WO2019114760A1 - 成像方法、装置及系统 - Google Patents

成像方法、装置及系统 Download PDF

Info

Publication number
WO2019114760A1
WO2019114760A1 PCT/CN2018/120671 CN2018120671W WO2019114760A1 WO 2019114760 A1 WO2019114760 A1 WO 2019114760A1 CN 2018120671 W CN2018120671 W CN 2018120671W WO 2019114760 A1 WO2019114760 A1 WO 2019114760A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
lens module
sample
evaluation value
module
Prior art date
Application number
PCT/CN2018/120671
Other languages
English (en)
French (fr)
Inventor
孙瑞涛
徐家宏
李林森
周志良
姜泽飞
颜钦
Original Assignee
深圳市瀚海基因生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市瀚海基因生物科技有限公司 filed Critical 深圳市瀚海基因生物科技有限公司
Publication of WO2019114760A1 publication Critical patent/WO2019114760A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals

Definitions

  • the present invention relates to the field of optical detection, and in particular to an imaging method, apparatus and system.
  • Sequencing includes the determination of nucleic acid sequences.
  • the current sequencing platforms on the market include a generation of sequencing platforms, second-generation sequencing platforms and three generations of sequencing platforms.
  • the sequencing instrument includes a detection module that utilizes the detection module to transform and/or collect information changes produced by biochemical reactions in the sequence determination to determine the sequence.
  • the detection module generally includes an optical detection module, a current detection module, and an acid-base (pH) detection module.
  • the sequencing platform based on the principle of optical detection performs sequence determination by analyzing the changes in the optical signals in the detected sequencing biochemical reactions.
  • the optical detection system with auto-focus module is equipped with a matching focus control program, which can be directly called and controlled. It is easy to use, but often does not sell the auto-focus module separately. Buyers can buy the whole system together and have high cost.
  • embodiments of the present invention aim to at least solve one of the technical problems existing in the related art or at least provide an alternative practical solution. To this end, embodiments of the present invention are required to provide an imaging method, an optical detection system, and a control device.
  • Embodiments of the present invention provide an imaging method for an optical detection system, the optical detection system including an imaging device and a stage, the imaging device including a lens module and a focus module, the lens module Including an optical axis, the lens module is movable in an optical axis direction, and the stage is configured to carry a sample, and the method includes the following steps:
  • This method is particularly suitable for devices that include a precision optical system that is difficult to find a clear plane, such as optical inspection equipment with high magnification lenses. In this way, the cost can be reduced.
  • An optical detection system includes a control device, an imaging device, and a stage, the imaging device includes a lens module and a focus module, the lens module includes an optical axis, and the lens module can be along Moving in the direction of the optical axis, the stage is used to carry a sample, and the control device is used to perform the following steps:
  • This method is particularly suitable for devices that include a precision optical system that is difficult to find a clear plane, such as optical inspection equipment with high magnification lenses. In this way, the cost can be reduced.
  • a control device for controlling imaging is provided for an optical detection system
  • the optical detection system includes an imaging device and a stage
  • the imaging device includes a lens module and a focus module
  • the lens module The set includes an optical axis
  • the lens module is movable in an optical axis direction
  • the stage is for carrying a sample
  • the control device includes: a storage device for storing data, the data including a computer executable program; And executing the computer executable program, and executing the computer executable program includes performing the imaging method described above.
  • a computer readable storage medium for storing a program for execution by a computer, and executing the program includes performing the above method.
  • the computer readable storage medium may include read only memory, random access memory, magnetic or optical disks, and the like.
  • FIG. 1 is a schematic flow chart of an image forming method according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the positional relationship between a lens module and a sample according to an embodiment of the present invention.
  • FIG 3 is a partial structural schematic view of an optical detecting system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a connected domain of an image according to an embodiment of the present invention.
  • FIG. 5 is another schematic flow chart of an imaging method according to an embodiment of the present invention.
  • FIG. 6 is a block diagram of an optical detection system in accordance with an embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
  • connection should be understood broadly, for example, it may be a fixed connection, a detachable connection, or an integral connection;
  • the mechanical connections may also be electrical connections or may communicate with each other; they may be directly connected or indirectly connected through an intermediate medium, and may be internal communication of two elements or an interaction relationship of two elements.
  • specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the term "invariant”, for example, relating to distance, object distance, and/or relative position, etc., may be expressed as a numerical value, a numerical range, or a change in quantity, which may be absolutely constant or may be Relatively constant, the so-called relative constant is to maintain a certain range of deviation or a preset acceptable range. Unless otherwise stated, "invariant" involving distance, object distance, and/or relative position is relatively constant.
  • Sequence determination as used in the context of the present invention is the same as nucleic acid sequence determination, including DNA sequencing and/or RNA sequencing, including long fragment sequencing and/or short fragment sequencing.
  • sequence determination reaction is the same as the sequencing reaction.
  • an embodiment of the present invention provides an imaging method for an optical detection system
  • the optical detection system includes an imaging device and a stage
  • the imaging device includes a lens module and a focus module
  • the lens module Including the optical axis, the lens module is movable along the optical axis, and the stage is used to carry the sample.
  • the imaging method includes the following steps:
  • This method is particularly suitable for devices that include a precision optical system that is difficult to find a clear plane, such as optical inspection equipment with high magnification lenses. In this way, the cost can be reduced.
  • the sample 300 includes a carrying device 200 and a sample 302 to be tested located in the carrying device, and the sample 302 to be tested is a biomolecule, such as a nucleic acid, and the lens module 104.
  • the carrying device 200 has a front panel 202 and a rear panel (lower panel), each panel having two surfaces, and the sample to be tested 302 is connected to the upper surface of the lower panel, that is, the sample to be tested 302 is located below the lower surface 204 of the front panel 202.
  • the imaging device 102 is an image for collecting the sample 302 to be tested, and the sample to be tested 302 is located below the lower surface 204 of the front panel 202 of the carrier device 200, the movement of the lens module 104 at the beginning of the focusing process. It is to find the medium interface 204 where the sample 302 to be tested is located to improve the success rate of the imaging device 102 to acquire a clear image.
  • the sample 302 to be tested is a solution
  • the front panel 202 of the carrying device 200 is glass
  • the medium interface 204 of the carrying device 200 and the sample to be tested 302 is the lower surface 204 of the front panel 202 of the carrying device 200. That is, the interface between the glass and the liquid medium.
  • the sample to be tested 302 of the imaging device 102 is required to be located below the lower surface 204 of the front panel 202. At this time, the image captured by the imaging device 102 is used to discriminate the clear surface for finding the sample 302 to be tested clearly. Can be called focus.
  • the front panel 202 of the sample 302 to be tested has a thickness of 0.175 mm.
  • the carrier device 200 can be a slide, the sample 302 to be tested is placed on the slide, or the sample 302 to be tested is sandwiched between the two slides.
  • the carrier device 200 can be a reaction device, for example, a sandwich-like chip carrying a panel above and below, and the sample 302 to be tested is disposed on the chip.
  • the imaging device 102 includes a microscope 107 and a camera 108.
  • the lens module 104 includes an objective lens 110 of the microscope and a lens module 112 of the camera 108.
  • the focus module 106 can pass the dichroic color separation.
  • the dichroic beam splitter is fixed to the lens module 112 of the camera 108, and the dichroic beam splitter 114 is located between the lens module 112 of the camera 108 and the objective lens 110.
  • the dichroic beam splitter 114 includes a dual c-mount splitter.
  • the dichroic beam splitter 114 can reflect the light emitted by the focusing module 106 to the objective lens 110 and can pass visible light through the lens module 112 of the camera 108 into the camera 108, as shown in FIG.
  • the movement of the lens module 104 may refer to the movement of the objective lens 110, and the position of the lens module 104 may refer to the position of the objective lens 110. In other embodiments, other lenses of the lens module 104 can be selected to achieve focus.
  • the microscope 107 further includes a barrel lens 111 between the objective lens 110 and the camera 108.
  • the stage can move the sample 200 in a plane perpendicular to the optical axis OP (eg, the Z-axis) of the lens module 104 (eg, the XY plane), and/or can drive the sample 300 along the lens mold.
  • the optical axis OP of the group 104 is moved in the direction of the OP (such as the Z axis).
  • the plane that the stage drives the sample 300 to move is not perpendicular to the optical axis OP, ie, the plane of motion of the sample is at an angle other than zero to the XY plane, and the imaging method is still applicable.
  • the imaging device 102 can also drive the objective lens 110 to move in the direction of the optical axis OP of the lens module 104 to perform focusing.
  • the imaging device 102 drives the objective lens 110 to move using a drive such as a stepper motor or a voice coil motor.
  • the positions of the objective lens 110, the stage, and the sample 300 may be set on the negative axis of the Z axis, and the first set position may be the Z axis.
  • the coordinate position on the negative axis It can be understood that, in other embodiments, the relationship between the coordinate system and the camera and the objective lens 110 may be adjusted according to actual conditions, and is not specifically limited herein.
  • the first set step size S1 is more suitable, because S1 is too large to cross an acceptable focus range, and S1 is too small to increase the time overhead.
  • the lens module 104 is caused to continue moving toward the sample 300 at the first set step.
  • the optical detection system can be applied to a sequencing system, or the sequencing system includes an optical detection system.
  • the first range includes a relative first interval and a second interval, the second interval is closer to the sample, and the step (e) includes:
  • the movement of the lens module can be controlled according to the specific position of the second set position, and the desired image can be quickly collected.
  • the current position may be used as the origin oPos and the coordinate axis Z1 may be established along the optical axis direction of the lens module, the first interval is a positive interval, and the second interval is a negative interval.
  • the range of positive and negative intervals is ⁇ rLen, that is, the first range is [oPos+rLen, oPos-rLen].
  • the second set position is in the negative interval and the second set position is (oPos - 3 * r0).
  • R0 represents the second set step size.
  • the imaging device starts image acquisition at (oPos–3*r0) and moves away from the sample.
  • the coordinate axis Z1 established in the above example coincides with the Z axis of FIG. 2, and the first range is located in the negative interval of the Z axis. This simplifies the control of the imaging method. For example, it is only necessary to know the positional relationship between the origin of the Z-axis and the origin oPos, and the correspondence between the position of the lens module on the coordinate axis Z1 and the position of the Z-axis can be known.
  • the step (f) includes: comparing the image evaluation result with the preset condition, and if the image evaluation result satisfies the preset condition, saving the position of the lens module corresponding to the image; if the image evaluation result does not satisfy the preset The condition is that the lens module is moved to a third set position, and the third set position is located in another interval of the first range different from the interval where the second set position is located, that is, the reverse photographing focus is activated.
  • the image evaluation results do not satisfy the preset condition; moving the lens module to the third set position is equivalent to moving the lens module to the step to be performed ( The starting position of the part (ii) of e), and then the reverse photo focusing, that is, the part (ii) of the step (e).
  • searching for the in-focus position of the image in the first range effectively improves the efficiency of the imaging method.
  • the second set position is located in the negative interval (oPos ⁇ 3*r0), the lens module moves upward from the second set position, and the imaging device performs image acquisition at each step position, if If the image evaluation result does not satisfy the preset condition, the lens module is moved to a third set position located in the positive interval, for example, the third set position is (oPos+3*r0), and then the imaging device is from (oPos+3) *r0) starts image acquisition and moves toward the sample, and achieves focus based on the obtained image evaluation results.
  • the image evaluation result satisfies the preset condition
  • the current position of the lens module 104 corresponding to the image is saved as the storage position, so that the imaging device 102 can output a clear image when the sequence measurement reaction is taken.
  • the image evaluation result includes a first evaluation value and a second evaluation value
  • the second setting step includes a coarse step and a fine step
  • the step (f) includes: the lens module moves in a coarse step
  • the first evaluation value of the image to the corresponding position is not greater than the first threshold
  • the second evaluation value of the image in which the lens module continues to move to the corresponding position in the fine step length is the largest
  • the second evaluation value is saved when the second evaluation value is maximum
  • the position of the lens module corresponding to the image In this way, the coarse step length allows the lens module to quickly approach the focus position, and the fine step length ensures that the lens module can reach the focus position.
  • the position of the lens module corresponding to the image of the largest second evaluation value can be saved as the in-focus position.
  • the sample is provided with an optically detectable label, such as a fluorescent label, and the fluorescent molecule can be excited to emit fluorescence under laser irradiation of a specific wavelength, and the image captured by the imaging device includes possible fluorescent molecules.
  • the spot/bright spot corresponding to the location It can be understood that when the lens module is in the focus position, the size of the bright spot corresponding to the position of the fluorescent molecule is smaller and the brightness is higher in the acquired image; when the lens module is in the non-focus position, Among the acquired images, the bright spots corresponding to the positions where the fluorescent molecules are located are larger in size and lower in brightness.
  • the image is evaluated using the size of the spot on the image and the intensity of the spot.
  • the first evaluation value is utilized to reflect the spot size of the image; in one example, the first evaluation value is determined by the size of the connected domain of the bright spot on the statistical image, defining a connected pixel that is larger than the average pixel value of the image. The point is a connected domain.
  • the first evaluation value may be determined, for example, by calculating a size of a corresponding connected domain of each bright spot, and an average value of the connected domain size of the bright spot represents a characteristic of the image as a first evaluation value of the image; and, for example, The size of the connected domain corresponding to each bright spot can be sorted from small to large, and the connected domain size of 50, 60, 70, 80 or 90 points is taken as the first evaluation value of the image.
  • A represents the connected domain size of the row centered on the center of the matrix corresponding to the bright spot
  • B represents the corresponding color spot corresponding to the bright spot.
  • the matrix corresponding to the definition of the bright spot is a matrix k1*k2 composed of an odd row and an odd column, and contains k1*k2 pixels.
  • the image is binarized, the image is converted to a digital matrix, and the connected domain size is calculated. For example, with the average pixel value of the image as a reference, a pixel dot not smaller than the average pixel value is recorded as 1, and a pixel dot smaller than the average pixel value is marked as 0, as shown in FIG. In FIG. 4, the bolded increase indicates the center of the matrix corresponding to the bright spot, and the thick line frame indicates the 3*3 matrix.
  • the so-called first threshold can be set based on empirical or a priori data.
  • the first evaluation value reflects the size of the spot on the image, and the inventors observed that in the process from near the clear face to away from the clear face, the connected domain Area becomes smaller and then becomes larger, and the inventor finds the clarity based on multiple times.
  • the first threshold is determined by the magnitude and variation of the Area during the focusing process.
  • the first threshold is set to 260. It should be noted that the first threshold may be associated with the coarse step size and the fine step size setting: the first threshold value may be such that it does not cross a coarse step to cross the clear surface of the imaging device when imaging the sample.
  • the second evaluation value or the third evaluation value can be determined.
  • the Score values of all the bright spots of the image may be arranged in ascending order.
  • the second evaluation value may take a Score value of 50, 60, 70, 80 or 90 quantiles, thus, the exclusion may be excluded.
  • the number of bright spots is less than the preset number, for example, the number of bright spots is less than the preset number, so that the number of bright spots is less and not statistically significant, then the bright spot with the largest Score value is taken to represent the image, that is, one hundred percent is taken.
  • the number of positions Score is the third evaluation value.
  • the image evaluation result includes a first evaluation value, a second evaluation value, and a third evaluation value
  • the image includes a plurality of pixels
  • the preset condition is that the number of bright spots on the image is greater than a preset value, correspondingly The first evaluation value of the image of the location is not greater than the first threshold, and the second evaluation value of the image of the corresponding location is the largest among the second evaluation values of the N images before and after the image of the corresponding location; or the preset condition is The number of bright spots on the image is less than a preset value, the first evaluation value of the image of the corresponding position is not greater than the first threshold, and the third evaluation value of the image of the corresponding position is the third of the N images before and after the current image.
  • the evaluation value is the largest. In this way, different evaluation values are used to evaluate the number of bright spots of the image, so that the focusing of the imaging method is more accurate.
  • the first evaluation value may be a connected domain size corresponding to a bright spot of the image in the above embodiment.
  • the second evaluation value and the third evaluation value are different examples, and different Score quantiles taken according to whether the number of bright spots has or are not statistically significant, for example, Score values corresponding to non-one percent digits and one The Score value of the percentile.
  • spot on the acquired image may be from one or several optically detectable label molecules carried by the sample to be tested, or may be derived from other interference.
  • the bright spots are detected to detect spots corresponding to/from the labeled molecules, for example, the bright spots can be detected using a k1*k2 matrix. Specifically, the following method is used to detect bright spots on the image:
  • Brightness detection is performed on the image by using the k1*k2 matrix, including a matrix in which the center pixel value of the decision matrix is not less than any pixel value of the matrix non-center, and k1 and k2 are odd numbers greater than 1, and the k1*k2 matrix includes K1*k2 pixels.
  • the method is based on the difference in brightness/intensity and background brightness/intensity of the signal produced by fluorescence, enabling simple and rapid detection of information from the labeled molecule signal.
  • the center pixel value of the matrix is greater than the first predetermined value, and any pixel value of the matrix non-center is greater than the second pixel value.
  • the first preset value and the second preset value may be set according to experience or a certain amount of pixel/intensity data of a normal bright spot of a normal image, and the so-called “normal image” and “normal bright spot” may be optical detection.
  • the image obtained by the system at the clear surface position is normal to the naked eye, such as the image looks clear, the background is clean, and the brightness and brightness of each bright spot are relatively uniform.
  • the first preset value and the second preset value are related to an average pixel value of the image. For example, the first preset value is set to 1.4 times the average pixel value of the image, and the second preset value is 1.1 times the average pixel value of the image, which can eliminate interference and obtain the spot detection result from the mark.
  • the image is a color image
  • one pixel of the color image has three pixel values
  • the color image can be converted into a gray image, and then image detection is performed to reduce the calculation amount and complexity of the image detection process. degree.
  • the non-gradation image may be selected to be converted into a grayscale image using, but not limited to, a floating point algorithm, an integer method, a shift method, or an average value method.
  • the color image can also be directly detected.
  • the size comparison of the pixel values mentioned above can be regarded as a three-dimensional value or a comparison of the size of an array of three elements, and the relative sizes of the plurality of multi-dimensional values can be customized according to experience and needs, for example. When any two-dimensional value in the three-dimensional value a is larger than the value of the corresponding dimension of the three-dimensional value b, the three-dimensional value a is considered to be larger than the three-dimensional value b.
  • the image is a grayscale image
  • the pixel values of the grayscale image are the same as the grayscale values. Therefore, the average pixel value of the image is the average gray value of the image.
  • the third evaluation value of the image of the corresponding position is counted, and the position of the image with the largest evaluation value is found as the clear surface position, and There are two positions before and after the position that the second evaluation value of the corresponding image is greater than zero.
  • the lens module is moved in a direction perpendicular to the optical axis to the next image acquisition area of the sample for focusing. In this way, refocusing can be performed from other image acquisition areas of the sample to avoid focusing on the current area of the sample that cannot be focused, saving time.
  • the imaging method further includes prompting the focus to fail when the number of image acquisition regions of the unsuccessful sample is greater than a preset number.
  • a preset number is three, that is, when the number of image acquisition areas of the sample whose focus is unsuccessful is greater than 3, the focus is failed. The way to indicate that the focus fails can be prompted by displaying images, text, and playing sounds.
  • the imaging method further includes: determining whether the position of the lens module exceeds the first range, and exiting the focus when the position of the lens module exceeds the first range. In this way, when the position of the lens module exceeds the first range, the focus is turned off, and the focusing time is too long and the power consumption is increased.
  • the first range is [oPos+rLen, oPos-rLen].
  • the lens module 104 when the lens module 104 moves, it is determined whether the current position of the lens module 104 exceeds the fourth set position; when the current position of the lens module 104 exceeds the fourth set position, the moving lens is stopped. Module 104.
  • the first set position and the fourth set position can limit the moving range of the lens module 104, so that the lens module 104 can stop moving when the focus cannot be successfully performed, thereby avoiding waste of resources or damage of the device, or The lens module 104 refocuses when the focus cannot be successfully achieved, thereby improving the automation of the imaging method.
  • the settings are adjusted such that the range of motion of the lens module 104 is as small as possible to meet the implementation of the solution.
  • the range of movement of the lens module 104 can be set to 200 ⁇ m ⁇ 10 ⁇ m or [190 ⁇ m, 250 ⁇ m] according to optical path characteristics and experience.
  • another set position may be determined depending on the determined range of movement and the setting of any of the fourth set position and the first set position.
  • the fourth set position is set to be the lowest position of the upper surface 205 of the front panel 202 of the reaction device 200 to the next depth of field, and the movement range of the lens module 104 is set to 250 ⁇ m.
  • the setting position is confirmed.
  • the coordinate position corresponding to the position of the next depth of field is a position that becomes smaller in the negative direction of the Z axis.
  • the movement range is a section on the negative axis of the Z-axis.
  • the first set position is nearlimit
  • the fourth set position is farlimit
  • the range of movement defined between nearlimit and farlimit is 350um. Therefore, when the coordinate position corresponding to the current position of the lens module 104 is smaller than the coordinate position corresponding to the fourth set position, it is determined that the current position of the lens module 104 exceeds the fourth set position.
  • the position of farlimit is the position of the next depth L of the lowermost surface 205 of the front panel 202 of the reaction apparatus 200.
  • the depth of field L is the depth of field of the lens module 104.
  • the coordinate positions corresponding to the first set position and/or the fourth set position may be specifically set according to actual conditions, and are not specifically limited herein.
  • the focus module 106 includes a light source 116 for emitting light onto the sample 300 and a light sensor 118 for receiving light reflected by the sample 300. In this way, the illumination of the focus module 106 and the reception of light can be achieved.
  • the light source 116 can be an infrared light source 116, and the light sensor 118 can be a photo diode.
  • the infrared light emitted by the light source 116 enters the objective lens 110 through the reflection of the dichroic beam splitter and is projected through the objective lens 110 to the sample 300.
  • the sample 300 can reflect infrared light projected through the objective lens 110.
  • the sample 300 includes the carrier device 200 and the sample 302 to be tested, the light reflected by the received sample 300 is light reflected by the lower surface 204 of the front panel of the carrier device 200.
  • the distance between the objective lens 110 and the sample 300 is in an optical imaging suitable range, and can be used for imaging of the imaging device 102. In one example, the distance is 20-40um.
  • the lens module 104 is moved at a second set step size smaller than the first set step, so that the optical detecting system can find the optimal imaging position of the lens module 104 in a smaller range.
  • the imaging method further includes the step of: g, causing the lens module 104 to be smaller than the first set step and greater than the first
  • the third set step size of the second step is moved to the sample 300, and the first light intensity parameter is calculated according to the light intensity of the light received by the focus module 106, and it is determined whether the first light intensity parameter is greater than the first setting.
  • Light intensity threshold when the first light intensity parameter is greater than the first set light intensity threshold, step (d) is performed. In this way, by comparing the first light intensity parameter with the first set light intensity threshold, interference of focusing/focusing of the light signal that is very weak compared with the reflected light of the medium interface can be excluded.
  • the lens module 104 is caused to continue moving toward the sample 300 at the third set step.
  • the focus module 106 includes two light sensors 118 for receiving light reflected by the sample 300, the first light intensity parameter being the light intensity of the light received by the two light sensors 118. average of.
  • the first light intensity parameter is calculated by the average of the light intensities of the light received by the two light sensors 118 such that the weak light signal is excluded from the more accurate.
  • the first set light intensity threshold nSum 40.
  • the third set step size S2 0.005 mm. It can be understood that, in other examples, the third set step size may also adopt other values, which are not specifically limited herein.
  • the imaging method further includes the steps of: determining the relative position of the lens module 104 and the sample 300 when the lens module 104 is in the in-focus position; and controlling the lens module 104 when the sample 300 is moved by the stage. The movement to keep the relative position unchanged. In this way, when the imaging device 102 captures images in different areas of the sample 300, the captured image is kept clear and the focus is achieved.
  • the sample 300 may be tilted. Therefore, when the sample 300 is moved by the stage, the distance between the different areas of the surface of the sample 300 and the lens module 104 may be A change has occurred. Therefore, when the sample 300 is moved relative to the optical axis OP of the lens module 104, the imaging position of the imaging device 102 by the imaging device 102 is maintained at the clear surface position. This process is called chasing.
  • the sample 300 is moved by the stage, including the sample 300 moving along the X1 axis parallel to the X axis, and the sample 300 moving along the Y1 axis parallel to the Y axis, and the sample 300 moving along the plane X1Y1 defined by the X1 axis and the Y1 axis, and The sample 300 moves along the tilted X axis, and the sample 300 moves along the tilted Y axis, and the sample 300 moves along a plane XY defined oblique to the X and Y axes.
  • the sample 300 when the sample 300 is moved by the stage, it is determined whether the current position of the lens module 104 exceeds the fifth set position; when the current position of the lens module 104 exceeds the fifth set position, the load is utilized.
  • the table drives the sample 300 to move and refocus; when the number of movements reaches the set number of times and the current position of the lens module 104 still exceeds the fifth set position, it is determined that the focus recovery has failed. In this way, the limitation of the fifth set position and the number of movements enables the lens module 104 to refocus when the focus recovery fails.
  • the fifth set position may be nPos
  • the coordinate position corresponding to nPos is on the negative axis of the Z axis
  • the coordinate position corresponding to nPos is greater than the coordinate position corresponding to the fourth set position farlimit.
  • the focus is re-adjusted to adjust the position of the lens module 104 to attempt to successfully focus.
  • the focus is re-adjusted to adjust the position of the lens module 104 to attempt to successfully focus.
  • the focus recovery is determined, the pause is resumed, and the focus is sought again. Clear face.
  • the coordinate position corresponding to the fifth set position is an empirical value. When the value is smaller than this value, the image captured by the imaging device 102 is blurred and the focus chasing failure is large.
  • the set number is an empirical value, which can be set according to the actual situation.
  • the relative position when the current position of the lens module 104 does not exceed the fifth set position, the relative position is determined to be unchanged.
  • the relative positions include relative distances and relative directions. Further, to simplify the operation, the relative position may refer to the relative distance, and the relative position does not mean that the object distance of the imaging system of the imaging device 102 is constant, so that different regions of the sample 300 can be clearly imaged by the imaging device 102.
  • an optical detection system includes a control device 101, an imaging device 102, and a loading platform 103.
  • the imaging device 102 includes a lens module 104 and a focusing module 106.
  • the lens module 104 includes an optical axis. OP, the lens module 104 can move in the direction of the optical axis OP, the stage 103 is used to carry the sample 300, and the control device 101 is configured to perform the following steps: (a) using the focusing module 106 to emit light to the stage 103.
  • the lens module 104 moves to the first set position; (c) moving the lens module 104 from the first set position to the sample 300 at the first set step and determining the focus module 106 whether the light reflected by the sample 300 is received; (d) when the focus module 106 receives the light reflected by the sample 300, the lens module 104 is moved from the current position to the second set position, and the second set position is located at the Within a range, the first range is a range including the current position that allows the lens module 104 to move in the direction of the optical axis OP; (e) the lens module 104 is moved from the second set position by a second set step Image acquisition by sample imaging device 102 at each step location, The second set step size is smaller than the first set step size; (f) the collected image is evaluated, and the focus is achieved according to the obtained image evaluation result.
  • control device 101 includes a device having data processing and control capabilities, such as a personal computer, an embedded system, a cell phone, a tablet, a laptop, and the like.
  • the first range includes a relative first interval and a second interval, the second interval is closer to the sample, and the step (e) includes:
  • the step (f) includes: comparing the image evaluation result with the preset condition, and if the image evaluation result satisfies the preset condition, saving the position of the lens module corresponding to the image;
  • the lens module is moved to the third set position, and the third set position is located in another interval in the first range that is different from the interval in which the second set position is located.
  • the image evaluation result includes a first evaluation value and a second evaluation value
  • the second setting step includes a coarse step and a fine step
  • the step (f) includes: the lens module moves in a coarse step
  • the first evaluation value of the image to the corresponding position is not greater than the first threshold
  • the second evaluation value of the image in which the lens module continues to move to the corresponding position in the fine step length is the largest
  • the second evaluation value is saved when the second evaluation value is maximum The position of the lens module corresponding to the image.
  • the image evaluation result includes a first evaluation value, a second evaluation value, and a third evaluation value, the image including a plurality of pixels;
  • the preset condition is that the number of bright spots on the image is greater than a preset value, the first evaluation value of the image of the corresponding position is not greater than the first threshold, and the second evaluation value of the image of the corresponding position is before and after the image of the corresponding position
  • the second evaluation value of the N images is the largest; or, the preset condition is that the number of bright spots on the image is less than a preset value, and the first evaluation value of the image of the corresponding position is not greater than the first threshold, and the corresponding position
  • the third evaluation value of the image is the largest among the third evaluation values of the N images before and after the current image.
  • the system includes a bright spot detection module, and the bright spot detection module is configured to:
  • Brightness detection is performed on the image by using the k1*k2 matrix, including a matrix in which the center pixel value of the decision matrix is not less than any pixel value of the matrix non-center, and k1 and k2 are odd numbers greater than 1, and the k1*k2 matrix includes K1*k2 pixels.
  • the center pixel value of the matrix is greater than the first predetermined value, and any pixel value of the matrix non-center is greater than the second predetermined value.
  • the first preset value and the second preset value are related to an average pixel value of the image.
  • the focus module 106 includes a light source 116 for emitting light onto the sample 300 and a light sensor 118 for receiving light reflected by the sample 300.
  • control device 101 can control the light source 116 to emit light and control the light sensor 118 to receive light.
  • control device 101 when the focus module 106 receives the light reflected by the sample 300, the control device 101 is further configured to:
  • the lens module 104 is moved to the sample 300 in a third set step size that is smaller than the first set step and larger than the second set step, and the first light is calculated according to the light intensity of the light received by the focus module 106.
  • a light intensity parameter determining whether the first light intensity parameter is greater than a first set light intensity threshold;
  • the lens module 104 When the first light intensity parameter is greater than the first set light intensity threshold, the lens module 104 is moved from the current position to the second set position.
  • the focus module 106 includes two light sensors 118 for receiving light reflected by the sample 300, the first light intensity parameter being the light intensity of the light received by the two light sensors 118. average of.
  • control device 101 when the lens module 104 is moved, the control device 101 is configured to: determine whether the current position of the lens module 104 exceeds a fourth set position;
  • control device 101 is further configured to determine a relative position of the lens module 104 and the sample 300 when the lens module 104 is in the in-focus position;
  • the movement of the lens module 104 is controlled to maintain the relative position.
  • control device 101 when the loading of the sample 300 by the loading platform 103 is performed, the control device 101 is configured to: determine whether the current position of the lens module 104 exceeds a fifth set position;
  • the sample 300 is driven by the stage 103 to move and refocus;
  • a control device 101 for controlling imaging is provided for an optical detection system.
  • the optical detection system includes an imaging device 102 and a stage 103.
  • the imaging device 102 includes a lens module 104 and a focus mode.
  • the group 106, the lens module 104 includes an optical axis OP, the lens module 104 is movable in the optical axis OP direction, the stage 103 is used to carry the sample 300, and the control device 101 includes: a storage device 120 for storing data, and the data includes a computer An executable program; a processor 122 for executing a computer executable program, the method of executing the computer executable program comprising performing the method of any of the above embodiments.
  • a computer readable storage medium for storing a program for execution by a computer, the program comprising the method of any of the above embodiments.
  • the computer readable storage medium may include read only memory, random access memory, magnetic or optical disks, and the like.
  • a "computer-readable storage medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with such an instruction execution system, apparatus, or device.
  • computer readable storage media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM) , read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable storage medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if necessary, other Processing is performed in a suitable manner to obtain the program electronically and then stored in computer memory.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.

Abstract

一种成像方法,其包括以下步骤:(a)利用对焦模组发射光至置于载台上的样品上;(b)使镜头模组移动到第一设定位置;(c)使镜头模组从第一设定位置以第一设定步长向样品移动并判断对焦模组是否接收到样品反射的光;(d)在对焦模组接收到样品反射的光时,将镜头模组从当前位置移动到第二设定位置,第二设定位置位于第一范围内,第一范围是包括当前位置的、允许镜头模组沿光轴方向移动的一个范围;(e)使镜头模组从第二设定位置以第二设定步长移动,在每步位置利用成像装置对样品进行图像采集,第二设定步长小于第一设定步长;(f)对采集到的图像进行评估,依据获得的图像评估结果,实现对焦。该成像方法能形成清晰的图像。

Description

成像方法、装置及系统 技术领域
本发明涉及光学检测领域,尤其涉及一种成像方法、装置及系统。
背景技术
序列测定,即测序,包括核酸序列的测定。目前市面上的测序平台包括一代测序平台、二代测序平台和三代测序平台。从功能控制角度,测序仪器包括探测模块,利用探测模块转化和/或收集序列测定中生化反应产生的信息变化,以测定序列。探测模块一般包括光学检测模块、电流检测模块和酸碱(pH)检测模块。基于光学检测原理的测序平台通过分析采集检测到的测序生化反应中的光信号变化来进行序列测定。
目前市售的带自动对焦模块的光学检测系统,带配套的对焦控制程序,可直接调用控制,使用方便,但往往不单独出售自动对焦模块,买家得整套系统一起买、高成本。
发明内容
本发明实施方式旨在至少解决相关技术中存在的技术问题之一或者至少提供一种可选择的实用方案。为此,本发明实施方式需要提供一种成像方法、光学检测系统和控制装置。
本发明实施方式提供一种成像方法,所述成像方法用于光学检测系统,所述光学检测系统包括成像装置和载台,所述成像装置包括镜头模组和对焦模组,所述镜头模组包括光轴,所述镜头模组能够沿光轴方向运动,所述载台用于承载样品,所述方法包括以下步骤:
(a)利用所述对焦模组发射光至置于所述载台上的所述样品上;(b)使所述镜头模组移动到第一设定位置;(c)使所述镜头模组从所述第一设定位置以第一设定步长向所述样品移动并判断所述对焦模组是否接收到所述样品反射的光;(d)在所述对焦模组接收到所述样品反射的光时,将所述镜头模组从当前位置移动到第二设定位置,所述第二设定位置位于第一范围内,所述第一范围是包括所述当前位置的、允许所述镜头模组沿光轴方向移动的一个范围;(e)使所述镜头模组从所述第二设定位置以第二设定步长移动,在每步位置利用所述成像装置对所述样品进行图像采集,所述第二设定步长小于所述第一设定步长;(f)对采集到的图像进行评估,依据获得的图像评估结果,实现对焦。
利用上述成像方法,能够快速准确地找到目标物体清晰成像的平面,即清晰平面/清晰面。该方法特别适用于不易找到清晰平面的包含精密光学系统的设备,例如带有高倍数镜头的光学检测设备。如此,可降低成本。
本发明实施方式的一种光学检测系统,包括控制装置、成像装置和载台,所述成像装置包括镜头模组和对焦模组,所述镜头模组包括光轴,所述镜头模组能够沿光轴方向运动,所述载台用于承载样品,所述控制装置用于执行以下步骤:
(a)利用所述对焦模组发射光至置于所述载台上的所述样品上;(b)使所述 镜头模组移动到第一设定位置;(c)使所述镜头模组从所述第一设定位置以第一设定步长向所述样品移动并判断所述对焦模组是否接收到所述样品反射的光;(d)在所述对焦模组接收到所述样品反射的光时,将所述镜头模组从当前位置移动到第二设定位置,所述第二设定位置位于第一范围内,所述第一范围是包括所述当前位置的、允许所述镜头模组沿光轴方向移动的一个范围;(e)使所述镜头模组从所述第二设定位置以第二设定步长移动,在每步位置利用所述成像装置对所述样品进行图像采集,所述第二设定步长小于所述第一设定步长;(f)对采集到的图像进行评估,依据获得的图像评估结果,实现对焦。
利用上述光学检测系统,能够快速准确地找到目标物体清晰成像的平面,即清晰平面/清晰面。该方法特别适用于不易找到清晰平面的包含精密光学系统的设备,例如带有高倍数镜头的光学检测设备。如此,可降低成本。
本发明实施方式的一种对成像进行控制的控制装置,用于光学检测系统,所述光学检测系统包括成像装置和载台,所述成像装置包括镜头模组和对焦模组,所述镜头模组包括光轴,所述镜头模组能够沿光轴方向运动,所述载台用于承载样品,所述控制装置包括:存储装置,用于存储数据,所述数据包括计算机可执行程序;处理器,用于执行所述计算机可执行程序,执行所述计算机可执行程序包括完成上述的成像方法。
本发明实施方式的一种计算机可读存储介质,用于存储供计算机执行的程序,执行所述程序包括完成上述的方法。计算机可读存储介质可以包括:只读存储器、随机存储器、磁盘或光盘等。
本发明实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明实施方式的实践了解到。
附图说明
本发明实施方式的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的成像方法的流程示意图。
图2是本发明实施方式的镜头模组与样品的位置关系示意图。
图3是本发明实施方式的光学检测系统的部分结构示意图。
图4是本发明实施方式的图像的连通域的示意图。
图5是本发明实施方式的成像方法的另一流程示意图。
图6是本发明实施方式的光学检测系统的模块示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而 不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设定进行描述。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设定之间的关系。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,所称的“不变”,例如涉及距离、物距和/或相对位置等的可以表现为数值、数值范围或量上的变化,可以是绝对不变,也可以是相对不变,所称的相对不变为保持在一定偏差范围或者预设的可接受范围。如无另外说明,涉及距离、物距和/或相对位置的“不变”为相对不变。
本发明实施方式所称的“序列测定”同核酸序列测定,包括DNA测序和/或RNA测序,包括长片段测序和/或短片段测序。所称的“序列测定反应”同测序反应。
请参图1-图3,本发明实施方式提供一种成像方法,成像方法用于光学检测系统,光学检测系统包括成像装置和载台,成像装置包括镜头模组和对焦模组,镜头模组包括光轴,镜头模组能够沿光轴方向运动,载台用于承载样品,成像方法包括以下步骤:
(a)利用对焦模组发射光至置于载台上的样品上;(b)使镜头模组移动到第一设定位置;(c)使镜头模组从第一设定位置以第一设定步长向样品移动并判断对焦模组是否接收到样品反射的光;
(d)在对焦模组接收到样品反射的光时,将镜头模组从当前位置移动到第二设定位置,第二设定位置位于第一范围内,第一范围是包括当前位置的、允许镜头模组沿光轴方向移动的一个范围;
(e)使镜头模组从第二设定位置以第二设定步长移动,在每步位置利用成像装置对样品进行图像采集,第二设定步长小于第一设定步长;
(f)对采集到的图像进行评估,依据获得的图像评估结果,实现对焦。
利用上述成像方法,能够快速准确地找到目标物体清晰成像的平面,即清晰平面/清晰面。该方法特别适用于不易找到清晰平面的包含精密光学系统的设备,例如带有高倍数镜头的光学检测设备。如此,可降低成本。
具体地,请参图2和图3,在本发明实施方式中,样品300包括承载装置200和位于承载装置的待测样品302,待测样品302为生物分子,如核酸等,镜头模组104位于承载装置200的上方。承载装置200具有前面板202和后面板(下面板),各面板均具有两个表面,待测样品302连接在下面板的上表面上,即待测样品302位于前面板202的下表面204下方。在本发明实施方式中,由于成像装置102为采集待测样品302的图像,而待测样品302位于承载装置200的前面板202下表面204下方,在对焦过程开始时,镜头模组104的移动是为了找到待测样品302所在的介质分界面204,以提高成像装置102的采集清晰图像的成功率。在本发明实施方式中,待测样品302为溶液,承载装置200的前面板202为玻璃,承载装置200与待测样品302的介质分界面204为承载装置200的前面板202的下表面204,即玻璃与液体两种介质的分界面。成像装置102所需采集图像的待测样品302位于在前面板202的下表面204之下,此时再通过成像装置102所采集的图像来判别寻找待测样品302清晰成像的清晰面,此过程可称为对焦。在一个例子中,待测样品302的前面板202的厚度为0.175mm。
在某些实施方式中,承载装置200可为玻片,待测样品302置于玻片上,或者待测样品302夹设于两片玻片中。在某些实施方式中,承载装置200可为反应装置,例如,上下有承载面板的类似于三明治结构的芯片,待测样品302设置于芯片上。
在某些实施方式中,请参图3,成像装置102包括显微镜107和相机108,镜头模组104包括显微镜的物镜110和相机108的镜头模组112,对焦模组106可通过二向色分束器114(dichroic beam splitter)与相机108的镜头模组112固定在一起,二向色分束器114位于相机108的镜头模组112与物镜110之间。二向色分束器114包括双C型分束器(dual c-mount splitter)。二向色分束器114可反射对焦模组106发射的光至物镜110并能够让可见光穿透并经相机108的镜头模组112进入相机108内,如图3所示。
在本发明实施方式中,镜头模组104的移动可指物镜110的移动,镜头模组104的位置可指物镜110的位置。在其它实施方式中,可选择移动镜头模组104的其它透镜来实现对焦。另外,显微镜107还包括位于物镜110和相机108之间的镜筒透镜111(tube lens)。
在某些实施方式中,载台能够带动样品200在垂直于镜头模组104的光轴OP(如Z轴)方向的平面内移动(如XY平面),和/或能够带动样品300沿镜头模组104的光轴OP(如Z轴)方向移动。
在某些实施方式中,载台带动样品300移动的平面非垂直于光轴OP,即样品的运动平面与XY平面夹角非0,该成像方法仍旧适用。
另外,成像装置102也能够驱动物镜110沿镜头模组104的光轴OP方向移动 以进行对焦。在一些例子中,成像装置102利用步进马达或音圈马达等驱动件来驱动物镜110移动。
在某些实施方式中,在建立坐标系时,如图2所示,可将物镜110、载台和样品300的位置设置在Z轴的负轴上,第一设定位置可为Z轴的负轴上的坐标位置。可以理解,在其它实施方式中,也可根据实际情况对坐标系与相机和物镜110的关系进行调整,在此不做具体限定。
在一个例子中,成像装置102包括全内反射荧光显微镜,物镜110为60倍放大,第一设定步长S1=0.01mm。如此,第一设定步长S1较合适,因S1太大会跨过可接受的对焦范围,S1太小会增加时间开销。
在对焦模组106没有接收到样品300反射的光时,则使镜头模组104以第一设定步长向样品300继续移动。
在某些实施方式中,光学检测系统可应用于序列测定系统,或者说,序列测定系统包括光学检测系统。
在某些实施方式中,以当前位置为基准,第一范围包括相对的第一区间和第二区间,定义第二区间更靠近样品,步骤(e)包括:
(i)当第二设定位置位于第二区间时,将镜头模组从第二设定位置向远离样品的方向移动,在每步位置利用成像装置对样品进行图像采集;
或者,
(ii)当第二设定位置位于第一区间时,将镜头模组从第二设定位置向靠近样品的方向移动,在每步位置利用成像装置对样品进行图像采集。
如此,可根据第二设定位置的具体位置来对镜头模组的移动进行控制,能够快速采集到所需的图像。
具体地,在一个例子中,可将当前位置作为原点oPos并沿镜头模组的光轴方向建立坐标轴Z1,第一区间为正区间,第二区间为负区间。正负区间的范围±rLen,也就是说,第一范围是[oPos+rLen,oPos-rLen]。第二设定位置位于负区间且第二设定位置为(oPos–3*r0)。r0表示第二设定步长。成像装置在(oPos–3*r0)处开始进行图像采集并向远离样品的方向移动。
需要说明的是,在上述例子中建立的坐标轴Z1与图2的Z轴重合,且第一范围位于Z轴的负区间。这样可简化成像方法的控制,例如,只需要知道Z轴的原点与原点oPos之间的位置关系,便可知道镜头模组在坐标轴Z1的位置与在Z轴的位置的对应关系。
在某些实施方式中,步骤(f)包括:比较图像评估结果与预设条件,若图像评估结果满足预设条件,保存与图像对应的镜头模组的位置;若图像评估结果不满足预设条件,将镜头模组移动至第三设定位置,第三设定位置位于第一范围中的不同于第二设定位置所在区间的另一区间,即启动反向拍照调焦。例如,进行步骤(e)的(i)部分的过程中,图像评估结果均不满足预设条件;将镜头模组移动至第三设定位置,相当于将镜头模组移动到要进行步骤(e)的(ii)部分的起始位置,进而 进行反向拍照调焦,即进行步骤(e)的(ii)部分过程。如此,在第一范围内搜寻图像的对焦位置,有效提高了成像方法的效率。
具体地,参照上述实施方式的例子,第二设定位置位于负区间的(oPos–3*r0),镜头模组从第二设定位置向上移动,成像装置在每步位置进行图像采集,若图像评价结果不满足预设条件,则将镜头模组移动至位于正区间的第三设定位置,例如,第三设定位置为(oPos+3*r0),然后成像装置从(oPos+3*r0)处开始进行图像采集并向靠近样品的方向移动,并依据获得的图像评估结果,实现对焦。在图像评估结果满足预设条件时,保存与图像对应的镜头模组104的当前位置作为保存位置,可使得在序列测定反应进行拍照时,成像装置102能够输出清晰的图像。
在某些实施方式中,图像评估结果包括第一评估值和第二评估值,第二设定步长包括粗步长和细步长,步骤(f)包括:镜头模组以粗步长移动至相应位置的图像的第一评估值不大于第一阈值时,镜头模组以细步长继续移动至相应位置的图像的第二评估值为最大时,保存与第二评估值为最大时的图像对应的镜头模组的位置。如此,粗步长可使镜头模组快速接近对焦位置,细步长可保证镜头模组能到达对焦位置。具体地,与最大第二评估值的图像对应的镜头模组的位置可作为对焦位置进行保存。在每步位置利用成像装置进行图像采集时,对采集到的图像计算第一评估值和第二评估值。
在一个例子中,在序列测定过程中,样品上带有光学可检测标记,利如荧光标记,荧光分子在特定波长激光照射下能够被激发发出荧光,成像装置采集到的图像包括可能与荧光分子所在位置相对应的光斑/亮斑。可以理解,当镜头模组位于对焦位置时,在所采集到的图像中,与荧光分子所在位置相对应的亮斑的尺寸较小且亮度较高;当镜头模组位于非对焦位置时,在所采集到的图像中,与荧光分子所在位置相对应的亮斑的尺寸较大且亮度较低。
在某些实施方式中,利用图像上的光斑的大小和光斑的强度来评估该图像。例如,利用第一评估值来反映图像的光斑大小;在一个示例中,第一评估值是通过统计图像上的亮斑的连通域大小而确定的,定义大于该图像的平均像素值的相连像素点为一个连通域。第一评估值的确定例如可通过,计算各个亮斑的对应的连通域的大小,取亮斑的连通域大小的平均值代表该图像一个特性,作为该图像的第一评估值;又例如,可将各个亮斑对应的连通域大小按从小到大排序,取50、60、70、80或90分位点的连通域大小作为该图像的第一评估值。在一个示例中,所称图像的亮斑的连通域大小Area=A*B,A表示以该亮斑对应的矩阵的中心为中心的所在行的连通域大小,B表示以该亮斑对应的矩阵的中心为中心的所在列的连通域大小。定义亮斑对应的矩阵是奇数行和奇数列构成的矩阵k1*k2,包含k1*k2个像素点。在一个例子中,先将图像进行二值化处理,将图像转成数字矩阵再进行连通域大小的计算。例如,以该图像的平均像素值作为基准,不小于平均像素值的像素点记为1,小于该平均像素值的像素点标为0,如图4所示。在图4中,加粗加大的表示亮斑对应的矩阵的中心,粗线框表示3*3矩阵。标记为1的相连的像素点形成一个连 通域,该亮斑对应的连通域的大小为A*B=3*6。
所称的第一阈值可以根据经验或者先验数据来设定。在一个示例中,第一评估值反映图像上光斑的大小,发明人观察到,从靠近清晰面到远离清晰面的过程中,连通域Area先变小后变大,发明人基于多次找到清晰面的对焦过程中的Area数值大小及变化规律,确定第一阈值。在一个示例中,第一阈值设定为260。需要指出的是,第一阈值与粗步长、细步长大小设置可具有的关联:第一阈值的数值大小能够不至于走一个粗步长就跨过成像装置对样品成像时的清晰面。
在某些实施方式中,第二评估值或者第三评估值是通过统计图像的亮斑的分值而确定,图像的亮斑的分值Score=((k1*k2-1)CV-EV)/((CV+EV)/(k1*k2)),CV表示亮斑对应的矩阵的中心像素值,EV表示亮斑对应的矩阵的非中心像素值的总和。如此,可以确定第二评估值或第三评估值。具体地,判断出图像的亮斑后,可将图像的所有亮斑的Score值按升序排。当亮斑的数量大于预设数量时,例如,预设数量是30,亮斑数量为50,第二评估值可取50、60、70、80或90分位数的Score值,如此,可排除掉50%、60%、70%、80%或90%的质量相对不佳的亮斑的干扰;一般地,认为中心与边缘强度/像素值差异大且汇聚的亮斑为与待检分子所在位置相对应的亮斑。当亮斑数量小于预设数量时,例如亮斑数量为10小于预设数量,这样亮斑数量较少不具有统计意义,则取Score值最大的亮斑来代表该图像,即取一百分位数Score值为第三评估值。
在某些实施方式中,图像评估结果包括第一评估值、第二评估值和第三评估值,图像包括多个像素;预设条件为,图像上的亮斑的数量大于预设值,相应位置的图像的第一评估值不大于第一阈值,且相应位置的图像的第二评估值在相应位置的图像的前后各N个图像的第二评估值中是最大的;或预设条件为,图像上的亮斑的数量小于预设值,相应位置的图像的第一评估值不大于第一阈值,且相应位置的图像的第三评估值在当前图像的前后各N个图像的第三评估值中是最大的。如此,根据图像的亮斑数量采用不同的评估值进行评估,使得成像方法的对焦更准确。
具体地,在一个例子中,第一评估值可为上述实施方式中的图像的亮斑对应的连通域大小。第二评估值和第三评估值为不同示例中,依据亮斑数目具有或不具有统计意义而取的不同Score分位数,例如可分别为非一百分位数所对应的Score值和一百分位数的Score值。
在一个例子中,进行的是单分子测序,采集的图像上的光斑可能来自待测样品带有的一个或几个光学可检测标记分子,也可能来自于其它干扰。
在某些实施方式中,对亮斑进行检测,检测对应/来自于标记分子的光斑,例如可采用k1*k2矩阵对亮斑进行检测。具体地,利用以下方法检测图像上的亮斑:
利用k1*k2矩阵对图像进行亮斑检测,包括判定矩阵的中心像素值不小于矩阵非中心任一像素值的矩阵对应一个亮斑,k1和k2均为大于1的奇数,k1*k2矩阵包含k1*k2个像素点。
方法基于荧光所产生的信号的亮度/强度与背景亮度/强度的差异,能够简单快 速的检测到来自标记分子信号的信息。在某些实施例中,矩阵的中心像素值大于第一预设值,矩阵非中心任一像素值大于第二像素值。
第一预设值和第二预设值可以根据经验或者一定量的正常图像的正常亮斑的像素/强度数据来设定,所称的“正常图像”、“正常亮斑”可以是光学检测系统在清晰面位置获得的图像且肉眼看起来正常,如图像看起来清晰、背景较干净,各亮斑大小及亮度较均匀等。在一个实施例中,第一预设值和第二预设值与该图像的平均像素值相关。例如,设定第一预设值为该图像的平均像素值的1.4倍,第二预设值为该图像的平均像素值的1.1倍,能够排除干扰、获得来自于标记的光斑检测结果。
具体地,在一个示例中,图像是彩色图像,彩色图像的一个像素点具有三个像素值,可以将彩色图像转化为灰度图像,再进行图像检测,以降低图像检测过程的计算量和复杂度。可选择但不限于利用浮点算法、整数方法、移位方法或平均值法等将非灰度图像转换成灰度图像。当然,也可以直接检测彩色图像,上述涉及的像素值的大小比较可看成是三维值或者具有三个元素的数组的大小比较,可根据经验及需要自定义多个多维值的相对大小,例如当三维值a中的任两维数值比三维值b的对应维度的数值大,可认为三维值a大于三维值b。
在另一个示例中,图像是灰度图像,灰度图像的像素值同灰度值。所以,图像的平均像素值为图像的平均灰度值。
在一个例子中,第一阈值为260,预设数量为30,N=2。也就是说,当相应位置的图像的第一评估值不大于260且亮斑的数量大于30时,统计获得相应位置的图像的第二评估值,确定第二评估值最大的图像的位置为清晰面位置,且该位置前后均存在2个符合以下情况的位置:对应的图像的第二评估值大于零。当相应位置的图像的第一评估值不大于260且亮斑的数量小于30时,统计相应位置的图像的第三评估值,并找到第三评估值最大的图像的位置为清晰面位置,且该位置前后均有2个满足以下情况的位置:对应的图像的第二评估值大于零。
若没有找到满足上述条件的图像,则判定图像评估结果不满足预设条件。
在一个例子中,k1=k2=3,那么3*3矩阵中有9个像素,EV为非中心8个像素值的总和。
在某些实施方式中,若依据图像评估结果不能完成对焦,将镜头模组沿垂直于光轴方向移动到样品的下一个图像采集区域进行对焦。如此,可从样品的其它图像采集区域进行重新对焦,避免在不能对焦的样品的当前区域一直对焦下去,节省了时间。
在某些实施方式中,成像方法还包括:当对焦未成功的样品的图像采集区域的数量大于预设数量时,提示对焦失败。如此,可人工排除对焦失败原因,避免一直对焦下去,从而节省了时间。具体地,在这种情况下,可能是样品放置的位置不对或成像装置的故障等原因。提示对焦失败后,可人工排除对焦失败原因。在一个例子中,预设数量为3个,也就是说,当对焦未成功的样品的图像采集区域的数量大于3时,提示对焦失败。提示对焦失败的方式可以是以显示图像,文字,播放声音 等方式进行提示。
在某些实施方式中,成像方法还包括:判断镜头模组的位置是否超出第一范围,在镜头模组的位置超出第一范围时,退出对焦。如此,在镜头模组的位置超出第一范围时退出对焦,可避免对焦时间过长和增加功耗。
具体地,在上述实施方式的例子中,第一范围为[oPos+rLen,oPos-rLen]。
在某些实施方式中,在镜头模组104移动时,判断镜头模组104的当前位置是否超出第四设定位置;在镜头模组104的当前位置超出第四设定位置时,停止移动镜头模组104。如此,第一设定位置与第四设定位置可限定镜头模组104的移动范围,可使镜头模组104在无法对焦成功时停止移动,避免了资源的浪费或者设备的损坏,或可使镜头模组104在无法对焦成功时进行重新对焦,提高了成像方法的自动化。
在某些实施方式中,例如在全内反射成像系统中,为能快速找到介质分界面,会调整设置使镜头模组104的移动范围在能满足实施该方案的情况下尽量小。例如,在物镜为60倍的全内反射成像装置上,按照光路特性以及经验总结,镜头模组104的移动范围可设置为200μm±10μm或者为[190μm,250μm]。
在某些实施方式中,依据已定的移动范围以及第四设定位置和第一设定位置中任一位置的设定,可确定另一设定位置。在一个例子中,设定第四设定位置为反应装置200前面板202的上表面205最低处再往下一个景深大小的位置,设定镜头模组104的移动范围为250μm,如此,第一设定位置即确定。在本发明示例中,下一个景深大小的位置所对应的坐标位置为沿Z轴负方向变小的位置。
具体地,在本发明实施方式中,移动范围为Z轴的负轴上的一个区间。在一个例子中,第一设定位置为nearlimit,第四设定位置为farlimit,nearlimit和farlimit对应的坐标位置均位于Z轴的负轴上,nearlimit=-6000um,farlimit=-6350um。nearlimit和farlimit之间限定的移动范围的大小为350um。因此,当镜头模组104的当前位置对应的坐标位置小于第四设定位置对应的坐标位置时,判断镜头模组104的当前位置超出第四设定位置。在图2中,farlimit的位置为反应装置200前面板202的上表面205最低处下一个景深L的位置。景深L为镜头模组104的景深大小。
需要指出的是,在其它实施方式中,第一设定位置和/或第四设定位置所对应的坐标位置可根据实际情况作具体设定,在此不作具体限定。
在某些实施方式中,对焦模组106包括光源116和光传感器118,光源116用于发射光到样品300上,光传感器118用于接收样品300反射的光。如此,可实现对焦模组106的发光和接收光。
具体地,在本发明实施方式中,光源116可为红外光源116,光传感器118可为光电二极管(photo diode),如此,成本低,检测的准确率高。光源116发射的红外光经二向色分束器的反射进入物镜110,并经物镜110投射到样品300。样品300可反射经物镜110投影的红外光。在本发明实施方式中,当样品300包括承载装置200和待测样品302时,接收的样品300反射的光是由承载装置200的前面板的下 表面204反射的光。
样品300反射的红外光能否进入物镜110并被光传感器118接收到,主要取决于物镜110与样品300的距离。因此,在判断对焦模组106接收到样品300反射的红外光时,可判断物镜110与样品300的距离处于光学成像合适范围中,能够用于成像装置102的成像。在一个例子中,距离为20-40um。
此时,使镜头模组104以小于第一设定步长的第二设定步长移动,使得光学检测系统能够在更小的范围内寻找镜头模组104的最佳成像位置。
在某些实施方式中,请参图5,在对焦模组106接收到样品300反射的光时,成像方法还包括步骤:g,使镜头模组104以小于第一设定步长且大于第二设定步长的第三设定步长向样品300移动,并根据对焦模组106接收到的光的光强计算出第一光强参数,判断第一光强参数是否大于第一设定光强阈值;在第一光强参数大于第一设定光强阈值时,进行步骤(d)。如此,通过第一光强参数和第一设定光强阈值的比较,可排除与介质分界面反射光对比非常弱的光信号对调焦/对焦产生的干扰。
在第一光强参数不大于第一设定光强阈值时,则使镜头模组104以第三设定步长向样品300继续移动。
在某些实施方式中,对焦模组106包括两个光传感器118,两个光传感器118用于接收样品300反射的光,第一光强参数为两个光传感器118接收到的光的光强的平均值。如此,通过两个光传感器118接收到的光的光强的平均值来计算第一光强参数,使得排除弱的光信号更加准确。
具体地,第一光强参数可设置为SUM,即SUM=(PD1+PD2)/2,PD1和PD2分别表示两个光传感器118接收到的光的光强。在一个例子中,第一设定光强阈值nSum=40。
在一个例子中,第三设定步长S2=0.005mm。可以理解,在其它例子中,第三设定步长也可采用其它数值,在此不作具体限定。
在某些实施方式中,成像方法还包括以下步骤:在镜头模组104处于对焦位置时,确定镜头模组104与样品300的相对位置;利用载台带动样品300移动时,控制镜头模组104的运动以保持相对位置不变。如此,可保证成像装置102在样品300的不同区域采集图像时,采集到的图像是保持清晰的,实现追焦。
具体地,由于载台和/或样品300的物理误差,可能导致样品300是倾斜的,因此,在利用载台带动样品300移动时,样品300的表面不同的区域与镜头模组104的距离会发生变化。因此,样品300相对于镜头模组104的光轴OP移动时,成像装置102对样品300的成像位置一直保持在清晰面位置。此过程称为追焦。
利用载台带动样品300移动,包括样品300沿平行于X轴的X1轴移动,和样品300沿平行于Y轴的Y1轴移动,和样品300沿X1轴和Y1轴限定的平面X1Y1移动,和样品300沿倾斜于X轴移动,和样品300沿倾斜于Y轴移动,和样品300沿倾斜于X轴和Y轴限定的平面XY移动。
在某些实施方式中,利用载台带动样品300移动时,判断镜头模组104的当前位置是否超出第五设定位置;在镜头模组104的当前位置超出第五设定位置时,利用载台带动样品300移动并重新进行对焦;在移动次数到达设定次数且镜头模组104的当前位置仍超出第五设定位置时,判断追焦失败。如此,第五设定位置和移动次数的限定使镜头模组104在追焦失败时,可重新进行对焦。
具体地,在本发明示例中,第五设定位置可为nPos,nPos对应的坐标位置在Z轴的负轴上,且nPos对应的坐标位置大于第四设定位置farlimit对应的坐标位置。当镜头模组104的当前位置对应的坐标位置小于第五设定位置对应的坐标位置时,判断镜头模组104的当前位置超出第五设定位置。
在首次判断镜头模组104的当前位置超出第五设定位置时,会重新进行对焦以对镜头模组104的位置进行调整以尝试追焦成功。在追焦过程中,若移动镜头模组104的次数到达设定次数时,镜头模组104的当前位置仍超出第五设定位置,则无法追焦,判断追焦失败,暂停并重新对焦寻找清晰面。
第五设定位置所对应的坐标位置是经验值,小于该值时,成像装置102采集到的图像模糊并很大概率追焦失败。设定次数是经验值,可根据实际情况作具体设定。
在某些实施方式中,在镜头模组104的当前位置没超出第五设定位置时,判断相对位置不变。在某些实施方式中,相对位置包括相对距离和相对方向。进一步地,为简化运算,相对位置可指相对距离,相对位置不变是指,成像装置102的成像系统的物距不变,可使得样品300的不同区域能够被成像装置102清晰成像。
请参图6,本发明实施方式的一种光学检测系统,包括控制装置101、成像装置102和载台103,成像装置102包括镜头模组104和对焦模组106,镜头模组104包括光轴OP,镜头模组104能够沿光轴OP方向运动,载台103用于承载样品300,控制装置101用于执行以下步骤:(a)利用对焦模组106发射光至置于载台103上的样品300上;(b)使镜头模组104移动到第一设定位置;(c)使镜头模组104从第一设定位置以第一设定步长向样品300移动并判断对焦模组106是否接收到样品300反射的光;(d)在对焦模组106接收到样品300反射的光时,将镜头模组104从当前位置移动到第二设定位置,第二设定位置位于第一范围内,第一范围是包括当前位置的、允许镜头模组104沿光轴OP方向移动的一个范围;(e)使镜头模组104从第二设定位置以第二设定步长移动,在每步位置利用成像装置102对样品300进行图像采集,第二设定步长小于所述第一设定步长;(f)对采集到的图像进行评估,依据获得的图像评估结果,实现对焦。
需要说明的是,上述任一实施方式和实施例中的对成像方法的技术特征和有益效果的解释和说明也适用于本实施方式的光学检测系统,为避免冗余,在此不再详细展开。在某些实施方式中,控制装置101包括个人计算机、嵌入式系统、手机、平板电脑、笔记本电脑等具有数据处理和控制能力的装置。在某些实施方式中,以当前位置为基准,第一范围包括相对的第一区间和第二区间,定义第二区间更靠近样品,步骤(e)包括:
(i)当第二设定位置位于第二区间时,将镜头模组从第二设定位置向远离样品的方向移动,在每步位置利用成像装置对样品进行图像采集;或者,(ii)当第二设定位置位于第一区间时,将镜头模组从第二设定位置向靠近样品的方向移动,在每步位置利用成像装置对样品进行图像采集。
在某些实施方式中,步骤(f)包括:比较图像评估结果与预设条件,若图像评估结果满足预设条件,保存与图像对应的镜头模组的位置;
若图像评估结果不满足预设条件,将镜头模组移动至第三设定位置,第三设定位置位于第一范围中的不同于第二设定位置所在区间的另一区间。
在某些实施方式中,图像评估结果包括第一评估值和第二评估值,第二设定步长包括粗步长和细步长,步骤(f)包括:镜头模组以粗步长移动至相应位置的图像的第一评估值不大于第一阈值时,镜头模组以细步长继续移动至相应位置的图像的第二评估值为最大时,保存与第二评估值为最大时的图像对应的镜头模组的位置。
在某些实施方式中,图像评估结果包括第一评估值、第二评估值和第三评估值,图像包括多个像素;
预设条件为,图像上的亮斑的数量大于预设值,相应位置的图像的第一评估值不大于第一阈值,且相应位置的图像的第二评估值在相应位置的图像的前后各N个图像的第二评估值中是最大的;或,预设条件为,图像上的亮斑的数量小于预设值,相应位置的图像的第一评估值不大于第一阈值,且相应位置的图像的第三评估值在当前图像的前后各N个图像的第三评估值中是最大的。
在某些实施方式中,系统包括亮斑检测模块,亮斑检测模块用于:
利用k1*k2矩阵对图像进行亮斑检测,包括判定矩阵的中心像素值不小于矩阵非中心任一像素值的矩阵对应一个亮斑,k1和k2均为大于1的奇数,k1*k2矩阵包含k1*k2个像素点。
在某些实施方式中,矩阵的中心像素值大于第一预设值,矩阵非中心任一像素值大于第二预设值。
在某些实施方式中,第一预设值和第二预设值与图像的平均像素值相关。
在某些实施方式中,第一评估值通过统计图像的亮斑的连通域大小而确定的,图像的亮斑的连通域大小Area=A*B,A表示以亮斑对应的矩阵的中心为中心的所在行的连通域大小,B表示以亮斑对应的矩阵的中心为中心的所在列的连通域大小,定义大于图像的平均像素值的相连像素点为一个连通域。
在某些实施方式中,第二评估值和/或第三评估值通过统计图像的亮斑的分值而确定,图像的亮斑的分值Score=((k1*k2-1)CV-EV)/((CV+EV)/(k1*k2)),CV表示亮斑对应的矩阵的中心像素值,EV表示亮斑对应的矩阵的非中心像素值的总和。
在某些实施方式中,对焦模组106包括光源116和光传感器118,光源116用于发射光到样品300上,光传感器118用于接收样品300反射的光。
具体地,控制装置101可控制光源116发射光,及控制光传感器118接收光。
在某些实施方式中,在对焦模组106接收到样品300反射的光时,控制装置101 还用于:
使镜头模组104以小于第一设定步长且大于第二设定步长的第三设定步长向样品300移动,并根据对焦模组106接收到的光的光强计算出第一光强参数,判断第一光强参数是否大于第一设定光强阈值;
在第一光强参数大于所述第一设定光强阈值时,将镜头模组104从当前位置移动到第二设定位置。
在某些实施方式中,对焦模组106包括两个光传感器118,两个光传感器118用于接收样品300反射的光,第一光强参数为两个光传感器118接收到的光的光强的平均值。
在某些实施方式中,在镜头模组104移动时,控制装置101用于:判断镜头模组104的当前位置是否超出第四设定位置;
在镜头模组104的当前位置超出第四设定位置时,停止移动镜头模组104。
在某些实施方式中,控制装置101还用于:在镜头模组104处于对焦位置时,确定镜头模组104与样品300的相对位置;
利用载台103带动样品300移动时,控制镜头模组104的运动以保持相对位置不变。
在某些实施方式中,利用载台103带动样品300移动时,控制装置101用于:判断镜头模组104的当前位置是否超出第五设定位置;
在镜头模组104的当前位置超出第五设定位置时,利用载台103带动样品300移动并重新进行对焦;
在样品300的移动次数到达设定次数且镜头模组104的当前位置仍超出第五设定位置时,判断追焦失败。
请参图6,本发明实施方式的一种对成像进行控制的控制装置101,用于光学检测系统,光学检测系统包括成像装置102和载台103,成像装置102包括镜头模组104和对焦模组106,镜头模组104包括光轴OP,镜头模组104能够沿光轴OP方向运动,载台103用于承载样品300,控制装置101包括:存储装置120,用于存储数据,数据包括计算机可执行程序;处理器122,用于执行计算机可执行程序,执行计算机可执行程序包括完成上述任一实施方式的方法。
本发明实施方式的一种计算机可读存储介质,用于存储供计算机执行的程序,执行程序包括完成上述任一实施方式的方法。计算机可读存储介质可以包括:只读存储器、随机存储器、磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
在流程图中表示或在此以其它方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读存储介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其它可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读存储介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读存储介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读存储介质甚至可以是可在其上打印所述程序的纸或其它合适的介质,因为可以例如通过对纸或其它介质进行光学扫描,接着进行编辑、解译或必要时以其它合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
此外,在本发明各个实施方式中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施方式进行变化、修改、替换和变型。
虽然在各种实施例中已经示出了本文的原理,但是许多特别适用于特定环境和操作要求的结构、布置、比例、元件、材料和部件的修改可以在不脱离本披露的原则和范围内使用。以上修改和其他改变或修正将被包含在本文的范围之内。
前述具体说明已参照各种实施例进行了描述。然而,本领域技术人员将认识到,可以在不脱离本披露的范围的情况下进行各种修正和改变。因此,对于本披露的考虑将是说明性的而非限制性的意义上的,并且所有这些修改都将被包含在其范围内。同样,有关于各种实施例的优点、其他优点和问题的解决方案已如上所述。然而,益处、优点、问题的解决方案以及任何能产生这些的要素,或使其变得更明确的解决方案都不应被解释为关键的、必需的或必要的。本文中所用的术语“包括”和其任何其他变体,皆属于非排他性包含,这样包括要素列表的过程、方法、文章或设备不仅包括这些要素,还包括未明确列出的或不属于该过程、方法、系统、文章或设备的其他要素。此外,本文中所使用的术语“耦合”和其任何其他变体都是指物理连接、电连接、磁连接、光连接、通信连接、功能连接和/或任何其他连接。
具有本领域技术的人将认识到,在不脱离本发明的基本原理的情况下,可以对上述实施例的细节进行许多改变。因此,本发明的范围应根据以下权利要求确定。

Claims (34)

  1. 一种成像方法,其特征在于,所述方法用于光学检测系统,所述光学检测系统包括成像装置和载台,所述成像装置包括镜头模组和对焦模组,所述镜头模组包括光轴,所述镜头模组能够沿光轴方向运动,所述载台用于承载样品,所述方法包括以下步骤:
    (a)利用所述对焦模组发射光至置于所述载台上的所述样品上;
    (b)使所述镜头模组移动到第一设定位置;
    (c)使所述镜头模组从所述第一设定位置以第一设定步长向所述样品移动并判断所述对焦模组是否接收到所述样品反射的光;
    (d)在所述对焦模组接收到所述样品反射的光时,将所述镜头模组从当前位置移动到第二设定位置,所述第二设定位置位于第一范围内,所述第一范围是包括所述当前位置的、允许所述镜头模组沿光轴方向移动的一个范围;
    (e)使所述镜头模组从所述第二设定位置以第二设定步长移动,在每步位置利用所述成像装置对所述样品进行图像采集,所述第二设定步长小于所述第一设定步长;
    (f)对采集到的图像进行评估,依据获得的图像评估结果,实现对焦。
  2. 如权利要求1所述的方法,其特征在于,以所述当前位置为基准,所述第一范围包括相对的第一区间和第二区间,定义所述第二区间更靠近所述样品,步骤(e)包括:
    (i)当所述第二设定位置位于所述第二区间时,将所述镜头模组从所述第二设定位置向远离所述样品的方向移动,在每步位置利用所述成像装置对所述样品进行图像采集;
    或者,
    (ii)当所述第二设定位置位于所述第一区间时,将所述镜头模组从所述第二设定位置向靠近所述样品的方向移动,在每步位置利用所述成像装置对所述样品进行图像采集。
  3. 如权利要求2所述的方法,其特征在于,步骤(f)包括:
    比较所述图像评估结果与预设条件,若所述图像评估结果满足所述预设条件,保存与所述图像对应的镜头模组的位置;
    若所述图像评估结果不满足所述预设条件,将所述镜头模组移动至第三设定位置,所述第三设定位置位于所述第一范围中的不同于所述第二设定位置所在区间的另一区间。
  4. 如权利要求3所述的方法,其特征在于,所述图像评估结果包括第一评估值和第二评估值,所述第二设定步长包括粗步长和细步长,步骤(f)包括:
    所述镜头模组以所述粗步长移动直至相应位置的图像的第一评估值不大于第一阈值,所述镜头模组换以所述细步长继续移动至相应位置的图像的第二评估值为最大,保存与所述第二评估值为最大时的图像对应的镜头模组的位置。
  5. 如权利要求3所述的方法,其特征在于,所述图像评估结果包括第一评估值、第二评估值和第三评估值,所述图像包括多个像素;
    所述预设条件为,所述图像上的亮斑的数量大于预设值,相应位置的图像的第一评估值不大于第一阈值,且所述相应位置的图像的第二评估值在所述相应位置的图像的前后各N个图像的第二评估值中是最大的;
    或,
    所述预设条件为,所述图像上的亮斑的数量小于所述预设值,相应位置的图像的第一评估值不大于所述第一阈值,且相应位置的图像的第三评估值在所述当前图 像的前后各N个图像的第三评估值中是最大的。
  6. 如权利要求5所述的方法,其特征在于,利用以下方法检测所述图像上的亮斑:
    利用k1*k2矩阵对所述图像进行亮斑检测,包括判定所述矩阵的中心像素值不小于所述矩阵非中心任一像素值的矩阵对应一个亮斑,k1和k2均为大于1的奇数,k1*k2矩阵包含k1*k2个像素点。
  7. 如权利要求6所述的方法,其特征在于,所述矩阵的中心像素值大于第一预设值,所述矩阵非中心任一像素值大于第二预设值。
  8. 如权利要求7所述的方法,其特征在于,所述第一预设值和所述第二预设值与所述图像的平均像素值相关。
  9. 如权利要求8所述的方法,其特征在于,所述第一评估值通过统计所述图像的亮斑对应的连通域大小而确定的,一个所述图像的亮斑对应的连通域大小Area=A*B,A表示以所述亮斑对应的矩阵的中心为中心的所在行的连通域大小,B表示以所述亮斑对应的矩阵的中心为中心的所在列的连通域大小,定义大于所述图像的平均像素值的相连像素点为一个连通域。
  10. 如权利要求6所述的方法,其特征在于,所述第二评估值和/或所述第三评估值通过统计所述图像的亮斑的分值而确定,一个所述图像的亮斑的分值Score=((k1*k2-1)CV-EV)/((CV+EV)/(k1*k2)),CV表示所述亮斑对应的矩阵的中心像素值,EV表示所述亮斑对应的所述矩阵的非中心像素值的总和。
  11. 如权利要求1所述的方法,其特征在于,所述对焦模组包括光源和光传感器,所述光源用于发射所述光到所述样品上,所述光传感器用于接收所述样品反射的光。
  12. 如权利要求1所述的方法,其特征在于,在所述对焦模组接收到所述样品反射的光时,所述方法还包括步骤:
    使所述镜头模组以小于所述第一设定步长且大于所述第二设定步长的第三设定步长向所述样品移动,并根据所述对焦模组接收到的所述光的光强计算出第一光强参数,判断所述第一光强参数是否大于第一设定光强阈值;
    在所述第一光强参数大于所述第一设定光强阈值时,将所述镜头模组从当前位置移动到所述第二设定位置。
  13. 如权利要求12所述的方法,其特征在于,所述对焦模组包括两个光传感器,所述两个光传感器用于接收所述样品反射的光,所述第一光强参数为所述两个光传感器接收到的光的光强的平均值。
  14. 如权利要求1-13任一项所述的方法,其特征在于,在所述镜头模组移动时,判断所述镜头模组的当前位置是否超出第四设定位置;
    在所述镜头模组的当前位置超出所述第四设定位置时,停止移动所述镜头模组。
  15. 如权利要求1所述的方法,其特征在于,所述方法还包括以下步骤:
    在所述镜头模组处于对焦位置时,确定所述镜头模组与所述样品的相对位置;
    利用所述载台带动所述样品移动时,控制所述镜头模组的运动以保持所述相对位置不变。
  16. 如权利要求15所述的方法,其特征在于,利用所述载台带动所述样品移动时,判断所述镜头模组的当前位置是否超出第五设定位置;
    在所述镜头模组的当前位置超出所述第五设定位置时,利用所述载台带动所述样品移动并重新进行对焦;
    在所述样品的移动次数到达设定次数且所述镜头模组的当前位置仍超出所述第五设定位置时,判断追焦失败。
  17. 一种光学检测系统,其特征在于,包括控制装置、成像装置和载台,所述成像装置包括镜头模组和对焦模组,所述镜头模组包括光轴,所述镜头模组能够沿光轴方向运动,所述载台用于承载样品,所述控制装置用于执行以下步骤:
    (a)利用所述对焦模组发射光至置于所述载台上的所述样品上;
    (b)使所述镜头模组移动到第一设定位置;
    (c)使所述镜头模组从所述第一设定位置以第一设定步长向所述样品移动并判断所述对焦模组是否接收到所述样品反射的光;
    (d)在所述对焦模组接收到所述样品反射的光时,将所述镜头模组从当前位置移动到第二设定位置,所述第二设定位置位于第一范围内,所述第一范围是包括所述当前位置的、允许所述镜头模组沿光轴方向移动的一个范围;
    (e)使所述镜头模组从所述第二设定位置以第二设定步长移动,在每步位置利用所述成像装置对所述样品进行图像采集,所述第二设定步长小于所述第一设定步长;
    (f)对采集到的图像进行评估,依据获得的图像评估结果,实现对焦。
  18. 如权利要求17所述的系统,其特征在于,以所述当前位置为基准,所述第一范围包括相对的第一区间和第二区间,定义所述第二区间更靠近所述样品,步骤(e)包括:
    (i)当所述第二设定位置位于所述第二区间时,将所述镜头模组从所述第二设定位置向远离所述样品的方向移动,在每步位置利用所述成像装置对所述样品进行图像采集;
    或者,
    (ii)当所述第二设定位置位于所述第一区间时,将所述镜头模组从所述第二设定位置向靠近所述样品的方向移动,在每步位置利用所述成像装置对所述样品进行图像采集。
  19. 如权利要求18所述的系统,其特征在于,步骤(f)包括:
    比较所述图像评估结果与预设条件,若所述图像评估结果满足所述预设条件,保存与所述图像对应的镜头模组的位置;
    若所述图像评估结果不满足所述预设条件,将所述镜头模组移动至第三设定位置,所述第三设定位置位于所述第一范围中的不同于所述第二设定位置所在区间的另一区间。
  20. 如权利要求19所述的系统,其特征在于,所述图像评估结果包括第一评估值和第二评估值,所述第二设定步长包括粗步长和细步长,步骤(f)包括:所述镜头模组以所述粗步长移动至相应位置的图像的第一评估值不大于第一阈值时,所述镜头模组以所述细步长继续移动至相应位置的图像的第二评估值为最大时,保存与所述第二评估值为最大时的图像对应的镜头模组的位置。
  21. 如权利要求19所述的系统,其特征在于,所述图像评估结果包括第一评估值、第二评估值和第三评估值,所述图像包括多个像素;
    所述预设条件为,所述图像上的亮斑的数量大于预设值,相应位置的图像的第一评估值不大于第一阈值,且所述相应位置的图像的第二评估值在所述相应位置的图像的前后各N个图像的第二评估值中是最大的;
    或,
    所述预设条件为,所述图像上的亮斑的数量小于所述预设值,相应位置的图像的第一评估值不大于所述第一阈值,且相应位置的图像的第三评估值在所述当前图像的前后各N个图像的第三评估值中是最大的。
  22. 如权利要求21所述的系统,其特征在于,所述系统包括亮斑检测模块,所 述亮斑检测模块用于:
    利用k1*k2矩阵对所述图像进行亮斑检测,包括判定所述矩阵的中心像素值不小于所述矩阵非中心任一像素值的矩阵对应一个亮斑,k1和k2均为大于1的奇数,k1*k2矩阵包含k1*k2个像素点。
  23. 如权利要求22所述的系统,其特征在于,所述矩阵的中心像素值大于第一预设值,所述矩阵非中心任一像素值大于第二预设值。
  24. 如权利要求23所述的系统,其特征在于,所述第一预设值和所述第二预设值与所述图像的平均像素值相关。
  25. 如权利要求24所述的系统,其特征在于,所述第一评估值通过统计所述图像的亮斑的连通域大小而确定的,所述图像的亮斑的连通域大小Area=A*B,A表示以所述亮斑对应的矩阵的中心为中心的所在行的连通域大小,B表示以所述亮斑对应的矩阵的中心为中心的所在列的连通域大小,定义大于所述图像的平均像素值的相连像素点为一个连通域。
  26. 如权利要求22所述的系统,其特征在于,所述第二评估值和/或所述第三评估值通过统计所述图像的亮斑的分值而确定,所述图像的亮斑的分值Score=((k1*k2-1)CV-EV)/((CV+EV)/(k1*k2)),CV表示所述亮斑对应的矩阵的中心像素值,EV表示所述亮斑对应的所述矩阵的非中心像素值的总和。
  27. 如权利要求17所述的系统,其特征在于,所述对焦模组包括光源和光传感器,所述光源用于发射所述光到所述样品上,所述光传感器用于接收所述样品反射的光。
  28. 如权利要求17所述的系统,其特征在于,在所述对焦模组接收到所述样品反射的光时,所述控制装置还用于:
    使所述镜头模组以小于所述第一设定步长且大于所述第二设定步长的第三设定步长向所述样品移动,并根据所述对焦模组接收到的所述光的光强计算出第一光强参数,判断所述第一光强参数是否大于第一设定光强阈值;
    在所述第一光强参数大于所述第一设定光强阈值时,将所述镜头模组从当前位置移动到所述第二设定位置。
  29. 如权利要求28所述的系统,其特征在于,所述对焦模组包括两个光传感器,所述两个光传感器用于接收所述样品反射的光,所述第一光强参数为所述两个光传感器接收到的光的光强的平均值。
  30. 如权利要求17-29任一项所述的系统,其特征在于,在所述镜头模组移动时,所述控制装置用于:
    判断所述镜头模组的当前位置是否超出第四设定位置;
    在所述镜头模组的当前位置超出所述第四设定位置时,停止移动所述镜头模组。
  31. 如权利要求17所述的系统,其特征在于,所述控制装置还用于:
    在所述镜头模组处于对焦位置时,确定所述镜头模组与所述样品的相对位置;
    利用所述载台带动所述样品移动时,控制所述镜头模组的运动以保持所述相对位置不变。
  32. 如权利要求31所述的系统,其特征在于,利用所述载台带动所述样品移动时,所述控制装置用于:
    判断所述镜头模组的当前位置是否超出第五设定位置;
    在所述镜头模组的当前位置超出所述第五设定位置时,利用所述载台带动所述样品移动并重新进行对焦;
    在所述样品的移动次数到达设定次数且所述镜头模组的当前位置仍超出所述第五设定位置时,判断追焦失败。
  33. 一种对成像进行控制的控制装置,用于光学检测系统,所述光学检测系统包括成像装置和载台,所述成像装置包括镜头模组和对焦模组,所述镜头模组包括光轴,所述镜头模组能够沿光轴方向运动,所述载台用于承载样品,其特征在于,所述控制装置包括:
    存储装置,用于存储数据,所述数据包括计算机可执行程序;
    处理器,用于执行所述计算机可执行程序,执行所述计算机可执行程序包括完成权利要求1-16任一项所述的方法。
  34. 一种计算机可读存储介质,用于存储供计算机执行的程序,其特征在于,执行所述程序包括完成权利要求1-16任一项所述的方法。
PCT/CN2018/120671 2017-12-15 2018-12-12 成像方法、装置及系统 WO2019114760A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711354126.9 2017-12-15
CN201711354126.9A CN112322713B (zh) 2017-12-15 2017-12-15 成像方法、装置及系统及存储介质

Publications (1)

Publication Number Publication Date
WO2019114760A1 true WO2019114760A1 (zh) 2019-06-20

Family

ID=66819548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120671 WO2019114760A1 (zh) 2017-12-15 2018-12-12 成像方法、装置及系统

Country Status (2)

Country Link
CN (1) CN112322713B (zh)
WO (1) WO2019114760A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112823352A (zh) * 2019-08-16 2021-05-18 深圳市真迈生物科技有限公司 碱基识别方法、系统、计算机程序产品和测序系统
CN114466128A (zh) * 2020-11-09 2022-05-10 华为技术有限公司 目标用户追焦拍摄方法、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101438147A (zh) * 2006-05-31 2009-05-20 奥林巴斯株式会社 生物试样摄像方法及生物试样摄像装置
CN102591100A (zh) * 2012-03-16 2012-07-18 盛司潼 一种测序采图设备的自动聚焦系统及其方法
US20130321814A1 (en) * 2012-05-31 2013-12-05 General Electric Company Systems and methods for screening of biological samples
CN205616889U (zh) * 2016-04-06 2016-10-05 深圳市瀚海基因生物科技有限公司 基因测序光学装置
CN207215686U (zh) * 2017-09-20 2018-04-10 深圳市瀚海基因生物科技有限公司 光学检测系统及序列测定系统
CN108693625A (zh) * 2017-04-10 2018-10-23 深圳市瀚海基因生物科技有限公司 成像方法、装置及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992006359A1 (en) * 1990-10-09 1992-04-16 Metronics, Inc. Laser autofocus apparatus and method
CN101702053B (zh) * 2009-11-13 2012-01-25 长春迪瑞实业有限公司 一种尿沉渣检验设备中显微镜系统的自动聚焦方法
KR101931967B1 (ko) * 2011-09-19 2018-12-27 삼성전자 주식회사 광학 현미경의 자동 초점 조절 장치
CN102692347A (zh) * 2012-05-08 2012-09-26 浙江工业大学 疲劳裂纹扩展试验摄像头自动调整图像采集装置及方法
CN103513395B (zh) * 2012-06-15 2018-05-04 中兴通讯股份有限公司 一种被动式自动聚焦方法及装置
US9638984B2 (en) * 2015-03-10 2017-05-02 Qualcomm Incorporated Search range extension for depth assisted autofocus
CN105067568B (zh) * 2015-07-16 2017-10-20 河南科技大学 自动聚焦式激光诱导击穿光谱检测系统及其检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101438147A (zh) * 2006-05-31 2009-05-20 奥林巴斯株式会社 生物试样摄像方法及生物试样摄像装置
CN102591100A (zh) * 2012-03-16 2012-07-18 盛司潼 一种测序采图设备的自动聚焦系统及其方法
US20130321814A1 (en) * 2012-05-31 2013-12-05 General Electric Company Systems and methods for screening of biological samples
CN205616889U (zh) * 2016-04-06 2016-10-05 深圳市瀚海基因生物科技有限公司 基因测序光学装置
CN108693625A (zh) * 2017-04-10 2018-10-23 深圳市瀚海基因生物科技有限公司 成像方法、装置及系统
CN207215686U (zh) * 2017-09-20 2018-04-10 深圳市瀚海基因生物科技有限公司 光学检测系统及序列测定系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112823352A (zh) * 2019-08-16 2021-05-18 深圳市真迈生物科技有限公司 碱基识别方法、系统、计算机程序产品和测序系统
CN114466128A (zh) * 2020-11-09 2022-05-10 华为技术有限公司 目标用户追焦拍摄方法、电子设备及存储介质
CN114466128B (zh) * 2020-11-09 2023-05-12 华为技术有限公司 目标用户追焦拍摄方法、电子设备及存储介质

Also Published As

Publication number Publication date
CN112322713B (zh) 2022-06-03
CN112322713A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
EP3213136B1 (en) Image-based laser autofocus system
CN108693625B (zh) 成像方法、装置及系统
US10890750B2 (en) Observation system, observation program, and observation method
US20050219523A1 (en) Foreign matter detecting system
US11575823B2 (en) Imaging method, device and system
KR20200041982A (ko) 실시간 오토포커스 스캐닝
US20150358533A1 (en) Control method for imaging apparatus and imaging system
CN113467067B (zh) 基于多图像面积关系的显微成像系统自动对焦方法及装置
WO2019114760A1 (zh) 成像方法、装置及系统
CN102122055A (zh) 一种激光式自动对焦装置及其对焦方法
US20200351414A1 (en) Slide rack determination system
WO2018188440A1 (zh) 成像方法、装置及系统
KR20230021136A (ko) 자동 초점 현미경 시스템을 위한 딥 러닝 모델
WO2020037572A1 (zh) 检测图像上的亮斑的方法和装置、图像配准方法和装置
US9851549B2 (en) Rapid autofocus method for stereo microscope
CN108693624B (zh) 成像方法、装置及系统
CN113366364A (zh) 载玻片扫描系统中的实时聚焦
CN112333378A (zh) 成像方法、装置及系统
CN112291469A (zh) 成像方法、装置及系统
JP2013088570A (ja) 顕微鏡装置
CN108693113B (zh) 成像方法、装置及系统
CN111647506B (zh) 定位方法、定位装置和测序系统
JP2005284118A (ja) 自動焦点制御装置及び自動焦点制御方法
JP5960006B2 (ja) 試料解析装置、試料解析方法、試料解析プログラムおよび粒子飛跡解析装置
WO2021171419A1 (ja) 検体観察装置、検体観察方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889614

Country of ref document: EP

Kind code of ref document: A1