WO2019112107A1 - 실리콘나이트라이드 음극재 및 이의 제조 방법 - Google Patents

실리콘나이트라이드 음극재 및 이의 제조 방법 Download PDF

Info

Publication number
WO2019112107A1
WO2019112107A1 PCT/KR2017/014842 KR2017014842W WO2019112107A1 WO 2019112107 A1 WO2019112107 A1 WO 2019112107A1 KR 2017014842 W KR2017014842 W KR 2017014842W WO 2019112107 A1 WO2019112107 A1 WO 2019112107A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
tube
anode material
manufacturing
temperature
Prior art date
Application number
PCT/KR2017/014842
Other languages
English (en)
French (fr)
Inventor
조재필
채수종
박승규
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Publication of WO2019112107A1 publication Critical patent/WO2019112107A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0687After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a silicon nitride anode material and a method of manufacturing the same. More particularly, the present invention relates to a silicon nitride anode material produced by pyrolysis or vapor deposition of silane (SiH 4 ) gas and ammonia (NH 3 ) SiN) particles or thin films, and silicon nitride anode materials comprising carbon atoms coated on silicon nitride particles or thin film surfaces, and a method of manufacturing the same.
  • silane (SiH 4 ) gas and ammonia (NH 3 ) SiN) particles or thin films silicon nitride anode materials comprising carbon atoms coated on silicon nitride particles or thin film surfaces
  • the present invention also relates to a method of manufacturing a silicon nitride anode material comprising silicon nitride particles and carbon atoms produced by mechanical polishing.
  • Lithium secondary batteries have characteristics of high energy density, high voltage and high capacity compared to other secondary batteries and are widely used as power sources for various devices.
  • the lithium secondary battery includes a carbon material having a multilayer structure capable of intercalating lithium metal as a negative electrode active material, including a lithium-containing metal composite oxide having a spinel structure such as a lithium-cobalt composite oxide as a positive electrode active material.
  • a secondary battery using a carbon material as a negative electrode active material has a small capacity, so that it is difficult to effectively increase the capacity. Accordingly, it is necessary to develop an anode active material having a capacity of at least carbon to be manufactured as a high-capacity battery so as to be used as an energy source for high-performance electronic devices and electric vehicles.
  • alloy-based anode materials including silicon, tin and the like.
  • the silicon material has a problem of lowering the cycle characteristics as compared with the carbon-based material, and thus it is difficult to put the silicon material into practical use.
  • Korean Patent No. 10-1741004 discloses a composition for producing a silicon-carbon composite in which nano-Si fine particles and an electrically conductive material are dispersed in amorphous carbon, and a silicon-carbon composite and a silicon-carbon composite prepared therefrom And an electrode for a secondary battery and a method for producing a silicon-carbon composite.
  • the present invention has been made to solve the conventional problems, and it is an object of the present invention to provide a thin film or a thin film containing silicon nitride (SiN) in which nitrogen atoms and silicon atoms are uniformly dispersed, A silicon nitride anode material may be provided.
  • SiN silicon nitride
  • silicon nitride particles or silicon nitride thin films in which nitrogen atoms and silicon atoms are uniformly dispersed by thermal decomposition or vapor deposition of silane (SiH 4 ) gas and ammonia (NH 3 ) gas at a high temperature, and produced silicon nitride particles or It is possible to provide a method of manufacturing a silicon nitride anode material that coats carbon atoms on the surface of a silicon nitride thin film.
  • the produced silicon nitride particles can be mechanically polished to provide an anode material manufacturing method including carbon and silicon nitride.
  • the silicon nitride anode material according to the present invention may include silicon nitride; And carbon atoms coated on the surface of the silicon nitride.
  • the silicon nitride may have an amorphous structure and consist of uniformly dispersed silicon atoms and nitrogen atoms.
  • the atomic percentage of the nitrogen atoms constituting the silicon nitride may be 5 at% to 40 at%.
  • a method of manufacturing a silicon nitride anode material according to the present invention includes: a first implanting step of injecting a plurality of source gases into a tube; A first temperature raising step of raising the temperature inside the tube; And a coating step of coating carbon atoms on the surface of the silicon nitride particles generated inside the tube.
  • the source gases injected into the tube include a silane gas and an ammonia gas, and the mixing ratio of the silane gas to the ammonia gas may be 100: 25 to 100: 200.
  • the inside temperature of the tube heated in the first temperature increasing step may be 900 ° C to 1000 ° C.
  • the coating step comprises: a second heating step of raising the temperature inside the tube after the cooling step; A second injection step of injecting a gaseous raw material containing carbon into the heated tube; And a second temperature holding step of maintaining the temperature of the inside of the tube at the second heating temperature step for a predetermined time while injecting the vapor raw material.
  • the gaseous raw material containing carbon may include acetylene (C 2 H 2 ) or ethylene (C 2 H 4 ).
  • the temperature inside the tube heated in the second heating step may be 600 ° C to 1000 ° C.
  • the coating step may include a heat treatment step of mixing the produced silicon nitride particles with a petroleum pitch and heat-treating the mixture in a tube.
  • the temperature inside the tube may be 600 ° C to 1000 ° C.
  • a method of manufacturing a silicon nitride anode material according to the present invention includes: a first injection step of injecting a plurality of source gases into a tube having a carbon-based material therein; A first temperature raising step of raising the temperature inside the tube; And a coating step of coating carbon atoms on the surface of the silicon nitride thin film formed on the carbon-based material.
  • the source gases injected into the tube include a silane gas and an ammonia gas, and the mixing ratio of the silane gas to the ammonia gas may be 100: 5 to 100: 50.
  • the inside temperature of the tube heated in the first temperature increasing step may be 900 ° C to 1000 ° C.
  • the coating step comprises: a second heating step of raising the temperature inside the tube after the cooling step; A second injection step of injecting a gaseous raw material containing carbon into the heated tube; And a second temperature holding step of maintaining the temperature of the inside of the tube at the second heating temperature step for a predetermined time while injecting the vapor raw material.
  • the gaseous raw material containing carbon may include acetylene (C 2 H 2 ) or ethylene (C 2 H 4 ).
  • the temperature elevated inside the tube in the second heating step may be 600 ° C to 1000 ° C.
  • the coating step may include a heat treatment step of mixing the produced silicon nitride thin film with a petroleum pitch and heat-treating the mixture in a tube.
  • the temperature inside the tube may be 600 ° C to 1000 ° C.
  • a method of manufacturing a silicon nitride anode material according to the present invention includes: a first implanting step of injecting a plurality of source gases into a tube; A first temperature raising step of raising the temperature inside the tube; A first polishing step of polishing the silicon nitride particles produced inside the tube to produce a first precursor; A second polishing step of polishing the first precursor to produce a second precursor; And firing the polished second precursor.
  • the first polishing step may include: mixing the organic solvent with silicon nitride particles generated inside the tube; And wet-polishing the mixed silicon nitride particles and the organic solvent.
  • the second polishing step may include mixing and stirring the first precursor and the carbonaceous raw material to prepare a mixture; And dry-polishing the prepared mixture.
  • the dry-polished mixture may be sieved.
  • the step of firing the polished second precursor may include the steps of injecting the second precursor into a tube and heat-treating the polished second precursor at 800 ° C to 1000 ° C; And air-cooling the heat-treated second precursor.
  • the organic solvent may be isopropyl alcohol.
  • the carbonaceous material may include a petroleum pitch.
  • an amorphous silicon nitride in which nitrogen atoms and silicon atoms are uniformly dispersed can be produced, and silicon nitride in which the surface of silicon nitride is coated with carbon atoms can be used as a cathode of a lithium secondary battery It can be used as ash.
  • the negative electrode material containing silicon nitride according to an embodiment of the present invention is used for a lithium secondary battery, the specific capacity and efficiency of the lithium secondary battery can be improved.
  • the negative electrode material made of the conventional silicon particles has a problem that the silicon particles are broken, and this problem can be solved and the cycle characteristics of the secondary battery can be improved.
  • the degree of oxidation of the produced anode material decreases, thereby reducing the amount of irreversible phases generated during charging and discharging of the secondary battery, Can be improved.
  • 1 is a schematic diagram showing a silicon nitride particle.
  • FIG. 2 is a flowchart showing a method of manufacturing an anode material including silicon nitride particles.
  • FIG. 3 is a flowchart showing a method of manufacturing an anode material including a silicon nitride thin film.
  • FIG. 4 is a schematic view showing a result of a charge / discharge reaction of an anode material including conventional silicon particles and an anode material including silicon nitride according to an embodiment of the present invention.
  • XRD X-ray diffraction
  • FIG. 6 is a result of analyzing a surface of a silicon particle by transmission electron microscopy (TEM) and an energy dispersive X-ray spectroscopy (EDS) pointer mapping.
  • TEM transmission electron microscopy
  • EDS energy dispersive X-ray spectroscopy
  • Figure 7 is a TEM image of the surface of the silicon nitride particles.
  • 10 is an image showing the distribution of silicon atoms constituting silicon nitride.
  • Figure 12 Si 0. 75 N 0 .25 TEM image of the surface of the particles and Si 0 . 8 N 0 .2 An image showing the distribution of the atoms constituting the particle.
  • 15 is an image showing the structure of silicon nitride generated at 1000 ° C.
  • 16 is an image showing silicon nitride coated on one side of the graphite.
  • 17 is an image showing silicon nitride coated on one side of carbon black.
  • 18 is an image showing silicon nitride coated on one side of carbon black.
  • 19 is an image showing silicon nitride coated on one side of carbon black.
  • 20 is an image showing the distribution of atoms constituting silicon nitride coated on one side of carbon black.
  • FIG. 21 is a graph showing the charge / discharge test results of an anode material including silicon nitride according to a composition ratio.
  • FIG. 22 is a graph showing an initial capacity of a secondary battery including a silicon nitride anode material according to a composition ratio.
  • FIG. 23 is a graph showing a capacity of a secondary battery including a silicon nitride anode material according to a composition ratio for a cycle.
  • 25 is a flowchart showing a method of manufacturing a silicon nitride anode material.
  • FIG. 26 shows the TEM analysis of the surface of the wet-polished silicon nitride particles and the analysis of the components of the silicon nitride particles through TEM EDS pointer mapping.
  • 27 is an SEM image of an anode material containing polished silicon nitride particles.
  • FIG. 28 is a graph showing an initial capacity of a secondary battery including a polished silicon nitride negative electrode material.
  • 29 is a graph showing the capacity of a secondary battery including a polished silicon nitride negative electrode material for a cycle.
  • the silicon nitride anode material according to an embodiment of the present invention may include silicon nitride and carbon atoms coated on the surface of the silicon nitride.
  • the manufacturing method of the silicon nitride anode material includes a first injection step of injecting a plurality of source gases into a tube, a first temperature raising step of raising the temperature inside the tube, and a second step of raising the temperature of the silicon nitride And a coating step of coating carbon atoms on the surface of the particles.
  • the manufacturing method of the silicon nitride anode material includes a first injection step of injecting a plurality of source gases into a tube, a first temperature raising step of raising the temperature inside the tube, a step of raising the temperature of the silicon nitride A first polishing step of polishing the particles to produce a first precursor, a second polishing step of polishing the first precursor to produce a second precursor, and firing the polished second precursor.
  • first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
  • 1 is a schematic diagram showing a silicon nitride particle.
  • Silicon nitride (SiN) particles 160 may be prepared by pyrolysis of a gas of a silicon-based gas and a nitrogen-based gas having a gas phase.
  • the silicon-based gas may be a silane (SiH 4 ) gas 120
  • the nitrogen-based gas may be an ammonia (NH 3 ) gas 140.
  • the silicon nitride particles 160 produced from the silane gas 120 and the ammonia gas 140 may be composed of the amorphous structure 162 and may include silicon atoms and nitrogen atoms.
  • the atomic percent (atomic percent, at%) of the nitrogen atoms constituting the silicon nitride particles 160 may be from 5 at% to 40 at%.
  • the silicon nitride particles 160 By manufacturing the silicon nitride particles 160 based on the gas phase, the silicon nitride particles 160 having the amorphous structure 162 in which the respective elements are uniformly dispersed can be produced. That is, conventionally, the problem that it was difficult to obtain uniformly dispersed silicon nitride particles without mixing of gases was solved.
  • FIG. 2 is a flow chart showing a method of manufacturing an anode material including silicon nitride particles.
  • a method of manufacturing an anode material according to an embodiment of the present invention includes a first injection step (220) of injecting a plurality of source gases into a tube, a first temperature elevation Step 240 and coating step 260 coating the carbon atoms on the surface of the silicon nitride particles produced internally with the tube.
  • the plurality of source gases may include a silane (SiH 4 ) gas and an ammonia (NH 3 ) gas, and the mixing ratio of the silane gas to the ammonia gas may be 100: 25 to 100: 200.
  • the inert gas may include at least one of a low-reactivity nitrogen gas or an argon gas.
  • an inert gas may be injected into the tube. This is to remove impurities existing inside the tube.
  • the temperature inside the tube may be raised to 500 ° C to 700 ° C before injecting the source gases into the tube.
  • the raw material gases injected into the tube can be decomposed by heat to form silicon nitride particles.
  • the raw material gases When the raw material gases are pyrolyzed at a temperature of less than 500 ° C, the raw material gases may not be sufficiently decomposed, making it difficult to produce silicon nitride particles having a structure in which the additional elements are uniformly dispersed.
  • the raw gas When the temperature inside the tube reaches a predetermined temperature rise temperature, the raw gas can be injected into the tube.
  • the ratio of the silane gas to the ammonia gas constituting the source gases may be 100: 25 to 100: 200.
  • Silicon nitride particles produced based on gases implanted at a predetermined rate comprise 5 atom% to 40 atom% of nitrogen atoms uniformly dispersed throughout the particle.
  • the injection of the source gases can be stopped, and an inert gas can be injected into the tube.
  • an inert gas can be injected into the tube.
  • the inner temperature of the tube is increased by the tube into which the inert gas is injected, so that the crystallinity can be secured in the silicon nitride particles.
  • the temperature inside the tube is raised to 900 to 1000 ⁇ ⁇ , and the temperature inside the tube can be maintained for a predetermined time. After maintaining the internal temperature in the tube for the set temperature and time, the temperature inside the tube can be cooled to produce crystalline nitride containing silicon nitride particles.
  • the silicon nitride particles produced according to an embodiment of the present invention may be made of an amorphous structure and a quasicrystal.
  • the time for maintaining the temperature inside the tube heated to 900 ° C to 1000 ° C may vary depending on the amount of the source gases injected. Some of the amorphous structure of the silicon nitride particles can be semi-purified while the temperature inside the tube is maintained.
  • the method of manufacturing the silicon nitride anode material according to an embodiment of the present invention is easier to form an amorphous structure in the silicon nitride particles forming the anode material as compared with the conventional method of manufacturing the anode material containing silicon .
  • the content of ammonia gas constituting the raw material gases is increased, the content of nitrogen atoms constituting the produced silicon nitride particles increases, and as the content of nitrogen atoms increases, a crystal structure is formed in the silicon nitride particles Can be further suppressed.
  • the area of the amorphous structure formed in the silicon nitride particles may increase as the content of the ammonia gas increases in the source gas to be injected.
  • the charge / discharge performance of a lithium secondary battery including a silicon nitride anode material made of silicon nitride particles is improved as the area of the amorphous structure formed in the silicon nitride particles increases.
  • the performance of the lithium secondary battery including the silicon nitride particles is deteriorated. This is because the nitrogen atoms dispersed in the silicon nitride particles interfere with the bonding between the silicon atom and the lithium atom when the secondary battery including the silicon nitride anode material having a high nitrogen content is charged and discharged. Alloying or elution of silicon atoms and lithium atoms in the charge and discharge reactions can improve the performance of secondary cells. As the amount of silicon atoms bonded to nitrogen atoms increases, the amount of silicon atoms capable of bonding with lithium atoms The redox reaction of the anode material is lowered.
  • the silicon nitride particles have a high probability of forming a crystalline structure, thereby reducing the area occupied by the amorphous structure.
  • the performance of the lithium secondary battery due to the charge / discharge reaction is deteriorated due to the crystalline structure including the silicon nitride particles in the negative electrode material including the silicon nitride particles having a higher crystalline structure ratio than the amorphous structure.
  • the atomic% of the silicon nitride particles produced according to one embodiment of the present invention is 5at% to 40at%.
  • a vapor source or a petroleum pitch can be used to coat carbon atoms on the surface of the resulting silicon nitride particles.
  • the carbon atoms coated on the surface of the silicon nitride particles provide an electron transfer path to improve the electrical conductivity and control the volume change of the metal such as silicon during charging and discharging, thereby greatly improving the stability of the electrode plate.
  • the coated carbon atoms can prevent interfacial reaction that may occur when the silicon particles and the electrolyte come into direct contact with each other, improve the electrical conductivity of the interface, and control the volume expansion of the electrode.
  • the vapor phase raw material may be acetylene (C 2 H 2 ) or ethylene (C 2 H 4 ).
  • a vapor deposition process is used to pyrolyze the gaseous feedstock and the pyrolyzed carbon atoms are coated onto the surface of the silicon nitride particles.
  • the silicon nitride particles to be coated are placed inside the tube, and the temperature inside the tube is raised by injecting an inert gas into the tube.
  • the temperature inside the tube is raised to 600 to 1000 ⁇ ⁇ .
  • the gaseous raw material is injected into the tube for a predetermined time while maintaining a predetermined temperature.
  • the injection of the gaseous raw material is stopped, and the inert gas is injected into the inside of the tube again to lower the temperature inside the tube and air-cooled.
  • carbon atoms can be coated on the surface of the silicon nitride particles by mixing the silicon nitride particles with the petroleum pitch and heat-treating them.
  • the silicon nitride particles to be coated are mixed with the petroleum pitch, and then injected into the tube or into the chamber and fired in an inert gas atmosphere.
  • the temperature in the tube or inside the chamber may be 600 ° C to 1000 ° C, and if the temperature in the tube or inside the chamber reaches a predetermined temperature between 600 ° C and 1000 ° C, .
  • the crystallinity of carbon may be decreased and the performance of the anode material containing the carbon nitride may be deteriorated.
  • Silicon nitride particles coated with carbon atoms can be applied to the collector to be used as an anode material for a lithium secondary battery.
  • FIG. 3 is a flowchart showing a method of manufacturing an anode material including a silicon nitride thin film.
  • a method of manufacturing a silicon nitride anode material includes a first injection step 320 of injecting a plurality of source gases into a tube having a carbonaceous material therein, A first temperature raising step 340 for raising the temperature inside the tube, and a coating step 360 for coating carbon atoms on the surface of the silicon nitride thin film formed on the substrate.
  • the carbon-based material may be graphite or carbon black containing a carbon material which can be used as an anode material.
  • the source gases may consist of silane gas and ammonia gas, and the mixing ratio of silane gas to ammonia gas may be 100: 5 to 100: 50.
  • the inert gas may include at least one of a low-reactivity nitrogen gas or an argon gas.
  • An inert gas is injected into the tube before injecting a plurality of source gases into the tube with a carbon-based material inside, thereby removing impurities existing in the tube.
  • the raw material gas is pyrolyzed at a temperature higher than 700 ° C
  • the silicon nitride and the nitrogen atoms constituting the produced silicon nitride particles are dispersed unevenly, resulting in a silicon nitride thin film having a reduced homogeneity.
  • a silicon crystal phase can easily be formed in silicon nitride.
  • the raw gas can be injected into the tube.
  • the gas particles pyrolyzed at a predetermined temperature may be deposited on the carbon-based material provided inside the tube to form a silicon nitride thin film.
  • the injected source gases may be a mixed gas of silane gas and ammonia gas at a ratio of 100: 5 to 100: 50.
  • the silicon nitride thin film formed on the basis of the source gases injected at a predetermined ratio may contain nitrogen atoms in a range of 5 at% to 40 at% uniformly dispersed throughout the silicon nitride thin film.
  • the injection of the raw material gas is stopped, and an inert gas is injected. This is to eliminate the gas that is pyrolyzed by removing the raw material gas remaining in the tube.
  • An inert gas is injected into a tube containing a silicon nitride thin film, and the temperature inside the tube is raised to 900 to 1000 ⁇ ⁇ . It is possible to increase crystallinity in the silicon nitride thin film formed on the surface of the carbonaceous material by increasing the temperature inside the tube into which the inert gas is injected. In order to sinter the silicon nitride thin film, the temperature inside the tube is maintained at 900 to 1000 ° C. for a predetermined time, and then the inside of the tube is cooled by the tube to lower the temperature inside the tube.
  • the time at which the temperature inside the tube is maintained at 900 ° C to 1000 ° C may vary depending on the amount of the injected source gases.
  • a part of the amorphous structure of the silicon nitride thin film may be crystallized while the temperature inside the tube is maintained for a predetermined time. Therefore, it is preferable to keep the temperature inside the tube not to exceed 1000 ⁇ .
  • the silicon nitride thin film is formed while the silicon atoms and nitrogen atoms constituting the silicon nitride thin film are dispersed unevenly. Further, a silicon crystal phase is easily formed in the silicon nitride thin film, and the area of the amorphous structure can be reduced.
  • the method of manufacturing the silicon nitride thin film according to an embodiment of the present invention has an advantage that it is easier to form an amorphous structure in the silicon nitride thin film as compared with the conventional method of manufacturing the silicon nitride compound.
  • the content of ammonia gas is increased among the source gases, the content of nitrogen atoms constituting the produced silicon nitride thin film may increase.
  • the nitrogen atom can inhibit the reaction in which the crystal structure is formed in the silicon nitride thin film. Therefore, the higher the proportion of the ammonia gas in the raw material gas, the more the area of the amorphous structure formed in the silicon nitride thin film can be increased.
  • the silicon nitride thin film produced under the condition that the ratio of the silane gas to the ammonia gas in the raw material gas is 100: 5 to 100: 50 the smaller the area of the crystalline structure with respect to the area of the amorphous structure, Charging and discharging performance of the battery is improved.
  • anode material comprising a silicon nitride thin film produced in a state where the ratio of silane gas to ammonia gas is more than 100: 50 and the content of ammonia is high, the performance of the lithium secondary battery including the anode material is deteriorated.
  • the silicon nitride thin film prepared under the condition that the ratio of the silane gas to the ammonia gas is less than 100: 5 and the content of the ammonia gas is low has a higher probability of containing the crystalline structure than the amorphous structure.
  • the negative electrode material including the silicon nitride thin film having a higher crystalline structure ratio may deteriorate the performance of the lithium secondary battery due to the charge / discharge reaction due to the crystalline structure included in the silicon nitride thin film.
  • the atomic% of nitrogen atoms in the silicon nitride thin film produced according to an embodiment of the present invention is 5 at% to 40 at%.
  • One of a vapor source or a petroleum pitch can be used to coat the carbon atoms on the surface of the resulting silicon nitride thin film.
  • the carbon atoms coated on the surface of the silicon nitride thin film can improve the electric conductivity by providing an electron transfer path and control the volume change of the metal such as silicon during charge and discharge, thereby greatly improving the stability of the electrode plate.
  • the coated carbon atoms can prevent interfacial reaction that may occur when the silicon particles and the electrolyte come into direct contact with each other, improve the electrical conductivity of the interface, and control the volume expansion of the electrode.
  • the vapor phase raw material may be acetylene (C 2 H 2 ) or ethylene (C 2 H 4 ).
  • the vapor deposition process is used to pyrolyze the vapor phase raw materials and the pyrolyzed carbon atoms are coated on the silicon nitride particles.
  • the silicon nitride thin film to be coated is placed inside a tube, and the temperature inside the tube is raised by injecting an inert gas into the tube.
  • the temperature inside the tube is 600 ⁇ ⁇ to 1000 ⁇ ⁇ .
  • the gaseous raw material is injected into the tube for a predetermined time while maintaining a predetermined temperature.
  • the injection of the meteorological material is finished, the injection of the gaseous raw material is stopped, and the inert gas is injected back into the tube, and the temperature inside the tube is lowered and air-cooled.
  • the carbon atoms can be coated on the surface of the silicon nitride thin film by mixing the silicon nitride thin film with the petroleum pitch and heat-treating them.
  • the silicon nitride thin film to be coated and the petroleum pitch are mixed and then fired in an inert gas atmosphere tube or in a chamber.
  • the firing temperature may be 600 ° C to 1000 ° C and the temperature may be maintained for a predetermined time when the temperature in the tube or inside the chamber reaches a predetermined temperature.
  • a carbon-based material including a silicon nitride thin film coated with a carbon atom can be used as an anode material of a lithium secondary battery.
  • FIG. 4 is a schematic view showing a result of a charge / discharge reaction of an anode material including conventional silicon particles and an anode material including silicon nitride according to an embodiment of the present invention.
  • a capacity is realized due to an alloy or dissolution of a silicon atom and a lithium atom.
  • the volume of the silicon material may expand or contract.
  • the negative electrode material 414 is ruptured due to the volume change of the silicon material and the occurrence rate of the side reaction is increased due to the rupture of the negative electrode material 414 and the performance of the secondary battery is deteriorated.
  • the anode material 434 of the cathode portion 430 including silicon nitride includes silicon atoms and nitrogen atoms.
  • the use of the anode material 434 including silicon atoms and nitrogen atoms can reduce the side reaction with the electrolyte that can occur during the charge and discharge reaction of the lithium secondary battery and significantly reduce the amount of the byproducts 446, The performance of the lithium secondary battery can be improved.
  • the volume expansion of the silicon particles during the charging and discharging of the conventional anode material and the volume expansion It is possible to solve the problem of rupture of the particles of the negative electrode material.
  • the nitrogen atoms contained in the silicon nitride particles or the silicon nitride thin film reduce the side reaction of the electrolyte with the silicon nitride anode material 434 and reduce the amount of the byproducts 446 generated, so that the charge / It is possible to reduce the occurrence of cracks. Accordingly, it is possible to solve the disadvantage that the lifetime of the lithium secondary battery is reduced.
  • the silane gas and the ammonia gas are pyrolyzed by mixing the silane gas to the ammonia gas at a ratio of 100: 50, 100: 75, 100: 100, and 100:
  • an inert gas is injected into the tube and the temperature inside the tube is raised to 900 to 1000 ° C.
  • the inside temperature is maintained for 2 hours to 10 hours by a tube heated to 900 to 1000 ⁇ ⁇ , and then air-cooled to prepare silicon nitride particles.
  • compositions of silicon nitride prepared from mixed silane gas and ammonia gas at a constant mixing ratio are shown in the following table.
  • XRD X-ray diffraction
  • the crystal structure inside the silicon nitride is reduced through the weakening of the strength of the silicon peaks at about 28 °, 48 ° and 56 °, and even if the silicon nitride is heat- It can be seen that the amorphous structure of the rye is continuously maintained.
  • Si 0 . 75 N 0 . 25 contains little silicon crystals. This is because the amount of bonding of nitrogen atoms and silicon atoms contained in silicon nitride is increased, and even if silicon nitride is baked at a high temperature, bonding between silicon is difficult.
  • FIG. 6 is a result of analyzing the surface of silicon particles by transmission electron microscopy (TEM) and TEM (energy dispersive X-ray spectroscopy) pointer mapping.
  • TEM transmission electron microscopy
  • TEM energy dispersive X-ray spectroscopy
  • the silicon particles contain silicon atoms and oxygen atoms.
  • the silicon particles contained 98.41 at% of silicon atoms and 1.59 at% of oxygen atoms, and no nitrogen atoms were detected.
  • Figure 7 is a TEM image of the surface of the silicon nitride particles.
  • 10 is an image showing the distribution of silicon atoms constituting silicon nitride.
  • Si 0 . 9 N 0 .1 contains a silicon atom, an oxygen atom and a nitrogen atom.
  • it contains 90.52 at% of silicon atoms, 0.87 at% of oxygen atoms, and 8.61 at% of nitrogen atoms.
  • FIG. 11 is an image showing a TEM image of a surface of Si0.8N0.2 particles and a distribution diagram of atoms constituting Si0.8N0.2 particles.
  • FIG. 13 is an image showing a TEM image of a surface of Si0.7N0.3 particles and a distribution diagram of atoms constituting Si0.8N0.2 particles.
  • Si 0 . 8 N 0 .2 , Si 0 . 75 N 0 .25 0 and Si. 7 forms with the surface of the N 0 .3, it can be seen the distribution of the atomic percent (atomic percent) of the elements that make up the individual particles.
  • the silicon atoms, oxygen atoms and nitrogen atoms distributed in the produced silicon nitride can be uniformly dispersed throughout the entirety of the silicon nitride particles irrespective of the mixing ratio of the silane gas and the ammonia gas. This is because the silicon nitride was produced by uniformly dispersing the additive elements by pyrolyzing the gas phase.
  • the distribution of silicon atoms, oxygen atoms and nitrogen atoms constituting the silicon nitride particles was analyzed from the outer portion to the central portion of the silicon nitride to find out each element uniformly dispersed from the outer portion to the central portion of the silicon nitride particle .
  • Branch 1 (910) Point 2 (920) Point 3 (930) Branch 4 (940) Si 82.97at% 85.58 at% 85.91 at% 86.02 at% O 5.72at% 3.35at% 2.49 at% 2.56 at% N 11.31 at% 11.08 at% 11.60at% 11.42 at% Total at% 100at% 100at% 100at% 100at% 100at%
  • 15 is an image showing the structure of silicon nitride generated at 1000 ° C.
  • 16 is an image showing silicon nitride coated on one side of the graphite.
  • silicon nitride was uniformly coated on the inside and the outside of the graphite through the surface 1110 of the graphite coated with silicon nitride and the analysis result 1120 of the surface of the graphite coated with silicon nitride have. Specifically, silicon atoms and nitrogen atoms constituting silicon nitride are uniformly dispersed on the entire surface of the graphite.
  • an anode material which can be used for a cathode of a secondary battery can be manufactured by depositing silane gas and ammonia gas on a graphite in a tube furnace.
  • 17 is an image showing silicon nitride coated on one side of carbon black.
  • 18 is an image showing silicon nitride coated on one side of carbon black.
  • 19 is an image showing silicon nitride coated on one side of carbon black.
  • 20 is an image showing the distribution of atoms constituting silicon nitride coated on one side of carbon black.
  • silicon atoms and nitrogen atoms constituting silicon nitride can be uniformly dispersed on the entire surface of the carbon black.
  • an anode material which can be used for a cathode of a secondary battery can be manufactured by depositing silane gas and ammonia gas on carbon black in a tube furnace.
  • FIG. 21 is a graph showing the charge / discharge test results of an anode material including silicon nitride according to a composition ratio.
  • a slurry in which the weight ratio of the silicon nitride anode material: conductive material: binder is 8: 1: 1 according to one embodiment of the present invention can be prepared.
  • the conductive material may include super-P
  • the binder may include styrene butadiene rubber (SBR) and sodium carboxymethyl cellulose (CMC) in a weight ratio of 1: 1.
  • the electrochemical characteristics of the half cell are evaluated by discharge at 1 / 10C (CCCV methode) and cutoff voltage at 0.005V ⁇ 1.5V.
  • the flatness interval becomes shorter as the atomic percentage of nitrogen atoms contained in the silicon nitride anode material increases, because the nitrogen atoms inhibit the reaction of silicon atoms and lithium atoms. Li 3 . 75 Si phase is formed, the expansion and deterioration generated in the silicon particles constituting the silicon nitride anode material are increased, and the life of the secondary battery including the silicon particle can be shortened.
  • Li 3 Li 3 . It may be desirable to appropriately increase the content of nitrogen atoms forming the silicon nitride anode material in order to inhibit the formation of the 75 Si phase.
  • FIG. 22 is a graph showing an initial capacity of a secondary battery including a silicon nitride anode material according to a composition ratio.
  • FIG. 23 is a graph showing a capacity of a secondary battery including a silicon nitride anode material according to a composition ratio for a cycle.
  • a slurry in which the weight ratio of the silicon nitride anode material: conductive material: binder is 8: 1: 1 according to one embodiment of the present invention can be prepared.
  • the conductive material may include super-P
  • the binder may include styrene butadiene rubber (SBR) and sodium carboxymethyl cellulose (CMC) in a weight ratio of 1: 1.
  • the electrochemical characteristics of the half cell are evaluated by discharge at 1 / 10C (CCCV methode) and cutoff voltage at 0.005V ⁇ 1.5V.
  • the cycle is 0.5C, and the cutoff voltage is 0.005 to 1.0V.
  • the initial capacity of the secondary battery is reduced as the ratio of nitrogen contained in the silicon nitride increases.
  • the CV (Constant-voltage) section is prolonged, and as a result, when the ratio of the nitrogen atoms contained in the silicon nitride increases, the reactivity between the silicon atom and the lithium atom decreases .
  • the capacity of the secondary battery may be rather reduced.
  • the silicon nitride particles according to one embodiment of the present invention can maintain the original circular shape even after the 50 cycle charge / discharge test.
  • 25 is a flowchart showing a method of manufacturing a silicon nitride anode material.
  • the silicon nitride particles according to an embodiment of the present invention may be mechanically polished to obtain a nanosilicone nitride having a median particle diameter of 10 nm to 200 nm.
  • the mechanical polishing may be dry polishing or wet polishing, and preferably may be wet polishing.
  • the wet polishing may be one of a high-speed agitating mill, a ball mill, a tube mill, a corn mill, a rod mill and a sand mill.
  • the solvent used in the wet polishing may be organic solvents.
  • the organic solvent is at least one selected from tetrahydrofuran, amide, alcohol and ketone, more preferably selected from tetrahydrofuran, dimethylacetamide, C1-C6 alcohol and C3-C8 ketone Or a combination of at least two of them.
  • the C1-C6 alcohol is selected from the group consisting of methanol, ethanol, ethylene glycol, propanol, isopropanol, 1,2-propanediol, 1,3-propanediol, glycerol, n-butanol, , 4-butanediol, n-pentanol and 2-hexanol, or a combination of at least two of them;
  • the C3-C8 ketone may be one or more selected from acetone, methyl ethyl ketone, methyl propyl ketone, N-methylpyrrolidone, ethyl propyl ketone, methyl butyl ketone, ethyl n-butyl ketone, methyl amyl ketone and methyl hexyl ketone, Or a combination of at least two of them.
  • isopropylalcohol which is an organic solvent, can be used as a solvent.
  • Silicon nitride particles having a constant intermediate particle diameter of 10 nm to 200 nm obtained through wet grinding can be mixed and stirred with the carbon-based raw material and IPA.
  • the carbon-based raw material is a petroleum pitch, and graphite may be further included.
  • Silicon nitride particles, carbonaceous raw material and IPA are stirred at 300 rpm to 2000 rpm using a mixer. The mixture prepared by stirring is dried to evaporate the solvent present in the mixture.
  • the dried mixture can be mechanically dry-polished and sieved to obtain an anode material comprising carbon and silicon nitride particles having a median particle size of 5 to 20 ⁇ ⁇ .
  • the negative electrode material having a median particle diameter of 5 to 20 ⁇ ⁇ may be heat treated at 800 to 1000 ⁇ ⁇ in an inert gas atmosphere in a tube or a chamber and then air-cooled to be used as an anode material.
  • FIG. 26 shows the TEM analysis of the surface of the wet-polished silicon nitride particles and the analysis of the components of the silicon nitride particles through TEM EDS pointer mapping.
  • the analyzed silicon nitride particles were prepared by using a raw material gas in which silane gas to ammonia gas was mixed at a ratio of 100: 50.
  • the wet polished silicon nitride particles were measured using a particle size analyzer and found to have D10, D50 and D90 of 60 nm, 130 nm and 250 nm, which corresponded to 10%, 50% and 90% .
  • the size of the most-formed silicon nitride particles is 130 nm.
  • the distribution of the silicon atoms, nitrogen atoms and oxygen atoms constituting the wet-polished silicon nitride particles was examined. As a result, it was found that the silicon atoms 75.99at%, the nitrogen atoms 13.68at% and the oxygen atoms 10.32at% It can be seen that they are uniformly dispersed.
  • 27 is an SEM image of an anode material containing polished silicon nitride particles.
  • the wet-polished silicon nitride particles with respect to the size of the negative electrode material including the silicon nitride particles produced by mixing the wet-polished silicon nitride particles with the carbon-based fuel were measured using a particle size analyzer.
  • D50, D50, and D90, which correspond to 10%, 50%, and 90%, respectively, are 1.57 mu m, 9.96 mu m, and 25.85 mu m, respectively.
  • the size of the negative electrode material including the most-formed silicon nitride particles is 9.96 mu m.
  • FIG. 28 is a graph showing an initial capacity of a secondary battery including a polished silicon nitride negative electrode material.
  • 29 is a graph showing the capacity of a secondary battery including a polished silicon nitride negative electrode material for a cycle.
  • a slurry in which the weight ratio of the silicon nitride anode material: conductive material: binder is 8: 1: 1 according to one embodiment of the present invention can be prepared.
  • the conductive material may include super-P
  • the binder may include styrene butadiene rubber (SBR) and sodium carboxymethyl cellulose (CMC) in a weight ratio of 1: 1.
  • a cathode part including a negative electrode material including silicon nitride particles according to an embodiment of the present invention and a lithium foil are used as a counter electrode and diethyl carbonate (DEC) and fluoro-ethylene carbonate carbonate, and FEC) in a volume ratio of 7: 3 to prepare a half cell using a liquid electrolyte in which LiPF6 is dissolved at a concentration of 1.3M.
  • DEC diethyl carbonate
  • FEC fluoro-ethylene carbonate
  • the electrochemical characteristics of the half cell are evaluated by discharge at 1 / 10C (CCCV methode) and cutoff voltage at 0.005V ⁇ 1.5V.
  • the cycle is 0.5C, and the cutoff voltage is 0.005 to 1.0V.
  • the initial discharge capacity was 1467 mAh / g
  • the initial charge capacity was 1758 mAh / g
  • the initial coulombic efficiency was 83.5%
  • the oxidation degree of the negative electrode material produced by polishing the silicon nitride particles according to an embodiment of the present invention is reduced as compared with the negative electrode material produced by polishing the conventional silicon particles.
  • the proportion of oxygen atoms present in the particles constituting the negative electrode material can be reduced.
  • the ratio of oxygen atoms in the particles forming the anode material increases, the amount of lithium and oxygen atoms increases and irreversible phase is generated more. As the amount of the irreversible phase generated increases, the efficiency of the secondary battery including the secondary battery decreases.
  • the anode material including the silicon nitride particles produced according to an embodiment of the present invention has a small proportion of oxygen atoms present in the material and reduces the amount of irreversible phases generated during charging and discharging, The efficiency is improved.
  • the silicon nitride anode material according to an embodiment of the present invention can be used as a power source for various electronic devices that require high energy density, high voltage and high capacity for lithium secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 기체상인 실란 가스와 암모니아 가스가 열분해되어 제조된 실리콘나이트라이드 입자 또는 실란 가스와 암모니아 가스가 탄소계 소재 상에 기상증착되어 제조된 실리콘나이트라이드 박막의 표면에 탄소 원자가 코팅된 실리콘나이트라이드 음극재 및 이의 제조 방법에 관한 것이다.

Description

실리콘나이트라이드 음극재 및 이의 제조 방법
본 발명은 실리콘나이트라이드 음극재 및 이의 제조 방법에 관한 것으로서, 보다 상세하게는 실란(Silane, SiH4) 가스 및 암모니아(NH3) 가스가 열분해(pyrolysis) 또는 기상증착되어 제조된 실리콘나이트라이드(SiN) 입자 또는 박막 및 실리콘나이트라이드 입자 또는 박막 표면에 코팅된 탄소 원자들을 포함하는 실리콘나이트라이드 음극재 및 이의 제조 방법에 관한 것이다.
또한, 기계적 연마를 통해 제조된 실리콘나이트라이드 입자 및 탄소 원자들을 포함하는 실리콘나이트라이드 음극재 제조 방법에 관한 것이다.
전자기기, 웨어러블 기기 등이 소형화 및 경량화됨에 따라, 전자기기에 이용되는 이차전지의 에너지밀도를 향상시키고 이차전지가 경량화되도록 요구되고 있다.
리튬 이차전지는 다른 이차전지에 비해, 고에너지 밀도, 고전압 및 고용량의 특성을 가져 각종 기기의 전원으로써 널리 보급되어 있다. 리튬 이차전지는 양극 활물질로써 리튬 코발트 복합산화물 등의 스피넬 구조를 갖는 리튬 함유 금속 복합산화물을 포함하고 있으며, 음극 활물질로써 리튬 금속의 인터칼레이션이 가능한 다층 구조를 갖는 탄소재료를 포함하고 있다.
그러나 탄소재료를 음극 활물질로 사용한 이차전지는 용량이 작아 효과적인 용량 증가가 어렵다. 이에 따라, 고기능 전자기기나 전기자동차의 에너지원으로 이용될 수 있도록 고용량 전지로 제조되기 위해서 탄소 이상의 용량을 갖는 음극 활물질 재료의 개발이 필요하다.
이와 같은 문제점을 해결하기 위하여 실리콘, 주석 등의 원소를 포함하는 합금계 음극 재료에 대한 연구가 진행되고 있다.
그러나 실리콘 재료는 탄소계 재료와 비교하여 사이클 특성이 저하되는 문제점이 있어 실용화에 어려움이 있다.
한국등록특허 제10-1741004호는 나노 Si 미립자와 전기 전도성 물질이 비정질 탄소 내에 분산되어 내재되는 실리콘-탄소 복합체를 제조하기 위한 조성물, 및 이로부터 제조된 실리콘-탄소 복합체, 실리콘-탄소 복합체를 포함하는 이차전지용 전극 및 실리콘-탄소 복합체 제조방법에 관한 것이다.
본 발명은 종래의 문제점을 해결하기 위해 창안된 것으로써, 질소 원자 및 실리콘 원자가 균일하게 분산된 실리콘나이트라이드(SiN)를 포함하는 입자 또는 박막 및 실리콘나이트라이드 입자 또는 박막의 표면에 코팅된 탄소 원자들을 포함하는 실리콘나이트라이드 음극재를 제공할 수 있다.
구체적으로, 실란(SiH4) 가스와 암모니아(NH3) 가스를 고온에서 열분해하거나 기상 증착하여 질소 원자 및 실리콘 원자가 균일하게 분산된 실리콘나이트라이드 입자 또는 실리콘나이트라이드 박막 및 제조된 실리콘나이트라이드 입자 또는 실리콘나이트라이드 박막의 표면에 탄소 원자들을 코팅하는 실리콘나이트라이드 음극재 제조 방법을 제공할 수 있다.
또한, 제조된 실리콘나이트라이드 입자를 기계적 연마하여 탄소 및 실리콘나이트라이드를 포함하는 음극재 제조 방법을 제공할 수 있다.
본 발명에 따른 실리콘나이트라이드 음극재는 실리콘나이트라이드; 및 상기 실리콘나이트라이드의 표면에 코팅된 탄소 원자들;을 포함할 수 있다.
상기 실리콘나이트라이드는, 비정질 구조이고, 균일하게 분산된 실리콘 원자들 및 질소 원자들로 이루어질 수 있다.
상기 실리콘나이트라이드를 구성하는 질소 원자의 원자퍼센트는 5at% 내지 40at%일 수 있다.
본 발명에 따른 실리콘나이트라이드 음극재 제조 방법은 튜브로 내부에 복수의 원료 가스들을 주입하는 제1 주입단계; 상기 튜브로 내부의 온도를 승온시키는 제1 승온단계; 및 상기 튜브로 내부에 생성된 실리콘나이트라이드 입자의 표면에 탄소 원자들을 코팅하는 코팅단계;를 포함할 수 있다.
상기 제1 주입단계 이전에, 상기 튜브로 내부에 불활성 가스를 주입하는 단계; 및 상기 튜브로 내부의 온도를 500℃ 내지 700℃로 승온시키는 단계;를 포함할 수 있다.
상기 튜브로 내부에 주입된 원료 가스들은 실란 가스와 암모니아 가스를 포함하고, 상기 실란 가스 대 암모니아 가스의 혼합비는 100:25 내지 100:200일 수 있다.
상기 제1 승온단계 이전에, 상기 원료 가스의 주입을 중단하고, 상기 튜브로 내부에 불활성 가스를 주입하는 단계;를 포함할 수 있다.
상기 제1 승온단계 이후, 상기 튜브로 내부를 상기 제1 승온단계에서 승온시킨 온도로 소정시간 유지시키는 제1 온도유지단계;를 더 포함할 수 있다.
상기 제1 승온단계에서 승온된 튜브로 내부의 온도는 900℃ 내지 1000℃일 수 있다.
상기 제1 온도유지단계 이후, 상기 튜브로 내부의 온도를 낮추는 냉각단계;를 더 포함할 수 있다.
상기 코팅단계는, 상기 냉각단계 이후, 상기 튜브로 내부의 온도를 승온시키는 제2 승온단계; 상기 승온된 튜브로 내부에 탄소를 함유하는 기상 원료를 주입하는 제2 주입단계; 상기 기상 원료를 주입하면서 상기 튜브로 내부를 상기 제2 승온단계에서 승온시킨 온도로 소정시간 유지시키는 제2 온도유지단계;를 포함할 수 있다.
상기 탄소를 함유하는 기상 원료는, 아세틸렌(C2H2) 또는 에틸렌(C2H4)을 포함할 수 있다.
상기 냉각단계 이후, 상기 제2 승온단계 이전에, 상기 튜브로 내부에 불활성 가스를 주입하는 단계;를 포함할 수 있다.
상기 제2 승온단계에서 승온된 튜브로 내부의 온도는 600℃ 내지 1000℃일 수 있다.
상기 제2 온도유지단계 이후, 상기 기상 원료의 주입을 중단하고, 상기 튜브로 내부에 불활성 가스를 주입하는 단계; 및 상기 튜브로 내부에 불활성 가스를 주입하면서 튜브로 내부의 온도를 낮추는 단계;를 더 포함할 수 있다.
상기 코팅단계는, 상기 생성된 실리콘나이트라이드 입자와 석유계 피치를 혼합하여 튜브로 내부에서 열처리하는 열처리단계;를 포함할 수 있다.
상기 열처리단계에서 상기 튜브로 내부의 온도는 600℃ 내지 1000℃일 수 있다.
본 발명에 따른 실리콘나이트라이드 음극재 제조 방법은 내부에 탄소계 소재가 마련된 튜브로 내부에 복수의 원료가스들을 주입하는 제1 주입단계; 튜브로 내부의 온도를 승온시키는 제1 승온단계; 및 상기 탄소계 소재 상에 생성된 실리콘나이트라이드 박막의 표면에 탄소원자들을 코팅하는 코팅단계;를 포함할 수 있다.
상기 제1 주입단계 이전에, 상기 튜브로 내부에 불활성 가스를 주입하는 단계; 및 상기 튜브로 내부의 온도를 500℃ 내지 700℃로 승온시키는 단계;를 포함할 수 있다.
상기 튜브로 내부에 주입된 원료가스들은 실란 가스와 암모니아 가스를 포함하고, 상기 실란 가스 대 암모니아 가스의 혼합비는 100:5 내지 100:50일 수 있다.
상기 제1 승온단계 이전에, 상기 원료 가스의 주입을 중단하고, 상기 튜브로 내부에 불활성 가스를 주입하는 단계;를 포함할 수 있다.
상기 제1 승온단계 이후, 상기 튜브로 내부를 상기 제1 승온단계에서 승온시킨 온도로 소정시간 유지시키는 제1 온도유지단계;를 더 포함할 수 있다.
상기 제1 승온단계에서 승온된 튜브로 내부의 온도는 900℃ 내지 1000℃일 수 있다.
상기 제1 온도유지단계 이후, 상기 튜브로 내부의 온도를 낮추는 냉각단계;를 더 포함할 수 있다.
상기 코팅단계는, 상기 냉각단계 이후, 상기 튜브로 내부의 온도를 승온시키는 제2 승온단계; 상기 승온된 튜브로 내부에 탄소를 함유하는 기상 원료를 주입하는 제2 주입단계; 상기 기상 원료를 주입하면서 상기 튜브로 내부를 상기 제2 승온단계에서 승온시킨 온도로 소정시간 유지시키는 제2 온도유지단계;를 포함할 수 있다.
상기 탄소를 함유하는 기상 원료는, 아세틸렌(C2H2) 또는 에틸렌(C2H4)을 포함할 수 있다.
상기 냉각단계 이후, 상기 제2 승온단계 이전에, 상기 튜브로 내부에 불활성 가스를 주입하는 단계;를 포함할 수 있다.
상기 제2 승온단계에서 상기 튜브로 내부의 승온된 온도는 600℃ 내지 1000℃일 수 있다.
상기 제2 온도유지단계 이후, 상기 기상 원료의 주입을 중단하고, 상기 튜브로 내부에 불활성 가스를 주입하는 단계; 및 상기 튜브로 내부에 불활성 가스를 주입하면서 튜브로 내부의 온도를 낮추는 단계;를 더 포함할 수 있다.
상기 코팅단계는, 상기 생성된 실리콘나이트라이드 박막과 석유계 피치를 혼합하여 튜브로 내부에서 열처리하는 열처리단계;를 포함할 수 있다.
상기 열처리단계에서 상기 튜브로 내부의 온도는 600℃ 내지 1000℃일 수 있다.
본 발명에 따른 실리콘나이트라이드 음극재 제조 방법은 튜브로 내부에 복수의 원료 가스들을 주입하는 제1 주입단계; 상기 튜브로 내부의 온도를 승온시키는 제1 승온단계; 상기 튜브로 내부에 생성된 실리콘나이트라이드 입자를 연마하여 제1 전구체를 제조하는 제1 연마단계; 상기 제1 전구체를 연마하여 제2 전구체를 제조하는 제2 연마단계; 및 상기 연마된 제2 전구체를 소성하는 단계;를 포함할 수 있다.
상기 제1 연마단계는, 상기 튜브로 내부에 생성된 실리콘나이트라이드 입자와 유기용매를 혼합하는 단계; 및 상기 혼합된 실리콘나이트라이드 입자 및 유기용매를 습식 연마하는 단계;를 포함할 수 있다.
상기 제2 연마단계는, 상기 제1 전구체 및 탄소계 원료를 혼합 및 교반하여 혼합물을 제조하는 단계; 및 상기 제조된 혼합물을 건식 연마하는 단계;를 포함할 수 있다.
상기 건식 연마 단계 이전에, 상기 제조된 혼합물을 건조하는 단계;를 더 포함할 수 있다.
상기 건식 연마 단계 이후에, 상기 건식 연마된 혼합물을 체거름하는 단계;를 더 포함할 수 있다.
상기 연마된 제2 전구체를 소성하는 단계는, 상기 제2 전구체를 튜브로 내부에 주입하여, 800℃ 내지 1000℃로 열처리하는 단계; 및 상기 열처리된 제2 전구체를 공냉시키는 단계;를 포함할 수 있다.
상기 유기용매는 이소프로필알코올일 수 있다.
상기 탄소계 원료는 석유계 피치를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 질소 원자 및 실리콘 원자가 균일하게 분산된 비정질의 실리콘나이트라이드를 제조할 수 있고, 실리콘나이트라이드의 표면이 탄소 원자들로 코팅된 실리콘나이트라이드는 리튬 이차전지의 음극재로 이용될 수 있다.
본 발명의 일 실시예에 따른 실리콘나이트라이드를 포함하는 음극재를 리튬 이차전지에 사용할 경우, 리튬 이차전지의 비용량(specific capacity)과 효율을 향상시킬 수 있다. 종래의 실리콘 입자로 이루어진 음극재는 실리콘 입자가 깨지는 문제점이 있었는데, 이러한 문제점을 해결하여 이차전지의 사이클 특성을 향상시킬 수 있다.
또한, 실리콘나이트라이드 입자를 기계적 연마하여 음극재로 제조한 경우, 제조된 음극재의 산화도가 감소하여 이차전지의 충방전 시 생성되는 비가역적인 상(phase)의 양이 감소하고, 이차전지의 효율이 향상될 수 있다.
도 1은 실리콘나이트라이드 입자를 나타내는 모식도이다.
도 2는 실리콘나이트라이드 입자를 포함하는 음극재 제조 방법을 나타내는 순서도이다.
도 3은 실리콘나이트라이드 박막을 포함하는 음극재 제조 방법을 나타내는 순서도이다.
도 4는 종래의 실리콘 입자를 포함하는 음극재 및 본 발명의 일 실시예에 따른 실리콘나이트라이드를 포함하는 음극재의 충방전 반응 결과를 나타내는 모식도이다.
도 5는 원료 가스의 혼합비 및 실리콘나이트라이드의 소성 온도에 따른 실리콘나이트라이드의 X선 회절분석(X-ray Diffraction, XRD) 결과를 나타내는 그래프이다.
도 6은 실리콘 입자의 표면을 투과전자현미경(Transmission Electron Microscopy, TEM)으로 분석한 이미지 및 EDS(energy dispersive X-ray spectroscopy) 포인터 맵핑을 통한 성분분석 결과이다.
도 7은 실리콘나이트라이드 입자의 표면에 대한 TEM 이미지이다.
도 8는 실리콘나이트라이드를 구성하고 있는 질소 원자의 분포도를 나타내는 이미지이다.
도 9는 실리콘나이트라이드를 구성하고 있는 산소 원자의 분포도를 나타내는 이미지이다.
도 10은 실리콘나이트라이드를 구성하고 있는 실리콘 원자의 분포도를 나타내는 이미지이다.
도 11은 Si0 . 8N0 .2 입자의 표면에 대한 TEM 이미지 및 Si0 . 8N0 .2 입자를 구성하고 있는 원자들의 분포도를 나타내는 이미지이다.
도 12는 Si0 . 75N0 .25 입자의 표면에 대한 TEM 이미지 및 Si0 . 8N0 .2 입자를 구성하고 있는 원자들의 분포도를 나타내는 이미지이다.
도 13은 Si0 . 7N0 .3 입자의 표면에 대한 TEM 이미지 및 Si0 . 8N0 .2 입자를 구성하고 있는 원자들의 분포도를 나타내는 이미지이다.
도 14는 실리콘나이트라이드 입자의 외곽부터 중심부까지에 대한 성분분석을 나타내는 이미지이다.
도 15는 1000℃에서 생성된 실리콘나이트라이드의 구조를 나타내는 이미지이다.
도 16은 그라파이트의 일면에 코팅된 실리콘나이트라이드를 나타내는 이미지이다.
도 17은 카본블랙의 일면에 코팅된 실리콘나이트라이드를 나타내는 이미지이다.
도 18은 카본블랙의 일면에 코팅된 실리콘나이트라이드를 나타내는 이미지이다.
도 19는 카본블랙의 일면에 코팅된 실리콘나이트라이드를 나타내는 이미지이다.
도 20은 카본블랙의 일면에 코팅된 실리콘나이트라이드를 구성하고 있는 원자들의 분포도를 나타내는 이미지이다.
도 21은 성분비에 따른 실리콘나이트라이드를 포함하는 음극재의 충방전 시험 결과를 나타내는 그래프이다.
도 22는 성분비에 따른 실리콘나이트라이드 음극재를 포함하는 이차전지의 초기 용량을 나타내는 그래프이다.
도 23은 성분비에 따른 실리콘나이트라이드 음극재를 포함하는 이차전지의 사이클에 대한 용량을 나타내는 그래프이다.
도 24는 사이클 이후 실리콘나이트라이드의 단면을 분석한 이미지이다.
도 25는 실리콘나이트라이드 음극재를 제조하는 방법을 나타내는 순서도이다.
도 26은 습식 연마된 실리콘나이트라이드 입자의 표면을 TEM으로 분석한 이미지 및 실리콘나이트라이드 입자의 성분을 TEM EDS 포인터 맵핑을 통해 분석한 결과이다.
도 27은 연마된 실리콘나이트라이드 입자를 포함하는 음극재에 대한 SEM 이미지이다.
도 28은 연마된 실리콘나이트라이드 음극재를 포함하는 이차전지의 초기 용량을 나타내는 그래프이다.
도 29는 연마된 실리콘나이트라이드 음극재를 포함하는 이차전지의 사이클에 대한 용량을 나타내는 그래프이다.
본 발명의 일 실시예에 따른 실리콘나이트라이드 음극재는 실리콘나이트라이드 및 상기 실리콘나이트라이드의 표면에 코팅된 탄소 원자들을 포함할 수 있다.
또한, 실리콘나이트라이드 음극재의 제조 방법은 튜브로 내부에 복수의 원료 가스들을 주입하는 제1 주입단계, 상기 튜브로 내부의 온도를 승온시키는 제1 승온단계 및 상기 튜브로 내부에 생성된 실리콘나이트라이드 입자의 표면에 탄소 원자들을 코팅하는 코팅단계를 포함할 수 있다.
또한, 실리콘나이트라이드 음극재의 제조 방법은 내부에 탄소계 소재가 마련된 튜브로 내부에 복수의 원료가스들을 주입하는 제1 주입단계, 튜브로 내부의 온도를 승온시키는 제1 승온단계 및 상기 탄소계 소재 상에 생성된 실리콘나이트라이드 박막의 표면에 탄소원자들을 코팅하는 코팅단계를 포함할 수 있다.
또한, 실리콘나이트라이드 음극재의 제조 방법은 튜브로 내부에 복수의 원료 가스들을 주입하는 제1 주입단계, 상기 튜브로 내부의 온도를 승온시키는 제1 승온단계, 상기 튜브로 내부에 생성된 실리콘나이트라이드 입자를 연마하여 제1 전구체를 제조하는 제1 연마단계, 상기 제1 전구체를 연마하여 제2 전구체를 제조하는 제2 연마단계 및 상기 연마된 제2 전구체를 소성하는 단계를 포함할 수 있다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 실리콘나이트라이드 음극재 및 이의 제조 방법에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
도 1은 실리콘나이트라이드 입자를 나타내는 모식도이다.
이하 도 1을 참조하여 본 발명의 일 구현예에 대해 설명하도록 한다.
실리콘나이트라이드(SiN) 입자(160)는 기체상을 갖는 실리콘 계열의 가스와 질소 계열의 가스를 열분해(pyrolysis)하여 제조될 수 있다.
구체적으로 실리콘 계열의 가스는 실란(SiH4) 가스(120)일 수 있고, 질소 계열의 가스는 암모니아(NH3) 가스(140)일 수 있다.
실란 가스(120)와 암모니아 가스(140)로부터 제조된 실리콘나이트라이드 입자(160)는 비정질 구조(162)로 이루어질 수 있고, 실리콘 원자 및 질소 원자를 포함할 수 있다.
구체적으로 실리콘나이트라이드 입자(160)를 구성하는 질소 원자의 원자 퍼센트(atomic percent, at%)는 5at% 내지 40at%일 수 있다.
기체상을 기반으로 하여 실리콘나이트라이드 입자(160)를 제조함으로써 각 원소들이 균일하게 분산된 비정질 구조(162)를 갖는 실리콘나이트라이드 입자(160)를 제조할 수 있다. 즉, 종래에는 가스의 혼합이 아니어서, 균일하게 분산된 실리콘나이트라이드 입자를 얻기 힘들었던 문제를 해결하였다.
도 2는 실리콘나이트라이드 입자를 포함하는 음극재를 제조하는 방법을 나타내는 순서도이다.
이하 도 2를 참조하여 본 발명의 일 구현예에 대해 설명하도록 한다.
본 발명의 일 실시예에 따른 음극재 제조 방법은 튜브로 내부에 복수의 원료 가스들을 주입하는 제1 주입단계(220), 상기 주입단계의 완료 이후, 튜브로 내부의 온도를 승온시키는 제1 승온단계(240) 및 상기 튜브로 내부에 생성된 실리콘나이트라이드 입자의 표면에 탄소원자들을 코팅하는 코팅단계(260)를 포함할 수 있다.
여기서 복수의 원료 가스들은 실란(SiH4) 가스와 암모니아(NH3) 가스를 포함할 수 있고, 실란 가스 대 암모니아 가스의 혼합비는 100:25 내지 100:200일 수 있다.
불활성 가스는 반응성이 낮은 질소 가스 또는 아르곤 가스 중 적어도 하나를포함할 수 있다.
튜브로 내부에 원료 가스들을 주입하기 전에, 튜브로의 내부로 불활성 가스를 주입할 수 있다. 이는, 튜브로 내부에 존재하는 불순물을 제거하기 위함이다.
또한, 튜브로 내부에 원료 가스들을 주입하기 전에 튜브로 내부의 온도를 500℃ 내지 700℃로 승온시킬 수 있다. 튜브로 내부의 온도를 기설정된 온도까지 승온시킴으로써 튜브로 내부에 주입되는 원료 가스들이 열에 의해 분해되어 실리콘나이트라이드 입자가 생성될 수 있다.
500℃ 미만의 온도에서 원료 가스들을 열분해할 경우, 원료 가스들이 충분히 분해되지 않을 수 있어 첨가 원소들이 균일하게 분산된 구조를 갖는 실리콘나이트라이드 입자를 제조하기 어렵다.
반대로 700℃ 초과의 온도에서 원료 가스들을 열분해할 경우, 제조된 실리콘나이트라이드 입자를 이루고 있는 실리콘 원자와 질소 원자의 균질성이 감소하여, 실리콘 결정상이 형성될 가능성이 높아진다.
튜브로 내부의 온도가 기설정된 승온 온도에 도달되면 튜브로 내부에 원료 가스들을 주입할 수 있다. 원료 가스들을 이루고 있는 실란 가스 대 암모니아 가스의 비율은 100:25 내지 100:200일 수 있다.
기설정된 비율로 주입된 가스들을 기반으로하여 제조된 실리콘나이트라이드 입자는 입자의 전반에 균일하게 분산된 질소 원자 5at% 내지 40at%를 포함한다.
기설정된 시간동안 튜브로 내부에 원료 가스들을 주입한 후, 원료 가스들의 주입을 중단하고, 불활성 가스를 튜브로 내부에 주입할 수 있다. 이에 따라, 튜브로 내부에 남아있는 원료 가스들이 제거되어, 원료 가스들이 추가로 분해되는 문제를 해결할 수 있다.
불활성 가스가 주입되고 있는 튜브로 내부의 온도를 증가시켜 실리콘나이트라이드 입자에 결정성을 확보할 수 있다. 튜브로 내부의 온도를 900℃ 내지 1000℃로 승온시키고, 소정 시간동안 튜브로 내부의 온도를 유지시킬 수 있다. 설정된 온도 및 시간만큼 튜브로 내부의 온도를 유지시킨 후, 튜브로 내부의 온도를 냉각하여 결정성을 포함하는 실리콘나이트라이드 입자를 생성시킬 수 있다.
본 발명의 일 실시예에 따라 생성된 실리콘나이트라이드 입자는 비정질 구조 및 준결정으로 이루어질 수 있다.
900℃ 내지 1000℃까지 승온된 튜브로 내부의 온도를 유지시키는 시간은 주입된 원료 가스들의 양에 따라 달라질 수 있다. 튜브로 내부의 온도가 유지되는 동안 실리콘나이트라이드 입자를 이루고 있는 비정질 구조의 일부가 준결정화될 수 있다.
본 발명의 일 실시예에 따른 실리콘나이트라이드 음극재를 제조하는 방법은 종래의 실리콘을 포함하는 음극재를 제조하는 방법과 비교하여 음극재를 이루고 있는 실리콘나이트라이드 입자에 비정질 구조를 형성시키기 용이하다.
또한, 원료 가스들을 이루고 있는 암모니아 가스의 함량을 증가시킬수록 제조된 실리콘나이트라이드 입자를 구성하는 질소 원자의 함량이 증가하고, 질소 원자의 함량이 증가할수록 실리콘나이트라이드 입자에 결정구조가 형성되는 반응을 더욱 억제할 수 있다.
즉, 주입되는 원료 가스에서 암모니아 가스의 함량이 높아질수록 실리콘나이트라이드 입자에 형성되는 비정질 구조의 면적이 증가할 수 있다.
실리콘나이트라이드 입자로 이루어진 실리콘나이트라이드 음극재를 포함하는 리튬 이차전지의 충방전에 대한 성능은 실리콘나이트라이드 입자에 형성된 비정질 구조의 면적이 증가할수록 향상된다.
그러나 실란 가스 대비 암모니아 가스의 비율이 100:200을 초과하여 암모니아 가스가 지나치게 많은 조건에서 제조된 실리콘나이트라이드 입자가 음극재로 이용되었을 때, 이를 포함하는 리튬 이차전지의 성능은 저하될 수 있다. 이는 질소의 함량이 높은 실리콘나이트라이드 음극재를 포함하는 이차전지가 충방전 반응을 할 때, 실리콘나이트라이드 입자에 분산된 질소 원자가 실리콘 원자와 리튬 원자 사이의 결합을 방해하기 때문이다. 충방전 반응시 발생되는 실리콘 원자와 리튬 원자의 합금 또는 용출은 이차전지의 성능을 향상시킬 수 있는데, 질소 원자와 결합된 실리콘 원자의 양이 증가할수록 리튬 원자와 결합할 수 있는 실리콘 원자의 양이 적어지기 때문에 음극재의 산화환원 반응이 저하된다.
반대로 실란 가스 대비 암모니아 가스의 비율이 100:25 미만으로 암모니아 가스가 지나치게 적은 조건에서 제조된 실리콘나이트라이드 입자는 결정질 구조가 형성될 확률이 높아 비정질 구조가 차지하는 면적이 줄어든다. 비정질 구조보다 결정질 구조의 비율이 더 높은 실리콘나이트라이드 입자를 포함하는 음극재는 실리콘나이트라이드 입자가 포함하는 결정질 구조로 인하여 충방전 반응에 따른 리튬 이차전지의 성능이 저하된다.
따라서 본 발명의 일 실시예에 따라 제조된 실리콘나이트라이드 입자의 원자%가 5at% 내지 40at%가 되는 것이 바람직하다.
생성된 실리콘나이트라이드 입자의 표면에 탄소 원자들을 코팅하기 위해 기상 원료 또는 석유계 피치를 이용할 수 있다.
실리콘나이트라이드 입자의 표면에 코팅된 탄소 원자는 전자 전달 경로를 제공하여 전기 전도도를 향상시키고, 충전 및 방전 시 실리콘 등의 금속의 부피 변화를 제어함으로써, 극판 안정성을 크게 향상시킬 수 있다. 뿐만 아니라, 코팅된 탄소 원자는 실리콘 입자와 전해액이 바로 맞닿아서 발생할 수 있는 계면 부반응을 막아주고, 계면의 전기 전도도를 향상시키며, 전극의 부피 팽창을 제어하는 역할도 할 수 있다.
기상 원료는 아세틸렌(C2H2) 또는 에틸렌(C2H4)일 수 있다. 기상 증착 공정을 이용하여 기상 원료를 열분해하고, 열분해된 탄소 원자들을 실리콘나이트라이드 입자의 표면에 코팅시킨다.
구체적으로, 코팅될 실리콘나이트라이드 입자를 튜브로 내부에 넣고, 튜브로 내부에 불활성 가스를 주입하면서 튜브로 내부의 온도를 승온시킨다. 여기서 튜브로 내부의 온도는 600℃ 내지 1000℃가 되도록 승온한다. 튜브로 내부의 온도가 기설정된 온도까지 도달되면, 기설정된 온도를 유지하면서 튜브로 내부에 기상 원료를 소정 시간동안 주입한다. 기상 원료의 주입이 끝난 후, 기상 원료 주입을 중단하고 불활성 가스를 튜브로 내부에 다시 주입하면서 튜브로 내부의 온도를 낮추어, 공냉시킨다.
석유계 피치가 기상 원료로써 주입되는 경우, 실리콘나이트라이드 입자와 석유계 피치를 혼합하여 열처리함으로써 실리콘나이트라이드 입자들의 표면에 탄소 원자들을 코팅시킬 수 있다.
구체적으로, 코팅될 실리콘나이트라이드 입자와 석유계 피치를 혼합한 후 튜브로 또는 챔버 내부로 주입하여 불활성 가스 분위기(atmosphere)에서 소성시킨다. 여기서 소성시킬 때, 튜브로 혹은 챔버 내부의 온도는 600℃ 내지 1000℃일 수 있고, 튜브로 또는 챔버 내부의 온도가 600℃ 내지 1000℃ 사이의 기설정된 온도에 도달하면 소정 시간동안 기설정된 온도를 유지시킨다.
실리콘나이트라이드 입자의 표면에 탄소 원자들을 코팅하는 공정 동안 600℃ 미만의 조건에서 열처리되는 경우, 탄소의 결정성이 감소하고, 이를 포함하는 음극재의 성능이 저하되는 문제가 발생할 수 있다.
반대로 1000℃ 초과의 조건에서 탄소 원자가 코팅될 경우, 실리콘나이트라이드 입자의 비정질 구조가 결정화되는 비율이 증가하여 음극재의 성능이 저하되는 문제가 발생할 수 있다.
탄소 원자가 코팅된 실리콘나이트라이드 입자는 집전체에 도포되어 리튬 이차전지의 음극재로 이용될 수 있다.
도 3은 실리콘나이트라이드 박막을 포함하는 음극재 제조 방법을 나타내는 순서도이다.
이하 도 3을 참조하여 본 발명의 일 구현예에 대해 설명하도록 한다.
본 발명의 일 실시예에 따른 실리콘나이트라이드 음극재를 제조하는 방법은 내부에 탄소계 소재가 마련된 튜브로 내부에 복수의 원료가스들을 주입하는 제1 주입단계(320), 상기 주입단계의 완료 이후, 튜브로 내부의 온도를 승온시키는 제1 승온단계(340) 및 상기 기판에 생성된 실리콘나이트라이드 박막의 표면에 탄소원자들을 코팅하는 코팅단계(360)를 포함할 수 있다.
여기서 탄소계 소재는 음극재로 이용될 수 있는 탄소 소재를 포함하는 그라파이트 또는 카본 블랙일 수 있다.
원료 가스들은 실란 가스 및 암모니아 가스로 이루어질 수 있고, 실란 가스 대 암모니아 가스의 혼합비는 100:5 내지 100:50일 수 있다.
불활성 가스는 반응성이 낮은 질소 가스 또는 아르곤 가스중 적어도 하나를포함할 수 있다.
내부에 탄소계 소재가 마련된 튜브로 내부에 복수의 원료 가스들을 주입하기 전에, 튜브로의 내부로 불활성 가스를 주입하여, 튜브로 내부에 존재하는 불순물을 제거한다. 불활성 가스 분위기가 조성된 튜브로 내부의 온도는 500℃ 내지 700℃로 승온시킴으로써 튜브로 내부에 주입되는 원료 가스가 분해될 수 있는 조건을 조성한다.
500℃ 미만의 온도에서 원료 가스들을 열분해할 경우, 실란 가스 및 암모니아 가스가 충분히 분해되지 않아 첨가 원소가 균일하게 분산된 구조를 갖는 실리콘나이트라이드 박막을 제조하기 어렵다.
반대로 700℃ 초과의 온도에서 원료 가스를 열분해할 경우, 제조된 실리콘나이트라이드 입자를 이루고 있는 실리콘 원자와 질소 원자가 불균일하게 분산되어 균질성이 저하된 실리콘나이트라이드 박막이 생성될 수 있다. 또한, 실리콘나이트라이드에 실리콘 결정상이 쉽게 형성될 수 있다.
튜브로 내부의 온도가 기설정된 온도에 도달되면 튜브로의 내부로 원료 가스들을 주입할 수 있다.
기설정된 온도에서 열분해된 기체 입자들은 튜브로 내부에 마련된 탄소계 소재의 상부에 증착되어 실리콘나이트라이드 박막을 생성할 수 있다.
여기서 주입된 원료 가스들은 실란 가스 대 암모니아 가스가 100:5 내지 100:50로 혼합된 가스일 수 있다.
기설정된 비율로 주입된 원료 가스들을 기반으로 제조된 실리콘나이트라이드 박막은 실리콘나이트라이드 박막 전반에 균일하게 분산된 5at% 내지 40at%의 질소 원자를 포함할 수 있다.
튜브로 내부에 기설정된 양만큼의 원료 가스가 주입되면, 원료 가스 주입을 중단하고, 불활성 가스를 주입한다. 이는 튜브로 내부에 남아있는 원료 가스를 제거하여 열분해 되는 가스가 없도록 하기 위함이다.
실리콘나이트라이드 박막를 포함하는 튜브로 내부에 불활성 가스를 주입하면서 튜브로 내부의 온도를 900℃ 내지 1000℃로 승온시킨다. 불활성 가스가 주입되는 튜브로 내부의 온도를 증가시킴으로써 탄소계 소재의 표면에 생성된 실리콘나이트라이드 박막에 결정성을 형성시킬 수 있다. 실리콘나이트라이드 박막을 소성시키기 위하여 튜브로 내부의 온도를 900℃ 내지 1000℃로 소정 시간동안 유지시킨 후 튜브로 내부를 냉각시켜 튜브로 내부의 온도를 낮춘다.
상기 튜브로 내부의 온도가 900℃ 내지 1000℃로 유지되는 시간은 주입된 원료 가스들의 양에 따라 달라질 수 있다.
또한, 상기 튜브로 내부의 온도가 소정 시간동안 유지되는 동안 실리콘나이트라이드 박막의 비정질 구조 중 일부가 결정화될 수 있다. 따라서, 튜브로 내부의 온도가 1000℃를 초과하지 않도록 유지시키는 것이 바람직하다.
반면, 튜브로 내부의 온도가 900℃ 미만이 되면, 실리콘나이트라이드 박막을 구성하는 실리콘 원자들과 질소 원자들이 불균일하게 분산된 채로 실리콘나이트라이드 박막을 형성하게 된다. 또한, 실리콘나이트라이드 박막에 실리콘 결정상이 쉽게 형성되어, 비정질 구조의 면적이 줄어들 수 있다는 문제점을 갖는다.
본 발명의 일 실시예에 따른 실리콘나이트라이드 박막을 제조하는 방법은 종래의 실리콘나이트라이드 화합물을 제조하는 방법과 비교하여 실리콘나이트라이드 박막에 비정질 구조를 형성시키기가 더 쉽다는 장점을 갖는다.
또한, 원료 가스들 중에서 암모니아 가스의 함량을 증가시킬수록 제조된 실리콘나이트라이드 박막을 구성하는 질소 원자의 함량이 증가할 수 있다. 질소 원자는 실리콘나이트라이드 박막에서 결정구조가 형성되는 반응을 억제할 수 있다. 따라서, 원료가스에서 암모니아 가스가 차지하는 비율이 높아질수록, 실리콘나이트라이드 박막에 형성되는 비정질 구조의 면적이 증가될 수 있다.
원료가스 중 실란 가스와 암모니아 가스의 비율이 100:5 내지 100:50인 조건에서 제조된 실리콘나이트라이드 박막의 경우 비정질 구조의 면적 대비 결정질 구조의 면적이 적을수록, 이를 음극재로 포함하는 리튬 이차전지의 충방전 성능이 향상된다.
실란가스 대 암모니아 가스의 비율이 100:50을 초과하여, 암모니아의 함량이 높은 상태에서 제조된 실리콘나이트라이드 박막을 포함하는 음극재의 경우, 이를 포함하는 리튬 이차전지의 성능이 저하되는 문제점이 있다.
이는 생성된 실리콘나이트라이드 박막에서 질소의 함량이 높게 되면, 충방전 반응시 실리콘나이트라이드 박막에 분산된 질소 원자들이 실리콘 원자와 리튬 원자의 결합을 방해하기 때문이다. 충방전 반응시 발생되는 실리콘 원자와 리튬 원자의 결합은 이차전지의 성능을 향상시키는데 기여하지만, 질소 원자와 결합된 실리콘 원자의 양이 지나치게 증가하게 되면 리튬 원자와 결합할 수 있는 실리콘 원자의 양이 적어지기 때문에 이차전지의 성능이 저하된다.
반대로 실란 가스 대 암모니아 가스의 비율이 100:5 미만으로, 암모니아 가스의 함량이 낮은 조건에서 제조된 실리콘나이트라이드 박막은 비정질 구조보다 결정질 구조를 포함할 확률이 높다. 결정질 구조의 비율이 더 높은 실리콘나이트라이드 박막을 포함하는 음극재는 실리콘나이트라이드 박막이 포함하는 결정질 구조에 기인하여, 충방전 반응에 따른 리튬 이차전지의 성능을 저하시킬 수 있다.
따라서 본 발명의 일 실시예에 따라 제조된 실리콘나이트라이드 박막에서 질소원자들의 원자%는 5at% 내지 40at%인 것이 바람직하다.
생성된 실리콘나이트라이드 박막의 표면에 탄소 원자들을 코팅하기 위해 기상 원료 또는 석유계 피치 중 하나를 이용할 수 있다.
실리콘나이트라이드 박막의 표면에 코팅된 탄소 원자들은 전자 전달 경로를 제공하여 전기 전도도를 향상시키고, 충전 및 방전 시 실리콘 등의 금속의 부피 변화를 제어함으로써, 극판 안정성을 크게 향상시킬 수 있다. 뿐만 아니라, 코팅된 탄소 원자는 실리콘 입자와 전해액이 바로 맞닿아서 발생할 수 있는 계면 부반응을 막아주고, 계면의 전기 전도도를 향상시키며, 전극의 부피 팽창을 제어하는 역할도 할 수 있다.
기상 원료는 아세틸렌(C2H2) 또는 에틸렌(C2H4)일 수 있다. 기상 증착 공정을 이용하여 기상 원료를 열분해하고, 열분해된 탄소 원자들을 실리콘나이트라이드 입자에 코팅시킨다.
구체적으로, 코팅될 실리콘나이트라이드 박막을 튜브로 내부에 넣고, 튜브로 내부에 불활성 가스를 주입하면서 튜브로 내부의 온도를 승온시킨다. 여기서 튜브로 내부의 온도는 600℃ 내지 1000℃이다. 튜브로 내부의 온도가 기설정된 온도까지 도달되면 기설정된 온도를 유지하면서 튜브로 내부에 기상 원료를 소정 시간동안 주입한다. 기상 원료의 주입이 끝난 후, 기상 원료 주입을 중단하고, 불활성 가스를 튜브로 내부에 다시 주입하면서 튜브로 내부의 온도를 낮추어 공냉시킨다.
또한, 석유계 피치를 주입하면, 실리콘나이트라이드 박막과 석유계 피치를 혼합하여 열처리함으로써 실리콘나이트라이드 박막의 표면에 탄소 원자들을 코팅시킬 수 있다.
구체적으로, 코팅될 실리콘나이트라이드 박막과 석유계 피치를 혼합한 후 불활성 가스 분위기의 튜브로 또는 챔버 내에서 소성시킨다. 여기서 소성 온도는 600℃ 내지 1000℃일 수 있고, 튜브로 또는 챔버 내부의 온도가 기설정된 온도에 도달하면 소정 시간동안 온도를 유지시킬 수 있다.
실리콘나이트라이드 박막의 표면에 탄소 원자들을 코팅하는 공정 동안 튜브로 내부의 온도가 600℃ 미만으로 유지되는 경우, 탄소의 결정성이 감소하며, 이를 포함하는 음극재의 성능이 저하되는 문제가 발생할 수 있다.
반대로 튜브로 내부의 온도가 1000℃를 초과되어 실리콘나이트라이드 박막의 표면에 탄소 원자가 코팅될 경우, 실리콘나이트라이드에 비정질 구조가 결정화되는 비율이 증가하여 음극재의 성능이 저하되는 문제가 발생할 수 있다.
탄소 원자가 코팅된 실리콘나이트라이드 박막을 포함하는 탄소계 소재는 리튬 이차전지의 음극재로 이용될 수 있다.
도 4는 종래의 실리콘 입자를 포함하는 음극재 및 본 발명의 일 실시예에 따른 실리콘나이트라이드를 포함하는 음극재의 충방전 반응 결과를 나타내는 모식도이다.
도 4와 같이, 종래의 실리콘 입자를 포함하는 음극부(410)가 리튬 이차전지에 적용되어 충방전 반응을 하면, 음극재(414)와 전해액 사이에 부반응이 일어나 음극재의 표면에 부산물(426)이 형성될 수 있다.
구체적으로 이차전지의 충방전 반응 시, 실리콘 원자와 리튬 원자의 합금 또는 용출로 인하여 용량이 구현되는데, 이때 실리콘 소재의 부피가 팽창되거나 수축될 수 있다. 실리콘 소재의 부피 변화로 인하여 음극재(414)가 파열되고, 음극재(414)의 파열로 인하여 부반응 발생률이 증가하고, 이차전지의 성능이 저하된다.
반면, 본 발명의 일 실시예에 따른 실리콘나이트라이드를 포함하는 음극부(430)의 음극재(434)는 실리콘 원자들과 질소 원자들을 포함한다. 실리콘 원자와 질소 원자들을 포함하는 음극재(434)를 이용할 경우, 리튬 이차전지의 충방전 반응 동안 발생될 수 있는 전해액과의 부반응을 감소시킬 수 있으며, 부산물(446)의 양을 현저히 감소시켜,리튬 이차전지의 성능을 향상시킬 수 있다.
즉, 본 발명의 일 실시예에 따라 제조된 실리콘나이트라이드 입자 또는 실리콘나이트라이드 박막을 포함하는 음극재를 이용할 경우, 종래의 음극재가 갖는 충방전시 실리콘 입자의 부피 팽창 문제와 실리콘 입자의 부피 팽창으로 인한 음극재의 입자의 파열 문제를 해결할 수 있다.
구체적으로 실리콘나이트라이드 입자 또는 실리콘나이트라이드 박막에 포함된 질소 원자들이 실리콘나이트라이드 음극재(434)와 전해액의 부반응을 감소시키고, 생성되는 부산물(446)의 양을 감소시켜, 충방전 사이클이 증가함에 따라 발생할 수 있는 크랙을 줄일 수 있다. 따라서, 리튬 이차전지의 수명이 줄어드는 단점을 해결할 수 있다..
실험예 1.
실란 가스 대 암모니아 가스를 100:50, 100:75, 100:100 및 100:150으로 혼합하여 500℃ 내지 700℃로 승온된 튜브로 내부에 주입하면서 실란 가스 및 암모니아 가스를 열분해시킨다. 일정 시간만큼 주입된 실란 가스 및 암모니아 가스의 주입을 중단한 후 불활성 가스를 튜브로 내부에 주입하면서 튜브로 내부의 온도를 900℃ 내지 1000℃로 승온시킨다. 900℃ 내지 1000℃로 승온된 튜브로 내부의 온도를 2시간 내지 10시간 동안 유지시킨 후, 공냉시켜 실리콘나이트라이드 입자를 제조한다.
일정한 혼합비로 혼합된 실란 가스 및 암모니아 가스로부터 제조된 실리콘나이트라이드의 조성은 아래 표와 같다.
No. SiH4(100%):NH3(100%) 실리콘나이트라이드의 조성
1 100:50 Si0.9N0.1
2 100:75 Si0.8N0.2
3 100:100 Si0.75N0.25
4 100:150 Si0.7N0.3
도 5는 원료 가스의 혼합비 및 소성 온도에 따른 실리콘나이트라이드의 X선 회절분석(X-ray Diffraction, XRD) 결과를 나타내는 그래프이다.
도 5에 따르면, 실리콘나이트라이드에 분산된 질소의 함량이 증가할수록 실리콘나이트라이드의 비정질 특성이 유지될 확률이 높은 것을 알 수 있다.
즉, 실리콘나이트라이드의 질소 함량이 증가할수록 약 28°, 48° 및 56°에서 나타나는 실리콘 피크의 강도가 약해지는 것을 통해 실리콘나이트라이드 내부의 결정 구조가 감소되고, 더 높은 온도에서 열처리되어도 실리콘나이트라이드의 비정질 구조가 지속적으로 유지됨을 알 수 있다.
특히, 1000℃에서 생성된 Si0 . 75N0 . 25은 실리콘 결정을 거의 포함하지 않는다. 이는, 실리콘나이트라이드에 포함된 질소 원자들과 실리콘 원자들의 결합되는 양이 증가하여 고온에서 실리콘나이트라이드가 소성되어도 실리콘 간의 결합이 어렵기 때문이다.
도 6은 실리콘 입자의 표면을 투과전자현미경(Transmission Electron Microscopy, TEM)으로 분석한 이미지 및 TEM EDS(energy dispersive X-ray spectroscopy) 포인터 맵핑을 통한 성분분석 결과이다.
도 6에 따르면, 실리콘 입자는 실리콘 원자 및 산소 원자를 포함하고 있다.
구체적으로 실리콘 입자는 실리콘 원자 98.41at%와 산소 원자 1.59at%를 포함하고 있으며, 질소 원자는 검출되지 않았다.
도 7은 실리콘나이트라이드 입자의 표면에 대한 TEM 이미지이다.
도 8는 실리콘나이트라이드를 구성하고 있는 질소 원자의 분포도를 나타내는 이미지이다.
도 9는 실리콘나이트라이드를 구성하고 있는 산소 원자의 분포도를 나타내는 이미지이다.
도 10은 실리콘나이트라이드를 구성하고 있는 실리콘 원자의 분포도를 나타내는 이미지이다.
도 7 내지 도 10에 따르면, Si0 . 9N0 .1은 실리콘 원자, 산소 원자 및 질소 원자를 포함하고 있다.
구체적으로 실리콘 원자 90.52at%, 산소 원자 0.87at% 및 질소 원자 8.61at%를 포함하고 있다.
도 11은 Si0.8N0.2 입자의 표면에 대한 TEM 이미지 및 Si0.8N0.2 입자를 구성하고 있는 원자들의 분포도를 나타내는 이미지이다.
도 12는 Si0.75N0.25 입자의 표면에 대한 TEM 이미지 및 Si0.8N0.2 입자를 구성하고 있는 원자들의 분포도를 나타내는 이미지이다.
도 13은 Si0.7N0.3 입자의 표면에 대한 TEM 이미지 및 Si0.8N0.2 입자를 구성하고 있는 원자들의 분포도를 나타내는 이미지이다.
도 11 내지 도 13에 따르면, Si0 . 8N0 .2, Si0 . 75N0 .25 및 Si0 . 7N0 .3의 형태와 표면, 각 입자를 구성하고 있는 원소들의 분포도와 원자 퍼센트(atomic percent)를 알 수 있다.
원소 Si0.8N0.2 Si0.75N0.25 Si0.7N0.3
Si 81.47at% 78.86at% 68.66at%
O 1.31at% 1.25at% 1.30at%
N 17.22at% 19.89at% 30.04at%
총 at% 100at% 100at% 100at%
제조된 실리콘나이트라이드에 분포된 실리콘 원자, 산소 원자 및 질소 원자는 실란 가스와 암모니아 가스의 혼합 비율에 상관없이 실리콘나이트라이드 입자의 전반에 균일하게 분산될 수 있다. 이는 기체상을 열분해함으로써 첨가 원소들을 균일하게 분산시켜 실리콘나이트라이드를 제조했기 때문이다.
도 14는 실리콘나이트라이드 입자의 외곽부터 중심부까지에 대한 성분분석을 나타내는 이미지이다.
실리콘나이트라이드 입자를 구성하고 있는 실리콘 원자, 산소 원자 및 질소 원자의 분포도를 실리콘나이트라이드의 외곽부터 중심부까지 분석한 결과, 실리콘나이트라이드 입자의 외곽부터 중심부까지 균일하게 분산된 각 원소들을 확인할 수 있다.
원소 지점1(910) 지점2(920) 지점3(930) 지점4(940)
Si 82.97at% 85.58at% 85.91at% 86.02at%
O 5.72at% 3.35at% 2.49at% 2.56at%
N 11.31at% 11.08at% 11.60at% 11.42at%
총 at% 100at% 100at% 100at% 100at%
도 15는 1000℃에서 생성된 실리콘나이트라이드의 구조를 나타내는 이미지이다.
도 15에 따르면, 1000℃에서 생성된 Si0 . 8N0 .2의 내부 구조를 확인할 수 있으며, 실리콘이 미세한 크기로 준결정화되어 있음을 확인할 수 있다.
도 16은 그라파이트의 일면에 코팅된 실리콘나이트라이드를 나타내는 이미지이다.
실리콘나이트라이드가 코팅된 그라파이트의 표면(1110) 및 실리콘나이트라이드가 코팅된 그라파이트의 표면의 성분분석 결과(1120)를 통하여, 그라파이트의 내부 및 외부에 실리콘나이트라이드가 균일하게 코팅되어 있음을 확인할 수 있다. 구체적으로 실리콘나이트라이드를 이루고 있는 실리콘 원자 및 질소 원자가 그라파이트의 전면에 균일하게 분산되어 있음을 확인할 수 있다.
이에 따라, 실란 가스 및 암모니아 가스를 튜브로 내에서 그라파이트 상에 증착함으로써 이차전지의 음극에 이용될 수 있는 음극재를 제조할 수 있음을 알 수 있다.
도 17은 카본블랙의 일면에 코팅된 실리콘나이트라이드를 나타내는 이미지이다.
도 18은 카본블랙의 일면에 코팅된 실리콘나이트라이드를 나타내는 이미지이다.
도 19는 카본블랙의 일면에 코팅된 실리콘나이트라이드를 나타내는 이미지이다.
도 20은 카본블랙의 일면에 코팅된 실리콘나이트라이드를 구성하고 있는 원자들의 분포도를 나타내는 이미지이다.
실리콘나이트라이드가 코팅된 카본블랙의 표면을 분석한 결과를 통하여, 카본블랙의 전면에 실리콘나이트라이드가 균일하게 코팅되어 있음을 알 수 있다.
구체적으로 실리콘나이트라이드를 이루고 있는 실리콘 원자 및 질소 원자가 카본블랙의 전면에 균일하게 분산될 수 있다.
이에 따라, 실란 가스 및 암모니아 가스를 튜브로 내에서 카본블랙 상에 증착함으로써 이차전지의 음극에 이용될 수 있는 음극재를 제조할 수 있음을 알 수 있다.
실시예 1.
도 21은 성분비에 따른 실리콘나이트라이드를 포함하는 음극재의 충방전 시험 결과를 나타내는 그래프이다.
본 발명의 일 실시예에 따른 실리콘나이트라이드 음극재:도전재:바인더의 중량비가 8:1:1인 슬러리를 제조할 수 있다.
여기서, 도전재는 super-P를 포함하고, 바인더는 스티렌부타디엔 고무(styrene butadiene rubber, SBR) 및 소듐 카르복시메틸 셀룰로스(sodium carboxymethyl cellulose, CMC)를 1:1 중량비로 포함할 수 있다.
본 발명의 일 실시예에 따른 실리콘나이트라이드 음극재를 포함하는 음극부와 리튬호일을 상대 전극으로 하고, 디에틸카보네이트(diethyl carbonate, DEC)와 플루오로-에틸렌 카보네이트(fluoro-ethlene carbonate, FEC)를 7:3의 부피비로 혼합한 용매에 LiPF6가 1.3M 농도로 용해된 액체 전해액을 사용하여 하프셀을 제조한다.
하프 셀에 대한 전기화학적 특성 평가는 방전은 1/10C(CCCV methode), 컷 오프 전압은 0.005V~1.5V로 한다.
실리콘나이트라이드가 결정화된 정도에 따라 하프셀의 방전시, 0.45V에서 나타나는 Li3.75Si(Fully lithiated state of Si) 상의 평탄구간을 확인할 수 있다.
평탄구간은 실리콘나이트라이드 음극재에 포함된 질소 원자의 원자%가 증가할수록 짧아지게 되는데, 이는 질소 원자가 실리콘 원자와 리튬 원자의 반응을 억제하기 때문이다. Li3 . 75Si 상이 형성되면 실리콘나이트라이드 음극재를 이루고 있는 실리콘 입자에 발생되는 팽창과 열화가 가중되고, 이를 포함하는 이차전지의 수명이 단축될 수 있다.
즉, Li3 . 75Si 상의 형성을 억제하기 위하여 실리콘나이트라이드 음극재을 이루고 있는 질소 원자의 함량을 적절히 증가시키는 것이 바람직할 수 있다.
실시예 2.
도 22는 성분비에 따른 실리콘나이트라이드 음극재를 포함하는 이차전지의 초기 용량을 나타내는 그래프이다.
도 23은 성분비에 따른 실리콘나이트라이드 음극재를 포함하는 이차전지의 사이클에 대한 용량을 나타내는 그래프이다.
본 발명의 일 실시예에 따른 실리콘나이트라이드 음극재:도전재:바인더의 중량비가 8:1:1인 슬러리를 제조할 수 있다.
여기서, 도전재는 super-P를 포함하고, 바인더는 스티렌부타디엔 고무(styrene butadiene rubber, SBR) 및 소듐 카르복시메틸 셀룰로스(sodium carboxymethyl cellulose, CMC)를 1:1 중량비로 포함할 수 있다.
본 발명의 일 실시예에 따른 실리콘나이트라이드 음극재를 포함하는 음극부와 리튬호일을 상대 전극으로 하고, 디에틸카보네이트(diethyl carbonate, DEC)와 플루오로-에틸렌 카보네이트(fluoro-ethlene carbonate, FEC)를 7:3의 부피비로 혼합한 용매에 LiPF6가 1.3M 농도로 용해된 액체 전해액을 사용하여 하프셀을 제조한다.
하프 셀에 대한 전기화학적 특성 평가는 방전은 1/10C(CCCV methode), 컷 오프 전압은 0.005V~1.5V로 한다.
사이클은 0.5C, 컷오프 전압은 0.005~1.0V로 한다.
실리콘나이트라이드에 포함된 질소의 비율이 증가함에 따라 이차전지의 초기 용량이 감소됨을 확인할 수 있다.
또한, 이차전지를 충전할 때, CV(Constant-voltage) 구간이 길어지는 것으로 보아, 실리콘나이트라이드에 포함된 질소 원자의 비율이 증가하는 경우, 실리콘 원자와 리튬 원자간의 반응성이 떨어짐을 알 수 있다.
실리콘나이트라이드에 포함된 질소 원자의 비율이 증가할수록 하프셀의 사이클 안정성 및 수명 유지율은 향상될 수 있다.
그러나 실리콘나이트라이드에 포함된 질소 원자의 비율이 40at% 이상일 경우, 이차전지의 용량은 오히려 감소될 수 있다.
샘플 초기 방전 용량(mAh/g) 초기 충전 용량(mAh/g) 초기 쿨롱 효율(%) 수명 유지율(%, 25회 사이클)
Si0.9N0.1(900℃ 소성)-C 2341.3 2693.1 86.9 92.7
Si0.8N0.2(900℃ 소성)-C 1981.4 2321.1 85.4 88.9
Si0.75N0.25(900℃ 소성)-C 1745.4 2177.4 80.2 93.6
Si0.7N0.3(900℃ 소성)-C 1402.6 1773.5 79.1 97.6
도 24는 사이클 이후 실리콘나이트라이드의 단면을 분석한 이미지이다.
도 24를 통하여, 하프셀에서 충방전 사이클이 진행된 전후의 실리콘 입자(1510)와 실리콘나이트라이드 입자(1520)의 단면을 비교한 결과를 알 수 있다.
50 사이클 충방전 시험을 진행한 후의 실리콘 입자는 완전히 파열되어 기존의 원형 형태가 유지되지 않는다.
반면, 본 발명의 일 실시예에 따른 실리콘나이트라이드 입자는 50 사이클 충방전 시험이 진행된 후에도 기존의 원형 형태가 거의 유지될 수 있다.
실시예 3.
도 25는 실리콘나이트라이드 음극재를 제조하는 방법을 나타내는 순서도이다.
본 발명의 일 실시예에 따른 실리콘나이트라이드 입자를 기계적으로 연마하여 중위 입경이 10nm 내지 200nm인 나노 실리콘나이트라이드를 얻을 수 있다.
기계적 연마는 건식 연마 또는 습식 연마일 수 있고, 바람직하게는 습식 연마일 수 있다.
습식 연마는 고속 교반밀, 볼밀, 튜브밀, 콘밀, 로드밀 및 샌드밀 중 하나일 수 있다.
습식 연마에서 사용하는 용매는 유기용매일 수 있다.
구체적으로 유기용매는 테트라하이드로퓨란, 아마이드, 알코올 및 케톤에서 선택되는 1종 또는 적어도 2종의 조합이며, 더욱 바람직하게는 테트라하이드로퓨란, 디메틸아세트아마이드, C1-C6 알코올 및 C3-C8 케톤에서 선택되는 1종 또는 적어도 2종의 조합일 수 있다. 상기 C1-C6 알코올은 메탄올, 에탄올, 에틸렌 글리콜, 프로판올, 이소프로판올, 1,2-프로판디올, 1,3-프로판디올, 글리세롤, n-부탄올, 1,2-부탄디올, 1,3-부탄디올, 1,4-부탄디올, n-펜탄올 및 2-헥사놀에서 선택되는 1종 또는 적어도 2종의 조합이고; 상기 C3-C8 케톤은 아세톤, 메틸에틸케톤, 메틸프로필케톤, N-메틸피롤리돈, 에틸프로필케톤, 메틸부틸케톤, 에틸n-부틸케톤, 메틸아밀케톤 및 메틸헥실케톤에서 선택되는 1종 또는 적어도 2종의 조합일 수 있다.
본 발명의 일 실시예에 따라 습식 연마를 통하여 실리콘나이트라이드 입자를 연마하는 경우, 용매로써 유기용매인 이소프로필알콜(isopropylalcohol, IPA)을 이용할 수 있다.
습식 연마를 통하여 습득한 10nm 내지 200nm의 일정한 중위 입경을 갖는 실리콘나이트라이드 입자는 탄소계 원료 및 IPA와 혼합되어 교반될 수 있다.
여기서 탄소계 원료는 석유계 피치이며, 흑연이 추가로 포함될 수 있다.
실리콘나이트라이드 입자, 탄소계 원료 및 IPA를 믹서를 이용하여 300rpm 내지 2000rpm으로 교반한다. 교반을 통해 제조된 혼합물을 건조하여 혼합물에 존재하는 용매를 증발시킨다.
건조된 혼합물을 기계 건식 연마와 체거름을 통하여 중위 입경 5㎛ 내지 20㎛를 갖는 탄소 및 실리콘나이트라이드 입자를 포함하는 음극재를 획득할 수 있다.
본 발명의 일 실시예에 따라 제조된 중위 입경 5㎛ 내지 20㎛를 갖는 음극재는 튜브로 또는 챔버 내의 불활성 가스 분위기에서 800℃ 내지 1000℃에서 열처리된 후 공냉되어 음극재로 이용될 수 있다.
도 26은 습식 연마된 실리콘나이트라이드 입자의 표면을 TEM으로 분석한 이미지 및 실리콘나이트라이드 입자의 성분을 TEM EDS 포인터 맵핑을 통해 분석한 결과이다.
분석된 실리콘나이트라이드 입자는 실란 가스 대 암모니아 가스를 100:50의 비율로 혼합한 원료 가스를 이용하여 제조되었다.
습식 연마된 실리콘나이트라이드 입자를 입도 분석기를 이용하여 측정한 결과, 누적 분포에서 가장 큰 값에 대하여 10%, 50% 및 90%에 해당하는 크기인 D10, D50 및 D90이 60nm, 130nm 및 250nm이다.
즉, 가장 많이 형성된 실리콘나이트라이드 입자의 크기는 130nm임을 알 수 있다.
습식 연마된 실리콘나이트라이드 입자를 구성하고 있는 실리콘 원자, 질소 원자 및 산소 원자의 분포도를 확인한 결과, 실리콘 원자 75.99at%, 질소 원자 13.68at% 및 산소 원자 10.32at%가 실리콘나이트라이드 입자의 전반에 균일하게 분산되어 있음을 알 수 있다.
도 27은 연마된 실리콘나이트라이드 입자를 포함하는 음극재에 대한 SEM 이미지이다.
습식 연마된 실리콘나이트라이드 입자와 탄소계 연료를 혼합하여 제조된 실리콘나이트라이드 입자를 포함하는 음극재의 크기에 대하여 습식 연마된 실리콘나이트라이드 입자를 입도 분석기를 이용하여 측정한 결과, 누적 분포에서 가장 큰 값에 대하여 10%, 50% 및 90%에 해당하는 크기인 D10, D50 및 D90이 1.57㎛, 9.96㎛ 및 25.85㎛이다.
즉, 가장 많이 형성된 실리콘나이트라이드 입자를 포함하는 음극재의 크기는 9.96㎛임을 알 수 있다.
실시예 4.
도 28은 연마된 실리콘나이트라이드 음극재를 포함하는 이차전지의 초기 용량을 나타내는 그래프이다.
도 29는 연마된 실리콘나이트라이드 음극재를 포함하는 이차전지의 사이클에 대한 용량을 나타내는 그래프이다.
본 발명의 일 실시예에 따른 실리콘나이트라이드 음극재:도전재:바인더의 중량비가 8:1:1인 슬러리를 제조할 수 있다.
여기서, 도전재는 super-P를 포함하고, 바인더는 스티렌부타디엔 고무(styrene butadiene rubber, SBR) 및 소듐 카르복시메틸 셀룰로스(sodium carboxymethyl cellulose, CMC)를 1:1 중량비로 포함할 수 있다.
본 발명의 일 실시예에 따른 실리콘나이트라이드 입자를 포함하는 음극재를 포함하는 음극부와 리튬호일을 상대 전극으로 하고, 디에틸카보네이트(diethyl carbonate, DEC)와 플루오로-에틸렌 카보네이트(fluoro-ethlene carbonate, FEC)를 7:3의 부피비로 혼합한 용매에 LiPF6가 1.3M 농도로 용해된 액체 전해액을 사용하여 하프셀을 제조한다.
하프 셀에 대한 전기화학적 특성 평가는 방전은 1/10C(CCCV methode), 컷 오프 전압은 0.005V~1.5V로 한다.
사이클은 0.5C, 컷오프 전압은 0.005~1.0V로 한다.
실리콘나이트라이드 입자를 포함하는 음극재로 이루어진 하프셀에 대하여 충방전 실험을 진행한 결과, 초기 방전 용량은 1467mAh/g, 초기 충전 용량은 1758mAh/g, 초기 쿨롱 효율은 83.5% 및 25회 사이클 이후의 수명 유지율은 80.7%인 것으로 측정되었다.
종래의 실리콘 입자를 연마하여 제조된 음극재에 비하여, 본 발명의 일 실시예에 따라 실리콘나이트라이드 입자를 연마하여 제조된 음극재의 산화도는 줄어든다. 이에 따라, 음극재를 이루고 있는 입자 내에 존재하는 산소 원자의 비율이 감소될 수 있다.
음극재를 이루고 있는 입자 내에 존재하는 산소 원자의 비율이 증가할수록 리튬 원자와 산소 원자의 반응량이 증가하여 비가역적인 상(phase)이 더 많이 생성된다. 생성된 비가역적인 상의 양이 증가할수록 이를 포함하는 이차전지의 효율이 저하되는 문제점이 발생한다.
즉, 본 발명의 일 실시예에 따라 제조된 실리콘나이트라이드 입자를 포함하는 음극재는 소재 내에 존재하는 산소 원자의 비율이 적어, 충방전 시 생성되는 비가역적인 상의 양이 감소하고, 이에 따라 이차전지의 효율이 향상된다.
제시된 실시예들에 대한 설명은 임의의 본 발명의 기술분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.
본 발명의 일 실시예에 따른 실리콘나이트라이드 음극재는 리튬 이차전지에 활용되어 고에너지 밀도, 고전압 및 고용량을 요구하는 각종 전자 기기의 전원으로 이용될 수 있다.

Claims (39)

  1. 실리콘나이트라이드; 및
    상기 실리콘나이트라이드의 표면에 코팅된 탄소 원자들;을 포함하는,
    실리콘나이트라이드 음극재.
  2. 제1항에 있어서,
    상기 실리콘나이트라이드는,
    비정질 구조이고, 균일하게 분산된 실리콘 원자들 및 질소 원자들로 이루어진,
    실리콘나이트라이드 음극재.
  3. 제1항에 있어서,
    상기 실리콘나이트라이드를 구성하는 질소 원자의 원자퍼센트는 5at% 내지 40at%인,
    실리콘나이트라이드 음극재.
  4. 튜브로 내부에 복수의 원료 가스들을 주입하는 제1 주입단계;
    상기 튜브로 내부의 온도를 승온시키는 제1 승온단계; 및
    상기 튜브로 내부에 생성된 실리콘나이트라이드 입자의 표면에 탄소 원자들을 코팅하는 코팅단계;를 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  5. 제4항에 있어서,
    상기 제1 주입단계 이전에,
    상기 튜브로 내부에 불활성 가스를 주입하는 단계; 및
    상기 튜브로 내부의 온도를 500℃ 내지 700℃로 승온시키는 단계;를 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  6. 제4항에 있어서,
    상기 튜브로 내부에 주입된 원료 가스들은 실란 가스와 암모니아 가스를 포함하고,
    상기 실란 가스 대 암모니아 가스의 혼합비는 100:25 내지 100:200인,
    실리콘나이트라이드 음극재 제조 방법.
  7. 제4항에 있어서,
    상기 제1 승온단계 이전에,
    상기 원료 가스의 주입을 중단하고, 상기 튜브로 내부에 불활성 가스를 주입하는 단계;를 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  8. 제4항에 있어서,
    상기 제1 승온단계 이후, 상기 튜브로 내부를 상기 제1 승온단계에서 승온시킨 온도로 소정시간 유지시키는 제1 온도유지단계;를 더 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  9. 제4항에 있어서,
    상기 제1 승온단계에서 승온된 튜브로 내부의 온도는 900℃ 내지 1000℃인,
    실리콘나이트라이드 음극재 제조 방법.
  10. 제8항에 있어서,
    상기 제1 온도유지단계 이후, 상기 튜브로 내부의 온도를 낮추는 냉각단계;를 더 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  11. 제10항에 있어서,
    상기 코팅단계는,
    상기 냉각단계 이후, 상기 튜브로 내부의 온도를 승온시키는 제2 승온단계;
    상기 승온된 튜브로 내부에 탄소를 함유하는 기상 원료를 주입하는 제2 주입단계;
    상기 기상 원료를 주입하면서 상기 튜브로 내부를 상기 제2 승온단계에서 승온시킨 온도로 소정시간 유지시키는 제2 온도유지단계;를 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  12. 제11항에 있어서,
    상기 탄소를 함유하는 기상 원료는,
    아세틸렌(C2H2) 또는 에틸렌(C2H4)을 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  13. 제11항에 있어서,
    상기 냉각단계 이후, 상기 제2 승온단계 이전에,
    상기 튜브로 내부에 불활성 가스를 주입하는 단계;를 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  14. 제11항에 있어서,
    상기 제2 승온단계에서 승온된 튜브로 내부의 온도는 600℃ 내지 1000℃인,
    실리콘나이트라이드 음극재 제조 방법.
  15. 제11항에 있어서,
    상기 제2 온도유지단계 이후,
    상기 기상 원료의 주입을 중단하고, 상기 튜브로 내부에 불활성 가스를 주입하는 단계; 및
    상기 튜브로 내부에 불활성 가스를 주입하면서 튜브로 내부의 온도를 낮추는 단계;를 더 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  16. 제4항에 있어서,
    상기 코팅단계는,
    상기 생성된 실리콘나이트라이드 입자와 석유계 피치를 혼합하여 튜브로 내부에서 열처리하는 열처리단계;를 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  17. 제16항에 있어서,
    상기 열처리단계에서 상기 튜브로 내부의 온도는 600℃ 내지 1000℃인,
    실리콘나이트라이드 음극재 제조 방법.
  18. 내부에 탄소계 소재가 마련된 튜브로 내부에 복수의 원료가스들을 주입하는 제1 주입단계;
    튜브로 내부의 온도를 승온시키는 제1 승온단계; 및
    상기 탄소계 소재 상에 생성된 실리콘나이트라이드 박막의 표면에 탄소원자들을 코팅하는 코팅단계;를 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  19. 제18항에 있어서,
    상기 제1 주입단계 이전에,
    상기 튜브로 내부에 불활성 가스를 주입하는 단계; 및
    상기 튜브로 내부의 온도를 500℃ 내지 700℃로 승온시키는 단계;를 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  20. 제18항에 있어서,
    상기 튜브로 내부에 주입된 원료가스들은 실란 가스와 암모니아 가스를 포함하고,
    상기 실란 가스 대 암모니아 가스의 혼합비는 100:5 내지 100:50인,
    실리콘나이트라이드 음극재 제조 방법.
  21. 제18항에 있어서,
    상기 제1 승온단계 이전에,
    상기 원료 가스의 주입을 중단하고, 상기 튜브로 내부에 불활성 가스를 주입하는 단계;를 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  22. 제18항에 있어서,
    상기 제1 승온단계 이후, 상기 튜브로 내부를 상기 제1 승온단계에서 승온시킨 온도로 소정시간 유지시키는 제1 온도유지단계;를 더 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  23. 제18항에 있어서,
    상기 제1 승온단계에서 승온된 튜브로 내부의 온도는 900℃ 내지 1000℃인,
    실리콘나이트라이드 음극재 제조 방법.
  24. 제22항에 있어서,
    상기 제1 온도유지단계 이후, 상기 튜브로 내부의 온도를 낮추는 냉각단계;를 더 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  25. 제24항에 있어서,
    상기 코팅단계는,
    상기 냉각단계 이후, 상기 튜브로 내부의 온도를 승온시키는 제2 승온단계;
    상기 승온된 튜브로 내부에 탄소를 함유하는 기상 원료를 주입하는 제2 주입단계;
    상기 기상 원료를 주입하면서 상기 튜브로 내부를 상기 제2 승온단계에서 승온시킨 온도로 소정시간 유지시키는 제2 온도유지단계;를 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  26. 제25항에 있어서,
    상기 탄소를 함유하는 기상 원료는,
    아세틸렌(C2H2) 또는 에틸렌(C2H4)을 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  27. 제25항에 있어서,
    상기 냉각단계 이후, 상기 제2 승온단계 이전에,
    상기 튜브로 내부에 불활성 가스를 주입하는 단계;를 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  28. 제25항에 있어서,
    상기 제2 승온단계에서 상기 튜브로 내부의 승온된 온도는 600℃ 내지 1000℃인,
    실리콘나이트라이드 음극재 제조 방법.
  29. 제25항에 있어서,
    상기 제2 온도유지단계 이후,
    상기 기상 원료의 주입을 중단하고, 상기 튜브로 내부에 불활성 가스를 주입하는 단계; 및
    상기 튜브로 내부에 불활성 가스를 주입하면서 튜브로 내부의 온도를 낮추는 단계;를 더 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  30. 제18항에 있어서,
    상기 코팅단계는,
    상기 생성된 실리콘나이트라이드 박막과 석유계 피치를 혼합하여 튜브로 내부에서 열처리하는 열처리단계;를 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  31. 제30항에 있어서,
    상기 열처리단계에서 상기 튜브로 내부의 온도는 600℃ 내지 1000℃인,
    실리콘나이트라이드 음극재 제조 방법.
  32. 튜브로 내부에 복수의 원료 가스들을 주입하는 제1 주입단계;
    상기 튜브로 내부의 온도를 승온시키는 제1 승온단계;
    상기 튜브로 내부에 생성된 실리콘나이트라이드 입자를 연마하여 제1 전구체를 제조하는 제1 연마단계;
    상기 제1 전구체를 연마하여 제2 전구체를 제조하는 제2 연마단계; 및
    상기 연마된 제2 전구체를 소성하는 단계;를 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  33. 제32항에 있어서,
    상기 제1 연마단계는,
    상기 튜브로 내부에 생성된 실리콘나이트라이드 입자와 유기용매를 혼합하는 단계; 및
    상기 혼합된 실리콘나이트라이드 입자 및 유기용매를 습식 연마하는 단계;를 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  34. 제32항에 있어서,
    상기 제2 연마단계는,
    상기 제1 전구체 및 탄소계 원료를 혼합 및 교반하여 혼합물을 제조하는 단계; 및
    상기 제조된 혼합물을 건식 연마하는 단계;를 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  35. 제34항에 있어서,
    상기 건식 연마 단계 이전에,
    상기 제조된 혼합물을 건조하는 단계;를 더 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  36. 제34항에 있어서,
    상기 건식 연마 단계 이후에,
    상기 건식 연마된 혼합물을 체거름하는 단계;를 더 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  37. 제32항에 있어서,
    상기 연마된 제2 전구체를 소성하는 단계는,
    상기 제2 전구체를 튜브로 내부에 주입하여, 800℃ 내지 1000℃로 열처리하는 단계; 및
    상기 열처리된 제2 전구체를 공냉시키는 단계;를 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
  38. 제33항에 있어서,
    상기 유기용매는 이소프로필알코올인,
    실리콘나이트라이드 음극재 제조 방법.
  39. 제33항에 있어서,
    상기 탄소계 원료는 석유계 피치를 포함하는,
    실리콘나이트라이드 음극재 제조 방법.
PCT/KR2017/014842 2017-12-04 2017-12-15 실리콘나이트라이드 음극재 및 이의 제조 방법 WO2019112107A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170165391A KR101997665B1 (ko) 2017-12-04 2017-12-04 실리콘나이트라이드 음극재 및 이의 제조 방법
KR10-2017-0165391 2017-12-04

Publications (1)

Publication Number Publication Date
WO2019112107A1 true WO2019112107A1 (ko) 2019-06-13

Family

ID=66750172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014842 WO2019112107A1 (ko) 2017-12-04 2017-12-15 실리콘나이트라이드 음극재 및 이의 제조 방법

Country Status (2)

Country Link
KR (1) KR101997665B1 (ko)
WO (1) WO2019112107A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20190792A1 (en) * 2019-06-24 2020-12-25 Inst Energiteknik Electrode, electrical energy storage device & method
WO2021160833A1 (en) * 2020-02-12 2021-08-19 Institutt For Energiteknikk Electrode, energy storage device and method
WO2021160824A1 (en) * 2020-02-14 2021-08-19 Cenate As Predominantly amorphous silicon particles and use thereof as active anode material in secondary lithium ion batteries
CN115084530A (zh) * 2022-08-19 2022-09-20 溧阳天目先导电池材料科技有限公司 一种高循环硅基负极材料及其制备方法和应用
WO2022200606A1 (en) * 2021-03-26 2022-09-29 Cenate As Microcrystalline nanoscaled silicon particles and use thereof as active anode material in secondary lithium ion batteries
CN116014087A (zh) * 2022-06-13 2023-04-25 浙江锂宸新材料科技有限公司 一种长循环高性能二次电池用负极材料的制备方法及其产品
CN116799178A (zh) * 2023-06-19 2023-09-22 浙江锂宸新材料科技有限公司 一种硅碳负极材料及其制备方法、锂离子电池
WO2023245651A1 (zh) * 2022-06-24 2023-12-28 上海杉杉科技有限公司 硅基储锂材料及其制备方法
WO2024101952A1 (ko) * 2022-11-11 2024-05-16 주식회사 엘지에너지솔루션 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102436632B1 (ko) 2019-11-28 2022-08-29 한국과학기술연구원 투명 음극 활물질층을 포함하는 투명 음극 박막, 리튬 박막 이차전지, 및 그 제조방법
CN114864886B (zh) * 2022-04-02 2024-02-27 万华化学集团股份有限公司 一种正极材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150032155A (ko) * 2013-09-16 2015-03-25 아우오 크리스탈 코포레이션 실리콘 플레이크 제조 방법, 실리콘-함유 음극 및 그 제조 방법
KR20160087121A (ko) * 2015-01-13 2016-07-21 주식회사 엘지화학 규소계 물질을 포함하는 다층 구조의 음극 및 이를 포함하는 이차전지

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150032155A (ko) * 2013-09-16 2015-03-25 아우오 크리스탈 코포레이션 실리콘 플레이크 제조 방법, 실리콘-함유 음극 및 그 제조 방법
KR20160087121A (ko) * 2015-01-13 2016-07-21 주식회사 엘지화학 규소계 물질을 포함하는 다층 구조의 음극 및 이를 포함하는 이차전지

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ULVESTAD, ASBJORN: "Long-term cyclability of substoichiometric silicon nitride thin film anodes for Li-ion batteries", SCIENTIFIC REPORTS, vol. 7, no. 13315, 17 October 2017 (2017-10-17), pages 1 - 10, XP055614501 *
YANG, JINHO: "Plasma enhanced chemical vapor deposition silicon nitride for a high-performance lithium ion battery anode", JOURNAL OF POWER SOURCES, vol. 269, 2014, pages 520 - 525, XP029043872, DOI: doi:10.1016/j.jpowsour.2014.06.135 *
YU , JINGLU: "Uniform carbon coating on silicon nanoparticles by dynamic CVD process for electrochemical lithium storage", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 53, no. 32, 2014, pages 12697 - 12704, XP055614502 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20190792A1 (en) * 2019-06-24 2020-12-25 Inst Energiteknik Electrode, electrical energy storage device & method
WO2020260338A1 (en) * 2019-06-24 2020-12-30 Institutt For Energiteknikk Electrode, electrical energy storage device & method
WO2021160833A1 (en) * 2020-02-12 2021-08-19 Institutt For Energiteknikk Electrode, energy storage device and method
WO2021160824A1 (en) * 2020-02-14 2021-08-19 Cenate As Predominantly amorphous silicon particles and use thereof as active anode material in secondary lithium ion batteries
WO2022200606A1 (en) * 2021-03-26 2022-09-29 Cenate As Microcrystalline nanoscaled silicon particles and use thereof as active anode material in secondary lithium ion batteries
CN116014087A (zh) * 2022-06-13 2023-04-25 浙江锂宸新材料科技有限公司 一种长循环高性能二次电池用负极材料的制备方法及其产品
WO2023245651A1 (zh) * 2022-06-24 2023-12-28 上海杉杉科技有限公司 硅基储锂材料及其制备方法
CN115084530A (zh) * 2022-08-19 2022-09-20 溧阳天目先导电池材料科技有限公司 一种高循环硅基负极材料及其制备方法和应用
WO2024101952A1 (ko) * 2022-11-11 2024-05-16 주식회사 엘지에너지솔루션 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법
CN116799178A (zh) * 2023-06-19 2023-09-22 浙江锂宸新材料科技有限公司 一种硅碳负极材料及其制备方法、锂离子电池

Also Published As

Publication number Publication date
KR20190065839A (ko) 2019-06-12
KR101997665B1 (ko) 2019-10-01

Similar Documents

Publication Publication Date Title
WO2019112107A1 (ko) 실리콘나이트라이드 음극재 및 이의 제조 방법
WO2017111542A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지용 음극
WO2013183974A1 (ko) 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
WO2020130443A1 (ko) 리튬 이차전지용 음극 활물질의 제조방법
WO2021034109A1 (ko) 규소·산화규소-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지용 음극 활물질
WO2017209561A1 (ko) 음극 활물질, 이를 포함하는 음극 및 이를 포함하는 리튬 이차전지
WO2019013501A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2021066458A1 (ko) 복합 음극 활물질, 이의 제조방법, 및 이를 포함하는 음극
WO2015088252A1 (ko) 리튬이온 이차전지용 음극 활물질 및 이의 제조방법
WO2017175979A2 (ko) 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
WO2020256473A1 (ko) 이종원소가 도핑된 표면부를 갖는 양극활물질, 및 그 제조 방법
WO2023101522A1 (ko) 다공성 규소-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2020036444A1 (ko) 리튬 이차 전지용 음극의 제조방법 및 이를 이용하여 제조한 리튬 이차 전지용 음극
WO2022005064A1 (ko) 다공성 실리콘옥시카바이드 제조용 중간체, 이의 제조방법, 이로부터 제조된 다공성 실리콘옥시카바이드를 음극활물질로 포함하는 리튬 이차전지
WO2017150893A1 (ko) 리튬 이차전지용 양극활물질 및 이의 제조 방법
WO2022139116A1 (ko) 폐-양극 활물질을 이용한 리튬 이차전지용 양극 활물질의 제조 방법
WO2022131695A1 (ko) 리튬 이온 이차전지용 음극재, 이의 제조방법 및 이를 포함하는 리튬 이온 이차전지
WO2017099523A1 (ko) 리튬 이차전지용 음극활물질의 제조 방법 및 이를 적용한 리튬 이차전지
WO2022139387A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2016052944A1 (ko) 양극 활물질 및 이의 제조방법
WO2021118144A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2023018183A1 (en) Negative electrode active material, negative electrode including negative electrode active material, secondary battery including negative electrode, and method for preparing negative electrode active material
WO2022139243A1 (ko) 다공성 규소 구조체, 이를 포함하는 다공성 규소-탄소 복합체 및 음극 활물질
WO2023063702A1 (ko) 고정 산화수를 가진 금속과 리튬 과잉 층상 산화물을 포함하는 리튬이온전지용 양극활물질 및 이를 포함하는 리튬이온전지
WO2023018187A1 (en) Negative electrode active material, negative electrode including same, secondary battery including same and method for preparing negative electrode active material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934215

Country of ref document: EP

Kind code of ref document: A1