WO2019113889A1 - 幽门螺旋杆菌脂多糖外核心八糖的制备方法 - Google Patents

幽门螺旋杆菌脂多糖外核心八糖的制备方法 Download PDF

Info

Publication number
WO2019113889A1
WO2019113889A1 PCT/CN2017/116187 CN2017116187W WO2019113889A1 WO 2019113889 A1 WO2019113889 A1 WO 2019113889A1 CN 2017116187 W CN2017116187 W CN 2017116187W WO 2019113889 A1 WO2019113889 A1 WO 2019113889A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
compound
octasaccharide
arch
nmr
Prior art date
Application number
PCT/CN2017/116187
Other languages
English (en)
French (fr)
Inventor
尹健
胡静
彼特·泽贝格
邹小鹏
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to JP2020529450A priority Critical patent/JP7208995B2/ja
Priority to US16/215,414 priority patent/US10669353B2/en
Publication of WO2019113889A1 publication Critical patent/WO2019113889A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention relates to a preparation method of the outer core octasaccharide of Helicobacter pylori lipopolysaccharide, belonging to the field of sugar chemistry.
  • Helicobacter Pylori was classified as a Class I carcinogen by the World Health Organization in 1994. It is a Gram-negative bacterium that inhabits the surface of epithelial cells and is covered by mucus on the surface of the gastric mucosa. More than 50% of the world's population has Helicobacter pylori infection in the digestive tract, and up to 70% of infected people in developing countries, and 20% to 30% in developed countries. In acute infections, 20% of patients develop ulcers, and 1% of infections may even develop gastric cancer or mucosa-associated lymphoma.
  • H. pylori In 2005, the Nobel Prize in Physiology or Medicine was awarded to two Australian scientists, Warren and Mashall, for their important role in the discovery of Helicobacter pylori in causing digestive tract diseases and gastric cancer.
  • triple therapy which mainly uses a proton pump inhibitor and two antibiotics to remove H. pylori.
  • patients are prone to relapse after medication, and often have adverse reactions such as nausea, diarrhea, pseudomembranous colitis.
  • antibiotic-resistant strains of H. pylori have been continuously discovered, which has also led to a gradual decrease in the efficiency of antibiotic treatment of H. pylori. Therefore, the development of Helicobacter pylori vaccine has always been a hot spot for scientists.
  • the oligosaccharide on the surface of Helicobacter pylori cells is Lipopolysaccharide (LPS), and its LPS consists of O-antigen, core structure, and lipid A.
  • LPS Lipopolysaccharide
  • the core structure of LPS of different serotypes of H. pylori is relatively conservative, so it is a good choice to chemically synthesize its core structure for use as a sugar vaccine for the prevention and treatment of H. pylori infection.
  • the core structure of Helicobacter pylori includes the inner core and the outer core, and the outer core structure is more likely to be exposed to the environment, and plays an important role in the immune response caused by Helicobacter pylori infection.
  • the core structure of Helicobacter pylori lipopolysaccharide currently studied is mainly extracted from inactivated bacteria by biological methods.
  • the defect is that the amount of product obtained by one extraction is usually small, the molecular structure of extraction is not uniform, and the experimental repeatability is poor. Therefore, we selected the outer core octasaccharide of Helicobacter pylori for the chemical synthesis of our target molecules. Through chemical synthesis, we can obtain a large number of target structures with uniform structure and structure.
  • the technical problem to be solved by the present invention is to synthesize a Helicobacter pylori outer core octasaccharide by a chemical method, and the synthesis of five glucose 1,2-alpha glycosidic bonds in the octasaccharide structure is a key step of the target octasaccharide.
  • the invention utilizes the synergistic action of the remote ortho-participation effect, the solvent effect, the temperature effect, the additive and the leaving group to improve the ⁇ selectivity of the glycosylation process. This synergistic solution successfully solved the problem of the formation of glucose alpha glycosidic bonds.
  • the synthetic glucose sugar block, galactose block, heptose sugar block synthetically protected the last target octasaccharide, and finally remove the protection to obtain the target octasaccharide as in Formula 1.
  • the reducing end of the octasaccharide is a linking arm with an amino group, which prepares the glycoconjugate vaccine for the subsequent connexin.
  • R 1 , R 2 , R 3 , R 6 , R 7 , R 8 , R 10 , R 12 , R 14 , R 15 , R 16 , R 18 , R 20 , R 21 , R 23 , R 24 , R 26 Is H or benzyl (Bn);
  • R 5 , R 11 , R 17 , R 19 , R 22 , R 25 is H or 2-naphthylmethyl (Nap);
  • R 4 , R 9 , R 13 , R 27 are Ester group.
  • N is nitrogen.
  • the invention also provides a method for synthesizing the compound of formula I, which specifically comprises the following steps:
  • Step one synthesizing glucose sugar block A, the structure of sugar block A is as shown in formula II, and its terminal base is N-phenyl-trifluoroacetimide ester, which is a leaving group; the remaining substituents R n See formula I.
  • the method for synthesizing the monosaccharide block A comprises: using peracetylated glucose as a starting material, reacting with p-toluenethiophenol under the action of a Lewis acid to form a peracetylthioglycoside compound, and deacetylating under alkaline conditions.
  • the galactose block B is synthesized.
  • the structure of the sugar block B is as shown in formula III, and the terminal group is protected by tert-butyldibutylsilyl (TBS), and the remaining substituents R n are represented by formula I.
  • the method for synthesizing the monosaccharide block B comprises: using the compound 2,3-di-propylidene-6-mercaptoethylthiogalactose as a starting material, and 2-OH protecting with Bz to obtain a 2-OBz compound, 2-
  • the OBz compound opens the propylidene group under the action of an acid to obtain a 2,3-dihydroxy compound, and the 3-OH selectivity of the 2,3-dihydroxy compound is protected by Bn to obtain a 3-OBn compound, 4- 4- of the 3-OBn compound.
  • Step 3 synthesizing the heptose blocks C and D.
  • the C-terminal position of the sugar block is protected by ethylthio group, and R 17 is protected by Nap;
  • the base of the D-end of the sugar block is linker, for example, O- (CH2) n -N (Bn) Cbz, or O- (CH2) n -SBn, or O- (CH2) n -N 3;
  • R 17 is a protective group; and the remaining substituents Rn see formula I.
  • the method for synthesizing the monosaccharide blocks C and D comprises: using 2,3-O-propionyl-4-O-mercaptomannose glucoside as a starting material, and oxidizing by Swern to obtain the corresponding aldehyde. Then, by carbonizing the 6-position carbon chain to obtain a 6-deoxy olefin compound, the olefin compound is subjected to bishydroxylation to obtain a 6,7-di-hydroxy compound, and the 7-OH is utilized as a dibutyltin oxide (Bu 2 ).
  • Step 4 Assembling the trisaccharide donor: synthesizing the trisaccharide block G (formula V) by using a sugar block, the conditional reaction solvent for the glycosylation reaction is Et 2 O/DCM, and adding 10 equivalents of the thiophene to the donor, Use 4
  • the molecular sieve is a desiccant, the reaction temperature is 0 ° C, the reaction time is 3 to 5 h, and the reaction process is argon gas protection.
  • the reaction was monitored with a TLC plate and the reaction was quenched with pyridine (Pyridine) and the product was purified on silica gel column.
  • the G-terminal position of the trisaccharide is N-phenyl-trifluoroacetimide ester as a leaving group, which acts as a glycosyl donor in the octasaccharide assembly.
  • Step 5 Assembling a pentasaccharide receptor: synthesizing a pentasaccharide block H (formula VI) using a sugar block, the conditions of the fluoroglucosylation reaction: the solvent is Et 2 O/DCM, and adding 10 equivalents of thiophene to the donor Phenol, use 4
  • the molecular sieve is a desiccant
  • the reaction temperature is 0 ° C
  • the reaction time 3 to 5 h
  • the reaction process is argon gas protection.
  • the reaction was monitored with a TLC plate. After the reaction was completed, the reaction was quenched with pyridine and the product was purified using silica gel column.
  • Thiosin uses NIS/TMSOTf or NIS/TfOH as a promoter in the glycosylation process, DCM as a solvent, 4 Molecular sieves act as a desiccant.
  • the synthetic pentasaccharide acts as a glycosyl acceptor in the octasaccharide assembly.
  • Step 6 Assemble the octasaccharide receptor: the assembly of the octasaccharide adopts the [3+5] synthesis strategy.
  • the reaction solvent is DCM
  • the accelerator is TMSOTf
  • the reaction temperature is 0 ° C
  • the reaction time is 7 h
  • the reaction process is argon gas protection.
  • the reaction was monitored with a TLC plate and the reaction was quenched with pyridine (Pyridine) and the product was purified on silica gel column.
  • Step 7 Deprotection of octasaccharide: Protect the octasaccharide from deacylation under alkaline conditions. After purification on a silica gel column, use Pd/C, H 2 to remove the reaction for 3 days to remove the aromatic group, and to protect the aromatic group. Thereafter, it was purified by reverse phase C18 column to finally obtain the target octasaccharide, as in Formula VIII.
  • the invention also provides a method for generating a glucose alpha glycosidic bond, wherein the glycosyl donor and the acceptor are co-steamed 2 to 3 times in toluene, and dried DCM or DCM/Et 2 O is added; the substrate concentration is 0.01-0.1 M, Activated 3 Or 4
  • the molecular sieve is a desiccant, and 8 to 10 equivalents of thiophene corresponding to the glycosyl donor is added; after stirring at room temperature for 20 to 30 minutes, it is cooled to -50 to 0 ° C, and TMSOTf is added as a promoter, and the reaction time is 1 to 7 hours; The reaction was terminated by pyridine.
  • the glycosyl donor and acceptor are co-evaporated 3 times in toluene, and dried DCM or a volume ratio of 1:2 DCM/Et 2 O is added; the substrate concentration is 0.02-0.05 M to activate 3 Or 4
  • the molecular sieve is a desiccant, and 10 equivalents of thiophene corresponding to the glycosyl donor is added; after stirring at room temperature for 20-30 min, it is cooled to 0 ° C, TMSOTf is added as a promoter, and the reaction time is 3-5 h; the reaction is terminated with pyridine.
  • the invention is a chemical synthesis of the outer core octasaccharide of Helicobacter pylori.
  • a method which is very advantageous for the formation of glucose alpha glycosidic bonds is found by a protecting group strategy, a solvent effect, and a temperature effect, and the method is applied to the synthesis of the outer core octasaccharide of Helicobacter pylori.
  • the synthesized extracellular octasaccharide of H. pylori is linked to an antigenic protein to form a glycoconjugate, which plays an important role in the development of a prophylactic and therapeutic vaccine against H. pylori.
  • Figure 4 32 assembly of trisaccharide donors.
  • Figure 5 42 assembly of the pentose receptor.
  • the calculation method of the yield of the present invention is "product (mol) / reaction substrate (mol) * 100%.
  • the method for identifying the structure of the compound in the present invention is the measurement of nuclear magnetic resonance spectrum (400M/600M/700M), high resolution mass spectrometry Determination, optical rotation measurement, the results have been listed in the specific synthesis of each compound.
  • peracetylated glucose 1 was used as a starting material, and p-tolylthiophenol was reacted with p-toluenethiophenol under the action of boron trifluoride etherate (BF 3 OEt 2 ) to form peracetylthioglucoside compound 2.
  • the acetyl group was deacetylated under the action of sodium methoxide (NaOCH 3 ), and four hydroxyl groups were exposed.
  • the tetrahydroxy compound and benzaldehyde dimethyl acetal (PhCH(OCH 3 ) 2 ) are catalyzed by p-toluenesulfonic acid (p-TsOH H 2 O) to form a 4,6-benzylidene-protected thioglycoside 3 compound.
  • the 3-OH is selectively protected with 2-methylnaphthalene (2-Nap) to give compound 4, which is protected with benzyl (Bn) to give compound 5.
  • the compound 6 was obtained by selectively opening 4,6-furanyl group with bare borane (BH 3 THF) and trimethylsilyl trifluoromethanesulfonate (TMSOTf) to expose 6-OH.
  • the 6-OH of compound 6 is protected with benzoyl (Bz) to give the fully protected glucose glucoside compound 7.
  • the thioglycoside is hydrolyzed under NBS conditions, the exposed terminal OH, and the terminal group -OH reacts with CF 3 CNPhCl to obtain a glucose block 8 .
  • 2,3-O-propionyl-4-O-mercaptomannose glucoside 9 was used as a starting material, and subjected to Swern oxidation to obtain the corresponding aldehyde compound 10. Then, by extending the 6-position carbon chain, a 6-deoxy olefin compound 11 is obtained.
  • the olefinic compound is dihydroxylated under the action of potassium citrate (K 2 OsO 4 ), potassium ferricyanide (K 3 Fe(CN) 6 ) and potassium carbonate (K 2 CO 3 ) to obtain 6,7-di - hydroxy compound 12.
  • the compound 13 was selectively protected with Nap using dibutyltin oxide (Bu 2 SnO) on 7-OH.
  • 6-OH was protected with Bn to give compound 14.
  • Compound 15 was obtained after removal of the propylidene group by the action of 80% acetic acid, and 3-OH was selectively protected with Nap to obtain a heptose-block 16.
  • the 2-OH of the sugar block 16 is protected with Lev to give the compound 17.
  • Compound 17 is reacted with a five carbon linker to give heptose 18 of the terminal linker.
  • 7-Nap is removed by the action of DDQ to give compound 19.
  • the 7-OH of the compound is protected with an acetyl group to give the compound 20, and finally, Lev is removed by the action of cerium acetate to obtain a heptose building block 21.
  • the methyltriphenylphosphonium bromide was dissolved in THF, the solution was stirred at 0 ° C, n-BuLi (4.7 mL, 11.3 mmol, 2.4 MinTHF) was added to the reaction flask, and the reaction temperature was lowered to -78 ° C after stirring for 30 min.
  • the crude product in the previous step was dissolved in THF (5 mL) and added dropwise to the reaction mixture. The reaction was gradually returned to room temperature and the reaction was continued for 12 h. Saturated NH 4 Cl was added to terminate the reaction, the reaction solution was extracted 3 times with ethyl acetate, dried on anhydrous Na 2 SO 4, and concentrated.
  • Compound 13 Compound 12 (11.2mg, 29.3mmol) was dissolved in toluene (146 mL), the reaction flask was added Bu 2 SnO (10.9g, 44mmol), the reaction was heated reflux for 4h. Half of the toluene was distilled off and the reaction solution was cooled to room temperature. Was added CsF (6.7g, 44mmol), 2 -NapBr (9.7g, 44mmol), CH 3 CN (73.3mL). The reaction solution was allowed to react at 70 ° C overnight. The reaction solution was filtered through Celite and concentrated. Separation and purification by column chromatography (petrole ether / ethyl acetate, 3:1) gave Compound 12 (3.2 g, 74%).
  • Compound 16 Compound 15 (50mg, 87umol) was dissolved in toluene (0.58 mL), a reaction flask was added Bu 2 SnO (24.9mg, 0.1mmol) , the reaction was heated at reflux for 3h. The reaction solution was cooled to room temperature. CsF (15.2 mg, 0.1 mmol), TBAB (32.2 mg, 0.1 mmol), BnBr (11.9 compound [mu]L, 44 mmol). The reaction solution was heated to reflux for three hours. The reaction solution was filtered through Celite and concentrated. Separation and purification by column chromatography (peel ether / ethyl acetate, 3:1) gave Compound 16 (43 mg, 74%).
  • Compound 18 Compound 17 (595 mg, 0.78 mmol) and N-decyl-N-benzyloxycarbonyl-5-amino-pentanol (510 mg, 0.78 mmol) were co-steamed three times with toluene and dry DCM (5 mL) ), 4 Molecular sieves. The mixture was stirred at room temperature for half an hour and then cooled to 0 ° C. NIS (211 mg, 0.94 mmol) and TMSOTf (14 ⁇ L, 78 ummol) were added and the mixture was stirred at 0 ° C for 3 h. The reaction was terminated by the addition of NEt 3 .
  • Compound 19 Compound 18 (420 mg, 0.41 mmol) was dissolved in a mixed solvent of DCM/H 2 O (9:1, v/v, 15.2 mL), the reaction mixture was cooled to 0 ° C, and 2,3-dichloro- 5,6-Dicyano-1,4-benzoquinone (DDQ) (186 mg, 0.82 mmol), and the reaction temperature was raised to room temperature and the reaction was continued for three hours. 3 solution, saturated NaHCO 3 solution, Na dried reaction was diluted with DCM, washed successively with a 10% solution of Na 2 S 2 O 2 SO 4 , filtered and concentrated.
  • DDQ 2,3-dichloro- 5,6-Dicyano-1,4-benzoquinone
  • Compound 25 Compound 24 (4.2 g, 10.1 mmol) was dissolved in toluene (60 mL), and then, to the reaction flask, Bu 2 SnO (3.8 g, 15.2 mmol) was added, and the reaction mixture was heated to reflux for 2 h. The reaction solution was cooled to room temperature. TBAI (5.6 g, 15.2 mmol), BnBr (1.8 g, 15.2 mmol) was added. The reaction solution was allowed to react at 65 ° C overnight. The reaction solution was filtered through celite and concentrated. Separation and purification by column chromatography (petrole ether / ethyl acetate, 6:1) gave Compound 25 (4.5 g, 87%).
  • the conditions of the glycosylation reaction are as follows: the glycosyl donor and the acceptor are co-evaporated three times in toluene. Add dry DCM or DCM/Et 2 O (v/v, 1:2) reaction concentration 0.02-0.05M, activated 3 Or 4 Molecular sieves. The thiophene corresponding to 10 equivalents of the glycosyl donor was added, and the mixture was stirred at room temperature for 30 min, cooled to 0 ° C, and TMSOTf was added as a promoter, and the reaction time was 3-5 h. After the reaction was over, the reaction was quenched with pyridine. The reaction mixture was filtered, diluted with DCM and washed with saturated with NaHCO 3. Anhydrous Na 2 SO 4 was dried and concentrated. Separation by column chromatography.
  • the basic conditions for deacylation were as follows: the starting material was dissolved in DCM/MeOH (v/v, 1:1) at a reaction concentration of 0.05 M, and 0.5 equivalent of MeONa (5MinMeOH) was added. The reaction temperature was room temperature, and the TLC plate showed the end of the reaction. The pH of the reaction mixture was 7 with Amerlite IR 120 (H + ) resin. Filter, concentrate and purify by column chromatography.
  • Compound 30 Compound 29 (940 mg, 0.81 mmol) was dissolved in a mixed solvent of DCM/MeOH (9:1, v/v, 18.mL), and the reaction mixture was cooled to 0 ° C, and 2, 3-dichloro-5 was added. , 6-dicyano-1,4-benzoquinone (DDQ) (545 mg, 2.4 mmol), the reaction was allowed to proceed to room temperature and the reaction was continued for 10 h. 3 solution, saturated NaHCO 3 solution, Na dried reaction was diluted with DCM, washed successively with a 10% solution of Na 2 S 2 O 2 SO 4 , filtered and concentrated.
  • DDQ 6-dicyano-1,4-benzoquinone
  • Trisaccharide donor 32 (38.0 mg, 0.015 mmol) and pentasaccharide acceptor 39 (29.4 mg, 0.01 mmol) were co-evaporated three times with toluene.
  • Add dry DCM (1.0 mL) and add activated 4 Molecular sieves, the solution was stirred at room temperature for 30 min, cooled to 0 ° C, TMSOTf (0.05MinDCM, 30 uL, 1.5 umol) was added and stirred at 0 ° C for 6 h. After the reaction was over, the reaction was quenched with pyridine. The reaction mixture was filtered, diluted with DCM after addition of saturated NaHCO 3 washed with. Anhydrous Na 2 SO 4 was dried and concentrated.
  • Compound 41 is a structure of formula I wherein R n is all H.
  • Compound 40 (10 mg, 2.3 ummol) was dissolved in MeOH / THF (1:1, v/v, 1 mL), and 15% NaOH (100 uL) was added and stirred for 1 h, and MeONa (50 mg) was added. The solution was stirred at room temperature for 12 h, and the reaction mixture was neutralized to a pH of 7 by adding Amberlite IR 120H + resin. The mixture was concentrated by filtration and purified by column chromatography to give a semi-deprotected product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种幽门螺旋杆菌脂多糖外核心八糖的制备方法,属于糖化学领域。幽门螺旋杆菌外核心八糖的结构为α-D-Glc-(1-3)-α-D-Glc-(1-4)-β-D-Gal-(1-7)-D-α-D-Hep[α-D-Glc-(1-6)-α-D-Glc-(1-6)-α-D-Glc-(1-2)-D-α-D-Hep]-Linker。该结构由葡萄糖、半乳糖、七庚糖三种单糖构成。其中含有5个葡萄糖α糖苷键,1个半乳糖β糖苷键和两个七庚糖α糖苷键。所述制备方法利用远程邻参与效应,溶剂效应,温度效应,添加剂以及离去基团的协同作用制备了该八糖。八糖的还原端还可接有连接臂用于将来与蛋白质连接制成糖缀合物,用于免疫学研究。

Description

幽门螺旋杆菌脂多糖外核心八糖的制备方法 技术领域
本发明涉及幽门螺旋杆菌脂多糖外核心八糖的制备方法,属于糖化学领域。
背景技术
幽门螺旋杆菌(Helicobacter Pylori,H.P.)在1994年被世界卫生组织列为I类致癌因子,它是一种革兰氏阴性菌,栖息在上皮细胞表面,被胃粘膜表面的粘液覆盖。世界上超过50%的人口上消化道感染了幽门螺旋杆菌,在发展中国家高达70%感染人群,在发达国家也达到20%~30%。急性感染中20%的病人发展为溃疡,1%的感染着甚至可能发展为胃癌或者粘膜相关淋巴瘤。2005年诺贝尔生理或医学奖授予澳大利亚两位科学家Warren和Mashall以表彰他们对于发现幽门螺旋杆菌在引发消化道疾病以及胃癌中的重要作用。目前最普遍的治疗幽门螺旋杆菌的方法是“三联疗法”,它主要利用质子泵抑制剂以及两种抗生素对幽门螺旋杆菌进行清除。但是用药后患者容易复发,且常常出现恶心、腹泻、假膜性肠炎等不良反应。伴随着抗生素的频繁使用,抗抗生素的幽门螺旋杆菌的菌株不断被发现,这也使得抗生素治疗幽门螺旋杆菌的效率逐渐降低。所以对于幽门螺旋杆菌疫苗的开发一直都是科学家研究的热点。
目前市场上还没有能防止幽门螺旋杆菌感染或者治疗幽门螺旋杆菌的疫苗存在。糖类疫苗作为疫苗开发的新的目标分子,越来越被科学家们重视,细菌表面的多糖结构往往对于细菌的致病性以及人体内免疫识别具有重要的作用,所以通过化学方法合成幽门螺旋杆菌表面寡多糖用于开发幽门螺旋杆菌疫苗具有非常重要的意义。
幽门螺旋杆菌细胞表面的寡糖为脂多糖(Lipopolysacchardie,LPS),它的LPS由O-抗原,核心结构,和脂质A三部分组成。幽门螺旋杆菌总共有6中血清型,O1-O6,它们的区别最主要是O-抗原糖部分的不同。不同血清型幽门螺旋杆菌的LPS的核心结构相对比较保守,所以通过化学合成其核心结构用作预防和治疗幽门螺旋杆菌感染的糖疫苗是非常好的一个选择。幽门螺旋杆菌核心结构包括内核心和外核心,外核心结构更容易暴露于环境,对于幽门螺旋杆菌感染引起体内的免疫反应有非常重要的作用。
目前研究的幽门螺旋杆菌脂多糖核心结构主要利用生物法从灭活的细菌中提取,其缺陷在于通常一次提取得到的产物量少,提取的分子结构也不均一,实验重复性差。所以我们选取幽门螺旋杆菌外核心八糖为我们的目标分子进行化学全合成,通过化学合成,我们可以大量的得到分子均一、结构确定的目标结构。
发明内容
本发明所要解决的技术问题是通过化学方法合成幽门螺旋杆菌外核心八糖,这个八糖结构中含有五个葡萄糖1,2-α糖苷键的合成是目标八糖的关键步骤。本发明利用远程邻基参与效应、溶剂效应、温度效应,添加剂和离去基团的协同作用,提高糖基化过程的α选择性。此协同作用成功的解决了葡萄糖α糖苷键的形成的难题。利用合成的葡萄糖糖砌块,半乳糖糖砌块,庚糖糖砌块,合成保护的最后的目标八糖,最后脱去保护得到目标八糖如式1。同时,八糖的还原端为带有氨基的连接臂,为以后连接蛋白制成糖缀合物疫苗做了准备。
Figure PCTCN2017116187-appb-000001
其中,R为-(CH2)n-N-Y1Y2或者-(CH2)n-N-Y1Y2(linker),n=1~10,Y1为H或者为卞基(Bn),Y2为H或者卞甲氧羰基(Cbz)。R1,R2,R3,R6,R7,R8,R10,R12,R14,R15,R16,R18,R20,R21,R23,R24,R26为H或者苄基(Bn);R5,R11,R17,R19,R22,R25为H或者2-萘甲基(Nap);R4,R9,R13,R27为酯基。N为氮。
本发明还提供式Ⅰ所示化合物的合成方法,具体包括以下步骤:
步骤一,合成葡萄糖糖砌块A,糖砌块A的结构如式Ⅱ所示,其端基位为N-苯基-三氟乙酰亚胺酯,为离去基团;其余取代基Rn参见式Ⅰ。
具体地,单糖砌块A的合成方法包括:以全乙酰化葡萄糖为起始原料,在路易斯酸的作用下与对甲苯硫酚作用生成全乙酰硫糖苷化合物,在碱性条件下脱去乙酰基,裸露四个羟基,所得四羟基化合物与苯甲醛二甲缩醛(PhCH(OCH3)2)在对甲苯磺酸(p-TsOHH2O)的催化下生成4,6-苄叉基保护的硫糖苷化合物;把4,6-苄叉基保护的硫糖苷化合物的3-OH用2-甲基萘(2-Nap)保护,2-OH用苄基(Bn)保护后得到全 保护化合物,然后在硼烷(BH3THF)和路易斯酸的作用下选择性打开4,6-卞叉基,裸露6-OH,裸露的6-OH再用酰基保护,得到全保护的葡萄糖硫糖苷化合物,全保护的葡萄糖硫糖苷化合物在NBS或者NIS条件下水解,裸露端基位OH,端基位-OH与CF3CNPhCl反应,得到葡萄糖砌块A。
Figure PCTCN2017116187-appb-000002
步骤二,合成半乳糖糖砌块B,糖砌块B的结构如式Ⅲ所示,其端基位为叔丁基二丁基硅烷基(TBS)保护,其余取代基Rn参见式Ⅰ。
具体地,单糖砌块B的合成方法包括:以化合物2,3-二-丙叉-6-卞基乙硫半乳糖为起始原料,2-OH用Bz保护,得到2-OBz化合物,2-OBz化合物在酸作用下打开丙叉基,得到2,3-二羟基化合物,2,3-二羟基化合物的3-OH选择性的用Bn保护得到3-OBn化合物,3-OBn化合物的4-OH用Lev保护,得到4-Lev硫糖苷化合物,4-Lev硫糖苷化合物在NBS条件下水解,裸露端基位OH,端基位-OH与叔丁基二甲基氯硅烷(TBSCl)反应,得到端基TBS全保护的半乳糖,在醋酸肼作用下脱去Lev得到半乳糖砌块B。
Figure PCTCN2017116187-appb-000003
步骤三,合成庚糖砌块C、D,如式Ⅳ所示,糖砌块C端基位为乙硫基保护,R17为Nap保护;糖砌块D端基位为linker,例如O-(CH2)n-N(Bn)Cbz,或者O-(CH2)n-SBn,或者O-(CH2)n-N3;R17为酰基保护;其余取代基Rn参见式I。
具体地,单糖砌块C,D的合成方法包括:以2,3-O-丙叉基-4-O-卞基甘露乙硫糖苷为起始原料,经过swern氧化,得到相应的醛,然后经过witting烯化延长6位的碳链,得到6位脱氧的烯烃化合物,烯烃化合物经过双羟基化得到6,7-二-羟基化合物,在7-OH上利用二丁基氧化锡(Bu2SnO)选择性的用Nap保护得到7-Nap化合物,6-OH用Bn保护得到全保护化合物;将全保护化合物在80%的醋酸作用下脱去丙叉基后得到2,3-二-羟基化合物,利用二丁基氧化锡(Bu2SnO)和Nap选择性的保护3-OH,得到庚糖砌块C;糖砌块C的2-OH用Lev保护后得到2-Lev化合物,2-Lev化合物与连接臂(linker)反 应,得到端基位连接臂的庚糖化合物,7-Nap在DDQ的作用下离去得到7-OH化合物,7-OH化合物用乙酰基保护得到化合物7-OAc,最后在醋酸肼的作用下脱去Lev得到庚糖砌块D。
Figure PCTCN2017116187-appb-000004
步骤四,组装三糖供体:利用糖砌块合成三糖砌块G(式Ⅴ),糖基化反应的条件反应溶剂为Et2O/DCM,加入相当于供体10当量的噻酚,使用4
Figure PCTCN2017116187-appb-000005
分子筛为干燥剂,反应温度为0℃,反应时间为3~5h,反应过程都为氩气保护。反应用TLC板监控,当反应结束后用吡啶(Pyridine)淬灭反应,产物用硅胶柱纯化。三糖G端基位为N-苯基-三氟乙酰亚胺酯为离去基团,在八糖组装中作为糖基供体。
Figure PCTCN2017116187-appb-000006
(取代基Rn参见式Ⅰ)
步骤五,组装五糖受体:利用糖砌块合成五糖砌块H(式Ⅵ),氟糖苷糖基化反应的条件:溶剂为Et2O/DCM,加入相当于供体10当量的噻酚,使用4
Figure PCTCN2017116187-appb-000007
分子筛为干燥剂,反应温度为0℃,反应时间为3~5h,反应过程都为氩气保护。反应用TLC板监控,当反应结束后用吡啶淬灭反应,产物用硅胶柱纯化。硫糖苷在糖基化反应过程使用NIS/TMSOTf或者NIS/TfOH作为促进剂,DCM作为溶剂,4
Figure PCTCN2017116187-appb-000008
分子筛作为干燥剂。合成的五糖在八糖组装中作为糖基受体。
Figure PCTCN2017116187-appb-000009
(取代基Rn参见式Ⅰ)
步骤六,组装八糖受体:八糖的组装采取[3+5]合成策略。反应溶剂为DCM,促进剂为TMSOTf,反应温度为0℃,反应时间为7h,反应过程都为氩气保护。反应用TLC板监控,当反应结束后用吡啶(Pyridine)淬灭反应,产物用硅胶柱纯化。
Figure PCTCN2017116187-appb-000010
步骤七,八糖脱保护:保护八糖在碱性条件下脱去酰基,经过硅胶柱纯化后,使用Pd/C,H2脱去反应3天脱去芳香基团,待芳香基团全托保护后,用反相C18柱纯化,最后得到目标八糖分,如式Ⅷ。
Figure PCTCN2017116187-appb-000011
本发明还提供一种生成葡萄糖α糖苷键的方法,糖基供体和受体在甲苯中共蒸2~3次,加入干燥的DCM或者DCM/Et2O;底物浓度为0.01-0.1M,以活化的3
Figure PCTCN2017116187-appb-000012
或者4
Figure PCTCN2017116187-appb-000013
分子筛为干燥剂,加入相当于糖基供体8~10当量的噻酚;在室温下搅拌20~30min后冷却至-50~0℃,加入TMSOTf为促进剂,反应时间为1~7h;用吡啶终止反应。
具体地,糖基供体和受体在甲苯中共蒸3次,加入干燥的DCM或者体积比为1:2的DCM/Et2O;底物浓度为0.02-0.05M,以活化的3
Figure PCTCN2017116187-appb-000014
或者4
Figure PCTCN2017116187-appb-000015
分子筛为干燥剂,加入相当于糖基供体10当量的噻酚;在室温下搅拌20~30min后冷却至0℃,加入TMSOTf为促进剂,反应时间为3-5h;用吡啶终止反应。
本发明有益效果:
本发明是通过化学合成得幽门螺旋杆菌外核心八糖。本发明中通过保护基策略,溶剂效应,温度效应,发现了一种非常有利于葡萄糖α糖苷键形成的方法,并将此方法应用到幽门螺旋杆菌外核心八糖的合成中。合成的幽门螺旋杆菌外核心八糖与抗原蛋白相连,制成糖缀合物,对于发展预防和治疗幽门螺旋杆菌疫苗具有重要的作用。
附图说明
图1:糖砌块8的合成。
图2:糖砌块21的合成。
图3:糖砌块28的合成。
图4:三糖供体的32组装。
图5:五糖受体的42组装。
图6:目标八糖41的合成。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
本发明的产率的计算方法为“产物(mol)/反应底物(mol)*100%。本发明中化合物结构鉴定的方法为核磁共振图谱的测定(400M/600M/700M),高分辨质谱测定,旋光值测定,结果已在每个化合物的具体合成中列出。
实施例1
糖砌块8的合成如图1:
如图1所示,以全乙酰化葡萄糖1为起始原料,在三氟化硼乙醚(BF3OEt2)的作用下与对甲苯硫酚作用生成全乙酰硫糖苷化合物2。乙酰基在甲醇钠(NaOCH3)作用下脱去乙酰基,裸露四个羟基。四羟基化合物与苯甲醛二甲缩醛(PhCH(OCH3)2)在对甲苯磺酸(p-TsOH H2O)的催化下生成4,6-苄叉基保护的硫糖苷3化合物。选择性的把3-OH用2-甲基萘(2-Nap)保护得到化合物4,2-OH用苄基(Bn)保护后得到化合物5。利用硼烷(BH3THF)和三氟甲磺酸三甲基硅脂(TMSOTf)作用下选择性打开4,6-卞叉基,裸露6-OH得到化合物6。化合物6的6-OH用苯甲酰基(Bz)保护,得到全保护的葡萄糖硫糖苷化合物7。硫糖苷在NBS条件下水解,裸露端基位OH,端基位-OH与CF3CNPhCl反应,得到葡萄糖砌块8。
具体试验操作和步骤:
化合物2:全乙酰葡萄糖1(10.0g,25.6mmol)溶解在DCM(128mL)。在0℃下加入对甲苯硫酚(4.8g,38,6mmol)和BF3·OEt2(4.8mL,38.4mmol)。反应液恢复到室温,搅拌12个小时。反应液用DCM稀释后用饱和NaHCO3洗涤,有机相拥无水Na2SO4干燥,浓缩后用柱层析分离纯化(石油醚/乙酸乙酯,3:1),得到化合物2(10.1g,87%)。[α]22 D=11.6(c1.0,CH3Cl);1H NMR(400MHz,Chloroform-d)δ=7.42–7.35(m,2H,Ar),7.12(m,J=7.8,2H,Ar),5.20(dd,J=9.4,9.4Hz,1H,H-3),5.02(dd,J=9.4,9.8Hz,1H,H-4),4.93(dd,J=10.0,9.4Hz,1H,H-2),4.63(d,J=10.0Hz,1H,H-1),4.25-4.13(m,2H,H-6a,6b),3.70(ddd,J=9.8,4.8,2.7Hz,1H,H-5),2.35(s,3H,SPhCH3),2.09(s,3H,OAc),2.08(s,3H,OAc),2.01(s,3H,OAc),1.98(s,3H,OAc).13C NMR(101MHz,CDCl3)δ=170.6,170.2,169.4,169.2, 138.8,133.8,129.7,127.5,85.8(C-1),75.8,74.0,69.9,68.2,62.1,21.2,20.8,20.7,20.6,20.6;HRMS(ESI)m/z calcd for C21H26O9SNa[M+Na]+477.1190,found 477.1198.
化合物3:将化合物2(7.3g,16.1mmol)溶于甲醇(108mL)。加入MeONa(173mg,3.2mmol),反应在室温下搅拌1h。反应液用IR-120树脂(H+)中和。过滤浓缩,粗产品与甲苯共沸2次。将得到的粗产物溶解在DMF(54mL)中,加入对甲基苯甲醛二甲缩醛(3.6mL,24.1mmol)和一水合对甲苯磺酸(456mg,2.4mmol),反应在65℃下搅拌12h,用NEt3淬灭反应。浓缩后用柱层析纯化(石油醚/乙酸乙酯,1:1),得到化合物3(5.4g,89%)。[α]22 D=25.6(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ=7.50–7.41(m,4H,Ar),7.38–7.32(m,3H,Ar),7.16–7.11(m,2H,Ar),5.51(s,1H,ArCH),4.54(d,J=9.7Hz,1H,H-1),4.36(m,1H,H-6a),3.87–3.67(m,2H,H-6b,H-4),3.52–3.44(m,2H,H-3,H-2),3.41(m,1H,H-5),2.93(d,J=2.2Hz,1H,OH),2.75(d,J=2.4Hz,1H,OH),2.36(s,3H,SPhCH3);13C NMR(101MHz,CDCl3)δ=138.9,136.9,133.7,129.9,129.3,128.3,127.2,126.3,101.9,88.7(C-1),80.2,74.5,72.5,70.5,68.6,21.2.HRMS(ESI)m/z calcd for C20H22O5SNa[M+Na]+397.1080,found 397.1078.
化合物4:将化合物3(498mg,1.33mmol)和Bu2SnO(397mg,1.6mmol)溶解在无水甲苯(4.3mL)中加热回流6个小时。混合物冷却到室温,浓缩。粗产物溶解在DMF(6.7mL)中,然后加入CsF(260mg,1.73mmol),TBAB(560mg,1.73mmol),2-NapBr(350mg,1.6mmol),反应液在70℃下搅拌12h。原料反应完后减压浓缩,溶解于二氯甲烷,一次用水和饱和食盐水洗涤。用无水MgSO4干燥,浓缩,柱层析纯化(石油醚/乙酸乙酯,5:1)得到化合物4(417mg,61%)。[α]22 D=-33.8(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ7.89–7.59(m,4H,Ar),7.51–7.41(m,7H,Ar),7.39–7.34(m,3H,Ar),7.12(m,J=7.9Hz,2H,Ar),5.57(s,1H,ArCH),5.09(d-like,J=11.8Hz,1H,ArCH),4.96(d-like,J=11.8Hz,1H,ArCH),4.55(d,J=9.7Hz,1H,H-1),4.37(dd,J=10.5,4.9Hz,1H,H-6a),3.78(dd,J=10.5,10.5Hz,1H,H-6b),3.66(m,1H,H-4),3.66(dd,J=9.2,9.2Hz,1H,H-3),3.56–3.42(m,2H,H-2,H-5),2.57(s,1H,OH),2.34(s,3H,SPhCH3).13C NMR(101MHz,CDCl3)δ=138.8,137.2,135.7,133.8,133.3,133.1,129.8,129.0,128.3,128.2,127.9,127.7,127.2,126.9,126.1,126.0,126.0,125.9,101.4,88.7(C-1),81.5,81.1,74.8,72.3,70.8,68.7.HRMS(ESI)m/z calcd for C31H30O5SNa[M+Na]+537.1706,found 537.1701.
化合物5:将化合物4(130mg,0.25mmol)溶解在无水DMF(1.4mL),溶液降温到0℃。
加入NaH(22.4mg,0.56mmol),然后加入BnBr(49.9uL,0.42mmol),反应液在室温下搅拌3.5h。待反应物消失后,溶液冷却到0℃,逐滴加入水淬灭反应。反应液用DCM萃取3次,有机相用无水Na2SO4干燥,浓缩。柱层析分离纯化(石油醚/乙酸乙酯,6:1),得到化合物5(130mg,86%)。[α]22 D=-9.3(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ7.86–7.62(m,4H,Ar),7.52–7.27(m,15H,Ar),7.11(d,J=7.9Hz,2H,Ar),5.60(s,1H,ArCH),5.08(d-like,J=11.4Hz,1H,ArCH),4.93(d-like,J=11.4Hz,1H,ArCH),4.90(d-like,J=10.4Hz,1H,ArCH),4.83(d-like,J=10.4Hz,1H,ArCH),4.70(d,J=9.8Hz,1H,H-1),4.38(dd,J=10.3,5.0Hz,1H,H-6a),3.88(dd,J=9.4,8.3Hz,1H,H-3),3.80(dd,J=10.3,9.8Hz,1H,H-6b),3.71(dd,J=9.4,9.4Hz,1H,H-4),3.51(dd,J=9.8,8.3Hz,1H,H-2),3.45(ddd,J=9.7,9.8,4.9Hz,1H,H-5),2.33(s,3H,SPhCH3);13C NMR(101MHz,CDCl3)δ138.2,138.1,137.3,135.8,133.3,133.0,133.0,129.8,129.2,129.0,128.4,128.3,128.2,128.1,127.9,127.8,127.6,126.8,126.2,126.0,126.0,125.8,101.2,88.6(C-1),83.0,81.5,80.5,75.8,75.3,70.2,68.7,21.1.HRMS(ESI)m/z calcd for C38H36O5SNa[M+Na]+627.2176,found 627.2171.
化合物5’:化合物5(768mg,1.1mmol)溶解在DCM/H2O(9:1,v/v,48.9mL)的混合溶剂中,反应液冷却至0℃,加入2,3-二氯-5,6-二氰基-1,4-苯醌(DDQ)(186mg,0.82mmol),反应温度升高至室温继续反应4h。反应液用DCM稀释,用溶液依次用10%的Na2S2O3溶液,饱和的NaHCO3溶液,Na2SO4干燥,过滤浓缩。柱层析分离纯化(石油醚/乙酸乙酯,10:1)得到化合物5’(275mg,92%),结构鉴定数据已有文献报道。
化合物6:将化合物(455mg,0.75mmol)溶解在干燥的DCM(3.75mL)中。溶液冷却到0℃,加入BH3·THF(1M,3.75mL),在0℃下搅拌10分钟。逐滴加入TMSOTf(20.3μL,0.11mmol),反应液恢复到室温搅拌1h。原料消失后,加入饱和的NaHCO3终止反应。混合液用DCM萃取3次。用无水Na2SO4干燥,浓缩,过滤。柱层析分离纯化(石油醚/乙酸乙酯,5:1)得到化合物5(441mg,97%)。[α]22 D=17.1(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ7.86–7.62(m,4H,Ar),7.51–7.35(m,6H,Ar),7.36–7.24(m,8H,Ar),7.12(d,J=7.9Hz,2H,Ar),5.06(d-like,J=11.2Hz,1H,ArCH),5.01(d-like,J=11.2Hz,1H,ArCH),4.95(d-like,J=10.3Hz,1H,ArCH),4.87(d-like,J=11.0Hz,1H,ArCH),4.78(d-like,J=10.3Hz,1H,ArCH),4.67(d-like,1H,11.0Hz,ArCH),4.66(d,J=9.8Hz,1H,H-1),3.88(ddd,J=12.0,6.3,2.7Hz,1H,H-6a),3.77(dd,J=9.1,8.9Hz,1H,H-3),3.70(ddd,J=12.0,7.3,4.9Hz,1H,H-6b),3.59(dd,J=9.1,9.5Hz,1H,H-4),3.49(dd,J=9.8,8.9Hz,1H,H-2),3.38(ddd,J=9.5,4.9,2.7Hz,1H,H-5),2.34(s,3H,SPhCH3),1.91(dd,J=6.3,7.3Hz,1H,OH).13C NMR(101MHz,CDCl3)δ138.1,138.0,137.9,135.8,133.3,133.0,132.7,129.8,129.5,128.5, 128.4,128.2,128.0,127.9,127.9,127.9,127.7,126.5,126.1,125.9,125.8,87.8(C-1),86.6,81.2,79.3,77.7,75.8,75.5,75.1,62.2,21.1.HRMS(ESI)m/z calcd for C38H38O5SNa[M+Na]+629.2332,found 629.2324.
化合物7:将化合物5(194mg,0.33mmol)溶解在吡啶(3.2mL)中,在0℃搅拌5min。加入BzCl(74μL,0.64mmol)和催化量的DMAP。反应液在室温下搅拌4h。反应液一次用饱和NaHCO3,饱和食盐水洗涤。无水Na2SO4干燥,浓缩。柱层析纯化(石油醚/乙酸乙酯,5:1)得到化合物7(224mg,98%)。[α]22 D=9.1(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ8.13–7.85(m,2H,Ar),7.87–7.65(m,4H,Ar),7.65–7.50(m,1H,Ar),7.52–7.38(m,9H,Ar),7.37–7.29(m,3H,Ar),7.28–7.17(m,5H,Ar),7.04–6.66(m,2H,Ar),5.08(d-like,J=11.0Hz,1H,ArCH),5.01(d-like,J=11.0Hz,1H,ArCH),4.97(d-like,J=10.3Hz,1H,ArCH),4.90(d-like,J=10.8Hz,1H,ArCH),4.77(d-like,J=10.3Hz,1H,ArCH),4.68(dd,J=11.9,1.6Hz,1H,H-6a),4.64(d-like,J=10.8Hz,1H,ArCH),4.64(d,J=9.7Hz,1H,H-1),4.46(dd,J=11.9,4.5Hz,1H,H-6b),3.81(dd,J=8.8,8.8Hz,1H,H-3),3.70-3.63(m,2H,H-4,H-5),3.52(dd,J=9.7,8.8Hz,1H,H-2),2.26(s,3H,SPhCH3);13C NMR(101MHz,CDCl3)δ166.1,138.1,137.9,137.6,135.7,133.3,133.1,133.1,133.0,130.0,129.8,129.6,129.2,128.5,128.5,128.4,128.3,128.2,128.1,128.0,127.9,127.9,127.7,126.7,126.1,126.0,125.9,87.5(C-1),86.8,80.8,77.7,76.1,75.5,75.3,75.2,63.6,21.1.HRMS(ESI)m/z calcd for C45H42O6SNa[M+Na]+733.2594,found 733.2589.
化合物8:将化合物7(100mg,0.14mmol)溶解于DCM/H2O(v/v,10:1,7mL),将溶液冷却到0℃,加入TfOH(1.2uL,0.014mmol)。反应在0℃下搅拌3h。加入NEt3终止反应。反应液用饱和的NaHCO3洗涤,无水Na2SO4干燥,浓缩。柱层析纯化得到中间产物(78.6mg)。把中间产物溶于干燥的DCM(3.75ml)中,反应液冷却到0℃,加入N-苯基三氟乙酰氯(97μl,0.365mmol)和DBU(58μl,0.39mmol)。反应在室温下搅拌2h,浓缩反应液,柱层析纯化(石油醚/乙酸乙酯,20:1)得到化合物8(96mg,88%)。[α]22 D=71.3(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ8.14–8.00(m,5H),7.94–7.73(m,12H),7.68–7.07(m,37H),6.87–6.67(m,5H),6.55(bs,1H,H-1α),5.80(bs,1H,H-1β),5.27–4.80(m,13H,ArCH),4.75–4.55(m,8H,ArCH,H-6α,H-6β),4.26-4.12(m,2H),3.94–3.63(m,8H).13C NMR(101MHz,CDCl3)δ166.2,166.1,143.5,143.4,137.7,137.6,137.5,137.4,135.8,135.6,133.4,133.3,133.2,133.2,133.1,129.8,129.7,129.1,128.8,128.7,128.6,128.6,128.6,128.5,128.4,128.3,128.3,128.3,128.2,128.2,128.1,128.1,128.0,128.0,128.0,127.8,127.7,127.7,126.9,126.7,126.2,126.2,126.1,126.1,126.0,126.0,125.9,125.3,124.4, 124.2,119.4,119.3,97.0(C-1β),93.0(C-1α),84.5,81.6,80.8,79.5,77.3,76.1,75.9,75.5,75.5,75.3,75.2,73.9,73.4,71.7,63.2,63.0,21.5.HRMS(ESI)m/z calcd for C46H40F3NO7Na[M+Na]+798.2649。
实施例2
糖砌块21的合成,路线为图2。
如图2所示,以2,3-O-丙叉基-4-O-卞基甘露乙硫糖苷9为起始原料,经过swern氧化,得到相应的醛化合物10。然后经过witting延长6位的碳链,得到6位脱氧的烯烃化合物11。烯烃化合物在锇酸钾(K2OsO4),铁氰酸钾(K3Fe(CN)6)和碳酸钾(K2CO3)的共同作用下进行双羟基化,得到6,7-二-羟基化合物12。在7-OH上利用二丁基氧化锡(Bu2SnO)选择性的用Nap保护化合物13。6-OH用Bn保护得到化合物14。在80%的醋酸作用下脱去丙叉基后得到化合物15,选择性的利用Nap保护3-OH,得到庚糖砌块16。糖砌块16的2-OH用Lev保护后得到化合物17。化合物17与五碳连接臂(linker)反应,得到端基位连接臂的庚糖18。7-Nap在DDQ的作用下离去得到化合物19。化合物的7-OH用乙酰基保护得到化合物20,最后在醋酸肼的作用下脱去Lev得到庚糖砌块21。
具体试验操作和步骤:
化合物11:将草酰氯(0.36mL,4.23mmol)溶解在干燥的DCM(2.2mL)中,溶液温度降至-78℃,把溶解于DCM(3mL)中的DMSO(0.6mL,8.46mmol)逐滴加入到草酰氯溶液中,反应在-78℃中搅拌0.5h。将化合9(1.0g,2.82mmol)溶解在DCM(11.5mL)中逐滴加入到反应液中。反应液在-78℃搅拌1h,加入NEt3,反应温度在4h内逐渐恢复到室温。待原料反应完毕,加入水终止反应。反应液用DCM萃取,有机相依次用水,饱和食盐水洗涤。无水Na2SO4干燥,浓缩。将甲基三苯基溴化磷溶解到THF中,溶液在0℃搅拌,n-BuLi(4.7mL,11.3mmol,2.4MinTHF)加入进反应瓶,反应搅拌30min后,反应温度降低到-78℃,将上一步粗产物溶解到THF(5mL)中,逐滴加入到反应液中,反应逐渐恢复到室温,继续反应12h。加入饱和的NH4Cl终止反应,反应液用乙酸乙酯萃取3次,用无水年Na2SO4干燥,浓缩。柱层析纯化(石油醚/乙酸乙酯,20:1)得到化合物11(592mg,60%)。[α]22 D=129.25(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ7.39–7.26(m,5H,Ar),5.99(ddd,J=17.3,10.6,5.5Hz,1H,H-6),5.58(s,1H,H-1),5.41(ddd,J=17.3,1.6,1.6Hz,1H,H-7a),5.25(ddd,J=10.6,1.6,1.6Hz,1H,H-7b),4.85(d-like,J=11.6Hz,1H,ArCH),4.63(d-like,J=11.6Hz,1H,ArCH),4.42(dddd,J= 10.0,5.5,1.6,1.6Hz,1H,H-5),4.29(dd,J=7.2,5.7Hz,1H,H-3),4.19(d,J=5.7Hz,1H,H-2),3.38(dd,J=10.0,7.2Hz,1H,H-4),2.72–2.39(m,2H,SCH2CH3),1.49(s,3H,CH3),1.36(s,3H,CH3),1.28(t,J=7.4Hz,3H,SCH2CH3);13C NMR(101MHz,CDCl3)δ138.2,134.9,128.2,128.0,127.6,117.3,109.4,80.1(C-1),79.5,78.5,73.2,69.5,28.0,26.4,24.4,14.6.HRMS(ESI)m/z calcd for C19H26O4SNa[M+Na]+373.1449,found 373.1447.
化合物12:将K2OsO2(OH)4(103mg,0.28mmol),K3Fe(CN)6(11.2g,33.9mmol)和K2CO3(5.2g,37.3mmol)加入到含有叔丁醇(56.5mL)和水(56.5mL)的反应瓶中。,反应液冷却到0℃,将化合物11溶解在甲苯(22mL)中,加入到反应瓶中,反应在0℃下搅拌29h,待原料完全消失,反应用乙酸乙酯萃取,有机相用1MKOH洗涤。无水Na2SO4干燥,过滤浓缩。柱层析分离纯化(石油醚/乙酸乙酯,1:1)得到化合物12(3.2g,74%)。[α]22 D=173.6(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ7.43–7.28(m,5H,Ar),5.55(s,1H,H-1),4.98(d-like,J=11.4Hz,1H,ArCH),4.64(d-like,J=11.4Hz,1H,ArCH),4.32(dd,J=7.0,5.7Hz,1H,H-3),4.20(d,J=5.7Hz,1H,H-2),4.06(dd,J=9.9,6.3Hz,1H,H-5),3.88(dt,J=6.3,4.2Hz,1H,H-6),3.69(dd,J=9.9,7.0Hz,1H,H-4),3.65(m,2H,H-7a,H-7b),3.54(bs,1H,OH),2.80–2.47(m,2H,SCH2CH3),2.27(bs,1H,OH),1.54(s,3H,CH3),1.37(s,3H,CH3),1.29(t,J=7.4Hz,3H,SCH2CH3);13C NMR(101MHz,CDCl3)δ137.2,128.6,128.3,128.2,109.6,79.6(C-1),79.5,78.3,76.5,73.2,72.8,67.7,62.8,28.1,26.3,24.1,14.1.HRMS(ESI)m/z calcd for C19H28O6SNa[M+Na]+407.1499,407.1491.
化合物13:将化合物12(11.2mg,29.3mmol)溶解到甲苯(146mL)中,在反应瓶中加入Bu2SnO(10.9g,44mmol),反应液加热回流4h。蒸掉一半的甲苯,反应液冷却到室温。加入CsF(6.7g,44mmol),2-NapBr(9.7g,44mmol),CH3CN(73.3mL)。反应液在70℃下反应过夜。反应液用硅藻土过滤,浓缩。柱层析分离纯化(石油醚/乙酸乙酯,3:1)得到化合物12(3.2g,74%)。[α]22 D=78.4(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ7.83–7.75(m,4H,Ar),7.47–7.33(m,3H,Ar),7.33–7.26(m,5H,Ar),5.51(s,1H,H-1),4.91(d-like,J=11.4Hz,1H,ArCH),4.70(d-like,J=12.0Hz,1H,ArCH),4.65(d-like,J=12.0Hz,1H,ArCH),4.59(d-like,J=11.3Hz,1H,ArCH),4.30(dd,J=6.6,5.8Hz,1H,H-3),4.17(dd,J=5.8,1H,H-2),4.12(m,1H,H-6),4.09(dd,J=9.6,4.8Hz,1H,H-5),3.70(dd,J=9.6,6.6Hz,1H,H-4),3.61(m,2H,H-7a,H-7b),3.02(d,J=2.9Hz,1H,OH),2.70–2.37(m,2H,SCH2CH3),1.51(s,3H,CH3),1.36(s,3H,CH3),1.21(t,J=7.4Hz,3H,SCH2CH3);13C NMR(101MHz,CDCl3)δ137.7,135.7,133.3,133.0,128.4,128.4,128.1,128.1,127.9,127.8,127.7,126.4,126.0,125.8,125.7,109.5,79.7(C-1),78.6,78.0,76.7,76.5,73.6,72.8,72.3,71.0,68.5,28.0,26.4,24.1,14.2. HRMS(ESI)m/z calcd for C30H36O6SNa[M+Na]+547.2125,found 547.2135.
化合物14:将化合物13(10.3g,19.6mmol)溶解在无水DMF(1.4mL),溶液降温到0℃加入NaH(1.56g,39.2mmol),然后加入BnBr(4.7mL,39.2mmol),反应液在室温下搅拌3.5h。待反应物消失后,溶液冷却到0℃,逐滴加入水淬灭反应。反应液用DCM萃取3次,有机相用无水Na2SO4干燥,浓缩。柱层析分离纯化(石油醚/乙酸乙酯,10:1),得到化合物14(11.0g,91%)。1H NMR(400MHz,Chloroform-d)δ7.83–7.69(m,4H,Ar),7.49–7.24(m,13H,Ar),5.55(s,1H,H-1),4.82(d-like,J=11.4Hz,1H,ArCH),4.74(d-like,J=11.8Hz,1H,ArCH),4.69(d-like,J=11.8Hz,1H,ArCH),4.65(d-like,J=12.3Hz,1H,ArCH),4.59(d-like,J=12.3Hz,1H,ArCH),4.53(d-like,J=11.4Hz,1H,ArCH),4.33–4.23(m,2H,H-3,H-5),4.14(d,J=5.6Hz,1H,H-2),4.08(ddd,J=5.8,5.3,1.5Hz,1H),3.75–3.72(m,2H,H-7a,H-7b),3.70(dd,J=10.3,6.9Hz,1H,H-4),2.77–2.41(m,2H,SCH2CH3),1.41(s,3H,CH3),1.34(s,3H,CH3),1.22(t,J=7.4Hz,3H,SCH2CH3);13C NMR(101MHz,CDCl3)δ138.7,138.2,136.0,133.3,132.9,128.2,128.2,128.0,127.9,127.8,127.7,127.6,127.5,127.4,126.2,126.0,125.7,125.6,109.3,79.5(C-1),79.0,77.8,76.4,76.3,73.2,72.7,72.5,70.5,69.3,28.0,26.5,23.8,14.3.HRMS(ESI)m/z calcd for C37H42O6SNa[M+Na]+637.2594,found 637.2587.
化合物15:将化合物14溶解到80%的醋酸水溶液中,反应液在60℃度搅拌12h。TLC板显示原料反应完。反应液浓缩后用DCM稀释,饱和NaHCO3洗涤,Na2SO4干燥,过滤浓缩,柱层析分离纯化(石油醚/乙酸乙酯,3:1),得到化合物16(9.8g,96%)。[α]22 D=71.5(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ7.92–7.70(m,4H,Ar),7.50–7.27(m,8H,Ar),7.25–7.15(m,5H,Ar),5.26(d,J=1.9Hz,1H,H-1),4.76(d-like,J=11.9Hz,1H,ArCH),4.71(d-like,J=11.9Hz,1H,ArCH),4.70–4.61(m,4H,ArCH),4.30(dd,J=9.4,1.6Hz,1H,H-5),4.03(ddd,J=6.8,5.2,1.6Hz,1H,H-6),3.94(dd,J=3.4,1.9Hz,1H,H-2),3.89(dd,J=8.6,3.3Hz,1H,H-3),3.84(dd,J=10.2,5.2Hz,1H,H-7a),3.84(dd,J=9.4,8.6Hz,1H,H-4),3.74(dd,J=10.2,6.8Hz,1H,H-7b),2.75–2.49(m,2H,SCH2CH3),2.45(bs,1H,OH),2.23(bs,1H,OH),1.24(t,J=7.4Hz,3H,SCH2CH3);13C NMR(101MHz,CDCl3)δ138.7,138.3,135.8,133.4,133.1,128.7,128.4,128.3,128.1,128.0,127.9,127.8,127.7,126.6,126.2,126.0,125.9,83.5(C-1),77.8,76.5,74.4,73.6,72.7,72.6,72.2,71.7,70.6,24.8,14.9.HRMS(ESI)m/z calcd for C34H38O6SNa[M+Na]+597.2281,found 597.2278.
化合物16:将化合物15(50mg,87umol)溶解到甲苯(0.58mL)中,在反应瓶中加入Bu2SnO(24.9mg,0.1mmol),反应液加热回流3h。反应液冷却到室温。加入CsF(15.2mg, 0.1mmol),TBAB(32.2mg,0.1mmol),BnBr(11.9化合物μL,44mmol)。反应液加热回流三个小时。反应液用硅藻土过滤,浓缩。柱层析分离纯化(石油醚/乙酸乙酯,3:1)得到化合物16(43mg,74%)。[α]22 D=87.2(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ7.85–7.67(m,4H),7.49–7.35(m,5H),7.34–7.07(m,13H),5.34(d,J=1.5Hz,1H,H-1),4.96–4.53(m,8H,ArCH),4.32(dd,J=9.7,1.3Hz,1H,H-5),4.06(dd,J=3.4,1.8Hz,1H,H-2),4.04–4.01(m,1H,H-6),3.92(dd,J=9.7,9.1Hz,1H,H-4),3.85(dd,J=9.1,3.2Hz,1H,H-3),3.80(dd,J=10.3,4.7Hz,1H,H-7a),3.74(dd,J=10.3,6.9Hz,1H,7H-b),2.77–2.26(m,3H,SCH2CH3,OH),1.24(t,J=7.4Hz,3H,SCH2CH3);13C NMR(101MHz,CDCl3)δ138.7,138.7,138.3,138.2,137.5,137.5,135.9,135.9,133.3,132.9,128.6,128.6,128.3,128.3,128.2,128.2,128.1,128.0,128.0,128.0,128.0,127.9,127.8,127.8,127.7,127.6,127.6,127.5,127.4,127.4,126.2,126.0,126.0,125.7,125.7,83.0(C-1),80.9,78.0,74.7,74.6,73.3,72.3,72.1,71.8,70.8,69.6,69.6,24.6,14.7.HRMS(ESI)m/z calcd for C41H44O6SNa[M+Na]+687.2751,found 687.2753.
化合物17:化合物16(728mg,1.1mmol)溶解于DCM(24mL),加入LevOH(192mg,1.65mmol),二环己基碳亚胺(DCC)(340mg,1.65mmol),N,N-二甲基吡啶(DMAP)(202mg,1.65mmol),反应在室温下搅拌2h。浓缩,柱层析分离纯化(石油醚/乙酸乙酯,3:1)得到化合物17(839mg,100%)。[α]22 D=54.8(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ7.85–7.71(m,4H,Ar),7.50–7.36(m,5H,Ar),7.35–7.22(m,11H,Ar),7.15(m,2H,Ar),5.40(dd,J=2.9,1.7Hz,1H,H-2),5.25(d,J=1.7Hz,1H,H-1),4.85–4.57(m,8H,ArCH),4.31(d,J=9.1Hz,1H,H-5),4.04(ddd,J=6.9,4.6,1.2Hz,1H,H-6),3.95(dd,J=9.1,9.1Hz,1H,H-4),3.91(dd,J=9.1,2.8Hz,1H,H-3),3.79(dd,J=10.4,4.6Hz,1H,H-7a),3.73(dd,J=10.4,6.9Hz,1H,H-7b),2.82–2.35(m,6H,SCH2CH3,C(O)CH2CH2(O)C),2.09(s,3H,CH3),1.24(t,J=7.4Hz,3H,SCH2CH3);13C NMR(101MHz,CDCl3)δ206.2,171.9,138.7,138.3,137.6,135.9,133.2,132.9,128.4,128.3,128.3,128.2,128.2,128.1,128.0,127.9,127.8,127.8,127.8,127.6,127.5,127.5,127.4,126.2,126.1,126.0,125.7,125.6,82.0(C-1),78.9,78.4,76.7,74.8,74.5,73.3,72.3,72.2,71.6,71.0,70.4,37.9,29.7,28.0,25.3,14.8.HRMS(ESI)m/z calcd for C46H50O8SNa[M+Na]+785.3119,found785.3106.
化合物18:化合物17(595mg,0.78mmol)和N-卞基-N-苯甲氧羰基-5-氨基-戊醇(510mg,0.78mmol)用甲苯共蒸三次,混合物中加入干燥的DCM(5mL),4
Figure PCTCN2017116187-appb-000016
分子筛。混合液在室温下搅拌半个小时后冷却到0℃,加入NIS(211mg,0.94mmol)和TMSOTf(14μL,78ummol),反应液在0℃下搅拌3h。加入NEt3终止反应。过滤,溶液依次用10%的Na2S2O3 溶液,饱和的NaHCO3溶液,Na2SO4干燥,过滤浓缩。柱层析分离纯化(石油醚/乙酸乙酯,2:1)得到化合物18(562mg,72%)。[α]22 D=11.5(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ7.90–7.62(m,4H,Ar),7.53–7.29(m,21H,Ar),7.28–7.11(m,7H,Ar),5.34(d,J=3.1Hz,1H,H-2),5.20(d,J=11.0Hz,2H,COOCH2Ph),4.87(d-like,J=10.6Hz,1H,ArCH),4.83-4.74(m,3H,H-1,ArCH),4.72–4.60(m,7H,ArCH),4.08(dd,J=6.7,4.6Hz,1H,H-5),3.99-3.90(m,3H,H-3,H-4,H-6),3.83(dd,J=10.4,4.6Hz,1H,H-7a),3.78(dd,J=10.4,6.7Hz,1H,H-7b),3.63(m,1H,OCH2),3.37–3.16(m,3H,OCH2,NCH2),2.75–2.51(m,4H,C(O)CH2CH2(O)C),2.11(s,1H,CH3),1.66–1.45(m,4H,CH2CH2),1.31–1.11(m,2H,CH2);13C NMR(101MHz,CDCl3)δ206.3,172.0,138.8,138.3,138.0,135.9,133.3,132.9,128.6,128.5,128.4,128.4,128.3,128.3,128.1,128.1,128.0,127.9,127.9,127.8,127.7,127.6,127.6,127.4,127.2,126.2,126.1,125.8,125.6,97.4(C-1),78.7,78.3,75.0,74.4,73.4,72.5,72.0,71.7,70.9,68.8,67.6,67.2,50.5,50.2,47.1,46.1,37.9,29.8,29.1,28.1,28.0,27.5,23.4.HRMS(ESI)m/z calcd for C64H69NO11Na[M+Na]+1050.4763,found 1050.4736.
化合物19:化合物18(420mg,0.41mmol)溶解在DCM/H2O(9:1,v/v,15.2mL)的混合溶剂中,反应液冷却至0℃,加入2,3-二氯-5,6-二氰基-1,4-苯醌(DDQ)(186mg,0.82mmol),反应温度升高至室温继续反应三个小时。反应液用DCM稀释,用溶液依次用10%的Na2S2O3溶液,饱和的NaHCO3溶液,Na2SO4干燥,过滤浓缩。柱层析分离纯化(石油醚/乙酸乙酯,1:1)得到化合物19(275mg,76%)。[α]22 D=13.8(c0.5,CH3Cl).1H NMR(400MHz,Chloroform-d)δ7.48–7.18(m,25H,Ar),5.35(s,1H,H-2),5.20(d,J=15.5Hz,2H,COOCH2Ph),4.93(d-like,J=10.7Hz,1H,ArCH),4.78(bs,2H,H-1,ArCH),4.74–4.46(m,6H,ArCH),4.02–3.90(m,2H,H-6,H-5),3.84(m,3H,H-3,H-4,H-7a),3.65(m,3H,H-7b,OCH2),3.45–3.14(m,3H,OCH2,NCH2),2.87–2.61(m,4H,C(O)CH2CH2(O)C),2.17(s,3H,CH3),1.74–1.46(m,4H,CH2CH2),1.32–1.17(m,2H,CH2);13C NMR(101MHz,CDCl3)δ172.0,137.9,137.8,128.6,128.5,128.4,128.4,128.2,128.1,128.0,127.9,127.8,127.7,127.3,127.2,97.3(C-1),78.6,75.0,74.2,72.0,71.9,71.7,68.7,67.9,67.3,50.5,50.2,47.1,46.1,38.1,29.9,29.1,28.2,28.0,27.5,23.4.HRMS(ESI)m/z calcd for C53H61NO11Na[M+Na]+910.4137,found 910.4117.
化合物20:将化合物19(210mg,0.24mmol)溶解于吡啶(2.3mL)中,在0℃下,加入醋酸酐(0.45mL,4.74mmol)以及催化量的DMAP,反应液恢复到室温,搅拌12h,浓缩,柱层析分离纯化(石油醚/乙酸乙酯,3:1)得到化合物20(203mg,92%)。[α]22 D=20.4(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ7.51–7.04(m,25H,Ar),5.35(d,J=3.1 Hz,1H,H-2),5.21(d,J=14.5Hz,1H,COOCH2Ph),4.93(d-like,J=10.7Hz,1H),4.78–4.71(m,3H,H-1,ArCH),4.67–4.47(m,5H,ArCH),4.34(dd,J=12.1,3.5Hz,1H,H-7a),4.27(dd,J=12.0,7.8Hz,1H,H-7b),4.02(dd,J=8.9,4.0Hz,1H,H-5),3.95(dd,J=7.8,3.5Hz,1H,H-6),3.92(m,1H,H-3),3.83(dd,J=8.9,8.9Hz,1H,H-4),3.64(m,1H,OCH2),3.44–3.12(m,3H,OCH2,NCH2),2.84–2.64(m,4H,C(O)CH2CH2(O)C),2.19(s,3H,CH3),2.02(s,3H,OAc),1.62–1.47(m,4H,CH2CH2),1.38–1.18(m,2H,CH2);13C NMR(101MHz,CDCl3)δ206.3,172.0,170.8,138.3,138.1,137.9,137.9,128.6,128.5,128.5,128.4,128.4,128.3,128.2,128.1,128.1,128.0,127.9,127.9,127.9,127.8,127.8,127.7,127.6,127.4,127.3,127.2,97.4(C-1),78.6,76.6,75.0,74.1,72.1,71.7,71.7,71.7,68.6,67.7,67.2,64.6,50.6,50.2,47.1,46.1,38.0,29.9,29.8,29.2,28.2,27.9,27.5,23.4,23.4,21.0.HRMS(ESI)m/z calcd for C55H63NO12Na[M+Na]+952.4242,found 952.4233.
化合物21:将化合物20(190mg,0.2mmol)溶解在DCM/MeOH(20:1,v/v,4mL)混合溶剂中,加入醋酸肼(27.6mg,0.3mmol),反应液在室温下搅拌2h,反应液用NaHCO3洗涤,用无水Na2SO4干燥。浓缩柱层析纯化分离(石油醚/乙酸乙酯,3:1)得到化合物21(158mg,95%)。[α]22 D=34.5(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ7.45–7.13(m,25H),5.18(d,J=14.0Hz,2H,COOCH2Ph),4.87(d-like,J=10.8Hz,1H,ArCH),4.81(m,1H,H-1),4.76–4.45(m,7H,ArCH),4.31(dd,J=12.1,3.8Hz,1H,H-7a),4.25(dd,J=12.1,7.6Hz,1H,H-7b),4.00(s,1H,H-2),3.94–3.85(m,3H,H-3,H-5,H-6),3.82(dd,J=9.6,8.4Hz,1H,H-4),3.69–3.56(m,1H,OCH2),3.37–3.16(m,3H,OCH2,NCH2),2.42(bs,1H,OH),1.97(s,3H,OAc),1.63–1.64(m,4H,CH2CH2),1.37–1.13(m,2H,CH2);13C NMR(101MHz,CDCl3)δ170.8,138.3,138.1,137.9,137.8,128.6,128.6,128.5,128.4,128.3,128.3,128.2,128.2,128.1,128.0,128.0,127.9,127.9,127.9,127.7,127.6,127.3,127.2,98.9(C-1),80.8,76.4,75.0,74.1,72.1,72.0,71.4,68.1,67.5,67.2,64.4,50.5,50.2,47.1,46.1,29.1,27.9,27.5,23.4,21.0.HRMS(ESI)m/z calcd for C50H57NO10Na[M+Na]+854.3875,found 854.3863.
实施例3
糖砌块28的合成,路线为图3。
如图3所示,以化合物22起始原料,2-OH用Bz保护,得到化合物23。化合物23在80%醋酸作用下打开丙叉基,得到化合物24。化合物24的3-OH选择性的用Bn保护得到化合物25。化合物25的4-OH用Lev保护,得到化合物26。硫糖苷26在NBS条件 下水解,裸露端基位OH,端基位-OH与叔丁基二甲基氯硅烷(TBSCl)反应,得到端基TBS全保护的半乳糖27。在醋酸肼作用下脱去Lev得到半乳糖砌块28。
具体试验操作和步骤:
化合物23:将化合物22(4.2g,11.8mmol)溶解在吡啶(59.5mL)中,在0℃搅拌5min。加入BzCl(2.78mL,24mmol)和催化量的DMAP。反应液在室温下搅拌4h。反应液一次用饱和NaHCO3,饱和食盐水洗涤。无水Na2SO4干燥,浓缩。柱层析纯化(石油醚/乙酸乙酯,10:1)得到化合物23(5.2g,96%)。[α]22 D=22.9(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ8.10–7.94(m,2H,Ar),7.60–7.51(m,1H,Ar),7.45–7.42(m,2H,Ar),7.38–7.27(m,5H,Ar),5.28(dd,J=9.9,6.8Hz,1H,H-2),4.66(d-like,J=12.0Hz,1H,ArCH),4.58(d-like,J=12.0Hz,1H,ArCH),4.53(d,J=9.9Hz,1H,H-1),4.34(dd,J=6.8,5.4Hz,1H,H-3),4.30(dd,J=5.4,2.0Hz,1H,H-4),4.03(dt,J=6.1,2.0Hz,1H,H-5),3.83(d,J=6.1Hz,2H,H-6a,H-6b),2.89–2.57(m,2H,SCH2CH3),1.61(s,3H,CH3),1.36(s,3H,CH3),1.25(t,J=7.4Hz,3H,SCH2CH3);13C NMR(101MHz,CDCl3)δ165.5,138.1,133.1,129.9,129.8,128.4,128.3,127.7,127.7,110.5,82.9(C-1),77.1,75.9,73.9,73.6,72.2,69.4,27.8,26.4,24.3,14.9.HRMS(ESI)m/z calcd for C25H31O6SN[M+NH4]+476.2101,found 476.2104.
化合物24:将化合物23(1.2g,2.6mmol)溶解到80%的醋酸水溶液中(25mL),反应液在60℃度搅拌5h。TLC板显示原料反应完。反应液浓缩后用DCM溶解,饱和NaHCO3洗涤,Na2SO4干燥,过滤浓缩,柱层析分离纯化(石油醚/乙酸乙酯,1:1),得到化合物24(0.98g,90%)。[α]22 D=-19.4(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ8.11–7.90(m,2H,Ar),7.63–7.51(m,1H,Ar),7.49–7.41(m,2H,Ar),7.39–7.28(m,5H,Ar),5.30(dd,J=9.6,9.6Hz,1H,H-2),4.60(d,J=1.8Hz,2H,ArCH),4.56(d,J=9.6Hz,1H,H-1),4.13(ddd,J=3.6,3.6,1.1Hz,1H,H-4),3.82(m,2H,H-6a,H-6b),3.78(dd,J=9.6,3.6Hz,1H,H-3),3.71(dt,J=5.3,1.1Hz,1H,H-5),3.13(d,J=7.9Hz,1H,OH),3.03(d,J=3.6Hz,1H,OH),2.86–2.63(m,2H,SCH2CH3),1.26(t,J=7.4Hz,3H,SCH2CH3);13C NMR(101MHz,CDCl3)δ166.8,137.7,133.3,130.0,129.7,128.5,128.4,127.9,127.8,83.3(C-1),77.2,73.9,73.8,72.3,69.9,69.6,23.9,15.0.HRMS(ESI)m/z calcd for C22H26O6SNa[M+Na]+441.1342,found 441.1347.
化合物25:将化合物24(4.2g,10.1mmol)溶解到甲苯(60mL)中,在反应瓶中加入Bu2SnO(3.8g,15.2mmol),反应液加热回流2h。反应液冷却到室温。加入TBAI(5.6g,15.2mmol),BnBr(1.8g,15.2mmol)。反应液在65℃下反应过夜。反应液用硅藻土过滤,浓 缩。柱层析分离纯化(石油醚/乙酸乙酯,6:1)得到化合物25(4.5g,87%)。[α]22 D=19.4(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ8.12–7.89(m,2H,Ar),7.64–7.53(m,1H,Ar),7.45(dd,J=8.3,7.2Hz,2H,Ar),7.40–7.28(m,5H,Ar),7.23–7.12(m,5H,Ar),5.53(dd,J=9.7,9.7Hz,1H,H-2),4.67(d-like,J=12.3Hz,1H,ArCH),4.60(s,2H,ArCH),4.53(d-like,J=12.3Hz,1H,ArCH),4.48(d,J=9.7Hz,1H,H-1),4.19(ddd,J=3.1,1.5,1.5Hz,1H,H-4),3.83(dd,J=9.8,6.4Hz,1H,H-6a),3.77(dd,J=9.8,5.7Hz,1H,H-6b),3.67–3.69(m,1H,H-5),3.65(dd,J=9.7,3.1Hz,1H,H-3),2.81–2.65(m,2H,SCH2CH3),2.64(t,J=1.6Hz,1H),1.22(t,J=7.5Hz,3H,SCH2CH3);13C NMR(101MHz,CDCl3)δ165.4,137.9,137.1,133.1,130.0,129.9,128.4,128.4,128.4,128.3,128.0,127.8,127.8,83.5(C-1),79.3,73.8,71.3,69.6,69.0,66.4,23.6,14.9.HRMS(ESI)m/z calcd for C29H32O6SNa[M+Na]+531.1811,found 531.1819.
化合物26:化合物25(4.0g,7.9mmol)溶解于DCM(150mL),加入LevOH(1.36g,11.7mmol),二环己基碳亚胺(DCC)(2.41g,11.7mmol),N,N-二甲基吡啶(DMAP)(1.43mg,11.7mmol),反应在室温下搅拌2h。浓缩,柱层析分离纯化(石油醚/乙酸乙酯,4:1)得到化合物26(3.9g,82%)。[α]22 D=42.1(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ8.07–7.80(m,2H,Ar),7.64–7.55(m,1H,Ar),7.50–7.41(m,2H,Ar),7.41–7.25(m,5H,Ar),7.22–7.04(m,5H,Ar),5.72(dd,J=3.4,1.1Hz,1H,H-4),5.41(dd,J=9.8,9.8Hz,1H,H-2),4.63(d-like,J=12.7Hz,1H,ArCH),4.54-4.51(m,3H,H-1,ArCH),4.41(d-like,J=12.7Hz,1H,ArCH),3.80(ddd,J=7.0,5.6,1.1Hz,1H,H-5),3.66(dd,J=9.4,5.6Hz,1H,H-6a),3.65(dd,J=9.4,3.0Hz,1H,H-6b),3.56(dd,J=9.4,7.0Hz,1H,H-6b),2.91–2.57(m,6H,SCH2CH3,C(O)CH2CH2(O)C),2.18(s,3H,CH3),1.22(t,J=7.4Hz,3H,SCH2CH3);13C NMR(101MHz,CDCl3)δ206.4,172.1,165.4,137.7,137.3,133.2,130.0,129.8,128.5,128.3,128.3,128.2,128.0,127.9,127.7,83.9(C-1),77.2,76.2,73.8,70.7,69.5,68.0,66.5,38.1,29.9,28.1,24.2,14.9.HRMS(ESI)m/z calcd for C34H38O8SNa[M+Na]+629.2180,found 629.2181.
化合物27:将化合物7(317mg,0.52mmol)溶解于THF/H2O(v/v,1:1,5mL),加入NBS(223mg,1.25mmol)。反应在室温下搅拌5h。反应液用饱和的NaHCO3洗涤,无水Na2SO4干燥,浓缩。柱层析纯化得到中间产物(225mg)。把中间产物溶于干燥的DCM(2.5ml)中,反应液冷却到0℃,加入咪唑(75mg,1.11mmol)和TBSCl(84mg,0.56mmol)。反应在室温下搅拌12h,反应液用饱和NH4Cl淬灭,混合溶液用DCM萃取3遍,有机相用水洗,无水Na2SO4干燥,浓缩,柱层析纯化(石油醚/乙酸乙酯,20:1)得到化合物27(248mg,71%)。[α]22 D=44.8(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ8.02–7.80(m,2H,Ar),7.64–7.50(m,1H,Ar),7.45(t,J=7.7Hz,2H,Ar),7.39–7.27(m,5H,Ar),7.20–7.04(m, 5H,Ar),5.65(dd,J=3.2,0.8Hz,1H,H-4),5.34(dd,J=10.1,7.7Hz,1H,H-2),4.71(d,J=7.7Hz,1H,H-1),4.63(d-like,J=12.9Hz,1H,ArCH),4.54(s,2H,ArCH),4.40(d-like,J=12.9Hz,1H,ArCH),3.76(t,J=6.2Hz,1H,H-5),3.68–3.61(m,2H,H-6a,H-6b),3.59(dd,J=10.1,3.2Hz,1H,H-3),2.88–2.64(m,4H,C(O)CH2CH2(O)C),2.19(s,3H,CH3),0.75(s,9H,OTBS),0.06(s,3H,OTBS),-0.02(s,3H,OTBS);13C NMR(101MHz,CDCl3)δ206.6,172.1,165.3,137.8,137.5,133.0,130.1,129.8,128.5,128.3,128.2,128.1,127.9,127.8,127.6,96.3(C-1),76.1,73.8,73.1,72.5,70.6,68.2,66.4,38.1,29.9,28.2,25.4,17.8,-4.2,-5.3.HRMS(ESI)m/z calcd for C34H38O9SiNa[M+Na]+699.2960,found 699.2957.
化合物28:将化合物27(203mg,0.30mmol)溶解在DCM/MeOH(20:1,v/v,3.5mL)混合溶剂中,加入醋酸肼(41.4mg,0.45mmol),反应液在室温下搅拌4h,反应液用NaHCO3洗涤,用无水Na2SO4干燥。浓缩柱层析纯化分离(石油醚/乙酸乙酯,6:1)得到化合物28。[α]22 D=18.6(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ8.00(m,2H,Ar),7.63–7.53(m,1H,Ar),7.49–7.40(m,2H,Ar),7.39–7.26(m,5H,Ar),7.25–7.09(m,5H,Ar),5.42(dd,J=9.8,7.6Hz,1H,H-2),4.71(d,J=7.7Hz,1H,H-1),4.69(d-like,J=12.4Hz,1H,ArCH),4.61(s,2H,ArCH),4.52(d-like,J=12.5Hz,1H),4.13(dd,J=3.4,1.4Hz,1H,H-4),3.87(dd,J=9.8,6.0Hz,1H,H-6a),3.75(dd,J=9.8,6.0Hz,1H,H-6b),3.65(t,J=6.0Hz,1H,H-5),3.59(dd,J=9.8,3.3Hz,1H,H-3),2.60(t,J=1.6Hz,1H,OH),0.74(s,9H,OTBS),0.07(s,3H,OTBS),-0.01(s,3H,OTBS).13C NMR(101MHz,CDCl3)δ165.3,138.1,137.2,132.9,130.2,129.8,128.5,128.4,128.3,127.9,127.9,127.8,96.3(C-1),78.1,73.8,73.6,73.2,71.1,69.2,66.2,25.5,17.8,-4.2,-5.3.HRMS(ESI)m/z calcd for C33H42O7SiNa[M+Na]+601.2592,found 601.2586.
实施例4
糖基化反应的条件和脱去酰基类保护剂条件:
此发明中如未说明,糖基化反应的条件如下:糖基供体和受体在甲苯中共蒸三次。加入干燥的DCM或者DCM/Et2O(v/v,1:2)反应浓度为0.02-0.05M,活化的3
Figure PCTCN2017116187-appb-000017
或者4
Figure PCTCN2017116187-appb-000018
分子筛。加入相当于糖基供体10当量的噻酚,混合液在室温下搅拌30min后冷却至0℃,加入TMSOTf为促进剂,反应时间为3-5h。反应结束后用吡啶终止反应。反应液过滤,用DCM稀释后用饱和的NaHCO3洗涤。无水Na2SO4干燥浓缩。柱层析纯化分离。
此发明中如未说明,碱性条件脱去酰基条件为:将起始原料溶解在DCM/MeOH(v/v, 1:1)中,反应浓度为0.05M,加入0.5当量MeONa(5MinMeOH)。反应温度为室温,TLC板显示反应结束用AmerliteIR120(H+)树脂中和反应液pH达到7。过滤,浓缩,柱层析纯化。
实施例5
三糖供体32的组装,路线为图4。
具体试验操作和步骤:
化合物29:根据反应条件4.1,糖基供体8(335mg,0.43mmol)和糖基受体28(301mg,0.52mmol)反应得到29(361mg,72%)。[α]22 D=93.1(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ8.09–7.94(m,4H,Ar),7.85–7.67(m,4H,Ar),7.63–7.11(m,28H),5.55(dd,J=10.2,7.5Hz,1H,H-2b),5.11(d,J=3.8Hz,3H,H-1a,2×ArCH),4.97(t-like,J=11.3Hz,2H,ArCH),4.77(d,J=7.5Hz,1H,H-1b),4.78–4.73(m,2H,ArCH),4.68(d-like,J=11.2Hz,1H,ArCH),4.62–4.50(m,2H,H-5a,ArCH),4.39(dd,J=9.4,9.4Hz,1H,H-3a),4.33–4.18(m,5H,H-6a,H-6a’,H-4b,2×ArCH),4.10–3.99(m,1H,H-6b),3.79(t,J=9.4Hz,1H,H-4a),3.63(dd,J=10.1,3.9Hz,2H,H-2a),3.60–3.51(m,3H,H-6b’,H-3b,H-5b),0.80(s,9H,OTBS),0.22(s,3H,OTBS),0.10(s,3H,OTBS);13C NMR(101MHz,cdcl3)δ166.02,165.19,138.61,138.22,137.91,137.47,136.04,133.35,132.95,132.82,132.79,130.39,130.17,129.78,129.63,128.37,128.33,128.29,128.25,128.22,128.12,127.99,127.90,127.69,127.67,127.66,127.63,127.60,127.55,127.38,127.05,126.96,126.31,125.89,125.77,99.46(C-1a),96.92(C-1b),81.81,80.84,77.79,77.73,75.90,74.57,74.05,73.77,73.69,73.14,71.44,69.36,67.64,63.08,25.67,17.88,-3.84,-4.27.HRMS(ESI)m/z calcd for C71H76O13SiNa[M+Na]+1187.4947,found 1187.4907.
化合物30:化合物29(940mg,0.81mmol)溶解在DCM/MeOH(9:1,v/v,18.mL)的混合溶剂中,反应液冷却至0℃,加入2,3-二氯-5,6-二氰基-1,4-苯醌(DDQ)(545mg,2.4mmol),反应温度升高至室温继续反应10h。反应液用DCM稀释,用溶液依次用10%的Na2S2O3溶液,饱和的NaHCO3溶液,Na2SO4干燥,过滤浓缩。柱层析分离纯化(石油醚/乙酸乙酯,1:1)得到化合物30(581mg,70%)。[α]22 D=75.6(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ8.04–7.92(m,4H,Ar),7.60–7.51(m,2H,Ar),7.48–7.27(m,16H,Ar),7.22–7.11(m,8H,Ar),5.46(dd,J=10.3,7.5Hz,1H,H-2b),5.08(d,J=3.4Hz,1H,H-1a),4.86–4.77(m,2H,ArCH),4.71(d,J=7.6Hz,1H,H-1b),4.75–4.68(m,3H,ArCH),4.56-4.48(dd,2H,H-5a,ArCH),4.44(dd,J=9.4,9.4Hz,1H,H-3a),4.24-4.26(d,3H,H-6a,2×ArCH),4.24–4.19(m,2H,H-6a’,H-4b),3.96(dd,J=9.3,7.7Hz,1H,H-6b),3.70–3.61(m,1H,H-4a), 3.62–3.47(m,3H,H-3b,H-5b,H-6b’),3.46(dd,J=10.1,3.4Hz,1H,H-2a),0.76(s,9H,OTBS),0.10(s,3H,OTBS),0.00(s,3H,OTBS);13C NMR(101MHz,CDCl3)δ166.1,165.1,138.4,138.3,137.9,137.4,132.9,132.8,130.3,130.2,129.8,129.7,128.5,128.4,128.4,128.3,128.3,128.1,127.8,127.7,127.6,127.5,98.99(C-1a),96.7(C-1b),80.3,77.8,77.5,73.9,73.8,73.6,73.5,73.3,73.1,72.8,71.4,68.8,67.7,63.2,25.6,17.9,-4.1,-4.9.HRMS(ESI)m/z calcd for C60H68O13SiNa[M+Na]+1047.4321,found 1047.4304.
化合物31:根据反应条件4.1,糖基供体8(100mg,0.13mmol)和糖基受体30(87.3g,0.085mmol)反应得到化合物31(78mg,57%)。[α]22 D=93.4(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ8.10–7.98(m,8H,Ar),7.85–7.68(m,4H,Ar),7.62–7.04(m,40H,Ar),5.68(d,J=3.5Hz,1H,H-1a),5.55(dd,J=10.3,7.5Hz,1H,H-2c),5.15(d,J=3.1Hz,1H,H-1b),5.13–5.06(m,2H,ArCH),4.99(d-like,J=10.9Hz,1H,ArCH),4.89–4.82(d-like,J=10.9,1H,ArCH),4.80(d,J=7.6Hz,1H,H-1c),4.79–4.62(m,8H,H-3b,H-5b,6×ArCH),4.56–4.48(m,3H,H-5a,2×ArCH),4.47–4.38(m,2H,H-6a,H-6b),4.37–4.23(m,3H,H-6a’,H-3b,ArCH),4.22–4.13(m,3H,H-3a,H-6b’,H-3c),4.03–3.95(m,2H,H-4b,H-6c),3.72(dd,J=10.4,9.2Hz,1H,H-4a),3.67(dd,J=10.1,3.1Hz,1H,H-2a),3.64–3.52(m,4H,H-2b,H-3c,H-5c,H-6c’),0.75(s,9H,OTBS),0.20(s,3H,OTBS),0.09(s,3H,OTBS);13C NMR(101MHz,CDCl3)δ166.1,166.0,165.0,138.3,138.2,138.0,137.9,137.6,137.4,136.1,133.3,132.9,132.9,132.8,132.7,130.4,130.2,130.2,129.8,129.7,129.7,129.1,128.4,128.4,128.4,128.3,128.3,128.3,128.2,128.1,128.0,128.0,127.9,127.9,127.8,127.7,127.7,127.6,127.5,127.2,127.1,126.6,126.1,126.0,125.8,125.3,98.6(C-1b),97.0(C-1a),96.8(C-1c),82.3,80.0,79.9,78.6,78.2,77.7,75.8,75.1,75.0,74.7,73.8,73.6,73.5,73.5,73.2,71.9,71.6,68.7,68.4,68.2,63.2,63.1,25.5,17.8,-3.8,-4.4.HRMS(ESI)m/z calcd for C98H102O19SiNa[M+Na]+1633.6677,found 1633.6667.
化合物32:将化合物31(54.0mg,0.034mmol)溶解于THF(1.7mL),冷却至0℃,加入AcOH(19.4μL,0.34mmol),而后加入1MTBAFinTHF(0.34mL,0.34mmol)。溶液在室温下搅拌2h。反应液用乙酸乙酯稀释后用水洗三次。无水Na2SO4干燥,浓缩,层析柱分离纯化后得到中间产物。中间产物溶解在干燥的DCM中,冷却至0℃,加入N-苯基三氟乙酰氯(20uL,0.14mmol)和DBU(12.6uL,0.084mmol),反应液在室温下搅拌2h。浓缩,层析柱分离纯化得到化合物32(49.3mg,87%)。[α]22 D=122.6(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ8.08–7.94(m,6H,Ar),7.87–6.52(m,51H,Ar),5.96(bs,1H,H-1c),5.76(dd,J=8.7,8.7Hz,1H,H-2c),5.67(d,J=3.6Hz,1H,H-1a),5.15–5.04(m,3H,H-1b,2×ArCH),4.99(d-like,J=10.9Hz,1H,ArCH),4.85(d-like,J=10.8Hz,1H,ArCH),4.81–4.67(m, 4H,ArCH),4.67–4.47(m,8H,H-5a,H-6a,H-3b,H-5b,4×ArCH),4.47–4.28(m,3H,H-6a’,H-6b’,ArCH),4.28–4.09(m,4H,H-3a,H-6b’,H-4c,ArCH),3.99–3.85(m,2H,H-4b,H-6c),3.82–3.51(m,5H,H-2a,H-4a,H-2b,H-3c,H-5c,H-6c’);13C NMR(101MHz,CDCl3)δ166.1,164.7,138.2,138.1,137.9,137.9,137.5,137.0,136.0,133.3,133.2,133.0,132.9,132.9,130.1,130.0,129.9,129.7,129.6,129.4,128.6,128.5,128.5,128.4,128.4,128.3,128.3,128.3,128.1,128.1,128.0,128.0,128.0,127.9,127.9,127.8,127.8,127.7,127.7,127.7,127.6,127.3,127.2,126.6,126.0,126.0,125.8,120.4,119.3,98.6(C-1a),97.2(C-1b),95.2(C-1c),82.4,80.0,79.9,78.7,77.8,75.8,75.3,75.1,73.8,73.2,71.8,69.1,68.9,63.2,63.0.HRMS(ESI)m/z calcd for C100H92F3NO19Na[M+Na]+1690.6108,found 1690.6102.
实施例6
五糖受体39的组装,路线为图5。
具体试验操作和步骤:
化合物33:根据反应条件4.1,糖基供体8(1.32g,1.7mmol)和糖基受体16(1.33g,2.0mmol)反应得到化合物33(1.17mg,55%)。[α]22 D=71.9(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ8.09–8.03(m,2H,Ar),7.85–7.51(m,10H,Ar),7.47–7.05(m,32H,Ar),5.46(d,J=3.6Hz,1H,H-1a),5.37(d,J=1.7Hz,1H,H-1b),5.03–4.86(m,3H,ArCH),4.81–4.60(m,9H,ArCH),4.59(m,1H,H-6a),4.53–4.43(m,3H,H-6a’,2×ArCH),4.35–4.24(m,3H,H-4b,H-5b,H-2b),4.19(ddd,J=10.0,5.5,1.9Hz,1H,H-5a),4.12(dd,J=9.2,9.2Hz,1H,H-3a),4.02(dd,J=7.0,4.7Hz,1H,H-6b),3.93(dd,J=8.6,2.6Hz,1H,H-3b),3.85(dd,J=10.5,4.7Hz,1H,H-7b),3.77(dd,J=10.4,7Hz,1H,H-7b’),3.63–3.53(m,2H,H-2a,H-4a),2.65–2.43(m,2H,SCH2CH3),1.20(t,J=7.4Hz,3H,SCH2CH3);13C NMR(101MHz,CDCl3)δ166.3,138.9,138.5,138.4,137.7,137.7,136.1,136.1,133.3,133.3,133.1,132.9,132.9,129.8,129.8,128.5,128.5,128.4,128.2,128.2,128.2,128.0,128.0,127.9,127.9,127.8,127.6,127.6,127.5,127.3,127.3,127.2,126.5,126.0,126.0,125.9,125.9,125.8,125.6,125.6,97.1(C-1a),83.8(C-1b),81.8,81.4,79.8,79.1,77.8,75.8,75.4,75.1,74.6,74.6,73.3,72.9,72.8,72.6,71.5,71.5,69.6,63.9,25.4,14.9.HRMS(ESI)m/z calcd for C79H78O12SNa[M+Na]+1273.5106,found 1273.5109.
化合物34:根据反应条件4.2,化合物36(180mg,0.14mmol)脱去酯基得到化合物34(161mg,当量)。[α]22 D=101.2(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ7.81–7.56(m,8H,Ar),7.46–7.05(m,31H,Ar),5.40(d,J=3.6Hz,1H,H-1a),5.33(d,J=1.7Hz,1H,H-1b),4.98–4.86(m,3H,ArCH),4.80–4.55(m,9H,ArCH),4.48(t-like,J=11.0Hz,2H,ArCH), 4.30–4.21(m,2H,H-4b,H-5b),4.18(dd,J=1.7,2.2Hz,1H,H-2b),4.07(dd,J=9.3,9.3Hz,1H,H-3a),4.01(dd,J=6.9,4.7Hz,1H,H-6b),3.92(dd,J=8.3,2.2Hz,1H,H-3b),3.89–3.71(m,5H,H-5a,H-6a,H-6a’,H-7b,H-7b’),3.59–3.48(m,2H,H-2,H-4),2.72–2.51(m,2H,SCH2CH3),1.67(dd,J=7.4,5.3Hz,1H,OH),1.26(t,J=7.4Hz,3H,SCH2CH3);13C NMR(101MHz,CDCl3)δ138.9,138.5,138.4,138.1,137.8,136.3,136.1,133.3,133.3,132.9,128.5,128.2,128.2,128.1,127.9,127.9,127.9,127.9,127.8,127.6,127.5,127.3,127.3,126.3,126.1,125.9,125.9,125.7,125.6,125.6,97.4(C-1a),83.7(C-1b),81.7,81.4,79.8,79.1,75.6,75.3,75.1,74.9,74.6,73.3,73.0,72.9,72.5,71.6,71.5,71.5,62.0,25.5,15.1.HRMS(ESI)m/z calcd for C72H74O11SNa[M+Na]+1169.4844,found 1169.4828.
化合物35:根据反应条件4.1,糖基供体8(350mg,0.46mmol)和糖基受体37(400mg,0.35mmol)反应得到化合物35(380mg,63%)。[α]22 D=48.8(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ8.01–7.94(m,2H,Ar),7.83–7.58(m,13H,Ar),7.54–7.04(m,46H,Ar),5.42(d,J=3.6Hz,1H,H-1b),5.36(d,J=1.7Hz,1H,H-1c),5.03(d-like,J=11.1Hz,1H,ArCH),5.00(d,J=3.5Hz,1H,H-1a),4.98–4.86(m,4H,ArCH),4.77–4.58(m,12H,ArCH),4.57–4.53(m,1H,H-6a),4.52–4.37(m,3H,H-6a’,2×ArCH),4.35–4.26(m,3H,H-2c,H-5c,ArCH),4.25–4.17(m,2H,H-3a,H-4c),4.14(ddd,J=10.3,4.8,2.0Hz,1H,H-5a),4.06(dd,J=9.3,9.3Hz,1H,H-3b),4.03–3.95(m,2H,H-5b,H-6c),3.91(dd,J=8.8,2.3Hz,1H,H-3c),3.90–3.79(m,2H,H-6b,H-7c),3.81–3.69(m,2H,H-6b’,H-7c’),3.66–3.59(m,2H,H-2a,H-4a),3.56(dd,J=9.3,9.3Hz,1H,H-4b),3.36(dd,J=9.3,3.6Hz,1H,H-2b),2.70–2.50(m,2H,SCH2CH3),1.19(t,J=7.4Hz,3H,SCH2CH3);13C NMR(101MHz,CDCl3)δ166.2,138.9,138.6,138.4,138.4,138.2,137.9,137.8,136.4,136.2,136.1,133.4,133.3,133.3,133.0,133.0,132.9,132.9,130.0,129.6,128.4,128.4,128.4,128.2,128.2,128.1,128.1,128.0,127.9,127.9,127.9,127.8,127.8,127.7,127.6,127.6,127.5,127.3,127.2,127.2,126.7,126.3,126.2,126.0,126.0,125.9,125.8,125.7,125.6,125.6,96.7(C-1a,C-1b),83.9(C-1c),81.9,81.8,80.4,79.8,79.3,75.8,75.6,75.3,75.1,74.6,73.4,73.2,72.8,72.7,72.5,72.5,71.6,71.2,71.1,68.9,66.0,63.6,25.5,15.0.HRMS(ESI)m/z calcd for C110H108O17SNa[M+Na]+1755.7199,found 1755.7195.
化合物36:根据反应条件4.2,化合物35(58mg,0.033mmol)脱去酯基得到化合物36(52.6mg,98%)。[α]22 D=73.2(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ7.82–7.66(m,13H,Ar),7.48–7.02(m,43H,Ar),5.41(d,J=3.6Hz,1H,H-1b),5.36(d,J=1.7Hz,1H,H-1c),5.13(d-like,J=11.2Hz,1H,ArCH),5.00(d,J=3.4Hz,1H,H-1a),5.00–4.89(m,5H,ArCH),4.76–4.44(m,13H,ArCH),4.36(d-like,J=12.0Hz,1H,ArCH),4.32–4.20(m,3H, H-1c,H-4c,H-5c),4.12(dd,J=8.5,8.5Hz,1H,H-3a),4.08(dd,J=8.7,8.7Hz,1H,H-3b),4.03–3.96(m,2H,H-5b,H-6c),3.95–3.87(m,2H,H-6b,H-3c),3.84(dd,J=10.5,4.6Hz,1H,H-7c),3.81–3.64(m,6H,H-5a,H-6a,H-6a’,H-4b,H-6b’,H-7c’),3.60–3.53(m,2H,H-2a,H-4a),3.44(dd,J=9.6,3.6Hz,1H,H-2b),2.69-2.53(m,2H,SCH2CH3),1.22(t,J=7.4Hz,3H,SCH2CH3).13C NMR(101MHz,CDCl3)δ138.9,138.6,138.5,138.4,138.3,138.3,137.8,136.4,136.4,136.1,133.3,133.3,133.3,132.9,132.9,132.9,128.5,128.4,128.3,128.2,128.1,128.1,128.0,128.0,127.9,127.9,127.8,127.8,127.7,127.7,127.6,127.6,127.5,127.3,127.2,127.2,126.5,126.4,126.1,126.0,125.9,125.9,125.7,125.7,125.6,125.6,97.2(C-1a),97.0(C-1b),83.8(C-1c),81.8,81.7,80.3,79.9,79.2,77.7,75.6,75.6,75.3,75.1,75.0,74.6,73.8,73.2,72.8,72.5,72.4,71.5,71.4,71.3,70.9,66.2,62.0,25.5,15.0.HRMS(ESI)m/z calcd for C103H104O16SNa[M+Na]+1651.6937,found 1651.6931.
化合物37:根据反应条件4.1,糖基供体8(163mg,0.21mmol)和糖基受体36(257mg,0.16mmol)反应得到37(230mg,65%)。[α]22 D=133.8(c1.0,CH3Cl).1H NMR(400MHz,Chloroform-d)δ8.02–7.92(m,2H,Ar),7.85–7.01(m,76H,Ar),5.42(d,J=3.6Hz,1H,H-1c),5.34(d,J=1.7Hz,1H,H-1d),5.13(d,J=3.6Hz,1H,H-1a),5.13–5.08(m,2H,ArCH),5.01–4.87(m,8H,H-1b,7×ArCH),4.81–4.52(m,15H,ArCH),4.52–4.37(m,3H,H-6a,H-6a’,ArCH),4.35–4.17(m,4H,H-2d,H-4d,H-5d,ArCH),4.16–4.04(m,3H,H-3a,H-3b,H-3c),4.04–3.90(m,5H,H-5a,H-5c,H-6c,H-3d,H-6d),3.88–3.80(m,4H,H-4a,H-5c,H-6b,H-7d),3.81–3.66(m,4H,H-4b,H-6b’,H-6c’,H-7d’),3.64(dd,J=10.1,8.9Hz,1H,H-4c),3.59(dd,J=9.6,3.5Hz,1H,H-2a),3.45(dd,J=10.0,3.5Hz,1H,H-2c),3.43(dd,J=10.0,3.5Hz,1H,H-2b),2.73–2.39(m,2H,SCH2CH3),1.17(t,J=7.4Hz,3H,SCH2CH3);13C NMR(101MHz,CDCl3)δ166.2,138.9,138.6,138.5,138.4,138.3,137.9,137.8,136.5,136.1,136.0,133.3,133.3,133.3,133.0,132.9,132.9,132.9,129.9,129.6,128.4,128.4,128.4,128.4,128.2,128.2,128.1,128.1,128.0,127.9,127.9,127.8,127.8,127.7,127.7,127.6,127.5,127.5,127.5,127.3,127.2,127.1,126.8,126.5,126.3,126.2,126.2,126.0,126.0,125.9,125.9,125.9,125.8,125.6,125.6,97.2(C-1c),97.1(C-1a,C-1b),83.9(C-1d),81.8,80.5,80.3,80.0,79.2,75.8,75.6,75.3,75.1,74.6,73.7,73.2,72.8,72.5,72.4,72.1,71.5,71.4,70.9,68.9,66.1,65.4,63.3,29.7,25.5,15.0.HRMS(ESI)m/z calcd for C141H138O22SNa[M+Na]+2237.9292,found 2237.9287.
化合物38:根据反应条件4.1,糖基供体37(150mg,0.068mmol)和糖基受体21(113mg,0.136mmol),NIS(30.6mg,0.136mmol),TfOH(0.88uL,0.01mmol), 反应温度为-20℃–0℃,反应时间为6h,得到化合物38(148mg,73%)。[α]22 D=62.5(c1.0,CH3Cl).1H NMR(700MHz,Chloroform-d)δ8.07–7.97(m,2H,Ar),7.84–6.84(m,101H,Ar),5.68(d,J=3.5Hz,1H,H-1c),5.17(d,J=3.5Hz,1H,H-1a),5.16–5.02(m,4H,ArCH),4.99–4.95(m,3H,H-1b,2×ArCH),4.94–4.85(m,6H),4.81(m,2H,H-1d,ArCH),4.77–4.64(m,9H),4.63–4.58(m,6H,H-1e),4.56–4.46(m,5H),4.46–4.38(m,8H),4.33(dd,J=12.1,3.1Hz,1H),4.28–4.15(m,5H),4.08–3.99(m,3H),3.98–3.92(m,2H),3.92–3.86(m,3H),3.85–3.78(m,3H),3.77–3.67(m,4H),3.66–3.57(m,4H),3.50(dd,J=9.6,3.4Hz,1H,H-2b),3.49–3.44(m,2H,H-2c,H-6b),3.41(dd,J=9.4,3.5Hz,1H,H-2a),3.29–3.06(m,3H,OCH2,NCH2),1.86(s,3H,OAc),1.52–1.36(m,4H,CH2CH2),1.22–1.04(m,2H,CH2);13C NMR(176MHz,CDCl3)δ170.6,166.1,138.9,138.8,138.8,138.7,138.6,138.5,138.3,138.0,137.7,136.7,136.5,136.0,136.0,133.3,133.3,133.2,133.0,133.0,132.9,132.8,132.8,130.0,129.6,128.6,128.5,128.5,128.4,128.4,128.3,128.3,128.2,128.2,128.2,128.1,128.1,128.1,128.0,128.0,127.9,127.9,127.9,127.9,127.8,127.8,127.7,127.7,127.6,127.6,127.6,127.6,127.5,127.5,127.5,127.4,127.4,127.4,127.3,127.3,127.1,127.0,126.9,126.6,126.3,126.2,126.1,126.0,126.0,126.0,125.9,125.9,125.8,125.7,125.6,125.6,125.6,125.5,125.5,97.3(C-1a,C-1e),97.2(C-1b),96.4(C-1d),95.7(C-1c),84.6,82.1,81.7,81.7,80.7,80.6,80.4,79.4,77.8,76.5,75.8,75.5,75.4,75.1,74.8,74.7,74.6,73.2,72.6,72.5,71.9,71.9,71.8,71.7,71.5,70.9,70.9,68.8,67.8,67.1,66.1,65.4,64.4,63.3,50.5,50.2,47.1,46.1,29.2,28.0,27.5,23.4,20.9.HRMS(ESI)m/z calcd for C187H187NO31Na2[M+2Na]2+3030.2977,found 1515.1508.
化合物39:将化合物38(126mg)溶解到DCM/MeOH(1/1,v/v,2.6mL)中,冷却至0℃,加入AcCl(0.26mL)。反应液在室温下反应24h。反应结束后反应液用DCM稀释,用NaHCO3洗涤,有机相用无水Na2SO4干燥,层析柱分离纯化得到化合物39(101mg,82%)。[α]22 D=39.5(c0.9,CH3Cl).1H NMR(700MHz,Chloroform-d)δ8.01(d,J=7.8Hz,2H),7.84–6.78(m,101H),5.72(d,J=3.4Hz,1H,H-1c),5.18(d,J=3.4Hz,2H,H-1a,ArCH),5.18–5.12(m,2H),5.09–5.02(m,3H,H-1b,2×ArCH),5.00–4.87(m,7H),4.87–4.78(m,3H,H-1d,2×ArCH),4.76–4.54(m,15H,H-1e),4.51–4.40(m,11H),4.39–4.27(m,3H),4.27–4.15(m,3H),4.12–4.02(m,3H),3.98–3.72(m,14H),3.71–3.52(m,8H),3.48–3.41(m,2H),3.29–3.06(m,3H,OCH2,NCH2),1.52–1.35(m,4H,CH2CH2),1.23–1.05(m,2H,CH2);13C NMR(176MHz,CDCl3)δ192.4,192.3,166.2,156.7,156.2,139.0,138.7,138.7,138.7,138.6,138.6,138.5,138.1,138.0,137.9,137.7,136.9,136.7,136.5,136.5,136.1,136.0,134.6,134.5,133.4,133.3,133.3,133.2,133.1,133.0,132.9,132.9,132.8,132.7,130.0,129.8,129.7,129.6,129.1,129.0, 128.6,128.6,128.5,128.5,128.4,128.4,128.4,128.3,128.3,128.3,128.3,128.2,128.2,128.2,128.1,128.0,128.0,127.9,127.9,127.8,127.8,127.8,127.7,127.7,127.6,127.6,127.6,127.6,127.5,127.5,127.5,127.4,127.4,127.3,127.3,127.2,127.2,127.2,127.1,127.1,127.0,127.0,126.6,126.4,126.3,126.1,126.1,126.0,126.0,125.9,125.9,125.9,125.8,125.8,125.7,125.7,125.6,125.5,122.8,97.4(C-1a,C-1e),97.2(C-1b),96.6(C-1d),95.7(C-1c),84.7,82.0,81.7,81.7,80.7,80.5,80.4,79.4,78.7,78.1,77.7,77.4,77.3,75.9,75.5,75.5,75.3,75.2,74.9,74.8,74.8,74.7,73.2,72.7,72.5,72.1,71.9,71.9,71.8,71.8,71.5,71.0,70.9,68.9,67.7,67.2,66.1,65.4,63.2,61.8,50.5,50.2,47.1,46.2,29.3,28.0,27.5,23.4.HRMS(ESI)m/z calcd for C189H189NO32Na[M+Na]+2965.2979,found 2965.2993.
实施例7
目标八糖41的合成,路线为图6。
具体试验操作和步骤:
化合物40:三糖供体32(38.0mg,0.015mmol)和五糖受体39(29.4mg,0.01mmol)与甲苯共蒸三次。加入干燥的DCM(1.0mL),加入活化的4
Figure PCTCN2017116187-appb-000019
分子筛,溶液在室温下搅拌30min后冷却至0℃,加入TMSOTf(0.05MinDCM,30uL,1.5umol),在0℃下搅拌6h。反应结束后用吡啶终止反应。反应液过滤,加入DCM稀释后用饱和的NaHCO3洗涤。无水Na2SO4干燥浓缩。柱层析纯化分离得到化合物40(24.8mg,56%)。[α]22 D=62.8(c1.0,CH3Cl).1H NMR(700MHz,Chloroform-d)δ8.06–7.86(m,8H),7.83–6.88(m,145H),5.60(d,J=3.4Hz,1H,H-1c),5.58(m,2H,H-1h,H-2f),5.10(m,2H),5.07(d,J=3.8Hz,2H,H-1a,H-1g),5.07–4.98(m,6H),4.98–4.87(m,10H,H-1b),4.87–4.81(m,2H),4.80–4.72(m,4H,H-1d),4.72–4.62(m,11H),4.62–4.48(m,18H,H-1e),4.48–4.26(m,26H,H-1f),4.25–4.17(m,8H),4.16–4.10(m,3H),4.09–4.01(m,3H),4.01–3.92(m,5H),3.93–3.84(m,5H),3.82–3.64(m,7H),3.63–3.45(m,12H),3.45–3.29(m,6H),3.25–2.93(m,3H,OCH2,NCH2),1.41–1.31(m,2H,CH2),1.24–1.14(m,2H,CH2),1.09–0.88(m,2H,CH2).13C NMR(176MHz,CDCl3)δ166.1,166.0,165.0,139.4,139.0,138.9,138.9,138.8,138.7,138.7,138.6,138.4,138.2,138.1,138.1,138.0,138.0,137.7,137.6,137.4,136.9,136.5,136.4,136.1,136.1,136.0,133.4,133.3,133.3,133.3,133.1,133.0,133.0,132.9,132.9,132.9,132.8,132.7,130.3,130.2,130.2,130.1,129.9,129.8,129.7,129.7,129.6,129.0,129.0,128.7,128.6,128.6,128.5,128.5,128.4,128.4,128.4,128.4,128.3,128.3,128.3,128.3,128.3,128.2,128.2,128.1,128.1,128.0,128.0,128.0,127.9,127.9,127.9,127.9,127.8,127.7,127.7,127.7,127.6,127.6,127.6,127.6,127.5, 127.5,127.4,127.4,127.4,127.3,127.3,127.2,127.2,127.1,127.1,126.9,126.9,126.8,126.7,126.6,126.4,126.4,126.4,126.1,126.1,126.1,126.0,126.0,125.9,125.9,125.8,125.8,125.7,125.7,125.6,102.1(C-1f),98.4(C-1a,C-1g),97.7(C-1b),97.2(C-1e),97.1(C-1h),96.1(C-1c,C-1d),84.3,82.5,82.2,81.9,81.7,80.8,80.5,80.4,80.3,80.2,79.3,79.1,78.5,78.4,77.9,76.6,76.1,75.8,75.8,75.6,75.6,75.1,75.1,74.9,74.6,74.3,74.2,73.6,73.5,73.3,73.3,73.1,72.7,72.6,72.5,71.9,71.7,71.7,71.6,71.4,70.8,70.2,69.0,68.8,68.6,67.8,67.6,67.1,65.6,63.4,63.3,63.2,50.5,50.1,47.1,46.2,44.8,32.0,29.7,29.5,29.4,29.1,27.9,27.5,23.2,22.7.TheJC-Hcouplingconstantswere176.4Hz(c),174.4Hz(h),170.0Hz(a),170.4Hz(g),170.4Hz(b),168.8Hz(d),170.4Hz(e),163.6Hz(f).HRMS(ESI)m/z calcd for C279H273NO49Na2[M+2Na]2+4466.8686,found 2233.4497.
化合物41:化合物41为式I结构中Rn都为H。将化合物40(10mg,2.3ummol)溶解在MeOH/THF(1:1,v/v,1mL)中,加入15%NaOH(100uL)搅拌1h,加入MeONa(50mg)。溶液在室温下搅拌12h,反应液加入AmberliteIR120H+树脂中和至PH为7。过滤浓缩,柱层析纯化分离,得到半脱保护产物。半脱保护产率溶解于DCM/t-Butanol/H2O(3:6:1,v/v/v,2mL)中,加入Pd/C。混合物在1个大气压的H2压力下反应后三天,过滤浓缩。用C18反相柱纯化,得到全脱保护产物41(2.1mg,63%)。1H NMR(700MHz,D2O)δ5.37(d,J=3.7Hz,1H,H-1c),5.35(d,J=3.9Hz,1H,H-1f),5.02(d,J=3.7Hz,1H,H-1a),4.99(d,J=3.7Hz,1H,H-1g),4.96(s,1H,H-1d),4.95(d,J=3.9Hz,1H,H-1h),4.79(s,1H,H-1e),4.52(d,J=7.8Hz,1H,H-1f),4.24(d,J=2.9Hz,1H),4.23–4.16(m,3H),4.13–4.08(m,2H),4.08–4.01(m,4H),3.99(dt,J=10.2,3.2Hz,1H),3.95–3.90(m,2H),3.89–3.67(m,25H),3.67–3.59(m,4H),3.59–3.52(m,7H),3.51–3.41(m,3H),3.02(t,J=7.6Hz,2H),1.74–1.62(m,4H),1.52–1.42(m,2H).13C NMR(176MHz,D2O)δ103.6,100.1,99.5,99.1,98.7,97.8,97.7,97.4,80.0,76.9,76.8,76.4,75.2,74.0,73.4,73.1,73.0,72.6,72.1,72.1,72.0,71.8,71.7,71.6,71.5,71.5,70.9,70.8,70.7,70.7,70.5,70.4,70.3,69.7,69.5,69.4,69.2,69.2,68.0,67.7,67.6,65.2,62.5,61.8,60.5,60.2,60.0,59.8,39.4,28.0,26.6,22.5.HRMS(ESI)m/z calcd for C55H97NO43Na[M+H]+1460.5507,found 1460.547。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

  1. 一种幽门螺旋杆菌外核心八糖或其衍生物,其特征在于,如式Ⅰ所示:
    Figure PCTCN2017116187-appb-100001
    其中,R为-(CH2)n-N-Y1Y2或者-(CH2)n-N-Y1Y2(linker),n=1~10,N为氮,Y1为H或者为卞基(Bn),Y2为H或者卞甲氧羰基(Cbz);R1,R2,R3,R6,R7,R8,R10,R12,R14,R15,R16,R18,R20,R21,R23,R24,R26为H或者苄基(Bn);R5,R11,R17,R19,R22,R25为H或者2-萘甲基(Nap);R4,R9,R13,R27为者酯基。
  2. 合成权利要求Ⅰ所述幽门螺旋杆菌外核心八糖的方法,其特征在于,包括以下步骤:
    步骤一,合成需要的单糖砌块A,B,C,D:
    Figure PCTCN2017116187-appb-100002
    其中,Rn如权利要求Ⅰ所述但不为H;
    步骤二,通过糖基化反应组装保护八糖;
    步骤三,八糖的脱保护。
  3. 根据权利要求2所述的方法,其特征在于,步骤一中,合成单糖砌块A,B,C,D时,所用的溶剂为干燥二氯甲烷、乙酸乙酯、甲醇、N,N-二甲基甲酰胺、四氢呋喃、吡啶、氯仿、80%醋酸水溶液中的一种或者几种;底物浓度为0.02~0.5M;作为反应试剂或催化剂的酸为盐酸、乙酸或对甲苯磺酸;反应温度为-78℃~溶剂的回流温度;反应时间为1~48h。
  4. 根据权利要求2所述方法,其特征在于,步骤二包括(1)三糖供体的组装、(2)五糖受体的组装、(3)全保护八糖的组装;
    其中,
    三糖供体的组装条件为:底物为糖砌块A、B,反应溶剂为Et2O/DCM,加入相对于供体10当量的噻吩,使用干燥剂,反应温度为0℃~室温,反应过程都为惰性气体保护,反应原料消失后,用吡啶或者三乙胺淬灭反应,过滤,洗涤,萃取,干燥,产物用硅胶柱纯化;
    五糖受体的组装条件为:底物为糖砌块A,C,D,反应溶剂为反应溶剂为Et2O/DCM或者DCM,加入相对于供体10当量的噻吩,使用干燥剂,反应温度为0℃~室温,反应过程都为惰性气体保护,反应原料消失后,用吡啶或者三乙胺淬灭反应,过滤,洗涤,萃取,干燥,产物用硅胶柱纯化;
    八糖的组装条件为:底物为上述三糖供体和五糖受体,糖苷化反应的有机溶剂为干燥的二氯甲烷,干燥的乙醚中的一或者两种混合,在路易斯酸的作用下,进行糖基化反应得到保护的八糖;反应原料消失后,用吡啶或者三乙胺淬灭反应,过滤,洗涤,萃取,干燥,产物用硅胶柱纯化。
  5. 根据权利要求4所述的方法,其特征在于,
    所述的干燥剂为
    Figure PCTCN2017116187-appb-100003
    分子筛,
    Figure PCTCN2017116187-appb-100004
    分子筛,
    Figure PCTCN2017116187-appb-100005
    分子筛,无水硫酸钠,无水硫酸镁,无水硫酸钙中的一种或者多种;
    所述干燥剂与反应物的质量比为1.0~4.0;
    所述的惰性气体为氮气或者氩气;
    路易斯酸为TMSOTf,TfOH,AgOTf,硫糖苷进行反应则是另外加入NIS与路易斯酸一并作为促进剂。
  6. 根据权利要求4或5所述的方法,其特征在于,糖基化反应时,底物浓度为0.01M~0.1M,反应温度为-50℃~0℃~室温;室温为20~30℃;反应时间为1h~7h。
  7. 根据权利要求2所述的方法,其特征在于,步骤三中,保护的八糖在碱性条件将酰基脱除,所用的溶剂为甲醇,四氢呋喃,二氯甲烷为其中的一种或者两种混合溶剂; 反应结束用H+树脂进行中和,反应温度为室温,反应时间为2h~12h得到半脱保护的八糖。
  8. 根据权利要求7所述的方法,其特征在于,步骤三中,利用钯碳、氢气对半脱保护产物进行全脱保护,所用溶剂为四氢呋喃、二氯甲烷、乙酸乙酯、叔丁醇、水、甲醇、醋酸中的多种;所述钯碳为10%的钯碳;钯碳与反应物的质量比为0.1:1~0.5:1;脱苄基和2-萘甲基所用的氢气力为1~100atm;所述的反应温度为常温,反应的时间为1~48h。
  9. 权利要求要求1所述的幽门螺旋杆菌外核心八糖在开发或制备用于预防或治疗幽门螺旋杆菌感染引起的疾病的疫苗或药物中的应用。
  10. 一种生成葡萄糖α糖苷键的方法,其特征在于,糖基供体和受体在甲苯中共蒸2~3次,加入干燥的DCM或者体积比为1:2的DCM/Et2O;底物浓度为0.01-0.1M,以活化的
    Figure PCTCN2017116187-appb-100006
    或者
    Figure PCTCN2017116187-appb-100007
    分子筛为干燥剂,加入相当于糖基供体10当量的噻酚;在室温下搅拌20~30min后冷却至-50~0℃,加入TMSOTf为促进剂,反应时间为1~7h;用吡啶终止反应。
PCT/CN2017/116187 2017-12-11 2017-12-14 幽门螺旋杆菌脂多糖外核心八糖的制备方法 WO2019113889A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020529450A JP7208995B2 (ja) 2017-12-11 2017-12-14 ヘリコバクタ‐・ピロリリポ多糖の外部コアの八炭糖の調製方法
US16/215,414 US10669353B2 (en) 2017-12-11 2018-12-10 Preparation method of outer core octasaccharide of Helicobacter pylori lipopolysaccharide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711304779.6 2017-12-11
CN201711304779.6A CN107955082B (zh) 2017-12-11 2017-12-11 幽门螺旋杆菌脂多糖外核心八糖的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/215,414 Continuation US10669353B2 (en) 2017-12-11 2018-12-10 Preparation method of outer core octasaccharide of Helicobacter pylori lipopolysaccharide

Publications (1)

Publication Number Publication Date
WO2019113889A1 true WO2019113889A1 (zh) 2019-06-20

Family

ID=61957601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116187 WO2019113889A1 (zh) 2017-12-11 2017-12-14 幽门螺旋杆菌脂多糖外核心八糖的制备方法

Country Status (3)

Country Link
JP (1) JP7208995B2 (zh)
CN (1) CN107955082B (zh)
WO (1) WO2019113889A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109776634B (zh) * 2019-01-28 2021-03-02 江南大学 一种幽门螺旋杆菌o2血清型o抗原寡糖类化合物的合成
CN109776632B (zh) * 2019-03-01 2021-01-29 江南大学 一种幽门螺旋杆菌o:6血清型o-抗原糖链的合成方法
CN111467368B (zh) * 2020-04-13 2021-05-28 江南大学 含庚糖链的寡糖化合物在制备幽门螺旋杆菌疫苗中的应用
CN112592379B (zh) * 2020-12-18 2021-11-16 广东药科大学 一种β-D-葡萄糖短链脂肪酸酯化合物及其制备方法和应用
CN114874345B (zh) * 2022-05-09 2023-04-28 江南大学 一种幽门螺旋杆菌核心脂多糖寡糖抗原糖链的化学合成方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482646A (zh) * 2009-07-31 2012-05-30 加拿大国家研究委员会 幽门螺杆菌脂多糖外部核心表位

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141309C (zh) * 1999-11-25 2004-03-10 中国科学院生态环境研究中心 一种制备1→6连接的、具有1,2反式糖苷键吡喃寡糖的方法
CN1673234A (zh) * 2005-01-05 2005-09-28 达县师范高等专科学校 裂裥八糖烷基苷类化合物及其制备方法
US8025880B2 (en) * 2007-03-01 2011-09-27 Helicure Ab Immunoglobulin against Helicobacter pylori
CA2705014A1 (en) * 2007-11-08 2009-05-14 Nestec S.A. Use of oligosaccharides containing n-acetyllactosamine for maturation of immune responses in neonates
CN104321079A (zh) * 2012-03-19 2015-01-28 马普科技促进协会 糖类-糖脂类缀合物疫苗

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482646A (zh) * 2009-07-31 2012-05-30 加拿大国家研究委员会 幽门螺杆菌脂多糖外部核心表位

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BRITTON, STACEY: "A novel Helicobacter pylori cell -surface polysaccharide", CARBOHYDRATE RESEARCH, vol. 340, no. 9, 31 December 2005 (2005-12-31), pages 1605 - 11, XP055617881 *
MONTEIRO, MARIO A: "Helicobacter pylori:A WOLF IN SHEEP' S CLOTHING:THE GLYCOTYPE FAMILIES OF Helicobacter pylori LIPOPOLYSACCHARIDES EXPRESSING HISTO-BLOOD GROUPS:STRUCTURE, BIOSYNTHESIS, AND ROLE IN PATHOGENESIS", ADVANCES IN CARBOHYDRATE CHEMISTRY AND BIOCHEMISTRY, vol. 57, 31 December 2001 (2001-12-31), pages 99 - 158, XP008148875 *
PARK, JIN ET AL.: "Stereoselective Glycosylations of 2-Azido-2-deoxy-glucosides Using Intermediate Sulfonium Ions", ORGANIC LETTERS, vol. 9, no. 10, 14 April 2007 (2007-04-14), pages 1959 - 1962, XP055617879 *
TSAI, YU-HSUAN: "A general and convergent synthesis of diverse glycosylphosphatidylinositol glycolipids", CHEMICAL SCIENCE, vol. 4, 1 November 2012 (2012-11-01), pages 468 - 481, XP055617885 *

Also Published As

Publication number Publication date
JP7208995B2 (ja) 2023-01-19
CN107955082B (zh) 2019-05-10
CN107955082A (zh) 2018-04-24
JP2021505706A (ja) 2021-02-18

Similar Documents

Publication Publication Date Title
WO2019113889A1 (zh) 幽门螺旋杆菌脂多糖外核心八糖的制备方法
Schwarz et al. A broadly applicable method for the efficient synthesis of α-O-linked glycopeptides and clustered sialic acid residues
AU2002331426B2 (en) Synthetic heparin pentasaccharides
JP7085631B2 (ja) プレシオモナス・シゲロイデスo51血清型o-抗原オリゴ糖の化学合成方法
WO2020177234A1 (zh) 一种幽门螺旋杆菌o:6血清型o-抗原糖链的合成方法
van der Es et al. Synthesis of E. faecium wall teichoic acid fragments
Abronina et al. Application of a Janus aglycon with dual function in benzyl-free synthesis of spacer-armed oligosaccharide fragments of polysaccharides from rhizobacterium Azospirillum brasilense sp7
US11566040B2 (en) Synthesis of O-antigen oligosaccharide compounds of Helicobacter pylori serotype O2
WO2023216732A1 (zh) 一种幽门螺旋杆菌核心脂多糖寡糖抗原糖链的化学合成方法
Li et al. A facile synthesis of 1′-C-alkyl-α-disaccharides from 1-C-alkyl-hexopyranoses and methyl 1-C-methyl-hexopyranosides
US10669353B2 (en) Preparation method of outer core octasaccharide of Helicobacter pylori lipopolysaccharide
CN109627270B (zh) 一种绿脓假单胞菌o11血清型o抗原寡糖的化学合成方法
Nilsson et al. Synthesis of a spacer-containing nonasaccharide fragment of Streptococcus pneumoniae 19F capsular polysaccharide
Bols Synthesis of Kojitriose using silicon-tethered glycosidation
US5380832A (en) Ganglioside GM3 analogs
EP0255717A2 (en) Ganglioside related compounds and method of producing the same
CN114085255B (zh) 一种苏黎世克罗诺杆菌5型脂多糖o-抗原寡糖片段及其制备方法与应用
EP0340780A2 (en) Azidochlorination and diazidization of glycals
Mukherjee et al. First total synthesis of a pentasaccharide repeating unit of the O-antigen of Hafnia alvei PCM 1529
Kumar et al. Concise chemical synthesis of a tetrasaccharide repeating unit of the O-antigen of Hafnia alvei 10457
Jin et al. Syntheses of model compounds related to an antigenic epitope in pectic polysaccharides from Bupleurum falcatum L.(II)
US6384211B1 (en) Carbopeptoids and carbo-nucleotoids
WO2017071152A1 (zh) 磷酰甘露五糖及其衍生物,及其制备方法和应用
Moutel et al. Synthesis of novel analogues of the calicheamicin γ 1 I and esperamicin A 1B oligosaccharides
Huang Synthesis of Ketose-containing Microbial Glycans

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529450

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934845

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17934845

Country of ref document: EP

Kind code of ref document: A1