transmission device
WO2018037179A1 (en) Torque transmission device
WO2018020155A1 (en) Vibration damping system for a motor vehicle driveline
FR2993329A1 (en) MECHANICAL SYSTEM WITH A UNIDIRECTIONAL CLUTCH AND ALTERNATOR COMPRISING SUCH A SYSTEM
FR3036759A1 (en) TORSION DAMPER WITH DOUBLE BLADE
FR3045119A1 (en) VIBRATION SHOCK ABSORBER WITH FLEXIBLE BLADE
FR3010752A1 (en) CRABOT SPEED CONTROL FOR A VEHICLE GEARBOX
FR3033380A1 (en) ELASTIC BLADE DAMPING DEVICE AND METHOD FOR ASSEMBLING SUCH DAMPING DEVICE
WO2017174583A1 (en) Assembly for torque-transmission device, torque-transmission device and methods for assembling same
FR3061252A1 (en) TORSION DAMPER WITH BLADES
EP3205901B1 (en) Vibration damper
FR3055035A1 (en) TORSION DAMPER AND TORQUE TRANSMISSION DEVICE COMPRISING SUCH A SYSTEM
EP3899317B1 (en) Torque transmission device with springs in series and torque transmission system comprising such a device
FR3050497A1 (en) TORQUE TRANSMISSION DEVICE
WO2017046547A1 (en) Vibration damper
FR2819302A1 (en) Double flywheel for damping vibrations between engine and vehicle transmission system comprises Belleville washer mounted on intermediate ring attached to first flywheel which carries cam cooperating with counter-cam on other flywheel
EP0333539A1 (en) Disconnectible linear stepping motor with a recentered rotor
FR3058491A1 (en) TORSION DAMPER WITH BLADES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18829763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18829763

Country of ref document: EP

Kind code of ref document: A1