WO2019114806A1 - 蒸镀载板及蒸镀装置 - Google Patents

蒸镀载板及蒸镀装置 Download PDF

Info

Publication number
WO2019114806A1
WO2019114806A1 PCT/CN2018/121006 CN2018121006W WO2019114806A1 WO 2019114806 A1 WO2019114806 A1 WO 2019114806A1 CN 2018121006 W CN2018121006 W CN 2018121006W WO 2019114806 A1 WO2019114806 A1 WO 2019114806A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
vapor
substrate
deposited
sub
Prior art date
Application number
PCT/CN2018/121006
Other languages
English (en)
French (fr)
Inventor
刘肖楠
宋锐男
于森
宋裕斌
谢飞
李坡
吕冲
曾义红
唐富强
靳福江
安成国
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2019114806A1 publication Critical patent/WO2019114806A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Definitions

  • the present disclosure relates to the field of vapor deposition technology, and in particular, to an evaporation carrier and a vapor deposition device.
  • the vacuum evaporation method is a method in which a vapor deposition material is heated by a vapor deposition source in a vacuum evaporation chamber to vaporize an atom or a molecule of the evaporation material from a surface of the vapor deposition material to form a vapor flow.
  • the method in which the vapor stream passes through the opening pattern on the reticle and finally condenses on the substrate to be vapor-deposited to form a patterned film.
  • OLED Organic Light-Emitting Diode
  • some embodiments of the present disclosure provide an evaporation deposition carrier configured to carry a substrate to be vapor-deposited, the substrate to be evaporated comprising a plurality of sub-vapor deposition substrates, the evaporation deposition carrier comprising: a bottom plate and a separation plate disposed at a plurality of support blocks on the bottom plate, one of the support blocks corresponding to one of the sub-vapor deposition substrates, and an orthographic projection of each of the support blocks on the corresponding sub-vapor-deposited substrate and corresponding sub-steaming
  • the display areas of the plated substrate overlap, and the overlap area is larger than 1/3 of the area of the display area of the corresponding sub-vapor-deposited substrate, which is smaller than the total area of the corresponding sub-vapor-deposited substrate.
  • the support block is configured to be in contact with the sub-vapor deposition substrate, and the contact area is substantially equal to or slightly smaller than the overlap area.
  • the support block has a surface configured to contact the sub-vapor-deposited substrate, the surface being planar.
  • the support block has a surface configured to be in contact with the sub-vapor-deposited substrate, the surface being a curved surface that is convex toward a side away from the bottom plate.
  • a plurality of the support blocks have respective surfaces in contact with a corresponding plurality of the sub-vapor deposition substrates, and surfaces of the plurality of support blocks integrally constitute a curved surface.
  • the curved surface is a spherical crown surface.
  • the curved surface is centrally symmetric.
  • each of the support blocks includes a flat layer and a boss disposed in a stack; the flat layer is adjacent to the bottom plate with respect to the boss.
  • the support block is a magnetic material
  • the vapor deposition carrier is provided with a magnetic plate or a plurality of magnetic blocks, and the support block is adsorbed by the magnetic plate or the plurality of magnetic blocks.
  • the vapor deposition carrier further includes a fixing member, a side of the support block is provided with a lug fixedly connected to the support block, and the fixing member connects the lug to the bottom plate Fixed to secure the support block to the base plate.
  • the fixing component is a bolt or a screw.
  • the vapor deposition carrier further includes a fixing member, a side of the flat layer is provided with a lug, and the fixing member fixes the lug and the bottom plate to fix the support block It is fixed on the bottom plate.
  • an orthographic projection of the support block on the substrate to be vapor-deposited completely overlaps a display area of the sub-vapor-deposited substrate corresponding to the support block.
  • the material of the support block is a non-magnetic material.
  • some embodiments of the present disclosure provide an evaporation apparatus comprising the vapor deposition carrier described above.
  • the vapor deposition apparatus further includes a magnetic plate or a plurality of magnetic blocks disposed on a side of the bottom plate away from the support block, and the magnetic block or the magnetic plate is configured to adsorb a mask to be used by the steaming
  • the substrate to be vapor-deposited carried by the plating plate is sandwiched between the vapor deposition carrier and the mask.
  • 1A is a side view showing a vapor deposition carrier and a substrate to be vapor-deposited according to the related art
  • 1B is a top plan view showing a vapor deposition carrier and a substrate to be vapor-deposited according to the related art
  • 2A is a side view of a vapor deposition carrier and a substrate to be vapor-deposited according to some embodiments of the present disclosure
  • 2B is a side view of a vapor deposition carrier and a substrate to be vapor-deposited according to some embodiments of the present disclosure
  • 2C is a top plan view of a vapor deposition carrier and a substrate to be vapor-deposited according to some embodiments of the present disclosure
  • 3A is a schematic diagram of a stressed structure of a sub-evaporated film layer in an evaporated film layer according to some embodiments of the present disclosure
  • 3B is another schematic diagram of a stressed structure of a sub-evaporated film layer in an evaporated film layer according to some embodiments of the present disclosure
  • FIG. 4A is a schematic structural view of a vapor deposition carrier and a support block fixed according to some embodiments of the present disclosure
  • FIG. 4B is a schematic structural view of another vapor deposition carrier and a support block fixed according to some embodiments of the present disclosure
  • FIG. 5 is a schematic structural view of a support block according to some embodiments of the present disclosure.
  • FIG. 6 is a schematic structural view of an evaporation carrier according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic structural view of an evaporation carrier and a substrate to be vapor-deposited according to some embodiments of the present disclosure
  • Figure 8 is a schematic view showing the structure of a magnetic block provided on the bottom plate shown in Figure 7;
  • FIG. 9 is a schematic structural view of an evaporation apparatus according to some embodiments of the present disclosure.
  • a vapor deposition device When vacuum vapor deposition is performed by a vapor deposition device, a vapor deposition device (Touch Plate, TP for short) is generally provided in the vapor deposition device, and the substrate to be vapor-deposited is carried by the vapor deposition carrier.
  • a vapor deposition carrier, a substrate to be vapor-deposited, a mask, and a vapor deposition source are sequentially provided. Since static electricity is generated by friction between the vapor deposition carrier and the substrate to be vapor-deposited, the vapor deposition carrier and the substrate to be vapor-deposited are often adsorbed together in a vacuum evaporation environment, and are not easily separated.
  • the related vapor deposition carrier 01 is often constructed as shown in Figs. 1A and 1B.
  • the vapor deposition carrier 01 includes a bottom plate 10 and a plurality of projections 20 disposed on the side of the substrate 10 adjacent to the substrate 30 to be vapor-deposited.
  • the vapor-deposited substrate 30 has a plurality of sub-vapor-deposited substrates 301, and each of the sub-vapor-deposited substrates 301 can form one display panel.
  • each of the sub-vapor-deposited substrates 301 is corresponding to and in contact with the plurality of protrusions 20, so that since the vapor deposition carrier 01 is in contact with the substrate 30 to be vapor-deposited by the plurality of protrusions 20 and the contact area between the two is small, After the vapor deposition is completed, that is, after the vapor deposition film layer is formed on the substrate 30 to be vapor-deposited, the vapor deposition carrier 01 and the substrate 30 to be vapor-deposited are easily separated.
  • the vapor deposition film layer includes a plurality of sub-vapor deposition film layers corresponding to the plurality of sub-vapor deposition substrates, for example, the sub-vapor deposition film layer 50 illustrated in FIG. 3A.
  • the conductive portion of the sub-vapor-deposited substrate 301 is in contact with the region of the bump 20.
  • the sub-evaporated film layer and the electrically conductive sub-evaporated film layers of other regions differ in performance and structure.
  • the electric resistance of the sub-vapor-deposited film layer of the region of the sub-vapor-deposited substrate 301 in contact with the bump 20 is smaller than the electric resistance of the sub-vapor-deposited film layer of the other region.
  • the formed display panel may have a white point abnormality when it is lit (ie, the area of the display panel that is in contact with the bumps is brighter than other areas), that is, sub-evaporation
  • the area of the substrate 301 that is in contact with the bump 20 is brighter than other areas, thereby affecting the performance of the display panel.
  • some embodiments of the present disclosure provide an evaporation carrier board 01 configured to carry a substrate 30 to be vapor-deposited.
  • the vapor-deposited substrate 30 includes a plurality of sub-vapor-deposited substrates 301.
  • the vapor deposition carrier board 01 includes a bottom plate 10 and a plurality of separately disposed support blocks 40 disposed on the bottom plate 10.
  • One support block 40 corresponds to one sub-vapor deposition substrate 301.
  • the orthographic projection of the support block 40 on the corresponding sub-vapor-deposited substrate 301 overlaps with the display area of the corresponding sub-vapor-deposited substrate 301, and the overlapping area is larger than 1/3 of the area of the display area, which is smaller than the total area of the sub-vapor-deposited substrate 301.
  • the surface of the support block 40 for contact with the substrate 30 to be vapor-deposited is a plane as shown in FIG. 2A or a curved surface which is convex toward the side away from the bottom plate 10 as shown in FIG. 2B.
  • display area refers to an area for displaying an image in a display panel formed by a sub-vapor-deposited substrate; before the sub-vapor-deposited substrate is formed as a display panel, in order to simplify the description, the sub-vapor-deposited substrate and the display panel are The area corresponding to the display area is also referred to as a "display area.”
  • the area of the support block in the vapor deposition carrier provided by the embodiment of the present disclosure in contact with the sub-vapor-deposited substrate is increased, and thus the temperature of the display region of the sub-vapor-deposited substrate The distribution is more uniform, and the stress distribution of the sub-vapor deposited film layer in the display region of each sub-vapor-deposited substrate is more uniform. Therefore, the performance of the sub-evaporated film layer is more uniform, and the electric resistance of the sub-evaporated film layer is more uniform.
  • the vapor-deposited substrate is formed into a display panel, and the display panel is illuminated, the light emitted by the display panel is uniform without white spots, thereby significantly improving the display performance of the display panel, such as luminous efficiency. Brightness or color purity, etc.
  • the substrate to be vapor-deposited 30 is a mother board and includes a plurality of sub-vapor-deposited substrates 301. Further, the vapor-deposited substrate 30 is formed as a mother board of the display panel after the vapor-deposited film layer is formed thereon, and then cut by the sub-vapor-deposited substrate, whereby a plurality of display panels can be obtained.
  • one substrate to be vapor-deposited 30 includes 70 to 110 sub-vapor-deposited substrates 301, and may include, for example, 90 or 100 sub-vapor-deposited substrates 301.
  • the thickness of the bottom plate 10 is not limited, and for example, the thickness of the bottom plate 10 is 0 to 10 mm.
  • the bottom plate 10 has a thickness of 2 mm.
  • the material of the support block 40 is not limited, but the support block is selected to have a certain hardness.
  • the material of the support block 40 may be the same as or different from the material of the bottom plate 10.
  • the radius of curvature for the curved surface is not The limitation is made, and the radius of curvature may be set correspondingly according to the size of the display area of the sub-vapor-deposited substrate 301 and the degree of gravity deformation of the substrate 30 to be vapor-deposited. Moreover, the radius of curvature of the arc faces of the plurality of support blocks 40 may be the same or different.
  • the surface of the support block 40 for contacting the substrate 30 to be vapor-deposited is a curved surface that is convex toward the side away from the bottom plate 10
  • the radius of curvature of the curved surface and the gravity of the substrate to be vapor-deposited are in the curved surface of the support block 40.
  • the distribution area of the frictional force between the portion in contact with the substrate to be vapor-deposited 30 and the substrate to be vapor-deposited 30 is smaller than the distribution area of the frictional force between the entire support block 40 and the substrate to be vapor-deposited 30 (ie, The distribution area of the frictional force between the support block and the substrate to be vapor-deposited when the surface of the support block that is in contact with the substrate 30 to be vapor-deposited is flat.
  • the curved surface facilitates the temperature gradient of the sub-vapor-deposited substrate 301, and the temperature distribution on the surface of the sub-vapor-deposited substrate 301 is improved, so that the electric resistance of the sub-evaporated film layer 50 on the sub-vapor-deposited substrate 301 is further increased. Evenly.
  • temperature gradient means that the temperature of the sub-vapor-deposited substrate is stepwisely increased toward the periphery of the sub-vapor-deposited substrate along the center of the contact area of the support block and the sub-vapor-deposited substrate.
  • the temperature of the region of the sub-vapor-deposited substrate that is in contact with the support block is low. Since the vapor deposition carrier is usually a metal and the metal has good thermal conductivity, a temperature difference is easily formed between the vapor deposition carrier and a device that is in direct contact with or indirectly contacts the vapor deposition carrier.
  • the temperature of the vapor to be vaporized on the substrate is increased due to the higher temperature of the vapor stream reaching it (generally greater than 40 ° C), and the temperature of the vapor deposition carrier is substantially the same as the room temperature, thereby
  • the support block to be contacted by the vapor-deposited substrate transfers heat of the substrate to be vapor-deposited to the vapor deposition carrier, so that the temperature of the region where the sub-vapor-deposited substrate of the substrate to be vapor-deposited contacts the support block is low.
  • each support block 40 is in contact with a corresponding sub-vapor-deposited substrate 301 during the evaporation process.
  • the surface of the support block 40 configured to be in contact with the sub-vapor-deposited substrate 301 is a plane as shown in FIG. 2A
  • the area of the support block 40 in contact with the corresponding sub-vapor-deposited substrate 301 is substantially equal to the aforementioned overlap area (ie, The area where the orthographic projection of the support block 40 on the corresponding sub-vapor-deposited substrate 301 overlaps with the display region of the corresponding sub-vapor-deposited substrate 301).
  • the surface of the support block 40 configured to be in contact with the substrate 30 to be vapor-deposited is a curved surface that protrudes away from the side of the bottom plate 10 as shown in FIG. 2B, the area of the support block 40 in contact with the corresponding sub-vapor-deposited substrate 301 Slightly smaller than the aforementioned overlap area.
  • the sub-vapor-deposited film layer 50 is subjected to substantially the same outward stress as the sub-vapor-deposited substrate 301.
  • the sub-vapor-deposited substrate 301 is restored to a flat state, and the stress applied to the sub-vapor-deposited substrate 301 and the sub-vapor-deposited film layer 50 is directed toward the center of the sub-vapor-deposited substrate 301 (arrows in FIG. 3B). Show).
  • the vapor deposition material in the sub-vapor deposition film layer 50 is concentrated toward the center of the sub-vapor deposition substrate 301 by the stress, thereby increasing the density of the sub-vapor deposition film layer 50.
  • the size of the support block 40 is small, the area in which the support block 40 is in contact with the substrate 30 to be vapor-deposited is small.
  • the stress of the portion of the sub-vapor-deposited film layer 50 corresponding to the region where the sub-vapor-deposited substrate 301 is in contact with the support block 40 is concentrated and large, so that The portion of the sub-vapor-deposited film layer 50 where the sub-vapor-deposited substrate 301 is in contact with the support block 40 and the portion where the sub-vapor-deposited film layer is located other than the contact region have a large difference in performance and structure.
  • the area in which the projections 20 are in contact with the substrate to be vapor-deposited is small (the area to be constrained by the vapor-deposited substrate is small), and thus the substrate 30 to be vapor-deposited is The vapor-deposited film layer in the region where the bumps 20 are in contact is concentrated and large due to stress, so that the portion of the vapor-deposited film layer at the region due to stress is largely deformed. Moreover, the temperature at the region where the substrate to be vapor-deposited 30 is in contact with the bump 20 causes contact, resulting in uneven temperature distribution on the substrate 30 to be vapor-deposited.
  • the performance of the region of the vapor-deposited film layer formed on the vapor-deposited substrate 30 that is in contact with the bump 20 is greatly different from that of the region other than the contact region.
  • the electric resistance of the region in contact with the bumps 20 is smaller than that of the other regions, because the electric resistance decreases as the temperature decreases.
  • the sub-steam in the formed vapor deposition film layer is formed due to the large size of the support block 40.
  • the area of the portion where the plating layer 50 is subjected to stress is increased, and therefore, the stress distribution of the sub-vapor-deposited film layer 50 is more uniform.
  • the support block 40 lowers the temperature of the substrate 30 to be vapor-deposited in contact therewith, and the contact area between the support block 40 and the display region of the sub-vapor-deposited substrate 301 is increased with respect to the dot-like protrusions 20, and thus the sub-vapor-deposited substrate 301 The portion where the temperature of the display region is lowered is increased, so that the temperature distribution of the display region of the sub-vapor-deposited substrate 301 is more uniform. Since the temperature distribution of the display region of the sub-vapor-deposited substrate 301 is more uniform, and the stress distribution of the sub-vapor-deposited film layer 50 is more uniform, the performance of the sub-vapor-deposited film layer 50 is more uniform, for example, the electric resistance of the sub-vapor-deposited film layer 50 is more uniform. .
  • the sub-vapor-deposited substrate 301 forms a display panel, and the display panel is illuminated, the light emitted by the display panel is uniform, and no white-spot phenomenon occurs, thereby significantly improving the display performance of the display panel such as luminous efficiency. , brightness or color purity, etc.
  • the orthographic projection of the support block 40 on the substrate 30 to be vapor-deposited completely overlaps the display area of the sub-vapor-deposited substrate 301 corresponding to the support block 40.
  • the area where the support block 40 is in contact with the corresponding sub-vapor-deposited substrate 301 completely overlaps the display area of the sub-vapor-deposited substrate 301 corresponding to the support block 40.
  • the orthographic projection of the support block 40 on the substrate 30 to be vapor-deposited completely overlaps the display region of the sub-vapor-deposited substrate 301 corresponding to the support block 40, an evaporation film is formed on the substrate 30 to be evaporated.
  • the stress distribution of the sub-vapor-deposited film layer 50 is uniform, so that the performance of the sub-vapor-deposited film layer 50 is the same, thereby improving the uniformity of the performance of the display panel after the substrate 30 to be vapor-deposited is formed into the display panel. .
  • the surface of the support block 40 for contacting the substrate 30 to be vapor-deposited is a curved surface that is convex toward a side away from the bottom plate 10, and the curved surface is centrally symmetrical.
  • the stress to be evaporated on the substrate 30 is uniform after the substrate 30 to be vapor-deposited is in contact with the support block 40 during the vapor deposition process, thereby ensuring that the stress on the vapor deposition film layer is uniform. Further, the performance uniformity of the substrate 30 to be vapor-deposited is improved.
  • the surface of the support block 40 that is in contact with the substrate 30 to be vapor-deposited is a curved surface that is convex away from the side of the bottom plate 10
  • the radius of curvature of the curved surface is too small, the contact of the support block 40 with the substrate 30 to be vapor-deposited is obtained.
  • the stress to be subjected to the vapor deposition of the substrate 30 is uneven, and the temperature distribution on the substrate 30 to be vapor-deposited is not uniform, so that the performance of the sub-vapor-deposited film layer 50 is not uniform.
  • the bottom plate 10 and the support block 40 may be fixedly coupled together by integral molding, or may be fixed together by fixing members or the like.
  • the bottom plate 10 and the support block 40 in the vapor deposition carrier 01 are detachably connected.
  • the orthographic projection of the support block 40 on the substrate to be vapor-deposited 30 overlaps with the display area of the sub-vapor-deposited substrate 301 corresponding to the support block 40, and the overlap area is larger than 1/3 of the area of the display area (actually, the support block 40 can be made
  • the area in which the corresponding sub-vapor-deposited substrate 301 contacts is larger than 1/3 of the area of the display area of the corresponding sub-vapor-deposited substrate 301, and is smaller than the total area of the sub-vapor-deposited substrate 301.
  • the vapor-deposited carrier plate 01 is generally replaced.
  • the replacement process of the vapor deposition carrier 01 in the vapor deposition apparatus is very complicated and takes a long time, which seriously affects industrial production, and therefore, the size or shape of the sub-vapor-deposited substrate 301 in the substrate 30 to be vapor-deposited.
  • the material of the support block 40 is a magnetic material.
  • the vapor deposition carrier 01, the substrate 30 to be vapor-deposited, the mask plate, and the vapor deposition source are sequentially provided for vapor deposition.
  • a magnetic block or a magnetic plate is placed on the vapor deposition carrier 01 to adsorb a mask plate made of a magnetic material, so that the substrate 30 to be vapor-deposited can be sandwiched between the mask plate and the vapor deposition carrier 01.
  • the material of the support block 40 is a magnetic material
  • the magnetic block or the magnetic plate can adsorb the support block 40, so that the support block 40 can be fixed on the bottom plate 10.
  • the material of the support block 40 is a soft magnetic material.
  • the bottom plate 10 can be adapted to the sub-vapor-deposited substrate 301 of different sizes and shapes.
  • the side of the support block 40 is provided with a lug 60 fixedly connected to the support block 40;
  • the vapor deposition carrier further includes a fixing member 70, and the fixing member 70 connects the lug 60 and the bottom plate 10 is fixed to fix the support block 40 to the base plate 10.
  • the side of the support block 40 refers to a face other than the face in contact with the bottom plate 10 and the face for contact with the substrate 30 to be vapor-deposited.
  • the lug 60 and the support block 40 may be fixedly connected by integral molding, or may be connected together by other connecting members, which is not limited thereto.
  • the type of the fixing member 70 is not limited so that the support block 40 can be fixed to the bottom plate 10.
  • the fixing member 70 is a bolt or a screw.
  • the support block 40 and the bottom plate 10 are fixed by the fixing member 70, when the size or shape of the sub-vapor-deposited substrate 301 in the substrate 30 to be vapor-deposited is changed, only the corresponding support block needs to be replaced. 40 is sufficient, so that the bottom plate 10 can be applied to the sub-vapor-deposited substrate 301 of different sizes and shapes.
  • the material of the support block 40 may be a magnetic material or a non-magnetic material.
  • the material of the support block 40 of some embodiments of the present disclosure is a non-magnetic material.
  • the material of the support block 40 may be aluminum (Al), copper (Cu), titanium (Ti), or the like.
  • the support block 40 in the case where the surface of each of the support blocks 40 for contacting the substrate to be vapor-deposited 30 is a curved surface that is convex toward the side away from the bottom plate 10, the support block 40 includes The flat layer 401 and the boss 402 are stacked. The flat layer 401 is adjacent to the bottom plate 10 with respect to the raised portion 402.
  • the flat layer 401 and the raised portion 402 of the support block 40 may be simultaneously formed by an integral molding process; the flat layer 401 may be formed first, and the convex portion 402 may be formed on the flat layer 401. As shown in FIG. 5, the flat layer 401 and the boss 402 are integrally formed.
  • the thickness of the flat layer 401 is not limited, for example, the flat layer 401 has a thickness of 0 to 5 mm. For another example, the flat layer 401 has a thickness of 1.5 mm.
  • the lugs 60 of some embodiments of the present disclosure are disposed on the side of the flat layer 401.
  • the side surface of the flat layer 401 refers to a surface other than the surface in contact with the bottom plate 10 and the surface for connection with the convex portion in the flat layer.
  • the support block 40 in the case where the support block 40 includes the flat layer 401 and the boss 402, on the one hand, it is advantageous to provide the lug 60 on the side of the flat layer 401; on the other hand, with respect to the support block 40 only In the case where the convex portion 402 is included, the distance between the substrate 30 to be vapor-deposited and the bottom plate 10 can be increased, and the substrate to be vapor-deposited 30 can be prevented from being excessively bent to be in contact with the bottom plate 10.
  • the position at which the support block 40 is disposed on the bottom plate 10 is also determined.
  • the support block 40 is fixed to the bottom plate 10 by the fixing member 70, in order to facilitate the precise positioning of the support block 40, the support block 40 is accurately fixed to the corresponding position on the bottom plate 10, as shown in FIG. 6, at the edge of the bottom plate 10.
  • Baffle 80 In contrast to artificially determining the position of the support block on the base plate 10, the position of the baffle 80 on the base plate 10 coincides with a predetermined mechanical coordinate such that the support block 40 is aligned with respect to the baffle 80.
  • the support block 40 is first aligned next to the baffle 80, and then the other support blocks are arranged next to the aligned support blocks. In this way, the accuracy of the positioning of the support block is improved.
  • the curved surface integrally formed by the respective surfaces of the plurality of support blocks 40 that are in contact with the substrate 30 to be vapor-deposited is a spherical crown surface. This is different from the structure of the support block 40 shown in Figure 2B, in which the arcuate face of each support block 40 is substantially similar to the spherical crown face described herein.
  • a spherical crown is a curved surface of a smaller proportion of a sphere that is cut by a plane in unequal proportions.
  • the radius of curvature of the spherical cap surface is not limited, and may be correspondingly designed according to the curved state of the substrate 30 to be vapor-deposited under gravity.
  • the force to be vapor-deposited on the substrate 30 includes its own gravity, and the supporting force of the vapor deposition carrier 01 to the vapor-deposited substrate 30 (steaming)
  • the supporting force is a magnetic force
  • the plurality of support blocks 40 of some embodiments of the present disclosure are used to contact the substrate 30 to be vapor-deposited.
  • the surface formed by the surface is a spherical crown.
  • the curved state of the spherical cap surface is most similar to the curved state of the substrate 30 to be vapor-deposited and the mask, thereby avoiding The deformation of the mask is uneven, resulting in uneven formation of the deposited film layer.
  • Some embodiments of the present disclosure also provide an evaporation apparatus including the vapor deposition carrier 01 described above, as shown in FIG.
  • the vapor deposition apparatus further includes an evaporation source (not shown).
  • the vapor-deposited substrate 30 and the mask plate 100 are disposed between the vapor deposition carrier 01 and the vapor deposition source, and the mask plate 100 is closer to the vapor deposition source than the substrate 30 to be vapor-deposited.
  • the mask 100 may be adsorbed by a magnetic block 90 or a magnetic plate (not shown) provided on the vapor deposition carrier 01 to sandwich the substrate 30 to be vapor-deposited between the vapor deposition carrier 01 and the mask 100. .
  • the vapor deposition apparatus further includes a plurality of magnetic blocks 90 disposed on a side of the vapor deposition carrier 01 away from the substrate 30 to be vapor-deposited, and the magnetic block 90 adsorbs the mask 100. , or adsorb the mask 100 and the support block.
  • the magnetic block 90 or the magnetic plate can be used to adsorb the mask 100, and the substrate 30 to be evaporated is located between the mask 100 and the vapor deposition carrier 01, the substrate 30 to be vapor-deposited can pass through the magnetic block.
  • the 90 or magnetic plate adsorbs the mask 100 and is sandwiched between the vapor deposition carrier 01 and the mask 100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种蒸镀载板(01),该蒸镀载板(01)配置为承载待蒸镀基板(30),所述待蒸镀基板(30)包括多个子蒸镀基板(301),所述蒸镀载板(01)包括:底板(10)和分离设置在所述底板上的多个支撑块(40),一个所述支撑块(40)对应一个所述子蒸镀基板(301),每个所述支撑块(40)在对应的所述待蒸镀基板(30)上的正投影与对应的所述子蒸镀基板(301)的显示区域重叠,且重叠面积大于对应的所述子蒸镀基板(301)的显示区域面积的1/3,小于对应的所述子蒸镀基板(301)的总面积。

Description

蒸镀载板及蒸镀装置 技术领域
本公开涉及蒸镀技术领域,尤其涉及一种蒸镀载板及蒸镀装置。
背景技术
真空蒸镀法是如下的方法:在真空蒸镀室中,通过蒸镀源对蒸镀材料进行加热,以使蒸镀材料的原子或分子从蒸镀材料的表面气化逸出而形成蒸汽流,蒸汽流通过掩模板上的开口图案,最后在待蒸镀基板上凝结,从而形成图案化薄膜的方法。目前,真空蒸镀法已广泛应用于OLED(Organic Light-Emitting Diode,有机发光二极管)器件的制备,例如OLED器件中有机发光层的制备。
发明内容
一方面,本公开一些实施例提供一种蒸镀载板,配置为承载待蒸镀基板,所述待蒸镀基板包括多个子蒸镀基板,所述蒸镀载板包括:底板和分离设置在所述底板上的多个支撑块,一个所述支撑块对应一个所述子蒸镀基板,每个所述支撑块在对应的所述子蒸镀基板上的正投影与对应的所述子蒸镀基板的显示区域重叠,且重叠面积大于对应的所述子蒸镀基板的显示区域面积的1/3,小于对应的所述子蒸镀基板的总面积。
本公开一些实施例中,所述支撑块配置为与所述子蒸镀基板接触,且接触面积大体等于或略小于所述重叠面积。
本公开一些实施例中,所述支撑块具有配置为与所述子蒸镀基板接触的表面,所述表面为平面。
本公开一些实施例中,所述支撑块具有配置为与所述子蒸镀基板接触的表面,所述表面为向远离所述底板一侧凸起的弧面。
本公开一些实施例中,多个所述支撑块具有与对应的多个所述子蒸镀基板接触的相应的表面,多个所述支撑块的表面整体地构成弧面。
本公开一些实施例中,所述弧面为球冠面。
本公开一些实施例中,所述弧面呈中心对称。
本公开一些实施例中,每个所述支撑块包括层叠设置的平坦层和凸起部;所述平坦层相对于所述凸起部靠近所述底板。
本公开一些实施例中,所述支撑块为磁性材料,所述蒸镀载板上设置有磁板或多个磁块,所述支撑块被所述磁板或所述多个磁块吸附。
本公开一些实施例中,所述蒸镀载板还包括固定部件,所述支撑块的侧面设置有与所述支撑块固定连接的凸耳,所述固定部件将所述凸耳与所述底板固定,以将所述支撑块固定在所述底板上。
本公开一些实施例中,所述固定部件为螺栓或螺钉。
本公开一些实施例中,所述蒸镀载板还包括固定部件,所述平坦层的侧面设置有凸耳,所述固定部件将所述凸耳与所述底板固定,以将所述支撑块固定在所述底板上。
本公开一些实施例中,所述支撑块在所述待蒸镀基板上的正投影与所述支撑块对应的所述子蒸镀基板的显示区域完全重叠。
本公开一些实施例中,所述支撑块的材料为非磁性材料。
另一方面,本公开一些实施例提供一种蒸镀装置,包括上述的蒸镀载板。
本公开一些实施例中,所述蒸镀装置还包括设置在底板远离支撑块一侧的磁板或多个磁块,所述磁块或所述磁板配置为吸附掩模板以将由所述蒸镀载板所承载的待蒸镀基板夹在所述蒸镀载板和所述掩模板之间。
附图说明
为了更清楚地说明本公开一些实施例的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A为根据相关技术的一种蒸镀载板和待蒸镀基板的侧视结构示意图;
图1B为根据相关技术的一种蒸镀载板和待蒸镀基板的俯视结构示意图;
图2A为根据本公开一些实施例的一种蒸镀载板和待蒸镀基板的侧视结构示意图一;
图2B为根据本公开一些实施例的一种蒸镀载板和待蒸镀基板的侧视结构示意图二;
图2C为根据本公开一些实施例的一种蒸镀载板和待蒸镀基板的俯视结构示意图;
图3A为根据本公开一些实施例的蒸镀膜层中的子蒸镀膜层的一种受力结构示意图;
图3B为根据本公开一些实施例的蒸镀膜层中的子蒸镀膜层的另一种受力结构示意图;
图4A为根据本公开一些实施例的一种蒸镀载板与支撑块固定的结构示意图;
图4B为根据本公开一些实施例的另一种蒸镀载板与支撑块固定的结构示意图;
图5为根据本公开一些实施例的一种支撑块的结构示意图;
图6为根据本公开一些实施例的一种蒸镀载板的结构示意图;
图7为根据本公开一些实施例的一种蒸镀载板和待蒸镀基板的结构示意图;
图8为在图7所示的底板上设置磁块的结构示意图;以及
图9为根据本公开一些实施例的一种蒸镀装置的结构示意图。
具体实施方式
下面将结合本公开一些实施例中的附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开一些实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
利用相关的蒸镀装置进行真空蒸镀时,蒸镀装置中一般都设置有蒸镀载板(Touch Plate,简称TP),利用蒸镀载板来承载待蒸镀基板。示例地,进行蒸镀时,蒸镀载板、待蒸镀基板、掩模板(Mask) 以及蒸镀源依次设置。由于蒸镀载板和待蒸镀基板之间因摩擦产生静电,因此蒸镀载板和待蒸镀基板在真空蒸镀环境下常会吸附在一起,不易分离。为了解决该问题,相关的蒸镀载板01常采用如图1A和图1B所示的结构。如图1A和图1B所示,蒸镀载板01包括底板10和设置在底板10靠近待蒸镀基板30一侧的多个凸起(Emboss)20。待蒸镀基板30具有多个子蒸镀基板301,每个子蒸镀基板301能够形成一个显示面板。每个子蒸镀基板301与多个凸起20对应并接触,这样一来,由于蒸镀载板01通过多个凸起20来与待蒸镀基板30接触且两者的接触面积较小,因而蒸镀完成后,即,在待蒸镀基板30上形成蒸镀膜层后,蒸镀载板01与待蒸镀基板30易于分离。这里,蒸镀膜层包括与多个子蒸镀基板对应的多个子蒸镀膜层,例如,图3A所示的子蒸镀膜层50。
然而,由于子蒸镀基板301中与凸起20接触的区域和该接触区域之外的其它区域的温度以及受到的应力不相同,因而子蒸镀基板301中与凸起20接触的区域的导电的子蒸镀膜层和其它区域的导电的子蒸镀膜层在性能和结构上有差异。示例地,子蒸镀基板301的与凸起20接触的区域的子蒸镀膜层的电阻小于其它区域的子蒸镀膜层的电阻。这样当每个子蒸镀基板301形成一个显示面板后,所形成的显示面板在点亮时会出现白点异常(即,显示面板的与凸起接触的区域比其他区域亮),即子蒸镀基板301的与凸起20接触的区域的亮度大于其它区域,从而影响了显示面板的性能。
如图2A、图2B以及图2C所示,本公开一些实施例提供了一种蒸镀载板01,配置为承载待蒸镀基板30。待蒸镀基板30包括多个子蒸镀基板301。蒸镀载板01包括:底板10和设置在底板10上的多个分离设置的支撑块40。一个支撑块40对应一个子蒸镀基板301。支撑块40在对应的子蒸镀基板301上的正投影与该对应的子蒸镀基板301的显示区域重叠,且重叠面积大于显示区域面积的1/3,小于子蒸镀基板301的总面积。支撑块40用于与待蒸镀基板30接触的表面为如图2A所示的平面或者为如图2B所示的向远离底板10一侧凸起的弧面。术语“显示区域”指的是,子蒸镀基板形成的显示面板中用于显示图像的区域;在子蒸镀基板形成为显示面板之前,为了简化描述,将子蒸镀基板的与显示面板中显示区域相对应的区域也称为 “显示区域”。
相对于图1A和图1B所示的凸起,由于本公开一些实施例提供的蒸镀载板中的支撑块的与子蒸镀基板接触的面积增加,因而子蒸镀基板的显示区域的温度分布更均匀,且在各个子蒸镀基板显示区域的子蒸镀膜层受到的应力分布的更均匀。因此子蒸镀膜层的性能更均匀,如子蒸镀膜层的电阻更均匀。这样当子蒸镀基板形成显示面板,且显示面板被点亮后,显示面板发出的光是均匀的,而不会出现白点现象,从而显著地提高了显示面板的显示性能,如发光效率、亮度或色纯度等。
需要说明的是,待蒸镀基板30是一个母板,包括多个子蒸镀基板301。此外,待蒸镀基板30在蒸镀膜层形成在其上后而成为显示面板的母板,然后以子蒸镀基板为基准进行切割,从而可以得到多个显示面板。一般地,一张待蒸镀基板30包括70~110个子蒸镀基板301,例如可以包括90个或100个子蒸镀基板301。
此外,对于底板10的厚度不进行限定,示例地,底板10的厚度为0~10mm。可选地,底板10的厚度为2mm。
本公开一些实施例中,对于支撑块40的材料不进行限定,而是支撑块的选用以其具有一定的硬度为准。此外,支撑块40的材料可以与底板10的材料相同,也可以不相同。
在本公开一些实施例中,当支撑块40用于与待蒸镀基板30接触的表面为如图2B所示的向远离底板10一侧凸起的弧面时,对于弧面的曲率半径不进行限定,而是可以根据子蒸镀基板301的显示区域面积的大小以及待蒸镀基板30因重力变形的程度来对曲率半径进行相应设置。而且,多个支撑块40的弧面的曲率半径也可以是相同的,也可以是不相同的。
当支撑块40用于与待蒸镀基板30接触的表面为向远离底板10的一侧凸起的弧面时,由于弧面曲率半径和待蒸镀基板的重力,支撑块40的弧面中与待蒸镀基板30接触的部分与待蒸镀基板30之间的摩擦力的分布面积小于整体的支撑块40与待蒸镀基板30接触时两者之间的摩擦力的分布面积(即,支撑块的与待蒸镀基板30接触的表面呈平面时,支撑块与待蒸镀基板之间的摩擦力的分布面积)。这样 有利于减少待蒸镀基板30和蒸镀载板01分离时因摩擦产生的静电。此外,蒸镀过程中,弧面有利于子蒸镀基板301形成温度梯度,改善了子蒸镀基板301表面的温度分布,从而使得在子蒸镀基板301上的子蒸镀膜层50的电阻更均匀。术语“温度梯度”指的是,子蒸镀基板的温度沿支撑块与子蒸镀基板接触区域的中央处向子蒸镀基板的周缘阶梯式递增。
蒸镀过程中,子蒸镀基板的与支撑块接触的区域的温度较低。由于蒸镀载板通常为金属,而金属的热传导性较好,因而蒸镀载板与直接接触于或间接接触于蒸镀载板的器件之间易于形成温差。因此,当蒸镀时,待蒸镀基板因到达其上的蒸汽流温度较高而本身的温度会升高(一般大于40℃),而且蒸镀载板的温度与室温大体相同,从而通过与待蒸镀基板接触的支撑块将待蒸镀基板的热量传递至蒸镀载板上,使得待蒸镀基板的子蒸镀基板与支撑块接触的区域温度较低。
在本公开的一些实施例中,在蒸镀过程中每个支撑块40均与对应的子蒸镀基板301接触。当支撑块40的配置为与子蒸镀基板301接触的表面为如图2A所示的平面时,支撑块40与对应的子蒸镀基板301接触的面积大体上等于前述的重叠面积(即,支撑块40在对应的子蒸镀基板301上的正投影与该对应的子蒸镀基板301的显示区域重叠的面积)。当支撑块40的配置为与待蒸镀基板30接触的表面为如图2B所示的向远离底板10一侧凸起的弧面时,支撑块40与对应的子蒸镀基板301接触的面积略小于前述的重叠面积。
现在,详细描述对蒸镀过程中子蒸镀基板301上的子蒸镀膜层50受到的内应力的分析。如图3A所示,子蒸镀基板301与蒸镀载板01上的支撑块40贴合之后,由于支撑块40的支撑,因而子蒸镀基板301与支撑块40接触的区域受到的应力朝外(如图3A中箭头所示),即,朝向子蒸镀基板301的周缘方向。由于子蒸镀基板301的厚度较薄,例如为0.5mm,因此,会使得子蒸镀膜层50受到与子蒸镀基板301大体相同的朝外应力。蒸镀结束后,如图3B所示,子蒸镀基板301和均会恢复平坦,子蒸镀基板301与子蒸镀膜层50受到的应力朝向子蒸镀基板301的中央(图3B中箭头所示)。这样,在应力的作用下,子蒸镀膜层50中的蒸镀材料向子蒸镀基板301的中央聚集,从而增加了子蒸镀膜层50的致密性。
若支撑块40的尺寸较小,则支撑块40与待蒸镀基板30接触的面积较小。这样,在待蒸镀基板30上蒸镀形成蒸镀膜层后,子蒸镀膜层50的对应于子蒸镀基板301与支撑块40接触的区域的部分受到的应力会集中且很大,从而使得子蒸镀膜层50位于子蒸镀基板301与支撑块40接触的区域的部分和子蒸镀膜层位于除接触区域之外的其它区域的部分在性能和结构上有很大的差异。
在底板10上设置点状的凸起20的情况下,凸起20与待蒸镀基板进行接触的面积较小(对待蒸镀基板进行约束的面积较小),因而待蒸镀基板30上与凸起20接触的区域的蒸镀膜层由于受到的应力集中且很大,从而使得蒸镀膜层在该区域处的部分因应力产生的变形大。而且,待蒸镀基板30与凸起20接触而导致接触的区域处温度较低,从而导致待蒸镀基板30上的温度分布不均匀。因此待蒸镀基板30上形成的蒸镀膜层中与凸起20接触的区域的性能与除接触区域之外的其它区域有很大的差异。例如待蒸镀基板30上形成的蒸镀膜层中与凸起20接触的区域的电阻小于其它区域的电阻,这是由于电阻随温度降低而减小的缘故。
本公开一些实施例中,相比于凸起20,使用支撑块40在待蒸镀基板30上形成蒸镀膜层后,由于支撑块40的尺寸大,因而所形成的蒸镀膜层中的子蒸镀膜层50受到应力的部分的面积增加,因此,子蒸镀膜层50受到的应力分布更均匀。
此外,支撑块40会降低与其接触的待蒸镀基板30的温度,相对于点状的凸起20,支撑块40与子蒸镀基板301显示区域的接触面积增加,因而子蒸镀基板301的显示区域的温度降低的部分增加,使得子蒸镀基板301的显示区域的温度分布更均匀。由于子蒸镀基板301显示区域的温度分布更均匀,且子蒸镀膜层50受到的应力分布得更均匀,因而子蒸镀膜层50的性能更均匀,例如,子蒸镀膜层50的电阻更均匀。这样,当子蒸镀基板301形成显示面板,且显示面板被点亮后,显示面板发出的光是均匀的,不会出现白点现象,由此显著地提高了显示面板的显示性能如发光效率、亮度或色纯度等。
本公开一些实施例中,支撑块40在待蒸镀基板30上的正投影与该支撑块40对应的子蒸镀基板301的显示区域完全重叠。例如,支 撑块40与对应的子蒸镀基板301接触的区域与该支撑块40对应的子蒸镀基板301的显示区域完全重叠。
本公开一些实施例中,由于支撑块40在待蒸镀基板30上的正投影与该支撑块40对应的子蒸镀基板301的显示区域完全重叠,因而在待蒸镀基板30上形成蒸镀膜层时,子蒸镀膜层50受到的应力分布都是均匀的,这样子蒸镀膜层50的性能都是相同的,从而在待蒸镀基板30形成显示面板后,提高了显示面板性能的均匀性。
本公开一些实施例中,支撑块40用于与待蒸镀基板30接触的表面为向远离底板10一侧凸起的弧面,弧面呈中心对称。
由于弧面呈中心对称,因而在蒸镀过程中,待蒸镀基板30与支撑块40接触后,待蒸镀基板30受到的应力是均匀的,从而确保了蒸镀膜层受到的应力也是均匀的,进而提高了待蒸镀基板30的性能均一性。
在支撑块40的与待蒸镀基板30接触的表面为向远离底板10一侧凸起的弧面情况下,若弧面的曲率半径太小,则支撑块40与待蒸镀基板30的接触为点接触。这样,会使待蒸镀基板30受到的应力不均匀,且待蒸镀基板30上的温度分布不均匀,从而子蒸镀膜层50的性能不均匀。在上述情况下,若弧面的曲率半径太大,则支撑块40与待蒸镀基板30接触的面积太大,因而不利于待蒸镀基板30与蒸镀载板01的分离。
本公开一些实施例中,底板10和支撑块40可以通过一体成型的方式固定连接在一起,也可以通过固定部件或其它方式等固定在一起。示例地,蒸镀载板01中的底板10和支撑块40可拆卸连接。支撑块40在待蒸镀基板30上的正投影与支撑块40对应的子蒸镀基板301的显示区域重叠,且重叠面积大于显示区域面积的1/3(实际上,可以使支撑块40与对应的子蒸镀基板301接触的面积大于对应的子蒸镀基板301显示区域面积的1/3),并小于子蒸镀基板301的总面积。因而,当待蒸镀基板30中的子蒸镀基板301的尺寸或形状发生变化时,为了提高在待蒸镀基板30上形成的蒸镀膜层的性能均一性,一般会更换蒸镀载板01。然而,蒸镀装置中的蒸镀载板01的更换过程非常复杂、耗费的时间也较长,严重了影响工业生产,因此,当待蒸 镀基板30中的子蒸镀基板301的尺寸或形状发生变化时,蒸镀载板01中的底板10和支撑块40通过可拆卸连接来更换支撑块40,而无需将整个蒸镀载板01从蒸镀装置中取出,从而节省了工序,提高了生产效率。
当蒸镀载板01中的底板10与支撑块40可拆卸连接时,以下提供两种具体的实现方式。
第一种,支撑块40的材料为磁性材料。
在蒸镀装置中,蒸镀载板01、待蒸镀基板30、掩模板以及蒸镀源依次设置进行蒸镀。在蒸镀载板01上设置磁块或磁板(Magnet)来吸附由磁性材料制成的掩模板,这样可以将待蒸镀基板30夹在掩模板与蒸镀载板01之间。而当支撑块40的材料为磁性材料时,磁块或磁板会吸附支撑块40,从而可以使支撑块40固定在底板10上。示例地,支撑块40的材料为软磁性材料。
本公开一些实施例中,在支撑块40的材料为磁性材料的情况下,当待蒸镀基板30中的子蒸镀基板301的尺寸或形状发生变化时,只需要更换相应的支撑块40即可,这样可以使底板10能够适用于不同尺寸和形状的子蒸镀基板301。
第二种,如图4A和图4B所示,支撑块40的侧面设置有与支撑块40固定连接的凸耳60;蒸镀载板还包括固定部件70,固定部件70将凸耳60与底板10固定,以将支撑块40固定在底板10上。
支撑块40的侧面指的是,支撑块40中除与底板10接触的面和用于与待蒸镀基板30接触的面以外的其它面。凸耳60和支撑块40可以是通过一体成型固定连接,也可以是通过其它连接部件连接在一起,对此不进行限定。
此处,对于固定部件70的类型不进行限定,以能将支撑块40固定在底板10上为准。示例的,固定部件70为螺栓或螺钉。
本公开一些实施例中,由于支撑块40和底板10通过固定部件70进行固定,因而当待蒸镀基板30中的子蒸镀基板301的尺寸或形状发生变化时,只需要更换相应的支撑块40即可,这样可以使底板10能够适用于不同尺寸和形状的子蒸镀基板301。
此外,由于支撑块40和底板10通过固定部件70进行固定,因而支撑块40的材料可以为磁性材料,也可以为非磁性材料。当通过设置在蒸镀载板01上的磁块或磁板吸附掩膜板而夹住待蒸镀基板30时,为了避免磁块或磁板所产生的磁场受到例如支撑块40产生磁场的影响,因而本公开一些实施例的支撑块40的材料为非磁性材料。示例的,支撑块40的材料为可以为铝(Al)、铜(Cu)、钛(Ti)等。
本公开一些实施例中,如图5所示,在每个支撑块40用于与待蒸镀基板30接触的表面为向远离底板10一侧凸起的弧面的情况下,支撑块40包括层叠设置的平坦层401和凸起部402。平坦层401相对于凸起部402靠近底板10。
本公开一些实施例中,支撑块40的平坦层401和凸起部402可以通过一体成型工艺同时形成;也可以先形成平坦层401,再在平坦层401上形成凸起部402。如图5所示,平坦层401和凸起部402是一体成型的。
本公开一些实施例中,对于平坦层401的厚度不进行限定,例如,平坦层401的厚度为0~5mm。再例如,平坦层401的厚度为1.5mm。
当支撑块40包括平坦层401和凸起部402时,本公开一些实施例的凸耳60设置于平坦层401的侧面。平坦层401的侧面指的是,平坦层中除与底板10接触的面和用于与凸起部连接的面以外的其它面。
本公开一些实施例中,在支撑块40包括平坦层401和凸起部402的情况下,一方面,有利于在平坦层401的侧面设置凸耳60;另一方面,相对于支撑块40只包括凸起部402的情况,可以使待蒸镀基板30与底板10的距离增加,避免待蒸镀基板30弯曲程度过大而与底板10接触。
当待蒸镀基板30中每个子蒸镀基板301的尺寸和形状确定时,支撑块40在底板10上设置的位置也是确定的。当支撑块40通过固定部件70固定在底板10上时,为了便于支撑块40精确定位,以准确将支撑块40固定在底板10上相应的位置,如图6所示,在底板10的边缘设置挡板80。相比于人为地确定支撑块在底板10上的位置, 挡板80在底板10上的位置与预先设定好的机械坐标重合,使得支撑块40以挡板80为基准进行排列。示例地,支撑块40先紧挨挡板80排列一周,然后再挨着已排列的支撑块进行排列其他的支撑块。如此,提高了支撑块定位的精确性。
本公开一些实施例中,如图7所示,由多个支撑块40与待蒸镀基板30接触的相应表面整体地构成的曲面为球冠面。这与图2B所示的支撑块40的结构不同,在图2B中,每一个支撑块40的弧面即大致类似于此处所述的球冠面。
球冠面是指一个球体被一个平面以不等比例地切断后,所生成的较小比例的那部分的曲面。
本公开一些实施例中,对于球冠面的曲率半径不进行限定,可以根据待蒸镀基板30在重力下的弯曲状态进行相应设计。
本公开一些实施例中,当待蒸镀基板30与蒸镀载板01接触时,待蒸镀基板30受到的力包括自身的重力、蒸镀载板01对待蒸镀基板30的支撑力(蒸镀载板01与待蒸镀基板30通过设置在蒸镀载板01上的磁块或磁板固定时,支撑力为磁力)。由于待蒸镀基板30的厚度较薄,为了避免待蒸镀基板30在这些力的作用下变形为波浪状,因而本公开一些实施例的多个支撑块40用于与待蒸镀基板30接触的表面构成的曲面为球冠面。这样,当多个支撑块40的接触于待蒸镀基板30的表面与待蒸镀基板30接触时,球冠面的弯曲状态与待蒸镀基板30和掩模板的弯曲状态最为相似,从而避免了掩模板的变形不均匀而导致形成的蒸镀膜层不均匀。此外,还能够使得待蒸镀基板30与蒸镀载板01易于分离,且可避免待蒸镀基板30与蒸镀载板01完全接触而产生的静电。
本公开一些实施例还提供一种蒸镀装置,包括上述的蒸镀载板01,如图9所示。
除蒸镀载板01外,蒸镀装置还包括蒸镀源(未示出)。待蒸镀基板30和掩模板100设置在蒸镀载板01和蒸镀源之间,且掩模板100相对待蒸镀基板30更靠近蒸镀源。掩模板100可以通过设置在蒸镀载板01上的磁块90或磁板(未示出)而被吸附,以将待蒸镀基板30夹在蒸镀载板01和掩膜板100之间。
本公开一些实施例中,如图8和图9所示,蒸镀装置还包括设置在蒸镀载板01远离待蒸镀基板30一侧的多个磁块90,磁块90吸附掩模板100,或吸附掩膜板100和支撑块。
本公开一些实施例中,由于磁块90或磁板可用于吸附掩模板100,而待蒸镀基板30位于掩模板100和蒸镀载板01之间,因而待蒸镀基板30可以通过磁块90或磁板吸附掩膜板100而被夹在蒸镀载板01和掩膜板100之间。
以上所述,仅为本公开一些实施例的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种蒸镀载板,配置为承载待蒸镀基板,所述待蒸镀基板包括多个子蒸镀基板,其中,所述蒸镀载板包括:
    底板和分离设置在所述底板上的多个支撑块,一个所述支撑块对应一个所述子蒸镀基板,每个所述支撑块在对应的所述子蒸镀基板上的正投影与对应的所述子蒸镀基板的显示区域重叠,且重叠面积大于对应的所述子蒸镀基板的显示区域面积的1/3,小于对应的所述子蒸镀基板的总面积。
  2. 根据权利要求1所述的蒸镀载板,其中,所述支撑块配置为与所述子蒸镀基板接触,且接触面积大体等于或略小于所述重叠面积。
  3. 根据权利要求1或2所述的蒸镀载板,其中,所述支撑块具有配置为与所述子蒸镀基板接触的表面,所述表面为平面。
  4. 根据权利要求1或2所述的蒸镀载板,其中,所述支撑块具有配置为与所述子蒸镀基板接触的表面,所述表面为向远离所述底板一侧凸起的弧面。
  5. 根据权利要求1或2所述的蒸镀载板,其中,多个所述支撑块具有与对应的多个所述子蒸镀基板接触的相应的表面,多个所述支撑块的表面整体地构成弧面。
  6. 根据权利要求5所述的蒸镀载板,其中,所述弧面为球冠面。
  7. 根据权利要求4至6中任一项所述的蒸镀载板,其中,所述弧面呈中心对称。
  8. 根据权利要求4至7中任一项所述的蒸镀载板,其中,每个所述支撑块包括层叠设置的平坦层和凸起部;所述平坦层相对于所述凸起部靠近所述底板。
  9. 根据权利要求1至8中任一项所述的蒸镀载板,其中,所述支撑块为磁性材料,所述蒸镀载板上设置有磁板或多个磁块,所述支撑块被所述磁板或所述多个磁块吸附。
  10. 根据权利要求1至9中任一项所述的蒸镀载板,其中,所述蒸镀载板还包括固定部件,所述支撑块的侧面设置有与所述支撑块固定连接的凸耳,所述固定部件将所述凸耳与所述底板固定,以将所述支撑块固定在所述底板上。
  11. 根据权利要求10所述的蒸镀载板,其中,所述固定部件为螺栓或螺钉。
  12. 根据权利要求8所述的蒸镀载板,其中,所述蒸镀载板还包括固定部件,所述平坦层的侧面设置有凸耳,所述固定部件将所述凸耳与所述底板固定,以将所述支撑块固定在所述底板上。
  13. 根据权利要求1至12中任一项所述的蒸镀载板,其中,所述支撑块在所述待蒸镀基板上的正投影与所述支撑块对应的所述子蒸镀基板的显示区域完全重叠。
  14. 根据权利要求10至13中任一项所述的蒸镀载板,其中,所述支撑块的材料为非磁性材料。
  15. 一种蒸镀装置,其中,包括权利要求1-14任一项所述的蒸镀载板。
  16. 根据权利要求15所述的蒸镀装置,其中,所述蒸镀装置还包括设置在所述底板远离所述支撑块一侧的磁板或多个磁块,所述磁块或所述磁板配置为吸附掩模板以将由所述蒸镀载板所承载的待蒸镀基板夹在所述蒸镀载板和所述掩模板之间。
PCT/CN2018/121006 2017-12-15 2018-12-14 蒸镀载板及蒸镀装置 WO2019114806A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711347135.5 2017-12-15
CN201711347135.5A CN107904566A (zh) 2017-12-15 2017-12-15 一种蒸镀载板及蒸镀装置

Publications (1)

Publication Number Publication Date
WO2019114806A1 true WO2019114806A1 (zh) 2019-06-20

Family

ID=61869849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121006 WO2019114806A1 (zh) 2017-12-15 2018-12-14 蒸镀载板及蒸镀装置

Country Status (2)

Country Link
CN (1) CN107904566A (zh)
WO (1) WO2019114806A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10916464B1 (en) 2019-07-26 2021-02-09 Applied Materials, Inc. Method of pre aligning carrier, wafer and carrier-wafer combination for throughput efficiency
US11189516B2 (en) 2019-05-24 2021-11-30 Applied Materials, Inc. Method for mask and substrate alignment
US11196360B2 (en) 2019-07-26 2021-12-07 Applied Materials, Inc. System and method for electrostatically chucking a substrate to a carrier
US11538706B2 (en) 2019-05-24 2022-12-27 Applied Materials, Inc. System and method for aligning a mask with a substrate
US11756816B2 (en) 2019-07-26 2023-09-12 Applied Materials, Inc. Carrier FOUP and a method of placing a carrier

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107904566A (zh) * 2017-12-15 2018-04-13 京东方科技集团股份有限公司 一种蒸镀载板及蒸镀装置
CN109457231B (zh) * 2018-11-26 2020-04-03 武汉华星光电半导体显示技术有限公司 蒸镀载板及利用该蒸镀载板对基板进行蒸镀的方法
CN115369358B (zh) * 2021-09-08 2023-12-05 广东聚华印刷显示技术有限公司 蒸镀装置以及蒸镀基板分离方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201890929U (zh) * 2010-11-16 2011-07-06 璨圆光电股份有限公司 气相沉积设备用的载盘结构
CN103981491A (zh) * 2014-04-30 2014-08-13 京东方科技集团股份有限公司 一种蒸镀装置
KR20160024090A (ko) * 2014-08-22 2016-03-04 삼성디스플레이 주식회사 증착 장치, 이를 이용한 박막 형성 방법 및 유기 발광 표시 장치 제조 방법
CN106048536A (zh) * 2016-06-06 2016-10-26 京东方科技集团股份有限公司 一种蒸镀装置及待蒸镀基板加工方法
CN106939408A (zh) * 2017-05-08 2017-07-11 武汉华星光电技术有限公司 一种蒸镀装置
CN107305857A (zh) * 2016-04-20 2017-10-31 北京北方华创微电子装备有限公司 晶片支撑组件、反应腔室及半导体加工设备
CN107904566A (zh) * 2017-12-15 2018-04-13 京东方科技集团股份有限公司 一种蒸镀载板及蒸镀装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105256283B (zh) * 2015-10-30 2017-08-11 京东方科技集团股份有限公司 一种基板固定载具、基板固定分离方法及基板蒸镀方法
CN105543784B (zh) * 2016-01-04 2017-12-05 京东方科技集团股份有限公司 一种蒸镀系统
JP2017163138A (ja) * 2016-03-08 2017-09-14 旭硝子株式会社 積層体、積層体の製造方法、単位積層体の製造方法、及びデバイス基板の製造方法
CN106782091B (zh) * 2016-12-19 2019-06-04 上海天马微电子有限公司 柔性显示面板及其制造方法、显示设备和便携式终端
CN207581924U (zh) * 2017-12-15 2018-07-06 京东方科技集团股份有限公司 一种蒸镀载板及蒸镀装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201890929U (zh) * 2010-11-16 2011-07-06 璨圆光电股份有限公司 气相沉积设备用的载盘结构
CN103981491A (zh) * 2014-04-30 2014-08-13 京东方科技集团股份有限公司 一种蒸镀装置
KR20160024090A (ko) * 2014-08-22 2016-03-04 삼성디스플레이 주식회사 증착 장치, 이를 이용한 박막 형성 방법 및 유기 발광 표시 장치 제조 방법
CN107305857A (zh) * 2016-04-20 2017-10-31 北京北方华创微电子装备有限公司 晶片支撑组件、反应腔室及半导体加工设备
CN106048536A (zh) * 2016-06-06 2016-10-26 京东方科技集团股份有限公司 一种蒸镀装置及待蒸镀基板加工方法
CN106939408A (zh) * 2017-05-08 2017-07-11 武汉华星光电技术有限公司 一种蒸镀装置
CN107904566A (zh) * 2017-12-15 2018-04-13 京东方科技集团股份有限公司 一种蒸镀载板及蒸镀装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11189516B2 (en) 2019-05-24 2021-11-30 Applied Materials, Inc. Method for mask and substrate alignment
US11538706B2 (en) 2019-05-24 2022-12-27 Applied Materials, Inc. System and method for aligning a mask with a substrate
US10916464B1 (en) 2019-07-26 2021-02-09 Applied Materials, Inc. Method of pre aligning carrier, wafer and carrier-wafer combination for throughput efficiency
US11183411B2 (en) 2019-07-26 2021-11-23 Applied Materials, Inc. Method of pre aligning carrier, wafer and carrier-wafer combination for throughput efficiency
US11196360B2 (en) 2019-07-26 2021-12-07 Applied Materials, Inc. System and method for electrostatically chucking a substrate to a carrier
US11756816B2 (en) 2019-07-26 2023-09-12 Applied Materials, Inc. Carrier FOUP and a method of placing a carrier

Also Published As

Publication number Publication date
CN107904566A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
WO2019114806A1 (zh) 蒸镀载板及蒸镀装置
JP4030350B2 (ja) 分割型静電吸着装置
TWI244354B (en) Deposition mask, manufacturing method thereof, display unit, manufacturing method thereof, and electronic apparatus including display unit
WO2017036102A1 (zh) 一种固定装置和蒸镀方法
JP2005154879A (ja) 蒸着用メタルマスク及びそれを用いた蒸着パターンの製造方法
US10629853B2 (en) Evaporation equipment
JP2017538864A (ja) 処理チャンバにおいて基板をマスキングするためのマスク構成、基板上に層を堆積させるための装置、及び、処理チャンバにおいて基板をマスキングするためのマスク構成の位置を合わせる方法
WO2020227930A1 (zh) 阵列基板及其制作方法、显示装置
TW201422829A (zh) 成膜遮罩
TW201842696A (zh) 蒸鍍掩膜板、oled面板及系統及蒸鍍監控方法
TW201317373A (zh) 蒸鍍設備以及蒸鍍方法
JP6268198B2 (ja) 基板用キャリア
TW585011B (en) Mask and method of manufacturing the same, and method of manufacturing electro-luminescence (EL) device
WO2014169524A1 (zh) 光罩掩模板的制作方法及用该方法制作的光罩掩模板
US20160359145A1 (en) Oled material vacuum thermal evaporating mask plate
JP6407479B2 (ja) 蒸着装置、蒸着方法及び有機el表示装置の製造方法
TW201607370A (zh) 基板邊緣遮罩系統、具有其之裝置與用以遮罩基板之邊緣的方法
WO2020253396A1 (zh) Oled显示基板及其制作方法、显示装置
JP2008196002A (ja) 蒸着マスクおよび蒸着マスクの製造方法
CN109536886A (zh) 一种蒸镀装置及oled面板蒸镀方法
WO2017000326A1 (zh) 一种制作柔性oled显示器件的方法
CN207581924U (zh) 一种蒸镀载板及蒸镀装置
JP2007311823A (ja) 吸着装置、搬送装置
WO2018059019A1 (zh) 坩埚、蒸镀装置及蒸镀系统
JP5704261B2 (ja) 基板移載システム及び基板移載方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888489

Country of ref document: EP

Kind code of ref document: A1