WO2019111773A1 - サイクロン分離装置 - Google Patents

サイクロン分離装置 Download PDF

Info

Publication number
WO2019111773A1
WO2019111773A1 PCT/JP2018/043677 JP2018043677W WO2019111773A1 WO 2019111773 A1 WO2019111773 A1 WO 2019111773A1 JP 2018043677 W JP2018043677 W JP 2018043677W WO 2019111773 A1 WO2019111773 A1 WO 2019111773A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
housing
discharge port
separation chamber
port
Prior art date
Application number
PCT/JP2018/043677
Other languages
English (en)
French (fr)
Inventor
健吾 中原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018114389A external-priority patent/JP6739008B2/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019111773A1 publication Critical patent/WO2019111773A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/06Construction of inlets or outlets to the vortex chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/12Construction of the overflow ducting, e.g. diffusing or spiral exits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/14Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations
    • B04C5/185Dust collectors

Definitions

  • the present invention relates to a cyclone separating apparatus for separating foreign matter contained in air using centrifugal force.
  • this type of cyclone separation device is attached to the air inlet portion of the outer wall of the house in order to remove insects and dust (hereinafter referred to as foreign matter) which is sucked with the outside air when the outside air is taken into the room in the house. Is used.
  • Patent Document 1 describes a cyclone separation device provided at an air inlet portion for taking in outdoor air, in a house provided with a ventilating device for supplying and discharging air.
  • a ventilating device for supplying and discharging air.
  • Patent Document 2 also describes a cyclone separation device provided at an air inlet portion for taking in outdoor air, in a house similarly provided with a ventilating device for performing air supply and exhaust.
  • a separation chamber for storing foreign matter separated as in Patent Document 1 is provided.
  • the separation chamber has a structure in which the lid is opened using wind power, and when the lid is opened by a wind generated in the natural world (hereinafter, natural wind), the separated foreign matter is discharged to the outside. ing.
  • the configuration is such that a wind receiving plate is provided to receive the force of wind pressure, the wind receiving plate is fulcrum-like to move like a pendulum by a strong wind to some extent, and the wind receiving plate moves like a pendulum.
  • two lids provided in the separation chamber are alternately opened.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a cyclonic separating apparatus having a discharge structure capable of efficiently discharging separated foreign matter without requiring periodic maintenance. I assume.
  • the cyclone separator comprises an inlet for introducing air into the housing to generate a swirling air flow, and an outlet for providing air to the outside of the housing provided at the back of the housing.
  • the cyclone separation device includes a separation chamber and a swirl chamber formed by a space division plate that divides the inside of the housing into an outer peripheral side close to the side of the housing and an inner peripheral side including the central portion of the housing.
  • the cyclone separation device is disposed at a position below the separation chamber in the direction of gravity, and includes a discharge port for communicating the inside of the separation chamber with the outside of the housing.
  • the cyclone separation device is provided with a discharge promoting portion having an inclined surface in the inside and outside of the housing at the lower part of the side surface of the housing. And a discharge port is arranged at the tip part of a discharge promotion part.
  • the foreign matter contained in the air is moved to the separation chamber side by the swirling air flow by arranging the discharge port at a position below the separation chamber in the direction of gravity. Can. Furthermore, since the foreign matter can be moved downward along the inclined surface by the action of gravity inside the housing, the foreign matter can be quickly collected in the vicinity of the discharge port.
  • the discharge promoting portion having the inclined surface in the inside and outside of the housing is disposed at the lower part of the side surface of the housing, and the discharge port is disposed at the tip of the discharge promoting portion.
  • the natural wind collides with the inclined surface on the outside of the housing, whereby the wind on the outside of the discharge port is strengthened, and the static pressure on the outside can be lowered compared to the pressure on the separation chamber side. That is, by lowering the external static pressure, it is possible to enhance the performance of discharging the foreign matter in the separation chamber to the outside of the apparatus.
  • FIG. 1 is a perspective view of a cyclone separation device according to a first embodiment of the present invention as viewed from an obliquely lower front side.
  • FIG. 2 is a side sectional view of the cyclone separator according to the first embodiment of the present invention.
  • FIG. 3 is a plan sectional view of the cyclone separator according to the first embodiment of the present invention.
  • FIG. 4 is a view for explaining the angle of the discharge promoting surface of the cyclone separator according to the first embodiment of the present invention.
  • FIG. 5 is a graph showing the test result of the example in the first embodiment of the present invention.
  • FIG. 6 is a perspective view of a cyclone separation device according to a second embodiment of the present invention as viewed from an obliquely lower front side.
  • FIG. 7 is an enlarged cross-sectional view of the discharge promoting portion of the cyclone separator according to the second embodiment of the present invention.
  • FIG. 8 is a graph showing test results of an example of the cyclone separator according to the second embodiment of the present invention.
  • FIG. 9 is a perspective view of a cyclone separator according to a third embodiment of the present invention, as viewed from an obliquely lower front side.
  • FIG. 10 is a side cross-sectional view of a cyclone separator according to a third embodiment of the present invention.
  • FIGS. 1-3 The structural example of the cyclone separator of this Embodiment is shown to FIGS. 1-3.
  • a ventilation port hood 1 which is an example of a cyclone separation device will be described.
  • the ventilation opening hood 1 is attached to an air intake (air supply opening) opened to an outer wall of a house when taking in outdoor air into the house.
  • a blower (not shown) is installed inside the house than the air supply port.
  • the blower and the ventilation port hood 1 are connected using a ventilation duct (not shown), and the air passing through the ventilation port hood 1 is introduced into the room.
  • the ventilation port hood 1 shown in FIG. 1 is installed to protrude from the outer wall surface of the house. Moreover, it connects with the ventilation duct using the outflow pipe 2.
  • the housing 22 is composed of a front cover 3 and a rear base plate 4 shown in FIG.
  • the cover 3 is a main part of the ventilation opening hood 1.
  • the cover 3 is in the form of a rotating body that can be rotated around the central axis 6 and has a cylindrical shape that closes the front side. That is, the cover 3 has a shape that also includes the side surface of the ventilation opening hood 1.
  • the surface of the front side of FIG. 1 is a plane, it is good also as dome shape which made the center part project on the front side.
  • the side surface 27 of the cover 3 is provided with a projecting plate 5.
  • the projecting plate 5 is a plate body in which the upper part and the lower part of the cover 3 are protruded from the front side to the back side, and the curved side of the side surface 27 of the cover 3 is curved.
  • the cover 3 and the base plate 4 are connected via the projecting plate 5.
  • a gap is provided on the side surface 27 of the cover 3, that is, the side surface of the main body.
  • This gap serves as the inlet 7 that allows air to flow into the housing 22.
  • the inlet 7 can also be configured to contact the base plate 4 over 360 degrees on the side surface 27 of the ventilation port hood 1. However, in the present embodiment, air is not introduced at the projecting plate 5 portion.
  • the inflow port 7 is provided with a plurality of fixed blades 8 obliquely arranged toward the central axis 6 so that the inflowing air swirls.
  • the fixed blades 8 are rotationally symmetrical and disposed at equal intervals with respect to the central axis 6.
  • the fixed blade 8 since the air is not allowed to flow into the projecting plate 5 portion, the fixed blade 8 is not disposed.
  • a net may be provided on the inflow port 7 (the outer peripheral portion of the fixed blade 8) so that large insects and birds do not intrude into the device.
  • a central opening of the base plate 4 is provided with a circular opening.
  • the outlet pipe 2 is connected to this opening.
  • the air inside the cover 3 is discharged from the outlet 9 at one end of the outlet pipe 2.
  • the discharge promoting unit 11 is provided below the cover 3.
  • the discharge promoting unit 11 is provided with inclined surfaces at the inside and the outside.
  • the inclined surface forms a discharge promoting surface 10 which protrudes from the side surface 27 outside the cover 3.
  • a guide surface 23 is formed inside the cover 3.
  • the discharge promoting surface 10 is two symmetrically arranged surfaces, and is connected to another two surfaces 28. As shown in FIG. 4, the tip 24 is located at the lowermost part of the discharge promoting surface 10.
  • the discharge promoting portion 10 is composed of the discharge promoting surface 10, the other two surfaces 28 and the tip portion 24.
  • the discharge promoting portion 11 inclines the discharge promoting surface 10 in the direction in which the cross-sectional area decreases toward the lower part.
  • the distal end portion 24 is provided with a discharge port 12 opened so that the inside and the outside of the separation chamber 15 communicate with each other.
  • the cover 3 is in the form of a rotating body which can be rotated around the central axis 6.
  • an inlet 7 As shown in FIG. 2, in the inner space of the cover 3, an inlet 7, an inner cylindrical pipe 19 and a space dividing plate 13 are provided in the direction from the base plate 4 to the central axis 6.
  • the space dividing plate 13 divides the inner space of the cover 3 into a swing chamber 14 and a separation chamber 15.
  • the space dividing plate 13 is inclined so that the cross-sectional area in the cover 3 extends toward the base plate 4 (from the left side to the right side in FIG. 2).
  • the cross-sectional area here means the area of the space dividing plate 13 cut in a plane perpendicular to the central axis 6. That is, the space dividing plate 13 has a truncated cone shape.
  • the space dividing plate 13 may have a cylindrical shape whose cross-sectional area does not change.
  • the inner peripheral side (inner side than the space dividing plate 13) including the central portion of the cover 3 is the turning chamber 14, and the outer peripheral side close to the side surface 27 of the housing 22 inside the cover 3 (enclosed by the space dividing plate 13 and the cover 3 Space) is the separation chamber 15.
  • a through hole 16 is provided in the space dividing plate 13, and the swirl chamber 14 and the separation chamber 15 communicate with each other through the through hole 16.
  • the space dividing plate 13 forms a surface on the front side of the ventilation opening hood 1 and serves as a turning chamber bottom surface 17. Also, the space dividing plate 13 and the turning chamber bottom surface 17 are connected integrally or continuously. The space dividing plate 13 may be extended to the inner surface of the cover 3, and the inner surface of the cover 3 may be the bottom surface 17 of the turning chamber.
  • a space outside the space dividing plate 13 and a space surrounded by the cover 3 is a separation chamber 15.
  • the separation chamber 15 is an annular space.
  • the separation chamber 15 may not be an annular space, but may be, for example, a space having a rectangular cross section with the cover 3 as a box.
  • the space dividing plate is always in the shape of a rotating body regardless of the shape of the cover 3.
  • a surface is formed on the front side of the cover 3 shown in FIG.
  • the degree of close contact between the bottom surface 17 of the swirl chamber and the cover 3 is designed so that a slight gap is generated between the bottom surface 17 of the swirl chamber and the front surface of the cover 3 in terms of assembly accuracy.
  • the inner cylindrical tube 19 is provided so as to protrude from the central portion of the base plate 4 to the inside of the cover 3 (that is, to the front side of the ventilating hood 1), and is disposed coaxially with the outlet 9 There is.
  • the inner diameter of the inner cylindrical pipe 19 is different from the inner diameter of the outflow pipe 2 in the base plate 4 portion.
  • the inner diameter of the inner cylindrical pipe 19 is smaller than the inner diameter of the outflow pipe 2.
  • the inner diameter of the inner cylindrical pipe 19 may be the same size as the inner diameter of the outflow pipe 2.
  • the inner diameter of the inner cylindrical tube 19 gradually expands in the direction along the central axis 6 when the disturbance of the air flow is expected by the inner diameter of the base plate 4 portion expanding rapidly on the outflow pipe 2 side. It may be shaped.
  • the foreign matter moves toward the space dividing plate 13 by the centrifugal force of the swirling air flow, and moves into the separation chamber 15 when passing near the through hole 16.
  • the air from which the foreign matter has been separated flows into the inner cylindrical pipe 19 and flows out through the outlet pipe 2 and the outlet 9 out of the ventilating hood hood 1.
  • the foreign matter moved to the separation chamber 15 is temporarily stored in the separation chamber 15. Since the inside of the ventilation port hood 1 has a negative pressure by the blower, air flows into the separation chamber 15 from the discharge port 12 as well. The air that has flowed in passes through the through holes 16 shown in FIG. 2 and flows into the swirling chamber 14 and merges with the swirling air flow in the swirling chamber 14.
  • FIG. 3 is a cross-sectional view as seen from the back side of the cover 3 shown in FIG. 1 (including the discharge promoting portion 11). Open arrows in FIG. 3 indicate the flow of air flow.
  • FIG. 3 due to the influence of the swirling air flow in the swirling chamber 14, most of the air in the separation chamber 15 is a swirling air flow in the same direction as the swirling air flow in the swirling chamber 14 (all the airflows are Not necessarily in the same direction). Therefore, most foreign matter in the separation chamber 15 also moves in the same direction as the swirling airflow in the swirling chamber 14.
  • the upper portion of the discharge promoting portion 11 extends in the left-right direction with respect to the lower portion.
  • the upper portion of the guide surface 23 extends in the left-right direction with respect to the lower portion.
  • the foreign matter carried by the swirling air flow is likely to flow into the discharge promoting unit 11. Further, by making the discharge promoting portion 11 have a width also in the direction of the central axis 6, the swirling airflow flowing in the separation chamber 15 crosses the discharge promoting portion 11. That is, the foreign matter moves in the separation chamber 15 and easily flows into the discharge promoting unit 11.
  • the length of the discharge promoting portion 11 in the direction parallel to the central axis 6 may be extended to the same length as the length of the separation chamber 15 in the direction parallel to the central axis 6.
  • the discharge port 12 has a rectangular shape elongated in a direction parallel to the central axis 6 at the lower part of the discharge promoting portion 11.
  • the elongated shape as described above is to prevent the entry of large insects and birds, but to increase the area so that foreign matter can be easily discharged. Furthermore, the reason why the discharge port 12 is elongated in the direction parallel to the central axis 6 is to enhance the discharge effect by natural wind.
  • the air flow also flows from the discharge port 12.
  • foreign matter hardly leaves the housing 22 from the outlet 12. This is because the foreign matter is pushed back by the inflowing air even if it is about to fall from the discharge port 12 by its own weight.
  • the ventilation port hood 1 has a wall surface on the back side when installed on the outer wall of a house. Therefore, natural wind does not easily flow in the direction along the central axis 6, and easily flows along the outer wall of the house. That is, it often flows in the left and right direction in the front view of FIG.
  • the shape of the discharge port 12 is a rectangular shape elongated in the direction parallel to the central axis 6.
  • the shape of the discharge port 12 is determined in order to make it difficult for crosswind to enter the apparatus at the discharge port 12.
  • the outlet 12 shortens the distance in the wind passing direction through the outside of the outlet 12. That is, the left-right direction in FIG. 3 of the discharge port 12 is shortened, and the direction parallel to the central axis 6 is elongated.
  • the discharge promoting portion 11 protrudes from the side surface 27 of the main body, and further, the discharge promoting portion 11 symmetrically discharges the discharge outlet 12 at the two sandwiching sides.
  • a face 10 is provided.
  • the discharge performance is remarkably enhanced in this embodiment, and even when natural wind is weak, foreign matter in the separation chamber 15 is more. It becomes possible to discharge. That is, by providing the discharge promoting surface 10, the discharge promoting effect can be obtained.
  • the end of the discharge promoting surface 10 on the side in contact with the surface 25 including the two long sides has a fillet or a corner with rounded corners at the end depending on the thickness of the plate forming the discharge promoting surface 10
  • the discharge promoting surface 10 represents a portion up to the fillet or chamfer start position. That is, the discharge promoting surface 10 is a portion where the angle D gradually increases from the side surface 27 side of the cover 3. The point at which the angle D decreases is the start position of the fillet or chamfer.
  • an index indicating how much the separated foreign matter was discharged was defined.
  • the amount of foreign matter discharged from the discharge port 12 in 10 minutes is E [g]
  • the prescribed amount of foreign matter inserted into the separation chamber 15 is M [g].
  • the following comparative test was implemented.
  • the amount E [g] of foreign matter discharged from the discharge port 12 in 10 minutes was measured.
  • foreign matter of prescribed amount M [g] in this test, foam beads of ⁇ 1 mm are used
  • a crosswind is applied to the cyclone separation device of the present embodiment so that the wind speed is constant from the side.
  • the amount E [g] of foreign matter discharged from the discharge port 12 in 10 minutes was measured.
  • the discharge rate was calculated for 10 minutes by the above equation.
  • angles of the discharge promoting surface 10 are all the angles with respect to the surface 25 of the discharge port 12.
  • the configuration other than the discharge promoting unit 11 is the same in all the three examples.
  • Crosswind refers to the wind that flows from the side to the device as described above. In all cases, when the wind speed is fast, the discharge rate is rising for 10 minutes.
  • Example 2 of this embodiment is 5 [%] at a wind speed of 1 [m / s] and 30 [%] at 1.5 [m / s]. Even if the comparison example and the example 2 are compared, in the discharge promoting unit 11 of the present embodiment, it can be confirmed that the discharge of the separated foreign matter is surely performed.
  • the length of the discharge promoting surface 10 in the height direction is preferably longer, and at least twice the length of the short side of the discharge port 12. In the present embodiment, it is 2.5 times.
  • the ventilating-opening hood 1 of the present embodiment is such that the cover 3 has a rectangular parallelepiped shape.
  • the base plate 4 is also in a square shape.
  • an L-shaped column 21 is provided in place of the protruding plate 5 of the first embodiment.
  • the base plate 4 and the cover 3 are fixed by four L-shaped columns 21 at the corners of the base plate 4.
  • the other configuration is the same as that of the first embodiment.
  • An inlet 7 is open between the two L-shaped columns 21.
  • a net may be provided on at least one of the outer peripheral side of the fixed wing 8 or the inlet 7 so that large insects and birds do not enter the device.
  • the discharge port 12 is located at the lower part of the discharge promoting portion 11 and is sandwiched between the two discharge promoting surfaces 10.
  • One of the four side surfaces 27 of the cover 3 is disposed at the bottom.
  • An outlet 12 is provided near the center of the lower side surface 27, that is, the lowermost surface 29.
  • the position of the discharge port 12 is not limited to near the center, and may be shifted to either the left or the right.
  • FIG. 7 is a cross-sectional view of the discharge promoting unit 11 in the present embodiment.
  • the discharge promoting surface 10 is one in which the inclination angle is continuously changed.
  • the inclined surface on the side in contact with the discharge port 12 75 degrees.
  • the discharge mechanism will be described.
  • natural wind collides with the discharge promoting surface 10 it travels to the discharge port 12 along the inclined surface (discharge promoting surface 10).
  • discharge promoting surface 10 In the vicinity of the discharge port 12, the original natural wind and the air flow flowing along the inclination of the discharge promoting surface 10 merge, and in the vicinity of the discharge port 12, the wind speed becomes faster than the wind speed of the surrounding natural wind.
  • the static pressure of the outer side of the discharge port 12 falls, and discharge
  • the angle D of the discharge promoting surface 10 is shaped so as to gradually increase as the distance from the side surface 27 increases, so that the natural wind can be smoothly changed in direction. That is, it is possible to change the air flow to be directed obliquely downward on the outside of the outlet 12 without weakening the force of the natural wind. As a result, the air flow outside the discharge port 12 can be made stronger, so the foreign matter discharge performance can be further enhanced.
  • the discharge promoting surface 10 may be a combination of a plurality of surfaces having different angles. In that case, the angle D of the discharge promoting surface 10 may be gradually increased from the side surface 27 of the cover 3 toward the discharge port 12.
  • the surface in contact with the cover 3 30 degrees
  • the surface in contact with the discharge port 12 75 degrees
  • the discharge promoting portion 11 when the discharge promoting portion 11 is not provided, that is, when only the hole serving as the discharge port 12 is opened in the lowermost surface 29 of the four surfaces 27 of the side surface 27 of the cover 3, Since 30 is vertical to the crosswind, natural wind collides with the left and right side faces 30 of the cover 3 and loses momentum. That is, since only the natural wind flowing along the lower surface contributes to the discharge of the foreign matter outside the discharge port 12, the foreign matter can not be discharged unless the natural wind blows very strongly.
  • the wind speed can be partially accelerated outside the discharge port 12. Since the static pressure can be reduced by utilizing natural wind and foreign matter in the discharge promoting section 11 can be attracted from the discharge port 12, foreign matter separated in the housing 22 can be easily discharged.
  • the cover 3 has a rectangular shape as in the present embodiment or a round shape as in the first embodiment as in the present embodiment, the effect is exhibited even if the discharge promoting surface 10 is changed in angle. .
  • the angle of the discharge promoting surface was not changed, and only one angle was used, and the following four examples were carried out.
  • the four examples of the configuration other than the discharge promoting unit 11 are the same.
  • the discharge rate tends to be improved for 10 minutes as the angle D of the discharge promoting surface 10 increases.
  • the discharge promoting unit 11 has the configuration shown in the second embodiment, that is, the configuration in which the angle D is gradually increased so that the discharge rate is increased for 10 minutes regardless of whether the wind speed is low or high. And The example is shown below.
  • the discharge promoting surface 10 was constituted by three surfaces having different angles D.
  • the discharge rate was higher for 10 minutes in all the ranges of the wind speed of 1.0 to 2.0 [m / s] than the comparative example of the above four examples. ). From this, it is considered that the discharge rate was improved in all the ranges for 10 minutes because the wind speed could be sufficiently accelerated without creating turbulence of the air flow near the outlet 12 when the crosswind was small or large.
  • the cyclone separating apparatus as exemplified by the ventilation port hood 1 according to the first embodiment and the second embodiment is a reverse type in which the traveling direction of the swirling flow is reversed.
  • an example of an axial flow type cyclone separation device in which the traveling direction of the swirling flow does not change will be described.
  • FIG. 9 is an external view of the cyclone separation device of the present embodiment.
  • the main body of the cyclone separating device 26 is covered by a cylindrical cover 3.
  • a cylindrical bottom is located on the front side of the cover 3.
  • An opening is provided at the center of the front of the cover 3 and this is the inlet 7.
  • a discharge promoting portion 11 is provided in the lower part of the main body side surface 27, and a discharge outlet 12 for discharging foreign substances to the outside of the apparatus is provided in the lower part of the discharge promoting portion 11.
  • the outflow pipe 2 is provided on the cylindrical bottom surface located on the back side.
  • FIG. 10 is a cross-sectional view of the cyclone separation device 26 of the present embodiment.
  • a plurality of fixed blades 8 are arranged in a circular shape. Since each fixed blade 8 is diagonally arranged toward the central axis 6, the air flow passing through the fixed blade 8 becomes a swirling air flow.
  • a space dividing plate 13 is provided on the outer peripheral portion of the fixed blade 8.
  • the space dividing plate 13 is provided in parallel with and spaced apart from the side surface 27 of the main body.
  • the space sandwiched between the space dividing plate 13 and the fixed blade 8 is the swirl chamber 14, and the remaining space in the cover 3 is the separation chamber 15.
  • the space dividing plate 13 is further extended toward the back side, and additionally the outflow pipe 2 is extended inside the main body, and the end of the outflow pipe 2 is further extended inside the space dividing plate 13 You may Thereby, the foreign material moving to the outer peripheral side in the space dividing plate 13 is less likely to flow to the outflow pipe 2, and the separation performance is improved.
  • the air introduced from the inflow port 7 is swirled by the fixed vanes 8 and passes through the swirl chamber 14. Thereafter, it passes through the separation chamber 15, passes through the outlet pipe 2, and flows out of the apparatus from the outlet 9.
  • the discharge promoting unit 11 has the same configuration as that of the first and second embodiments. That is, as shown in FIG. 9, the cover 3 has a slit shape elongated from the front side to the back side of the cover 3. Further, the discharge promoting surface 10 is provided symmetrically in the left-right direction so as to sandwich the two long sides of the discharge port 12. The discharge promoting surface 10 is inclined to extend into the main body.
  • the discharge promoting unit 11 is composed of a surface including the discharge port 12, two discharge promoting surfaces 10 and another two surfaces 28.
  • the other two surfaces 28 may be inclined as shown in FIG. 10, or may be perpendicular to the side surface 27 of the cover 3 unlike FIG.
  • the opening 31 is a rectangular opening surrounded by the ends of the two discharge promoting surfaces 10 and the ends of the other two surfaces 28. Further, the foreign matter present in the discharge promoting portion 11 is smoothly discharged by the action of the air flow flowing outside the discharge port 12 described in the first embodiment.
  • the cyclonic separating apparatus includes an inlet for introducing air into the housing to generate a swirling air flow, and an outlet for providing air on the back of the housing and causing the air to flow out of the housing.
  • the cyclone separation device also includes a separation chamber and a swirl chamber formed by a space dividing plate that divides the inside of the housing into an outer peripheral side close to the side of the housing and an inner peripheral side including the central portion of the housing.
  • the cyclone separation device is also disposed at a position below the separation chamber in the direction of gravity, and includes a discharge port for communicating the inside of the separation chamber with the outside of the housing.
  • the cyclone separation device is provided with a discharge promoting portion having an inclined surface in the inside and outside of the housing at the lower part of the side surface of the housing. And a discharge port is arranged at the tip part of a discharge promotion part.
  • the foreign matter separated in the separation chamber slips down along the inclined surface on the inner side of the housing, and tends to be collected at the discharge port of the tip.
  • the wind blowing outdoors collides with the discharge promoting portion to generate an air flow along the inclined surface.
  • natural wind collides with the discharge promoting portion in addition to the natural wind, and the air flows flowing along the inclined surface merge, so that the wind speed becomes faster.
  • the static pressure is reduced because the dynamic pressure is increased). That is, at the discharge port, the static pressure on the outside of the casing is lower than the static pressure on the inside of the casing, and foreign matter in the separation chamber is drawn to the outside of the casing and discharged to the outside of the cyclone separation device.
  • the discharge port is in the form of an elongated slit directed from the front to the back of the housing.
  • the discharge promoting surface inclined on the outer side of the discharge promoting portion may be provided symmetrically on both sides of the long side of the discharge port.
  • the discharge promoting surface inclined on the outside of the discharge promoting portion may be a plurality of surfaces having different tilt angles or a curved surface on which the tilt angle is continuously changed.
  • the cyclone separation device defines the angle between the surface including the two long sides of the discharge port and the discharge promoting surface as the angle D of the discharge promoting surface, and the location where the discharge promoting surface contacts the surface including the two long sides
  • the angle D may be in the range of 45 to 90 degrees.
  • the cyclone separation device may have a plurality of vanes at the inlet, and the vanes may be arranged to be rotationally symmetrical around one axis.
  • a swirling air flow can be generated in the present apparatus, so that foreign matter can be swirled to apply a centrifugal force. That is, the foreign matter can be moved to the outer peripheral side, and the foreign matter can be separated into the separation chamber.
  • the separating chamber may be annular around the swirl chamber. Further, the bottom surface of the separation chamber configured on the front side and the bottom surface of the turning chamber configured on the front side in the turning chamber may be located on substantially the same plane. Further, the separation chamber and the turning chamber may be in communication with each other through the through holes provided in the space dividing plate.
  • a swirling air flow is generated in the separation chamber as in the case of the swirling chamber.
  • the foreign matter which has flowed in from the discharge port is swirled in the separation chamber by the swirling air flow, and thus moves to the outer peripheral side in the separation chamber. And it can control that the foreign substance by the side of a separation chamber flows into a swirl chamber from a penetration hole. Further, by making the bottom of the swing chamber and the bottom of the separation chamber substantially the same surface, the thickness of the present device (the thickness of the front and back of the casing) can be suppressed, and the device can be miniaturized.
  • the inlet may be provided on the side of the housing on the back side provided with the outlet.
  • the space dividing plate may be provided on the front side.
  • the outlet may be in communication with the inner cylindrical pipe projecting into the swirl chamber, and the end of the inner cylindrical pipe may extend to the inside of the space dividing plate in a side view.
  • the swirling air flow is directed to the front side of the housing immediately after the inflow, and the traveling direction is reversed by 180 degrees in the swirling chamber, and flows toward the outlet through the inner cylindrical pipe.
  • foreign matter that has flowed in from the inflow port can be quickly moved to the front side while being moved in the outer circumferential direction by the swirling airflow, so that foreign matter can be prevented from flowing into the outflow port. Separation performance can be improved.
  • the cyclone separation device can collect foreign matter in the vicinity of the discharge port promptly, and discharges foreign matter in the separation chamber to the outside of the device by collision of natural wind with the inclined surface projecting from the side of the case. Since it is possible to enhance air conditioning, it is useful as a ventilating hood etc. used for the air inlet portion of the outer wall of the house to take in the outdoor air in the ventilation of the house.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Cyclones (AREA)

Abstract

サイクロン分離装置は、流入口(7)と、流出口(9)と、分離室と、旋回室と、排出口(12)と、排出促進部(11)と、を備える。流入口(7)は、筐体に空気を流入させ、旋回気流を発生させる。流出口(9)は、筐体の背面に設けて空気を筐体の外に流出させる。分離室と旋回室は、筐体の内部を筐体の側面に近い外周側と筐体の中心部を含む内周側とに仕切る空間分割板によって形成される。排出口(12)は、分離室に対して重力方向の下方となる位置に配置され、分離室内部と筐体外とを連通させる。排出促進部(11)は、筐体の側面の下部に筐体の内外において傾斜面を有する。そして、排出促進部(11)の先端部に排出口(12)が配置されている。

Description

サイクロン分離装置
 本発明は、空気中に含まれる異物を、遠心力を用いて分離するサイクロン分離装置に関するものである。
 従来、この種のサイクロン分離装置は、住宅において外気を室内に取り込む際に、外気と一緒に吸込んでしまう虫や塵埃(以下、異物)を除去するために、住宅外壁の給気口部分に取り付けて使用されている。
 例えば、特許文献1には、給気と排気を行う換気装置を備えた住宅において、屋外の空気を取り込む給気口部分に設けられたサイクロン分離装置が記載されている。これにより、空気中に含まれる異物をサイクロン分離装置で分離し、その内部に設けた分離室に、分離した異物を貯留し、換気装置内への異物の侵入を防止している。
 また、特許文献2には、同じく給気と排気を行う換気装置を備えた住宅において、屋外の空気を取り込む給気口部分に設けられたサイクロン分離装置が記載されている。特許文献1と同じように分離した異物を貯留する分離室を備える。分離室は、風力を利用して、蓋が開く構造になっており、自然界で発生した風(以下、自然風)によって蓋が開いたときに、分離した異物が屋外へ排出されるようになっている。
 その構成は、風圧の力を受ける受風板を設け、受風板はある程度の強い風によって、振り子のように動くよう上部に支点をおいた構成とし、受風板が振り子のように動くことで、分離室に設けた2ヶ所の蓋が交互に開く構成となっている。
 従来のサイクロン分離装置においては、特許文献1のように分離室に異物を貯留すると、定期的に貯留物を取り除くというメンテナンスを行う必要があった。また、特許文献2のように、受風板を設けて、ある程度の強い風によって、振り子のように動く構成とすると、稼動部分の定期的なメンテナンスを行う必要があるだけでなく、装置が大型化してしまうこともあった。
 本発明は、上記課題に鑑みてなされたものであり、定期的にメンテナンスを行うことを必要とせず、分離された異物を効率よく排出できる排出構造を備えたサイクロン分離装置を提供することを目的とする。
特開2007-98208号公報 特開2008-36579号公報
 本発明のサイクロン分離装置は、筐体に空気を流入させ、旋回気流を発生させる流入口と、筐体の背面に設けて空気を筐体の外へ流出させる流出口を備えている。また、サイクロン分離装置は、筐体の内部を筐体の側面に近い外周側と筐体の中心部を含む内周側とに仕切る空間分割板によって形成された分離室と旋回室とを備えている。また、サイクロン分離装置は、分離室に対して重力方向の下方となる位置に配置され、分離室内部と筐体外とを連通させる排出口とを備えている。また、サイクロン分離装置は、筐体の側面の下部に筐体の内外において傾斜面を有する排出促進部を備える。そして、排出口は、排出促進部の先端部に配置されている。
 これにより、本発明のサイクロン分離装置は、排出口を分離室に対して重力方向の下方となる位置に配置することで、空気中に含まれる異物を、旋回気流によって分離室側へ移動させることができる。さらに、筐体の内側において、重力の作用によって、異物を傾斜面に沿って、下方へ移動させることができるので、異物を速やかに排出口近傍に集めることができる。特に、筐体の側面の下部に筐体の内外において傾斜面を有する排出促進部を配置して、排出促進部の先端部に、排出口を配置している。これにより、筐体の外側において傾斜面に自然風が衝突することで、排出口外側の風が強まり、分離室内側の圧力に比べて外側の静圧を低くすることができる。つまり、外側の静圧を低くすることで、分離室内の異物を装置の外へ排出する性能を高めることができる。
図1は、本発明の第1の実施の形態におけるサイクロン分離装置の斜め下正面側から見た斜視図である。 図2は、本発明の第1の実施の形態におけるサイクロン分離装置の側面断面図である。 図3は、本発明の第1の実施の形態におけるサイクロン分離装置の平面断面図である。 図4は、本発明の第1の実施の形態におけるサイクロン分離装置の排出促進面の角度を説明する図である。 図5は、本発明の第1の実施の形態における実施例の試験結果を表すグラフである。 図6は、本発明の第2の実施の形態におけるサイクロン分離装置の斜め下正面側から見た斜視図である。 図7は、本発明の第2の実施の形態におけるサイクロン分離装置の排出促進部の断面拡大図である。 図8は、本発明の第2の実施の形態におけるサイクロン分離装置の実施例の試験結果を表すグラフである。 図9は、本発明の第3の実施の形態におけるサイクロン分離装置の斜め下正面側から見た斜視図である。 図10は、本発明の第3の実施の形態におけるサイクロン分離装置の側面断面図である。
 以下、本発明の実施の形態について図面を参照しながら説明する。
 (第1の実施の形態)
 図1から図3に本実施の形態のサイクロン分離装置の構成例を示す。
 なお、本実施の形態では、サイクロン分離装置の実施例である換気口フード1について説明する。
 換気口フード1は、屋外の空気を住宅に取り込む際に、住宅の外壁に開口した空気の取り入れ口(給気口)に取り付けるものである。住宅内へ屋外の空気を取り入れる装置では、給気口よりも住宅内側に送風機(図示せず)を設置する。送風機と換気口フード1とを換気ダクト(図示せず)を用いて接続し、換気口フード1を通過した空気を室内へ導入する。
 図1に示す換気口フード1は、住宅の外壁面から突出して設置される。また、流出管2を用いて換気ダクトと接続している。
 次に、換気口フード1の筐体22の外観構成について説明する。
 筐体22は、図1に示す正面側のカバー3と背面側のベース板4とで構成されている。カバー3は、換気口フード1の主要部である。カバー3は、中心軸6の周りを回転させてできる回転体形状であり、正面側を塞いだ円筒形状である。すなわち、カバー3は、換気口フード1の側面も含む形状を有している。なお、図1の正面側の面は平面であるが、中心部を正面側に突出させたドーム形状としてもよい。
 図1の姿勢において、カバー3の側面27には突出板5を備えている。突出板5は、カバー3の上部と下部を正面側から背面側へ突出させ、さらにカバー3の側面27の曲面形状に沿って湾曲させた板体である。
 カバー3とベース板4は、突出板5を介して接続されている。これにより、カバー3の側面27、すなわち本体側面に隙間が設けられる。この隙間は空気を筐体22内へ流入させる流入口7となる。流入口7は、換気口フード1の側面27で360度に渡ってベース板4に接するように構成することもできる。ただし、本実施の形態では、突出板5部分では空気の流入はしない構成としている。
 流入口7には、流入する空気が旋回するように、中心軸6に向けて斜めに配置した固定羽根8を複数設けている。固定羽根8は、中心軸6を基準として、回転対称で、かつ均等間隔で配置されている。なお、突出板5部分には、空気を流入させないので、固定羽根8は配置していない。また、装置内に大きな虫や鳥類が侵入しないように、流入口7(固定羽根8の外周部)に網を備えても良い。
 ベース板4の中央部には円形の開口を備えている。この開口には流出管2が接続される。カバー3内部の空気は流出管2の一端の流出口9から排出する構成である。
 カバー3の下部には、排出促進部11を備えている。排出促進部11は内外において傾斜面を備えている。傾斜面は、カバー3の外側では側面27から突出した排出促進面10を成している。また、カバー3の内側では案内面23を成している。
 排出促進面10は対称に配置した二つの面であり、さらに別の二面28と接続されている。図4に示すように、排出促進面10の最下部には先端部24が位置している。排出促進面10と別の二面28と先端部24で排出促進部11を構成している。排出促進部11は下部に向かって断面積が小さくなる方向に排出促進面10を傾斜させている。そして、先端部24には、分離室15の内外が連通するように開口させた排出口12を備えている。なお、本実施の形態では、カバー3は中心軸6の周りを回転させてできる回転体形状としている。そして、カバー3の側面27から排出促進部11が突出した構造となっているが、例えば、カバー3を菱形形状として下部側面が傾斜を有している場合は、カバー3の側面をそのまま排出促進面10として利用することができる。
 次に、図2を用いて、本実施の形態のサイクロン分離装置の内部構成について説明する。
 図2に示すように、カバー3の内部空間には、ベース板4から中心軸6の方向に、流入口7と内筒管19と空間分割板13を備えている。
 図2に示すように、空間分割板13は、カバー3の内部空間を旋回室14と分離室15に区切っている。空間分割板13は、カバー3内でベース板4側に向かって(図2における左側から右側)断面積が広がるように傾斜している。なお、ここでいう断面積とは、空間分割板13を中心軸6に対して垂直な面で切断した面積のことをいう。すなわち、空間分割板13は円錐台形状を有している。なお、空間分割板13は断面積が変わらない円筒形状であってもよい。
 カバー3の中心部を含む内周側(空間分割板13より内側)は旋回室14であり、カバー3の内部で筐体22の側面27に近い外周側(空間分割板13とカバー3で囲まれた空間)は分離室15である。空間分割板13には貫通孔16を設け、貫通孔16を介して旋回室14と分離室15が連通している。
 カバー3内において、空間分割板13は換気口フード1の正面側に面を形成して旋回室底面17としている。また、空間分割板13と旋回室底面17は一体もしくは連続的に接続されている。なお、空間分割板13をカバー3の内面まで延設し、カバー3の内面を旋回室底面17としてもよい。
 空間分割板13の外側の空間で、かつカバー3に囲まれた空間は分離室15である。旋回室底面17がカバー3とほぼ密接している場合、分離室15は円環状の空間となっている。なお、分離室15は、円環状の空間ではなく、例えば、カバー3を箱体として、断面が四角形状となる空間であってもよい。一方、空間分割板は、カバー3の形状にはよらず、常に回転体形状である。
 そして、分離室15にも、図1に示すカバー3の正面側に面が形成され、分離室底面18としている。なお、旋回室底面17とカバー3の密接の程度は、組立精度の関係上、旋回室底面17とカバー3の正面側の内面とは僅かな隙間が生じるよう設計されている。
 このようにして、分離室底面18と旋回室底面17を略同一面上に形成しているので、中心軸6方向において、本サイクロン分離装置、すなわち換気口フード1の厚みを最小限に抑えることができる。
 また、内筒管19は、ベース板4の中央部からカバー3の内部へ(すなわち、換気口フード1の正面側へ)向けて突出させて備え、さらに流出口9と同軸上に配置されている。なお、本実施の形態では、ベース板4部分において、内筒管19の内径は流出管2の内径と異なっている。具体的には、流出管2の内径よりも内筒管19の内径の方が小さくなっている。しかし、内筒管19の内径は流出管2の内径と同じ大きさであってもよい。また、ベース板4部分で、流出管2側で内径が急拡大することで、気流の乱れが予想される場合、中心軸6に沿った方向に内筒管19の内径が徐々に広がるような形状にしてもよい。
 上記構成において、まず、気流の流れと分離機構について説明する。
 異物を含んだ屋外空気は、図1に示す流入口7より換気口フード1内に流入する。換気口フード1内に流入する時に、固定羽根8により旋回気流となり、旋回室14内で換気口フード1の正面側へ向かいながら旋回する。ここで、異物は、旋回気流の遠心力により空間分割板13側へ移動し、貫通孔16付近を通過する際に分離室15内へ移動する。異物が分離された空気は、内筒管19に流入し、流出管2を通って流出口9より換気口フード1外へ流出する。
 一方、分離室15に移動した異物は、一旦、分離室15内に貯留される。送風機により換気口フード1内は負圧となっているため、排出口12からも分離室15内へ空気が流入する。その流入した空気は、図2に示す貫通孔16を通り、旋回室14内へ流入し、旋回室14内の旋回気流と合流する。
 次に、分離室15内の異物の排出機構について説明する。
 図3は、図1に示すカバー3の背面側から見た断面図である(排出促進部11を含む)。図3の白抜きの矢印は気流の流れを表している。図3に示すように、旋回室14内部の旋回気流の影響により、分離室15内部の空気は、ほとんどが旋回室14内部の旋回気流と同方向の旋回気流となっている(全ての気流が同方向とは限らない)。そのため、分離室15内の異物もほとんどが旋回室14内部の旋回気流と同方向に移動する。
 図3に示すように、排出促進部11の上部は下部に対して左右方向に広がっている。内側においても同様に案内面23の上部は下部に対して左右方向に広がっている。
 旋回気流によって運ばれた異物は、排出促進部11に流入しやすくなっている。また、排出促進部11を中心軸6方向にも幅を持たせることで、分離室15内を流れる旋回気流が排出促進部11を横断するようになる。すなわち、異物は、分離室15内を移動して、排出促進部11に流入しやすくなっている。なお、排出促進部11の中心軸6に平行な方向の長さは、分離室15の中心軸6に平行な方向の長さと同じまで広げても良い。
 排出口12は、排出促進部11の下部で、中心軸6に平行な方向に長い長方形状を有している。
 前記のように細長い形状としたのは、体の大きい虫や鳥類などの侵入はさせないが、異物の排出がしやすいように面積をかせぐためである。さらに、排出口12を中心軸6に平行な方向に長くしたのは、自然風による排出効果を高めるためである。
 自然風による排出効果について、詳細は後述する。
 カバー3内は負圧であるため、排出口12からも気流が流入する。なお、流入した気流が旋回気流と同方向に流れるようガイド部材20を設けることが好ましい。通常は異物が排出口12から筐体22外へ出て行くことはほとんどない。排出口12から異物が自重により落下しようとしても、流入気流により押し戻されるためである。
 ところが、排出口12の外側では全圧に変化はないので、自然風(横風)が吹くと、筐体22の外側で、すなわち排出口12の外側で風速が早くなる。風速が速くなると動圧が増加して、静圧が低下する(なぜなら、ベルヌーイの定理によると全圧が一定の場合、動圧が増加した分、静圧が低下するからである)。つまり、静圧が低下すると、排出口12から流入する気流が弱まるので、異物の自重による下方への力が勝り、排出口12から下方へ飛び出すこととなる。また、排出口12の外側の静圧の減少による誘引効果も加わって、異物は排出口12から引き出されることなる。このようにして、排出口12の内側の異物は排出される。
 換気口フード1は、住宅の外壁に設置された時に背面側に壁面が存在する。そのため、自然風は、中心軸6に沿った方向には流れにくく、住宅の外壁に沿って流れやすくなる。すなわち、図3の正面視で左右方向に流れることが多い。
 排出口12の形状は中心軸6に平行な方向に長い長方形状となっている。
 排出口12で横風が装置内に入り込みにくくするために、排出口12の形状を決めている。排出口12は、排出口12の外側を通る風の通過方向の距離を短くしている。すなわち、排出口12の図3における左右方向は短くし、中心軸6に平行な方向は長くしている。
 排出を促進するには、排出口12の外側を通る風の風速が内側を通る風の風速より速いほうが良い。本実施の形態では、排出促進部11を本体の側面27より突出させ、さらに、排出促進部11は、排出口12の長いほうの2辺を挟む位置において、対称に傾斜を持たせた排出促進面10を備えている。これにより、排出促進部11の先端部24(排出口12の外側)では、自然風と自然風が排出促進部11に衝突して排出促進面10に沿って流れる気流とが合流するため、風速がより速くなる(図3の黒矢印で横風のイメージを表している)。
 排出口12の外側で風速が速くなると、排出口12外の静圧をより低下させることができるので、排出口12内の異物が外側へ排出される効果が増大する。
 また、空気には粘性があるため、風の流れがあると周囲の空気も影響を受けて動く。この効果により、排出口12の外側で風速が速くなり、排出口12の外側の影響を受けた排出口12内の空気も外側へ吸引される。異物は外側に吸引される気流に乗って排出される。
 単に本体の側面27下部に排出口12を設けた場合と比較すると、本実施の形態は、格段に排出性能が高まり、自然風が弱い場合であっても、分離室15内の異物をより多く排出することが可能となる。つまり、排出促進面10を備えたことで排出促進効果を得ることができる。
 排出促進面10は、排出口12の両側に2面あり、それらは対称構造となっている。これは図3における左右どちらから自然風が吹いても同様の排出促進効果を得るためである。なお、図3において、左右両側に傾斜を持った排出促進面10は必須であるが、厳密な対称構造は必須ではない、左右の傾斜角度が違っていても構わない。
 図4に示すように、排出促進面10の角度は、排出口12の二つの長辺を含む面25を基準にした角度Dで表すこととする。この角度Dには適切な角度が存在する。排出口12を含む面に対してほぼ直角(D=90度)であると、自然風が衝突し勢いを失ってしまい、また、D=0度であれば排出促進効果が得られない。つまり、角度Dとしては、0度から90度の間に設定するのがよい。詳細については後述する。
 なお、二つの長辺を含む面25と接している側の排出促進面10の端部は、排出促進面10を形成する板の厚みにより、その端部には角を丸くするフィレットや角を落とす面取りを行うことがある。この時、排出促進面10は、フィレットまたは面取りの開始位置までの部分を表す。つまり、排出促進面10は、角度Dがカバー3の側面27側から徐々に増加していく部分である。角度Dが減少するポイントがフィレットまたは面取りの開始位置である。
 本実施の形態では、カバー3の側面27に衝突した自然風が円筒面に沿って排出促進面10に到達するため、より多くの気流を排出口12に集めることができる。これにより、排出口12部分では風速が高まるので、排出性能が高まる。
 このように、分離された異物が自然風により効率的に排出されるので、異物の除去という定期的なメンテナンスが不要となる。
 [実施例]
 <排出促進面の角度の比較試験(カバー形状:円筒形状)>
 排出促進面10の角度Dと排出性能との関係を確認するために以下の試験を行った。
 排出促進部11の効果を見るために、分離された異物がどれだけ排出されたかを示す指標を定めた。指標は、「10分間排出率」と定義した。すなわち、10分間排出率[%]=E/M×100とする。ここで、10分間で排出口12から排出された異物の量をE[g]、分離室15に投入した異物の規定量をM[g]とする。そして、以下の比較試験を実施した。
 10分間排出率の算出において、10分間で排出口12から排出された異物の量E[g]を計測した。そのために、予め分離室15に規定量M[g]の異物(本試験においては、φ1mmの発泡ビーズを使用)を投入し、本実施の形態のサイクロン分離装置に規定の風量を流した上で、本実施の形態のサイクロン分離装置に横から一定の風速となるように横風を与えた。この時、10分間で排出口12から排出された異物の量E[g]を計測した。そして、10分間で排出口12から排出された異物の量E[g]から上述の式で10分間排出率を算出した。
 比較試験として、以下の三つの例を実施した。なお、前述のように排出促進面10の角度は、いずれも排出口12の面25に対する角度である。
 排出促進部11以外の構成は3例とも同じ構成である。試験条件として、本装置に流す風量を300[m3/h]、規定量M=1.0[g]とした。
 (実施例1)
 第1の例として、排出促進部11を設け、排出促進面10の角度はD=49度とした。
 (実施例2)
 第2の例として、排出促進部11を設け、排出促進面10の角度はD=30度とした。
 (比較例)
 第3の例として、排出促進部11は設けず、本体の側面27下部に排出口12を設けたものである(D=0度)。
 <比較結果>
 結果を図5に示す。グラフの横軸は横風の風速を表す。横風は、上述したように、装置に対して横から流れる風のことをいう。どれも風速が速くなると、10分間排出率が上昇している。比較例において、風速1.5[m/s]以下では0[%]、2.0[m/s]では0.1[%]、2.5[m/s]では0.5[%]となっている。本実施の形態の実施例2は、風速1[m/s]で5[%]、1.5[m/s]で30[%]である。比較例と実施例2を比べても、本実施の形態の排出促進部11では、分離された異物の排出が確実に行われていることが確認できている。
 さらに、実施例1と実施例2を比較すると、実施例1の排出率が高いことから、実施例1の性能が高いことが解る。この結果から、排出促進面10の角度Dは、ある程度大きいほうが良いと考える。実使用上は、D=30~80度、より望ましくは50度前後が望ましい。
 なお、排出促進面10の高さ方向(排出口12の面と垂直方向)の長さは、長い方が望ましく、少なくとも、排出口12の短辺の長さの2倍あるとよい。本実施例では、2.5倍となっている。
 (第2の実施の形態)
 以下、第2の実施の形態における換気口フード1を説明する。第1の実施の形態の構成・作用と同じ部分については説明を省略する。
 図6に示すように、本実施の形態の換気口フード1は、カバー3の形状を直方体形状としたものである。カバー3を固定するため、ベース板4も四角形状としている。また、第1の実施の形態の突出板5に替えて、L型柱21を備えている。そして、ベース板4とカバー3は、ベース板4のコーナ部において4本のL型柱21で固定している。その他の構成は実施の形態1と同様である。
 2本のL型柱21の間には流入口7が開口している。装置内に大きな虫や鳥類が侵入しないよう、固定羽根8よりも外周側または流入口7の少なくとも一方には網を設けてもよい。
 本実施の形態においても、排出口12は排出促進部11の下部に位置し、二つの排出促進面10によって挟まれた構成である。カバー3の四つの側面27のうち一つの面が下部にくるように配置している。下部に位置した側面27、すなわち最下部の面29の中央付近に排出口12を設けた。なお、排出口12の位置は中央付近に限らず、左右どちらか一方にずらしてもよい。
 図7は、本実施の形態における排出促進部11の断面図である。本実施の形態において、排出促進面10は、傾斜角度を連続して変化させたものである。排出促進面10の角度は、D=20~80度の範囲で変化させるのが好ましく、本実施の形態では、D=30~75度の範囲で変化させている。具体的には、カバー3の側面27と接する側の傾斜面がD=30度であり、排出口12と接する側の傾斜面がD=75度である。
 排出機構について説明をする。自然風が排出促進面10に衝突すると、傾斜面(排出促進面10)に沿って排出口12へ向かう。排出口12付近では、元々の自然風と排出促進面10の傾斜に沿って流れる気流とが合流し、排出口12付近では周囲の自然風の風速よりも早い風速となる。そして、排出口12の外側の静圧が低下し、異物の排出が促進される。
 本実施の形態では、排出促進面10の角度Dが側面27から遠ざかるにつれて徐々に大きくなる形状としているため、自然風がスムーズに向きを変えることができる。すなわち、自然風の勢いを弱めずに、排出口12の外側で斜め下方向へ指向性を持った気流へと変化させることができる。これにより、排出口12の外側での気流をより強くすることができるので、異物の排出性能をさらに高めることができる。なお、排出促進面10を角度の異なる複数の面の組合せとしてもよい。その際は、カバー3の側面27から排出口12に向けて、排出促進面10の角度Dを徐々に大きくすればよい。例えば、角度の異なる3つの面を用いて排出促進面を構成する場合、カバー3と接する面はD=30度、中間の面はD=50度、排出口12と接する面はD=75度とすると、上述と同じように、排出促進効果を引き出し、排出性能を高めることができる。
 もし、本実施の形態において、排出促進部11を設けない場合、すなわちカバー3の側面27の四つの面のうち最下部の面29に排出口12となる穴だけを開けた場合、左右の側面30は横風に対して垂直にたっているため、自然風はカバー3の左右の側面30に衝突して、勢いを失ってしまう。つまり、排出口12の外側では下面に沿って流れる自然風しか異物の排出に寄与しないため、自然風がかなり強く吹かないと異物の排出ができない。
 しかし、本発明のように排出促進部11を設けると、排出口12の外側では部分的に風速を速めることができる。自然風を活用して静圧を低下させて、排出促進部11内部の異物を排出口12から誘引することができるので、筐体22内部で分離した異物が排出されやすくなる。
 なお、正面側から排出促進部11が見えないように、排出促進部11を覆う化粧板を本体正面に設けても良い。その際、排出促進部11を構成する正面側の面は化粧板の面と兼ねても良い。
 また、角度を変化させた排出促進面10は、本実施の形態のようにカバー3が四角形状であっても実施の形態1のように丸型形状であっても、その効果は発揮される。
 [実施例]
 <排出促進面の角度の比較試験(カバー形状:角型形状)>
 カバー3の形状が四角い角型形状において、角度Dを変化させた場合の排出性能の比較を実施した。排出性能の試験方法は、実施の形態1の実施例で示した10分間排出率を用いた。
 排出促進面の角度は変化させず、一つの角度のみとし、以下の四つの例を実施した。
 排出促進部11以外の構成について、四つの例はともに同じ構成である。試験条件は、実施の形態1の実施例と同じく、本装置に流す風量を300[m3/h]、規定量M=1.0[g]とした。
 (比較例1)
 第1の例では、排出促進面10の角度をD=30度とした。
 (比較例2)
 第2の例では、排出促進面10の角度をD=45度とした。
 (比較例3)
 第3の例では、排出促進面10の角度をD=60度とした。
 (比較例4)
 第4の例では、排出促進面10の角度をD=75度とした。
 <比較結果>
 結果を図8に示す。グラフの横軸は横風の風速を示す。比較例1では、D=30度において、風速1.0~2.0[m/s]の範囲内となり、他の比較例よりも10分間排出率が低い値となった。
 風速1.0~1.5[m/s]の範囲内では、排出促進面10の角度Dが大きくなるほど、10分間排出率が良くなる傾向となった。
 風速2.0[m/s]においては、比較例2、3のD=45、60度が最も良く、比較例4のD=75度まで大きくなると、低下傾向となった。
 このことから、以下のような考察をした。すなわち、風速が低い(1.0~1.5[m/s])時は、角度Dが大きくても気流の乱れが少なく、排出口近傍での風速を早められ、10分間排出率が高い値になるものと考える。風速が大きく(2.0[m/s])、かつ角度Dが大きい場合、気流が乱れ、排出口近傍で風速が十分に速まらなく、10分間排出率が低下するものと考える。
 (実施例)
 このような考察から、風速が弱くても強くても10分間排出率が高くなるように、排出促進部11は、第2の実施の形態で示した構成、すなわち徐々に角度Dを大きくする構成とした。以下にその実施例を示す。
 排出促進面10は、角度Dの異なる三つの面により構成した。カバー3と接する側の面をD=30度、中間の面をD=45度、排出口12と接する側の面をD=75度として、上記比較試験と同様の方法で試験を行った。結果を図8に示す。
 本実施の形態の実施例は、風速1.0~2.0[m/s]の全ての範囲で、上記4例の比較例よりも10分間排出率が高くなった(優れた結果となった)。このことから、横風が小さい時でも大きい時でも、排出口12近傍で気流の乱れを作らず、十分に風速を速めることができたため、全ての範囲における10分間排出率が向上したと考えられる。
 (第3の実施の形態)
 第1の実施の形態、第2の実施の形態の換気口フード1を例としたサイクロン分離装置は、旋回流の進行方向が逆転する反転型のものである。本実施の形態では、旋回流の進行方向が変わらない軸流型のサイクロン分離装置の一例について説明する。
 図9に本実施の形態のサイクロン分離装置の外観図を示す。サイクロン分離装置26の本体は円筒形状のカバー3で覆われている。円筒形状の底面がカバー3の正面側に位置している。カバー3正面の中央に開口を設け、ここが流入口7となる。本体側面27の下部には排出促進部11を設け、排出促進部11の下部には異物を装置外へ排出する排出口12を備えている。
 背面側に位置する円筒形状の底面には、流出管2を備える。
 図10は本実施の形態のサイクロン分離装置26の断面図である。流入口7の近傍には、複数の固定羽根8を円形状に配置している。各固定羽根8は中心軸6に向けて斜めに配置されているので、固定羽根8を通過した気流は旋回気流となる。
 固定羽根8の外周部には、空間分割板13を設けている。空間分割板13は本体の側面27と平行に、かつ間隔を開けて設けられている。空間分割板13と固定羽根8に挟まれた空間は旋回室14、カバー3内の残りの空間は分離室15となる。
 なお、図10の断面図において、空間分割板13をさらに背面側に向けて延長し、加えて流出管2を本体内部に延長させ、さらに流出管2の端部を空間分割板13内部まで延長させても良い。これにより、空間分割板13内で外周側に移動している異物が流出管2へ流れにくくなり、分離性能が向上する。
 流入口7より流入した空気は、固定羽根8によって旋回気流となり、旋回室14を通過する。その後、分離室15を通過し、流出管2を通り、流出口9から装置外へ流れ出る。
 空気と共に流入した異物は、遠心力により空間分割板13側に移動する。空間分割板13より流出管2側では、分離室15内の外周側、つまりカバー3側に移動し、旋回を続ける。排出促進部11は、実施の形態1、2と同様の構成を備えている。すなわち、図9に示すようにカバー3の正面側から背面側に向けて細長いスリット形状を有している。また、排出口12の長辺側の2辺を挟むように左右対称に排出促進面10を設けている。排出促進面10は本体内に向かって広がるように傾斜している。排出促進部11は排出口12を含む面と、二つの排出促進面10と別の二面28で構成される。この場合、別の二面28は図10に示すように傾斜していても、図10とは異なりカバー3の側面27に対して垂直であってもよい。
 排出促進部11は排出口12よりも幅の広い開口31を備えるので、分離室15内を移動する異物は、開口31により、排出促進部11に集まりやすくなっている。開口31は、二つの排出促進面10の端部と別の二面28の端部で囲まれた四角形の開口である。また、排出促進部11にある異物は、実施の形態1で説明した排出口12の外側を流れる気流の作用により、スムーズに排出される。
 以上説明したように、本発明のサイクロン分離装置は、筐体に空気を流入させ、旋回気流を発生させる流入口と、筐体の背面に設けて空気を筐体の外へ流出させる流出口を備えている。サイクロン分離装置は、また、筐体の内部を筐体の側面に近い外周側と筐体の中心部を含む内周側とに仕切る空間分割板によって形成された分離室と旋回室とを備えている。サイクロン分離装置は、また、分離室に対して重力方向の下方となる位置に配置され、分離室内部と筐体外とを連通させる排出口とを備えている。また、サイクロン分離装置は、筐体の側面の下部に筐体の内外において傾斜面を有する排出促進部を備える。そして、排出口は、排出促進部の先端部に配置されている。
 これにより、分離室内で分離された異物は、筐体の内側において、傾斜面に沿って滑り落ち、先端部の排出口に集まりやすくなる。加えて、筐体の外側において、屋外で吹いている風が排出促進部に衝突し傾斜面に沿う気流が発生する。排出促進部の先端部では、自然風に加えて自然風が排出促進部に衝突して傾斜面に沿って流れる気流が合流するため、風速が早くなる。この時、排出口の外側では全圧に変化はないので、排出口の外側で風速が早くなると、動圧が増加して、静圧が低下する(なぜなら、ベルヌーイの定理によると全圧が一定の場合、動圧が増加した分、静圧が低下するからである)。つまり、排出口において、筐体内側の静圧に比べて筐体外側の静圧が下回り、分離室内の異物は筐体外へ引き寄せられ、サイクロン分離装置外へ排出される。
 以上のように、排出促進部の先端部に排出口を備えることで、排出促進部に衝突した自然風を排出促進部の傾斜面に沿わせて排出口の外側に集中させて流すことができので、分離した異物を排出口から効率よく排出することができる。
 また、サイクロン分離装置では、排出口は筐体の正面から背面方向へ向けた細長のスリット形状としている。加えて、排出促進部の外側で傾斜をなす排出促進面は、排出口の長辺側の2辺を挟んで左右対称に備えた構成にしてもよい。
 これにより、排出口の右側と左側(図3における左右方向)どちらから自然風が吹いたとしても、排出促進部での作用を同じように発揮させて、分離室内の分離された異物を排出することができる。
 また、サイクロン分離装置では、排出促進部の外側で傾斜をなす排出促進面は、傾斜角度の異なる複数の面または、傾斜角度を連続して変化させた曲面としてもよい。
 これにより、排出促進面に衝突させて方向を変えた自然風を排出口に向かわせることができる。排出促進面に衝突した自然風の向きを徐々に変えることができるため、風のエネルギーを軽減させることがない。風のエネルギーが弱まらないため、排出口の外側の静圧を低下させて排出口から異物の排出を効率よく行える。
 また、サイクロン分離装置は、排出口の長辺2辺を含む面と排出促進面とがなす角度を排出促進面の角度Dと定義し、排出促進面が長辺2辺を含む面と接する箇所において角度D=45~90度の範囲内とした構成にしてもよい。
 これにより、排出促進面に衝突した自然風を排出口の外側に集めることができる。すなわち、排出口の外側における自然風を周囲の自然風よりも強くすることができるため、排出口外側の静圧を低下させる効果を増強して、排出口からの異物の排出を促進させることができる。
 また、サイクロン分離装置は、流入口には複数の羽根板を有し、羽根板は一つの軸の周りに回転対称に配置する構成にしてもよい。
 これにより、本装置内に旋回気流が発生させることが可能となるので、異物を旋回させて遠心力を与えることができる。すなわち、異物を外周側へ移動させることができ、異物を分離室へ分離することができる。
 また、サイクロン分離装置では、分離室は、旋回室を囲む環状であってよい。また、正面側に構成される分離室底面と旋回室において正面側に構成される旋回室底面は、略同一面上に位置してよい。また、分離室と旋回室は空間分割板に設けた貫通孔によって互いに連通した構成にしてもよい。
 これにより、分離室内にも旋回室と同じように旋回気流が発生する。排出口から流入した異物は、旋回気流によって分離室内で旋回するため、分離室内において外周側へ移動することになる。そして、分離室側の異物が貫通孔から旋回室へ流入するのを抑制することができる。また、旋回室と分離室の底面を略同一面とすることで、本装置の厚み(筐体の正面と背面の厚み)を抑えることができ、装置を小型化することができる。
 また、サイクロン分離装置では、流入口は筐体の側面において流出口を設けた背面側に備えてよい。また、空間分割板は正面側に備えてよい。流出口は旋回室内へ突出した内筒管と連通し、内筒管の端部を側面視で空間分割板内部まで延設した構成にしてもよい。
 これにより、旋回気流は、流入直後は筐体の正面側へ向かい、旋回室内で進行方向が180度逆転し、内筒管を通って流出口へ向かう流れとなる。このことで、流入口から流入した異物を旋回気流により外周方向へ移動させながら、正面側へ速やかに移動させることができるので、流出口へ異物が流れ込むことを抑制することができ、本装置の分離性能を向上させることができる。
 本発明に係るサイクロン分離装置は、速やかに異物を排出口近傍に集めることができ、筐体側面から突出した傾斜面に自然風が衝突することで、分離室内の異物を装置外へ排出する効果を高めることができものであるので、住宅内の換気で屋外の空気を取り込む住宅外壁の給気口部分に使用される換気口フード等として有用である。
1  換気口フード
2  流出管
3  カバー
4  ベース板
5  突出板
6  中心軸
7  流入口
8  固定羽根
9  流出口
10  排出促進面
11  排出促進部
12  排出口
13  空間分割板
14  旋回室
15  分離室
16  貫通孔
17  旋回室底面
18  分離室底面
19  内筒管
20  ガイド部材
21  L型柱
22  筐体
23  案内面
24  先端部
25  二つの長辺を含む面
26  サイクロン分離装置
27  側面
28  別の二面
29  最下部の面
30  左右の側面
31  開口

Claims (7)

  1. 筐体に空気を流入させ、旋回気流を発生させる流入口と、
    前記筐体の背面に設けて空気を前記筐体の外へ流出させる流出口と、
    前記筐体の内部を前記筐体の側面に近い外周側と前記筐体の中心部を含む内周側とに仕切る空間分割板によって形成された分離室と旋回室と、
    前記分離室に対して重力方向の下方となる位置に配置され、前記分離室内部と前記筐体外とを連通させる排出口と、
    前記筐体の側面の下部に筐体の内外において傾斜面を有する排出促進部と、を備え、
    前記排出促進部の先端部に前記排出口が配置されたサイクロン分離装置。
  2. 前記排出口は前記筐体の正面から背面方向へ向けた細長のスリット形状であり、前記排出促進部の外側の傾斜面である排出促進面を前記排出口の長辺側の2辺を挟んで左右対称に備えた請求項1記載のサイクロン分離装置。
  3. 前記排出促進面は、傾斜角度の異なる複数の面または、傾斜角度が連続して変化する曲面とした請求項2記載のサイクロン分離装置。
  4. 前記排出口の長辺2辺を含む面と前記排出促進面がなす角度を排出促進面の角度Dと定義し、前記排出促進面が前記長辺2辺を含む面と接する箇所において、前記排出促進面の角度をD=45~90度の範囲内とした請求項3記載のサイクロン分離装置。
  5. 前記流入口には複数の羽根板を有し、前記羽根板を一つの軸の周りに回転対称に配置した請求項1に記載のサイクロン分離装置。
  6. 前記分離室は前記旋回室を囲む環状であり、前記正面側に構成される分離室底面と、前記旋回室において前記正面側に構成される旋回室底面は略同一面上に位置する構成とし、前記分離室と旋回室は該空間分割板に設けた貫通孔によって互いに連通した請求項1に記載のサイクロン分離装置。
  7. 前記流入口は前記筐体の側面において前記流出口を設けた前記背面側に備え、前記空間分割板は前記正面側に備え、前記流出口は前記旋回室内へ突出した内筒管と連通し、前記内筒管の端部は側面視で前記空間分割板内部まで延設した請求項1に記載のサイクロン分離装置。
PCT/JP2018/043677 2017-12-05 2018-11-28 サイクロン分離装置 WO2019111773A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017232996 2017-12-05
JP2017-232996 2017-12-05
JP2018114389A JP6739008B2 (ja) 2017-12-05 2018-06-15 サイクロン分離装置
JP2018-114389 2018-06-15

Publications (1)

Publication Number Publication Date
WO2019111773A1 true WO2019111773A1 (ja) 2019-06-13

Family

ID=66749920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043677 WO2019111773A1 (ja) 2017-12-05 2018-11-28 サイクロン分離装置

Country Status (1)

Country Link
WO (1) WO2019111773A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020049407A (ja) * 2018-09-26 2020-04-02 パナソニックIpマネジメント株式会社 サイクロン分離装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1248076A (fr) * 1959-10-29 1960-12-09 Lautrette Et Cie Perfectionnements apportés aux dispositifs pour dépoussiérer les gaz par centrifugation
JPS4726065U (ja) * 1971-04-08 1972-11-24
JPS5644854U (ja) * 1979-09-17 1981-04-22
JPS62185867U (ja) * 1986-05-19 1987-11-26
JP2000070632A (ja) * 1998-09-04 2000-03-07 Sharp Corp 旋回式気液分離器
JP2014124573A (ja) * 2012-12-26 2014-07-07 Daikin Ind Ltd 気液分離器
JP2017154113A (ja) * 2016-03-04 2017-09-07 国立大学法人北見工業大学 サイクロン分離装置及び住宅換気用給気フード
JP2018034146A (ja) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 サイクロン分離装置
JP2018051506A (ja) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 サイクロン分離装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1248076A (fr) * 1959-10-29 1960-12-09 Lautrette Et Cie Perfectionnements apportés aux dispositifs pour dépoussiérer les gaz par centrifugation
JPS4726065U (ja) * 1971-04-08 1972-11-24
JPS5644854U (ja) * 1979-09-17 1981-04-22
JPS62185867U (ja) * 1986-05-19 1987-11-26
JP2000070632A (ja) * 1998-09-04 2000-03-07 Sharp Corp 旋回式気液分離器
JP2014124573A (ja) * 2012-12-26 2014-07-07 Daikin Ind Ltd 気液分離器
JP2017154113A (ja) * 2016-03-04 2017-09-07 国立大学法人北見工業大学 サイクロン分離装置及び住宅換気用給気フード
JP2018034146A (ja) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 サイクロン分離装置
JP2018051506A (ja) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 サイクロン分離装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020049407A (ja) * 2018-09-26 2020-04-02 パナソニックIpマネジメント株式会社 サイクロン分離装置
WO2020066294A1 (ja) * 2018-09-26 2020-04-02 パナソニックIpマネジメント株式会社 サイクロン分離装置
JP7236605B2 (ja) 2018-09-26 2023-03-10 パナソニックIpマネジメント株式会社 サイクロン分離装置

Similar Documents

Publication Publication Date Title
JP6906150B2 (ja) サイクロン分離装置
JP2019098318A5 (ja)
CN109641222B (zh) 旋风式分离装置
KR101625828B1 (ko) 스월러팬을 구비한 배기장치 모듈
JP6588091B2 (ja) 空気清浄機及びその空気流路構成
JP6387535B2 (ja) サイクロン分離装置
JP2023052954A (ja) サイクロン分離装置
KR20110105739A (ko) 스월러를 이용한 레인지 후드
JP6721362B2 (ja) サイクロン分離装置及び住宅換気用給気フード
KR20160069500A (ko) 스월러팬을 구비한 배기장치 모듈
WO2019111773A1 (ja) サイクロン分離装置
JP6814933B2 (ja) 換気口フード
WO2020213242A1 (ja) サイクロン分離装置
JP6928794B2 (ja) サイクロン分離装置
JP5509378B1 (ja) 風力発電装置
WO2018143326A1 (ja) 換気口フード
JPWO2019230258A1 (ja) 分離装置
JP2021164924A (ja) サイクロン分離装置
JP6421324B2 (ja) 空気清浄装置
JPH08285340A (ja) 人工竜巻式局所排気装置
JP2013104600A (ja) イオン発生装置
KR101213261B1 (ko) 선풍기
JP2019027657A (ja) 換気口フード
JP2019126783A (ja) サイクロン分離装置
JP2018176061A (ja) サイクロン分離装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885723

Country of ref document: EP

Kind code of ref document: A1