WO2019111376A1 - 無線装置および無線通信制御方法 - Google Patents

無線装置および無線通信制御方法 Download PDF

Info

Publication number
WO2019111376A1
WO2019111376A1 PCT/JP2017/044013 JP2017044013W WO2019111376A1 WO 2019111376 A1 WO2019111376 A1 WO 2019111376A1 JP 2017044013 W JP2017044013 W JP 2017044013W WO 2019111376 A1 WO2019111376 A1 WO 2019111376A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
beamforming
terminal station
weight
station
Prior art date
Application number
PCT/JP2017/044013
Other languages
English (en)
French (fr)
Inventor
裕貴 井浦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019557944A priority Critical patent/JP6723482B2/ja
Priority to PCT/JP2017/044013 priority patent/WO2019111376A1/ja
Priority to CN201780097320.5A priority patent/CN111418163B/zh
Priority to US16/756,075 priority patent/US10812157B2/en
Priority to EP17934094.8A priority patent/EP3713106B1/en
Publication of WO2019111376A1 publication Critical patent/WO2019111376A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to a wireless device and a wireless communication control method for improving communication performance.
  • one method for realizing large-capacity communication is to widen the signal bandwidth.
  • a frequency band of several GHz or less frequencies are already assigned to many systems, and it is difficult to secure a wide signal band of several hundred MHz or more.
  • cellular communication which requires several hundreds of meters or more as a communication area covered by one radio base station, has to use a frequency band of several GHz or less.
  • the number of antenna elements that can be mounted per fixed area can be significantly increased by utilizing the fact that the length of one wavelength is shortened. Thereby, it is considered to enable high gain beamforming and to compensate propagation distance attenuation.
  • super-multiple element MIMO Multiple-Input Multiple-Output
  • super-multiple element MIMO has a series of TX / RX circuits and digital signal processing units for each antenna element.
  • TX / RX circuits TX / RX circuits
  • digital signal processing unit 256 TX / RX circuits, an FPGA, an ASIC or the like is required. Therefore, super-multi-element MIMO has problems in cost and feasibility.
  • This antenna configuration is a method of realizing beam forming not by a digital signal processing unit but by an analog circuit composed of a variable amplifier or a variable phase shifter. That is, this antenna configuration is a method of forming an analog beam (see, for example, Patent Document 1).
  • the number of digital signal processing units required is not the same as the number of antenna elements but the same as the number of beams to be formed.
  • the digital signal processing unit can be 1/16.
  • Such analog beam formation corresponds to the standard antenna configuration of New Radio in the 3rd Generation Partnership Project (3GPP), which is a standardization body for land mobile communication systems.
  • 3GPP 3rd Generation Partnership Project
  • the transmission weights used at the time of analog beam formation are appropriately selected from among transmission weight groups called codebooks.
  • codebooks for downlink transmission, a plurality of analog beams are allocated to one user terminal in the transmitting station for multistream transmission.
  • the streams transmitted by the plurality of analog beams are preprocessed (digital precoding) in a digital signal processing unit in the transmitting station.
  • Such pre-processing includes, for example, spatial filtering by the Zero Forcing method, and inter-stream interference is removed.
  • the search for the preferred BF weights of the base station and terminal is performed sequentially for each antenna. Therefore, the training time from the start of the preferred BF weight search to the start of communication is long. Furthermore, there is no readjustment of the selected preferred BF weights. Therefore, it is unlikely that an appropriate BF weight will be selected.
  • the present invention has been made to solve the problems as described above, and it is possible to shorten the time from the start of BF weight search to the start of communication, and to optimize the BF weight sequentially and the wireless device and the wireless
  • the purpose is to obtain a communication control method.
  • a radio apparatus is a radio apparatus including a base station and a terminal station, and the base station performs precoding on a plurality of parallel user data using digital precoding with precoding way ⁇ and A transmit beamforming unit for performing analog base station beamforming for applying a change in phase and amplitude corresponding to the base station beamforming method to a signal subjected to digital precoding, and an analog base station beamforming
  • the terminal station is provided with a plurality of receiving antennas for transmitting signals transmitted from the base station and transmitted through space and for signals received by the plurality of receiving antennas.
  • a base station and a terminal station acquire transmission quality information in the case of using a combination of a base station beamforming weight and a terminal station beamforming weight in advance, and a suitable beamforming weight is provided.
  • a suitable beamforming weight is searched while performing mutual communication, and a suitable beam And it executes the preferred beamforming weights search function to perform the update processing of the timing weights.
  • a wireless communication control method is a wireless communication control method executed by mutual communication between a base station and a terminal station in the wireless device according to the present invention, which comprises base station beamforming weights and terminal station beamforming.
  • the transmission quality information in the case of using a combination with weights is obtained in advance, and a training step of executing a beamforming weight training function that specifies a suitable beamforming weight, and the transmission quality information specified by the training step And a search step of searching for a suitable beamforming weight while performing mutual communication and performing a process of updating the suitable beamforming weight.
  • the preferred BF weight is configured in a simple manner by all antennas at once and the preferred BF weight is used as an initial value, and the channel capacity at the time of changing the BF weight from there is sequentially It has a configuration that evaluates and searches for more appropriate BF weights while communicating. As a result, it is possible to obtain a wireless device and a wireless communication control method that shorten the time from the start of the BF weight search to the start of communication and optimize the BF weight sequentially.
  • FIG. 6 is a block diagram when data is transmitted from a base station to a terminal station in the first embodiment of the present invention. It is a block diagram of the base station in Embodiment 1 of this invention. It is an internal block diagram of BsSa in Embodiment 1 of this invention. It is a block diagram of the terminal station in Embodiment 1 of this invention. It is a figure which shows the whole flow of the radio
  • FIG. 7 is an explanatory drawing showing an example of transmission of a reference signal for CSI acquisition in Embodiment 1 of the present invention. It is an explanatory view showing an example of reception of a reference signal for CSI acquisition in Embodiment 1 of the present invention. It is a flowchart which shows the detail of BF weight combination search in Embodiment 1 of this invention.
  • Embodiment 1 of this invention it is the figure which showed the example which numbered the set of BF weight combination used as search object in a power descending order. In Embodiment 1 of this invention, it is the figure which showed an example of the psrch position before an increment. In Embodiment 1 of this invention, it is the figure which showed an example of the psrch position after an increment.
  • FIG. 1 is a schematic configuration diagram of a wireless communication system assumed in Embodiment 1 of the present invention.
  • the wireless communication system according to the first embodiment is similar to the wireless base station 1 having a hybrid BF antenna configuration (hereinafter referred to as a base station 1) and one user wireless having a hybrid BF antenna configuration. Communication is performed with the terminal 2 (hereinafter referred to as the terminal station 2).
  • the base station 1 and the terminal station 2 respectively have NbsSa base station subarrays and NUeSa terminal station subarrays.
  • the sub array is an element antenna group obtained by dividing an element antenna of each station into a plurality.
  • an antenna pattern (beam) of the sub array is formed.
  • the hybrid BF antenna is an antenna system configured of an analog BF (hereinafter referred to as BF) and a precoder / postcoder.
  • BF forms antenna directivity by combining signals adjusted in phase amplitude of an analog signal at a base station / terminal station sub-array.
  • precoder / postcoder combines signals in which the phase amplitudes of digital signals are adjusted.
  • FIG. 2 is a block diagram when data is transmitted from a base station to a terminal station in Embodiment 1 of the present invention.
  • the precoder matrix in precoder 3 is P
  • the base station BF matrix in base station 4 is WT
  • the channel matrix in transmission path 5 is H
  • the terminal station BF matrix in terminal station 6 is WR
  • postcode in postcoder 7 Let B be a coda matrix.
  • the signal vector r after demodulation can be expressed as the following equation (1) using the transmission signal s.
  • the transmission signal s is the following equation (2).
  • the precoder matrix P is the following Formula (3) and (4).
  • the base station BF matrix WT is the following equations (5) to (7), and Nbssa is the number of element antennas in one base station sub-array.
  • the transmission path matrix H is the following equation (8).
  • terminal BF matrix WR is the following expressions (9) to (11), and Nuesa is the number of element antennas in one terminal station sub-array.
  • the postcoder matrix B is the following equations (12) and (13).
  • each of the precoder matrix P and the postcoder matrix B is V and U H in the eigenvalue decomposition U ⁇ V H of Hsa. Therefore, unique MIMO transmission is possible as shown in the following equations (15) to (17).
  • ⁇ ⁇ ⁇ is a diagonal matrix and data is demodulated without interference at the terminal station.
  • FIG. 3 is a block diagram of the base station 1 in the first embodiment of the present invention.
  • the base station 1 in the first embodiment has Nbssa sub-arrays 12 for the base station (hereinafter referred to as BsSa).
  • FIG. 4 is an internal configuration diagram of BsSa12 in the first embodiment of the present invention.
  • the BaSa 12 internally includes Nbssa transceivers 10 and antenna elements 11.
  • the transmission / reception unit 10 is configured to include a TX variable phase shifter 10a, a TX variable amplifier 10b, an RX variable phase shifter 10c, an RX variable amplifier 10d, and a switch 10e.
  • the BS signal generation unit 31 generates bit data of the transmission signal based on the information on the BF training reference signal, the terminal station BF weight setting information signal, the data demodulation reference signal, and the user data information.
  • the BF training reference signal is a signal for acquiring the power characteristic obtained by the BF weight of the set base station and terminal station.
  • the terminal station BF weight setting information signal is a signal including BF weight instruction information of the terminal station set by the terminal station BF weight control / setting unit 39 described later.
  • the data demodulation reference signal is a reference signal for performing downlink channel estimation in the terminal station. Post-coder weights are determined using this channel estimate.
  • the user data signal is a user data signal transmitted to the terminal station 2.
  • the BS mapping unit 32 maps the signal generated by the BS signal generation unit 31 on an OFDM resource that is a rectangular region in the OFDM symbol direction and in the subcarrier direction according to the mapping rule.
  • the precoder unit 33 multiplies the input signal by the precoder weight P input from the precoder weight generation unit 37.
  • the BS-OFDM modulation unit 34 converts frequency axis data into time axis data by IFFT processing. Furthermore, the BS-OFDM modulation unit 34 adds a GI (Guard Interval) to time axis data in order to remove the influence of delay waves.
  • GI Guard Interval
  • the DA 35 converts a time base digital signal into an analog signal, and transmits downlink data directed from the base station 1 to the terminal station 2. Also, the AD 24 converts an analog signal into a digital signal, and receives uplink data from the terminal station 2 to the base station 1.
  • the BS-OFDM demodulation unit 25 converts time axis data into frequency axis data by GI removal and FFT processing.
  • the BS demapping unit 26 extracts the demodulated reference signal information for CSI acquisition in the subcarrier direction, which is frequency axis data, or bit data after decoding.
  • CSI means channel state information (Channel State Information).
  • the CQI management unit 27 acquires downlink RSSI (Radio Signal Strength Indicator) information of the combination of the base station BF weight candidate and the terminal station BF weight candidate decoded by the BS demapping unit, and the RSSI information for the BF weight combination. Accumulate.
  • RSSI Radio Signal Strength Indicator
  • the BS channel estimation unit 28 estimates a channel matrix Hsa from the signal points of the CSI acquisition reference signal extracted by the BS demapping unit 26.
  • the transmission capacity prediction unit 29 calculates the transmittable transmission path capacity of the base station to the terminal station from the transmission path matrix Hsa estimated by the BS channel estimation unit 28.
  • the base station BF weight control / setting unit 30 sets the base station BF weight to the BsSa 12 and sets the terminal station BF weight based on the prediction result from the transmission capacity prediction unit 29 and the CQI information from the CQI management unit 27.
  • the control information for reporting to the terminal station is set in the BS signal generation unit 31.
  • FIG. 5 is a block diagram of the terminal station 2 in the first embodiment of the present invention.
  • the terminal station 2 in the first embodiment has Nuesa sub-arrays 13 for the terminal station (hereinafter referred to as UeSa).
  • the configuration in the UeSa 13 is the same as that in FIG. 4 showing the configuration in the BsSa 12. That is, UeSa 13 has Nues transceivers 10 and antenna elements 11 inside.
  • the transmission / reception unit 10 is configured to include a TX variable phase shifter 10a, a TX variable amplifier 10b, an RX variable phase shifter 10c, an RX variable amplifier 10d, and a switch 10e.
  • the AD 14 converts an analog signal received via the UeSa 13 into a digital signal, and receives downlink data transmitted from the base station 1 to the terminal station 2. Also, the DA 23 converts a time-axis digital signal into an analog signal, and transmits uplink data from the terminal station 2 to the base station 1.
  • the UE-OFDM demodulation unit 15 converts time axis data into frequency axis data by GI removal and FFT processing.
  • the postcoder unit 16 multiplies the input signal by the postcoder weight B input from the postcoder weight generation unit 38.
  • the UE demapping unit 17 extracts the demodulated BF training reference signal in the subcarrier direction, which is frequency axis data, and inputs the extracted BF training reference signal to the known sequence analysis unit 18. Further, the UE demapping unit 17 extracts the terminal station BF weight setting information signal and inputs the signal to the control information analysis unit 19. Further, the UE demapping unit 17 extracts a reference signal for data demodulation and inputs the reference signal to the UE channel estimation unit 40.
  • the known sequence analysis unit 18 analyzes the BF training reference signal to calculate the power characteristic of the combination of the set base station BF weight and the terminal station BF weight.
  • the control information analysis unit 19 analyzes the terminal station BF weight setting information signal, and obtains BF weight information to be set in the terminal BF weight control / setting unit 39.
  • the terminal BF weight control / setting unit 39 sets the setting values of the variable phase shifters set to UeSa (1) 1 to UeSa (8) based on the BF weight information set to UeSa input from the control information analysis unit 19. , And determine the setting value of the variable amplifier.
  • the UE channel estimation unit 40 analyzes the data demodulation reference signal and estimates a transmission path matrix Hsa between transmission and reception.
  • the postcoder weight generation unit 38 generates a postcoder weight based on the channel matrix Hsa from the UE channel estimation unit 40, using a MIMO demodulation algorithm such as ZF (zero-forcing) method, for example.
  • the feedback information generation unit 20 converts the power characteristic of the combination of the base station BF weight and the terminal station BF weight calculated by the known sequence analysis unit 18 into feedback data information, and inputs the feedback data information to the UE signal generation unit 41.
  • the UE signal generation unit 41 is for CSI acquisition for acquiring uplink channel information and feedback data information on power characteristics of a combination of a base station BF weight and a terminal station BF weight input from the feedback information generation unit 20. Bit data of a transmission signal is generated based on either the reference signal or user data information.
  • the UE mapping unit 21 maps the signal generated by the UE signal generation unit 41 on an OFDM resource which is a rectangular region in the OFDM symbol direction and the subcarrier direction according to the mapping rule.
  • the UE-OFDM modulation unit 22 converts frequency axis data into time axis data by IFFT processing. Further, the UE-OFDM modulation unit 22 adds a GI (Guard Interval) to time axis data in order to remove the influence of the delay wave.
  • GI Guard Interval
  • FIG. 6 is a diagram showing an entire flow of the wireless device in Embodiment 1 of the present invention.
  • the process executed by the radio apparatus according to the first embodiment includes “base station / terminal station BF weight training process” which measures received signal power of all combinations of BF weight candidates of the base station 1 and the terminal station 2
  • base station / terminal station BF weight training process measures received signal power of all combinations of BF weight candidates of the base station 1 and the terminal station 2
  • search processing of base station / terminal station suitable BF weight for searching for a suitable BF weight.
  • FIG. 7 is a diagram showing a detailed procedure of "base station / terminal station BF weight training process" in the first embodiment of the present invention.
  • This procedure mainly includes three methods: BF weight combination quality measurement method, BF training signal generation method, and BF weight combination quality feedback method.
  • the BF weight combination quality measurement method corresponds to the processing of steps S110 to S160 and steps S210 to S270.
  • the BF training signal generation method corresponds to step S130 and a process for generating a BF training reference signal shown in FIG. 8 described later.
  • the BF weight combination quality feedback method corresponds to the process of step 280.
  • step S110 the base station 1 sets the selected number of base stations BF weight candidate number to zero.
  • step S210 the terminal station 2 sets the selected terminal BF weight candidate number to zero.
  • step S120 the base station BF weight control / setting unit 30 sets different base station BF weight candidates for each BsSa, and updates the number of selected base station BF weight candidates.
  • step S220 the terminal station 2 sets different terminal station BF weight candidates for each UeSa by the terminal station BF weight control / setting unit 39, and updates the number of selected terminal station BF weight candidates.
  • step S130 the base station 1 transmits a BF training reference signal.
  • FIG. 8 is an explanatory drawing showing an example of transmission of a reference signal for BF training in Embodiment 1 of the present invention.
  • base station 1 With different BF weight candidates set in the base station and the terminal station in step S120 and step S220, base station 1 references different subcarrier positions for different base station subarrays, as shown in FIG. Generates and transmits a BF training reference signal in a format in which
  • the BF training reference signal is generated by the BS signal generation unit 31 in accordance with an instruction from the base station BF weight control / setting unit 30. Then, the generated BF training reference signal is transmitted via the BS mapping unit 32, the precoder unit 33, the BS-OFDM modulation unit 34, the DA 35, and the Bs Sa 12.
  • the precoder unit 33 multiplies the unit matrix I as a precoder weight. Therefore, substantially, it will be operated without a precoder.
  • Nbssa 8 as an example.
  • FIG. 9 is an explanatory diagram showing an example of reception of a reference signal for BF training in the first embodiment of the present invention.
  • the terminal station 2 can receive the BF training signal shown in FIG. 9 without interference even when a plurality of BsSa simultaneously set with different BF weight candidates are transmitting signals. .
  • the BF training signal is received via the UeSa 13, the AD 14, the UE-OFDM demodulator 15, the postcoder 16, the UE demapping unit 17, and the known sequence analyzer 18.
  • the postcoder unit 16 multiplies the unit matrix I as a postcoder weight. Therefore, it will be operated without postcoder substantially.
  • Nuesa 8.
  • step S240 the terminal station 2 measures the signal power of the BF training reference signal for each subcarrier and each subarray received by each UeSa.
  • the terminal station 2 grasps in advance the subcarrier direction and the order of the time direction of the BF training reference signal to which the base station BF weight is applied in the BF training. Therefore, the terminal station 2 can uniquely identify which base station BF weight and which terminal station BF weight the signal power of the measured BF training reference signal is a combination.
  • step S250 the terminal station 2 notifies the presence or absence of a remaining candidate of the terminal station BF weight.
  • the terminal station 2 The number of terminal stations BF weight candidates is Nue; BF, The total value of the number of candidate weights already set in step S220 is Nue; BF; set Then, the base station 1 is notified of a flag indicating whether Nue; BF-Nue; BF; numerical value of set, or Nue; BF-Nue; BF: set ⁇ 0.
  • step S140 the base station 1 returns to step S130 if Nue; BF-Nue; BF; set> 0.
  • step S260 if Nue; BF-Nue; BF; set> 0, the terminal station 2 returns to step S220.
  • the base station 1 and the terminal station 2 fix the base station BF weight candidate, change the terminal BF weight candidate, and continue the training. . Then, the base station 1 repeats steps S130 to S140 until Nue; BF-Nue; BF; set 0 0, and the terminal station 2 repeats steps S220 to S260. As a result, the terminal station 2 can finally acquire the power characteristics of all the candidates for the terminal station BF weight.
  • step S150 the base station 1 notifies the presence or absence of a remaining candidate of the base station BF weight.
  • base station 1 Base station BF weight candidate number Nbs; BF, The total value of the number of candidate weights already set in step S120 is Nbs; BF; set Then, the terminal station 2 is notified of a flag indicating whether Nbs; BF-Nbs; BF; numerical value of set, or Nbs; BF-Nue; BF: set ⁇ 0.
  • step S160 the base station 1 returns to step S120 if Nbs; BF-Nbs; BF; set> 0.
  • step S270 if Nbs; BF-Nbs; BF; set> 0, the terminal station 2 returns to step S210.
  • the base station 1 and the terminal station 2 change the base station BF weight candidates, reset the number of selected terminal stations BF weight candidates, Training of all candidates for the terminal station BF weight is again conducted. Then, the base station 1 repeats steps S120 to S160 until Nbs; BF-Nbs; BF; set 0 0, and the terminal station 2 repeats steps S210 to S270. As a result, the terminal station 2 can finally acquire the power characteristic for all combinations of base station-terminal station BF weights.
  • step S280 the terminal station 2 generates, as feedback information, the power characteristic for all combinations of base station-terminal station BF weights acquired in step S240 above, as feedback information. . Then, the terminal station 2 feeds back the generated feedback information to the base station 1 via the UE signal generation unit 41, the UE mapping unit 21, the UE-OFDM modulation unit 22, the DA 23, and the UeSa 13.
  • the base station 1 receives feedback information via the BsSa12, AD24, the BS-OFDM demodulator 25, the BS demapping unit 26, and the CQI management unit 27, thereby all base station-terminal station BF weight candidates can be selected. Get the power characteristics for the combination.
  • FIG. 10 is a diagram showing the detailed procedure of the preferred BF weight search in the first embodiment of the present invention. This procedure mainly includes four methods of BF weight initialization, channel matrix acquisition, CSI acquisition reference signal generation, and BF weight combination search.
  • the BF weight initialization method corresponds to the process of steps S310, S320, and S410.
  • the transmission path matrix acquisition method corresponds to the process of step S420 and step S330.
  • the reference signal generation method for CSI acquisition corresponds to the process of step S420.
  • the BF weight combination search method corresponds to the process of step S360.
  • step S310 the base station 1 selects, as an initial setting, a combination of maximum power from the power characteristic information on the combination of base station-terminal BF weight notified in step S280. Further, the base station 1 sets the selected combination of base stations BF weights to all BsSa.
  • the base station 1 sets the updated base station BF weight for each BsSa according to the updated content.
  • step S320 the base station 1 generates a terminal station BF weight setting information signal.
  • the BS signal generation unit 31 in the base station 1 receives, from the base station BF weight control / setting unit 30, the terminal station BF weights of the combination that results in the maximum power selected in step S310. It generates as a terminal station BF weight setting information signal according to the instruction. Then, the BS signal generation unit 31 notifies the terminal station BF weight setting information signal as terminal station BF weights for all UeSa.
  • step S360 the base station 1 reports the updated terminal station BF weight individually to the UeSa 13 according to the updated content.
  • step S 410 the terminal station 2 decodes the terminal station BF weight setting information signal received from the base station 1 by the control information analysis unit 19. Further, the terminal station 2 sets the terminal BF weight to UeSa in the terminal station BF weight control / setting unit 39 according to the decoding result of the terminal station BF weight setting information signal.
  • step S420 the terminal station 2 generates a CSI acquisition reference signal in the UE signal generation unit 41 using the reversibility between downlink / uplink in the TDD system.
  • the generated reference signal for CSI acquisition is transmitted with the already set terminal station BF weight.
  • FIG. 11 is an explanatory drawing showing an example of transmission of a reference signal for CSI acquisition in Embodiment 1 of the present invention.
  • the reference signal for CSI acquisition is mapped to different subcarriers in each UeSa.
  • FIG. 12 is an explanatory diagram showing an example of reception of a reference signal for CSI acquisition in Embodiment 1 of the present invention.
  • the base station 1 can obtain a received signal as shown in FIG.
  • the BS channel estimation unit 28 in the base station 1 can estimate a channel matrix, which is all combinations between UeSa and BsSa, as the following equation (19).
  • hi; j is a channel coefficient from the #i terminal subarray to the #j base station subarray.
  • step S340 the base station 1 uses, as the precoding weight P, the right singular matrix V of the channel matrix H represented by the following equation (20), which is estimated by the precoder weight generation unit 37.
  • the base station 1 transmits a user data / data demodulation reference signal.
  • the precoder unit 33 in the base station 1 is a vector of user data / data demodulation reference signals generated by the BS signal generation unit 31 and mapped on the OFDM resource by the BS mapping unit 32. Are multiplied by the precoding weight P to generate a transmission signal, which is then transmitted to the terminal station 2.
  • step S430 the terminal station 2 calculates postcoding weights / demodulates user data.
  • the postcoder weight generation unit 38 in the terminal station 2 uses the data demodulation reference signal transmitted from the base station 1 in step S350 to estimate the transmission channel estimated by the UE channel estimation unit 40.
  • step S360 the base station 1 determines whether to update the BF weight by a method described later. If not updated, the process returns to step S330, the base station 1 repeats steps S330 to S360, and the terminal station 2 repeats steps S420 to S430. On the other hand, in the case of updating, the process proceeds to step S310.
  • FIG. 13 is a flowchart showing the details of the BF weight combination search in the first embodiment of the present invention. This procedure includes two methods, the BF weight search range determination method and the BF weight update availability determination method.
  • the BF weight search range determination method corresponds to the process of step S610. Further, the BF weight update availability determination method corresponds to the processing of steps S510 to S540, step S710, and step S720.
  • step S510 the base station 1 calculates the channel capacity C based on the following equation using the channel matrix H estimated in step S330.
  • I is an identity matrix
  • is a received signal-to-noise ratio (SNR).
  • step S530 the base station 1 determines whether the preferred BF weight search / weight update is the first execution. If the determination in step S530 is yes, the process branches to s610, and if no, the process branches to step S540.
  • step S530 If the process branches to yes in step S530, and the preferred BF weight search / weight update is the first execution, the base station 1 executes the process of step S610 and subsequent steps.
  • step S610 the base station 1 sets the range of the BF combination to be searched based on the received power characteristic fed back from the terminal station 2 in step S280. Specifically, the base station 1 sets the power value PBF of the BF weight combination which is the maximum power among the power characteristics for all combinations of base station-terminal station BF weights fed back from the terminal station 2 to maxdB. Identify.
  • base station 1 PBF; min PBF; max-Prange (dB)
  • the BF weight combination having the power characteristics within the range is extracted as a target of the BF combination to be searched.
  • Prange is a parameter, which is separately determined in advance unique to the system.
  • FIG. 14 is a diagram showing an example in which sets of BF weight combinations to be searched for are numbered in descending power order in the first embodiment of the present invention.
  • the alignment number is ddec
  • ddec 1 is the alignment number of the PBF; max and then the BF combination of high power.
  • Nsrch the number of BF combinations to be searched.
  • the preferred BF weights are searched sequentially for each sub array set.
  • the first sub-array set for example, the set of BsSa (1) and UeSa (1) is a BF weight combination that provides the maximum power.
  • the base station 1 sets the application target of the search for the preferred BF weight as the second sub-array set.
  • the base station 1 determines whether the maximum channel capacity has been updated in the sub array. Specifically, the base station 1 determines no when the maximum channel capacity is not updated in step S520 in the sub-array set to which the BF weight is applied during the search. Then, if it is determined that the base station 1 is no, the base station 1 ends the search processing on the assumption that the BF weight at the current time is suitable, and shifts to step S330.
  • step S520 when the maximum channel capacity is updated in step S520, the base station 1 determines that the result is yes, and proceeds to step S720.
  • the base station 1 sets the BF combination in which the maximum channel capacity has been updated, to the relevant sub-array. That is, when the maximum channel capacity is updated in step S520, the base station 1 sets the BF weight combination when the maximum channel capacity is updated as the preferred BF combination of the application target sub-array set.
  • step S730 the base station 1 determines whether all subarrays have been set. Then, when it is determined that the search in all the sub-array groups has been completed, the base station 1 ends the search processing, and proceeds to step S330. On the other hand, if the base station 1 has not completed the search for all the sub-array sets and the search processing for the other sub-array sets remains, the process moves to step S740.
  • the base station 1 increments the number of the search target subarray set and continues searching for the preferred BF weight for the next subarray set.
  • step S550 the base station 1 increments a variable psrch indicating the alignment number under search, and changes the candidate BF weight combination.
  • FIG. 15 is a diagram showing an example of the psrch position before incrementing in the first embodiment of the present invention
  • FIG. 16 shows an example of the psrch position after incrementing in the first embodiment of the present invention
  • the base station 1 combines the combination of the base station BF weight indicated by the alignment number head psrch in search of the base station and terminal station BF weight of the application target subarray set with the terminal station BF weight, BF weight combination.
  • the first embodiment has the following two features.
  • a suitable BF weight is provided by a simple method, with all the antennas collectively. As a result, the time from the start of weight search to the start of communication can be shortened, and wireless resources can be effectively used.
  • a preferred BF weight is used as an initial value, and the channel capacity at the time of changing the BF weight is evaluated sequentially, and a more appropriate BF weight is searched while communicating. As a result, the BF weights can be optimized sequentially.
  • Modification 1 Frequency orthogonality / code orthogonality of BF training signal
  • the reference signal is arranged in different subcarrier positions for different base station subarrays, so that the reference signal has a frequency
  • the BF training signal in orthogonal format has been described.
  • BF training signals in a format in which the reference signals are code orthogonal may be adopted by assigning different spreading codes to the reference signals for different base station sub-arrays.
  • the base station transmits the reference signal for CSI acquisition from the terminal station to the base station on the uplink on the premise of a TDD (Time Division Duplex) system.
  • TDD Time Division Duplex
  • the method of acquiring the path matrix has been described.
  • FDD Frequency Division Duplex
  • the terminal station acquires and acquires a channel matrix.
  • a method may be adopted in which the base station acquires the channel matrix by the terminal station feeding back channel matrix information to the base station.
  • the base station transmits the BF training signal to the terminal station in the downlink, so that the terminal station acquires the power characteristic of the BF weight combination, and the acquired power
  • the terminal station may transmit the BF training signal to the base station to acquire the power characteristic at the base station.

Abstract

本発明に係る無線装置は、基地局と端末局との相互通信において、基地局ビームフォーミングウェイトと端末局ビームフォーミングウェイトとの組合せを用いた場合の伝送品質情報を事前に取得し、好適なビームフォーミングウェイトを特定するビームフォーミングウェイト・トレーニング機能を実行する構成と、トレーニングステップにより特定された伝送品質情報をもとに、相互通信を行いながら好適ビームフォーミングウェイトを探索し、好適なビームフォーミングウェイトの更新処理を実行する構成とを有する。

Description

無線装置および無線通信制御方法
 本発明は、通信性能の改善を図る無線装置および無線通信制御方法に関する。
 無線通信において、大容量通信を実現するための1つの方法として、信号帯域幅の広帯域化がある。数GHz以下の周波数帯では、多数のシステムに周波数が既に割り当てられ、数100MHz以上の広い信号帯域を確保することが困難である。しかしながら、1つの無線基地局によりカバーする通信エリアとして、数100m程度、またはそれ以上が必要となるセルラー通信は、数GHz以下の周波数帯を利用せざるを得ない。
 数10GHzの高い周波数帯では、未割当ての周波数(空き領域)も多く、数100MHz以上の広い信号帯域幅を確保できる可能性が高い。ただし、数10GHzの高い周波数帯では、伝搬距離減衰量が大きい。このため、通信エリアを広く確保できないデメリットもある。
 ここで、高い周波数では、1波長の長さが短くなることを利用して、一定の面積当たりに実装可能なアンテナ素子数を、大幅に増加できる。これにより、高利得なビーム形成を可能とし、伝搬距離減衰を補償することが考えられている。
 また、大容量伝送を実現するために、広帯域化に加えて、多数のアンテナ素子で複数ビームを形成することで、送信信号を空間多重する超多素子MIMO(Multiple-Input Multiple-Output)と呼ばれる技術がある。超多素子MIMOは、一般に、アンテナ素子毎に一連のTX/RX回路、ディジタル信号処理部を有している。例えば、超多素子MIMOが256素子ある場合には、256個のTX/RX回路、FPGA、ASIC等を用いるディジタル信号処理部が必要となる。従って、超多素子MIMOは、コスト面や実現性に課題がある。
 この課題に対する1つの解として、ハイブリッドBF(Beam forming)型のアンテナ構成がある。このアンテナ構成は、ビーム形成を、ディジタル信号処理部ではなく、可変アンプあるいは可変移相器からなるアナログ回路で実現する方法である。つまり、このアンテナ構成は、アナログビームを形成する方法である(例えば、特許文献1参照)。
 これにより、必要とされるディジタル信号処理部の数は、アンテナ素子数と同数ではなく、形成するビーム数と同数となる。この結果、1つのアナログビームを16アンテナ素子で形成する場合には、ディジタル信号処理部を1/16にできる。
 このようなアナログビーム形成は、陸上移動通信システムの標準化団体である3GPP(3rd GenerationPartnership Project)においては、New Radioの標準アンテナ構成に相当する。
 アナログビーム形成時に使用する送信ウェイトは、コードブックと呼ばれる送信ウェイト群の中から適切に選択される。また、複数ストリーム伝送のために、下りリンクにおいて、送信局では、1つのユーザ端末に対して、複数アナログビームが割り当てられる。この複数のアナログビームにより送信されるストリームは、送信局内のディジタル信号処理部において事前処理(ディジタルプリコーディング)される。このような事前処理としては、例えば、Zero Forcing法による空間フィルタリングが挙げられ、ストリーム間干渉が除去される。
 このアナログビームの割り当て方法として、アナログビームの高速な送信ビーム選択のために、アナログビーム制御とディジタルプリコーディング制御を完全に分離した2段階制御法が提案されている(例えば、特許文献1参照)。
国際公開第2015-125891号
 しかしながら、従来技術には、以下のような2点の課題がある。
 ・基地局および端末の好適BFウェイトの探索は、アンテナ毎に逐次的に行われる。このため、好適BFウェイト探索の開始から通信開始までのトレーニング時間が長い。
 ・さらに、選択された好適BFウェイトを再調整することがない。このため、適切なBFウェイトが選択される可能性が低い。
 本発明は、前記のような課題を解決するためになされたものであり、BFウェイト探索の開始から通信開始までの時間を短縮し、かつ、BFウェイトを逐次的に最適化する無線装置および無線通信制御方法を得ることを目的とする。
 本発明に係る無線装置は、基地局と端末局とを備える無線装置であって、基地局は、複数の並列ユーザデータに対して、プリコーディングウェイ卜を用いてディジタルプリコーディングを施すプリコーダ部と、ディジタルプリコーディングが施された後の信号に対して、基地局ビームフォーミングウェイ卜に相当する位相および振幅の変化を付与するアナログ基地局ビームフォーミングを施す送信ビームフォーミング部と、アナログ基地局ビームフォーミングが施された信号を送信する複数の送信アンテナとを備え、端末局は、基地局から送信され、空間を伝搬した信号を受信する複数の受信アンテナと、複数の受信アンテナが受信した信号に対して、端末局ビームフォーミングウェイ卜に相当する位相および振幅の変化を付与するアナログ端末局ビームフォーミングを施す端末局ビームフォーミング部と、アナログ端末局ビームフォーミングが施された後の信号に対して、ポストコーディングウェイ卜を用いてディジタルポストコーディングを施すことにより、複数の並列ユーザデータを再生するポストコーディング部とを備え、基地局および端末局は、基地局ビームフォーミングウェイトと端末局ビームフォーミングウェイトとの組合せを用いた場合の伝送品質情報を事前に取得し、好適なビームフォーミングウェイトを特定するビームフォーミングウェイト・トレーニング機能と、ビームフォーミングウェイト・トレーニング機能を実行することにより特定された伝送品質情報をもとに、相互通信を行いながら好適ビームフォーミングウェイトを探索し、好適なビームフォーミングウェイトの更新処理を実行する好適ビームフォーミングウェイト探索機能とを実行するものである。
 また、本発明に係る無線通信制御方法は、本発明の無線装置において、基地局と端末局との相互通信により実行される無線通信制御方法であって、基地局ビームフォーミングウェイトと端末局ビームフォーミングウェイトとの組合せを用いた場合の伝送品質情報を事前に取得し、好適なビームフォーミングウェイトを特定するビームフォーミングウェイト・トレーニング機能を実行するトレーニングステップと、トレーニングステップにより特定された伝送品質情報をもとに、相互通信を行いながら好適ビームフォーミングウェイトを探索し、好適なビームフォーミングウェイトの更新処理を実行する探索ステップとを有するものである。
 本発明によれば、好適なBFウェイトを、簡易な方法で、全アンテナ一括で設定する構成、および好適なBFウェイトを初期値として、そこからBFウェイトを変更した際のチャネル容量を逐次的に評価し、より適切なBFウェイトを、通信しながら探索する構成を備えている。この結果、BFウェイト探索の開始から通信開始までの時間を短縮し、かつ、BFウェイトを逐次的に最適化する無線装置および無線通信制御方法を得ることができる。
本発明の実施の形態1で想定する無線通信システムの概略構成図である。 本発明の実施の形態1において、基地局から端末局へデータ送信する際のブロック図である。 本発明の実施の形態1における基地局の構成図である。 本発明の実施の形態1におけるBsSaの内部構成図である。 本発明の実施の形態1における端末局の構成図である。 本発明の実施の形態1における無線装置の全体フローを示す図である。 本発明の実施の形態1における「基地局/端末局BFウェイト・トレーニング処理」の詳細手続きを示す図である。 本発明の実施の形態1におけるBFトレーニング用参照信号の送信例を示した説明図である。 本発明の実施の形態1におけるBFトレーニング用参照信号の受信例を示した説明図である。 本発明の実施の形態1における、好適BFウェイト探索の詳細手続きを示した図である。 本発明の実施の形態1におけるCSI取得用参照信号の送信例を示した説明図である。 本発明の実施の形態1におけるCSI取得用参照信号の受信例を示した説明図である。 本発明の実施の形態1におけるBFウェイト組合せ探索の詳細を示すフローチャートである。 本発明の実施の形態1において、探索対象となるBFウェイト組合せのセットを、電力降順に番号付けを行った例を示した図である。 本発明の実施の形態1において、インクリメント前のpsrch位置の一例を示した図である。 本発明の実施の形態1において、インクリメント後のpsrch位置の一例を示した図である。
 以下、本発明の無線装置および無線通信制御方法の好適な実施の形態につき、図面を用いて説明する。
 実施の形態1.
 図1は、本発明の実施の形態1で想定する無線通信システムの概略構成図である。本実施の形態1における無線通信システムは、ハイブリッドBF型アンテナ構成を具備する無線基地局1(以下、基地局1と称す)と、同様に、ハイブリッドBF型アンテナ構成を具備する1台のユーザ無線端末2(以下、端末局2と称す)との間で通信が行われる。
 基地局1、端末局2は、それぞれNbsSa個の基地局サブアレー、NUeSa個の端末局サブアレーを持つ。
 ここで、サブアレーとは、各局が具備する素子アンテナを、複数に分割した素子アンテナ群である。サブアレー内の可変位相器、可変アンプを適切に設定することで、サブアレーのアンテナパタン(ビーム)が形成される。
 さらに、ハイブリッドBF型アンテナとは、アナログBF(以下、BFと称す)と、プリコーダ/ポストコーダとで構成されるアンテナシステムである。BFは、基地局/端末局サブアレーにて、アナログ信号の位相振幅を調整した信号を合成することで、アンテナ指向性を形成するものである。また、プリコーダ/ポストコーダは、ディジタル信号の位相振幅を調整した信号を合成するものである。
 図2は、本発明の実施の形態1において、基地局から端末局へデータ送信する際のブロック図である。プリコーダ3でのプリコーダ行列をP、基地局4での基地局BF行列をWT、伝送路5での伝送路行列をH、端末局6での端末局BF行列をWR、ポストコーダ7でのポストコーダ行列をBとする。このとき、復調後の信号ベクトルrは、送信信号sを用いて、下式(1)のように表現できる。
Figure JPOXMLDOC01-appb-M000001
 ここで、送信信号sは、下式(2)である。
Figure JPOXMLDOC01-appb-M000002
 また、プリコーダ行列Pは、下式(3)、(4)である。
Figure JPOXMLDOC01-appb-M000003
 また、基地局BF行列WTは、下式(5)~(7)であり、Nbssaは、1つの基地局サブアレー内の素子アンテナ数である。
Figure JPOXMLDOC01-appb-M000004
 また、伝送路行列Hは、下式(8)である。
Figure JPOXMLDOC01-appb-M000005
 また、端末BF行列WRは、下式(9)~(11)であり、Nuesaは、1つの端末局サブアレー内の素子アンテナ数である。
Figure JPOXMLDOC01-appb-M000006
 また、ポストコーダ行列Bは、下式(12)、(13)である。
Figure JPOXMLDOC01-appb-M000007
 基地局および端末局のモデム内では、基地局BFおよび端末局BFが反映された下式(14)のみが認識、測定可能である。
Figure JPOXMLDOC01-appb-M000008
 例えば、プリコーダ行列Pおよびポストコーダ行列Bのそれぞれは、Hsaの固有値分解UΣVHにおける、VおよびUHである。従って、下式(15)~(17)のように、固有MIMO伝送が可能となる。
Figure JPOXMLDOC01-appb-M000009
 ここで、U、VHは、ユニタリ行列のため、上式(17)は、下式(18)のように書換え可能である。
Figure JPOXMLDOC01-appb-M000010
 Σは、対角行列であり、端末局で混信なくデータ復調されることがわかる。
 次に、基地局の機器構成について、図3、図4を用いて説明する。図3は、本発明の実施の形態1における基地局1の構成図である。本実施の形態1における基地局1は、Nbssa個の基地局用サブアレー12(以下、BsSaと称す)を持つ。
 図4は、本発明の実施の形態1におけるBsSa12の内部構成図である。BaSa12は、その内部に、Nbssa個の送受信部10およびアンテナ素子11を有している。送受信部10は、TX用可変位相器10a、TX用可変アンプ10b、RX用可変位相器10c、RX用可変アンプ10d、および切換器10eを含んで構成されている。
 BS信号生成部31は、BFトレーニング参照信号、端末局BFウェイト設定情報信号、データ復調用参照信号、およびユーザデータ情報に関する情報をもとに、送信信号のビットデータを生成する。
 BFトレーニング参照信号は、設定した基地局および端末局のBFウェイトで得られる電力特性を取得するための信号である。また、端末局BFウェイト設定情報信号は、後述する端末局BFウェイト制御・設定部39にて設定される端末局のBFウェイトの指示情報を含む信号である。
 また、データ復調用参照信号は、端末局でダウンリンクのチャネル推定を行うための参照信号である。このチャネル推定を用いて、ポストコーダウェイトが決定される。また、ユーザデータ信号は、端末局2に送信されるユーザデータ信号である。
 BSマッピング部32は、BS信号生成部31で生成した信号をOFDMシンボル方向およびサブキャリア方向の矩形領域であるOFDMリソース上に、マッピング規則に従ってマッピングする。
 プリコーダ部33は、プリコーダウェイト生成部37から入力されるプリコーダウェイトPを、入力信号に対して乗算する。
 BS-OFDM変調部34は、IFFT処理により周波数軸データを時間軸データに変換する。さらに、BS-OFDM変調部34は、遅延波の影響を取り除くために、時間軸データに対してGI(Guard Interval)を付加する。
 DA35は、時間軸ディジタル信号をアナログ信号に変換し、基地局1から端末局2に向けたダウンリンクのデータを送信する。また、AD24は、アナログ信号をディジタル信号に変換し、端末局2から基地局1に向けたアップリンクのデータを受信する。
 BS-OFDM復調部25は、GI除去およびFFT処理により時間軸データを周波数軸データに変換する。
 BSデマッピング部26は、周波数軸データであるサブキャリア方向における復調したCSI取得用参照信号情報、もしくは復号後のビットデータを抽出する。ここで、CSIは、チャネル状態情報(Channel State Information)を意味する。
 CQI管理部27は、BSデマッピング部で復号した、基地局BFウェイト候補と端末局BFウェイト候補との組合せによるダウンリンクのRSSI(Radio Signal Strength Indicator)情報を取得し、BFウェイト組合せに対するRSSI情報を蓄積する。
 BSチャネル推定部28は、BSデマッピング部26にて抽出した、CSI取得用参照信号の信号点から、伝送路行列Hsaを推定する。
 伝送容量予測部29は、BSチャネル推定部28にて推定した伝送路行列Hsaから、基地局-端末局の伝送可能な伝送路容量を計算する。
 基地局BFウェイト制御・設定部30は、伝送容量予測部29からの予測結果、およびCQI管理部27からのCQI情報に基づき、BsSa12への基地局BFウェイトの設定、および端末局BFウェイトの設定を端末局に報知するための制御情報を、BS信号生成部31に設定する。
 次に、端末局の機器構成について、図5を用いて説明する。図5は、本発明の実施の形態1における端末局2の構成図である。本実施の形態1における端末局2は、Nuesa個の端末局用サブアレー13(以下、UeSaと称す)を持つ。
 UeSa13内の構成は、BsSa12内の構成を示した先の図4と同様である。すなわち、UeSa13は、その内部に、Nues個の送受信部10およびアンテナ素子11を有している。送受信部10は、TX用可変位相器10a、TX用可変アンプ10b、RX用可変位相器10c、RX用可変アンプ10d、および切換器10eを含んで構成されている。
 AD14は、UeSa13を介して受信されたアナログ信号を、ディジタル信号に変換し、基地局1から端末局2へ送信されたダウンリンクのデータを受信する。また、DA23は、時間軸ディジタル信号をアナログ信号に変換し、端末局2から基地局1に向けたアップリンクデータを送信する。
 UE-OFDM復調部15は、GI除去およびFFT処理により、時間軸データを周波数軸データに変換する。
 ポストコーダ部16は、ポストコーダウェイト生成部38から入力されるポストコーダウェイトBを、入力信号に対して乗算する。
 UEデマッピング部17は、周波数軸データであるサブキャリア方向における復調したBFトレーニング参照信号を抽出し、既知系列解析部18に入力する。さらに、UEデマッピング部17は、端末局BFウェイト設定情報信号を抽出し、制御情報解析部19に入力する。さらに、UEデマッピング部17は、データ復調用参照信号を抽出し、UEチャネル推定部40に入力する。
 既知系列解析部18は、BFトレーニング参照信号を解析することで、設定した基地局BFウェイト、および端末局BFウェイトの組合せの電力特性を計算する。
 制御情報解析部19は、端末局BFウェイト設定情報信号を解析し、端末BFウェイト制御・設定部39に設定するBFウェイト情報を得る。
 端末BFウェイト制御・設定部39は、制御情報解析部19から入力される、UeSaに設定するBFウェイト情報を元に、UeSa(1)1~UeSa(8)に設定する可変位相器の設定値、および可変アンプの設定値を決定する。
 UEチャネル推定部40は、データ復調用参照信号を解析し、送受信間の伝送路行列Hsaを推定する。
 ポストコーダウェイト生成部38は、UEチャネル推定部40からの伝送路行列Hsaに基づき、例えば、ZF(zero-forcing)法などのMIMO復調アルゴリズムを用いて、ポストコーダウェイトを生成する。
 フィードバック情報生成部20は、既知系列解析部18で算出した基地局BFウェイトと端末局BFウェイトとの組合せの電力特性をフィードバックデータ情報に変換し、UE信号生成部41に入力する。
 UE信号生成部41は、フィードバック情報生成部20から入力される基地局BFウェイトと端末局BFウェイトとの組合せの電力特性に関するフィードバックデータ情報、上りリンクの伝送路情報を取得するためのCSI取得用参照信号、もしくはユーザデータ情報、のいずれかをもとに、送信信号のビットデータを生成する。
 UEマッピング部21は、UE信号生成部41で生成された信号を、OFDMシンボル方向およびサブキャリア方向の矩形領域であるOFDMリソース上に、マッピング規則に従ってマッピングする。
 UE-OFDM変調部22は、IFFT処理により周波数軸データを時間軸データに変換する。さらに、UE-OFDM変調部22は、遅延波の影響を取り除くために、時間軸データに対してGI(Guard Interval)を付加する。
 次に、本実施の形態1に係る無線装置の動作手続きについて説明する。
 図6は、本発明の実施の形態1における無線装置の全体フローを示す図である。本実施の形態1に係る無線装置で実行される処理は、基地局1および端末局2のBFウェイト候補の全組み合わせの受信信号電力を測定する「基地局/端末局BFウェイト・トレーニング処理」と、次ステップにおいて、先のステップで測定された受信信号電力情報に基づき、好適BFウェイトを探索する「基地局/端末局好適BFウェイトの探索処理」、の2ステップから構成される。
 次に、基地局/端末局BFウェイト・トレーニング処理について、詳細に説明する。図7は、本発明の実施の形態1における「基地局/端末局BFウェイト・トレーニング処理」の詳細手続きを示す図である。本手続きには、主に、BFウェイト組合せ品質測定法、BFトレーニング信号生成法、BFウェイト組合せ品質フィードバック法の3つが含まれている。
 BFウェイト組合せ品質測定法は、ステップS110~ステップS160、およびステップS210~ステップS270の処理に相当する。また、BFトレーニング信号生成法は、ステップS130、および後述する図8に示すBFトレーニング用参照信号の生成処理に相当する。さらに、BFウェイト組合せ品質フィードバック法は、ステップ280の処理に相当する。
 ステップS110において、基地局1は、選択済み数基地局BFウェイト候補数を0に設定する。同様に、ステップS210において、端末局2は、選択済み端末BFウェイト候補数を0に設定する。
 次に、ステップS120において、基地局1は、基地局BFウェイト制御・設定部30により、各BsSaに異なる基地局BFウェイト候補を設定し、選択済み基地局BFウェイト候補数を更新する。
 同様に、ステップS220において、端末局2は、端末局BFウェイト制御・設定部39により、各UeSaに異なる端末局BFウェイト候補を設定し、選択済み端末局BFウェイト候補数を更新する。
 次に、ステップS130において、基地局1は、BFトレーニング用参照信号の送信を行う。図8は、本発明の実施の形態1におけるBFトレーニング用参照信号の送信例を示した説明図である。基地局1は、ステップS120およびステップS220にて基地局および端末局で異なるBFウェイト候補が設定された状態で、図8に示すように、異なる基地局サブアレー毎に、異なるサブキャリア位置に参照信号が配置されるフォーマットのBFトレーニング用参照信号を生成し、送信する。
 このとき、BFトレーニング用参照信号は、基地局BFウェイト制御・設定部30からの指示で、BS信号生成部31にて生成される。そして、生成されたBFトレーニング用参照信号は、BSマッピング部32、プリコーダ部33、BS-OFDM変調部34、DA35、BsSa12を介して送信される。
 このとき、プリコーダ部33は、単位行列Iがプリコーダウェイトとして乗算される。従って、実質的には、プリコーダ無しとして動作させることとなる。本実施の形態1では、一例として、Nbssa=8としている。
 図9は、本発明の実施の形態1におけるBFトレーニング用参照信号の受信例を示した説明図である。ステップS230において、端末局2は、互いに異なるBFウェイト候補が設定されている、複数のBsSaが同時に信号を送信した場合であっても、図9に示すBFトレーニング信号を混信無く受信することができる。
 端末局2において、BFトレーニング信号は、UeSa13、AD14、UE-OFDM復調部15、ポストコーダ部16、UEデマッピング部17、既知系列解析部18を介して受信される。このとき、ポストコーダ部16は、単位行列Iがポストコーダウェイトとして乗算される。従って、実質的には、ポストコーダ無しとして動作させることとなる。本実施の形態1では、一例として、Nuesa=8としている。
 各UeSaでは、サブキャリア方向に異なる基地局BFウェイトで送信されたBFトレーニング用参照信号が配置される。このため、端末局2は、基地局BFウェイトNbssa=8種類、および端末局BFウェイトNuesa=8種類の、計Nuesa・Nbssa=64の組み合わせのBFトレーニング用参照信号の受信データを得ることができる。
 ステップS240において、端末局2は、各UeSaで受信したサブキャリア毎、サブアレー毎のBFトレーニング用参照信号の信号電力を測定する。端末局2は、BFトレーニングにおいて、基地局BFウェイトが適用されるBFトレーニング用参照信号のサブキャリア方向および時間方向の順番を、事前に把握している。よって、端末局2は、測定したBFトレーニング用参照信号の信号電力が、どの基地局BFウェイトと、どの端末局BFウェイトとの間の組合せかを、一意に特定できる。
 ステップS250において、端末局2は、端末局BFウェイトの残候補の有無を通知する。具体的には、端末局2は、
 端末局BFウェイト候補数をNue;BF、
 すでにステップS220にて設定済みの候補ウェイト数の合計値をNue;BF;set
とすると、Nue;BF-Nue;BF;setの数値、もしくはNue;BF-Nue;BF;set≦0かどうかを示すフラグを、基地局1に通知する。
 ステップS140において、基地局1は、Nue;BF-Nue;BF;set>0である場合には、ステップS130に戻る。同様に、ステップS260において、端末局2は、Nue;BF-Nue;BF;set>0である場合には、ステップS220に戻る。
 すなわち、Nue;BF-Nue;BF;set>0である場合には、基地局1および端末局2は、基地局BFウェイト候補を固定し、端末BFウェイト候補を変更して、トレーニングを継続する。そして、Nue;BF-Nue;BF;set≦0となるまで、基地局1は、ステップS130~ステップS140を繰り返し、端末局2は、ステップS220~ステップS260を繰り返す。この結果、端末局2は、最終的に、端末局BFウェイトの全候補の電力特性を取得することができる。
 次に、ステップS150において、基地局1は、基地局BFウェイトの残候補の有無を通知する。具体的には、基地局1は、
 基地局BFウェイト候補数をNbs;BF、
 すでにステップS120にて設定済みの候補ウェイト数の合計値をNbs;BF;set
とすると、Nbs;BF-Nbs;BF;setの数値、もしくはNbs;BF-Nue;BF;set≦0かどうかを示すフラグを、端末局2に通知する。
 ステップS160において、基地局1は、Nbs;BF-Nbs;BF;set>0である場合には、ステップS120に戻る。同様に、ステップS270において、端末局2は、Nbs;BF-Nbs;BF;set>0である場合には、ステップS210に戻る。
 すなわち、Nbs;BF-Nbs;BF;set>0である場合には、基地局1および端末局2は、基地局BFウェイト候補を変更し、選択済み端末局BFウェイト候補数をリセットして、再度、端末局BFウェイト全候補のトレーニングを実施する。そして、Nbs;BF-Nbs;BF;set≦0となるまで、基地局1は、ステップS120~ステップS160を繰り返し、端末局2は、ステップS210~ステップS270を繰り返す。この結果、端末局2は、最終的に、基地局-端末局BFウェイトの全候補の組合せに対する電力特性を取得することができる。
 最後に、ステップS280において、端末局2は、先のステップS240にて取得した基地局-端末局BFウェイトの全候補の組合せに対する電力特性を、フィードバック情報生成部20にて、フィードバック情報として生成する。そして、端末局2は、UE信号生成部41、UEマッピング部21、UE-OFDM変調部22、DA23、UeSa13を介して、生成したフィードバック情報を基地局1へフィードバックする。
 一方、基地局1は、BsSa12、AD24、BS-OFDM復調部25、BSデマッピング部26、CQI管理部27を介してフィードバック情報を受信することで、基地局-端末局BFウェイトの全候補の組合せに対する電力特性を取得する。
 次に、好適BFウェイトの探索方法について説明する。
 図10は、本発明の実施の形態1における、好適BFウェイト探索の詳細手続きを示した図である。本手続きは、主に、BFウェイトの初期設定法、伝送路行列取得方法、CSI取得用参照信号生成法、BFウェイト組合せ探索法の4つが含まれている。
 BFウェイトの初期設定法は、ステップS310、ステップS320、およびステップS410の処理に相当する。また、伝送路行列取得方法は、ステップS420、ステップS330の処理に相当する。また、CSI取得用参照信号生成法は、ステップS420の処理に相当する。さらに、BFウェイト組合せ探索法は、ステップS360の処理に相当する。
 ステップS310において、基地局1は、初期設定として、ステップS280で通知された基地局-端末BFウェイトの組合せに対する電力特性情報から、最大電力となる組合せを選択する。さらに、基地局1は、選択した組合せの基地局BFウェイトを全BsSaに設定する。
 なお、初期設定でなく、後述するステップS360において、BFウェイトが更新された場合には、基地局1は、更新内容に従い、BsSa個別に、更新後の基地局BFウェイトを設定することとなる。
 ステップS320において、基地局1は、端末局BFウェイト設定情報信号を生成する。具体的には、基地局1内のBS信号生成部31は、初期設定時には、ステップS310で選択された最大電力となる組合せの端末局BFウェイトを、基地局BFウェイト制御・設定部30からの指示に従って、端末局BFウェイト設定情報信号として生成する。そして、BS信号生成部31は、全UeSaへの端末局BFウェイトとして、端末局BFウェイト設定情報信号を通知する。
 なお、初期設定でなく、後述するステップS360において、BFウェイトが更新された場合には、基地局1は、更新内容に従い、UeSa13個別に、更新後の端末局BFウェイトを通知することとなる。
 ステップS410において、端末局2は、基地局1から受信した端末局BFウェイト設定情報信号を、制御情報解析部19にて復号する。さらに、端末局2は、端末局BFウェイト設定情報信号の復号結果に従い、端末局BFウェイト制御・設定部39にて、UeSaに端末BFウェイトを設定する。
 次に、ステップS420において、端末局2は、TDDシステムにおける下り/上りリンク間の可逆性を利用して、UE信号生成部41にて、CSI取得用参照信号を生成する。生成されたCSI取得用参照信号は、すでに設定済みの端末局BFウェイトにて、送信される。
 図11は、本発明の実施の形態1におけるCSI取得用参照信号の送信例を示した説明図である。CSI取得用参照信号の一例としては、この図11に示ように、各UeSaで異なるサブキャリアに、CSI取得用参照信号がマッピングされる。
 図12は、本発明の実施の形態1におけるCSI取得用参照信号の受信例を示した説明図である。ステップS330において、基地局1は、この図12に示すような受信信号を得ることができる。この結果、基地局1内のBSチャネル推定部28は、UeSa-BsSa間の全組合せである伝送路行列を、下式(19)として推定できる。
Figure JPOXMLDOC01-appb-M000011
 ここで、hi;jは、#i端末サブアレーから#j基地局サブアレーへの伝送路係数である。
 次に、ステップS340において、基地局1は、プリコーダウェイト生成部37により推定した、下式(20)で示される伝送路行列Hの右特異行列Vを、プリコーディングウェイトPとして用いる。
Figure JPOXMLDOC01-appb-M000012
 次に、ステップS350において、基地局1は、ユーザデータ/データ復調用参照信号の送信を行う。具体的には、基地局1内のプリコーダ部33は、BS信号生成部31にて生成され、BSマッピング部32にてOFDMリソース上にマッピングされたユーザデータ/データ復調用参照信号のベクトル
Figure JPOXMLDOC01-appb-M000013
に対してプリコーディングウェイトPを乗算し、送信信号を生成して、端末局2に送信する。
 次に、ステップS430において、端末局2は、ポストコーディングウェイトの算出/ユーザデータの復調を行う。具体的には、端末局2内のポストコーダウェイト生成部38は、ステップS350にて基地局1から送信されたデータ復調用参照信号を用いて、UEチャネル推定部40にて推定された伝送路行列Hにより、ポストコーディングウェイトとして、上述した左特異行列UHを用いて、受信信号ベクトルr=HVsを、下式(22)のように復調する。
Figure JPOXMLDOC01-appb-M000014
 最後に、ステップS360において、基地局1は、後述する方法により、BFウェイト更新の是非を判定する。更新しない場合には、ステップS330に戻り、基地局1は、ステップS330~ステップS360を繰り返し、端末局2は、ステップS420~ステップS430を繰り返す。一方、更新する場合には、ステップS310に移行する。
 次に、BFウェイト組合せ探索法について、詳細に説明する。図13は、本発明の実施の形態1におけるBFウェイト組合せ探索の詳細を示すフローチャートである。本手続きは、BFウェイト探索範囲決定法、BFウェイト更新可否決定法の2つが含まれている。
 BFウェイト探索範囲決定法は、ステップS610の処理に相当する。また、BFウェイト更新可否決定法は、ステップS510~ステップS540、ステップS710、ステップS720の処理に相当する。
 ステップS510において、基地局1は、ステップS330で推定した伝送路行列Hを用いて、下式に基づいてチャネル容量Cを算出する。
Figure JPOXMLDOC01-appb-M000015
 ここで、Iは、単位行列、γは、受信SNR(Signal-to-Noise Ratio)である。
 次に、ステップS520において、基地局1は、ステップS510で算出したチャネル容量Cと、最大チャネル容量Cmaxとを比較する。なお、初めて本フローを通る場合には、最大チャネル容量Cmax=0である。比較した結果、C>Cmaxの場合には、基地局1は、Cmax=Cとして最大チャネル容量を更新する。最大チャネル容量が更新された場合には、基地局1は、全サブアレー組のBFウェイト組合せを記憶する。
 ステップS530において、基地局1は、本好適BFウェイト探索/ウェイト更新が、最初の実行か否かを判定する。ステップS530での判定がyesの場合には、s610に分岐し、noの場合には、ステップS540に分岐する。
 ステップS530でyesに分岐し、本好適BFウェイト探索/ウェイト更新が、最初の実行である場合には、基地局1は、ステップS610以降の処理を実行する。
 ステップS610において、基地局1は、ステップS280により端末局2からフィードバックされた受信電力特性に基づいて、検索するBF組合せの範囲を設定する。具体的には、基地局1は、端末局2からフィードバックされた、基地局-端末局BFウェイトの全候補の組合せに対する電力特性の内、最大電力であるBFウェイト組合せの電力値PBF;maxdBを特定する。
 さらに、基地局1は、
  PBF;min=PBF;max-Prange(dB)
以内の電力特性となったBFウェイト組合せを、探索するBF組合せの対象として抽出する。ここで、Prangeは、パラメータであり、事前にシステム固有に別途定められるものである。
 もしくは、伝送路行列Hの最大固有値λ2maxと最小固有値λ2minの電力比が
Figure JPOXMLDOC01-appb-M000016
の場合には、基地局1は、
  PBF;min=PBF;max-Pdiff(dB)
以内の電力特性となったBFウェイト組合せを、探索するBF組合せの対象として抽出する。
 また、最大電力となるBFウェイト組合せは、探索対象外である。図14は、本発明の実施の形態1において、探索対象となるBFウェイト組合せのセットを、電力降順に番号付けを行った例を示した図である。ここで、整列番号をddecとすると、ddec=1は、PBF;maxに次いで高い電力のBF組合せの整列番号である。また、検索対象のBF組合せ数をNsrchとする。
 次に、ステップS620において、基地局1は、探索範囲があるか否かを判定する。Nsrch=0、つまり、探索対象のBF組合せが無い場合にはnoとなり、基地局1は、探索処理を終了し、ステップS330へ移行する。一方、Nsrch>0、つまり、探索対象のBF組合せが存在する場合には、yesとなり、基地局1は、ステップS630に移行する。
 本好適BFウェイト探索では、1サブアレー組毎に、シーケンシャルに好適BFウェイトを探索する。第1サブアレー組、例えば、BsSa(1)とUeSa(1)の組は、最大電力となるBFウェイト組合せとする。ステップS630において、基地局1は、好適BFウェイトの探索の適用対象を、第2サブアレー組とする。
 次に、ステップS640において、基地局1は、探索済みBF組合せのリセットを行う。具体的には、基地局1は、好適BFウェイトの探索の適用対象のサブアレー組に関して、先の図14に示したように、探索中の整列番号を指し示す変数psrchを、psrch=0とすることで、探索済みBF組合せをリセットする。
 また、ステップS530でnoに分岐し、ステップS540に進んだ場合には、基地局1は、探索範囲は完了したか否かを判定する。探索範囲完了を示すpsrch=Nsrchの場合には、yesとなり、基地局1は、ステップS710に移行する。一方、psrch≠Nsrchの場合にはnoとなり、基地局1は、ステップS550に移行する。
 ステップS710に進んだ場合には、基地局1は、当該サブアレーで最大チャネル容量更新がされたか否かを判定する。具体的には、基地局1は、探索中BFウェイトの適用対象のサブアレー組において、ステップS520で最大チャネル容量が更新されなかった場合にはnoと判定する。そして、基地局1は、noと判定した場合には、現時点でのBFウェイトが好適だとして、探索処理を終了し、ステップS330へ移行する。
 一方、基地局1は、ステップS520で最大チャネル容量が更新された場合には、yesと判定し、ステップS720へ移行する。
 ステップS720に進んだ場合には、基地局1は、最大チャネル容量を更新したBF組合せを、当該サブアレーに設定する。即ち、基地局1は、ステップS520で最大チャネル容量が更新された場合には、その最大チャネル容量が更新されたときのBFウェイト組合せを、当該適用対象サブアレー組の好適BF組合せとする。
 次に、ステップS730において、基地局1は、全サブアレーを設定したかか否かを判定する。そして、基地局1は、全サブアレー組での探索を終えたと判定した場合には、探索処理を終了し、ステップS330へ移行する。一方、基地局1は、全サブアレー組での探索を終えておらず、他のサブアレー組の探索処理が残っている場合には、ステップS740に移行する。
 ステップS740に進んだ場合には、基地局1は、探索対象のサブアレー組の番号をインクリメントし、次のサブアレー組に関する好適BFウェイトの探索を継続する。
 次に、ステップS750において、基地局1は、探索済みBF組合せのリセットを行う。具体的には、基地局1は、ステップS640と同じく、探索対象のサブアレー組に関して、先の図14に示したように、探索中の整列番号を指し示す変数psrchを、psrch=0とすることで、探索済みBF組合せをリセットする。
 次に、ステップS550において、基地局1は、探索中の整列番号を指し示す変数psrchをインクリメントし、候補BFウェイト組合せを変更する。図15は、本発明の実施の形態1において、インクリメント前のpsrch位置の一例を示した図であり、図16は、本発明の実施の形態1において、インクリメント後のpsrch位置の一例を示した図である。
 そして、最終的に、ステップS560において、基地局1は、適用対象サブアレー組の基地局および端末局BFウェイトを探索中の整列番頭psrchが示す基地局BFウェイトと端末局BFウェイトとの組合せを、BFウェイト組合せとする。
 以上のように、実施の形態1によれば、以下の2点の特徴を有している。
(特徴1)好適なBFウェイトを、簡易な方法で、全アンテナ一括で設定する構成を備えている。この結果、ウェイト探索開始から通信開始までの時間を短縮し、無線リソースを有効に利用することができる。
(特徴2)好適なBFウェイトを初期値として、そこからBFウェイトを変更した際のチャネル容量を逐次的に評価し、より適切なBFウェイトを、通信しながら探索する構成を備えている。この結果、BFウェイトを逐次的に最適化することができる。
 なお、本発明の変形例について、以下に説明する。
(変形例1)BFトレーニング信号の周波数直交/符号直交
 BFトレーニング信号生成法において、本実施の形態では、異なる基地局サブアレー毎に、異なるサブキャリア位置に参照信号配置することで、参照信号が周波数直交されるフォーマットのBFトレーニング信号について説明した。これに対して、異なる基地局サブアレー毎に、異なる拡散コードを参照信号に割り当てることで、参照信号が符号直交されるフォーマットのBFトレーニング信号を採用しても良い。
(変形例2)伝送路行列取得方法のFDD(CSIフィードバック)/TDD(ULサウンディング)
 伝送路行列取得方法において、本実施の形態では、TDD(Time Division Duplex)システムを前提として、アップリンクにおいて、CSI取得用参照信号を端末局から基地局に送信することで、基地局にて伝送路行列を取得する方法について説明した。これに対して、FDD(Frequency Division Duplex)システムを前提として、ダウンリンクにおいて、CSI取得用参照信号を基地局から端末局に送信することで、端末局にて伝送路行列を取得し、取得した伝送路行列情報を端末局が基地局にフィードバックすることで、基地局にて伝送路行列を取得する方法を採用しても良い。
(変形例3)BFウェイト組合せ品質測定法のFDD(DL・UL測定)/TDD(DL・UL測定)
 BFウェイト組合せ品質測定法において、本実施の形態では、ダウンリンクにおいて、BFトレーニング信号を基地局が端末局に送信することで、端末局にてBFウェイト組合せの電力特性を取得し、取得した電力特性を端末局が基地局にフィードバックすることで、基地局にて電力特性を取得する方法について説明した。これに対して、アップリンクにおいて、BFトレーニング信号を端末局が基地局に送信することで、基地局にて電力特性を取得する方法を採用しても良い。
 3 プリコーダ、4 基地局、5 伝送路、6 端末局、7 ポストコーダ。

Claims (6)

  1.  基地局と端末局とを備える無線装置であって、
     前記基地局は、
      複数の並列ユーザデータに対して、プリコーディングウェイ卜を用いてディジタルプリコーディングを施すプリコーダ部と、
      前記ディジタルプリコーディングが施された後の信号に対して、基地局ビームフォーミングウェイ卜に相当する位相および振幅の変化を付与するアナログ基地局ビームフォーミングを施す送信ビームフォーミング部と、
      前記アナログ基地局ビームフォーミングが施された信号を送信する複数の送信アンテナと
     を備え、
     前記端末局は、
      前記基地局から送信され、空間を伝搬した信号を受信する複数の受信アンテナと、
      前記複数の受信アンテナが受信した前記信号に対して、端末局ビームフォーミングウェイ卜に相当する位相および振幅の変化を付与するアナログ端末局ビームフォーミングを施す端末局ビームフォーミング部と、
      前記アナログ端末局ビームフォーミングが施された後の信号に対して、ポストコーディングウェイ卜を用いてディジタルポストコーディングを施すことにより、前記複数の並列ユーザデータを再生するポストコーディング部と
     を備え、
     前記基地局および前記端末局は、
      基地局ビームフォーミングウェイトと端末局ビームフォーミングウェイトとの組合せを用いた場合の伝送品質情報を事前に取得し、好適なビームフォーミングウェイトを特定するビームフォーミングウェイト・トレーニング機能と、
      前記ビームフォーミングウェイト・トレーニング機能を実行することにより特定された前記伝送品質情報をもとに、相互通信を行いながら好適ビームフォーミングウェイトを探索し、前記好適なビームフォーミングウェイトの更新処理を実行する好適ビームフォーミングウェイト探索機能と
     を実行する無線装置。
  2.  前記基地局および前記端末局は、
      複数の基地局サブアレーの各々について、複数の基地局ビームフォーミングウェイ卜の候補から、サブアレーに対応する候補基地局ビームフォーミングウェイ卜を選択し、複数の端末局サブアレーの各々について、複数の端末局ビームフォーミングウェイトの候補から、サブアレーに対応する候補端末局ビームフォーミングウェイ卜を選択し、選択された前記候補基地局ビームフォーミングウェイ卜および前記候補端末局ビームフォーミングウェイ卜により、ビームフォーミングトレーニング信号を送信および受信することで、ビームフォーミングウェイトの組合せの電力特性を測定する電力特性測定処理部と、
      測定された前記電力特性をフィードバックデータ情報として、前記端末局から前記基地局へ送信することで、前記基地局において前記電力特性を把握する品質フィードバック部と
     を備え、前記ビームフォーミングウェイト・トレーニング機能を実行する請求項1に記載の無線装置。
  3.  前記基地局および前記端末局は、
      前記品質フィードバック部にて取得した前記ビームフォーミングウェイトの組合せの電力特性を用いて、最大電力が得られる基地局・端末局ビームフォーミングウェイトの組合せを前記基地局の全サブアレー、前記端末局の全サブアレーに対して適用する初期設定部と、
      前記端末局が送信するCSI取得用参照信号により、前記基地局にて上りリンクの伝送路行列を取得する伝送路行列特定部と、
      前記基地局が取得した前記上りリンクの伝送路行列から、各基地局サブアレーおよび各端末局サブアレーにおけるビームフォーミングウェイトの組合せを更新する更新部と
     を備え、前記好適ビームフォーミングウェイト探索機能を実行し、
     前記更新部は、
      前記ビームフォーミングウェイト・トレーニング機能を実行することで取得したビームフォーミングウェイトの組合せの電力特性の中から、好適ビームフォーミングウェイトの探索範囲を決定する探索範囲決定部と、
      前記上りリンクの伝送路行列から算出されるチャネル容量により、ビームフォーミングウェイト組合せの更新可否を決定する更新可否決定部と
     を有する請求項2に記載の無線装置。
  4.  請求項1に記載の無線装置において、前記基地局と前記端末局との相互通信により実行される無線通信制御方法であって、
     基地局ビームフォーミングウェイトと端末局ビームフォーミングウェイトとの組合せを用いた場合の伝送品質情報を事前に取得し、好適なビームフォーミングウェイトを特定するビームフォーミングウェイト・トレーニング機能を実行するトレーニングステップと、
     前記トレーニングステップにより特定された前記伝送品質情報をもとに、相互通信を行いながら好適ビームフォーミングウェイトを探索し、前記好適なビームフォーミングウェイトの更新処理を実行する探索ステップと
     を有する無線通信制御方法。
  5.  前記トレーニングステップは、
      複数の基地局サブアレーの各々について、複数の基地局ビームフォーミングウェイ卜の候補から、サブアレーに対応する候補基地局ビームフォーミングウェイ卜を選択し、複数の端末局サブアレーの各々について、複数の端末局ビームフォーミングウェイトの候補から、サブアレーに対応する候補端末局ビームフォーミングウェイ卜を選択する選択ステップと、
      選択された前記候補基地局ビームフォーミングウェイ卜および前記候補端末局ビームフォーミングウェイ卜により、ビームフォーミングトレーニング信号を送信および受信することで、ビームフォーミングウェイトの組合せの電力特性を測定する特性測定ステップと、
      測定された前記電力特性をフィードバックデータ情報として、前記端末局から前記基地局へ送信することで、前記基地局において前記電力特性を把握するフィードバックステップと
     を含む請求項4に記載の無線通信制御方法。
  6.  前記探索ステップは、
      前記フィードバックステップにて取得した前記ビームフォーミングウェイトの組合せの電力特性を用いて、最大電力が得られる基地局・端末局ビームフォーミングウェイトの組合せを前記基地局の全サブアレー、前記端末局の全サブアレーに対して適用する初期設定ステップと、
      前記端末局が送信するCSI取得用参照信号により、前記基地局にて上りリンクの伝送路行列を取得する伝送路行列特定ステップと、
      前記基地局が取得した前記上りリンクの伝送路行列から、各基地局サブアレーおよび各端末局サブアレーにおけるビームフォーミングウェイトの組合せを更新する更新ステップと
     を含み、
     前記更新ステップは、
      前記ビームフォーミングウェイト・トレーニング機能を実行することで取得したビームフォーミングウェイトの組合せの電力特性の中から、好適ビームフォーミングウェイトの探索範囲を決定する探索範囲決定ステップと、
      前記上りリンクの伝送路行列から算出されるチャネル容量により、ビームフォーミングウェイト組合せの更新可否を決定する更新可否決定ステップと
     を有する請求項5に記載の無線通信制御方法。
PCT/JP2017/044013 2017-12-07 2017-12-07 無線装置および無線通信制御方法 WO2019111376A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019557944A JP6723482B2 (ja) 2017-12-07 2017-12-07 無線装置および無線通信制御方法
PCT/JP2017/044013 WO2019111376A1 (ja) 2017-12-07 2017-12-07 無線装置および無線通信制御方法
CN201780097320.5A CN111418163B (zh) 2017-12-07 2017-12-07 无线装置以及无线通信控制方法
US16/756,075 US10812157B2 (en) 2017-12-07 2017-12-07 Wireless device and wireless communication control method
EP17934094.8A EP3713106B1 (en) 2017-12-07 2017-12-07 Wireless device and wireless communication control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044013 WO2019111376A1 (ja) 2017-12-07 2017-12-07 無線装置および無線通信制御方法

Publications (1)

Publication Number Publication Date
WO2019111376A1 true WO2019111376A1 (ja) 2019-06-13

Family

ID=66751499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044013 WO2019111376A1 (ja) 2017-12-07 2017-12-07 無線装置および無線通信制御方法

Country Status (5)

Country Link
US (1) US10812157B2 (ja)
EP (1) EP3713106B1 (ja)
JP (1) JP6723482B2 (ja)
CN (1) CN111418163B (ja)
WO (1) WO2019111376A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115348610B (zh) * 2022-10-18 2023-03-24 成都市以太节点科技有限公司 一种毫米波多链路自适应通信方法、电子设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125891A1 (ja) 2014-02-21 2015-08-27 株式会社Nttドコモ 無線通信制御方法および無線通信システム
WO2017154968A1 (ja) * 2016-03-11 2017-09-14 株式会社Nttドコモ 基地局

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1549473B (zh) * 2003-05-07 2012-12-05 中兴通讯股份有限公司 一种适用于宽带码分多址系统中的波束形成方法
US7570696B2 (en) * 2004-06-25 2009-08-04 Intel Corporation Multiple input multiple output multicarrier communication system and methods with quantized beamforming feedback
US8155597B2 (en) * 2006-01-10 2012-04-10 Marvell World Trade Ltd. Transmission scheduling for receiver feedback
JP4924107B2 (ja) * 2006-04-27 2012-04-25 ソニー株式会社 無線通信システム、並びに無線通信装置及び無線通信方法
US8233556B2 (en) * 2006-07-19 2012-07-31 Texas Instruments Incorporated Reduced feedback transmit beamforming
US8670504B2 (en) * 2006-12-19 2014-03-11 Qualcomm Incorporated Beamspace-time coding based on channel quality feedback
CN101359948B (zh) * 2007-08-02 2012-07-18 中兴通讯股份有限公司 一种波束赋形中修正扇区边缘业务波束指向的方法
JP4539891B2 (ja) * 2008-08-11 2010-09-08 岩崎通信機株式会社 マルチアンテナを用いた無線通信方法、無線通信システムおよび無線通信装置
KR20100125693A (ko) * 2009-05-21 2010-12-01 삼성전자주식회사 무선통신시스템에서 셀 간 간섭을 감소시키기 위한 장치 및 방법
KR20130018079A (ko) * 2011-08-10 2013-02-20 삼성전자주식회사 무선 통신 시스템에서 빔 고정 장치 및 방법
WO2013039248A1 (ja) * 2011-09-16 2013-03-21 日本電信電話株式会社 無線通信方法及び基地局装置
KR101878211B1 (ko) * 2011-09-19 2018-07-16 삼성전자주식회사 무선 통신 시스템에서 다중 빔포밍 송수신기를 운용하기 위한 장치 및 방법
US9444534B2 (en) * 2012-02-06 2016-09-13 Samsung Electronics Co., Ltd. Apparatus and method for low complexity spatial division multiple access in a millimeter wave mobile communication system
KR20130127347A (ko) * 2012-05-10 2013-11-22 삼성전자주식회사 아날로그 및 디지털 하이브리드 빔포밍을 통한 통신 방법 및 장치
US8654883B2 (en) * 2012-05-29 2014-02-18 Magnolia Broadband Inc. Systems and methods for enhanced RF MIMO system performance
KR102011995B1 (ko) * 2012-11-23 2019-08-19 삼성전자주식회사 빔포밍 기반 무선통신 시스템에서 송수신 빔 패턴 변경에 따른 빔 이득 보상 운용을 위한 방법 및 장치
KR102195688B1 (ko) * 2014-02-20 2020-12-28 삼성전자 주식회사 빔포밍을 지원하는 무선 통신 시스템에서 피드백 정보 처리 방법 및 장치
KR101846832B1 (ko) 2014-04-02 2018-04-09 후아웨이 테크놀러지 컴퍼니 리미티드 빔형성 기반 통신 방법 및 장치
CN106716860B (zh) * 2014-09-03 2021-03-16 株式会社Ntt都科摩 无线发送台
US9979448B2 (en) * 2015-03-05 2018-05-22 Ntt Docomo, Inc. Radio communication control method and radio communication system
JP6666331B2 (ja) * 2015-03-26 2020-03-13 株式会社Nttドコモ 無線通信制御方法および無線通信システム
JP6510359B2 (ja) * 2015-08-07 2019-05-08 日本電信電話株式会社 無線通信システム及び無線通信方法
JP2017060138A (ja) 2015-09-18 2017-03-23 富士通株式会社 無線通信装置、無線通信システムおよび送信データ制御方法
WO2017195916A1 (ko) * 2016-05-12 2017-11-16 엘지전자 주식회사 밀리미터웨이브를 지원하는 무선 접속 시스템에서 빔 스캐닝을 수행하는 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125891A1 (ja) 2014-02-21 2015-08-27 株式会社Nttドコモ 無線通信制御方法および無線通信システム
WO2017154968A1 (ja) * 2016-03-11 2017-09-14 株式会社Nttドコモ 基地局

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAMES WANG ET AL.: "llay MIMO BF Training Enhancements", IEEE 802.11-16/0L00RL, 18 January 2016 (2016-01-18), pages 1 - 14, XP055572790 *
See also references of EP3713106A4

Also Published As

Publication number Publication date
CN111418163B (zh) 2023-04-11
EP3713106A4 (en) 2020-10-28
EP3713106B1 (en) 2021-11-24
JP6723482B2 (ja) 2020-07-15
JPWO2019111376A1 (ja) 2020-04-09
US10812157B2 (en) 2020-10-20
EP3713106A1 (en) 2020-09-23
US20200259536A1 (en) 2020-08-13
CN111418163A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
US11831575B2 (en) Electronic device, method and apparatus for wireless communication system for channel estimation
US9929791B2 (en) Communication method and apparatus using analog and digital hybrid beamforming
WO2018184455A1 (zh) 无线通信方法和无线通信装置
US8619641B2 (en) Single-user beamforming method and apparatus suitable for frequency division duplex system
CN105122900B (zh) 在基于波束成形的无线通信系统中的上行链路功率控制方法和装置
JP6267195B2 (ja) 無線通信システムにおけるビームフォーミングを利用した通信方法及び装置
KR101507088B1 (ko) 다중 입출력 무선통신 시스템에서 상향링크 빔 성형 및 공간분할 다중 접속 장치 및 방법
EP3734851A1 (en) Electronic device, method and device for wireless communication system and storage medium
KR101408938B1 (ko) 다중 입출력 무선통신 시스템에서 일반화된 아이겐 분석을이용한 빔포밍 장치 및 방법
US7610036B2 (en) Space-time-frequency sensing of RF spectrum in cognitive radios
KR101772040B1 (ko) 이동통신 시스템에서 빠른 빔 링크 형성을 위한 방법 및 장치
US20160119910A1 (en) System and Method for Beam Selection Using Multiple Frequencies
CN109845133A (zh) 用于混合天线架构的分级波束成形和秩自适应的系统和方法
JP5923221B2 (ja) 乗法性ノイズで制限を受ける場合のmimo通信のための送信電力分配
KR20170032308A (ko) 무선 접속 시스템에서 다중 랭크 지원을 위한 하이브리드 빔포밍 방법 및 장치
JP2018117274A (ja) 無線基地局、無線通信システム、無線通信方法、及び無線端末
JP2020517185A (ja) ハイブリッド・ビームフォーミングを用いる通信デバイス及び方法
CN105245310A (zh) 一种下行导频信号的处理方法及系统
KR20160026792A (ko) 채널 방향 정보 획득을 위한 방법 및 장치
KR20210100710A (ko) 아날로그 프리코딩 및 아날로그 컴바이닝을 가능하게 하는 방법
WO2019111376A1 (ja) 無線装置および無線通信制御方法
KR20120082315A (ko) 채널 상태 정보 송수신 방법 및 그 장치
CN107888261B (zh) 一种信道矩阵确定方法及相关设备
EP2939350B1 (en) Method and apparatus for multi-user multiple-input and multiple-output precoding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557944

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017934094

Country of ref document: EP

Effective date: 20200619