WO2019115439A1 - Dialyseur capillaire - Google Patents

Dialyseur capillaire Download PDF

Info

Publication number
WO2019115439A1
WO2019115439A1 PCT/EP2018/084128 EP2018084128W WO2019115439A1 WO 2019115439 A1 WO2019115439 A1 WO 2019115439A1 EP 2018084128 W EP2018084128 W EP 2018084128W WO 2019115439 A1 WO2019115439 A1 WO 2019115439A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
hollow fiber
fiber membranes
dialyzer
capillary
Prior art date
Application number
PCT/EP2018/084128
Other languages
English (en)
Inventor
Joachim Loercher
Juergen Eichinger
Reinhold Buck
Arnd Wochner
Original Assignee
Gambro Lundia Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gambro Lundia Ab filed Critical Gambro Lundia Ab
Priority to US16/762,623 priority Critical patent/US11413384B2/en
Priority to CN201880078764.9A priority patent/CN111432916A/zh
Priority to CA3078564A priority patent/CA3078564A1/fr
Publication of WO2019115439A1 publication Critical patent/WO2019115439A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1621Constructional aspects thereof
    • A61M1/1623Disposition or location of membranes relative to fluids
    • A61M1/1627Dialyser of the inside perfusion type, i.e. blood flow inside hollow membrane fibres or tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/168Sterilisation or cleaning before or after use
    • A61M1/1686Sterilisation or cleaning before or after use by heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • B01D2313/206Specific housing characterised by the material
    • B01D2313/2061Organic, e.g. polymeric material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/21Specific headers, end caps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/44Cartridge types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/28Apparatus therefor

Definitions

  • the present disclosure relates to capillary dialyzers for blood purification, in particular, capillary dialyzers suitable for home hemodialysis systems.
  • Capillary dialyzers are widely used for blood purification in patients suffering from renal insufficiency, i.e., for treatment of the patients by hemodialysis, hemodiafiltra- tion or hemofiltration.
  • a multitude of different models of capillary dialyzers is commercially available.
  • the devices generally consist of a casing comprising a tub ular section with end caps capping the mouths of the tubu lar section.
  • a bundle of hollow fiber membranes is arranged in the casing in a way that a seal is provided between the first flow space formed by the fiber cavities and a second flow space surrounding the membranes on the outside.
  • Exam ples of such devices are disclosed in EP 0 844 015 A2, EP 0 305 687 Al, and WO 01/60477 A2.
  • Espe cially capillary dialyzers used in home hemodialysis sys tems must be able to withstand treatments with extended du ration (e.g., nocturnal dialysis treatment), multiple treatment cycles, and multiple disinfection cycles.
  • the capillary dialyzers of the present invention are par ticularly suitable for use in home hemodialysis, as they are designed to be used repeatedly in treatments of the same patient.
  • the capillary dialyzers withstand multiple treatment and disinfection cycles.
  • Fig. 1 shows a side view and a partially cross-sectional view of an embodiment of the capillary dialyzer of the present application
  • Fig. 2 shows an enlarged view of the header section of the dialyzer shown in Fig. 1.
  • a subject of the present disclosure is a capillary dialyzer comprising :
  • a housing defining a longitudinally extending in ternal chamber including a first end and a second end;
  • a bundle of semi-permeable hollow fiber membranes disposed within the internal chamber and extending longitu dinally from the first end of the housing to the second end of the housing, the hollow fiber membranes having an outer surface, and a first end and a second end corresponding to the first end and the second end of the internal chamber; c) end wall means supporting the first and second ends of the hollow fiber membranes within the internal chamber so as to sealingly separate the first and second ends of the hollow fiber membranes from the outer surface of the hollow fiber membranes between the first and second ends thereof;
  • the capillary dialyzer of the present disclosure is charac terized in that the semi-permeable hollow fiber membranes each have an inner diameter in the range of from 185 ym to less than 195 ym, for instance, 188 ym to 192 ym, and a wall thickness in the range of from 45 ym to 55 ym, for in stance, 48 ym to 52 ym; and the packing density of the hol low fiber membranes in a middle section of the housing is in the range of from 52% to 54%.
  • the packing density of the hollow fiber membranes in the capillary dialyzers of the present disclosure is in the range of from 52% to 54%, i.e., the sum of the cross- sectional area of all hollow fiber membranes present in the dialyzer amounts to 52% to 54% of the cross-sectional area of the middle section of the dialyzer housing. If n hollow fiber membranes are present in the dialyzer, D F is the out er diameter of a single hollow fiber membrane, and D H is the inner diameter of the middle section of the dialyzer housing, the packing density can be calculated per n* (D F /D h) 2 .
  • the capillary dialyzer comprises from 10,200 to 11,000 hollow fiber membranes; the effective sur face area of the hollow fiber membranes totaling from 1.45 to 1.55 m 2 .
  • the particular hollow fiber mem branes employed in the capillary dialyzer of the present disclosure and the packing density impart improved durability ity to the dialyzer. It is hypothesized that the particular ratio of wall strength to inner diameter of the hollow fi ber membranes in combination with the particular packing density of the hollow fiber membranes in the housing enable the fibers to better withstand the multitude of pressure swings occurring during treatment, thus reducing the inci dence of fiber ruptures.
  • the capil lary dialyzer of the present disclosure is used in up to 30 treatments, each lasting 10 hours. It is subjected to up to 30 heat disinfection cycles with hot water (90-95°C, 2-3 hours) . During its use, it is subjected to more than 300,000 pressure swings with a differential pressure of more than 1 bar.
  • the semipermeable hollow fiber membranes are preferably based on at least one hydrophobic polymer and on at least one hydrophilic polymer.
  • Said at least one hydrophobic po lymer is preferably chosen from the group consisting of polyamide (PA) , polyaramide (PAA) , polyarylethersulfone (PAES) , polyethersulfone (PES) , polysulfone (PSU) , poly- arylsulfone (PASU) , polycarbonate (PC) , polyether, polyure thane (PUR) , polyetherimide and copolymers of said poly mers, preferably polyethersulfone or a mix of polyaryleth- ersulfone and polyamide.
  • Polyethersulfone and polysulfone are preferred for use hydrophobic polymers.
  • polyethersulfone is used for preparing the hollow fiber membranes of the present disclosure.
  • polyethersulfone is a polymer having the general formula - [0-Ph-S0 2 -Ph-] n -, a weight average molecular weight of about 60,000 to 65,000 Da, preferably 63,000 to 65,000 Da, and a M w /M n of about 1,5 to 1,8.
  • Said at least one hydrophilic polymer is preferably chosen from the group consisting of polyvinylpyrrolidone (PVP) , polyethyleneglycol (PEG) , polyglycolmonoester, water solu ble cellulosic derivates, polysorbate and polyethylene- polypropyleneoxide copolymers.
  • PVP polyvinylpyrrolidone
  • PEG polyethyleneglycol
  • polyglycolmonoester polyglycolmonoester
  • water solu ble cellulosic derivates polysorbate
  • polyethylene- polypropyleneoxide copolymers Preferably, polyvinylpyrro lidone is used for preparing the hollow fiber membranes of the present disclosure, wherein the polyvinylpyrrolidone consists of a low molecular weight component having a mo lecular weight of below 100 kDa and a high molecular weight component having a molecular weight of 100 kDa or more.
  • a preferred embodiment of the semipermeable hollow fiber membrane consists of 80-99% by weight of said hydrophobic polymer, preferably polyethersulfone, and 1-20% by weight of said at least one hydrophilic polymer, preferably poly vinylpyrrolidone (PVP) .
  • the PVP consists of a high (3 100 kDa) and low ( ⁇ 100 kDa) molecular component, wherein the PVP consists of 10-45 weight-% based on the total weight of PVP in the membrane, of a high molecular weight component, and of 55-90 weight-% based on the total weight of PVP in the membrane, of a low molecular weight component.
  • the spinning solution for preparing the semipermeable hol low fiber membranes preferably comprises between 12 and 15 weight-% of polyethersulfone or polysulfone as hydrophobic polymer and 5 to 10 weight-% of PVP, wherein said PVP con sists of a low and a high molecular PVP component.
  • the to tal PVP contained in the spinning solution consists of be tween 22 and 34 weight-% and preferably of between 25 and 30 weight-% of a high molecular weight component and of be tween 66 and 78 weight-%, preferably of between 70 and 75 weight-% of a low molecular weight component.
  • Examples for high and low molecular weight PVP are, for example, PVP K85/K90 and PVP K30, respectively.
  • the polymer solution used for preparing the semipermeable hollow fiber membranes of the present disclosure preferably further comprises 66-86 % by weight solvent and 1-5% by weight suitably additives.
  • Suitable additives are, for ex ample, chosen form the group of water, glycerol and/or oth er alcohols. Water is especially preferred in the context of the present invention and is present in the spinning so lution in an amount of between 1-8% by weight, preferably in an amount of between 2-5% by weight.
  • the solvent used in the process of the present invention preferably is chosen from the group comprising N-methylpyrrolidone (NMP) , dime- thylacetamide (DMAC) , dimethylsulfoxide (DMSO) , dimethyl- formamide (DMF) , butyrolactone and mixtures of said sol vents.
  • NMP is especially preferred in the context of the present invention.
  • the spinning solution should be homoge nously degassed and filtered.
  • the spinning solution comprises 14 wt . % polyethersulfone, 2 wt . % high molecular weight PVP, 5 wt . % low molecular weight PVP, 3 wt . % water, and 76 wt . %
  • the center fluid or bore liquid which is used for preparing semipermeable hollow fiber membranes of the present disclo sure comprises at least one of the above-mentioned solvents and a precipitation medium chosen from the group of water, glycerol and other alcohols.
  • the center fluid consists of 45-70% by weight of the precipitation me dium, and 30-55% by weight of the solvent.
  • the center fluid consists of 51-57% by weight of water and 43- 49% by weight of NMP .
  • the cen ter fluid consists of 45.5 wt . % NMP and 55.5 wt . % water. Again, the center fluid should be degassed and filtered.
  • the viscosity of the polymer solution is in the range of from 2,500 to 7,000 mPa-s, preferably from 3,500 to 5,500 mPa-s.
  • the temperature of the spinneret is 30-70°C, preferably 50-58°C, and the temperature of the spinning shaft is 25-65°C, preferably 45-55°C. In a particular embodiment, the temperature of the spinneret is 55 ⁇ 1°C, and the temperature of the spinning shaft is 52 ⁇ 1°C.
  • the distance between the opening of the nozzle and the precipitation bath is between 25 and 1500 mm, preferably between 550 and 1100 mm.
  • the precipitation bath has a temperature of 10-40°C, preferably of 15-25 °C .
  • the spinning velocity is in the range of from 25 to 80 m/min, preferably from 30 to 60 m/min. In a particular embodiment, the spinning velocity is 45 m/min.
  • the semipermeable hollow fiber membranes of the present disclosure will then preferably be washed in water to re move waste components, and then be dried at temperatures between 150-250°C, preferably between 180-220°C. Such dry- ing will provide for an adequate evaporation of water and a defined shrinkage of pores.
  • the final treatment consists of rinsing the membrane in water at a temperature of 50-95°C, preferably 80-90°C and subsequent drying at temperatures of 30-65°C, preferably 55-65°C.
  • the membrane is preferably steam sterilized at temperatures above 121°C for at least 21 minutes.
  • the hollow fiber membranes are asymmet ric and have a four-layer structure.
  • the inner layer of the four-layer structure i.e. the blood contacting layer and the inner surface of the hollow fiber membrane, is a separation layer in the form of a dense thin layer having, in one embodiment, a thickness of less than 1 pm and a pore size in the nano-scale range.
  • the pore channels with the responsible pore diameters are short, i.e. below 0.1 pm.
  • the pore chan nel diameter has a low variation in size.
  • the next layer in the hollow fiber membrane is the second layer having the form of a sponge structure and, in one em bodiment of the present invention, a thickness of about 1 to 15 pm, and serves as a support for the first layer.
  • the third layer has the form of a finger structure. It pro vides for mechanical stability on the one hand; on the oth er hand, it has, due to the high void volume, a very low resistance of transport of molecules through the membrane when the voids are filled with water.
  • the third layer has, in one embodiment of the present invention, a thickness of 20 to 50 pm.
  • the fourth layer is the outer layer, which is characterized by a homogeneous and open pore structure with a defined surface roughness. In one embodiment, the number average size of the pore openings is in the range of 0.5 to 3 pm, further the number of pores on the outer surface is in the range of 20,000 to 100, 000 pores per mm 2 . In one embodi ment, this fourth layer has a thickness of about 1 to 10 pm.
  • the capillary dialyzers of the present invention show sieving coefficients of 1.0 for vitamin B12, 1.0 for inulin, 0.7 for b2-microglobulin, and less than 0.01 for albumin.
  • the particular design of the housing and the end caps of the capillary dialyzer of the present disclosure also en hance the durability of the dialyzer.
  • the ratio of the inner diameter of the middle section of the housing to the overall length of the housing is smaller than 0.17 in the capillary dialyzer.
  • the inner diameter of the middle section of the housing of the capillary dialyzer is 41.010.1 mm and the length of the housing is 255.810.1 mm.
  • the particular ratio of the inner diameter of the housing to its length reduces the strain on the fiber bundle during use and helps the fibers to better withstand the pressure swings occurring during treatment, thus reducing the incidence of fiber ruptures.
  • the inner diameter of the middle section of the housing of the capillary dialyzer is 41.010.1 mm and the inner diameter of the mouth of the housing of the ca pillary dialyzer is 52.610.1 mm.
  • the ratio of the wall thickness of the housing to the inner diameter of the middle section of the housing to the overall length is larger than 0.03 in the capillary dialyzer.
  • the particular ratio of the wall thickness to the inner diameter of the housing increases the rigidity of the housing, thus limiting the amplitude of vibrations of the housing wall caused by pressure swings during use.
  • the capillary dialyzer is less prone to leakage caused by crack formation in the shell of the dialyzer.
  • the relative size of the inner di ameters of the middle section of the housing and the mouth of the housing, respectively result in a favorable pres sure distribution within the dialyzer.
  • the capillary dialyzer comprises annular protrusions on the outer surface of the housing adjacent to the end caps.
  • the protrusions have a length, in axial di rection, of in the range of 3 to 5 mm, e.g., 3 to 4 mm, and the wall strength of the housing in the area of the protru sions is in the range of from 150 to 200 percent of the wall strength adjacent to the protrusions.
  • adjacent cent in the context of the present disclosure means less than 1 mm away.
  • the protrusions additionally in crease rigidity of the housing by locally increasing the wall diameter of the housing, thus both limiting the ampli tude of vibrations of the housing wall caused by pressure swings during use as well as preventing build-up of reso- nance vibrations leading to catastrophic failure of the housing wall .
  • the end caps have an inner surface which is rotationally symmetrical with regard to a longitudinal axis of the end cap and an inner surface having the form of a funnel and comprising, in the direction of increasing diameter, a first section taking the form of at least one of a cylinder and a trun cated cone, a middle section taking the form of a torus segment and having a radius R of 7.010.1 mm, and a third section taking the form of a truncated cone, wherein the diameter D of the base of the third section is 42.110.1 mm and the angle between the base of the third section and the lateral surface of the third section is 9.5310.05°, and the outer diameter of the end cap is 58.810.1 mm.
  • a typical home hemodialysis system comprises a hemodialysis machine for the treatment of patients suffer ing from end-stage renal disease (ESRD) which can be used in the patient's home.
  • the hemodialysis machine comprises equipment for preparation of the dialysis fluid needed for the dialysis treatment, equipment for circulating blood and dialysis fluid through the dialyzer, and equipment for per forming the disinfection of the dialyzer and the tubing of the extracorporeal blood circuit.
  • the dialyzer and the tubing set of the blood circuit attached to the hemodialysis machine remain attached after a hemodi alysis treatment and are reused after disinfection. They can be used for multiple subsequent treatments, e.g., up to 30 treatments.
  • the extend ed use of the dialyzer and the multiple disinfection cycles in a home hemodialysis system cause increased strain on the dialyzer. Leakage of the housing can result, especially at the joint of the housing to the end caps, or at the junc ture of the fluid ports and the housing.
  • the capillary dia lyzer of the present disclosure is less prone to internal or external leakage than conventional dialyzers.
  • the use of the capillary dialyzer of the present disclosure in a home hemodialysis system also is a subject of the pre sent disclosure.
  • the use comprises dis infecting the capillary dialyzer by flushing the dialyzer with water having a temperature in the range of from 90 to 95°C for a time in the range of from 2 to 3 hours.
  • the capillary dialyzer is subjected to such a heat disinfection cycle between successive hemodialysis treatments.
  • the use comprises multiple disinfections of an individual capillary dialyzer, e.g. the dialyzer is subjected to disinfection more than 10 than times, more than 20 times, or up to 30 times.
  • FIG. 1 shows an embodiment of the capillary dialyzer of the present disclosure comprising:
  • a housing 1 defining a longitudinally extending in ternal chamber including a first end and a second end;
  • sealing rings 7 interposed between the end wall and the first end cap 4a and between the end wall and the sec ond end cap 4b, respectively.
  • the diameter of the housing 1 of the capillary dialyzers of the present invention is not uniform.
  • the housing 1 has a middle section where the inner diameter is smaller than at the ends of the housing 1.
  • the inner diameter of the middle section of the housing 1 is 41.0+0.1 mm; and the inner diameter of the mouth of the housing 1 is 52.610.1 mm.
  • the outer diameter of the middle section of the housing 1 is 43.610.1 mm.
  • the overall length of the housing 1 of the capillary dia- lyzer of Fig. 1 is 255.810.3 mm; the distance between the centers of the inlet 5 and outlet 5 is 218.5610.3 mm.
  • the housing 1 and the end caps 4a, 4b of the capillary dia- lyzers of the present disclosure are usually made of a transparent polymer, e.g. polyethylene, polypropylene, pol- yesters like PET or PBT, polymethylmethacrylate, polysty rene (HIPS) or polycarbonate.
  • the potting material for the hollow fiber membranes usually is polyurethane.
  • the hous ing 1 and end caps 4a, 4b are comprised of polycarbonate, the potting material forming the end wall means 3 is com prised of polyurethane, the support rings 6 are comprised of polypropylene and the sealing rings 7 are comprised of silicone rubber.
  • Figure 2 shows an enlarged view of the header section of the dialyzer shown in Fig. 1 including the end cap 4b.
  • the end cap 4b comprises an inlet or outlet, respectively, for a liquid, arranged axially in the center of the end cap 4b.
  • a two-start thread which fits a standard blood-line connector is provided round the inlet or outlet.
  • the inner diameter of the inlet or outlet is constant or in creases linearly in a first section I of the end cap, then widens gradually, with a constant curvature R of 7 ⁇ 0.1 mm, in a second section II until the inner surface includes a predetermined angle a of 9.53 ⁇ 0.05° with the horizontal.
  • the diameter then increases linearly in a third section III , until a predetermined diameter D is reached.
  • a sealing ring 7 placed in a circular groove provided in the end cap 4b.
  • the inner sur face of the end cap 4b is rotationally symmetrical about the longitudinal axis of the inlet/outlet, which is also the longitudinal axis of the end cap 4b.
  • the inner surface has the form of a funnel comprising, in the direction of increasing diameter, a first section I taking the form of a cylinder or a truncated cone, a middle section II taking the form of a torus segment, and a third section III taking the form of a truncated cone.
  • the outer diameter of the end cap 4b is 58.810.1 mm.
  • an annular protrusion 8 is provided on the outer surface of the housing 1, adjacent to the end cap 4b, directly below the lip of the end cap 4b.
  • the protru sion 8 locally enlarges the wall thickness of the housing 1 in this area.
  • the wall thickness of the housing 1 within the protrusion 8 is 1.5 to 2 times the wall thickness in the area adjacent to the protrusion 8.
  • the dialyzer can be operated at blood flow rates in the range of from 200 to 600 ml/min and dialysate flow rates of from 300 to 800 ml/min.

Landscapes

  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Emergency Medicine (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • External Artificial Organs (AREA)

Abstract

La présente invention concerne des dialyseurs capillaires pour la purification du sang, en particulier des dialyseurs capillaires appropriés pour des systèmes d'hémodialyse à domicile.
PCT/EP2018/084128 2017-12-11 2018-12-10 Dialyseur capillaire WO2019115439A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/762,623 US11413384B2 (en) 2017-12-11 2018-12-10 Capillary dialyzer
CN201880078764.9A CN111432916A (zh) 2017-12-11 2018-12-10 毛细管透析器
CA3078564A CA3078564A1 (fr) 2017-12-11 2018-12-10 Dialyseur capillaire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17206463.6A EP3495033A1 (fr) 2017-12-11 2017-12-11 Dialyseur a fibres creuses
EP17206463.6 2017-12-11

Publications (1)

Publication Number Publication Date
WO2019115439A1 true WO2019115439A1 (fr) 2019-06-20

Family

ID=60654859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/084128 WO2019115439A1 (fr) 2017-12-11 2018-12-10 Dialyseur capillaire

Country Status (5)

Country Link
US (1) US11413384B2 (fr)
EP (1) EP3495033A1 (fr)
CN (1) CN111432916A (fr)
CA (1) CA3078564A1 (fr)
WO (1) WO2019115439A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021214636A1 (de) * 2021-12-17 2023-06-22 Fresenius Medical Care Deutschland Gmbh Hohlfasermembranfilter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0305687A1 (fr) 1987-08-31 1989-03-08 Gambro Dialysatoren GmbH & Co. KG Appareil de diffusion et/ou de filtration et son procédé de fabrication
EP0355325A1 (fr) * 1988-07-07 1990-02-28 GAMBRO DIALYSATOREN GMBH & CO. KG Garniture d'étanchéité comprenant un anneau en matière élastique destiné à être serré entre deux surfaces d'étanchéité parallèles, de préférence plates
EP0844015A2 (fr) 1996-11-21 1998-05-27 Fresenius Medical Care Deutschland GmbH Dispositif de séparation ayant une membrane de fibre creuse
WO2001060477A2 (fr) 2000-02-17 2001-08-23 Fresenius Medical Care Deutschland Gmbh Dispositif de filtration, de preference dialyseur a fibres creuses bouclees
US20060243653A1 (en) * 2005-04-20 2006-11-02 Bernd Heinrich Dialysis filter
DE19655227B4 (de) * 1995-02-13 2009-08-27 Aksys, Ltd., Libertyville Clearancetest für einen Dialysator eines modularen Heimdialysesystems
WO2013190022A1 (fr) * 2012-06-21 2013-12-27 Gambro Lundia Ab Dialyseurs capillaires
EP3238758A1 (fr) * 2014-12-25 2017-11-01 Asahi Kasei Medical Co., Ltd. Hémodiafiltre et dispositif d'hémodiafiltration

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE502103C2 (sv) * 1991-08-01 1995-08-14 Gambro Dialysatoren Filterenhet för överföring av massa och/eller värme innehållande hålrumsfibrer
US5591344A (en) 1995-02-13 1997-01-07 Aksys, Ltd. Hot water disinfection of dialysis machines, including the extracorporeal circuit thereof
EP1227876A1 (fr) * 2000-02-17 2002-08-07 Gambro Dialysatoren GmbH & Co. KG Filtre a membranes en fibres creuses
US6830685B2 (en) * 2001-12-05 2004-12-14 Fresenius Usa, Inc. Filtering device with associated sealing design and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0305687A1 (fr) 1987-08-31 1989-03-08 Gambro Dialysatoren GmbH & Co. KG Appareil de diffusion et/ou de filtration et son procédé de fabrication
EP0355325A1 (fr) * 1988-07-07 1990-02-28 GAMBRO DIALYSATOREN GMBH & CO. KG Garniture d'étanchéité comprenant un anneau en matière élastique destiné à être serré entre deux surfaces d'étanchéité parallèles, de préférence plates
DE19655227B4 (de) * 1995-02-13 2009-08-27 Aksys, Ltd., Libertyville Clearancetest für einen Dialysator eines modularen Heimdialysesystems
EP0844015A2 (fr) 1996-11-21 1998-05-27 Fresenius Medical Care Deutschland GmbH Dispositif de séparation ayant une membrane de fibre creuse
WO2001060477A2 (fr) 2000-02-17 2001-08-23 Fresenius Medical Care Deutschland Gmbh Dispositif de filtration, de preference dialyseur a fibres creuses bouclees
US20060243653A1 (en) * 2005-04-20 2006-11-02 Bernd Heinrich Dialysis filter
WO2013190022A1 (fr) * 2012-06-21 2013-12-27 Gambro Lundia Ab Dialyseurs capillaires
EP3238758A1 (fr) * 2014-12-25 2017-11-01 Asahi Kasei Medical Co., Ltd. Hémodiafiltre et dispositif d'hémodiafiltration

Also Published As

Publication number Publication date
US20200276373A1 (en) 2020-09-03
CN111432916A (zh) 2020-07-17
EP3495033A1 (fr) 2019-06-12
CA3078564A1 (fr) 2019-06-20
US11413384B2 (en) 2022-08-16

Similar Documents

Publication Publication Date Title
KR102316246B1 (ko) 혈액 정화를 위한 혈액 투석기
CA2734400C (fr) Dispositif de diffusion et/ou de filtration
CN110290858B (zh) 具有改进的分离效率的中空纤维膜和具有改进的分离效率的中空纤维膜的制造
CA2506229C (fr) Membrane a permeabilite selective et procede de fabrication de cette membrane
EP2864025B1 (fr) Dialyseurs capillaires
CN107913605B (zh) 毛细管透析器
US20170000937A1 (en) Dialysis Apparatus Comprising a Dialyzer
JP5619878B2 (ja) 改良された性能を有する膜
NZ247670A (en) Heterogenous, hydrophobic polysulphone hollow fiber membrane, preparation and use in a dialyzer for filtering human body fluid
JP4992104B2 (ja) 血液濾過または血液濾過透析用のモジュール
US11413384B2 (en) Capillary dialyzer
JP3357262B2 (ja) 中空糸膜型体液浄化装置およびその製造方法
JP2017035644A (ja) 中空糸膜モジュール及びその製造方法
JP2018138123A (ja) 中空糸膜モジュール及びその製造方法
CN108686276B (zh) 中空纤维膜型血液净化器
JP2012019891A (ja) 血液処理用の中空糸膜の製造方法
JP4352709B2 (ja) ポリスルホン系半透膜およびそれを用いた人工腎臓
JPH0194902A (ja) ポリスルホン中空繊維膜およびその製法
JP6190714B2 (ja) 中空糸膜型血液浄化装置
JPH09308685A (ja) 血液浄化用中空糸膜及び血液浄化器
JP2007229096A (ja) 中空糸膜モジュールおよび中空糸膜モジュールの製造方法
JP2006075609A (ja) 血液浄化器
JP2000325763A (ja) 血液浄化用中空糸膜の製造方法および血液浄化用中空糸膜
KR102668018B1 (ko) 필터 멤브레인 및 장치
JP2000210544A (ja) 半透膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18811861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3078564

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18811861

Country of ref document: EP

Kind code of ref document: A1