WO2019111523A1 - 表面処理システムの制御方法 - Google Patents

表面処理システムの制御方法 Download PDF

Info

Publication number
WO2019111523A1
WO2019111523A1 PCT/JP2018/037571 JP2018037571W WO2019111523A1 WO 2019111523 A1 WO2019111523 A1 WO 2019111523A1 JP 2018037571 W JP2018037571 W JP 2018037571W WO 2019111523 A1 WO2019111523 A1 WO 2019111523A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
robot
processing
machine
surface treatment
Prior art date
Application number
PCT/JP2018/037571
Other languages
English (en)
French (fr)
Inventor
志波英男
寺本靖人
中山玄二
鈴木浩之
Original Assignee
株式会社大気社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大気社 filed Critical 株式会社大気社
Priority to US16/615,244 priority Critical patent/US20200198154A1/en
Priority to CN201880035908.2A priority patent/CN110709214B/zh
Priority to MX2019013513A priority patent/MX2019013513A/es
Publication of WO2019111523A1 publication Critical patent/WO2019111523A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • B25J9/162Mobile manipulator, movable base with manipulator arm mounted on it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/005Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 mounted on vehicles or designed to apply a liquid on a very large surface, e.g. on the road, on the surface of large containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/70Arrangements for moving spray heads automatically to or from the working position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • B08B3/024Cleaning by means of spray elements moving over the surface to be cleaned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • B25J11/0065Polishing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0075Manipulators for painting or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • B25J11/0085Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • B05B12/122Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus responsive to presence or shape of target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • B05B12/124Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus responsive to distance between spray apparatus and target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0431Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with spray heads moved by robots or articulated arms, e.g. for applying liquid or other fluent material to 3D-surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0436Installations or apparatus for applying liquid or other fluent material to elongated bodies, e.g. light poles, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/04Headstocks; Working-spindles; Features relating thereto

Definitions

  • the present invention relates to a control method of a surface treatment system that performs various surface treatments such as cleaning treatment, coating removal treatment, polishing treatment, and painting treatment on the surface of an aircraft or the like. More specifically, according to the present invention, a processing machine for processing the surface of an object is held at the tip of a working arm of a working robot, and the processing robot moves the processing machine relative to the surface of the object by the operation of the working robot.
  • a self-propelled bogie is provided with a non-track type work machine having a work robot mounted thereon, and the work machine is equipped with a robot moving device for moving the work robot at least in the height direction with respect to the self-propelled bogie
  • the present invention relates to a control method of a surface treatment system in which a movement device and a work robot are controlled by a control device.
  • a working machine 31 for treatment work is a self-propelled carriage 34 traveling along a guide wire 33 installed on a floor 32. Is equipped.
  • the work machine 31 includes a rotary column 35 erected on the self-propelled carriage 34 and an articulated robot arm 36 that moves up and down along the rotary column 35 in a horizontal posture.
  • a processor 37 for processing the outer surface is mounted at the tip of the robot arm 36.
  • a rail 38 is extended on the ceiling of the building in correspondence with the accommodated aircraft W, and the movable boom 39 capable of following movement along the rail 38 and the upper end of the rotary column 35 are utility booms 40 are linked.
  • the utility boom 40 transfers high-pressure water for cleaning, a power supply, a control data line, an air line, a decompression line, and the like from the building ceiling to the work machine 31.
  • the moving path of the working machine 31 is defined by the guide wire 33 extended to the floor and the rail 38 extended to the ceiling, so It is difficult to flexibly cope with differences in the size and shape of the aircraft W.
  • the main object of the present invention is to solve the above-mentioned problems by rationalizing the control method of the system.
  • a first feature of the present invention relates to a control method of a surface treatment system, and the feature is that Holding a processor for processing the surface of the object on the tip of the work arm of the work robot; To process the surface of the object by the processor while moving the processor relative to the surface of the object by the operation of the work robot.
  • Providing a non-tracking type work machine having the work robot mounted on a self-propelled carriage The work machine is equipped with a robot moving device for moving the work robot at least in the height direction with respect to the self-propelled carriage, A control method of a surface treatment system, wherein a control device controls each of the self-propelled carriage, the robot movement device, and the work robot, Taking a picture of a work area in which the object and the work machine exist by a position measurement camera, The control device recognizes the relative positional relationship between the object and the work machine based on imaging data of the position measurement camera, By controlling the self-propelled carriage based on the recognized relative positional relationship, the work machine is moved to a designated work position in the vicinity of the object.
  • the control device controls the self-propelled carriage based on the relative positional relationship between the object to be recognized based on the imaging data of the position measurement camera and the work machine. Is moved to a designated work position in the vicinity of the object (i.e., a work machine not subjected to the restriction of the movement path by the guide wire 33 or the guide such as the rail 38 shown in Patent Document 1). For this reason, regardless of the size and the shape of the processing target object, the work machine can be flexibly moved to the most appropriate work position for each part of the processing target object.
  • the facility cost can be greatly reduced by eliminating the need for a facility for the guide wire such as the guide wire or the rail, which increases the installation distance. Therefore, coupled with the fact that the versatility of the system can be enhanced, the cost advantage of the system can be effectively enhanced.
  • a second feature of the present invention specifies an embodiment suitable for the implementation of the first feature, the feature being The control device recognizes the relative positional relationship based on the imaging data and the three-dimensional shape data of the object input.
  • the control device measures the position of the work machine to move to the designated work position near the object by controlling the self-propelled carriage based on the relative positional relationship between the object and the work machine.
  • the relative positional relationship between the object and the work machine is recognized based on the imaging data of the camera for the camera and the three-dimensional shape data of the input object. Therefore, it is possible to more accurately and accurately move the work machine to the most appropriate work position for each part of the object to be processed, as compared with recognizing the relative positional relationship based only on the shooting data of the position measurement camera. it can.
  • the third feature of the present invention specifies an embodiment suitable for the implementation of the first or second feature, the feature being In the movement of the work machine to the designated work position, a movement distance sensor mounted on the work machine measures a distance between the work machine and the object; The control device controls the self-propelled bogie based on the relative positional relationship and measurement information of the movement distance sensor when the work machine moves to the designated work position.
  • the control device measures the relative positional relationship between the object recognized based on the imaging data of the position measurement camera and the work machine, and the measurement of the movement distance sensor provided on the work machine.
  • the work vehicle is moved to a designated work position in the vicinity of the object by controlling the self-propelled carriage based on the information (that is, the information on the distance between the object and the information). Therefore, as compared with moving the work machine based only on the relative positional relationship between the object and the work machine to be recognized based on the imaging data of the position measurement camera, the work machine is most appropriate for each part of the object to be processed. It is possible to move to the work position more accurately and accurately.
  • the fourth feature of the present invention specifies an embodiment suitable for implementing any of the first to third features, and the feature is that The control device moves the work machine to the designated work position, and then controls the tilt adjustment device mounted on the self-propelled carriage based on detection information of a level sensor provided on the work machine. The point is that the self-propelled cart is adjusted to a horizontal position.
  • the control device adjusts the self-propelled cart to the horizontal posture based on the detection information of the level sensor. Therefore, it is ensured that the action position of the processing machine with respect to the object to be processed becomes inappropriate or the stability of the working machine is lowered when the working robot is lifted by the robot movement device due to the tilt of the self-propelled carriage. It is possible to prevent the surface treatment operation and to improve the safety of the operation.
  • the fifth characterizing feature of the present invention specifies an embodiment suitable for any one of the first to fourth characterizing features, and the feature is that
  • the control device moves the work machine to the designated work position, and then controls the robot movement device based on the input three-dimensional shape data of the object to cause the work robot to be processed by the processing machine.
  • the point is to move the object to a position where surface treatment is possible.
  • the control device is based on three-dimensional shape data of the object to be processed to move the work robot to a position where surface processing of the object by the processing machine is possible by the operation of the robot movement device. Control the robot movement device. Therefore, regardless of the size and the shape of the processing target object, the working robot can be accurately and accurately moved to a position where the surface processing of the object by the processing machine can be performed.
  • the sixth feature of the present invention specifies an embodiment suitable for the implementation of the fifth feature, the feature being The distance sensor for movement which moves with the work robot by the operation of the robot movement device measures the distance to the object, The control device controls the robot movement device based on the three-dimensional shape data and the measurement information of the movement distance sensor in the movement of the work robot by the robot movement device.
  • the control device controls the robot movement device based on the three-dimensional shape data of the object and the measurement information of the movement distance sensor (that is, the information regarding the distance to the object).
  • the work robot is moved to a position where surface processing of the object by the processor is possible. Therefore, the working robot can be more accurately moved to a position where surface processing of the object by the processing machine can be performed, as compared to controlling the robot movement device based only on three-dimensional shape data of the object.
  • a seventh feature of the present invention specifies an embodiment suitable for implementing any of the first to sixth features, and the feature is:
  • the control device moves the processor relative to the surface of the object by controlling the work robot based on the input three-dimensional shape data of the object in the surface processing of the object by the processor. The point is to
  • control device moves the processing machine with respect to the surface of the object by controlling the work robot based on the input three-dimensional shape data of the object. Therefore, regardless of the size and the shape of the object to be processed, the processor can be accurately and appropriately moved relative to the surface of the object to be processed in the surface treatment of the object by the processor.
  • the eighth feature of the present invention specifies an embodiment suitable for the implementation of the seventh feature, the feature being In the surface treatment of the object by the processor, a processing distance sensor provided on the working arm measures the distance to the surface of the object;
  • the control device controls the work robot by controlling the work robot based on the three-dimensional shape data and measurement information of the processing distance sensor in the surface processing of the object by the processing device. It is in the point of moving relative to the surface.
  • the control device includes the three-dimensional shape data of the object and the processing distance sensor provided on the work arm to move the processing machine relative to the surface of the object by the operation of the work robot.
  • the work robot is controlled based on the measurement information of (i.e., information on the distance to the object surface). Therefore, compared with controlling the work robot based on only the three-dimensional shape data of the object, the processor can be moved more accurately and appropriately with respect to the surface of the object to be processed in the surface processing of the object by the processor.
  • the ninth characterizing feature of the present invention specifies an embodiment suitable for carrying out any of the first to eighth characterizing features, and the feature is that In the surface treatment of the object by the processor, a protrusion sensor mounted on the working arm detects the presence or absence of a protrusion on the object, In the surface treatment of the object by the processing machine, the control device controls the working robot based on the detection information of the projection sensor to cause the processing machine to detour relative to the projection. is there.
  • the control device controls the work robot based on the detection information (that is, the presence / absence information of the protrusion) of the protrusion sensor mounted on the work arm.
  • the processing machine is detoured with respect to the protrusion. Therefore, it is possible to reliably avoid the trouble that the processor contacts or collides with the protrusion, and the surface treatment of the object by the processor can be smoothly advanced.
  • a tenth characterizing feature of the present invention specifies an embodiment suitable for implementing any of the first to ninth characterizing features, and the feature is that
  • a processing distance sensor mounted on the working arm measures the distance to each of a plurality of measurement points on the surface of the object
  • the control device controls the work robot based on measurement information of the processing distance sensor in the surface processing of the object by the processing device to adjust the attitude of the processing device with respect to the surface of the object. It is in.
  • the processing distance sensor equipped on the work arm of the work robot the work arm and the object surface portion where the plurality of measurement points exist based on the measurement information. You can know the relative attitude relationship with.
  • the control device is based on measurement information of the processing distance sensor provided on the work arm (ie, information on the distance to each of the plurality of measurement points).
  • the attitude of the processing machine held at the tip of the work arm with respect to the object surface is adjusted. Therefore, regardless of the surface shape of the object being a curved surface or the like, the surface of the object can be processed by the processing machine while maintaining the processing machine at an optimal relative posture with respect to the object surface. The quality can be obtained stably.
  • FIG. 1 is a perspective view showing a working state of surface treatment work for a large aircraft.
  • FIG. 2 is a front view showing the working condition of the surface treatment work for the large aircraft.
  • FIG. 3 is a perspective view showing the working condition of the surface treatment operation for the small aircraft.
  • FIG. 4 is a front view showing the working condition of the surface treatment operation for the small aircraft.
  • FIG. 5 is a perspective view of the height work machine in a state in which each of the elevating device and the pushing-out device is contracted.
  • FIG. 6 is a perspective view of the working machine with the lifting device and the pushing-out device extended.
  • FIG. 7 is a perspective view of the low-place work machine with the lifting device contracted.
  • FIG. 8 is a perspective view of the low-place work machine with the lifting device extended.
  • FIG. 1 is a perspective view showing a working state of surface treatment work for a large aircraft.
  • FIG. 2 is a front view showing the working condition of the surface treatment work for the large aircraft.
  • FIG. 9 is a perspective view showing a state where the working machine is on standby.
  • FIG. 10 is a perspective view showing a state in which the work machine has been moved into the work area.
  • FIG. 11 is a perspective view showing a state where the work machine has been moved to a designated work position near the aircraft.
  • FIG. 12 is a perspective view showing the telescopic operation of the lifting device and the pushing device at the designated work position.
  • FIG. 13 is a front view showing the extension operation of the lifting device at the designated work position.
  • FIG. 14 is a plan view showing the extension operation of the pushing-out device at the designated work position.
  • FIG. 15 is a perspective view for explaining attitude control of the processing machine.
  • FIG. 16 is a perspective view for describing bypass control of the processing machine.
  • FIG. 17 is a control block diagram.
  • FIG. 18 is a front view showing a conventional aircraft surface treatment system.
  • FIGS. 1 to 4 shows a situation where a surface treatment operation is performed on the outer surface of the aircraft W in a building.
  • a surface treatment operation a plurality of types of surface treatments such as cleaning treatment, paint film peeling treatment, painting base treatment, polishing treatment, painting treatment, inspection treatment and the like are sequentially applied to the outer surface of the aircraft W.
  • a high-level work machine 1 and a low-level work machine 2 are disposed in a building housing the aircraft W to be treated.
  • the work machines 1 and 2 are equipped with work robots 3 and 4 which are capable of turning and equipped with articulated work arms 3a and 4a, respectively.
  • FIGS. 3 and 4 show the case where the processing target is a relatively small aircraft W.
  • processing work for high-level parts (for example, upper body, upper wing, vertical tail, etc.) of the aircraft W is carried out by the high-level work machine 1, and in parallel with this,
  • the work sharing mode such as carrying out the processing operation for the main part (for example, the lower side of the trunk, the lower side of the wing, etc.) by the low-place work machine 2
  • the aircraft W using both the high-place work machine 1 and Process the entire outer surface of the aircraft.
  • Each work machine 1, 2 is provided with a non-orbit type electric self-propelled carriage 5, 6.
  • each of the work machines 1 and 2 is a non-track type work machine.
  • the self-propelled carriages 5 and 6 of the working machines 1 and 2 can travel in any direction in the horizontal direction without changing the direction of the vehicle body (that is, the vehicle body posture in plan view). From these things, each working machine 1 and 2 can move quickly to any position on the floor in the building.
  • the self-propelled bogies 5 and 6 can change the direction of the vehicle body (the vehicle body posture in plan view) to any direction in the horizontal direction without changing the position of the vehicle body. As a result, at each position, each working machine 1, 2 can quickly change its orientation to any direction in the horizontal direction.
  • the self-propelled carriages 5 and 6 are also equipped with a tilt adjusting device 7 for adjusting the tilt of the vehicle body with respect to the horizontal direction.
  • a tilt adjusting device 7 for adjusting the tilt of the vehicle body with respect to the horizontal direction.
  • the working robots 3 and 4 are mounted on the self-propelled carriages 5 and 6 via the robot moving device X. Therefore, after moving each work machine 1, 2 to a work position near the aircraft W by traveling the self-propelled carts 5, 6, the work robot 3, 4 can be moved to the aircraft W by operating the robot movement device X. It is possible to move it to a position where the target portion of the aircraft W can be processed (ie, a position where the target portion on the surface of the aircraft W can be processed by the processor 8 held at the tip of the working arms 3a and 4a).
  • a telescopic tower elevator device 9 installed on a stand of a self-propelled carriage 5 and a telescopic tower in the elevator device 9
  • a telescopic arm type push-out device 10 mounted on a lift table 9b at the upper end of the portion 9a is provided.
  • the work robot 3 is mounted on a push-out table 10 b provided at the tip of the telescopic arm 10 a of the push-out device 10.
  • the lifting device 9 causes the work robot 3 to rise to a height at which work on the upper end portion of the vertical tail of the large aircraft W can be performed by causing the telescopic tower portion 9a to extend upward to the maximum extension state shown in FIG. be able to.
  • the pushing-out device 10 is a position at which work can be performed on the central portion in the widthwise direction of the upper portion of the large aircraft W by extending the expanding arm 10a horizontally to the maximum extending state shown in FIG. The working robot 3 can be pushed out in the horizontal direction.
  • the lifting device 9 and the pushing device 10 are both structured to extend and retract the telescopic tower 9a and the telescopic arm 10a by a servomotor via a transmission mechanism such as a rack and pinion mechanism or a ball screw mechanism. Therefore, the position of the work robot 3 relative to the aircraft W can be adjusted according to the shape of the aircraft W by operating the servomotors to adjust the extension amount of the telescopic tower 9a and the telescopic arm 10a.
  • the low-place work machine 2 is equipped with a telescopic boom type lifting device 11 on the table of the self-propelled carriage 6 as a robot moving device X.
  • the work robot 4 is mounted on a lift 11 b provided at the tip of the telescopic boom 11 a of the lift 11.
  • the lifting device 11 is also configured to extend and retract the telescopic boom 11a by a servomotor via a transmission mechanism such as a rack and pinion mechanism or a ball screw mechanism. Therefore, the position of the working robot 4 with respect to the aircraft W can be adjusted according to the body shape of the aircraft W by operating the servomotor and adjusting the extension amount of the telescopic boom 11a.
  • a transmission mechanism of each raising / lowering apparatus 9 and 11 and the pushing-out apparatus 10 not only a rack-and-pinion mechanism or a ball screw mechanism, the transmission mechanism of other various systems is employable.
  • the self-traveling carriages 5 and 6 are provided with a power supply connection 12 and a battery 13 is mounted. Then, the respective electric devices such as the self-propelled carriages 5 and 6 and the work robots 3 and 4 mounted on the self-propelled carriages 5 and 6, the lifting devices 9 and 11 and the pushing-out device 10 are connected to the power supply connection unit 12. It can be operated by either the power supplied from the power supply line or the power supplied from the battery 13.
  • the processing machine 8 to be held by the end (that is, the wrist) of the work arms 3a and 4b of the work robots 3 and 4 can be replaced according to the type of surface treatment to be performed.
  • Several types of processing machines 8 for example, chemical coating machines, washing water coating machines, putty sharpening machines, coating machines, etc.
  • each work machine 1, 2 a compressor for supplying compressed air to the processing machine 8 held by the work robots 3, 4 in the processing operation using compressed air, and the work robots 3, 4 in the painting process
  • Various supply source devices Y such as a tank and a pump for supplying the paint and the curing liquid to the processor 8 (painter) are also mounted.
  • the explosion-proof specification is employ
  • each working machine 1, 2 (see FIG. 17) is a laser type movement distance sensor S1 for measuring the distance between the work and the surrounding object. , 6 of the four corners, the push-out stand 10 b of the push-out device 10, the lift stand 11 b of the telescopic boom type lift device 11, etc.).
  • Each working machine 1 and 2 is also equipped with a level sensor S2 for measuring the level of the self-propelled carriages 5 and 6.
  • the laser processing distance sensor S3 for measuring the distance to the outer surface of the aircraft W and the outer surface of the aircraft W
  • a laser type projection sensor S4 or the like for detecting a projection is provided.
  • Each work machine 1, 2 is equipped with an on-vehicle controller 15.
  • the on-vehicle controller 15 controls the loading devices such as the self-propelled carriages 5 and 6 and the work robots 3 and 4.
  • a plurality of position measurement cameras C1 and C2 for photographing the area around the contained aircraft W are dispersedly installed in each part, and the general controller 16 Has been installed.
  • the in-vehicle controller 15 equipped in each work machine 1, 2 and the general controller 16 installed in the building are control devices that control the surface treatment system including both the work machines 1, 2.
  • each work area A has a size corresponding to a range in which the position measurement camera C1 can capture an image.
  • a plurality of processing sections K in a matrix arrangement are set in a state where the outer surface of the body is subdivided into a plurality of sections.
  • the setting of the processing sections K may be automatically performed by the integrated controller 16 based on the three-dimensional shape data Dw of the aircraft W obtained from design data of the aircraft W or the like.
  • Second step As shown in FIGS. 9 to 10, the work implement 1 is moved from the standby position outside the work area A to the area of any work area A by the manual operation of the general controller 16 or the on-vehicle controller 15.
  • manual operation to the general controller 16 or the on-vehicle controller 15 may be either remote manual operation using a remote controller or direct manual operation to the general controller 16 or the on-vehicle controller 15. Good.
  • the self-propelled carriage 5 of the work machine 1 is made to travel by the power supplied from the battery 13 without using the power supply connection unit 12.
  • the power supply connection portion 12 of the work implement 1 is connected with the power supply line drawn from the nearest power supply unit as securing of the working power.
  • ⁇ Third step> After this power supply connection, the three-dimensional shape data Dw of the aircraft W previously input to the general controller 16 and the photographing data Dc wirelessly transmitted to the general controller 16 from the position measurement camera C1 installed at the required position That is, based on the photographing data of the work area A in which a part of the aircraft W and the work machine 1 exist, the general controller 16 is made to recognize the relative positional relationship between the work machine 1 and the aircraft W.
  • a move command to move the work implement 1 to the designated work position P in the vicinity of the aircraft W is sent from the general controller 16 to the work implement 1
  • the on-board controller 15 of the above is wirelessly transmitted.
  • the on-board controller 15 of the work machine 1 controls the self-propelled carriage 5 to set the work machine 1 to the designated work position P in the vicinity of the aircraft W as shown in FIG. Automatically move to Further, along with that, the direction of the work machine 1 is automatically adjusted to the work direction to face the aircraft W.
  • the on-vehicle controller 15 In the automatic movement to the designated work position P, the on-vehicle controller 15 simultaneously operates the distance between the work machine 1 and the aircraft W based on the measurement information of the movement distance sensor S1 provided in the work machine 1. Monitor. Then, by this monitoring, the on-vehicle controller 15 designates the work machine 1 by adding correction to the control of the self-propelled carriage 5 based on the three-dimensional shape data Dw of the aircraft W and the imaging data Dc by the position measurement camera C1. The work position P is accurately stopped.
  • the on-vehicle controller 15 monitors the presence or absence of an obstacle around the work machine 1 based on the measurement information of the movement distance sensor S1 provided in the work machine 1. By this monitoring, when the presence of an obstacle is detected, the on-vehicle controller 15 stops the self-propelled carriage 5 to avoid a collision with the obstacle and issues an alarm notifying the presence of the obstacle.
  • the on-vehicle controller 15 controls the tilt adjusting device 7 based on the detection information of the level sensor S2, to substantially complete the self-propelled carriage 5 horizontal. Adjust to attitude.
  • the on-vehicle controller 15 After adjusting the levelness of the self-propelled carriage 5, the on-vehicle controller 15 is obtained by the three-dimensional shape data Dw of the aircraft W transmitted from the general controller 16 and the movement distance sensor S1 mounted on the push-out table 10. Based on the information on the distance between the aircraft W and the airframe of the aircraft W, as shown in FIGS. 12 to 14, the lift tower unit 9a of the lift device 9 is extended to raise the work robot 3 to the required height. Subsequently, the telescopic arm 10a of the pushing device 10 is extended to bring the work robot 3 close to the outer surface of the aircraft W.
  • the operation robot 3 in the work machine 1 is made to approach one of the processing sections K set on the outer surface of the aircraft W by the operations of the lifting device 9 and the pushing-out device 10.
  • the on-vehicle controller 15 performs work based on the three-dimensional shape data Dw of the aircraft W and distance information on the outer surface of the aircraft W obtained by the processing distance sensor S3 mounted on the work arm 3a of the work robot 3 By controlling the arm movement of the robot 3, the processor 8 held by the working arm 3 a is moved along the outer surface of the aircraft within the processing zone K while processing the outer surface of the aircraft W. Thereby, one processing zone K on the outer surface of the aircraft W is processed.
  • the on-vehicle controller 15 uses the processing distance sensor S3 mounted on the work arm 3a, as shown in FIG. For each of the measurement points G, the distance between the sensor S3 and the measurement point G is measured. Further, based on the measurement result, the on-vehicle controller 15 calculates the inclination of the airframe outer surface portion to be processed by the processor 8.
  • the on-vehicle controller 15 applies correction to the attitude control of the processor 8 based on the three-dimensional shape data Dw of the aircraft W based on the calculation result, thereby setting the processor 8 to each processing portion of the outer surface of the vehicle.
  • the processing action is performed while always maintaining the vertical posture.
  • the on-vehicle controller 15 detects the protrusion T of the aircraft W by the protrusion sensor S4 mounted on the work arm 3a in the movement of the processor 8 by the robot operation. It also has a function of controlling the work robot 3 to move the processing machine 8 by bypassing the object.
  • Step 6> When the processing for one processing zone K on the outer surface of the aircraft W1 is completed in the fifth step, the on-vehicle controller 15 again sets the three-dimensional shape data Dw of the aircraft W and the distance sensor for movement provided on the push-out platform 10. The working robot 3 approaches the next processing zone K on the outer surface of the aircraft W by operating the lifting device 9 and the pushing-out device 10 based on the distance information between the aircraft W and the distance information obtained by S1.
  • Step 7 When the processing operation for each processing section K in a state where the work machine 1 is positioned at one designated stop position P is completed by repeating the fifth step and the sixth step, the on-vehicle controller 15 operates the lifting device 9. The working robot 3 is returned to the storage position in the working machine 1 by retracting the telescopic tower 9a and the telescopic arm 10a of the pushing device 10.
  • the general work implement 16 sets the work implement 1 to the next designated work position P near the aircraft W in the same work area A based on the recognized relative positional relationship between the work implement 1 and the aircraft W.
  • the movement command to be moved to ' is transmitted to the on-vehicle controller 15.
  • the on-vehicle controller 15 moves the work machine 1 to the next designated work position P ′ in the same manner as the third process described above.
  • the on-vehicle controller 15 controls the tilt adjusting device 7 again based on the detection information of the level sensor S2 at the designated work position P ′ to adjust the self-propelled carriage 5 to the horizontal attitude again. Thereafter, the fourth to seventh steps are repeated to complete the processing operation in one work area A.
  • the processing work in one work area A is completed, the processing work is similarly advanced in the order of the first step to the seventh step in each of the remaining work areas A, whereby the surface treatment work of a plurality of types is performed.
  • Each type of processing operation is applied to the entire outer surface of the aircraft W, and when it is finished, the processing machine 8 to be held by the work arm 3a of the work robot 3 is replaced, and similarly for each work area A Advance the surface treatment work on the outer surface of the aircraft W.
  • the low work machine 2 is controlled in the same manner as the high work machine 1 except for the control of the pushing-out device 10.
  • the work machine 1 and the work machine 2 are basically used as a pair, and the work areas do not interfere with each other by arranging them at opposite positions on both sides of the object W to be processed. It is controlled in such a state.
  • the present invention is applicable to the surface treatment of various objects such as railway vehicles, ships, rockets, bridges, and residences as well as aircraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Manipulator (AREA)
  • Spray Control Apparatus (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

表面処理システムの汎用性を向上するシステム制御方法を提供することを目的とする。 作業ロボット3,4の動作により処理機8を物体Wの表面に対して移動させながら処理機8により物体Wの表面を処理するのに、自走台車5,6に作業ロボット3,4を搭載した無軌道式の作業機1,2を設け、作業機1,2には、作業ロボット3,4を自走台車5,6に対して少なくとも高さ方向に移動させるロボット移動装置を装備した表面処理システムにおいて、 物体Wと作業機1,2とが存在する作業エリアを位置計測用カメラにより撮影し、制御装置は、位置計測用カメラの撮影データに基づき物体Wと作業機1,2との相対的な位置関係を認識して、認識した相対的な位置関係に基づいて自走台車5,6を制御することで、作業機1,2を、物体Wの近傍の指定作業位置に移動させる。

Description

表面処理システムの制御方法
 本発明は、航空機などの表面に対して、洗浄処理や塗膜剥がし処理あるいは研磨処理や塗装処理などの各種の表面処理を施す表面処理システムの制御方法に関する。
 さらに詳しく言えば、本発明は、物体の表面を処理する処理機を作業ロボットにおける作業アームの先端部に保持させ、作業ロボットの動作により処理機を物体の表面に対して移動させながら、処理機により物体の表面を処理するのに、
 自走台車に作業ロボットを搭載した無軌道式の作業機を設け、作業機には、作業ロボットを自走台車に対して少なくとも高さ方向に移動させるロボット移動装置を装備し、自走台車、ロボット移動装置、作業ロボットの夫々を制御装置により制御する表面処理システムの制御方法に関する。
 従来、下記の特許文献1に示される航空機用の表面処理システム(図18参照)では、処理作業用の作業機31は、床32に施設されたガイドワイヤ33に沿って走行する自走台車34を備えている。
 また、この作業機31は、自走台車34に立設された回転柱35、及び、水平姿勢で回転柱35に沿って昇降する多関節型のロボットアーム36を備えており、航空機Wの機体外面を処理する処理機37は、このロボットアーム36の先端部に装備される。
 建屋内の天井部には、収容した航空機Wに対応させてレール38が延設されており、このレール38に沿った従動移動が可能な移動器39と回転柱35の上端部とはユティリティーブーム40により連結されている。
 このユティリティーブーム40は、洗浄用の高圧水、電源、制御データライン、空気ライン、減圧ラインなどを建屋天井部から作業機31に渡らせるものである。
特表平10-503144号公報
 しかし、特許文献1に示された表面処理システムでは、床に延設されたガイドワイヤ33や天井部に延設されたレール38により作業機31の移動経路が規定されてしまうため、処理対象の航空機Wの大きさの異なりや形状の異なりに対して柔軟に対応することが難しい。
 このため、限られた機種の航空機Wしか処理できないことでシステムの汎用性が低い問題があり、また仮に、処理対象の航空機Wが処理可能な機種に近いものであって一応の処理は可能であったとしても、処理対象の航空機Wの各部に対する最も適切な箇所に作業機31を移動させることが難しくて、やはり作業性の低下や処理品質の低下を招く問題がある。
 そしてまた、延設距離が大きくなるガイドワイヤ33やレール38を床や天井部に施設するのに設備コストが嵩み、汎用性が低いこととも相俟ってコスト的にも不利になる問題がある。
 この実情に鑑み、本発明の主たる課題は、システムの制御方法を合理化することで上記の問題を解消する点にある。
 本発明の第1特徴構成は、表面処理システムの制御方法に係り、その特徴は、
 物体の表面を処理する処理機を作業ロボットにおける作業アームの先端部に保持させ、
 前記作業ロボットの動作により前記処理機を前記物体の表面に対して移動させながら、前記処理機により前記物体の表面を処理するのに、
 自走台車に前記作業ロボットを搭載した無軌道式の作業機を設け、
 前記作業機には、前記作業ロボットを前記自走台車に対して少なくとも高さ方向に移動させるロボット移動装置を装備し、
 前記自走台車、前記ロボット移動装置、前記作業ロボットの夫々を制御装置により制御する表面処理システムの制御方法であって、
 前記物体と前記作業機とが存在する作業エリアを位置計測用カメラにより撮影し、
 前記制御装置は、前記位置計測用カメラの撮影データに基づき前記物体と前記作業機との相対的な位置関係を認識して、
 認識した前記相対的な位置関係に基づいて前記自走台車を制御することで、前記作業機を前記物体の近傍の指定作業位置に移動させる点にある。
 この第1特徴構成の制御方法では、制御装置が、位置計測用カメラの撮影データに基づき認識する物体と作業機との相対的な位置関係に基づいて自走台車を制御することで、無軌道式の作業機(即ち、特許文献1に示されたガイドワイヤ33やレール38などの案内具による移動経路の規制を受けない作業機)を、物体近傍の指定作業位置に移動させる。
 このため、処理対象物体の大きさや形状にかかわらず、作業機を、処理対象物体の各部に対する最も適切な作業位置に柔軟に移動させることができる。
 したがって、大きさや形状が異なる物体も作業性や処理品質を高く保ちながら処理することができ、これにより、システムの汎用性を高めることができる。
 そしてまた、延設距離が大きくなる前記ガイドワイヤやレールなどの案内具の施設が不要になることで、設備コストも大きく低減することができる。
 したがって、システムの汎用性を高め得ることとも相俟って、システムのコスト面における有利性も効果的に高めることができる。
 本発明の第2特徴構成は、第1特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
 前記制御装置は、前記撮影データと入力された前記物体の3次元形状データとに基づいて前記相対的な位置関係を認識する点にある。
 この第2特徴構成の制御方法では、物体と作業機との相対的な位置関係に基づく自走台車の制御により作業機を物体近傍の指定作業位置に移動させるのに、制御装置が、位置計測用カメラの撮影データと、入力された物体の3次元形状データとに基づいて、物体と作業機との相対的な位置関係を認識する。
 したがって、位置計測用カメラの撮影データのみに基づいて相対的な位置関係を認識させるのに比べ、作業機を、処理対象物体の各部に対する最も適切な作業位置に一層精度良く的確に移動させることができる。
 本発明の第3特徴構成は、第1又は第2特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
 前記作業機の前記指定作業位置への移動において、前記作業機に装備した移動用距離センサが前記物体との間の距離を計測し、
 前記制御装置は、前記作業機の前記指定作業位置への移動において、前記相対的な位置関係と前記移動用距離センサの計測情報とに基づいて前記自走台車を制御する点にある。
 この第3特徴構成の制御方法では、制御装置が、前記位置計測用カメラの撮影データに基づき認識する物体と作業機との相対的な位置関係と、作業機に装備した移動用距離センサの計測情報(即ち、物体との間の距離に関する情報)とに基づいて自走台車を制御することで、作業機を物体近傍の指定作業位置に移動させる。
 したがって、位置計測用カメラの撮影データに基づき認識する物体と作業機との相対的な位置関係のみに基づいて作業機を移動させるのに比べ、作業機を、処理対象物体の各部に対する最も適切な作業位置に一層精度良く的確に移動させることができる。
 本発明の第4特徴構成は、第1~第3特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
 前記制御装置は、前記作業機を前記指定作業位置に移動させた後、前記作業機に装備した水平度センサの検出情報に基づいて、前記自走台車に装備した傾き調整装置を制御することで、前記自走台車を水平姿勢に調整する点にある。
 この第4特徴構成の制御方法では、制御装置が水平度センサの検出情報に基づいて自走台車を水平姿勢に調整する。
 したがって、自走台車の傾きが原因で、処理対象物体に対する処理機の作用位置が不適切になったり、ロボット移動装置による作業ロボットの上昇において作業機の安定性が低下したりすることを確実に防止することができ、これにより、表面処理作業の作業性を一層高めるとともに作業の安全性も高めることができる。
 本発明の第5特徴構成は、第1~第4特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
 前記制御装置は、前記作業機を前記指定作業位置に移動させた後、入力された前記物体の3次元形状データに基づいて前記ロボット移動装置を制御することで、前記作業ロボットを前記処理機による前記物体の表面処理が可能な位置に移動させる点にある。
 この第5特徴構成の制御方法では、ロボット移動装置の動作により作業ロボットを処理機による物体の表面処理が可能な位置に移動させるのに、制御装置が、処理対象物体の3次元形状データに基づいてロボット移動装置を制御する。
 したがって、処理対象物体の大きさや形状にかかわらず、作業ロボットを、処理機による物体の表面処理が可能な位置に精度良く的確に移動させることができる。
 このことからも、作業性や処理品質を高く保ちながら、大きさや形状が異なる物体を適切に処理することができ、これにより、システムの汎用性をさらに高めることができる。
 本発明の第6特徴構成は、第5特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
 前記ロボット移動装置の動作により前記作業ロボットとともに移動する移動用距離センサが前記物体との間の距離を計測し、
 前記制御装置は、前記ロボット移動装置による前記作業ロボットの移動において、前記3次元形状データと前記移動用距離センサの計測情報とに基づいて前記ロボット移動装置を制御する点にある。
 この第6特徴構成の制御方法では、制御装置が、物体の3次元形状データと上記移動用距離センサの計測情報(即ち、物体との間の距離に関する情報)とに基づいてロボット移動装置を制御することで、作業ロボットを、処理機による物体の表面処理が可能な位置に移動させる。
 したがって、物体の3次元形状データのみに基づいてロボット移動装置を制御するのに比べ、作業ロボットを、処理機による物体の表面処理が可能な位置に一層的確に移動させることができる。
 本発明の第7特徴構成は、第1~第6特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
 前記制御装置は、前記処理機による前記物体の表面処理において、入力された前記物体の3次元形状データに基づいて前記作業ロボットを制御することで、前記処理機を前記物体の表面に対して移動させる点にある。
 この第7特徴構成の制御方法では、制御装置が、入力された物体の3次元形状データに基づいて作業ロボットを制御することで、処理機を物体の表面に対して移動させる。
 したがって、処理対象物体の大きさや形状にかかわらず、処理機による物体の表面処理において、処理機を処理対象物体の表面に対し精度良く適切に移動させることができる。
 このことからも、作業性や処理品質を高く保ちながら、大きさや形状が異なる物体を適切に処理することができ、これにより、システムの汎用性をさらに高めることができる。
 本発明の第8特徴構成は、第7特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
 前記処理機による前記物体の表面処理において、前記作業アームに装備した処理用距離センサが前記物体の表面に対する距離を計測し、
 前記制御装置は、前記処理機による前記物体の表面処理において、前記3次元形状データと前記処理用距離センサの計測情報とに基づいて前記作業ロボットを制御することで、前記処理機を前記物体の表面に対して移動させる点にある。
 この第8特徴構成の制御方法では、作業ロボットの動作により処理機を物体の表面に対して移動させるのに、制御装置が、物体の3次元形状データと作業アームに装置された処理用距離センサの計測情報(即ち、物体表面との間の距離に関する情報)とに基づいて作業ロボットを制御する。
 したがって、作業ロボットを物体の3次元形状データのみ基づいて制御するのに比べ、処理機による物体の表面処理において、処理機を処理対象物体の表面に対し一層精度良く適切に移動させることができる。
 本発明の第9特徴構成は、第1~第8特徴構成いずれかの実施に好適な実施形態を特定するものであり、その特徴は、
 前記処理機による前記物体の表面処理において、前記作業アームに装備した突起物センサが前記物体における突起物の存否を検出し、
 前記制御装置は、前記処理機による前記物体の表面処理において、前記突起物センサの検出情報に基づいて前記作業ロボットを制御することで、前記処理機を前記突起物に対して迂回移動させる点にある。
 この第9特徴構成の制御方法では、処理機による物体の表面処理において、制御装置が、作業アームに装備された突起物センサの検出情報(即ち、突起物の存否情報)に基づいて作業ロボットを制御することで、処理機を突起物に対して迂回移動させる。
 したがって、処理機が突起物に接触したり衝突したりするトラブルを確実に回避することができ、これにより、処理機による物体の表面処理を円滑に進めることができる。
 本発明の第10特徴構成は、第1~第9特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
 前記処理機による前記物体の表面処理において、前記作業アームに装備した処理用距離センサが前記物体の表面上における複数の計測点の夫々に対する距離を計測し、
 前記制御装置は、前記処理機による前記物体の表面処理において、前記処理用距離センサの計測情報に基づいて前記作業ロボットを制御することで、前記物体の表面に対する前記処理機の姿勢を調整する点にある。
 作業ロボットの作業アームに装備した処理用距離センサにより物体の表面上における複数の計測点に対する距離を計測すれば、その計測情報に基づいて、作業アームと、複数の計測点が存在する物体表面部分との相対的な姿勢関係を知ることができる。
 このことを用いて上記の第10特徴構成の制御方法では、制御装置が、作業アームに装備された処理用距離センサの計測情報(即ち、複数の計測点の夫々に対する距離の情報)に基づいて作業ロボットを制御することで、作業アームの先端部に保持した処理機の物体表面に対する姿勢を調整する。
 したがって、物体の表面形状が曲面などであることにかかわらず、処理機を物体表面に対する最適な相対姿勢に保った状態で、処理機により物体の表面を処理することができ、これにより、高い処理品質を安定的に得ることができる。
図1は、大型航空機に対する表面処理作業の作業状態を示す斜視図である。 図2は、同じく大型航空機に対する表面処理作業の作業状態を示す正面図である。 図3は、小型航空機に対する表面処理作業の作業状態を示す斜視図である。 図4は、同じく小型航空機に対する表面処理作業の作業状態を示す正面図である。 図5は、昇降装置及び迫り出し装置の夫々を収縮させた状態にある高所作業機の斜視図である。 図6は、昇降装置及び迫り出し装置の夫々を伸長させた状態にある高所作業機の斜視図である。 図7は、昇降装置を収縮させた状態にある低所作業機の斜視図である。 図8は、昇降装置を伸長させた状態にある低所作業機の斜視図である。 図9は、作業機を待機させている状態を示す斜視図である。 図10は、作業機を作業エリア内に移動させた状態を示す斜視図である。 図11は、作業機を航空機近傍の指定作業位置に移動させた状態を示す斜視図である。 図12は、指定作業位置での昇降装置及び迫り出し装置の伸縮動作を示す斜視図である。 図13は、指定作業位置での昇降装置の伸長動作を示す正面図である。 図14は、指定作業位置での迫り出し装置の伸長動作を示す平面図である。 図15は、処理機の姿勢制御を説明する斜視図である。 図16は、処理機の迂回制御を説明する斜視図である。 図17は、制御ブロック図である。 図18は、従来の航空機用表面処理システムを示す正面図である。
 図1~図4の夫々は、建屋内で航空機Wの機体外面に対して表面処理作業を実施している状況を示している。
 この表面処理作業では、洗浄処理、塗膜剥がし処理、塗装下地処理、研磨処理、塗装処理、検査処理などの複数種の表面処理を、航空機Wの機体外面に対して順次に施す。
 処理対象の航空機Wを収容した建屋内には、高所作業機1及び低所作業機2を配備してある。これら作業機1,2の夫々には、多関節式の作業アーム3a,4aを備える旋回動作可能な作業ロボット3,4を装備してある。
 図1,図2は処理対象が大型の航空機Wである場合を示しており、図3,図4は処理対象が比較的小型な航空機Wである場合を示している。
 いずれの場合も、航空機Wにおける高所部分(例えば、胴部上側、翼部上側、垂直尾翼など)に対する処理作業を高所作業機1により実施し、これに並行して、同航空機Wにおける低所部分(例えば、胴部下側、翼部下側など)に対する処理作業を低所作業機2により実施するといった作業分担形態で、高所作業機1及び低所作業機2の両方を用いて航空機Wにおける機体外面の全体を処理する。
 各作業機1,2は無軌道型の電動式自走台車5,6を備えている。また、各作業機1,2の移動経路を規定するレールや案内ラインなどの施設はない。その意味で、各作業機1,2は無軌道式の作業機である。
 そして、各作業機1,2の自走台車5,6は、車体の向き(即ち、平面視における車体姿勢)の変化を伴わずに水平方向においていずれの向きにも走行することができる。
 これらのことから、各作業機1,2は、建屋内の床上において任意の位置へ速やかに移動することができる。
 また、これら自走台車5,6は、車体の位置の変化を伴うことなく、車体の向き(平面視における車体姿勢)を水平方向においていずれの向きにも変更することができる。
 これにより、各作業機1,2は各位置において、その向きを水平方向における任意の向きに速やかに変更することができる。
 これら自走台車5,6には、水平方向に対する車体の傾きを調整する傾き調整装置7も装備してある。この傾き調整装置7を動作させることで、水平方向に対する車体の傾きを、水平方向における任意の方向について調整することができる。
 各作業機1,2において、作業ロボット3、4は、ロボット移動装置Xを介して自走台車5,6上に装備してある。
 したがって、自走台車5、6の走行により各作業機1,2を航空機Wの近傍の作業位置に移動させた後、ロボット移動装置Xを動作させることで、作業ロボット3,4を、航空機Wの目標箇所に対する作業が可能となる位置(即ち、作業アーム3a,4aの先端部に保持させた処理機8により航空機Wの機体表面における目標部分を処理できる位置)に移動させることができる。
 図5及び図6に示すように、高所作業機1には、ロボット移動装置Xとして、自走台車5の台上に設置した伸縮タワー式の昇降装置9と、その昇降装置9における伸縮タワー部9aの上端の昇降台9bに装備した伸縮アーム式の迫り出し装置10とを設けてある。
 そして、作業ロボット3は、迫り出し装置10における伸縮アーム10aの先端部に設けた迫り出し台10bに搭載してある。
 昇降装置9は、伸縮タワー部9aを図6に示す最大伸長状態まで上向きに伸長動作させることで、大型航空機Wにおける垂直尾翼の上端部に対する作業が可能になる高さまで、作業ロボット3を上昇させることができる。
 また、迫り出し装置10は、伸縮アーム10aを同図6に示す最大伸長状態まで水平向きに伸長動作させることで、大型航空機Wの胴部上側部分における横幅方向中央部に対する作業が可能になる位置まで、作業ロボット3を水平方向に迫り出させることができる。
 これら昇降装置9及び迫り出し装置10は、いずれもサーボモータによりラックピニオン機構やボールねじ機構などの伝動機構を介して伸縮タワー部9aや伸縮アーム10aを伸縮動作させる構造にしてある。
 したがって、それらサーボモータを操作して伸縮タワー部9aや伸縮アーム10aの伸長量を調整することで、航空機Wに対する作業ロボット3の位置を、航空機Wの機体形状に応じて調整することができる。
 図7及び図8に示すように、低所作業機2には、ロボット移動装置Xとして、自走台車6の台上に伸縮ブーム式の昇降装置11を装備してある。
 そして、作業ロボット4は、昇降装置11における伸縮ブーム11aの先端部に設けた昇降台11bに搭載してある。
 この昇降装置11も、サーボモータによりラックピニオン機構やボールねじ機構などの伝動機構を介して伸縮ブーム11aを伸縮動作させる構造にしてある。
 したがって、そのサーボモータを操作して伸縮ブーム11aの伸長量を調整することで、航空機Wに対する作業ロボット4の位置を、航空機Wの機体形状に応じて調整することができる。
 なお、各昇降装置9,11や迫り出し装置10の伝動機構としては、ラックピニオン機構やボールねじ機構に限らず、その他の種々の方式の伝動機構を採用することができる。
 各自走台車5,6には、電源接続部12を設けるとともに、バッテリー13を搭載してある。
 そして、自走台車5,6、並びに、自走台車5,6に装備した作業ロボット3,4、昇降装置9,11,迫り出し装置10などの各電動装置は、電源接続部12に接続した電源線からの供給電力あるいはバッテリー13からの供給電力のいずれによっても動作させることができる。
 作業ロボット3,4における作業アーム3a,4bの先端部(即ち、手首部)に保持させる処理機8は、実施する表面処理の種別に応じて交換することができる。
 交換用の複数種の処理機8(例えば、薬剤塗布機、洗浄水塗布機、パテ研ぎ機、塗装機など)は、作業ロボット3,4と処理機交換装置との相互動作により自動的に交換できる状態にして、各作業機1,2の処理機収容部14に収容してある。
 また、各作業機1,2には、圧縮空気を使用する処理作業において作業ロボット3,4が保持する処理機8に圧縮空気を供給するコンプレッサーや、塗装処理において作業ロボット3,4が保持する処理機8(塗装機)に塗料及び硬化液を供給するタンク及びポンプなどの各種の供給源装置Yも搭載してある。
 なお、各作業機1,2に装備する種々の電動装置については、例えば塗装処理の際の発火トラブルなどを確実に防止するために防爆仕様を採用してある。
 一方、各作業機1,2には(図17参照)、周辺物との間の距離を計測するレーザー式の移動用距離センサS1を、作業機1,2における各部(例えば、自走台車5,6の四隅部、迫り出し装置10の迫り出し台10b、伸縮ブーム式昇降装置11の昇降台11bなど)に装備してある。
 また、各作業機1,2には、自走台車5,6の水平度を計測する水平度センサS2も装備してある。
 さらに、各作業機1,2における作業ロボット3,4の作業アーム3a,4aには、航空機Wの機体外面に対する距離を計測するレーザー式の処理用距離センサS3、及び、航空機Wの機体外面における突起物を検出するレーザー式の突起物センサS4などを装備してある。
 そして、各作業機1,2には、車載制御器15を装備してある。この車載制御器15は、自走台車5,6並びに作業ロボット3,4などの各搭載装置を制御する。
 これに対し、処理対象の航空機Wを収容する建屋には、収容した航空機Wの周辺エリアを撮影する複数の位置計測用カメラC1,C2を、各部に分散させて設置するとともに、統括制御器16を設置してある。
 各作業機1,2に装備した車載制御器15及び建屋内に設置した統括制御器16は、両作業機1,2を備える表面処理システムの制御を司る制御装置である。
 次に、これら高所作業機1及び低所作業機2を用いて実施する表面処理作業の作業方式について図9~図17を参照しながら説明する。この作業方式については、いずれの作業機1,2についてもほぼ同じであることから、ここでは、代表として高所作業機1の方を主にして説明する。
 <第1工程>
 図9に示すように、建屋内に収容した航空機Wの周囲に複数の作業エリアAを設定しておく。ここで、個々の作業エリアAは、位置計測用カメラC1による撮影が可能な範囲に対応した広さを有する。
 また、収容した航空機Wの機体外面には、その機体外面を複数の区画に細分する状態で行列配置の複数の処理区画Kを設定する。
 なお、これら処理区画Kの設定は、航空機Wの設計資料などから得る航空機Wの3次元形状データDwに基づいて統括制御器16により自動的に行うようにしてもよい。
 <第2工程>
 図9~図10に示すように、統括制御器16ないし車載制御器15に対する手動操作により、作業機1を、作業エリアA外の待機位置からいずれかの作業エリアAのエリア内に移動させる。
 この移動操作において、統括制御器16ないし車載制御器15に対する手動操作は、遠隔操作器を用いる遠隔手動操作、あるいは統括制御器16や車載制御器15に対する直接的な手動操作のいずれであってもよい。
 また、この作業エリアA内への移動では、電源接続部12を用いずバッテリー13からの供給電力により作業機1の自走台車5を走行させる。
 作業機1を作業エリアA内に移動させた後は、それに続く作業用電力の確保として、作業機1の電源接続部12に最寄りの電源部から引き出した電源線を接続する。
 <第3工程>
 この電源接続の後、統括制御器16に予め入力してある航空機Wの3次元形状データDwと、所要位置に設置した位置計測用カメラC1から総括制御器16に無線送信される撮影データDc(即ち、航空機Wの一部と作業機1とが存在する作業エリアAの撮影データ)とに基づいて、作業機1と航空機Wとの相対的な位置関係を統括制御器16に認識させる。
 そして、認識させた作業機1と航空機Wとの相対的な位置関係に基づいて、作業機1を航空機Wの近傍の指定作業位置Pへ移動させる移動指令を、統括制御器16から作業機1の車載制御器15に無線送信させる。
 この移動指令を受けて、作業機1の車載制御器15は自走台車5を制御することで、図10~図11に示すように、作業機1を、航空機Wの近傍の指定作業位置Pへ自動的に移動させる。また、それに伴い作業機1の向きを、航空機Wに正対する作業向きに自動的に調整する。
 この指定作業位置Pへの自動移動において、車載制御器15は、作業機1に装備した移動用距離センサS1の計測情報に基づいて、作業機1と航空機Wとの間の距離を併行して監視する。
 そして、この監視により車載制御器15は、航空機Wの3次元形状データDwと位置計測用カメラC1による撮影データDcとに基づく自走台車5の制御に補正を加えることで、作業機1を指定作業位置Pに精度良く停止させる。
 また、車載制御器15は、作業機1に装備した移動用距離センサS1の計測情報に基づいて作業機1の周囲における障害物の存否を監視する。
 この監視により車載制御器15は、障害物の存在が検知されたときには自走台車5を停止させることで障害物との衝突を回避し、また、障害物の存在を報知する警報を発する。
 さらに、車載制御器15は、作業機1を指定作業位置Pに停止させた後、水平度センサS2の検出情報に基づき傾き調整装置7を制御することで、自走台車5をほぼ完全な水平姿勢に調整する。
 <第4工程>
 自走台車5の水平度を調整した後、車載制御器15は、統括制御器16から送信される航空機Wの3次元形状データDwと、迫り出し台10に装備した移動用距離センサS1により得られる航空機Wの機体との間の距離情報とに基づいて、図12~図14に示すように、昇降装置9の昇降タワー部9aを伸長動作させて作業ロボット3を所要高さに上昇させるとともに、それに続き、迫り出し装置10の伸縮アーム10aを伸長動作させて、作業ロボット3を航空機Wの機体外面に近付ける。
 即ち、これら昇降装置9及び迫り出し装置10の動作により、作業機1における作業ロボット3を、航空機Wの機体外面に設定された処理区画Kのうちの1つに接近させる。
 <第5工程>
 その後、車載制御器15は、航空機Wの3次元形状データDwと、作業ロボット3の作業アーム3aに装備した処理用距離センサS3により得られる航空機Wの機体外面に対する距離情報とに基づいて、作業ロボット3のアーム動作を制御することで、作業アーム3aに保持させた処理機8を、航空機Wの機体外面に対して処理作用させながら処理区画K内を機体外面に沿って移動させる。これにより、航空機Wの機体外面における1つの処理区画Kを処理する。
 また、このロボット動作による処理機8の移動において、車載制御器15は、作業アーム3aに装備した処理用距離センサS3により、図15に示すように、処理機8の周りにおける機体外面上の数個の計測点Gについて、センサS3と計測点Gとの間の距離を計測する。
 また、その計測結果に基づいて車載制御器15は、処理機8が処理する機体外面部分の傾きを演算する。
 そして、車載制御器15は、その演算結果に基づいて、航空機Wの3次元形状データDwに基づく処理機8の姿勢制御に補正を加えることで、処理機8を、機体外面の各処理部分に対して常に垂直姿勢を保った状態で処理作用させる。
 さらに、車載制御器15は、ロボット動作による処理機8の移動において、図16に示すように、作業アーム3aに装備した突起物センサS4により航空機Wの突起物Tが検出されると、その突起物に対し処理機8を迂回させて移動させるように作業ロボット3を制御する機能も備えている。
 <第6工程>
 この第5工程により、航空機W1の機体外面における1つの処理区画Kに対する処理が終了すると、車載制御器15は、再び航空機Wの3次元形状データDwと迫り出し台10に装備した移動用距離センサS1により得られる航空機Wの機体との間の距離情報とに基づいて昇降装置9及び迫り出し装置10を動作させることで、作業ロボット3を、航空機Wの機体外面における次の処理区画Kに接近させる。
 そして、その処理区画Kに対して上記の第5工程を再び実施することで、航空機Wの機体外面における次の1つの処理区画Kを処理する。
 <第7工程>
 これら第5工程及び第6工程を繰り返すことで、作業機1を1つの指定停止位置Pに位置させた状態での各処理区画Kに対する処理作業が完了すると、車載制御器15は、昇降装置9の伸縮タワー部9a及び迫り出し装置10の伸縮アーム10aを収縮動作させて、作業ロボット3を作業機1における格納位置に戻す。
 その後、統括作業器16は、認識している作業機1と航空機Wとの相対的な位置関係に基づいて、作業器1を同じ作業エリアA内における航空機Wの近傍の次の指定作業位置P′に移動させる移動指令を車載制御器15に発信する。
 この移動指令に応答して、車載制御器15は、前記した第3工程と同様にして、作業機1を次の指定作業位置P′に移動させる。
 また、車載制御器15は、その指定作業位置P′において、改めて水平度センサS2の検出情報に基づき傾き調整装置7を制御することで、自走台車5を再度、水平姿勢に調整する。
 その後、第4工程~第7工程を繰り返すことで、1つの作業エリアAでの処理作業を完了する。
 そして、1つの作業エリアAでの処理作業を完了すると、残りの作業エリアAの夫々において同様に第1工程~第7工程の順で処理作業を進め、これにより、複数種の表面処理作業のうちの一種の処理作業を航空機Wの機体外面の全体に対して施し、それを終了すると、作業ロボット3の作業アーム3aに保持させる処理機8を交換した上で、同様に各作業エリアAごとに航空機Wの機体外面に対する表面処理作業を進める。
 航空機Wの機体外面に対する以上の一連の表面処理作業において、低所作業機2は、迫り出し装置10に対する制御を除いて、高所作業機1と同様に制御する。
 なお、高所作業機1と低所作業機2とは、基本的に一対で用いられ、処理対象物体Wを挟んだ両側の相対する位置に配置するなどして、相互に作業領域が干渉しないような状態で制御される。
 本発明は、航空機に限らず、鉄道車両、船舶、ロケットあるいは橋梁や住居など種々の物体の表面処理に利用することができる。
 W      航空機(処理対象物体)
 8      処理機
 3,4    作業ロボット
 3a,4a  作業アーム
 5,6    自走台車
 1,2    無軌道式の作業機
 X      ロボット移動装置(昇降装置、迫り出し装置)
 15     車載制御器(制御装置)
 16     統括制御器(制御装置)
 A      作業エリア
 C1、C2  位置計測用カメラ
 Dc     撮影データ
 P,P′   指定作業位置
 Dw     3次元形状データ
 S1     移動用距離センサ
 S2     水平度センサ
 7      傾き調整装置
 S3     処理用距離センサ
 S4     突起物センサ
 T      突起物
 K      処理区画
 G      計測点
 
 

Claims (10)

  1.  物体の表面を処理する処理機を作業ロボットにおける作業アームの先端部に保持させ、
     前記作業ロボットの動作により前記処理機を前記物体の表面に対して移動させながら、前記処理機により前記物体の表面を処理するのに、
     自走台車に前記作業ロボットを搭載した無軌道式の作業機を設け、
     前記作業機には、前記作業ロボットを前記自走台車に対して少なくとも高さ方向に移動させるロボット移動装置を装備し、
     前記自走台車、前記ロボット移動装置、前記作業ロボットの夫々を制御装置により制御する表面処理システムの制御方法であって、
     前記物体と前記作業機とが存在する作業エリアを位置計測用カメラにより撮影し、
     前記制御装置は、前記位置計測用カメラの撮影データに基づき前記物体と前記作業機との相対的な位置関係を認識して、
     認識した前記相対的な位置関係に基づいて前記自走台車を制御することで、前記作業機を前記物体の近傍の指定作業位置に移動させる表面処理システムの制御方法。
  2.  前記制御装置は、前記撮影データと入力された前記物体の3次元形状データとに基づいて前記相対的な位置関係を認識する請求項1に記載した表面処理システムの制御方法。
  3.  前記作業機の前記指定作業位置への移動において、前記作業機に装備した移動用距離センサが前記物体との間の距離を計測し、
     前記制御装置は、前記作業機の前記指定作業位置への移動において、前記相対的な位置関係と前記移動用距離センサの計測情報とに基づいて前記自走台車を制御する請求項1又は2に記載した表面処理システムの制御方法。
  4.  前記制御装置は、前記作業機を前記指定作業位置に移動させた後、前記作業機に装備した水平度センサの検出情報に基づいて、前記自走台車に装備した傾き調整装置を制御することで、前記自走台車を水平姿勢に調整する請求項1~3のいずれか1項に記載した表面処理システムの制御方法。
  5.  前記制御装置は、前記作業機を前記指定作業位置に移動させた後、入力された前記物体の3次元形状データに基づいて前記ロボット移動装置を制御することで、前記作業ロボットを前記処理機による前記物体の表面処理が可能な位置に移動させる請求項1~4のいずれか1項に記載した表面処理システムの制御方法。
  6.  前記ロボット移動装置の動作により前記作業ロボットとともに移動する移動用距離センサが前記物体との間の距離を計測し、
     前記制御装置は、前記ロボット移動装置による前記作業ロボットの移動において、前記3次元形状データと前記移動用距離センサの計測情報とに基づいて前記ロボット移動装置を制御する請求項5に記載した表面処理システムの制御方法。
  7.  前記制御装置は、前記処理機による前記物体の表面処理において、入力された前記物体の3次元形状データに基づいて前記作業ロボットを制御することで、前記処理機を前記物体の表面に対して移動させる請求項1~6のいずれか1項に記載した表面処理システムの制御方法。
  8.  前記処理機による前記物体の表面処理において、前記作業アームに装備した処理用距離センサが前記物体の表面に対する距離を計測し、
     前記制御装置は、前記処理機による前記物体の表面処理において、前記3次元形状データと前記処理用距離センサの計測情報とに基づいて前記作業ロボットを制御することで、前記処理機を前記物体の表面に対して移動させる請求項7に記載した表面処理システムの制御方法。
  9.  前記処理機による前記物体の表面処理において、前記作業アームに装備した突起物センサが前記物体における突起物の存否を検出し、
     前記制御装置は、前記処理機による前記物体の表面処理において、前記突起物センサの検出情報に基づいて前記作業ロボットを制御することで、前記処理機を前記突起物に対して迂回移動させる請求項1~8のいずれか1項に記載した表面処理システムの制御方法。
  10.  前記処理機による前記物体の表面処理において、前記作業アームに装備した処理用距離センサが前記物体の表面上における複数の計測点の夫々に対する距離を計測し、
     前記制御装置は、前記処理機による前記物体の表面処理において、前記処理用距離センサの計測情報に基づいて前記作業ロボットを制御することで、前記物体の表面に対する前記処理機の姿勢を調整する請求項1~9のいずれか1項に記載した表面処理システムの制御方法。
     
PCT/JP2018/037571 2017-12-05 2018-10-09 表面処理システムの制御方法 WO2019111523A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/615,244 US20200198154A1 (en) 2017-12-05 2018-10-09 Method of Controlling Surface Treatment System
CN201880035908.2A CN110709214B (zh) 2017-12-05 2018-10-09 表面处理系统的控制方法
MX2019013513A MX2019013513A (es) 2017-12-05 2018-10-09 Metodo para controlar un sistema de tratamiento superficial.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-233713 2017-12-05
JP2017233713A JP6678155B2 (ja) 2017-12-05 2017-12-05 表面処理システムの制御方法

Publications (1)

Publication Number Publication Date
WO2019111523A1 true WO2019111523A1 (ja) 2019-06-13

Family

ID=66750942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037571 WO2019111523A1 (ja) 2017-12-05 2018-10-09 表面処理システムの制御方法

Country Status (6)

Country Link
US (1) US20200198154A1 (ja)
JP (1) JP6678155B2 (ja)
CN (1) CN110709214B (ja)
MX (1) MX2019013513A (ja)
TW (1) TWI724335B (ja)
WO (1) WO2019111523A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2051039A1 (en) * 2020-02-13 2021-08-14 Sosa Gonz?Lez S L Autonomous painting robot

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10829354B2 (en) * 2017-12-20 2020-11-10 Cti Systems S.a.r.l. Collision avoidance assistance system for movable work platforms
JP6681567B1 (ja) * 2019-05-27 2020-04-15 千住金属工業株式会社 はんだペースト及びフラックス
JP7426858B2 (ja) * 2020-03-10 2024-02-02 株式会社大気社 検査装置及び検査方法
CN113021366B (zh) * 2021-02-25 2022-03-25 深圳市润安科技发展有限公司 一种视频信息采集机器人
CN113135300B (zh) * 2021-04-14 2022-09-02 中国航空规划设计研究总院有限公司 一种用于飞机表面处理的自动规划控制系统及其使用方法
WO2023057932A1 (es) * 2021-10-07 2023-04-13 Target Robotics Institute, S.A. De C.V. Sistema para lavado robotizado de vehículos
GB2625725A (en) * 2022-12-21 2024-07-03 Univ Sheffield Mobile robot
CN116160434B (zh) * 2023-04-24 2023-07-14 南京智欧智能技术研究院有限公司 具有组合式操作空间的线控机器人及作业方法
CN118341602B (zh) * 2024-06-11 2024-08-23 成都裕鸢航空智能制造股份有限公司 一种飞机机翼喷涂装置以及喷涂工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264060A (ja) * 1997-03-27 1998-10-06 Trinity Ind Corp 塗装ロボットのティーチング装置
JP2016016861A (ja) * 2014-07-09 2016-02-01 ザ・ボーイング・カンパニーTheBoeing Company 胴体アセンブリの外側に沿って作業を実行するための可動式プラットフォーム
WO2016067467A1 (ja) * 2014-10-31 2016-05-06 三菱電機株式会社 ロボット制御装置、ロボットシステム、ロボット制御方法及びプログラム
JP2017039188A (ja) * 2015-08-20 2017-02-23 株式会社東芝 移動ロボットおよび施工位置確認方法
JP2017110466A (ja) * 2015-12-18 2017-06-22 清水建設株式会社 建設作業用ロボットおよび建設作業用ロボットの制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583450B2 (ja) * 1993-09-28 2004-11-04 川崎重工業株式会社 3次元物体の自動検査装置および方法
US6873880B2 (en) * 2001-12-26 2005-03-29 Lockheed Martin Corporation Machine for performing machining operations on a workpiece and method of controlling same
US9227323B1 (en) * 2013-03-15 2016-01-05 Google Inc. Methods and systems for recognizing machine-readable information on three-dimensional objects
US10059004B2 (en) * 2015-06-22 2018-08-28 Ricoh Company, Ltd. Robot, information processing system, and storage medium
US9972215B2 (en) * 2015-08-18 2018-05-15 Lincoln Global, Inc. Augmented reality interface for weld sequencing
EP3135442B1 (en) * 2015-08-26 2018-12-19 Airbus Operations GmbH Robot system and method of operating a robot system
CN105107654B (zh) * 2015-08-27 2018-02-23 哈尔滨商业大学 一种面向大型工件的机器人连续式自动喷漆设备
WO2018183959A1 (en) * 2017-03-31 2018-10-04 Canvas Construction, Inc. Automated drywalling system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264060A (ja) * 1997-03-27 1998-10-06 Trinity Ind Corp 塗装ロボットのティーチング装置
JP2016016861A (ja) * 2014-07-09 2016-02-01 ザ・ボーイング・カンパニーTheBoeing Company 胴体アセンブリの外側に沿って作業を実行するための可動式プラットフォーム
WO2016067467A1 (ja) * 2014-10-31 2016-05-06 三菱電機株式会社 ロボット制御装置、ロボットシステム、ロボット制御方法及びプログラム
JP2017039188A (ja) * 2015-08-20 2017-02-23 株式会社東芝 移動ロボットおよび施工位置確認方法
JP2017110466A (ja) * 2015-12-18 2017-06-22 清水建設株式会社 建設作業用ロボットおよび建設作業用ロボットの制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2051039A1 (en) * 2020-02-13 2021-08-14 Sosa Gonz?Lez S L Autonomous painting robot

Also Published As

Publication number Publication date
JP6678155B2 (ja) 2020-04-08
TWI724335B (zh) 2021-04-11
US20200198154A1 (en) 2020-06-25
MX2019013513A (es) 2020-01-20
CN110709214B (zh) 2022-10-14
TW201924882A (zh) 2019-07-01
JP2019098483A (ja) 2019-06-24
CN110709214A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2019111523A1 (ja) 表面処理システムの制御方法
WO2019111522A1 (ja) 大型物体用の表面処理システム
TWI802465B (zh) 用於噴塗建築物的牆壁的自動化系統
CN206733016U (zh) 一种用于船舶表面涂层修补的机器人
US11660714B2 (en) Processing station
CN104723318A (zh) 自主工作机器人系统
US20220042250A1 (en) Processing system and method for performing track work
CN109499799A (zh) 一种全向移动式机器人喷涂系统
US12053880B2 (en) Mobile robot platform
KR20050020263A (ko) 시저스 타입의 승ㆍ하강 리프트 기능을 가진 이동식 선체외판 자동 도장 시스템
KR100751701B1 (ko) 텔레스코프식 다단 컬럼을 가진 이동식 선체 외판 자동도장 시스템
JP5813892B1 (ja) 搭乗橋格納姿勢修正システム
CN109879175B (zh) 一种行吊系统及其控制方法
US10391412B2 (en) Amusement ride with robot system
JP7457873B2 (ja) 旅客搭乗橋
EP4316994A1 (en) Passenger boarding bridge
KR20150140174A (ko) 로봇을 이용한 화물창 수리장치 및 그 방법
JP2513129Y2 (ja) 自動塗装装置
JPH1157551A (ja) 移動式自動塗装装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884979

Country of ref document: EP

Kind code of ref document: A1