WO2019115185A1 - Empfangsanordnung zum empfang von lichtsignalen - Google Patents

Empfangsanordnung zum empfang von lichtsignalen Download PDF

Info

Publication number
WO2019115185A1
WO2019115185A1 PCT/EP2018/081992 EP2018081992W WO2019115185A1 WO 2019115185 A1 WO2019115185 A1 WO 2019115185A1 EP 2018081992 W EP2018081992 W EP 2018081992W WO 2019115185 A1 WO2019115185 A1 WO 2019115185A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
receiving
signals
group
light signals
Prior art date
Application number
PCT/EP2018/081992
Other languages
English (en)
French (fr)
Inventor
Ralf Beuschel
Michael Kiehn
Original Assignee
Zf Friedrichshafen Ag
Ibeo Automotive Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Friedrichshafen Ag, Ibeo Automotive Systems GmbH filed Critical Zf Friedrichshafen Ag
Priority to IL275400A priority Critical patent/IL275400B1/en
Priority to KR1020207020422A priority patent/KR102501237B1/ko
Priority to CA3085649A priority patent/CA3085649C/en
Priority to JP2020552106A priority patent/JP7052068B2/ja
Priority to US16/954,170 priority patent/US11614519B2/en
Priority to CN201880081057.5A priority patent/CN111656220B/zh
Priority to EP18807935.4A priority patent/EP3724683A1/de
Publication of WO2019115185A1 publication Critical patent/WO2019115185A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4868Controlling received signal intensity or exposure of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/489Gain of receiver varied automatically during pulse-recurrence period

Definitions

  • the invention relates to a receiving device for receiving light signals or a method for receiving light signals according to the preamble of the independent claims.
  • US 2004/0233942 A1 discloses a system and a method for measuring the phase of a modulated optical signal.
  • so-called single-photon detectors SPDs are used to receive.
  • this type of detectors which include the SPADs (single photon avalanche derivatives), have a so-called dead time.
  • the receiving arrangement according to the invention for receiving light signals or the inventive method for receiving light signals with the features of the independent claims have the advantage that by the use of different groups of light receiving elements in the light receiver, each having a different sensitivity for the reception of Have light signals, it is achieved to be ready to receive in the dead time, especially during the self-glare.
  • Self-glare means that the emitted light signals dazzle the own receiving arrangement.
  • the monitoring of the near range, for example, in a LiDAR system is necessary for various reasons:
  • the transmission behavior of, for example, a glass sheet, which is arranged above the transmitting and receiving arrangement, must be monitored for self-diagnosis of the sensor.
  • Objects arranged directly in front of a LiDAR system must be able to be monitored or detected up to a distance of a few centimeters, since such objects must not disappear in the vicinity.
  • the emitted light output may need to be reduced if a person or other object is located very close to the LiDAR sensor.
  • Another problem is that a reflected light pulse on a front panel causes the light capture elements, which are designed, for example, as SPAD cells, can trigger.
  • the SPAD cells After such a triggering, for example, the SPAD cells have this so-called dead time. This can be 10-20 nanoseconds, after which only a new detection of light signals is possible again. Also, while sending the light signals, the pulse width is then, for example, 5 nanoseconds, no measurement is possible.
  • a front screen can create a direct optical feedback between transmitter and receiver. The system is designed for long ranges of several hundred meters and therefore uses light signals with high energy and very sensitive reception elements. Therefore, a low backscatter of the windshield of eg 1% is sufficient for complete glare of the receiver. Typical SPAD receive cells have a dead time of 10 to 20 nanoseconds, which corresponds to a near range of 1.5 to 3 meters, where no object could be detected.
  • the invention can also be used for related systems.
  • the receiving arrangement according to the invention can be designed, for example, as an assembly which, for example, is installed as such in a vehicle for environment recognition. It is possible, however, that the receiving arrangement is also designed to be distributed, i. H. from different assemblies or components. At least parts of the receiving arrangement or even completely can be designed as an integrated circuit or, in particular, as a single circuit.
  • the light signals are preferably periodic light signals, which are thus emitted at a specific repetition frequency.
  • laser pulses are sent with a period in the microsecond range, wherein the pulse width of the laser pulse is, for example, a few nanoseconds.
  • These light signals are preferably generated by semiconductor lasers, for example, so-called VCSELs (vertical cavity surface emitting lasers).
  • the light receiver is a device which has a plurality of light-receiving elements. According to the invention, there are at least two groups of such light-receiving elements. A first group of light-receiving elements has a higher sensitivity than at least one further group of such chen light receiving elements. The first group is used for the long range and the at least one other group for the short range. According to the invention, it has been recognized that the deactivation of the SPADs with higher sensitivity during, for example, the laser emission phase and, in this case, the activation of the SPADs with low sensitivity, can also be reliably detected by the occurrence of the so-called dead time in the case of SPADs. With the near range distances of a few centimeters to 3 meters are meant.
  • the evaluation circuit can be a combination of software and hardware components or even software or only hardware components. This evaluation circuit can consist of several modules or even have only one.
  • the light receiving elements convert the light signals into electrical signals, these electrical signals are used to determine the distance between the receiving device and an object on which the light signals have been reflected. For the determination of the distance a start signal is additionally marked, which marks the time of the light emission and starts the measurement. This start signal can be coupled out electrically or optically from the Lichtpulserzeu- supply.
  • the object may be another vehicle, a stationary object such as a tree or people or other things.
  • the distance determination is usually made up to a distance of 300 meters in the vehicle area.
  • the so-called time-of-flight principle is used. In order to realize the 300 meters, a time period of 2 microseconds is required.
  • the light receiver has a group of light receiving elements, ie there are at least 2 light receiving elements per light receiver. Usually, however, there are significantly more, so that a whole field of, for example, photodiodes is present - a so-called array, which is preferably controlled column by column in such a way that when the column is driven in the laser array, the corresponding column is driven in the light receiver array. Ie. becomes the first Column driven in the laser array, also the first column in the light receiver array is driven.
  • the fact that the first and the second group of the light receiving elements are ready to receive at different times means that the groups never receive light at the same time. Ie. there is a disjoint control of the receptivity of the two groups. Ready to receive means that the light-receiving element can convert received light signals into electrical signals and be evaluated accordingly.
  • the further group is ready to receive in response to the start signal of a transmission circuit for sending the light signals.
  • the receiving arrangement receives from a transmitter circuit, which usually outputs the light signal by means of a semiconductor laser array, an electrical and / or optical start signal, which is used to switch the readiness for receiving the further group.
  • This then means, in particular, that this further group is ready to receive if this start signal indicates that light signals are being transmitted.
  • the first group is not ready to receive.
  • the lower sensitivity of the further group is achieved by masking by providing a reduced aperture in front of each light-receiving element of this further group in comparison to the opening of the masking in front of the light-receiving elements of the first group. By such a reduced aperture or aperture, the incident on the light receiving element light energy is reduced. This is accompanied by a reduction in sensitivity. Such an opening is referred to in the optics with aperture.
  • the masking is different, d. H. the openings are different sizes.
  • the openings may be, for example, in the ratio of 1: 5, 1: 20 and 1: 100 formed in relation to the openings of the first group.
  • the reason for this is that spatial resolution is not required in the near field, but the dynamics are critical because there is a high signal energy in this near field. If objects are very close to the receiver arrangement, too much light is reflected and is not attenuated by the greater distance or the scattering is smaller.
  • the light-receiving elements of the first group are arranged directly at the position of the received light signals at infinite object distance.
  • the light-receiving elements of the further group are arranged offset to the light-receiving elements of the first group, so that the light-receiving elements of the further group are outside the position of the received light signals at infinite object distance.
  • the light-receiving elements have single-photon avalanche diodes.
  • These SPADs are equipped with a high blocking voltage, so that already one photon can be enough to trigger the avalanche effect in these diodes.
  • various such diodes are combined into macro diodes by, for example, the output signals being mutated or summed up.
  • Such single Photon avalanche diodes are usually made of silicon.
  • compound semiconductors are also possible.
  • the operating mode of such diodes is also referred to as Geiger mode.
  • the electrical signals of the first and the further group are combined with at least one logical OR gate.
  • Such a combination makes it possible to keep the signal processing simple, since the same signal processing string can be used for different groups of diodes or individual diodes.
  • the masking comprises metal.
  • This masking of metal or at least partially of metal can be vapor-deposited, for example, on a glass plate or directly on the semiconductor and then removed again with photoresist patterning and corresponding etching processes. Also, an electrolytic application of such a metallization is possible.
  • FIG. 2 shows a block diagram of the receiving arrangement according to the invention with a connected transmitting device
  • Fig. 3 shows a first configuration of the two groups of light receiving elements
  • Fig. 4 shows a further configuration of the two groups of light receiving elements
  • FIG. 5 shows a flow chart of the method according to the invention.
  • Fig. 1 shows a vehicle V, which moves in the direction R.
  • the vehicle V has the LiDAR modules Li1 to Li6.
  • a LiDAR module is a transmitting device for sending light signals and the receiving arrangement according to the invention for receiving the then reflected light signals.
  • These LiDAR modules capture the surroundings of vehicle V. There are more or less LiDAR modules are used and also at other locations of the vehicle V. Therefore, the object OB is detected by the LiDAR module Li1.
  • the LiDAR modules Li1 to Li6 have a receiver arrangement according to the invention and a transmitter device which, as described above, uses a laser array to send the laser pulses in order to then receive the laser pulses reflected at the object OB with a SPAD array and then to evaluate them in accordance with the time-correlated photon count to determine the distance between the object OB and the vehicle V.
  • the time-of-flight method is used for this.
  • the object detection can be carried out, for example, using the measuring principle TCSPC (time-correlated single phonon counting).
  • TCSPC time-correlated single phonon counting
  • a measurement is repeated many times and the individual temporally correlated photons in relation to the excitation pulse are sorted according to their measured time in a so-called TCSPC flistogram.
  • This typically has a temporal channel resolution or class width of 0.1 to 1 ns and represents the time course of the backscattered by a laser pulse light. This allows a very accurate time measurement of the laser pulse. For example. An object is hit by a transmitter with many photons, which are then received by the receiver array. Due to the frequent repetition of this photon determination, it is possible to precisely determine the light pulse with respect to its time of flight and amplitude. After the measurement has been completed, the times of the local maximum values in the histogram are determined. The temporal position of the maximum values allows the distance measurement to one or more objects.
  • FIG. 2 shows in a block diagram the receiving arrangement EM according to the invention, which is connected to a transmitter circuit SE.
  • the transmitter circuit SE has a pulse generator PG, which drives a laser driver LD.
  • PG pulse generator
  • the light signals are emitted in pulses having a pulse width of the pulse packet of 5 nanoseconds with a time period of 2 microseconds. Therefore, a pulse generator that can be created hardware and / or software technology, advantage.
  • FIG. 2 shows, by way of example, a laser driver which provides an electrical start signal for the time-correlated photon measurement.
  • the start signal can also be provided in other ways. For example, it is also possible to directly use the signal of the pulse generator when the delay time of the laser driver is constant.
  • the laser driver LD implements this by supplying the laser diodes L in the semiconductor laser array with a corresponding pulse current.
  • the laser diodes L are connected via a resistor RL, which is a shunt resistor, connected to ground. Current limit represents, connected to ground.
  • a comparator Comp Between the laser diodes L and the shunt resistor RL, the output signal is applied to a comparator Comp, where this output signal is compared with a reference voltage Vref.
  • the start signal START is used in the receiving arrangement to measure the times of the photon events in relation to the light emission by means of a time-to-digital conversion (TDC) and to accumulate these in a histogram H.
  • TDC time-to-digital conversion
  • This start signal Start is given to the receiving arrangement EM on a time-to-digital conversion TDC in order to trigger the signal processing.
  • this start signal is still used, as not shown here, during the emission of the laser pulses, the other group of SPADs, here symbolically denoted by D2, ready to receive.
  • the diodes D1 are not switched to readiness for reception. So you are locked. Only the diodes D2 can convert light signals into electrical signals during this period.
  • This other group of SPADs D2 has a lower sensitivity for receiving light signals than the first group of SPADs D1.
  • both SPADs D1 and D2 are connected to the time-to-digital conversion TDC via a simple linkage representing an OR link.
  • quench resistor RQ which in turn is connected to ground.
  • the so-called quenching takes place via the quench resistance RQ: the avalanche effect is throttled and ultimately stopped, in the present case by the resistance RQ. Again, this happens in a time that is much less than 1 ns. This quenching is necessary to prevent self-destruction of the photodiode. Quenching with a resistor is called passive quenching. After stopping the avalanche effect, the SPAD cell is recharged via the resistor to the higher bias voltage Vspadl or Vspad2.
  • the diodes D1 are switched to receive readiness before, with or after the transmission pulse, and then the diodes D2 are put in the blocking mode and are then no longer ready to receive. This non-readiness to receive is achieved by placing the voltage SPAD1 or Vspad2 shortly below the breakdown voltage.
  • This control of the voltages is effected by a control module, not shown, or a control software via corresponding hardware. If, in these disjoint time segments, light signals are converted into electrical signals by one of the groups of light-receiving elements, a so-called event signal is present, which enters the time-to-digital conversion TDC. With the start signal and the clock signal for the time-to-digital conversion TDC is set accordingly. The time-to-digital conversion TDC can also use the start signal to determine what time the event signal is to be allocated, ie how long have the photons taken to reach the receiving device EM from the transmitting device SE. This time for this event is then stored in a histogram H. This is often repeated.
  • a maximum search in the histogram shows the distance which is determined by the stored time, which has the strongest signal, that is to say the largest photon count. From this, the distance is then determined in the signal processing SV and over the interface module IF passed. From this, appropriate driving functions can be derived. This realizes a so-called time-correlated photon counting.
  • FIG. 3 shows a first configuration of the two groups of light-receiving elements.
  • the first group is labeled SPAD1 and the second group is SPAD2, which has an aperture in the middle. Also represented by the circle is a so-called light spot, in that some SPADs are drawn in black, then also convert light signals into electrical signals.
  • the gray SPAD1 diodes are not activated by the light signal. It is characteristic that the SPAD2 each have the same aperture.
  • method step 500 the light signals are received and converted.
  • method step 502 a distance determination is carried out.
  • 2 groups of SPADs as shown above each switched ready to receive.
  • the SPADs are switched ready to receive, which have a lower sensitivity with regard to the reception of light signals. Otherwise, the SPADs are switched with higher sensitivity. This ensures that a close-range detection, which is necessary, for example, for vehicle operation, is possible. Bezuas Lake

Abstract

Empfangsanordnung zum Empfang von Lichtsignalen Es wird eine Empfangsanordnung zum Empfang von Lichtsignalen bzw. ein Verfahren zum Empfangen von Lichtsignalen vorgeschlagen, wobei ein Lichtempfänger vorgesehen ist, der zum Empfang der Lichtsignale und wandeln in elektrische Signale dient. Weiterhin ist eine Auswerteschaltung vorgesehen, die in Abhängigkeit von den elektrischen Signalen und einem Startsignal für die Emission der Lichtsignale eine Entfernung zwischen der Empfangsanordnung in einem Objekt, an dem die Lichtsignale reflektiert werden, bestimmt. Kennzeichnend ist, dass der Lichtempfänger eine erste Gruppe von Lichtempfangselementen (Dl) aufweist, die eine höhere Empfindlichkeit für den Empfang der Lichtsignale aufweist als wenigstens eine weitere Gruppe von Lichtempfangselementen (D2), wobei die ersten und die weitere Gruppe zu unterschiedlichen Zeiten empfangsbereit sind.

Description

Empfanasanordnung zum Empfang von Lichtsiqnalen
Empfangsanordnung zum Empfang von Lichtsignalen und Verfahren zum Empfangen von Lichtsignalen
Die Erfindung betrifft eine Empfangsanordnung zum Empfang von Lichtsignalen bzw. ein Verfahren zum Empfangen von Lichtsignalen nach der Gattung der unabhängi- gen Patentansprüche.
Aus US 2004/0233942 A1 sind ein System und ein Verfahren zur Messung der Pha- se eines modulierten optischen Signales bekannt. Dabei werden zum Empfang sogenannte Single-Photon-Detektoren SPDs verwendet. Weiterhin wird angegeben, dass diese Art von Detektoren, zu denen die SPADs (single photon avalanche dio- des) gehören, eine sogenannte Totzeit aufweisen.
Die erfindungsgemäße Empfangsanordnung zum Empfang von Lichtsignalen bzw. das erfindungsgemäße Verfahren zum Empfangen von Lichtsignalen mit den Merk- malen der unabhängigen Patentansprüche haben demgegenüber den Vorteil, dass durch die Verwendung von unterschiedlichen Gruppen von Lichtempfangselementen im Lichtempfänger, die jeweils eine unterschiedliche Empfindlichkeit für den Empfang der Lichtsignale aufweisen, es erreicht wird, in der Totzeit insbesondere während der Eigenblendung empfangsbereit zu sein. Eigenblendung bedeutet, dass die emittier- ten Lichtsignale die eigene Empfangsanordnung blenden.
Die Überwachung des Nahbereichs bspw. bei einem LiDAR-System ist aus verschiedenen Gründen notwendig: Das Übertragungsverhalten des bspw. einer Glasschei- be, die über der Sende- und Empfangsanordnung angeordnet ist, muss zur Selbstdiagnose des Sensors überwacht werden. Objekte, die direkt vor einem LiDAR-System angeordnet sind, müssen bis auf eine Entfernung von wenigen Zentimetern über- wachbar bzw. detektierbar sein, denn solche Objekte dürfen im Nahbereich nicht verschwinden. Die emittierte Lichtleistung muss ggf. reduziert werden, wenn eine Person oder ein anderes Objekt sehr nah am LiDAR-Sensor angeordnet ist. Problematisch ist auch, dass ein reflektierter Lichtimpuls an einer Frontplatte die Lichtemp- fangselemente, die bspw. als SPAD-Zellen ausgebildet sind, auslösen kann. Nach einer solchen Auslösung haben bspw. die SPAD-Zellen diese sogenannte Totzeit. Dies kann 10-20 Nanosekunden betragen, nach der erst wieder eine erneute Detektion von Lichtsignalen möglich ist. Auch ist während des Versendens der Lichtsignale, die Impulsbreite ist dann bspw. 5 Nanosekunden, ist keine Messung möglich. Durch eine Frontscheibe kann eine direkte optische Rückkopplung zwischen Sender und Empfänger entstehen. Das System ist auf große Reichweiten von mehreren hundert Metern ausgelegt und verwendet daher Lichtsignale mit hoher Energie und sehr empfindliche Empfangselemente. Daher reicht eine geringe Rückstreuung der Frontscheibe von z.B. 1 % zur vollständigen Blendung des Empfängers. Bei typischen SPAD Empfangszellen ergibt sich eine Totzeit von 10 bis 20 Nanosekunden, die einem Nahbereich von 1 ,5 bis 3 Metern entspricht, in dem kein Objekt erkannt werden könnte. Neben dem LiDAR-System ist die Erfindung auch für verwandte Systeme einsetzbar.
Die erfindungsgemäße Empfangsanordnung kann als eine Baugruppe bspw. ausgebildet sein, die als solche bspw. in ein Fahrzeug zu Umfelderkennung eingebaut wird. Es ist möglich, dass die Empfangsanordnung jedoch auch verteilt ausgebildet ist, d. h. aus verschiedenen Baugruppen oder Bauteilen. Zumindest Teile der Emp- fangsanordnung oder auch ganz können als integrierte Schaltkreis oder insbesonde- re als ein einziger Schaltkreis ausgebildet sein.
Bei den Lichtsignalen handelt es sich vorzugsweise um periodische Lichtsignale, die also mit einer bestimmten Wiederholfrequenz abgestrahlt werden. Dabei werden bspw. Laserimpulse mit einer Periode im Mikrosekundenbereich versendet, wobei die Impulsbreite des Laserimpulses bspw. einige Nanosekunden beträgt. Diese Lichtsignale werden vorzugsweise mit Halbleiterlasern bspw. sogenannten VCSEL (vertical cavity surface emitting laser) erzeugt.
Bei dem Lichtempfänger handelt es sich um eine Einrichtung, die mehrere Lichtemp- fangselemente aufweist. Erfindungsgemäß gibt es zumindest zwei Gruppen von sol- chen Lichtempfangselementen. Eine erste Gruppe von Lichtempfangselementen weist eine höhere Empfindlichkeit auf als wenigstens eine weitere Gruppe von sol- chen Lichtempfangselementen. Die erste Gruppe wird für den Fernbereich verwendet und die wenigstens eine weitere Gruppe für den Nahbereich. Erfindungsgemäß wur- de erkannt, dass durch das Auftreten der sogenannten Totzeit bei bspw. SPADs die Deaktivierung der SPADs mit höherer Empfindlichkeit während bspw. der Laseremissionsphase und dabei dann die Aktivierung der SPADs mit niedriger Empfindlichkeit auch der Nahbereich zuverlässig erfasst werden kann. Mit dem Nahbereich sind dann Entfernungen von wenigen Zentimetern bis 3 Meter gemeint.
Bei der Auswerteschaltung kann es sich um eine Kombination aus Software- und Hardwarekomponenten handeln oder auch nur Software- oder nur Hardware- Bausteine. Diese Auswerteschaltung kann aus mehreren Bausteinen bestehen oder auch nur einen einzigen aufweisen. Die Lichtempfangselemente wandeln die Lichtsignale in elektrische Signale, diese elektrischen Signale werden zur Bestimmung der Entfernung zwischen der Empfangsanordnung und einem Objekt, an dem die Lichtsignale reflektiert wurden, verwendet. Für die Entfernungsbestimmung wird zu- sätzlich ein Startsignal, das den Zeitpunkt der Lichtemission markiert und die Mes- sung startet. Dieses Startsignal kann elektrisch oder optisch aus der Lichtpulserzeu- gung ausgekoppelt werden.
Bei dem Objekt kann es sich um ein anderes Fahrzeug, ein feststehendes Objekt wie einen Baum oder Personen oder andere Dinge handeln. Die Entfernungsbestimmung wird üblicherweise bis zu einer Entfernung von 300 Metern im Fahrzeugbereich vorgenommen. Als Messprinzip wird das sogenannte Time-of-flight-Prinzip verwendet. Um die 300 Meter dabei zu realisieren ist eine Zeitperiode von 2 Mikrosekunden er- forderlich.
Der Lichtempfänger weist eine Gruppe von Lichtempfangselementen auf, d. h. es sind wenigstens 2 Lichtempfangselemente pro Lichtempfänger vorhanden. Üblicherweise sind es jedoch deutlich mehr, sodass ein ganzes Feld von bspw. Photodioden vorliegt - ein sogenanntes Array, das vorzugsweise spaltenweise ansteuerbar ist und zwar so, dass wenn bei dem Laserarray eine Spalte angesteuert wird, auch die entsprechende Spalte im Lichtempfängerarray angesteuert wird. D. h. wird die erste Spalte im Laserarray angesteuert, wird auch die erste Spalte im Lichtempfängerarray angesteuert.
Unter der Empfindlichkeit der Lichtempfangselemente für den Empfang von Lichtsig- nalen ist zu verstehen, wie der Zusammenhang zwischen eingestrahltem Licht und dem Ausgangssignal aussieht. Bei analogen Photodetektoren bedeutet eine niedrige Empfindlichkeit, dass mehr Licht erforderlich ist, um den gleichen Photostrom zu be- wirken, als bei solchen Lichtempfangselementen mit höherer Empfindlichkeit. Bei SPAD Photodetektoren weisen Photozellen mit niedriger Empfindlichkeit eine niedrigere Wahrscheinlichkeit für die Detektion eines Photons auf als Empfangszellen mit hoher Empfindlichkeit.
Dadurch dass die erste und die zweite Gruppe der Lichtempfangselemente zu unterschiedlichen Zeiten empfangsbereit sind, ist gegeben, dass die Gruppen niemals gleichzeitig Licht empfangen. D. h. es liegt eine disjunkte Ansteuerung der Emp- fangsbereitschaft der beiden Gruppen vor. Empfangsbereit hei ßt, dass das Lichtemp- fangselement empfangene Lichtsignale in elektrische Signale wandeln kann und entsprechend ausgewertet werden.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen der erfindungsgemäßen Empfangsanordnung bzw. des erfindungsgemäßen Verfahrens zum Empfang von Lichtsignalen möglich.
Es ist vorteilhaft, dass die weitere Gruppe in Abhängigkeit von dem Startsignal einer Sendeschaltung zum Versenden der Lichtsignale empfangsbereit ist. D. h. die Empfangsanordnung empfängt von einer Senderschaltung, die also üblicherweise das Lichtsignal mittels eines Halbleiter-Laserarrays ausgibt, ein elektrisches und/oder optisches Startsignal, das dazu verwendet wird, die Empfangsbereitschaft der weite- ren Gruppe zu schalten. Dies bedeutet dann insbesondere, dass diese weitere Gruppe empfangsbereit ist, wenn dieses Startsignal anzeigt, dass Lichtsignale versendet werden. In diesem Zeitraum ist dann die erste Gruppe nicht empfangsbereit. Vorteilhafterweise wird die niedrigere Empfindlichkeit der weiteren Gruppe durch eine Maskierung erreicht, indem vor jedem Lichtempfangselement dieser weiteren Gruppe eine verkleinerte Öffnung vorgesehen ist im Vergleich zu der Öffnung der Maskierung vor den Lichtempfangselementen der ersten Gruppe. Durch solche eine verkleinerte Öffnung bzw. Apertur wird die auf das Lichtempfangselement auftreffende Lichtenergie reduziert. Damit geht dann eine Reduzierung der Empfindlichkeit einher. Solch eine Öffnung wird in der Optik mit Apertur bezeichnet.
In einer vorteilhaften Weiterbildung ist vorgesehen, dass die Maskierung unterschied- lich ist, d. h. die Öffnungen sind verschieden groß. Die Öffnungen können bspw. im Verhältnis von 1 :5, 1 :20 bzw. 1 :100 ausgebildet im Verhältnis zu den Öffnungen der ersten Gruppe sein. Der Grund hierfür ist, dass im Nahbereich die räumliche Auflö- sung nicht erforderlich ist, aber die Dynamik kritisch, denn es liegt eine hohe Signalenergie in diesem Nahbereich vor. Sind Objekte sehr nah an der Empfangsanord- nung wird auch sehr viel Licht reflektiert und ist nicht durch die größere Entfernung gedämpft bzw. die Streuung ist geringer.
Darüber hinaus ist es vorteilhaft, dass die Lichtempfangselemente der ersten Gruppe direkt an der Position der empfangenen Lichtsignale bei unendlicher Objektdistanz angeordnet sind. Die Lichtempfangselemente der weiteren Gruppe sind versetzt zu den Lichtempfangselementen der ersten Gruppe angeordnet, sodass die Lichtempfangselemente der weiteren Gruppe außerhalb der Position der empfangenen Lichtsignale bei unendlicher Objektdistanz liegen. Dies hat den Vorteil, dass im Nahbe- reich die Lichtsignale und die Lichtempfangselemente nicht im Fokus liegen. Au ßerdem ist es auch nicht notwendig, dass in diesem Nahbereich eine korrekte räumliche Überlappung von der Empfangsanordnung und der Sendeeinrichtung vorliegt.
Weiterhin ist es vorteilhaft, dass die Lichtempfangselemente Single-Photon- Avalanche-Dioden aufweisen. Diese SPADs sind mit einer hohen Sperrspannung versehen, sodass bereits ein Photon ausreichen kann, um den Lawineneffekt in diesen Dioden auszulösen. In LiDAR-Anwendungen kann es sein, dass verschiedene solcher Dioden zu Makrodioden zusammengefasst werden, indem die Ausgangssig- nale miteinander bspw. verodert werden oder aufsummiert werden. Solche Single- Photon-Avalanche-Dioden werden üblicherweise aus Silizium hergestellt. Es sind jedoch auch Verbindungshalbleiter möglich. Der Betriebsmodus solcher Dioden wird auch als Geigermodus bezeichnet.
Weiterhin ist es vorteilhaft, dass die elektrischen Signale der ersten und der weiteren Gruppe mit wenigstens einem logischen Oder-Gatter verknüpft werden. Durch eine solche Verknüpfung ist es möglich, die Signalverarbeitung einfach zu halten, da der gleiche Signalverarbeitungsstrang für verschiedene Gruppen von Dioden oder ein- zelnen Dioden verwendet werden kann.
Weiterhin ist es vorteilhaft, dass die Maskierung Metall aufweist. Diese Maskierung aus Metall oder zumindest teilweise aus Metall kann aufgedampft werden bspw. auf eine Glasplatte oder auch direkt auf den Halbleiter und dann mit Photolackstrukturierung wieder entfernt werden und entsprechenden Ätzvorgängen. Auch eine elektroly- tische Aufbringung solch einer Metallisierung ist möglich.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.
Es zeigen
Fig. 1 eine schematische Anordnung von LiDAR-Modulen in einem Fahrzeug,
Fig. 2 in einem Blockschaltbild der erfindungsgemäßen Empfangsanordnung mit einer angeschlossenen Sendeeinrichtung,
Fig. 3 einer ersten Konfiguration der beiden Gruppen von Lichtempfangselementen, Fig. 4 eine weitere Konfiguration der beiden Gruppen von Lichtempfangselementen und
Fig. 5 ein Flussdiagramm des erfindungsgemäßen Verfahrens.
In Fig. 1 zeigt ein Fahrzeug V, das sich in die Richtung R bewegt. Das Fahrzeug V weist die LiDAR-Module Li1 bis Li6 auf. Bei einem LiDAR-Modul handelt es sich um eine Sendeeinrichtung zur Versendung von Lichtsignalen und der erfindungsgemäßen Empfangsanordnung zum Empfang von den dann reflektierten Lichtsignalen. Diese LiDAR-Module erfassen die Umgebung des Fahrzeugs V. Es können mehr oder weniger LiDAR-Module verwendet werden und auch an weiteren Stellen des Fahrzeugs V. Daher wird das Objekt OB durch das LiDAR-Modul Li1 erfasst. Durch eine Entfernungsbestimmung und entsprechende Charakterisierung anhand der Bewegungsparameter des Objekts ist es möglich, auf eine mögliche Kollision zu schlie- ßen und entsprechende Bewegungen des Fahrzeugs V zu beeinflussen, um nicht mit dem Objekt OB zu kollidieren.
Die LiDAR-Module Li1 bis Li6 weisen eine erfindungsgemäße Empfängeranordnung auf und eine Sendereinrichtung, die wie oben beschrieben mit einem Laserarray die Laserimpulse versendet, um die am Objekt OB reflektierten Laserimpulse dann mit einem SPAD-Array zu empfangen und dann entsprechend mit der zeitkorrelierten Photonenzählung auszuwerten, um die Entfernung zwischen dem Objekt OB und dem Fahrzeug V zu bestimmen. Dafür wird die Time-of-Flight-Methode verwendet. Die Objektdetektion kann vorliegend beispielsweise mit dem Messprinzip TCSPC (Time-Correlated Single Phonton Counting) vorgenommen werden. Diese in Deutsch als zeitkorrelierte Photonenzählung bezeichnete Messmethode ist eine Technik zur Messung sich zeitlich schnell ändernder Lichtintensitäten. Dabei wird eine Messung vielfach wiederholt und die einzelnen zeitlich korrelierten Photonen in Bezug zum Anregungsimpuls werden entsprechend ihrer gemessenen Zeit in ein sogenanntes TCSPC-Flistogramm einsortiert. Dieses besitzt typischerweise eine zeitliche Kanalauflösung bzw. Klassenbreite von 0,1 bis 1 ns und gibt den zeitlichen Verlauf des von einem Laserpuls zurückgestreuten Lichts wieder. Dadurch gelingt eine sehr ge- naue Zeitmessung des Laserimpulses. Bspw. wird ein Objekt von einer Sendeeinrichtung mit vielen Photonen getroffen, die dann durch die Empfängeranordnung empfangen werden. Durch das häufige Wiederholen dieser Photonenbestimmung ist es möglich, den Lichtimpuls bzgl. seiner Flugzeit und Amplitude genau zu bestimmen. Nachdem die Messung abgeschlossen wurde, werden die Zeiten der lokalen Maximalwerte im Histogramm ermittelt. Die zeitliche Lage der Maximalwerte ermöglicht die Distanzmessung zu einem oder mehreren Objekten.
Fig. 2 zeigt in einem Blockschaltbild die erfindungsgemäße Empfangsanordnung EM, die mit einer Senderschaltung SE verbunden ist. Die Senderschaltung SE weist einen Pulsgenerator PG auf, der einen Lasertreiber LD ansteuert. Wie oben dargestellt ist es vorteilhaft, wenn die Lichtsignale in Pulsen mit einer Impulsbreite des Impulspaketes von 5 Nanosekunden mit einer Zeitperiode von 2 Mikrosekunden ausge- strahlt werden. Daher ist ein Pulsgenerator, der hardware- und/oder softwaretechnisch erstellt werden kann, von Vorteil.
In Fig. 2 ist beispielhaft ein Lasertreiber dargestellt, der ein elektrisches Startsignal für die zeitkorrelierte Photonenmessung bereitstellt. Das Startsignal kann aber auch auf andere Art und Weise bereitgestellt werden. Beispielsweise ist es auch möglich, direkt das Signal des Pulsgenerators zu verwenden, wenn die Verzögerungszeit des Lasertreibers konstant ist.
Der Lasertreiber LD setzt dieses um, indem er die Laserdioden L im Halbleiterla- serarray mit einem entsprechenden Pulsstrom versorgt. Die Laserdioden L sind über einen Widerstand RL, der einen Shuntwiderstand darstellt, gegen Masse geschaltet. Strombegrenzung darstellt, gegen Masse geschaltet. Zwischen den Laserdioden L und dem Shuntwiderstand RL wird das Ausgangssignal auf einen Komparator Comp gegeben, wo dieses Ausgangssignal mit einer Referenzspannung Vref verglichen wird. Das Startsignal START wird in der Empfangsanordnung verwendet, um mittels einer Zeit-Digital-Wandlung (TDC) die Zeitpunkte der Photonenereignisse bezogen auf die Lichtaussendung zu messen und diese in einem Histogramm H zu akkumulie- ren.
In Abhängigkeit von diesem Signal werden dann die einzelnen Empfängerdioden angesteuert. Dieses Startsignal Start ist der Empfangsanordnung EM auf eine Zeit- Digital-Wandlung TDC gegeben, um die Signalverarbeitung auszulösen. Dieses Startsignal wird aber weiterhin, wie hier nicht dargestellt ist, dazu genutzt während der Emission der Laserimpulse die weitere Gruppe von SPADs, hier mit D2 symbo- lisch bezeichnet, empfangsbereit zu schalten. In diesem Zeitabschnitt werden die Dioden D1 nicht auf Empfangsbereitschaft geschaltet. Sie sind also gesperrt. Nur die Dioden D2 können in diesem Zeitraum Lichtsignale in elektrische Signale wandeln. Diese weitere Gruppe der SPADs D2 weist eine niedrigere Empfindlichkeit für den Empfang von Lichtsignalen aus als die erste Gruppe von SPADs D1 . Beispielhaft sind hier beide SPADs D1 und D2 über eine einfache Verknüpfung, die eine Oder- verknüpfung darstellt, an die Zeit-Digital-Wandlung TDC angeschlossen.
Weiterhin sind sie an einen sogenannten Quench-Widerstand RQ angeschlossen, der wiederum gegen Masse geschaltet ist. Über den Quenchwiderstand RQ erfolgt das sogenannte Quenching: Der Lawineneffekt wird gedrosselt und letztlich gestoppt, vorliegend durch den Widerstand RQ. Auch dies geschieht in einer Zeit, die sehr viel kleiner als 1 ns ist. Dieses Quenchen ist notwendig, um die Selbstzerstörung der Photodiode zu verhindern. Das Quenchen mit einem Widerstand wird als passives Quenchen bezeichnet. Nach dem Stoppen des Lawineneffekts wird die SPAD Zelle über den Widerstand wieder auf die höhere Biasspannung Vspadl bzw. Vspad2 aufgeladen.
Die Dioden D1 werden vor, mit oder nach dem Sendeimpuls auf Empfangsbereit- schaft geschaltet und dann werden die Dioden D2 in den Sperrbetrieb gegeben und sind dann nicht mehr empfangsbereit. Diese nicht Empfangsbereitschaft wird dadurch erzielt, dass die Spannung SPAD1 bzw. Vspad2 kurz unter der Durchbruch- spannung gelegt wird.
Diese Ansteuerung der Spannungen wird durch ein nicht dargestellten Steuerbau- stein oder eine Steuersoftware über entsprechende Hardware bewirkt. Werden dann in diesen disjunkten Zeitabschnitten durch eine der Gruppen von Lichtempfangsele- menten Lichtsignale in elektrische Signale gewandelt, ist ein sogenanntes Eventsignal vorhanden, das in die Zeit-Digital-Wandlung TDC eingeht. Mit dem Startsignal wird auch das Taktsignal für die Zeit-Digital-Wandlung TDC entsprechend eingestellt. Die Zeit-Digital-Wandlung TDC kann auch mit Hilfe des Startsignals bestimmen, wel- cher Zeit das Eventsignal zuzuordnen ist, d. h. wie lange haben die Photonen gebraucht, um von der Sendeeinrichtung SE zur Empfangseinrichtung EM zu gelangen. Diese Zeit für dieses Event wird dann in einem Histogramm H abgelegt. Das wird oft wiederholt. Ist der Zeitabschnitt bzw. die Zeitperiode vergangen, wird durch eine Ma- ximumsuche im Histogramm die Entfernung, die durch die abgelegte Zeit bestimmt wird, die das stärkste Signal aufweist, also die größte Photonenzählung aufweist. Daraus wird dann in der Signalverarbeitung SV die Entfernung bestimmt und über den Schnittstellenbaustein IF weitergegeben. Daraus können dann entsprechende Fahrfunktionen abgeleitet werden. Damit ist eine sogenannte zeitkorrelierte Photonenzählung realisiert.
Fig. 3 zeigt eine erste Konfiguration der beiden Gruppen von Lichtempfangselemen- ten. Die erste Gruppe ist mit SPAD1 bezeichnet und die zweite Gruppe mit SPAD2, die eine Apertur in der Mitte aufweisen. Dargestellt ist auch durch den Kreis ein so- genannter Leuchtfleck, indem manche SPADs die schwarz gezeichnet sind, dann auch Lichtsignale in elektrische Signale wandeln. Die grauen SPAD1 -Dioden sind nicht durch das Lichtsignal aktiviert. Kennzeichnend ist, dass die SPAD2 jeweils die gleiche Apertur aufweisen.
In Fig. 4 ist eine Variante gezeigt. Hier ist die erste Gruppe von SPADs mit SPAD41 bezeichnet, wobei wiederum die schwarz gefärbten, die aktivierten SPADs sind. Die weitere Gruppe von SPADs wird durch die Sechsecke mit unterschiedlich großen Aperturen bezeichnet, die mit SPAD42, 43, 44 bezeichnet sind. Wie oben angege- ben, können diese Aperturen Verhältnisse aufweisen von bspw. 1 :5, 1 :20 und 1 :100. Für jede Aperturgröße und damit einhergehende Empfindlichkeitsstufe ergibt sich so eine reduzierte räumliche Auflösung. Der Grund hierfür ist, dass im Nahbereich die Vertikalauflösung nicht notwendig ist, aber der Dynamikumfang ist kritisch wegen der hohen Signalenergie.
Fig. 5 zeigt ein Flussdiagramm des erfindungsgemäßen Verfahrens. In Verfahrensschritt 500 werden die Lichtsignale empfangen und gewandelt. In Verfahrensschritt 502 erfolgt eine Entfernungsbestimmung. Dabei werden jeweils 2 Gruppen von SPADs wie oben dargestellt, jeweils empfangsbereit geschaltet. Während der Emis- sion von Lichtsignalen werden die SPADs empfangsbereit geschaltet, die eine nied- rigere Empfindlichkeit bzgl. des Empfangs von Lichtsignalen haben. Ansonsten wer- den die SPADs mit höherer Empfindlichkeit geschaltet. Damit wird erreicht, dass auch eine Nahbereichsdetektion, die notwendig bspw. für den Fahrzeugbetrieb ist, möglich wird. Bezuaszeichen
OB Objekt
R Richtung
U1 -6 Lidarmodule
V Fahrzeug
SE Senderschaltung
PG Pulsgenerator
LD Lasertreiber
L Laser
RL Widerstand
Comp Komparator
Vref Referenzspannung
D1 ,2 Lichtempfangselement
VSPAD Vorspannung Lichtempfangselement
RQ Quenchwiderstand
TDC Zeit-Digital-Wandlung
H Histogramm
SV Signalverarbeitung
IF Schnittstelle
SPAD Single Photon Avalanche Diode
500,502 Verfahrensschritt

Claims

Patentansprüche
1. Empfangsanordnung (EM) zum Empfang von Lichtsignalen mit:
- einem Lichtempfänger zum Empfang der Lichtsignale und Wandeln in elektri- sche Signale,
- einer Auswerteschaltung, die in Abhängigkeit von elektrischen Signalen und einem Startsignal für die Emission der Lichtsignale eine Entfernung zwischen der Empfangsanordnung und einem Objekt bestimmt, dadurch gekennzeichnet, dass der Lichtempfänger eine erste Gruppe von Lichtempfangselementen aufweist, die eine höhere Empfindlichkeit für den Empfang der Lichtsignale aufweist als wenigstens eine weitere Gruppe von Lichtempfangselementen, wobei die erste und die zweite und die weitere Gruppe zu unterschiedlichen Zeiten empfangsbereit sind.
2. Empfangsanordnung nach Anspruch 1 , dadurch gekennzeichnet, dass die weite- re Gruppe in Abhängigkeit von dem Startsignal empfangsbereit ist.
3. Empfangsanordnung nach Anspruch 2, dadurch gekennzeichnet, dass dieses Startsignal das Versenden der Lichtsignale anzeigt, sodass die weitere Gruppe zumindest während dem Versenden der Lichtsignale empfangsbereit ist.
4. Empfangsanordnung nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die erste und die weitere Gruppe maskiert sind, indem vor je- dem Lichtempfangselement der Gruppen eine Öffnung vorgesehen ist.
5. Empfangsanordnung nach Anspruch 4, dadurch gekennzeichnet, dass verschie- dene Öffnungen vorgesehen sind, wobei die Öffnungen der weiteren Gruppe kleiner als die der ersten Gruppe sind.
6. Empfangsanordnung nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die Lichtempfangselemente der weiteren Gruppe versetzt zu den Lichtempfangselementen der ersten Gruppe angeordnet sind, sodass die Lichtempfangselemente der weiteren Gruppe außerhalb der Position der empfan- genen Lichtsignale bei unendlicher Objektdistanz liegen.
7. Empfangsanordnung nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die Lichtempfangselemente Single-Photon-Avalanche-Dioden (SPAD) sind.
8. Empfangsanordnung nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die elektrischen Signale der ersten und der weiteren Gruppe wenigstens mit einem logischen Oder-Glied verknüpft werden.
9. Empfangsanordnung nach einem der Ansprüche 4 bis 8, dadurch gekennzeich- net, dass die Maskierung Metall aufweist.
10. Verfahren zum Empfang von Lichtsignalen mit folgenden Verfahrensschritten:
- Empfang der Lichtsignale und Wandeln in elektrische Signale mit einem Lichtempfänger,
- Bestimmen einer Entfernung zwischen dem Lichtempfänger und einem Objekt in Abhängigkeit von den elektrischen Signalen und einem Startsignal für die Emission der Lichtsignale, dadurch gekennzeichnet, dass zu unterschiedli- chen Zeiten eine erste Gruppe von Lichtempfangselementen oder wenigstens eine weitere Gruppe von Lichtempfangselementen empfangsbereit sind, wobei die Lichtempfangselemente der ersten Gruppe eine höhere Empfindlichkeit für den Empfang der Lichtsignale aufweisen, als die Empfangselemente der wenigstens einer weiteren Gruppe.
PCT/EP2018/081992 2017-12-15 2018-11-20 Empfangsanordnung zum empfang von lichtsignalen WO2019115185A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
IL275400A IL275400B1 (en) 2017-12-15 2018-11-20 A receiver array for receiving light signals
KR1020207020422A KR102501237B1 (ko) 2017-12-15 2018-11-20 광 신호의 수신을 위한 수신 장치
CA3085649A CA3085649C (en) 2017-12-15 2018-11-20 Receiving arrangement for receiving light signals
JP2020552106A JP7052068B2 (ja) 2017-12-15 2018-11-20 光信号を受信するための受信装置
US16/954,170 US11614519B2 (en) 2017-12-15 2018-11-20 Arrangements of light-receiving elements with different sensitivities and methods for receiving light signals
CN201880081057.5A CN111656220B (zh) 2017-12-15 2018-11-20 用于接收光信号的接收装置
EP18807935.4A EP3724683A1 (de) 2017-12-15 2018-11-20 Empfangsanordnung zum empfang von lichtsignalen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017222972.1 2017-12-15
DE102017222972.1A DE102017222972A1 (de) 2017-12-15 2017-12-15 Empfangsanordnung zum Empfang von Lichtsignalen

Publications (1)

Publication Number Publication Date
WO2019115185A1 true WO2019115185A1 (de) 2019-06-20

Family

ID=64456966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/081992 WO2019115185A1 (de) 2017-12-15 2018-11-20 Empfangsanordnung zum empfang von lichtsignalen

Country Status (9)

Country Link
US (1) US11614519B2 (de)
EP (1) EP3724683A1 (de)
JP (1) JP7052068B2 (de)
KR (1) KR102501237B1 (de)
CN (1) CN111656220B (de)
CA (1) CA3085649C (de)
DE (1) DE102017222972A1 (de)
IL (1) IL275400B1 (de)
WO (1) WO2019115185A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022041189A1 (zh) * 2020-08-31 2022-03-03 深圳市大疆创新科技有限公司 光电探测器件、探测方法和电子设备
US11614519B2 (en) 2017-12-15 2023-03-28 Ibeo Automotive Systems GmbH Arrangements of light-receiving elements with different sensitivities and methods for receiving light signals
US11644539B2 (en) 2017-12-15 2023-05-09 Microvision, Inc. Arrangement and method for using light signals and groups of light-receiving elements with different sensitivities to determine a distance of an object

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040233942A1 (en) 2003-01-24 2004-11-25 Holger Schlueter Side-pumped fiber laser
DE102006013290A1 (de) * 2006-03-23 2007-09-27 Robert Bosch Gmbh Vorrichtung zur optischen Distanzmessung sowie Verfahren zum Betrieb einer solchen Vorrichtung
DE102014207599A1 (de) * 2014-04-23 2015-10-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Fotodetektors
US20160266253A1 (en) * 2015-03-13 2016-09-15 Kabushiki Kaisha Toshiba Distance measuring device and photodetector
US20160284743A1 (en) * 2015-03-23 2016-09-29 Stmicroelectronics (Research & Development) Limited Circuit and method for controlling a spad array

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2923963C2 (de) 1979-06-13 1986-03-27 Endress U. Hauser Gmbh U. Co, 7867 Maulburg Verfahren zur Impulsabstandsmessung und Anordnung zur Durchführung des Verfahrens
JP2595354B2 (ja) 1989-09-20 1997-04-02 三菱電機株式会社 レーダ装置
JP4018820B2 (ja) * 1998-10-12 2007-12-05 富士フイルム株式会社 固体撮像装置および信号読出し方法
DE10130763A1 (de) * 2001-06-26 2003-01-02 Bosch Gmbh Robert Vorrichtung zur optischen Distanzmessung über einen grossen Messbereich
JP2004157044A (ja) 2002-11-07 2004-06-03 Nippon Signal Co Ltd:The 走査型レーザレーダ
US7511800B2 (en) 2005-11-28 2009-03-31 Robert Bosch Company Limited Distance measurement device with short range optics
US8355117B2 (en) * 2005-12-21 2013-01-15 Ecole Polytechnique Federale De Lausanne Method and arrangement for measuring the distance to an object
DE102008005129B4 (de) 2007-11-09 2017-11-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Nichtlinear-optischer Frequenzkonverter, Verwendungen desselben und Verfahren zur Erzeugung gepulster abstimmbarer Laserstrahlung
DE102009029372A1 (de) * 2009-09-11 2011-03-24 Robert Bosch Gmbh Messvorrichtung zur Messung einer Entfernung zwischen der Messvorrichtung und einem Zielobjekt mit Hilfe optischer Messstrahlung
JP5301414B2 (ja) * 2009-10-28 2013-09-25 京セラ株式会社 撮像装置
GB2487958A (en) 2011-02-10 2012-08-15 St Microelectronics Res & Dev A multi-mode photodetector pixel
DE102011005740A1 (de) * 2011-03-17 2012-09-20 Robert Bosch Gmbh Messvorrichtung zur Messung einer Entfernung zwischen der Messvorrichtung und einem Zielobjekt mit Hilfe optischer Messstrahlung
JP5626114B2 (ja) 2011-05-18 2014-11-19 株式会社デンソー 車載レーザレーダ装置
US9696412B2 (en) 2012-02-16 2017-07-04 Nucript LLC System and method for measuring optical delay using a single photon detector with pulsed optical signals
TW201351889A (zh) 2012-05-21 2013-12-16 Sony Corp A/d轉換器、固體攝像裝置及電子機器
KR102135684B1 (ko) 2013-07-24 2020-07-20 삼성전자주식회사 카운터 회로, 이를 포함하는 아날로그-디지털 컨버터, 이미지 센서 및 이를 이용하는 상관 이중 샘플링 방법
US9784835B1 (en) 2013-09-27 2017-10-10 Waymo Llc Laser diode timing feedback using trace loop
CN106165399B (zh) 2014-04-07 2019-08-20 三星电子株式会社 高分辨率、高帧率、低功率的图像传感器
JP6333189B2 (ja) * 2015-02-09 2018-05-30 三菱電機株式会社 レーザ受信装置
DE102015106635A1 (de) 2015-04-29 2016-11-03 Osram Opto Semiconductors Gmbh Optoelektronische Anordnung
JP2017003391A (ja) 2015-06-09 2017-01-05 株式会社デンソー レーザレーダシステム
EP3168641B1 (de) 2015-11-11 2020-06-03 Ibeo Automotive Systems GmbH Verfahren und vorrichtung zur optischen distanzmessung
JP6854828B2 (ja) * 2015-12-18 2021-04-07 ジェラルド ディルク スミッツ 物体のリアルタイム位置検知
EP3185037B1 (de) 2015-12-23 2020-07-08 STMicroelectronics (Research & Development) Limited Tiefenbildgebungssystem
EP3185039B1 (de) 2015-12-23 2021-09-08 STMicroelectronics (Research & Development) Limited Vorrichtung und verfahren zur entfernungsbestimmung und kommunikation
JP6544315B2 (ja) 2016-08-09 2019-07-17 株式会社デンソー レーダ装置
DE102017121346A1 (de) 2016-09-15 2018-03-15 Osram Opto Semiconductors Gmbh Messsystem, Verwendung zumindest einer individuell betreibbaren Leuchtdioden-Leuchteinheit als Sendereinheit in einem Messsystem, Verfahren zum Betrieb eines Messsystems und Beleuchtungsquelle mit einem Messsystem
EP4194888A1 (de) 2016-09-20 2023-06-14 Innoviz Technologies Ltd. Lidar-systeme und -verfahren
DE102017204576A1 (de) 2017-03-20 2018-09-20 Robert Bosch Gmbh Lichtdetektion
KR102302595B1 (ko) 2017-05-08 2021-09-15 삼성전자주식회사 테스트 회로를 포함하는 이미지 센서
DE102017222972A1 (de) 2017-12-15 2019-07-04 Ibeo Automotive Systems GmbH Empfangsanordnung zum Empfang von Lichtsignalen
DE102017222974A1 (de) 2017-12-15 2019-06-19 Ibeo Automotive Systems GmbH Anordnung und Verfahren zur Ermittlung einer Entfernung wenigstens eines Objekts mit Lichtsignalen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040233942A1 (en) 2003-01-24 2004-11-25 Holger Schlueter Side-pumped fiber laser
DE102006013290A1 (de) * 2006-03-23 2007-09-27 Robert Bosch Gmbh Vorrichtung zur optischen Distanzmessung sowie Verfahren zum Betrieb einer solchen Vorrichtung
DE102014207599A1 (de) * 2014-04-23 2015-10-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Fotodetektors
US20160266253A1 (en) * 2015-03-13 2016-09-15 Kabushiki Kaisha Toshiba Distance measuring device and photodetector
US20160284743A1 (en) * 2015-03-23 2016-09-29 Stmicroelectronics (Research & Development) Limited Circuit and method for controlling a spad array

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11614519B2 (en) 2017-12-15 2023-03-28 Ibeo Automotive Systems GmbH Arrangements of light-receiving elements with different sensitivities and methods for receiving light signals
US11644539B2 (en) 2017-12-15 2023-05-09 Microvision, Inc. Arrangement and method for using light signals and groups of light-receiving elements with different sensitivities to determine a distance of an object
WO2022041189A1 (zh) * 2020-08-31 2022-03-03 深圳市大疆创新科技有限公司 光电探测器件、探测方法和电子设备
CN114450565A (zh) * 2020-08-31 2022-05-06 深圳市大疆创新科技有限公司 光电探测器件、探测方法和电子设备

Also Published As

Publication number Publication date
EP3724683A1 (de) 2020-10-21
CN111656220A (zh) 2020-09-11
CA3085649A1 (en) 2019-06-20
DE102017222972A1 (de) 2019-07-04
CN111656220B (zh) 2023-10-13
US11614519B2 (en) 2023-03-28
KR20210002446A (ko) 2021-01-08
CA3085649C (en) 2024-03-12
IL275400B1 (en) 2024-02-01
JP2021507264A (ja) 2021-02-22
JP7052068B2 (ja) 2022-04-11
US20210156975A1 (en) 2021-05-27
IL275400A (en) 2020-07-30
KR102501237B1 (ko) 2023-02-17

Similar Documents

Publication Publication Date Title
EP3537180B1 (de) Empfängeranordnung zum empfang von lichtimpulsen, lidar-modul und verfahren zum empfangen von lichtimpulsen
DE102017101501B3 (de) Optoelektronischer Sensor und Verfahren zur Bestimmung der Entfernung eines Objekts in einem Überwachungsbereich
EP3091272B1 (de) Lichtgitter
EP3279685B2 (de) Optoelektronischer sensor und verfahren zur erfassung eines objekts
EP2708913A1 (de) Optoelektronischer Sensor und Verfahren zur Objekterfassung
EP3185038A1 (de) Optoelektronischer sensor und verfahren zur messung einer entfernung
DE102009029372A1 (de) Messvorrichtung zur Messung einer Entfernung zwischen der Messvorrichtung und einem Zielobjekt mit Hilfe optischer Messstrahlung
WO2019115185A1 (de) Empfangsanordnung zum empfang von lichtsignalen
EP3537172B1 (de) Empfangsanordnung zum empfang von lichtsignalen und verfahren zum empfangen von lichtsignalen
EP3091369A1 (de) Laserscanner
DE202013105389U1 (de) Optoelektronischer Sensor mit im Geiger-Modus betriebenen Lawinenphotodiodenelementen
EP3270182A1 (de) Optoelektronischer sensor und verfahren zur erfassung eines objekts in einem überwachungsbereich
EP3770633B1 (de) Optoelektronischer sensor und verfahren zur abstandsbestimmung
EP2909650B1 (de) Optoelektronische detektionseinrichtung mit reduzierter energieaufnahme, kraftfahrzeug und entsprechendes verfahren
EP3724682A1 (de) Anordnung und verfahren zur ermittlung einer entfernung wenigstens eines objekts mit lichtsignalen
DE102017202957A1 (de) Empfängeranordnung, Halbleiterbaustein und Verfahren zum Empfang von Lichtimpulsen und zur Ausgabe eines Empfangssignals
EP3650888B1 (de) Optoelektronischer sensor und verfahren zur erfassung und abstandsbestimmung von objekten
EP3839556B1 (de) Optoelektronischer sensor und verfahren zur erfassung eines objekts
EP4249949B1 (de) Erfassung und abstandsbestimmung eines objekts
EP3910373B1 (de) Auslesen von lawinenphotodiodenelementen im geigermodus
DE202021103851U1 (de) Laserscanner
DE102021118660A1 (de) Laserscanner und Verfahren zur Erfassung von Objekten mit einem Laserscanner
DE202017103345U1 (de) Tastendes Lichtgitter zur Erfassung von Objekten
DE102020106359A1 (de) Abstandsbestimmung von Objekten
DE102018133281A1 (de) Sensor und Verfahren zur Erfassung eines Objekts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18807935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3085649

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020552106

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018807935

Country of ref document: EP

Effective date: 20200715