WO2019113905A1 - 一种电池控制方法及系统 - Google Patents
一种电池控制方法及系统 Download PDFInfo
- Publication number
- WO2019113905A1 WO2019113905A1 PCT/CN2017/116267 CN2017116267W WO2019113905A1 WO 2019113905 A1 WO2019113905 A1 WO 2019113905A1 CN 2017116267 W CN2017116267 W CN 2017116267W WO 2019113905 A1 WO2019113905 A1 WO 2019113905A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- unique identifier
- identity verification
- database
- control system
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M10/4257—Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00036—Charger exchanging data with battery
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4278—Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the solution belongs to the technical field of batteries, and in particular relates to a battery control method and system.
- the battery management device directly controls the battery to discharge through the discharge circuit as long as it detects that the battery is connected to the discharge circuit, so that when the accessed battery does not meet the standard, there is a large safety hazard.
- the battery management device directly controls the battery to discharge through the discharge circuit as long as it detects that the battery is connected to the discharge circuit, so that when the accessed battery does not meet the standard, there is a large safety hazard.
- the purpose of the solution is to provide a battery control method and system for verifying the identity of a battery by acquiring a unique identification of the battery, so as to solve the problem that the existing battery control system cannot identify a battery that does not meet the standard, thereby resulting in a comparison.
- the problem of big security risks is to provide a battery control method and system for verifying the identity of a battery by acquiring a unique identification of the battery, so as to solve the problem that the existing battery control system cannot identify a battery that does not meet the standard, thereby resulting in a comparison.
- the solution provides a battery control method, including:
- the battery is controlled to be in a deactivated state.
- the performing identity verification on the battery according to the unique identifier comprises: comparing the unique identifier with a unique identifier of a battery stored in a database, and authenticating the battery according to a comparison result check;
- the comparison result is that the unique identifier of the battery stored in the database has the same unique identifier as the unique identifier, it is identified as an identity check; if the comparison result is a battery stored in the database If there is no unique identity in the unique identity that is the same as the unique identity, it is identified as an identity verification failure.
- the method includes:
- the battery status parameter is displayed.
- the battery state parameter includes a duration of use of the battery; a duration of use of the battery is determined according to a date of shipment of the battery and a date corresponding to the current time; the obtaining the unique identifier from the database After the corresponding battery status parameters, include:
- a prompt message is output.
- the battery state parameter includes location information during the battery discharge process; and if the identity verification is passed, after the battery is controlled to be discharged by the discharge circuit, the method further includes:
- the position information during the current discharge of the battery is recorded and stored.
- the solution also proposes a battery control system, and the battery control system includes:
- a detecting unit configured to acquire a unique identifier of the battery if a battery access discharge circuit is detected
- a verification unit configured to perform identity verification on the battery according to the unique identifier
- a battery control unit configured to control the battery to discharge through the discharge circuit if the identity verification is passed
- the battery control unit is further configured to control the battery to be in a disabled state if the identity verification fails.
- the verification unit is specifically configured to:
- the battery control system further includes:
- An obtaining unit configured to obtain, from the database, a battery state parameter corresponding to the unique identifier
- a display unit for displaying the battery status parameter.
- the battery state parameter includes a length of use of the battery; the duration of use of the battery is determined according to a date of shipment of the battery and a date corresponding to the current time; the battery control system further includes:
- the prompting unit is configured to output prompt information if the usage duration of the battery is greater than a preset duration.
- the battery control system further includes:
- a recording unit for recording and storing current location information of the battery.
- the solution provides a battery control method and system, and obtains the unique identification of the battery to verify the identity of the battery, thereby improving the reliability and safety of the battery, and solving the battery management device in the existing battery control system.
- the problem of a safety hazard in the discharge of the battery is detected.
- FIG. 2 is a flowchart showing an implementation of a battery control method according to Embodiment 2 of the present solution
- FIG. 3 is a flowchart of implementing a battery control method according to Embodiment 4 of the present solution
- FIG. 4 is a schematic structural diagram of a battery control system according to Embodiment 5 of the present solution.
- FIG. 5 is a schematic structural diagram of a battery control system according to Embodiment 6 of the present solution.
- FIG. 6 is a schematic structural diagram of a battery control system according to Embodiment 7 of the present solution.
- FIG. 7 is a schematic structural diagram of a battery control system according to Embodiment 8 of the present solution.
- FIG. 1 is a flowchart of an implementation of a battery control method according to Embodiment 1 of the present embodiment. For convenience of description, only parts related to the embodiment of the present solution are shown.
- the battery has a unique identification, and the unique identification can only be possessed by the battery produced by the manufacturer, and the purpose is to detect that a certain type of product produced by the manufacturer is a qualified battery confirmed by the manufacturer, and the unique The identity is stored in the database of the manufacturer and is updated according to the needs of the manufacturer.
- the battery is authenticated according to the unique identity.
- the unique identifier of the accessed battery is obtained, and if the unique identifier can be obtained, the identity verification is performed. Pass, if the unique identity of the battery cannot be obtained, the identity verification fails.
- the unique identifier of the battery can be read by the radio frequency card reader, or the unique identifier of the battery is a two-dimensional code, and the unique identifier of the battery is read by scanning.
- the identity verification of the unique identity of the battery is specifically comparing the unique identity with the unique identity of the battery stored in the database, and performing identity verification on the battery according to the comparison result.
- the unique identifier of the battery stored in the database is the unique identifier of the battery that meets the standard.
- the identity verification is passed. At this time, the battery is allowed to discharge through the discharge circuit.
- the comparison result is that the unique identifier of the battery stored in the database does not have the same unique identifier as the unique identifier, it is identified as the identity verification failure.
- the battery is in a deactivated state. Specifically, the discharge circuit is turned off, and the battery cannot be discharged through the discharge circuit.
- Embodiment 2 is a flowchart of an implementation of a battery control method according to Embodiment 2 of the present embodiment.
- the method may further include:
- the battery status parameter includes the battery's power, model, date of manufacture, time of the most recent use, and the like.
- the user knows the latest operating state of the battery based on the dynamic display of the battery status parameter.
- the battery state parameter further includes the length of use of the battery
- the length of use of the battery is determined according to a date of shipment of the battery and a date corresponding to the current time;
- the usage duration is determined according to the date of manufacture and the date corresponding to the current time, that is, the number of months or days or hours between the date corresponding to the current date and the current time is calculated; optionally, the duration of use of the battery is also The determination may be made based on the date on which the battery is first detected and the date corresponding to the current time, that is, the number of months or days or hours between the date when the battery is first detected and the date corresponding to the current time.
- the method After the obtaining the battery state parameter corresponding to the unique identifier from the database, the method includes:
- a prompt message is output.
- the prompt information is output.
- the preset duration is determined according to the specific model of the battery and the detected environmental parameters, for example, the preset duration ratio used in an extreme environment.
- the prompt information can be displayed through voice prompts or through the screen to avoid potential safety hazards caused by aging or damage to the battery.
- Embodiment 3 is a flowchart of an implementation of a battery control method according to Embodiment 4 of the present embodiment.
- the method further includes :
- S40 Record and store current location information of the battery.
- the battery updates the position information according to a preset time interval during each discharge, and records and stores the position information during the current discharge of the battery.
- the state parameters of the battery that update the location information according to the preset time interval in each discharge process are uploaded to the database of the cloud platform for backup in real time.
- the battery can be controlled to lock or prompt other warning information to prevent the battery from being stolen during use.
- the target product is an electric vehicle
- the recording unit records that the current battery position information exceeds the preset position area, the operation of locking or stopping the power supply may be performed.
- FIG. 4 is a schematic structural diagram of a battery control system according to Embodiment 5 of the present embodiment. As shown in FIG. 4, each unit included in the system is used to execute each step in the embodiment corresponding to FIG. 1. For details, please refer to the related description in the corresponding embodiment in FIG. 1 . For the convenience of explanation, only the parts related to the present embodiment are shown.
- the battery control system includes:
- the detecting unit S51 is configured to acquire a unique identifier of the battery if a battery access discharge circuit is detected;
- the battery has a unique identification, and the unique identification can only be provided by the battery produced by the manufacturer.
- the purpose of the detection unit S51 is to detect that a certain type of product produced by the manufacturer is qualified by the manufacturer.
- the battery, the unique identifier is stored in the database of the manufacturer, and is updated according to the needs of the manufacturer.
- a verification unit S52 configured to perform identity verification on the battery according to the unique identifier
- the unique identifier of the accessed battery is obtained, and if the unique identifier can be obtained, the identity verification is performed. Pass, if the unique identity of the battery cannot be obtained, the identity verification fails.
- the unique identifier of the battery can be read by the radio frequency card reader, or the unique identifier of the battery is a two-dimensional code, and the unique identifier of the battery is read by scanning.
- the identity verification of the unique identity of the battery is specifically comparing the unique identity with the unique identity of the battery stored in the database, and performing identity verification on the battery according to the comparison result.
- the unique identifier of the battery stored in the database is the unique identifier of the battery that meets the standard.
- the battery control unit S53 is configured to control the battery to discharge through the discharge circuit if the identity verification is passed;
- the battery control unit S53 is further configured to control the battery to be in a disabled state if the identity verification fails.
- the battery control unit S53 allows the battery to be discharged through the discharge circuit. If the comparison result is that the unique identifier of the battery stored in the database does not have the same unique identifier as the unique identifier, it is identified as the identity verification failure. At this time, the battery control unit S53 controls the battery to be in a deactivated state. Specifically, the discharge circuit is turned off, and the battery cannot be discharged through the discharge circuit.
- the battery control system further includes:
- the obtaining unit S61 is configured to obtain, from the database, a battery state parameter corresponding to the unique identifier.
- the battery state parameter includes the battery's power, model, date of manufacture, time of the last use, etc.
- the state parameter of the battery is stored in the database set by the manufacturer when the battery is shipped from the factory, and is in the battery.
- the use of the process is constantly updated.
- the acquiring unit S61 may also be connected to the mobile terminal, where the connection may be a wireless communication connection, and perform data transmission with the mobile terminal to acquire a control signal and related data sent by the mobile terminal.
- the display unit S62 is configured to display the battery state parameter.
- the user knows the latest operating state of the battery according to the dynamic display of the battery state parameter by the display unit S62.
- FIG. 6 is a schematic structural diagram of a battery control system according to Embodiment 7 of the present solution, and the battery state parameter further includes a battery duration;
- the length of use of the battery is determined according to a date of shipment of the battery and a date corresponding to the current time;
- the usage duration is determined according to the date of manufacture and the date corresponding to the current time, that is, the number of months or days or hours between the date corresponding to the current date and the current time is calculated; optionally, the duration of use of the battery is also The determination may be made based on the date on which the battery is first detected and the date corresponding to the current time, that is, the number of months or days or hours between the date when the battery is first detected and the date corresponding to the current time.
- the battery control system further includes:
- the prompting unit S70 is configured to output prompt information if the usage duration of the battery is greater than a preset duration.
- the prompt information is output.
- the preset duration is determined according to the specific model of the battery and the detected environmental parameters, for example, the preset duration ratio used in an extreme environment.
- the prompt information of the prompting unit S70 can be displayed through voice prompts or through the screen, thereby avoiding potential safety hazards caused by aging or damage of the battery.
- FIG. 7 is a schematic structural diagram of a battery control system according to Embodiment 8 of the present embodiment. As shown in the figure, the battery control system further includes:
- the recording unit S80 is configured to record and store current location information of the battery.
- the battery updates the position information at a preset time interval during each discharge, and the position information during the current discharge of the battery is recorded and stored by the recording unit S80.
- the state parameters of the battery that update the location information according to the preset time interval in each discharge process are uploaded to the database of the cloud platform for backup in real time.
- the recording unit S80 is further configured to preset a location area of the battery, and if the position information recorded to the battery exceeds the preset position area, output an instruction to the battery control unit, so that the battery control unit S53 performs a lock operation on the battery or prompts other warning information.
- the target product is an electric vehicle
- the target vehicle is positioned by identifying the battery, and if the recording unit S80 records that the current battery position information exceeds the preset position area, the operation may be performed. Operate the vehicle or stop the power supply.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
一种电池控制方法及系统,适用于电池技术领域,通过获取电池所具有的唯一身份标识对电池进行身份校验并获取电池的状态参数,提高了电池的可靠性和安全性,解决了现有电池控制系统中的电池管理设备在检测到电池接入便进行放电存在的安全隐患的问题。
Description
本方案属于电池技术领域,尤其涉及一种电池控制方法及系统。
随着新能源普及程度的不断提高,电池作为一种电能存储介质在新能源领域的重要性也日益凸显,用户对于电池的智能化水平也有着越来越高的要求,如何提高电池的可靠性和安全性成为亟待解决的问题。
在目前的电池控制系统中,电池管理设备只要检测到有电池接入放电电路,便直接控制电池通过放电电路进行放电,这样,当接入的电池不符合标准时会存在较大的安全隐患。
在目前的电池控制系统中,电池管理设备只要检测到有电池接入放电电路,便直接控制电池通过放电电路进行放电,这样,当接入的电池不符合标准时会存在较大的安全隐患。
本方案的目的在于提供一种电池控制方法及系统,通过获取电池所具有的唯一身份标识对电池进行身份校验,以解决现有的电池控制系统无法识别不符合标准的电池,从而导致存在较大的安全隐患的问题。
一方面,本方案提供一种电池控制方法,包括:
若检测到有电池接入放电电路,则获取所述电池的唯一身份标识;
根据所述唯一身份标识对所述电池进行身份校验;
若身份校验通过,则控制所述电池通过所述放电电路进行放电;
若身份校验失败,则控制所述电池处于停用状态。
优选的,所述根据所述唯一身份标识对所述电池进行身份校验,包括:将所述唯一身份标识与数据库中存储的电池的唯一身份标识进行对比,根据对比结果对所述电池进行身份校验;
其中,若对比结果为所述数据库中存储的电池的唯一身份标识中有与所述唯一身份标识相同的唯一身份标识,则识别为身份校验通过;若对比结果为所述数据库中存储的电池的唯一身份标识中没有与所述唯一身份标识相同的唯一身份标识,则识别为身份校验失败。
优选的,所述若身份校验通过,则控制所述电池通过所述放电电路进行放电之后,包括:
从所述数据库中获取所述唯一身份标识对应的电池状态参数;
显示所述电池状态参数。
优选的,所述电池状态参数包括所述电池的使用时长;所述电池的使用时长根据所述电池的出厂日期以及当前时刻对应的日期确定;所述从所述数据库中获取所述唯一身份标识对应的电池状态参数之后,包括:
若所述电池的使用时长大于预设时长,则输出提示信息。
优选的,所述电池状态参数包括所述电池放电过程中的位置信息;所述若身份校验通过,则控制所述电池通过所述放电电路进行放电之后,还包括:
记录并存储所述电池当前放电过程中的位置信息。
另一方面,为了解决上述技术问题,本方案还提出了一种电池控制系统,所述电池控制系统包括:
检测单元,用于若检测到有电池接入放电电路,则获取所述电池的唯一身份标识;
校验单元,用于根据所述唯一身份标识对所述电池进行身份校验;
电池控制单元,用于若身份校验通过,则控制所述电池通过所述放电电路进行放电;
所述电池控制单元还用于若身份校验失败,则控制所述电池处于停用状态。
优选的,所述校验单元具体用于:
将所述唯一身份标识与数据库中存储的电池的唯一身份标识进行对比,根据对比结果对所述电池进行身份校验;其中,若对比结果为所述数据库中存储的电池的唯一身份标识中有与所述唯一身份标识相同的唯一身份标识,则识别为身份校验通过;若对比结果为所述数据库中存储的电池的唯一身份标识中没有与所述唯一身份标识相同的唯一身份标识,则识别为身份校验失败。
优选的,所述电池控制系统还包括:
获取单元,用于从所述数据库中获取所述唯一身份标识对应的电池状态参数;
显示单元,用于显示所述电池状态参数。
优选的,所述电池状态参数包括所述电池的使用时长;所述电池的使用时长根据所述电池的出厂日期以及当前时刻对应的日期确定;所述电池控制系统还包括:
提示单元,用于若所述电池的使用时长大于预设时长,则输出提示信息。
优选的,所述电池控制系统还包括:
记录单元,用于记录并存储所述电池当前的位置信息。
本方案提供了一种电池控制方法及系统,通过获取电池所具有的唯一标识对电池进行身份校验,提高了电池的可靠性和安全性,解决了现有电池控制系统中的电池管理设备在检测到电池接入便进行放电存在的安全隐患的问题。
为了更清楚地说明本方案实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本方案的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本方案实施例1提供的一种电池控制方法的实现流程图;
图2是本方案实施例2提供的一种电池控制方法的实现流程图;
图3是本方案实施例4提供的一种电池控制方法的实现流程图;
图4是本方案实施例5提供的一种电池控制系统的结构示意图;
图5是本方案实施例6提供的一种电池控制系统的结构示意图;
图6是本方案实施例7提供的一种电池控制系统的结构示意图;
图7是本方案实施例8提供的一种电池控制系统的结构示意图。
实施例1
图1是本方案实施例1提供的一种电池控制方法的实现流程图,为了便于描述,仅示出了与本方案实施例相关的部分。
在S11中,若检测到有电池接入放电电路,则获取所述电池的唯一身份标识。
在本实施例中,电池具有唯一身份标识,该唯一身份标识只有本厂家生产的电池才可以具有,目的在于检测本厂家生产的某型号产品中使用的是本厂家确认的合格的电池,该唯一身份标识在本厂家的数据库中都有存储,并且根据本厂家的需要进行更新。
在S12中,根据所述唯一身份标识对所述电池进行身份校验。
在本实施例中,对于目标产品,只要检测到有电池接入到目标产品的放电电路中时,就获取所接入电池的唯一身份标识,如果能够获取到该唯一身份标识,则身份校验通过,如果不能获取电池的唯一身份标识,则身份校验失败。
具体的,可以通过射频读卡器读取电池的唯一身份标识,或者该电池的唯一身份标识为二维码,则通过扫码方式读取电池的唯一身份标识。
在本实施例中,对电池的唯一身份标识进行身份校验具体为将唯一身份标识与数据库中存储的电池的唯一身份标识进行对比,根据对比结果对电池进行身份校验。具体的,数据库中存储的电池的唯一身份标识为符合标准的电池的唯一身份标识。
在S13中,若身份校验通过,则控制所述电池通过所述放电电路进行放电。
在本实施例中,若对比结果为数据库中存储的电池的唯一身份标识中有与唯一身份标识相同的唯一身份标识,则识别为身份校验通过。此时,电池被允许通过放电电路进行放电。
在S14中,若身份验证失败,则控制所述电池处于停用状态。
在本实施例中,若对比结果为数据库中存储的电池的唯一身份标识中没有与唯一身份标识相同的唯一身份标识,则识别为身份校验失败。此时电池处于停用状态,具体的,放电电路被关闭,电池无法通过放电电路进行放电。
实施例2
图2是本方案实施例2提供的一种电池控制方法的实现流程图,相对于实施例1,本实施例在若身份校验通过,则控制电池通过放电电路进行放电之后,还可以包括:
S25:从数据库中获取唯一身份标识对应的电池状态参数。
在本实施例中,电池状态参数包括电池的电量、型号、出厂日期、最近一次使用的时间等。
S26:显示电池状态参数。
具体的,用户根据电池状态参数的动态显示了解电池的最近的运行状态。
实施例3
相对于实施例2,电池状态参数还包括了电池的使用时长;
所述电池的使用时长根据所述电池的出厂日期以及当前时刻对应的日期确定;
在本实施例中,使用时长根据出厂日期以及当前时刻对应的日期进行确定,即计算出厂日期与当前时刻对应的日期之间的月数或者天数或者小时数;可选的,电池的使用时长也可以根据电池第一次被检测到的日期与当前时刻对应的日期进行确定,即计算电池第一次被检测到的日期与当前时刻对应的日期之间的月数或者天数或者小时数。
所述从所述数据库中获取所述唯一身份标识对应的电池状态参数之后,包括:
若所述电池的使用时长大于预设时长,则输出提示信息。
具体的,当电池的使用时长大于预设时长,则输出提示信息,具体的,预设时长根据电池的具体型号以及被检测到的环境参数进行确定,例如在极端环境下使用的预设时长比正常环境下偏小,该提示信息可以通过语音提示或者通过屏幕显示,避免了电池因为老化或者出现损伤造成安全隐患。
实施例4
图3是本方案实施例4提供的一种电池控制方法的实现流程图,相对于实施例2,所述若身份校验通过,则控制所述电池通过所述放电电路进行放电之后,还包括:
S40:记录并存储所述电池当前的位置信息。
在本实施例中,电池在每一次放电过程中都会按照预设的时间间隔进行位置信息更新,记录并存储电池当前放电过程中的位置信息。
可选的,电池在每一次放电过程中按照预设的时间间隔进行位置信息更新的状态参数都实时上传到云平台的数据库中备份。
在本实施例中,电池的位置信息超出预设的位置区域后还可以对电池进行控锁操作或者提示其他警示信息,以避免电池在使用过程中被盗,具体的,当目标产品为电动车辆时,通过识别电池对目标车辆进行定位,若记录单元记录到当前的电池位置信息超出预设位置区域则可以进行对车辆进行控锁或者停止供电等操作。
实施例5
图4是本方案实施例5提供的一种电池控制系统的结构示意图,如图4所示,该系统包括的各单元用于执行图1对应的实施例中的各步骤。具体请参阅图1中所对应的实施例中的相关描述。为了便于说明,仅示出了与本实施例相关的部分。
参见图4,所述电池控制系统包括:
检测单元S51,用于若检测到有电池接入放电电路,则获取所述电池的唯一身份标识;
在本实施例中,电池具有唯一身份标识,该唯一身份标识只有本厂家生产的电池才可以具有,检测单元S51的目的在于检测本厂家生产的某型号产品中使用的是本厂家确认的合格的电池,该唯一身份标识在本厂家的数据库中都有存储,并且根据本厂家的需要进行更新。
校验单元S52,用于根据所述唯一身份标识对所述电池进行身份校验;
在本实施例中,对于目标产品,只要检测到有电池接入到目标产品的放电电路中时,就获取所接入电池的唯一身份标识,如果能够获取到该唯一身份标识,则身份校验通过,如果不能获取电池的唯一身份标识,则身份校验失败。
具体的,可以通过射频读卡器读取电池的唯一身份标识,或者该电池的唯一身份标识为二维码,则通过扫码方式读取电池的唯一身份标识。
在本实施例中,对电池的唯一身份标识进行身份校验具体为将唯一身份标识与数据库中存储的电池的唯一身份标识进行对比,根据对比结果对电池进行身份校验。具体的,数据库中存储的电池的唯一身份标识为符合标准的电池的唯一身份标识。
电池控制单元S53,用于若身份校验通过,则控制所述电池通过所述放电电路进行放电;
所述电池控制单元S53还用于若身份校验失败,则控制所述电池处于停用状态。
在本实施例中,若对比结果为数据库中存储的电池的唯一身份标识中有与唯一身份标识相同的唯一身份标识,则识别为身份校验通过。此时,电池控制单元S53允许电池通过放电电路进行放电。若对比结果为数据库中存储的电池的唯一身份标识中没有与唯一身份标识相同的唯一身份标识,则识别为身份校验失败。此时电池控制单元S53控制电池处于停用状态,具体的,放电电路被关闭,电池无法通过放电电路进行放电。
实施例6
图5是本方案实施例6提供的一种电池控制系统的结构示意图,如图所示,相对于实施例5,所述电池控制系统还包括:
获取单元S61,用于从所述数据库中获取所述唯一身份标识对应的电池状态参数;
在本实施例中,电池状态参数包括电池的电量、型号、出厂日期、最近一次使用的时间等,具体的,电池的状态参数在电池从出厂时便储存于厂家设置的数据库中,并在电池的使用过程中不断进行更新。具体的,获取单元S61还可以与移动终端进行连接,该连接可以是无线通信连接,并与移动终端进行数据传输,获取移动终端发送的控制信号与相关数据。
显示单元S62,用于显示所述电池状态参数。
具体的,用户根据显示单元S62对电池状态参数的动态显示了解电池的最近的运行状态。
实施例7
图6是本方案实施例7提供的一种电池控制系统的结构示意图,电池状态参数还包括了电池的使用时长;
所述电池的使用时长根据所述电池的出厂日期以及当前时刻对应的日期确定;
在本实施例中,使用时长根据出厂日期以及当前时刻对应的日期进行确定,即计算出厂日期与当前时刻对应的日期之间的月数或者天数或者小时数;可选的,电池的使用时长也可以根据电池第一次被检测到的日期与当前时刻对应的日期进行确定,即计算电池第一次被检测到的日期与当前时刻对应的日期之间的月数或者天数或者小时数。
如图所示,相对于实施例6,所述电池控制系统还包括:
提示单元S70,用于若所述电池的使用时长大于预设时长,则输出提示信息。
具体的,当电池的使用时长大于预设时长,则输出提示信息,具体的,预设时长根据电池的具体型号以及被检测到的环境参数进行确定,例如在极端环境下使用的预设时长比正常环境下偏小,该提示单元S70的提示信息可以通过语音提示或者通过屏幕显示,避免了电池因为老化或者出现损伤造成安全隐患。
实施例8
图7是本方案实施例8提供的一种电池控制系统的结构示意图,如图所示,相对于实施例6,所述电池控制系统还包括:
记录单元S80,用于记录并存储所述电池当前的位置信息。
在本实施例中,电池在每一次放电过程中都会按照预设的时间间隔进行位置信息更新,电池当前放电过程中的位置信息被记录单元S80记录并存储。可选的,电池在每一次放电过程中按照预设的时间间隔进行位置信息更新的状态参数都实时上传到云平台的数据库中备份。
记录单元S80还用于预设电池的位置区域,若记录到电池的位置信息超出预设的位置区域后向电池控制单元输出指令,以便电池控制单元S53对电池进行控锁操作或者提示其他警示信息,以避免电池在使用过程中被盗,具体的,当目标产品为电动车辆时,通过识别电池对目标车辆进行定位,若记录单元S80记录到当前的电池位置信息超出预设位置区域则可以进行对车辆进行控锁或者停止供电等操作。
Claims (10)
- 一种电池控制方法,其特征在于,包括:若检测到有电池接入放电电路,则获取所述电池的唯一身份标识;根据所述唯一身份标识对所述电池进行身份校验;若身份校验通过,则控制所述电池通过所述放电电路进行放电;若身份校验失败,则控制所述电池处于停用状态。
- 如权利要求1所述的电池控制方法,其特征在于,所述根据所述唯一身份标识对所述电池进行身份校验,包括:将所述唯一身份标识与数据库中存储的电池的唯一身份标识进行对比,根据对比结果对所述电池进行身份校验;其中,若对比结果为所述数据库中存储的电池的唯一身份标识中有与所述唯一身份标识相同的唯一身份标识,则识别为身份校验通过;若对比结果为所述数据库中存储的电池的唯一身份标识中没有与所述唯一身份标识相同的唯一身份标识,则识别为身份校验失败。
- 如权利要求2所述的电池控制方法,其特征在于,所述若身份校验通过,则控制所述电池通过所述放电电路进行放电之后,包括:从所述数据库中获取所述唯一身份标识对应的电池状态参数;显示所述电池状态参数。
- 如权利要求3所述的电池控制方法,其特征在于,所述电池状态参数包括所述电池的使用时长;所述电池的使用时长根据所述电池的出厂日期以及当前时刻对应的日期确定;所述从所述数据库中获取所述唯一身份标识对应的电池状态参数之后,包括:若所述电池的使用时长大于预设时长,则输出提示信息。
- 如权利要求3所述的电池控制方法,其特征在于,所述若身份校验通过,则控制所述电池通过所述放电电路进行放电之后,还包括:记录并存储所述电池当前的位置信息。
- 一种电池控制系统,其特征在于,所述电池控制系统包括:检测单元,用于若检测到有电池接入放电电路,则获取所述电池的唯一身份标识;校验单元,用于根据所述唯一身份标识对所述电池进行身份校验;电池控制单元,用于若身份校验通过,则控制所述电池通过所述放电电路进行放电;所述电池控制单元还用于若身份校验失败,则控制所述电池处于停用状态。
- 如权利要求6所述的电池控制系统,其特征在于,所述校验单元具体用于:将所述唯一身份标识与数据库中存储的电池的唯一身份标识进行对比,根据对比结果对所述电池进行身份校验;其中,若对比结果为所述数据库中存储的电池的唯一身份标识中有与所述唯一身份标识相同的唯一身份标识,则识别为身份校验通过;若对比结果为所述数据库中存储的电池的唯一身份标识中没有与所述唯一身份标识相同的唯一身份标识,则识别为身份校验失败。
- 如权利要求7所述的电池控制系统,其特征在于,所述电池控制系统还包括:获取单元,用于从所述数据库中获取所述唯一身份标识对应的电池状态参数;显示单元,用于显示所述电池状态参数。
- 如权利要求8所述的电池控制系统,其特征在于,所述电池状态参数包括所述电池的使用时长;所述电池的使用时长根据所述电池的出厂日期以及当前时刻对应的日期确定;所述电池控制系统还包括:提示单元,用于若所述电池的使用时长大于预设时长,则输出提示信息。
- 如权利要求8所述的电池控制系统,其特征在于,所述电池控制系统还包括:记录单元,用于记录并存储所述电池当前的位置信息。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780002039.9A CN109451771A (zh) | 2017-12-14 | 2017-12-14 | 一种电池控制方法及系统 |
PCT/CN2017/116267 WO2019113905A1 (zh) | 2017-12-14 | 2017-12-14 | 一种电池控制方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/116267 WO2019113905A1 (zh) | 2017-12-14 | 2017-12-14 | 一种电池控制方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019113905A1 true WO2019113905A1 (zh) | 2019-06-20 |
Family
ID=65530691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/116267 WO2019113905A1 (zh) | 2017-12-14 | 2017-12-14 | 一种电池控制方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109451771A (zh) |
WO (1) | WO2019113905A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110890773A (zh) * | 2019-12-01 | 2020-03-17 | 苏州易换骑网络科技有限公司 | 一种电池放电控制方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102386652A (zh) * | 2010-08-27 | 2012-03-21 | 株式会社电装 | 电池管理装置 |
CN103117580A (zh) * | 2013-02-19 | 2013-05-22 | 惠州Tcl移动通信有限公司 | 具有电池兼容功能的移动终端及电池使用、充电控制方法 |
CN103647326A (zh) * | 2013-12-20 | 2014-03-19 | 李东风 | 一种电动车辆供电方法及系统 |
CN107134598A (zh) * | 2017-05-11 | 2017-09-05 | 上海容申智能科技有限公司 | 一种具有自我识别功能的电池以及采用该电池的电瓶车 |
-
2017
- 2017-12-14 CN CN201780002039.9A patent/CN109451771A/zh active Pending
- 2017-12-14 WO PCT/CN2017/116267 patent/WO2019113905A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102386652A (zh) * | 2010-08-27 | 2012-03-21 | 株式会社电装 | 电池管理装置 |
CN103117580A (zh) * | 2013-02-19 | 2013-05-22 | 惠州Tcl移动通信有限公司 | 具有电池兼容功能的移动终端及电池使用、充电控制方法 |
CN103647326A (zh) * | 2013-12-20 | 2014-03-19 | 李东风 | 一种电动车辆供电方法及系统 |
CN107134598A (zh) * | 2017-05-11 | 2017-09-05 | 上海容申智能科技有限公司 | 一种具有自我识别功能的电池以及采用该电池的电瓶车 |
Also Published As
Publication number | Publication date |
---|---|
CN109451771A (zh) | 2019-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107671887B (zh) | 机器人自检控制方法、机器人和调度服务器 | |
KR102414226B1 (ko) | 배터리 누설 상태에 기반한 제어 방법 및 전자 장치 | |
CN106331975B (zh) | 用于智能语音交互设备的故障检测方法、装置及系统 | |
CN110116408B (zh) | 机器人安全控制方法、机器人及计算机可读存储介质 | |
US9485655B1 (en) | Providing power control to an electronic device using authentication | |
KR102316436B1 (ko) | 이종의 배터리 셀을 제어하기 위한 방법 및 그 전자 장치 | |
CN108461841B (zh) | 一种整车蓄电池防亏电的控制方法及系统 | |
US20130106604A1 (en) | Home appliance monitoring system and method | |
US20120317651A1 (en) | Information terminal and information leakage prevention method | |
CN107791971A (zh) | 汽车电瓶监测方法、计算机装置、计算机可读存储介质 | |
CN105584372B (zh) | 电池箱识别系统及方法 | |
CN207868814U (zh) | 一种电池控制电路及设备 | |
CN107133056A (zh) | 智能设备升级恢复分区的方法和装置 | |
WO2019113905A1 (zh) | 一种电池控制方法及系统 | |
CN108430062A (zh) | 手机自毁装置及系统 | |
CN107451024A (zh) | 基于bmc芯片实现的硬件可信度量方法 | |
CN110103761B (zh) | 新能源车的充电故障追溯方法与系统、服务器及存储介质 | |
CN105118126A (zh) | 配电站的门禁系统 | |
KR20150146327A (ko) | 무선 충전 장치와 단말과 서비스 제공 장치, 그를 포함하는 무선 충전 시스템, 그 제어 방법 및 컴퓨터 프로그램이 기록된 기록매체 | |
WO2019134138A1 (zh) | 非智能电池的认证方法、设备和存储介质 | |
CN104908709A (zh) | 一种车辆防盗监控方法及终端 | |
TW200538334A (en) | An anti-theft device with wireless communication and identification functions for vehicle | |
CN113129478A (zh) | 一种智能门锁的控制方法及系统 | |
CN115981713A (zh) | 业务系统管理方法、装置、设备和存储介质 | |
CN115183414A (zh) | 空调控制方法、装置、设备和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17934892 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/10/2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17934892 Country of ref document: EP Kind code of ref document: A1 |