WO2019113763A1 - 旋转参数检测方法、编码器、激光雷达和无人机 - Google Patents
旋转参数检测方法、编码器、激光雷达和无人机 Download PDFInfo
- Publication number
- WO2019113763A1 WO2019113763A1 PCT/CN2017/115537 CN2017115537W WO2019113763A1 WO 2019113763 A1 WO2019113763 A1 WO 2019113763A1 CN 2017115537 W CN2017115537 W CN 2017115537W WO 2019113763 A1 WO2019113763 A1 WO 2019113763A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- detection signal
- rotation
- time difference
- rotation period
- edge
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 182
- 238000000034 method Methods 0.000 claims abstract description 41
- 230000000630 rising effect Effects 0.000 claims description 124
- 230000002123 temporal effect Effects 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 22
- 238000003384 imaging method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 210000002304 esc Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/44—Devices characterised by the use of electric or magnetic means for measuring angular speed
- G01P3/48—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
- G01P3/481—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
- G01P3/489—Digital circuits therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/347—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
- G01D5/3473—Circular or rotary encoders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P13/00—Indicating or recording presence, absence, or direction, of movement
- G01P13/02—Indicating direction only, e.g. by weather vane
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P13/00—Indicating or recording presence, absence, or direction, of movement
- G01P13/02—Indicating direction only, e.g. by weather vane
- G01P13/04—Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
- G01P13/045—Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement with speed indication
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/36—Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/36—Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
- G01P3/38—Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light using photographic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/44—Devices characterised by the use of electric or magnetic means for measuring angular speed
- G01P3/48—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
- G01P3/481—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
- G01P3/486—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by photo-electric detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/245—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
- G01D5/2454—Encoders incorporating incremental and absolute signals
- G01D5/2455—Encoders incorporating incremental and absolute signals with incremental and absolute tracks on the same encoder
- G01D5/2457—Incremental encoders having reference marks
Definitions
- Embodiments of the present invention relate to the field of encoder technologies, and in particular, to a rotation parameter detecting method, an encoder, a laser radar, and a drone.
- the motor is an important component on the drone. Taking the drone as an example of an unmanned aerial vehicle, the motor can drive the propeller rotation on the unmanned aerial vehicle to drive the unmanned aerial vehicle to fly, and the direction of rotation of the motor affects the unmanned aerial vehicle. In the direction of flight, the rotational speed of the motor affects the flight speed of the UAV. In order to accurately control the flight of the UAV, it is necessary to detect the rotation parameters of the motor, such as: rotation speed, rotation direction, and rotation time.
- the ABZ signal is mainly used to detect the above rotation parameter, specifically, the rotation speed and the rotation direction of the motor are identified according to the A signal and the B signal, and the mechanical zero degree is identified according to the Z signal.
- the above A, B, and Z signals are acquired by three sensors, and the three sensors are respectively controlled by three hardware switches, each of which has a corresponding probability of damage, as long as one of the hardware switches is damaged. , the above rotation parameters cannot be obtained, so the ABZ signal is used to detect the rotation parameters, and the failure rate is high and the cost is increased accordingly.
- Embodiments of the present invention provide a rotation parameter detecting method, an encoder, a laser radar, and a drone for obtaining a rotation parameter through a detection signal, thereby reducing cost.
- an embodiment of the present invention provides a method for detecting a rotation parameter, including:
- the rotation parameter includes: a rotation direction, a rotation speed, and a mechanical zero position
- the code disc is provided with N fan teeth on an outward edge, and the N is an integer greater than 2, each fan tooth includes a first line segment edge and a second segment segment edge, and the N sector teeth are first Line segments are equally spaced On the code wheel;
- One of the N sectors has a curved edge along the circumference of the code wheel and a length of the other N-1 sectors along an arcuate side of the circumference of the code wheel, the other N -
- the length of the teeth along the arcuate sides of the code wheel is the same.
- an embodiment of the present invention provides an encoder, including: a code disk and a processor, wherein the processor is communicably connected to the code wheel; and the code wheel rotates according to rotation of a rotating object;
- the processor is configured to detect a rotation of the code wheel to obtain a detection signal; and obtain a rotation parameter of the rotating object according to the detection signal; the rotation parameter includes: a rotation direction, a rotation speed, a machine Zero position
- the code disc is provided with N fan teeth on an outward edge, and the N is an integer greater than 2, each fan tooth includes a first line segment edge and a second segment segment edge, and the N sector teeth are first The line segments are equally spaced on the code wheel;
- One of the N sectors has a curved edge along the circumference of the code wheel and a length of the other N-1 sectors along an arcuate side of the circumference of the code wheel, the other N -
- the length of the teeth along the arcuate sides of the code wheel is the same.
- an embodiment of the present invention provides a laser radar, including the encoder according to the second aspect of the present invention.
- an embodiment of the present invention provides a drone, an electric machine, and an encoder according to the second aspect of the present invention; the encoder is configured to detect a rotation parameter of the motor.
- an embodiment of the present invention provides a readable storage medium, where the readable storage medium stores a computer program; when the computer program is executed, implementing the rotation according to the first aspect of the present invention. Parameter detection method.
- the rotation parameter detecting method, the encoder, the laser radar and the drone provided by the embodiment of the invention include: detecting a rotation of the code wheel to obtain a detection signal; the code wheel rotating with the rotation of the rotating object; The detection signal obtains a rotation parameter of the rotating object. Since the rotation of the code wheel is driven by the rotating object, the rotation process of the code wheel can reflect the rotation process of the rotating object. The code wheel generates a detection signal during the rotation process, and the rotation direction, the rotation speed, and the mechanical zero position of the rotating object can be obtained according to the detection signal generated during the rotation of the code wheel. Since one of the sector teeth of the code disc is different from the other fan teeth, there are different signals in the detection signal generated by one rotation of the code disc. Based on this, the rotation parameter can be obtained by using a detection signal in the present embodiment. Compared with the three detection signals, the number of detection signals is reduced, the number of matching hardware is reduced, and the failure rate is reduced, thereby reducing the cost.
- FIG. 1 is a schematic architectural diagram of an unmanned flight system 100 in accordance with an embodiment of the present invention
- FIG. 2 is a flowchart of a method for detecting a rotation parameter according to an embodiment of the present invention
- FIG. 3 is a schematic diagram of a code wheel according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram of a code wheel and a photoelectric sensor according to an embodiment of the present invention.
- FIG. 5 is a schematic diagram of a waveform of a detection signal when a code wheel rotates clockwise according to an embodiment of the present invention
- FIG. 6 is a schematic diagram of a waveform of a detection signal when a code wheel is rotated counterclockwise according to an embodiment of the present invention
- FIG. 7 is another schematic diagram of a code wheel and a photoelectric sensor according to an embodiment of the present invention.
- FIG. 8 is a schematic diagram of another waveform of a detection signal when a code wheel rotates clockwise according to an embodiment of the present invention.
- FIG. 9 is another schematic diagram of a waveform of a detection signal when the code wheel is rotated counterclockwise according to an embodiment of the present invention.
- FIG. 10 is a schematic structural diagram of an encoder according to an embodiment of the present invention.
- FIG. 11 is a schematic structural diagram of an encoder according to another embodiment of the present invention.
- FIG. 12 is a schematic structural diagram of a laser radar according to an embodiment of the present invention.
- FIG. 13 is a schematic structural diagram of a drone according to an embodiment of the present invention.
- Embodiments of the present invention provide a rotation parameter detecting method, an encoder, a laser radar, and a drone.
- the drone may be a rotorcraft, for example, a multi-rotor aircraft propelled by air by a plurality of pushing devices, and embodiments of the present invention are not limited thereto.
- FIG. 1 is a schematic architectural diagram of an unmanned flight system 100 in accordance with an embodiment of the present invention. This embodiment is described by taking a rotorcraft unmanned aerial vehicle as an example.
- the unmanned aerial vehicle system 100 can include an unmanned aerial vehicle 110, a pan/tilt head 120, a display device 130, and a control device 140.
- the unmanned aerial vehicle 110 may include a power system 150, a flight control system 160, and a rack.
- the UAV 110 can be in wireless communication with the control device 140 and the display device 130.
- the rack can include a fuselage and a tripod (also known as a landing gear).
- the fuselage may include a center frame and one or more arms coupled to the center frame, the one or more arms extending radially from the center frame.
- the stand is coupled to the fuselage for supporting when the UAV 110 is landing.
- Power system 150 may include one or more electronic governors (referred to as ESCs) 151, one or more propellers 153, and one or more electric machines 152 corresponding to one or more propellers 153, wherein motor 152 is coupled Between the electronic governor 151 and the propeller 153, the motor 152 and the propeller 153 are disposed on the arm of the unmanned aerial vehicle 110; the electronic governor 151 is configured to receive the driving signal generated by the flight control system 160 and provide driving according to the driving signal. Current is supplied to the motor 152 to control the rotational speed of the motor 152. Motor 152 is used to drive propeller rotation to power the flight of unmanned aerial vehicle 110, which enables unmanned aerial vehicle 110 to achieve one or more degrees of freedom of motion.
- ESCs electronic governors
- the UAV 110 can be rotated about one or more axes of rotation.
- the above-described rotating shaft may include a roll axis, a yaw axis, and a pitch axis.
- the motor 152 can be a DC motor or an AC motor.
- the motor 152 may be a brushless motor or a brushed motor.
- Flight control system 160 may include flight controller 161 and sensing system 162.
- the sensing system 162 is used to measure the attitude information of the unmanned aerial vehicle, that is, the position information and state information of the UAV 110 in space, for example, three-dimensional position, three-dimensional angle, three-dimensional speed, three-dimensional acceleration, and three-dimensional angular velocity.
- the sensing system 162 can include, for example, a gyroscope, an ultrasonic sensor, an electronic compass, an Inertial Measurement Unit (IMU), a vision sensor, and a global navigation satellite system. At least one of sensors such as a barometer.
- the global navigation satellite system can be a Global Positioning System (GPS).
- GPS Global Positioning System
- the flight controller 161 is used to control the flight of the unmanned aerial vehicle 110, for example, the flight of the unmanned aerial vehicle 110 can be controlled based on the attitude information measured by the sensing system 162. It should be understood that the flight controller 161 may control the UAV 110 in accordance with pre-programmed program instructions, or may control the UAV 110 in response to one or more control commands from the control device 140.
- the pan/tilt 120 can include a motor 122.
- the pan/tilt is used to carry the imaging device 123.
- the flight controller 161 can control the motion of the platform 120 via the motor 122.
- the platform 120 may further include a controller for controlling the motion of the platform 120 by controlling the motor 122.
- the platform 120 can be independent of the UAV 110 or a portion of the UAV 110.
- the motor 122 can be a DC motor or an AC motor.
- the motor 122 may be a brushless motor or a brushed motor.
- the pan/tilt can be located at the top of the UAV or at the bottom of the UAV.
- the imaging device 123 may be, for example, a device for capturing an image such as a camera or a video camera, and the imaging device 123 may communicate with the flight controller and perform shooting under the control of the flight controller.
- the imaging device 123 of the present embodiment includes at least a photosensitive element, such as a Complementary Metal Oxide Semiconductor (CMOS) sensor or a Charge-coupled Device (CCD) sensor.
- CMOS Complementary Metal Oxide Semiconductor
- CCD Charge-coupled Device
- Display device 130 is located at the ground end of unmanned aerial vehicle system 100, can communicate with unmanned aerial vehicle 110 wirelessly, and can be used to display attitude information for unmanned aerial vehicle 110. In addition, an image taken by the imaging device can also be displayed on the display device 130. It should be understood that the display device 130 may be a stand-alone device or may be integrated in the control device 140.
- the control device 140 is located at the ground end of the unmanned aerial vehicle system 100 and can communicate with the unmanned aerial vehicle 110 in a wireless manner for remote manipulation of the unmanned aerial vehicle 110.
- the rotating object in each of the following embodiments may be the motor 152 in FIG.
- FIG. 2 is a flowchart of a method for detecting a rotation parameter according to an embodiment of the present invention. As shown in FIG. 2, the method in this embodiment may include:
- the rotation parameter includes: a rotation direction, a rotation speed, and a mechanical zero position.
- the obtained spin object parameters are exemplified by a rotation direction, a rotation speed, and a mechanical zero degree.
- the rotation parameters of the rotator during the rotation can be detected by the encoder, and therefore, the scheme of the embodiment can be applied to the encoder.
- the encoder's code wheel also rotates as the rotor rotates.
- the code wheel is provided with N fan teeth on the outward edge, and the N is an integer greater than 2, and each of the fan teeth includes a first line segment edge and a second segment segment edge, and the N fan teeth The first line segments are equally spaced on the code wheel.
- One of the N sectors has a curved edge along the circumference of the code wheel and a length of the other N-1 sectors along an arcuate side of the circumference of the code wheel, the other N - The length of the teeth along the arcuate sides of the code wheel is the same.
- each of the sector teeth is shown on the code wheel shown in FIG. 3, wherein the first line segment side of the four sector teeth equally divides the code disc, and each of the sector teeth The second line segment edge is located on the opposite side of the first line segment.
- one of the four fan teeth is different from the other three fan teeth, except that the one side of the fan tooth is along the circumference of the code wheel and the other three teeth along the circumference of the code wheel
- the upper curved sides are different.
- the length of the curved side of the one tooth is larger than the length of the curved side of the other three teeth, and the lengths of the arc edges of the other three teeth are the same.
- the code wheel of this embodiment is not limited to the number of fan teeth shown in FIG. 3, and in some embodiments, the length of the curved side of one of the fan teeth may be smaller than the arc of other fan teeth. The length of the edge.
- the rotation process of the code wheel can reflect the rotation process of the rotating object.
- the code wheel generates a detection signal during the rotation process, and the rotation direction, the rotation speed, and the mechanical zero position of the rotating object can be obtained according to the detection signal generated during the rotation of the code wheel. Since one of the sector teeth of the code disc is different from the other fan teeth, there are different signals in the detection signal generated by one rotation of the code disc. Based on this, the rotation parameter can be obtained by using a detection signal in the present embodiment, and the prior art Compared with the three detection signals, the number of detection signals is reduced, the number of supporting hardware is reduced correspondingly, and the failure rate is also reduced, thereby reducing the cost.
- a photoelectric sensor is disposed beside the code wheel. As shown in FIG. 4, when any of the sector teeth of the code wheel blocks the photoelectric sensor, the detection signal is a continuous first signal; When all the fan teeth in the code disc do not block the photoelectric sensor, the detection signal is continuous second a signal; the first signal being different from the second signal. Therefore, when the one of the fan teeth different from the other fan teeth blocks the photoelectric sensor, the generated detection signal is a continuous first signal, and the duration of the continuous first signal is greater than that generated when each of the other teeth blocks the photoelectric sensor. The duration of the first signal that lasts.
- the first signal is a low level signal and the second signal is a high level signal.
- a low level signal is a level 0 signal and a high level signal is a level 1 signal.
- the detection signal is a sine wave signal, a cosine wave signal, a triangular wave signal.
- the detection signal is a square wave signal.
- the code wheel also rotates clockwise, and one of the fan teeth is different from the other fan teeth in one rotation period, that is, one rotating tooth, and the fan teeth block the photoelectric
- the detection signal generated by the sensor is a continuous low level signal, and the duration of the low level signal is the longest, and the previous signal of the low level signal is a high level signal due to the duration of the low level signal.
- the longest is that the duration of the previous high level signal of the low level signal is the shortest. This also means that the transition from this high level signal to the falling edge of this low level signal is advanced in time compared to other sector teeth.
- the code wheel also rotates counterclockwise.
- the detection signal generated by the sensor is a continuous low level signal, and the duration of the low level signal is the longest, and the latter signal of the low level signal is a high level signal due to the duration of the low level signal.
- the longest is that the duration of the latter high level signal of the low level signal is the shortest. Compared to other fan teeth, this also means that the rising edge from this low level signal to the high level signal is retracted in time.
- the rotation parameter of the rotating object can be detected based on the waveform of the detection signal of FIG. 5 or FIG. 6 in the rotation period.
- the direction of rotation is determined based on the rising edge and/or the falling edge of the detection signal during the period of rotation of the rotator. For example, as shown in FIG. 5 and FIG. 6, the rising edge of the detection signal generated when the rotating object rotates clockwise is different from the rising edge of the detection signal generated when the rotating object rotates counterclockwise, and the detection of the rotating object when rotating clockwise is different. The falling edge of the signal is different from the falling edge of the detection signal generated when rotating counterclockwise. Therefore, the present embodiment is based on the detection signal in the rotation period. The rising and/or falling edges determine the direction of rotation.
- the embodiment may determine the rotation direction according to a time relationship between rising edges in the detection signal and/or a time relationship between falling edges .
- the difference between the rising edge of the detection signal when clockwise rotation and counterclockwise rotation is mainly reflected in time, and the falling edge of the detection signal is different when clockwise rotation and counterclockwise rotation are different.
- the present embodiment can determine the direction of rotation based on the time relationship between the rising edges of the detection signals in the rotation period, and/or the time relationship between the falling edges of the detection signals in the rotation period.
- the detection signal in the clockwise direction shown in FIG. 5 is known, and the detection signal in the rotation period is The time difference between every two adjacent rising edges is equal, and the time difference between every two adjacent falling edges of the detection signal in the rotation period is not equal, as shown in FIG. 5, the first falling edge The time difference between the second falling edge and the second falling edge is less than the time difference between the second falling edge and the third falling edge.
- the time difference between every two adjacent falling edges of the detection signal in the rotation period is equal, and each of the detection signals in the rotation period is The time difference between two adjacent rising edges is not equal. As shown in Figure 6, the time difference between the third rising edge and the fourth rising edge is greater than between the fourth rising edge and the fifth rising edge. Time difference.
- the time difference of each two adjacent rising edges in the detection signal is equal according to the rotation period, and the rotation direction is determined to be a clockwise direction, or each two adjacent falling edges of the detection signal are detected according to the rotation period.
- the time differences are equal, and the direction of rotation is determined to be counterclockwise.
- the time difference of each two adjacent falling edges in the detection signal in the rotation period may not be equal, and the rotation direction is determined to be a clockwise direction, or the time difference of each two adjacent rising edges in the detection signal according to the rotation period. Not all equal, determine the direction of rotation is counterclockwise. In this way, as long as the time difference of adjacent falling edges in the detection signal is different in one rotation period, or the time difference of adjacent rising edges is different, the rotation direction can be accurately determined, and it is not necessary to acquire the time difference of all adjacent falling edges in the rotation period or The time difference of all adjacent rising edges, so that the rotation direction can be determined more quickly, and the rotation direction determination efficiency is improved.
- the first line segment side of the fan tooth is located in the clockwise direction of the fan tooth, for example, as shown in FIG. 7 , a schematic diagram of the detection signal in the clockwise direction shown in FIG. 8 can be seen, the detection in the rotation period.
- the time difference between every two adjacent falling edges of the signal is equal, and the time difference between every two adjacent rising edges of the detection signal in the rotation period is not equal, as shown in FIG. 8, the third The time difference between the rising edge and the fourth rising edge is greater than the time difference between the fourth rising edge and the fifth rising edge.
- the time difference between every two adjacent rising edges of the detection signal in the rotation period is equal, and each of the detection signals in the rotation period is The time difference between two adjacent falling edges is not equal. As shown in FIG. 9, the time difference between the first falling edge and the second falling edge is smaller than between the second falling edge and the third falling edge. Time difference.
- the time difference of each two adjacent falling edges in the detection signal is equal according to the rotation period, and the rotation direction is determined to be a clockwise direction, or, according to each two adjacent rising edges of the detection signal in the rotation period.
- the time differences are equal, and the direction of rotation is determined to be counterclockwise.
- the time difference of each two adjacent rising edges in the detection signal in the rotation period may not be equal, and the rotation direction is determined to be a clockwise direction, or the time difference of each two adjacent falling edges in the detection signal according to the rotation period. Not all equal, determine the direction of rotation is counterclockwise. In this way, as long as the time difference of adjacent falling edges in the detection signal is different in one rotation period, or the time difference of adjacent rising edges is different, the rotation direction can be accurately determined, and it is not necessary to acquire the time difference of all adjacent falling edges in the rotation period or The time difference of all adjacent rising edges, so that the rotation direction can be determined more quickly, and the rotation direction determination efficiency is improved.
- the duration of the detection signal is acquired during a rotation period of the rotating object; and then the rotation speed is determined according to the duration.
- the rotating object rotates once, and accordingly, the code wheel also rotates one week, and the length of one rotation of the code wheel can be obtained.
- the rotation speed can be determined, for example, the determined rotation speed is 1/T.
- T is the length of time required to rotate one week.
- the rotational speed is determined according to a time relationship between rising edges of the detection signal and/or a temporal relationship between falling edges during a rotation period of the rotating object. If the rotation speed of the rotating object affects the rotation speed of the code wheel, it will affect the time when the rising edge of the detection signal appears and the time when the falling edge appears. For example, if the rotating speed of the rotating object is fast, the time difference between the rising edges will be shortened, and the time difference between the falling edges will also be shortened; if the rotating speed of the rotating object is slow, the time difference between the rising edges will be lengthened, and the falling edge will be shortened.
- This embodiment can determine the direction of rotation based on the time relationship between the rising edges of the detection signals in the rotation period and/or the time relationship between the falling edges. Two specific implementations are shown below, but the embodiment is not limited to the following two implementations.
- the average time difference obtained from the time difference of each two adjacent rising edges is the same as the average time difference obtained from the time difference of every two adjacent falling edges,
- the resulting average time difference is the same whether based on the rising or falling edge.
- the rotation speed can be determined, for example, the rotation speed is 1/(N*t), t is the average time difference.
- determining the time difference according to any two adjacent rising edges in the rotation period The speed of rotation described. For example, as shown in FIG. 5 or FIG. 9, the time difference of every two adjacent rising edges is equal, and the time difference of every two rising edges is equal to the rotation period divided by N, so the time difference according to the arbitrary two adjacent rising edges can be By determining the rotation speed, it is possible to quickly determine the rotation speed without waiting for one rotation period, and the rotation speed detection efficiency is improved.
- the rotation speed is determined according to a time difference of any two adjacent falling edges in the rotation period. For example, as shown in FIG. 6 or FIG. 8, the time difference of every two adjacent falling edges is equal, and the time difference between every two falling edges is equal to the rotation period divided by N, so the time difference according to the arbitrary two adjacent falling edges can be By determining the rotation speed, it is possible to quickly determine the rotation speed without waiting for one rotation period, and the rotation speed detection efficiency is improved.
- the mechanical zero point is determined based on the rising edge and/or the falling edge of the detection signal during the rotation period of the rotator.
- a rising edge of the detection signal generated when the rotating object rotates clockwise is different from the other rising edges, and the rotating object rotates counterclockwise.
- One falling edge of the raw detection signal is different from the other falling edges, and therefore, the present embodiment can determine the direction of rotation according to the rising edge and/or the falling edge of the detection signal in the rotation period.
- a time difference of every two adjacent rising edges in the detection signal is not equal in the rotation period, according to a time relationship between rising edges in the detection signal in the rotation period Determining a reference rising edge; then determining the mechanical zero point according to a time point of the reference rising edge; a time difference between the reference rising edge and a previous rising edge is not equal to the reference rising edge and the next rising edge
- the time difference between For example, as shown in FIG. 6 and FIG. 8, the time difference between the third rising edge and the fourth rising edge is greater than the time difference between the fourth rising edge and the fifth rising edge.
- the fourth rising edge is Referring to the rising edge, determining the mechanical zero point according to the time point of the reference rising edge, for example, determining the time point of the reference rising edge as the mechanical zero point, or determining the time point of the preset time length from the time point of the reference rising edge is Mechanical zero point.
- a time difference of every two adjacent falling edges of the detection signal is not equal in the rotation period, according to a time relationship between falling edges of the detection signal in the rotation period Determining a reference falling edge; then determining the mechanical zero point according to a time point of the reference falling edge; a time difference between the reference falling edge and a previous falling edge is not equal to the reference falling edge and the next falling edge The time difference between. For example, as shown in FIG. 5 and FIG.
- the time difference between the first falling edge and the second falling edge is smaller than the time difference between the second falling edge and the third falling edge, and therefore, the second falling edge is Referring to the falling edge, determining the mechanical zero point according to the time point of the reference falling edge, for example, determining the time point of the reference falling edge as the mechanical zero point, or determining the time point of the preset time length from the time point of the reference falling edge is Mechanical zero point.
- the rotation direction, the rotation speed, and the mechanical zero point can be obtained by using one detection signal, which reduces the number of detection signals compared with the prior art requiring three detection signals, and correspondingly reduces the supporting hardware.
- the quantity also reduces the failure rate, which in turn reduces costs.
- the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores program instructions, and the program may include part or all of the method for detecting the rotation parameters in FIG. 2 and its corresponding embodiments. step.
- FIG. 10 is a schematic structural diagram of an encoder according to an embodiment of the present invention.
- the encoder 300 of this embodiment may include: a code disk 301 and a processor 302, and the processor 302 and the code disk. 301 communication connection; wherein the code wheel 301 rotates with the rotation of the rotating object.
- the processor 302 may be a central processing unit (CPU).
- the processor 302 can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or a field-programmable gate array (FPGA). Or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the processor 302 is configured to detect a rotation of the code wheel 301 to obtain a detection signal; and obtain a rotation parameter of the rotating object according to the detection signal; the rotation parameter includes: a rotation direction, a rotation speed , mechanical zero position;
- the code wheel 301 is provided with N fan teeth on an outward edge, and the N is an integer greater than 2, and each of the fan teeth includes a first line segment edge and a second segment segment edge, and the N fan segments are One line segment is equally spaced on the code wheel; one of the N sector teeth along the arc edge on the circumference of the code wheel 301 and the other N-1 sectors along the code wheel
- the length of the curved sides on the circumference of the circle 301 is different, and the lengths of the other N-shaped sectors along the arcuate sides of the code wheel 301 are the same.
- a schematic diagram of the code wheel 301 is shown in FIG. 3, for example.
- the encoder of this embodiment may be used to implement the technical solutions of the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
- FIG. 11 is a schematic structural diagram of an encoder according to another embodiment of the present invention.
- the encoder 300 of the present embodiment further includes: a photoelectric sensor 303, based on the embodiment shown in FIG.
- the photosensor 303 is communicatively coupled to the processor 302;
- the detection signal is a continuous first signal; when all the sectors in the code wheel 301 do not block the photosensor 303, The detection signal is a continuous second signal;
- the first signal is different from the second signal.
- the first signal is a low level signal and the second signal is a high level signal.
- the detection signal is a square wave signal.
- the processor 302 is specifically configured to determine the rotation direction according to a rising edge and/or a falling edge of the detection signal during a rotation period of the rotating object.
- the processor 302 is configured to: according to a time relationship between rising edges and/or a time relationship between falling edges in the detection signal during a rotation period of the rotating object, The direction of rotation is determined.
- the processor 302 is specifically configured to:
- the rotation direction is a clockwise direction; if the time difference of each two adjacent falling edges in the detection signal is equal in the rotation period, Or, if the time difference of every two adjacent rising edges in the detection signal is equal in the rotation period, it is determined that the rotation direction is an inverse clock direction.
- the processor 302 is specifically configured to: acquire a duration of the detection signal during a rotation period of the rotating object; and determine the rotation speed according to the duration.
- the processor 302 is configured to determine, according to a time relationship between rising edges of the detection signal and/or a time relationship between falling edges, during a rotation period of the rotating object. The rotational speed.
- the processor 302 is specifically configured to:
- the rotation speed is determined based on the average time difference.
- the processor 302 is specifically configured to:
- the rotation speed is determined according to a time difference of any two adjacent falling edges in the rotation period.
- the processor 302 is specifically configured to: rotate the rotating object During the period, the mechanical zero is determined according to the rising edge and/or the falling edge of the detection signal.
- the processor 302 is specifically configured to:
- determining a reference rising edge according to a time relationship between rising edges in the detection signal in the rotation period Determining the mechanical zero point with reference to a time point of the rising edge; a time difference between the reference rising edge and the last rising edge is not equal to a time difference between the reference rising edge and the next rising edge;
- the rotator is a motor.
- the encoder of this embodiment may further include a memory 304.
- the processor 302 and the memory 304 are connected by a bus.
- Memory 304 can include read only memory and random access memory and provides instructions and data to processor 302.
- a portion of the memory 304 may also include a non-volatile random access memory.
- the memory 304 is used to store code for executing the rotation parameter detecting method, and the processor 302 is configured to call the code stored in the memory 304 to execute the above scheme.
- the encoder of this embodiment may be used to implement the technical solutions of the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
- FIG. 12 is a schematic structural diagram of a laser radar according to an embodiment of the present invention.
- the laser radar 400 of the embodiment includes an encoder 401, wherein the encoder 401 can be implemented by using the apparatus shown in FIG. 10 or FIG.
- the structure of the example which corresponds to the technical solution of any of the foregoing method embodiments of the present invention, the implementation principle and the technical effect are similar, and details are not described herein again.
- the laser radar 400 also includes other components, not shown here.
- FIG. 13 is a schematic structural diagram of a drone according to an embodiment of the present invention.
- the drone 500 of the embodiment includes a motor 501 and an encoder 502, wherein the encoder 502 is configured to detect The rotation parameters of the motor 501 are described.
- the encoder 502 can adopt the structure of the device embodiment shown in FIG. 10 or FIG. 11 , and correspondingly, the technical solution of any of the foregoing method embodiments of the present invention can be implemented, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
- the drone 500 Other components are also included, not shown here.
- the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
- the foregoing storage medium includes: read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, and the like, which can store program codes. Medium.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Transform (AREA)
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
本发明实施例提供一种旋转参数检测方法、编码器、激光雷达和无人机,此方法包括:对码盘的转动进行检测获得一检测信号;根据检测信号,获得旋转物的旋转参数。由于码盘的旋转是由旋转物来带动的,因此码盘的旋转过程可以反映出旋转物的旋转过程。码盘在旋转过程中会产生检测信号,根据码盘在旋转过程中产生的检测信号可以获得该旋转物的旋转方向、旋转速度、机械零位。由于码盘中其中一个扇齿与其它扇齿不同,所以码盘旋转一圈产生的检测信号中存在不同的信号,基于此,本实施例通过一个检测信号就可以获得旋转参数,与现有技术需要三个检测信号相比,减少了检测信号的数量,相应地减少了配套的硬件数量,也降低了故障率,进而降低了成本。
Description
本发明实施例涉及编码器技术领域,尤其涉及一种旋转参数检测方法、编码器、激光雷达和无人机。
电机是无人机上的一个重要部件,以无人机为无人飞行器为例,电机可以驱动无人飞行器上的螺旋桨旋转,来带动无人飞行器飞行,而且电机的旋转方向影响了无人飞行器的飞行方向,电机的旋转速度影响了无人飞行器的飞行速度。为了准确控制无人飞行器的飞行,需要检测电机的旋转参数,如:旋转速度、旋转方向、旋转时间。目前,主要采用ABZ信号来检测上述旋转参数,具体是,根据A信号和B信号来识别电机的旋转速度以及旋转方向,以及根据Z信号来识别机械零度。但是,上述的A、B、Z信号是由三个传感器来采集获得的,而且三个传感器分别由三个硬件开关来控制,每个硬件开关均有相应的损坏概率,只要其中一个硬件开关损坏,则无法获得上述旋转参数,所以采用ABZ信号来检测旋转参数,出现的故障率较高,成本也相应提升。
发明内容
本发明实施例提供一种旋转参数检测方法、编码器、激光雷达和无人机,用于通过一检测信号来获得旋转参数,降低成本。
第一方面,本发明实施例提供一种旋转参数检测方法,包括:
对码盘的转动进行检测获得一检测信号;所述码盘随旋转物的转动而转动;
根据所述检测信号,获得所述旋转物的旋转参数;所述旋转参数包括:旋转方向、旋转速度、机械零位;
所述码盘上向外沿伸设置有N个扇齿,所述N为大于2的整数,每个扇齿包括第一线段边和第二线段边,所述N个扇齿的第一线段边等间距的位于
所述码盘上;
所述N个扇齿中一个扇齿沿所述码盘圆周边上的弧形边与其它N-1个扇齿沿所述码盘圆周边上的弧形边的长度不同,所述其它N-个扇齿沿所述码盘上的弧形边的长度相同。
第二方面,本发明实施例提供一种编码器,包括:码盘和处理器,所述处理器与所述码盘通信连接;所述码盘随旋转物的转动而转动;
所述处理器,用于对所述码盘的转动进行检测获得一检测信号;以及根据所述检测信号,获得所述旋转物的旋转参数;所述旋转参数包括:旋转方向、旋转速度、机械零位;
所述码盘上向外沿伸设置有N个扇齿,所述N为大于2的整数,每个扇齿包括第一线段边和第二线段边,所述N个扇齿的第一线段边等间距的位于所述码盘上;
所述N个扇齿中一个扇齿沿所述码盘圆周边上的弧形边与其它N-1个扇齿沿所述码盘圆周边上的弧形边的长度不同,所述其它N-个扇齿沿所述码盘上的弧形边的长度相同。
第三方面,本发明实施例提供一种激光雷达,包括如第二方面本发明实施例所述的编码器。
第四方面,本发明实施例提供一种无人机,电机和如第二方面本发明实施例所述的编码器;所述编码器用于检测所述电机的旋转参数。
第五方面,本发明实施例提供一种可读存储介质,所述可读存储介质上存储有计算机程序;所述计算机程序在被执行时,实现如第一方面本发明实施例所述的旋转参数检测方法。
本发明实施例提供的旋转参数检测方法、编码器、激光雷达和无人机,此方法包括:对码盘的转动进行检测获得一检测信号;所述码盘随旋转物的转动而转动;根据所述检测信号,获得所述旋转物的旋转参数。由于码盘的旋转是由旋转物来带动的,因此码盘的旋转过程可以反映出旋转物的旋转过程。码盘在旋转过程中会产生检测信号,根据码盘在旋转过程中产生的检测信号可以获得该旋转物的旋转方向、旋转速度、机械零位。由于码盘中其中一个扇齿与其它扇齿不同,所以码盘旋转一圈产生的检测信号中存在不同的信号,基于此,本实施例通过一个检测信号就可以获得旋转参数,与现有技
术需要三个检测信号相比,减少了检测信号的数量,相应地减少了配套的硬件数量,也降低了故障率,进而降低了成本。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明的实施例的无人飞行系统100的示意性架构图;
图2为本发明一实施例提供的旋转参数检测方法的流程图;
图3为本发明一实施例提供的码盘的一种示意图;
图4为本发明一实施例提供的码盘与光电传感器的一种示意图;
图5为本发明一实施例提供的码盘顺时针转动时检测信号的一种波形示意图;
图6为本发明一实施例提供的码盘逆时针转动时检测信号的一种波形示意图;
图7为本发明一实施例提供的码盘与光电传感器的另一种示意图;
图8为本发明一实施例提供的码盘顺时针转动时检测信号的另一种波形示意图;
图9为本发明一实施例提供的码盘逆时针转动时检测信号的另一种波形示意图;
图10为本发明一实施例提供的编码器的结构示意图;
图11为本发明另一实施例提供的编码器的结构示意图;
图12为本发明一实施例提供的激光雷达的结构示意图;
图13为本发明一实施例提供的无人机的结构示意图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于
本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的实施例提供了旋转参数检测方法、编码器、激光雷达和无人机。无人机可以是旋翼飞行器(rotorcraft),例如,由多个推动装置通过空气推动的多旋翼飞行器,本发明的实施例并不限于此。
图1是根据本发明的实施例的无人飞行系统100的示意性架构图。本实施例以旋翼无人飞行器为例进行说明。
无人飞行系统100可以包括无人飞行器110、云台120、显示设备130和控制装置140。其中,无人飞行器110可以包括动力系统150、飞行控制系统160和机架。无人飞行器110可以与控制装置140和显示设备130进行无线通信。
机架可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在无人飞行器110着陆时起支撑作用。
动力系统150可以包括一个或多个电子调速器(简称为电调)151、一个或多个螺旋桨153以及与一个或多个螺旋桨153相对应的一个或多个电机152,其中电机152连接在电子调速器151与螺旋桨153之间,电机152和螺旋桨153设置在无人飞行器110的机臂上;电子调速器151用于接收飞行控制系统160产生的驱动信号,并根据驱动信号提供驱动电流给电机152,以控制电机152的转速。电机152用于驱动螺旋桨旋转,从而为无人飞行器110的飞行提供动力,该动力使得无人飞行器110能够实现一个或多个自由度的运动。在某些实施例中,无人飞行器110可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、偏航轴和俯仰轴。应理解,电机152可以是直流电机,也可以交流电机。另外,电机152可以是无刷电机,也可以是有刷电机。
飞行控制系统160可以包括飞行控制器161和传感系统162。传感系统162用于测量无人飞行器的姿态信息,即无人飞行器110在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统162例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系
统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。飞行控制器161用于控制无人飞行器110的飞行,例如,可以根据传感系统162测量的姿态信息控制无人飞行器110的飞行。应理解,飞行控制器161可以按照预先编好的程序指令对无人飞行器110进行控制,也可以通过响应来自控制装置140的一个或多个控制指令对无人飞行器110进行控制。
云台120可以包括电机122。云台用于携带成像装置123。飞行控制器161可以通过电机122控制云台120的运动。可选地,作为另一实施例,云台120还可以包括控制器,用于通过控制电机122来控制云台120的运动。应理解,云台120可以独立于无人飞行器110,也可以为无人飞行器110的一部分。应理解,电机122可以是直流电机,也可以是交流电机。另外,电机122可以是无刷电机,也可以是有刷电机。还应理解,云台可以位于无人飞行器的顶部,也可以位于无人飞行器的底部。
成像装置123例如可以是照相机或摄像机等用于捕获图像的设备,成像装置123可以与飞行控制器通信,并在飞行控制器的控制下进行拍摄。本实施例的成像装置123至少包括感光元件,该感光元件例如为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)传感器或电荷耦合元件(Charge-coupled Device,CCD)传感器。
显示设备130位于无人飞行系统100的地面端,可以通过无线方式与无人飞行器110进行通信,并且可以用于显示无人飞行器110的姿态信息。另外,还可以在显示设备130上显示成像装置拍摄的图像。应理解,显示设备130可以是独立的设备,也可以集成在控制装置140中。
控制装置140位于无人飞行系统100的地面端,可以通过无线方式与无人飞行器110进行通信,用于对无人飞行器110进行远程操纵。
应理解,上述对于无人飞行系统各组成部分的命名仅是出于标识的目的,并不应理解为对本发明的实施例的限制。
其中,下述各实施例中的旋转物可以是图1中的电机152。
图2为本发明一实施例提供的旋转参数检测方法的流程图,如图2所示,本实施例的方法可以包括:
S201、对码盘的转动进行检测获得一检测信号;所述码盘随旋转物的转
动而转动。
S202、根据所述检测信号,获得所述旋转物的旋转参数;所述旋转参数包括:旋转方向、旋转速度、机械零位。
本实施例中,获取的旋物参数是以旋转方向、旋转速度和机械零度为例。旋转物在旋转过程中的旋转参数可以通过编码器来检测,因此,本实施例的方案可以应用于编码器中。旋转物在旋转时编码器的码盘也随之旋转。
本实施例中的码盘上向外沿伸设置有N个扇齿,所述N为大于2的整数,每个扇齿包括第一线段边和第二线段边,所述N个扇齿的第一线段边等间距的位于所述码盘上。所述N个扇齿中一个扇齿沿所述码盘圆周边上的弧形边与其它N-1个扇齿沿所述码盘圆周边上的弧形边的长度不同,所述其它N-个扇齿沿所述码盘上的弧形边的长度相同。
例如如图3所示,图3所示的码盘上示出了4个扇齿,其中,这4个扇齿中的第一线段边等分了该码盘,而且每个扇齿中的第二线段边位于第一线段边相对的一侧。其中,这4个扇齿中其中一个扇齿与另外3个扇齿不同,不同之外在于,这一个扇齿沿码盘圆周边上的弧形边与另外3个扇齿沿码盘圆周边上的弧形边不同,如图3所示,这一个扇齿的弧形边的长度大于另外3个扇齿的弧形边的长度,并且这另外3个扇齿的弧形边的长度相同。需要说明的是,本实施例的码盘不限于图3所示的具有的扇齿的数量,而且在一些实施例中,其中一个扇齿的弧形边的长度也可以小于其它扇齿的弧形边的长度。
由于码盘的旋转是由旋转物来带动的,因此码盘的旋转过程可以反映出旋转物的旋转过程。码盘在旋转过程中会产生检测信号,根据码盘在旋转过程中产生的检测信号可以获得该旋转物的旋转方向、旋转速度、机械零位。由于码盘中其中一个扇齿与其它扇齿不同,所以码盘旋转一圈产生的检测信号中存在不同的信号,基于此,本实施例通过一个检测信号就可以获得旋转参数,与现有技术需要三个检测信号相比,减少了检测信号的数量,相应地减少了配套的硬件数量,也降低了故障率,进而降低了成本。
在一些实施例中,码盘的旁边设置有光电传感器,如图4所示,当所述码盘的其中任一扇齿挡住光电传感器时,所述检测信号为持续的第一信号;当所述码盘中的所有扇齿未挡住光电传感器时,所述检测信号为持续的第二
信号;所述第一信号不同于所述第二信号。因此,当与其它扇齿不同的这一个扇齿挡住光电传感器时,产生的检测信号为持续的第一信号,并且该持续的第一信号的时长大于其它每个扇齿挡住光电传感器时产生的持续的第一信号的时长。
在一些实施例中,第一信号为低电平信号,第二信号为高电平信号。例如:低电平信号是电平为0的信号,高电平信号是电平为1的信号。
在一些实施例中,检测信号为正弦波信号、余弦波信号、三角波信号。
在一些实施例中,检测信号为方波信号。
参照图4和图5,若旋转物顺时针旋转,码盘也顺时针转,在码盘旋转一周,即一个旋转周期内,由于其中一个扇齿与其它扇齿不同,而且这个扇齿挡住光电传感器时产生的检测信号为持续的低电平信号,并且这个低电平信号的时长最长,而且在这个低电平信号的前一信号为高电平信号,由于这个低电平信号的时长最长,使得该低电平信号的前一高电平信号的时长最短。与其它扇齿相比,这也意味着从这个高电平信号跳变至这个低电平信号的下降沿在时间上提前。
参照图4和图6,若旋转物逆时针旋转,码盘也逆时针转,在码盘旋转一周,即一个旋转周期内,由于其中一个扇齿与其它扇齿不同,而且这个扇齿挡住光电传感器时产生的检测信号为持续的低电平信号,并且这个低电平信号的时长最长,而且在这个低电平信号的后一信号为高电平信号,由于这个低电平信号的时长最长,使得该低电平信号的后一高电平信号的时长最短。与其它扇齿相比,这也意味着从这个低电平信号跳变至这个高电平信号的上升沿在时间上退后。
基于图5或图6的检测信号在旋转周期内的波形可以检测出旋转物的旋转参数。
下面对如何获得旋转参数中的旋转方向进行说明。
在一些实施例中,在旋转物的旋转周期内,根据该检测信号的上升沿和/或下降沿确定旋转方向。其中,以图5和图6所示为例,旋转物顺时针转动时产生的检测信号的上升沿与逆时针转动时产生的检测信号的上升沿存在不同,旋转物顺时针转动时产生的检测信号的下降沿与逆时针转动时产生的检测信号的下降沿存在不同,因此,本实施例根据旋转周期内的检测信号的上
升沿和/或下降沿可以确定旋转方向。
在一种实现方式中,在所述旋转物的旋转周期内,本实施例可以根据所述检测信号中上升沿之间的时间关系和/或下降沿之间的时间关系,确定所述旋转方向。其中,以图5和图6所示为例,顺时针旋转与逆时针旋转时检测信号中上升沿存在不同主要体现在时间上,顺时针旋转与逆时针旋转时检测信号中下降沿存在不同主要体现在时间上,因此,本实施例根据旋转周期内的检测信号的上升沿之间的时间关系,和/或,旋转周期内的检测信号的下降沿之间的时间关系可以确定旋转方向。
若扇齿的第一线段边位于该扇齿的逆时针方向,例如如图4所示,结合图5所示的旋转方向为顺时针时检测信号的示意图可知,旋转周期内的检测信号的每两个相邻的上升沿之间的时间差均相等,并且,旋转周期内的检测信号的每两个相邻的下降沿之间的时间差不全相等,如图5所示,第一个下降沿与第二个下降沿之间的时间差小于第二个下降沿与第三个下降沿之间的时间差。结合图6所示的旋转方向为逆时针时检测信号的示意图可知,旋转周期内的检测信号的每两个相邻的下降沿之间的时间差均相等,并且,旋转周期内的检测信号的每两个相邻的上升沿之间的时间差不全相等,如图6所示,第三个上升沿与第四个上升沿之间的时间差大于第四个上升沿与第五个上升沿之间的时间差。
因此,本实施例可以根据旋转周期内检测信号中每两个相邻上升沿的时间差均相等,确定旋转方向为顺时针方向,或者,根据旋转周期内检测信号中每两个相邻下降沿的时间差均相等,确定旋转方向为逆时针方向。
本实施例也可以根据旋转周期内检测信号中每两个相邻下降沿的时间差不全相等,确定旋转方向为顺时针方向,或者,根据旋转周期内检测信号中每两个相邻上升沿的时间差不全相等,确定旋转方向为逆时针方向。这样在一个旋转周期内只要检测出检测信号中相邻下降沿的时间差不同,或者,相邻上升沿的时间差不同,即可以准确确定旋转方向,无需获取旋转周期内所有相邻下降沿的时间差或者所有相邻上升沿的时间差,从而可以更快速地确定旋转方向,提高旋转方向确定效率。
若扇齿的第一线段边位于该扇齿的顺时针方向,例如如图7所示,结合图8所示的旋转方向为顺时针时检测信号的示意图可知,旋转周期内的检测
信号的每两个相邻的下降沿之间的时间差均相等,并且,旋转周期内的检测信号的每两个相邻的上升沿之间的时间差不全相等,如图8所示,第三个上升沿与第四个上升沿之间的时间差大于第四个上升沿与第五个上升沿之间的时间差。结合图9所示的旋转方向为逆时针时检测信号的示意图可知,旋转周期内的检测信号的每两个相邻的上升沿之间的时间差均相等,并且,旋转周期内的检测信号的每两个相邻的下降沿之间的时间差不全相等,如图9所示,第一个下降沿与第二个下降沿之间的时间差小于第二个下降沿与第三个下降沿之间的时间差。
因此,本实施例可以根据旋转周期内检测信号中每两个相邻下降沿的时间差均相等,确定旋转方向为顺时针方向,或者,根据旋转周期内检测信号中每两个相邻上升沿的时间差均相等,确定旋转方向为逆时针方向。
本实施例也可以根据旋转周期内检测信号中每两个相邻上升沿的时间差不全相等,确定旋转方向为顺时针方向,或者,根据旋转周期内检测信号中每两个相邻下降沿的时间差不全相等,确定旋转方向为逆时针方向。这样在一个旋转周期内只要检测出检测信号中相邻下降沿的时间差不同,或者,相邻上升沿的时间差不同,即可以准确确定旋转方向,无需获取旋转周期内所有相邻下降沿的时间差或者所有相邻上升沿的时间差,从而可以更快速地确定旋转方向,提高旋转方向确定效率。
下面对如何获得旋转参数中的旋转速度进行说明。
在一种可能的实现方式中,在所述旋转物的旋转周期内,获取所述检测信号的时长;然后根据所述时长,确定所述旋转速度。本实施例中,旋转物旋转一周,相应地,码盘也旋转一周,码盘旋转一周的时长可以获得,根据旋转一周所需的时长,可以确定旋转速度,例如确定的旋转速度为1/T,T为旋转一周所需的时长。
在另一种可能的实现方式中,在旋转物的旋转周期内,根据所述检测信号的上升沿之间的时间关系和/或下降沿之间的时间关系确定所述旋转速度。如果旋转物的旋转速度,会影响到码盘的旋转速度,进而影响到检测信号中上升沿出现的时间和下降沿出现的时间。例如:旋转物的旋转速度快,则上升沿之间的时间差会缩短,下降沿之间的时间差也会缩短;旋转物的旋转速度慢,则上升沿之间的时间差会拉长,下降沿之间的时间差也会拉长,因此,
本实施例根据旋转周期内的检测信号的上升沿之间的时间关系和/或下降沿之间的时间关系可以确定旋转方向。下面示出两种具体的实现方案,但本实施例不限于如下两种实现方案。
在一种实现方案中,获取所述旋转周期内所述检测信号中每两个相邻上升沿的时间差,据此可以获得N个时间差,再根据N个所述时间差,获得平均时间差,然后根据该平均时间差,确定旋转速度。或者,获取所述旋转周期内所述检测信号中每两个相邻下降沿的时间差,据此可以获得N个时间差,再根据N个所述时间差,获得平均时间差,然后根据该平均时间差,确定旋转速度。例如如图5、图6、图8、图9所示,根据每两个相邻上升沿的时间差获得的平均时间差,与,根据每两个相邻下降沿的时间差获得的平均时间差相同,因此无论根据上升沿或者下降沿,最终获得的平均时间差相同。其中,由于扇齿将码盘等分为N份,因此码盘旋转1/N圈所需时长等于该平均时间差,据此可以确定旋转速度,例如:旋转速度为1/(N*t),t为平均时间差。
在另一种实现方案中,若所述旋转周期内所述检测信号中每两个相邻上升沿的时间差均相等,则根据所述旋转周期内任意两个相邻上升沿的时间差,确定所述的旋转速度。例如如图5或图9所示,每两个相邻上升沿的时间差均相等,而且每两个上升沿的时间差等于旋转周期除以N,因此根据该任意两个相邻上升沿的时间差可以确定旋转速度,无需等到一个旋转周期即可快速确定旋转速度,提高了旋转速度检测效率。
或者,若所述旋转周期内所述检测信号中每两个相邻下降沿的时间差均相等,则根据所述旋转周期内任意两个相邻下降沿的时间差,确定所述旋转速度。例如如图6或图8所示,每两个相邻下降沿的时间差均相等,而且每两个下降沿的时间差等于旋转周期除以N,因此根据该任意两个相邻下降沿的时间差可以确定旋转速度,无需等到一个旋转周期即可快速确定旋转速度,提高了旋转速度检测效率。
下面对如何获得旋转参数中的机械零点进行说明。
在一些实施例中,在旋转物的旋转周期内,根据该检测信号的上升沿和/或下降沿确定机械零点。其中,以图5和图6所示为例,旋转物顺时针转动时产生的检测信号中一个上升沿与其它上升沿不同,旋转物逆时针转动时间
生的检测信号中一个下降沿与其它下降沿不同,因此,本实施例根据旋转周期内的检测信号的上升沿和/或下降沿可以确定旋转方向。
在一种可能的实现方式中,若所述旋转周期内所述检测信号中每两个相邻上升沿的时间差不全相等,根据所述旋转周期内所述检测信号中上升沿之间的时间关系,确定参考上升沿;然后根据所述参考上升沿的时间点,确定所述机械零点;所述参考上升沿与上一个上升沿之间的时间差不等于所述参考上升沿与下一个上升沿之间的时间差。例如如图6和图8所示,第三个上升沿与第四个上升沿之间的时间差大于第四个上升沿与第五个上升沿之间的时间差,因此,第四个上升沿为参考上升沿,根据该参考上升沿的时间点,确定机械零点,例如:确定该参考上升沿的时间点为机械零点,或者,确定与该参考上升沿的时间点相距预设时长的时间点为机械零点。
在一种可能的实现方式中,若所述旋转周期内所述检测信号中每两个相邻下降沿的时间差不全相等,根据所述旋转周期内所述检测信号中下降沿之间的时间关系,确定参考下降沿;然后根据所述参考下降沿的时间点,确定所述机械零点;所述参考下降沿与上一个下降沿之间的时间差不等于所述参考下降沿与下一个下降沿之间的时间差。例如如图5和图9所示,第一个下降沿与第二个下降沿之间的时间差小于第二个下降沿与第三个下降沿之间的时间差,因此,第二个下降沿为参考下降沿,根据该参考下降沿的时间点,确定机械零点,例如:确定该参考下降沿的时间点为机械零点,或者,确定与该参考下降沿的时间点相距预设时长的时间点为机械零点。
综上所述,本实施例通过一个检测信号就可以获得旋转方向、旋转速度和机械零点,与现有技术需要三个检测信号相比,减少了检测信号的数量,相应地减少了配套的硬件数量,也降低了故障率,进而降低了成本。
本发明实施例中还提供了一种计算机存储介质,该计算机存储介质中存储有程序指令,所述程序执行时可包括如图2及其对应实施例中的旋转参数检测的方法的部分或全部步骤。
图10为本发明一实施例提供的编码器的结构示意图,如图10所示,本实施例的编码器300可以包括:码盘301和处理器302,所述处理器302与所述码盘301通信连接;其中,所述码盘301随旋转物的转动而转动。
上述处理器302可以是中央处理单元(Central Processing Unit,CPU),
该处理器302还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述处理器302,用于对所述码盘301的转动进行检测获得一检测信号;以及根据所述检测信号,获得所述旋转物的旋转参数;所述旋转参数包括:旋转方向、旋转速度、机械零位;
所述码盘301上向外沿伸设置有N个扇齿,所述N为大于2的整数,每个扇齿包括第一线段边和第二线段边,所述N个扇齿的第一线段边等间距的位于所述码盘上;所述N个扇齿中一个扇齿沿所述码盘301圆周边上的弧形边与其它N-1个扇齿沿所述码盘301圆周边上的弧形边的长度不同,所述其它N-个扇齿沿所述码盘301上的弧形边的长度相同。其中,码盘301的示意图例如如图3所示。
本实施例的编码器,可以用于执行上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图11为本发明另一实施例提供的编码器的结构示意图,如图11所示,本实施例的编码器300在图10所示实施例的基础上,还包括:光电传感器303,所述光电传感器303与所述处理器302通信连接;
当所述码盘301的其中任一扇齿挡住光电传感器303时,所述检测信号为持续的第一信号;当所述码盘301中的所有扇齿未挡住所述光电传感器303时,所述检测信号为持续的第二信号;
所述第一信号不同于所述第二信号。
在一些实施例中,第一信号为低电平信号,第二信号为高电平信号。
在一些实施例中,所述检测信号为方波信号。
在一些实施例中,所述处理器302,具体用于:在所述旋转物的旋转周期内,根据所述检测信号的上升沿和/或下降沿确定所述旋转方向。
在一些实施例中,所述处理器302,具体用于:在所述旋转物的旋转周期内,根据所述检测信号中上升沿之间的时间关系和/或下降沿之间的时间关系,确定所述旋转方向。
在一些实施例中,所述处理器302,具体用于:
在所述第一线段边位于所述扇齿的顺时针方向时,若所述旋转周期内所述检测信号中每两个相邻上升沿的时间差均相等,或,所述旋转周期内所述检测信号中每两个相邻下降沿的时间差不全相等,则确定所述旋转方向为逆时钟方向;若所述旋转周期内所述检测信号中每两个相邻下降沿的时间差均相等,或,所述旋转周期内所述检测信号中每两个相邻上升沿的时间差不均相等,则确定所述旋转方向为顺时钟方向;
在所述第一线段边位于所述扇齿的逆时针方向时,若所述旋转周期内所述检测信号中每两个相邻上升沿的时间差均相等,或,所述旋转周期内所述检测信号中每两个相邻下降沿的时间差不全相等,则确定所述旋转方向为顺时钟方向;若所述旋转周期内所述检测信号中每两个相邻下降沿的时间差均相等,或,所述旋转周期内所述检测信号中每两个相邻上升沿的时间差不均相等,则确定所述旋转方向为逆时钟方向。
在一些实施例中,所述处理器302,具体用于:在所述旋转物的旋转周期内,获取所述检测信号的时长;根据所述时长,确定所述旋转速度。
在一些实施例中,所述处理器302,具体用于:在所述旋转物的旋转周期内,根据所述检测信号的上升沿之间的时间关系和/或下降沿之间的时间关系确定所述旋转速度。
在一些实施例中,所述处理器302,具体用于:
获取所述旋转周期内所述检测信号中每两个相邻上升沿的时间差,或者,获取所述旋转周期内所述检测信号中每两个相邻下降沿的时间差;
根据N个所述时间差,获得平均时间差;
根据所述平均时间差,确定所述旋转速度。
在一些实施例中,所述处理器302,具体用于:
若所述旋转周期内所述检测信号中每两个相邻上升沿的时间差均相等,则根据所述旋转周期内任意两个相邻上升沿的时间差,确定所述的旋转速度;或者,
若所述旋转周期内所述检测信号中每两个相邻下降沿的时间差均相等,则根据所述旋转周期内任意两个相邻下降沿的时间差,确定所述旋转速度。
在一些实施例中,所述处理器302,具体用于:在所述旋转物的旋转周
期内,根据所述检测信号的上升沿和/或下降沿确定所述机械零位。
在一些实施例中,所述处理器302,具体用于:
若所述旋转周期内所述检测信号中每两个相邻上升沿的时间差不全相等,根据所述旋转周期内所述检测信号中上升沿之间的时间关系,确定参考上升沿;以及根据所述参考上升沿的时间点,确定所述机械零点;所述参考上升沿与上一个上升沿之间的时间差不等于所述参考上升沿与下一个上升沿之间的时间差;
若所述旋转周期内所述检测信号中每两个相邻下降沿的时间差不全相等,根据所述旋转周期内所述检测信号中下降沿之间的时间关系,确定参考下降沿;以及根据所述参考下降沿的时间点,确定所述机械零点;所述参考下降沿与上一个下降沿之间的时间差不等于所述参考下降沿与下一个下降沿之间的时间差。
在一些实施例中,所述旋转物为电机。
可选地,本实施例的编码器还可以包括存储器304。处理器302和存储器304通过总线连接。存储器304可以包括只读存储器和随机存取存储器,并向处理器302提供指令和数据。存储器304的一部分还可以包括非易失性随机存取存储器。存储器304用于存储执行旋转参数检测方法的代码,处理器302用于调用存储器304存储的代码执行上述方案。
本实施例的编码器,可以用于执行上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图12为本发明一实施例提供的激光雷达的结构示意图,如图12所示,本实施例的激光雷达400包括编码器401,其中,编码器401可以采用图10或图11所示装置实施例的结构,其对应地,可以执行本发明上述任一方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。需要说明的是,激光雷达400还包括其它部件,此处未示出。
图13为本发明一实施例提供的无人机的结构示意图,如图13所示,本实施例的无人机500包括电机501和编码器502,其中,所述编码器502用于检测所述电机501的旋转参数。编码器502可以采用图10或图11所示装置实施例的结构,其对应地,可以执行本发明上述任一方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。需要说明的是,无人机500
还包括其它部件,此处未示出。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (30)
- 一种旋转参数检测方法,其特征在于,包括:对码盘的转动进行检测获得一检测信号;所述码盘随旋转物的转动而转动;根据所述检测信号,获得所述旋转物的旋转参数;所述旋转参数包括:旋转方向、旋转速度、机械零位;所述码盘上向外沿伸设置有N个扇齿,所述N为大于2的整数,每个扇齿包括第一线段边和第二线段边,所述N个扇齿的第一线段边等间距的位于所述码盘上;所述N个扇齿中一个扇齿沿所述码盘圆周边上的弧形边与其它N-1个扇齿沿所述码盘圆周边上的弧形边的长度不同,所述其它N-个扇齿沿所述码盘上的弧形边的长度相同。
- 根据权利要求1所述的方法,其特征在于,当所述码盘的其中任一扇齿挡住光电传感器时,所述检测信号为持续的第一信号;当所述码盘中的所有扇齿未挡住所述光电传感器时,所述检测信号为持续的第二信号;所述第一信号不同于所述第二信号。
- 根据权利要求2所述的方法,其特征在于,第一信号为低电平信号,第二信号为高电平信号。
- 根据权利要求2所述的方法,其特征在于,所述检测信号为方波信号。
- 根据权利要求1-4任意一项所述的方法,其特征在于,所述根据所述检测信号,获得所述旋转物的旋转参数,包括:在所述旋转物的旋转周期内,根据所述检测信号的上升沿和/或下降沿确定所述旋转方向。
- 根据权利要求5所述的方法,其特征在于,在所述旋转物的旋转周期内,根据所述检测信号的上升沿和/或下降沿确定所述旋转方向,包括:在所述旋转物的旋转周期内,根据所述检测信号中上升沿之间的时间关系和/或下降沿之间的时间关系,确定所述旋转方向。
- 根据权利要求6所述的方法,其特征在于,在所述旋转物的旋转周期内,根据所述检测信号中上升沿之间的时间关系和/或下降沿之间的时间关系,确定所述旋转方向,包括:在所述第一线段边位于所述扇齿的顺时针方向时,若所述旋转周期内所述检测信号中每两个相邻上升沿的时间差均相等,或,所述旋转周期内所述检测信号中每两个相邻下降沿的时间差不全相等,则确定所述旋转方向为逆时钟方向;若所述旋转周期内所述检测信号中每两个相邻下降沿的时间差均相等,或,所述旋转周期内所述检测信号中每两个相邻上升沿的时间差不均相等,则确定所述旋转方向为顺时钟方向;在所述第一线段边位于所述扇齿的逆时针方向时,若所述旋转周期内所述检测信号中每两个相邻上升沿的时间差均相等,或,所述旋转周期内所述检测信号中每两个相邻下降沿的时间差不全相等,则确定所述旋转方向为顺时钟方向;若所述旋转周期内所述检测信号中每两个相邻下降沿的时间差均相等,或,所述旋转周期内所述检测信号中每两个相邻上升沿的时间差不均相等,则确定所述旋转方向为逆时钟方向。
- 根据权利要求1-7任意一项所述的方法,其特征在于,所述根据所述检测信号,获得所述旋转物的旋转速度,包括:在所述旋转物的旋转周期内,获取所述检测信号的时长;根据所述时长,确定所述旋转速度。
- 根据权利要求1-7任意一项所述的方法,其特征在于,所述根据所述检测信号,获得所述旋转物的旋转速度,包括:在所述旋转物的旋转周期内,根据所述检测信号的上升沿之间的时间关系和/或下降沿之间的时间关系确定所述旋转速度。
- 根据权利要求9所述的方法,其特征在于,所述在所述旋转物的旋转周期内,根据所述检测信号的上升沿之间和/或下降沿之间的时间关系确定所述旋转速度,包括:获取所述旋转周期内所述检测信号中每两个相邻上升沿的时间差,或者,获取所述旋转周期内所述检测信号中每两个相邻下降沿的时间差;根据N个所述时间差,获得平均时间差;根据所述平均时间差,确定所述旋转速度。
- 根据权利要求9所述的方法,其特征在于,所述在所述旋转物的旋转周期内,根据所述检测信号的上升沿和/或下降沿确定所述旋转速度,包括:若所述旋转周期内所述检测信号中每两个相邻上升沿的时间差均相等, 则根据所述旋转周期内任意两个相邻上升沿的时间差,确定所述的旋转速度;或者,若所述旋转周期内所述检测信号中每两个相邻下降沿的时间差均相等,则根据所述旋转周期内任意两个相邻下降沿的时间差,确定所述旋转速度。
- 根据权利要求1-11任意一项所述的方法,其特征在于,所述根据所述检测信号,获得所述旋转物的机械零点,包括:在所述旋转物的旋转周期内,根据所述检测信号的上升沿和/或下降沿确定所述机械零位。
- 根据权利要求12所述的方法,其特征在于,在所述旋转物的旋转周期内,根据所述检测信号的上升沿和/或下降沿确定所述机械零位,包括:若所述旋转周期内所述检测信号中每两个相邻上升沿的时间差不全相等,根据所述旋转周期内所述检测信号中上升沿之间的时间关系,确定参考上升沿;以及根据所述参考上升沿的时间点,确定所述机械零点;所述参考上升沿与上一个上升沿之间的时间差不等于所述参考上升沿与下一个上升沿之间的时间差;若所述旋转周期内所述检测信号中每两个相邻下降沿的时间差不全相等,根据所述旋转周期内所述检测信号中下降沿之间的时间关系,确定参考下降沿;以及根据所述参考下降沿的时间点,确定所述机械零点;所述参考下降沿与上一个下降沿之间的时间差不等于所述参考下降沿与下一个下降沿之间的时间差。
- 根据权利要求1-13任意一项所述的方法,其特征在于,所述旋转物为电机。
- 一种编码器,其特征在于,包括:码盘和处理器,所述处理器与所述码盘通信连接;所述码盘随旋转物的转动而转动;所述处理器,用于对所述码盘的转动进行检测获得一检测信号;以及根据所述检测信号,获得所述旋转物的旋转参数;所述旋转参数包括:旋转方向、旋转速度、机械零位;所述码盘上向外沿伸设置有N个扇齿,所述N为大于2的整数,每个扇齿包括第一线段边和第二线段边,所述N个扇齿的第一线段边等间距的位于所述码盘上;所述N个扇齿中一个扇齿沿所述码盘圆周边上的弧形边与其它N-1个扇齿沿所述码盘圆周边上的弧形边的长度不同,所述其它N-个扇齿沿所述码盘上的弧形边的长度相同。
- 根据权利要求15所述的编码器,其特征在于,还包括:光电传感器,所述光电传感器与所述处理器通信连接;当所述码盘的其中任一扇齿挡住光电传感器时,所述检测信号为持续的第一信号;当所述码盘中的所有扇齿未挡住所述光电传感器时,所述检测信号为持续的第二信号;所述第一信号不同于所述第二信号。
- 根据权利要求16所述的编码器,其特征在于,第一信号为低电平信号,第二信号为高电平信号。
- 根据权利要求17所述的编码器,其特征在于,所述检测信号为方波信号。
- 根据权利要求15-18任意一项所述的编码器,其特征在于,所述处理器,具体用于:在所述旋转物的旋转周期内,根据所述检测信号的上升沿和/或下降沿确定所述旋转方向。
- 根据权利要求19所述的编码器,其特征在于,所述处理器,具体用于:在所述旋转物的旋转周期内,根据所述检测信号中上升沿之间的时间关系和/或下降沿之间的时间关系,确定所述旋转方向。
- 根据权利要求20所述的编码器,其特征在于,所述处理器,具体用于:在所述第一线段边位于所述扇齿的顺时针方向时,若所述旋转周期内所述检测信号中每两个相邻上升沿的时间差均相等,或,所述旋转周期内所述检测信号中每两个相邻下降沿的时间差不全相等,则确定所述旋转方向为逆时钟方向;若所述旋转周期内所述检测信号中每两个相邻下降沿的时间差均相等,或,所述旋转周期内所述检测信号中每两个相邻上升沿的时间差不均相等,则确定所述旋转方向为顺时钟方向;在所述第一线段边位于所述扇齿的逆时针方向时,若所述旋转周期内所述检测信号中每两个相邻上升沿的时间差均相等,或,所述旋转周期内所述检测信号中每两个相邻下降沿的时间差不全相等,则确定所述旋转方向为顺 时钟方向;若所述旋转周期内所述检测信号中每两个相邻下降沿的时间差均相等,或,所述旋转周期内所述检测信号中每两个相邻上升沿的时间差不均相等,则确定所述旋转方向为逆时钟方向。
- 根据权利要求15-21任意一项所述的编码器,其特征在于,所述处理器,具体用于:在所述旋转物的旋转周期内,获取所述检测信号的时长;根据所述时长,确定所述旋转速度。
- 根据权利要求15-21任意一项所述的编码器,其特征在于,所述处理器,具体用于:在所述旋转物的旋转周期内,根据所述检测信号的上升沿之间的时间关系和/或下降沿之间的时间关系确定所述旋转速度。
- 根据权利要求23所述的编码器,其特征在于,所述处理器,具体用于:获取所述旋转周期内所述检测信号中每两个相邻上升沿的时间差,或者,获取所述旋转周期内所述检测信号中每两个相邻下降沿的时间差;根据N个所述时间差,获得平均时间差;根据所述平均时间差,确定所述旋转速度。
- 根据权利要求23所述的编码器,其特征在于,所述处理器,具体用于:若所述旋转周期内所述检测信号中每两个相邻上升沿的时间差均相等,则根据所述旋转周期内任意两个相邻上升沿的时间差,确定所述的旋转速度;或者,若所述旋转周期内所述检测信号中每两个相邻下降沿的时间差均相等,则根据所述旋转周期内任意两个相邻下降沿的时间差,确定所述旋转速度。
- 根据权利要求15-25任意一项所述的编码器,其特征在于,所述处理器,具体用于:在所述旋转物的旋转周期内,根据所述检测信号的上升沿和/或下降沿确定所述机械零位。
- 根据权利要求26所述的编码器,其特征在于,所述处理器,具体用于:若所述旋转周期内所述检测信号中每两个相邻上升沿的时间差不全相等,根据所述旋转周期内所述检测信号中上升沿之间的时间关系,确定参考上升沿;以及根据所述参考上升沿的时间点,确定所述机械零点;所述参考 上升沿与上一个上升沿之间的时间差不等于所述参考上升沿与下一个上升沿之间的时间差;若所述旋转周期内所述检测信号中每两个相邻下降沿的时间差不全相等,根据所述旋转周期内所述检测信号中下降沿之间的时间关系,确定参考下降沿;以及根据所述参考下降沿的时间点,确定所述机械零点;所述参考下降沿与上一个下降沿之间的时间差不等于所述参考下降沿与下一个下降沿之间的时间差。
- 根据权利要求15-27任意一项所述的编码器,其特征在于,所述旋转物为电机。
- 一种激光雷达,其特征在于,包括权利要求15-28任意一项所述的编码器。
- 一种无人机,其特征在于,包括:电机和权利要求15-28任意一项所述的编码器;所述编码器用于检测所述电机的旋转参数。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17934932.9A EP3653997B1 (en) | 2017-12-12 | 2017-12-12 | Rotation parameter detection method, encoder, laser radar and unmanned aerial vehicle |
PCT/CN2017/115537 WO2019113763A1 (zh) | 2017-12-12 | 2017-12-12 | 旋转参数检测方法、编码器、激光雷达和无人机 |
CN201780025328.0A CN109073424B (zh) | 2017-12-12 | 2017-12-12 | 旋转参数检测方法、编码器、激光雷达和无人机 |
CN202010997936.1A CN112033444A (zh) | 2017-12-12 | 2017-12-12 | 旋转参数检测方法、编码器、激光雷达和无人机 |
US16/742,171 US10859409B2 (en) | 2017-12-12 | 2020-01-14 | Rotation parameter detection method, encoder, laser radar and unmanned aerial vehicle |
US17/110,239 US11320290B2 (en) | 2017-12-12 | 2020-12-02 | Rotation parameter detection method, encoder, laser radar and unmanned aerial vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/115537 WO2019113763A1 (zh) | 2017-12-12 | 2017-12-12 | 旋转参数检测方法、编码器、激光雷达和无人机 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/742,171 Continuation US10859409B2 (en) | 2017-12-12 | 2020-01-14 | Rotation parameter detection method, encoder, laser radar and unmanned aerial vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019113763A1 true WO2019113763A1 (zh) | 2019-06-20 |
Family
ID=64831309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/115537 WO2019113763A1 (zh) | 2017-12-12 | 2017-12-12 | 旋转参数检测方法、编码器、激光雷达和无人机 |
Country Status (4)
Country | Link |
---|---|
US (2) | US10859409B2 (zh) |
EP (1) | EP3653997B1 (zh) |
CN (2) | CN112033444A (zh) |
WO (1) | WO2019113763A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110476941A (zh) * | 2019-09-30 | 2019-11-22 | 华南农业大学 | 自动对靶变量喷雾控制系统、喷雾机及控制方法 |
CN111044982A (zh) * | 2019-12-23 | 2020-04-21 | 珠海纳睿达科技有限公司 | 一种雷达方位定位的方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019113763A1 (zh) * | 2017-12-12 | 2019-06-20 | 深圳市大疆创新科技有限公司 | 旋转参数检测方法、编码器、激光雷达和无人机 |
WO2020215205A1 (zh) * | 2019-04-23 | 2020-10-29 | 大族激光科技产业集团股份有限公司 | 一种光栅盘及反馈系统 |
CN111856274A (zh) * | 2020-07-02 | 2020-10-30 | 长沙格力暖通制冷设备有限公司 | 电机旋转检测装置 |
CN113894845B (zh) * | 2020-07-06 | 2024-01-09 | 深圳乐动机器人股份有限公司 | 机器人及其边扫转速测量方法、装置、存储介质 |
WO2022094959A1 (zh) * | 2020-11-06 | 2022-05-12 | 深圳市大疆创新科技有限公司 | 角度测量装置、雷达、测量方法及存储介质 |
CN113866454A (zh) * | 2021-09-30 | 2021-12-31 | 广东美的暖通设备有限公司 | 检测方法、装置、磁悬浮电机、压缩机和可读存储介质 |
CN114819034B (zh) * | 2022-06-29 | 2022-09-27 | 苏州新仪科学仪器有限公司 | 罐数检测及罐号识别方法、装置及电子设备 |
CN117175985A (zh) * | 2023-11-02 | 2023-12-05 | 深圳市恒永达科技股份有限公司 | 步进电机控制方法和装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2097269U (zh) * | 1991-08-23 | 1992-02-26 | 曹登云 | 保险柜防盗装置 |
US20060000969A1 (en) * | 2004-07-05 | 2006-01-05 | Alps Electric Co., Ltd. | Rotation angle detecting device |
CN101929874A (zh) * | 2010-04-05 | 2010-12-29 | 姚福来 | 传动轴可以轴向滑动的旋转编码器 |
CN102704756A (zh) * | 2012-06-05 | 2012-10-03 | 张宪季 | 旋码锁芯 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6358168A (ja) * | 1986-08-28 | 1988-03-12 | Nec Corp | エンコ−ダ |
JPH05288568A (ja) * | 1992-04-14 | 1993-11-02 | Tamagawa Seiki Co Ltd | 磁気エンコーダ用回転体構造 |
EP0813050B1 (de) * | 1996-06-14 | 2004-06-30 | Robert Bosch Gmbh | Einrichtung zur Zylindererkennung bei einer Mehrzylinder-Brennkraftmaschine |
US6313625B1 (en) * | 1999-01-19 | 2001-11-06 | Ford Global Technologies, Inc. | Magnetic rotary position sensing |
DE19918414C5 (de) * | 1999-04-23 | 2010-11-25 | Novoferm Tormatic Gmbh | Antriebseinheit für ein Tor und Verfahren zum Betrieb einer Antriebseinheit für ein Tor |
DE19963007A1 (de) * | 1999-12-24 | 2001-06-28 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Erkennung einer Verpolung bei einem Signalgeber |
DE10017542A1 (de) * | 2000-04-08 | 2001-10-11 | Bosch Gmbh Robert | Vorrichtung zur Positions- und/oder Drehzahlerkennung eines rotierenden Teils |
JP4014580B2 (ja) * | 2004-04-02 | 2007-11-28 | 株式会社ケーヒン | 内燃エンジンの点火時期制御装置 |
US7104119B1 (en) * | 2005-03-08 | 2006-09-12 | Delphi Technologies, Inc. | Method and apparatus for determining rotary position |
CN200996835Y (zh) * | 2006-09-29 | 2007-12-26 | 宁竞 | 计数式旋转编码器 |
US7541802B2 (en) * | 2006-12-08 | 2009-06-02 | Infineon Technologies Ag | Method and apparatus for evaluating a sensor signal associated with a rotating object |
DE102006061575A1 (de) * | 2006-12-27 | 2008-07-03 | Robert Bosch Gmbh | Verfahren zur inkrementellen Ermittlung eines Drehwinkels einer Welle |
US20090312959A1 (en) * | 2007-01-03 | 2009-12-17 | Borman Kurt L | System and method for measuring torque in rotating shafts |
US8886471B2 (en) * | 2008-06-26 | 2014-11-11 | Infineon Technologies Ag | Rotation sensing method and system |
CN201672931U (zh) * | 2010-06-01 | 2010-12-15 | 孔国生 | 一种改进型轴编码器 |
DE102011054933A1 (de) * | 2011-10-28 | 2013-05-02 | Dspace Digital Signal Processing And Control Engineering Gmbh | Verfahren zur Erfassung eines Drehwinkels |
CN202281780U (zh) * | 2011-10-31 | 2012-06-20 | 宁波杜亚机电技术有限公司 | 测量电机旋转方向和速度的光电式编码器 |
JP2014013163A (ja) * | 2012-07-04 | 2014-01-23 | Yaskawa Electric Corp | エンコーダ及びモータ |
CN104655161B (zh) * | 2013-11-21 | 2017-05-10 | 科沃斯机器人股份有限公司 | 测距装置及其寻找测距起始点的方法 |
US11125768B2 (en) * | 2014-06-17 | 2021-09-21 | Infineon Technologies Ag | Angle based speed sensor device |
US10222234B2 (en) * | 2014-06-17 | 2019-03-05 | Infineon Technologies Ag | Rotation sensor |
CN104965099A (zh) * | 2015-06-30 | 2015-10-07 | 深圳乐行天下科技有限公司 | 一种测速方法及装置 |
CN105675029B (zh) * | 2016-01-07 | 2018-03-20 | 三一重型能源装备有限公司 | 一种风力发电系统和测速定位装置及方法 |
WO2019113763A1 (zh) * | 2017-12-12 | 2019-06-20 | 深圳市大疆创新科技有限公司 | 旋转参数检测方法、编码器、激光雷达和无人机 |
-
2017
- 2017-12-12 WO PCT/CN2017/115537 patent/WO2019113763A1/zh unknown
- 2017-12-12 CN CN202010997936.1A patent/CN112033444A/zh active Pending
- 2017-12-12 CN CN201780025328.0A patent/CN109073424B/zh active Active
- 2017-12-12 EP EP17934932.9A patent/EP3653997B1/en active Active
-
2020
- 2020-01-14 US US16/742,171 patent/US10859409B2/en active Active
- 2020-12-02 US US17/110,239 patent/US11320290B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2097269U (zh) * | 1991-08-23 | 1992-02-26 | 曹登云 | 保险柜防盗装置 |
US20060000969A1 (en) * | 2004-07-05 | 2006-01-05 | Alps Electric Co., Ltd. | Rotation angle detecting device |
CN101929874A (zh) * | 2010-04-05 | 2010-12-29 | 姚福来 | 传动轴可以轴向滑动的旋转编码器 |
CN102704756A (zh) * | 2012-06-05 | 2012-10-03 | 张宪季 | 旋码锁芯 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3653997A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110476941A (zh) * | 2019-09-30 | 2019-11-22 | 华南农业大学 | 自动对靶变量喷雾控制系统、喷雾机及控制方法 |
CN110476941B (zh) * | 2019-09-30 | 2023-09-26 | 华南农业大学 | 自动对靶变量喷雾控制系统、喷雾机及控制方法 |
CN111044982A (zh) * | 2019-12-23 | 2020-04-21 | 珠海纳睿达科技有限公司 | 一种雷达方位定位的方法 |
CN111044982B (zh) * | 2019-12-23 | 2021-09-28 | 广东纳睿雷达科技股份有限公司 | 一种雷达方位定位的方法 |
Also Published As
Publication number | Publication date |
---|---|
US20200149930A1 (en) | 2020-05-14 |
US10859409B2 (en) | 2020-12-08 |
EP3653997A4 (en) | 2020-09-16 |
US20210108947A1 (en) | 2021-04-15 |
CN109073424A (zh) | 2018-12-21 |
CN112033444A (zh) | 2020-12-04 |
CN109073424B (zh) | 2020-10-23 |
EP3653997A1 (en) | 2020-05-20 |
US11320290B2 (en) | 2022-05-03 |
EP3653997B1 (en) | 2022-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019113763A1 (zh) | 旋转参数检测方法、编码器、激光雷达和无人机 | |
US10698295B2 (en) | Focusing method, imaging device, and unmanned aerial vehicle | |
WO2018120059A1 (zh) | 用于云台的控制方法、控制系统、云台和无人飞行器 | |
US11798172B2 (en) | Maximum temperature point tracking method, device and unmanned aerial vehicle | |
CN108521864B (zh) | 成像控制方法、成像装置和无人机 | |
US20210163133A1 (en) | Compensation method for barometer-based height measurement and uav | |
US20210208214A1 (en) | Magnetic sensor calibration method and mobile platform | |
WO2019023906A1 (zh) | 同步方法、设备和系统 | |
CN110770539A (zh) | 磁传感器校准方法、控制终端以及可移动平台 | |
US20210229810A1 (en) | Information processing device, flight control method, and flight control system | |
WO2019104684A1 (zh) | 无人机的控制方法、装置和系统 | |
US20240019866A1 (en) | Aerial vehicle control method and apparatus, aerial vehicle, and storage medium | |
CN110892352A (zh) | 无人机控制方法、装置及无人机 | |
WO2020062255A1 (zh) | 拍摄控制方法和无人机 | |
WO2020113417A1 (zh) | 目标场景三维重建方法、系统及无人机 | |
WO2021106454A1 (ja) | 撮像支援装置、撮像装置、撮像システム、撮像支援方法、及びプログラム | |
JP2019003035A (ja) | 制御装置、撮像装置、撮像システム、飛行体、制御方法、及びプログラム | |
WO2021035746A1 (zh) | 图像处理方法、装置和可移动平台 | |
WO2020107487A1 (zh) | 图像处理方法和无人机 | |
CN112154371A (zh) | 控制装置、摄像装置、移动体、控制方法以及程序 | |
WO2023029005A1 (zh) | 探测装置的视场控制方法、探测装置及可移动平台 | |
CN112154485A (zh) | 三维重建模型的优化方法、设备和可移动平台 | |
US20200241570A1 (en) | Control device, camera device, flight body, control method and program | |
CN111213369B (zh) | 控制装置、方法、摄像装置、移动体以及计算机可读存储介质 | |
US20210231908A1 (en) | Control device, camera device, control method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17934932 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017934932 Country of ref document: EP Effective date: 20200212 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |