WO2019109949A1 - 一种数据传输的方法及设备 - Google Patents

一种数据传输的方法及设备 Download PDF

Info

Publication number
WO2019109949A1
WO2019109949A1 PCT/CN2018/119370 CN2018119370W WO2019109949A1 WO 2019109949 A1 WO2019109949 A1 WO 2019109949A1 CN 2018119370 W CN2018119370 W CN 2018119370W WO 2019109949 A1 WO2019109949 A1 WO 2019109949A1
Authority
WO
WIPO (PCT)
Prior art keywords
access network
service data
network device
service
data stream
Prior art date
Application number
PCT/CN2018/119370
Other languages
English (en)
French (fr)
Inventor
杨召青
郭婵
杨丹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019109949A1 publication Critical patent/WO2019109949A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints

Definitions

  • the present application relates to the field of communications, and in particular, to a method and device for data transmission.
  • MSA Multiple Streaming Aggregation
  • the MSA architecture is a typical network architecture with separate control planes and user planes.
  • the multi-stream concurrency technology uses the network-side shunt architecture to implement data shunting and control, and achieve multi-stream concurrency across systems and cross-bands.
  • the MSA uses the Packet Data Convergence Protocol (PDCP) layer to offload data.
  • PDCP Packet Data Convergence Protocol
  • the user equipment connects to the first access network device and the second access network device through the MSA, the data is decomposed.
  • the transmission to the MeNB and the SeNB, but the data decomposed to the MeNB and the SeNB may belong to one service data.
  • the performance of the backhaul affects the performance of the system and the user throughput through the non-ideal backhaul connection.
  • the delay and throughput of the two network elements of the first access network device and the second access network device are corresponding.
  • the data of the same service is transmitted by two network elements with different performances, which will affect the transmission performance of the entire network, and the data transmission quality is degraded.
  • the embodiment of the present application provides a data transmission method and device for improving system performance and quality of transmitted data.
  • the embodiment of the present application provides a data transmission method, where the method is applied to a communication system of a multi-stream concurrent architecture, where multi-stream concurrent refers to at least two accesses of a user equipment in a wireless resource control connection state.
  • the two access network devices may include a first access network device and a second access network device.
  • Multi-stream concurrency is a typical control plane (abbreviation: CP) and user plane (abbreviation: UP).
  • CP control plane
  • UP user plane
  • the first access network device may perform control plane signaling transmission, and the first access network device and the second access network device transmit user plane data.
  • the method in the embodiment of the present application is applied to a network side device, where the network side device may be a core network device or an access network device, and the network side device acquires multiple data packets to be sent, and parses multiple data includes And obtaining a flow identifier of each of the plurality of data packets, where the network side device determines, according to the flow identifier, at least one service data flow to which the multiple data packets belong.
  • the network side device acquires at least one service data flow to be sent to the at least two access network devices; the network side device acquires a first feature parameter of the at least two access network devices, where the first feature parameter is used to indicate the access network device a quality of service; the network side device determines, according to the first characteristic parameter, an access network device that matches a service quality in each of the at least two access network devices with each of the at least one service data flow; each service data flow All packets in the packet are sent to the user equipment through the matching access network device.
  • the “matching” refers to determining an access network device that can satisfy the quality of the service according to the quality of service for the service.
  • the network side device determines the service data flow to which the data packet to be sent belongs, and divides the data packet to be sent by the service data flow as a splitting unit, and passes the data packet in each service data stream.
  • the matched access network device sends to the user equipment.
  • the data to be sent is split into two access network devices for forwarding, and the data of the same service may be allocated to the network element with different rates and throughputs.
  • the service data flow is used. Divide the unit and send all the data packets in each service data stream to the user equipment through the matching access network equipment, which can improve the performance of the entire network and the quality of the transmitted data.
  • At least two access network devices when at least one service data flow is a single service data flow, at least two access network devices include a first access network device and a second access network device, where the first feature parameter includes And delaying the transmission rate.
  • the network side device determines the delay of the first access network device and the transmission rate of the second access network device.
  • the size of the threshold of the user equipment if the product of the delay of the first access network device and the transmission rate of the second access network device is not less than a threshold, Determining that the first access network device is an access network device that matches the service quality of the single service data stream; or the time delay of the second access network device is greater than the time delay of the first access network device, and the network side device determines The product of the delay of the second access network device and the transmission rate of the first access network device and the threshold, if the product of the delay of the second access network device and the transmission rate of the first access network device is not less than Threshold, then determine the second connection Access network device is a network device to a single service data flow to match the quality of service.
  • the problem of overall network performance degradation caused by packet loss of one of the two access network devices is solved.
  • the core network device or the access network device reduces the window stop caused by packet loss by judging that different data streams pass through the base station whose service quality matches. Reduce the occurrence of a steep drop in throughput due to TCP window stalls, etc., and maximize throughput performance.
  • the network side device determines, according to the first feature parameter, the quality of service in the at least two access network devices and the at least one service data stream.
  • the method may further include: the network side device acquiring the second feature parameter of each service data flow in the multi-service data stream; the second feature parameter includes but is not limited to the cache, before the service network device is matched by the access network device. a size, a service type, a rate, and the like; the network side device determines, according to the first feature parameter and the second feature parameter, that the quality of service in the at least two access network devices matches each of the service data flows in the multi-service data stream.
  • Access network equipment in a multi-service data flow scenario, data packets belonging to the same service data flow are not allocated to different access network devices. It can be understood that data packets belonging to the same service data flow are allocated. Matching the same access network device to match the corresponding access network device for different service data flows, and multiple data packets to be sent Split the traffic data stream (i.e., assigned to a first access network device and the second access network device), the best throughput performance can be achieved, improving the user experience different business units.
  • At least the access network device includes a first access network device and a second access network device, and the network side device classifies the multi-service data stream according to the second characteristic parameter to obtain the first type of service. a data flow and a second type of service data flow; the network side device determines, according to the first characteristic parameter of the first access network device, that the service quality of the first access network device matches the first type of service data flow; The first characteristic parameter of the second access network device determines that the quality of service of the second access network device matches the second type of service data flow.
  • multiple service data flows can be classified first, and multiple service data flows can be directly divided according to categories, which can improve the processing efficiency of splitting multiple service data flows on the network side.
  • the network side device determines, according to the first feature parameter, that the access network device that matches the service quality of each of the at least two access network devices and each of the at least one service data flow may be The network side device determines, according to the second characteristic parameter and the first feature parameter of the first access network device, a target service data flow that matches the first access network device in the multiple service data flows; and the multiple service data The service data stream in the stream other than the target service data stream matches the second access network device.
  • the acquiring, by the network side device, the at least one service data flow includes: the network side device acquiring multiple data packets to be sent; and the network side device parsing the multiple data, and obtaining multiple data.
  • the stream identifier of each packet in the packet; the stream identifier includes but is not limited to the source IP, destination IP, source port, and destination port and MAC address in the packet header. For example, when the source IP address, the destination IP address, the source port, and the destination port and the MAC address in the multiple packet headers are the same, it may be determined that the multiple data packets belong to the same service data flow, and the network side device determines according to the flow identifier. At least one business data stream to which multiple data packets belong.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the network side device, which includes a program designed to perform the above aspects.
  • the embodiment of the present application provides a network side device, which has the functions performed by the network side device in the foregoing method.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the network side device includes a memory, a network interface, and a processor.
  • the memory is used to store computer executable program code.
  • the program code includes instructions that, when executed by the processor, cause the network side device to perform the information or instructions involved in the above method.
  • FIG. 1 is a schematic diagram of a network architecture scenario of a communication system provided in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a 1A offloading manner in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a 3C offloading manner in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a 1A offloading manner in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a 3C offloading manner in an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of steps of a method for data transmission according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of MSA transmitting data in a single service data flow according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of MSA transmitting data in a single service data flow according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an embodiment of a network side device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another embodiment of a network side device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another embodiment of a network side device according to an embodiment of the present application.
  • the embodiment of the present application provides a data transmission method and device for improving system performance and quality of transmitted data.
  • the fifth generation mobile communication system (fifth generation, abbreviated as 5G) was proposed and gradually standardized, and high frequency communication was adopted in 5G.
  • the high frequency has the characteristics of large available spectrum and high system capacity, but the high-frequency coverage is weak. It is impossible to cover a large area, and mobility may cause problems.
  • two networking methods are applied to solve the mobility problem.
  • the multi-streaming (MSA) technology can be applied to the above two different networking architectures.
  • the MSA refers to the user equipment in the radio resource control (RRC) connection state.
  • RRC radio resource control
  • UE At the same time, it is served by at least two access network devices.
  • one of the two access network devices may be a primary base station (Master eNB, abbreviated as MeNB), and the other is a secondary base station (Secondary eNB, abbreviated as SeNB), and the user equipment may be connected to the primary cell through the MeNB (Primary Cell, Abbreviation: PCell) or Master Cell Group (MCG), and the user equipment can also be connected to the primary and secondary cells (Primary SCell, PSCell) or Secondary Cell Group (SCG) through the SeNB. ).
  • MeNB Primary Cell, Abbreviation: PCell
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • FIG. 1 is a schematic diagram of a network architecture scenario of a communication system provided in an embodiment of the present application.
  • the communication system includes a core network device 101, a first access network device 102, a second access network device 103, and a user equipment 104.
  • the first access network device 102 and the second access network device 103 are both connected to the core network device 101.
  • the user equipment 104 is connected to the first access network device 102 and the second access network device 103.
  • the MSA is a typical control plane (abbreviation: CP) and is separated from the user plane (User plane, abbreviated as UP).
  • the main base station can perform control plane signaling transmission, and the primary base station and the secondary base station transmit user plane data.
  • FIG. 2 is a schematic diagram of the architecture of the first type of splitting mode (1A split mode) in the networking mode, where the core network device directly splits the data, and the control plane and the user plane in the primary base station Separation, the control plane protocol stack consists of five sub-layers including: top-down order is Radio Resource Control (RRC) layer, Packet Data Convergence Protocol (PDCP) layer , Radio Link Control (RLC) layer, Media Access Control (MAC) layer and Physical Layer (abbreviation: PHY).
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • PHY Physical Layer
  • the user plane protocol stack includes: a PDCP layer, an RLC layer, a MAC) layer, and a PHY layer.
  • the user plane protocol stack of the secondary base station corresponds to the user plane protocol stack of the primary base station, and the user plane protocol stack of the secondary base station includes: a PDCP layer, an RLC layer, a MAC layer, and a PHY layer.
  • FIG. 3 is a schematic diagram of the architecture of the second offloading mode (3C offloading mode) in the networking mode.
  • the core network device sends data to the primary base station, and the PDCP layer of the primary base station pairs data.
  • the control plane and the user plane are separated in the primary base station, and the control plane protocol stack is composed of five sublayers including: RRC layer, PDCP layer, RLC layer, MAC layer and PHY layer in the order from top to bottom.
  • the user plane protocol stack includes: a PDCP layer, an RLC layer, a MAC layer, and a PHY layer.
  • the user plane protocol stack of the secondary base station does not include a PDCP layer, and the top to bottom protocol sublayer includes: an RLC layer, a MAC layer, and a PHY layer.
  • FIG. 4 is a schematic diagram of the architecture of the first type of traffic distribution (1A traffic distribution mode) in the networking mode.
  • the user plane protocol layer of the primary base station adds a service adaptation protocol layer (Service Data Adaptation Protocol, The abbreviation: SDAP) sub-layer, which also uses the PDCP layer for offloading.
  • the primary base station control plane protocol layer includes: RRC layer, PDCP layer, RLC layer, MAC layer and PHY layer.
  • the user plane protocol stack includes: SDAP layer, PDCP layer, RLC Layer, MAC layer and PHY layer.
  • the top-down protocol sub-layer of the user plane protocol stack of the secondary base station includes: an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer.
  • FIG. 5 is a schematic diagram of the architecture of the second offloading mode (3C offloading mode) in the networking mode.
  • the control layer of the primary base station includes: RRC layer, PDCP layer, RLC layer, and MAC.
  • Layer and PHY layer, user plane protocol stack includes: SDAP layer, PDCP layer, RLC layer, MAC layer and PHY layer.
  • the protocol layer of the user plane protocol stack of the secondary base station from top to bottom includes: an RLC layer, a MAC layer, and a PHY layer.
  • the method provided in this embodiment is applied to a network side device, and the network side device may be a core network device or an access network device. Specifically, the network side device acquires at least one service data flow to be sent to the at least two access network devices, and acquires first feature parameters of the at least two access network devices.
  • the at least two access network devices may be used as an example for the first access network device and the second access network device.
  • the network side device may determine, according to the first characteristic parameter, an access network device that matches a service quality of each of the first access network device and the second access network device with each of the at least one service data flow.
  • the network access device sends to the user equipment.
  • matching in the embodiment of the present application refers to determining an access network device that can satisfy the quality of service according to the quality of service for the service. For example, it refers to a high-speed service data stream matching a high-standard, high-rate access network device, and a low-speed service data stream matching a low-standard, low-rate access network device.
  • the network side device may determine, according to the data packet to be sent, at least one service data flow to which the data packets belong. It can be understood that the network side device determines the service data flow to which the data packet to be sent belongs, and divides the data packet to be sent by the service data stream as a splitting unit, and matches the data packet in each service data stream to match the data packet.
  • the access network device sends to the user equipment. Compared with the traditional method, the data to be sent is split into two access network devices for forwarding, and the data of the same service may be allocated to the network element with different rates and throughputs. In this embodiment, the service data flow is used. Divide the unit and send all the data packets in each service data stream to the user equipment through the matching access network equipment, which can improve the performance of the entire network and the quality of the transmitted data.
  • an embodiment of the present application provides a method for data transmission.
  • a data packet to be sent is split by a service data flow unit to improve performance of the entire network.
  • the method is applied to a network side device, and the network side device may be a core network device or an access network device.
  • Step 601 The network side device acquires at least one service data flow to be sent to at least two access network devices.
  • the network side device acquires a plurality of data packets to be sent, parses the plurality of data, and obtains a flow identifier of each of the plurality of data packets, where the flow identifier includes, but is not limited to, a source IP in the packet header. Destination IP, source port, and destination port and MAC address. For example, when the source IP address, the destination IP address, the source port, and the destination port and the MAC address in the multiple packet headers are the same, it may be determined that the multiple data packets belong to the same service data flow, and the network side device determines according to the flow identifier. At least one business data stream to which multiple data packets belong. For example, the number of determined service data flows is not specifically limited.
  • Step 602 The network side device acquires first feature parameters of at least two access network devices.
  • the at least two access network devices are described by using one primary base station and one secondary base station as an example.
  • the number of access network devices is limited.
  • the number of access network devices may be 1, 2 and 3, etc.
  • the first characteristic parameters in this example include, but are not limited to, the format of the access network device (such as LET, high frequency, low frequency, etc.) and transmission rate and the like.
  • the first feature parameter is used to indicate the quality of service of the access network device.
  • the core network device may receive the number of data packets sent by the first access network device and the second access network device in a time period, and further determine the number. The transmission rate of an access network device and a second access network device.
  • the core network device may obtain the transmission rate of the second access network device, and send the format and the transmission rate of the second access network device to the first interface.
  • Network access equipment It should be noted that the specific method for the network side device to obtain the first characteristic parameter of the two access network devices is only an example in the example, and does not cause a limitation on the present application.
  • Step 603 The network side device determines, according to the first feature parameter, an access network device that matches the service quality of each of the at least two access network devices and each of the at least one service data flow.
  • the deletion mechanism is added.
  • the user equipment may transmit the channel through one of the two access network devices. Single data stream.
  • the first access network device may be the primary base station, and the second access network device may be the secondary base station.
  • FIG. 7 is a schematic diagram of MSA transmission data when a single service data stream is used.
  • the core network device determines whether the product of the delay of the second access network device and the transmission rate of the first access network device is greater than a threshold, and the threshold may be a TCP receiving window of the user equipment. Size, the receiving window can be the maximum receiving window, a fixed value; it can also be an available receiving window, dynamic value.
  • the core network device obtains the delay and the rate of the SeNB and the MeNB, and the core network device sends the data packet to the SeNB and the MeNB respectively, and determines the delay of the SeNB and the delay of the MeNB by using the duration of the ACK packet fed back by the SeNB and the MeNB.
  • the transmission rate of the SeNB and the transmission rate of the MeNB are determined by the number of ACK packets received within a preset time period.
  • the core network device sends the data packet to the SeNB and the MeNB, and if the duration of the ACK packet fed back by the SeNB exceeds the preset duration, it is determined. If the SeNB has lost packets, it will continue to judge whether the SeNB packet loss will cause the reception window to stop waiting according to Equation 1 (SeNB Delay * MeNB Rate ⁇ Receive Window). It can be understood that the product of the delay and the rate can obtain the amount of transmitted data. When the product of the two larger values is greater than or equal to the receiving window, it indicates that the packet loss of the SeNB causes the receiving window to stop waiting.
  • the SeNB is not suitable for transmitting the single data stream at this time, which affects the quality of the transmitted data, deletes the SeNB cell, and performs an access network device that can determine that the MeNB matches the service quality of the single service data stream.
  • the SeNB is an access network device that matches the quality of service of the single service data stream.
  • FIG. 8 is a schematic diagram of MSA transmission data when a single service data stream is used.
  • the network side device is an access network device, specifically, the network side device is an MeNB
  • the primary base station can obtain the SeNB delay and rate from the core network device, and determine whether the SeNB loses packets, according to Formula 1 (SeNB delay) *MeNB rate ⁇ reception window) determines whether the SeNB packet loss causes the reception window to stop waiting. If the above formula 2 is not satisfied, it indicates that the SeNB is not suitable for transmitting the data stream, and then determines that the MeNB is matched with the single service data stream.
  • the network access device sends the single service data stream to the user equipment by using the MeNB.
  • the MeNB When the delay of the MeNB is greater than the time delay of the SeNB, according to Formula 2 (MeNB delay*SeNB rate ⁇ reception window), it is determined whether the MeNB packet loss will cause the reception window to stop waiting, if the product of the MeNB delay and the SeNB rate does not If the QoS of the MeNB is not suitable for transmitting the single data stream, the MeNB sends the data packet belonging to the single service data stream to the SeNB, and the SeNB sends the data of the single service data stream to the user equipment. .
  • Formula 2 MeNB delay*SeNB rate ⁇ reception window
  • the SeNB delay and the MeNB rate is smaller than the receiving window, it indicates that the SeNB has a low packet loss rate, does not cause a stop waiting for the receiving window, and can maintain the SeNB, the SeNB, and the MeNB.
  • the single service data stream can be transmitted without affecting the transmission quality of the single service data stream. It can be understood that, in the scenario of a single service data stream, when the quality of service of the SeNB and the MeNB are both good, the SeNB and The MeNB is an access network device that matches the single service data flow.
  • FIG. 7 and FIG. 8 are examples of the 5G and LTE networking modes.
  • the method in this example can also be applied to the 5G high and low frequency networking mode architecture.
  • the network side device also needs to acquire a second feature parameter of each service data flow in the multi-service data flow, where the second feature parameter includes but not Limited to cache size, business type and rate size, and more.
  • the network side device determines, according to the first feature parameter and the second feature parameter, the access network device that matches the service quality of each of the at least two access network devices with each of the service data flows.
  • the second feature parameter takes the service type as an example.
  • the network side device obtains the data packet of each service data flow for parsing, and obtains the service type.
  • the number of the multi-service data flow is specifically two service data flows.
  • the service data streams are respectively recorded as "F1" and "F2", and the two service data streams are respectively a video service data stream and a mail service data stream, and the primary base station is a high-rate standard access network device, and the secondary base station is low.
  • the rate system access network device determines that the video service data stream (high rate service data stream) matches the primary base station, and the mail service data stream (low rate service data stream) matches the secondary base station.
  • the number of the multi-service data flows in this example is only exemplified, and does not cause a limitation on the present application.
  • the network side device determines that the number of service data flows to which the data packet to be sent belongs is 3, according to the first feature parameter and the second feature parameter, the two service data streams are matched with the primary base station, and one service data stream is matched with the secondary base station.
  • the same Packets of a service data stream are sent to the same access network device.
  • the method performed by the network side device in this example may be performed by the core network device or may be performed by the first access network device.
  • data packets belonging to the same service data flow are not allocated to different access network devices. It can be understood that data belonging to the same service data flow will be The packet is allocated to the same access network device, and the corresponding service data stream is matched to the corresponding access network device, and multiple data packets to be sent are offloaded in units of service data streams (ie, assigned to the first The access network device and the second access network device can achieve the best performance and improve the user experience of different services.
  • the network side device classifies the multi-service data stream according to the second feature parameter, to obtain a first type service data stream and a second type service data stream; for example, a network
  • the side device can classify multiple service data flows according to the service type.
  • the first type of service data flow is a high rate service data flow (for example, the high rate service data flow includes two data flows), and the second type of service data flow is a low rate.
  • the service data stream (for example, the low-rate service data stream includes one data stream), the network side device determines the service quality and the service quality of the first access network device according to the first characteristic parameter of the first access network device The first type of service data flows are matched, and the network side device determines, according to the service type of the second access network device, that the quality of service of the second access network device matches the second type of service data flow.
  • multiple service data flows can be classified first, and multiple service data flows can be directly divided according to categories, which can improve the processing efficiency of splitting multiple service data flows on the network side.
  • the first characteristic parameter of the second access network device determines that the quality of service of the second access network device matches the second type of service data flow.
  • the network side device may determine, according to the second feature parameter and the first feature parameter of the first access network device, a target that matches the first access network device in the multiple service data flows.
  • Business data flow For example, the multi-service data stream includes three service data streams, which are a video data stream, a mail data stream, a background type service data stream (such as a download file), and the network side device can each service data stream. Matching the service type of the flow with the first characteristic parameter of the primary base station, and determining a target data flow that matches the primary base station, for example, the target data flow is a video service data flow, and then, in addition to the target of the multiple service data flows The service data stream outside the service data stream matches the second access network device.
  • the network side device only needs to match each service data flow with one of the two access network devices, and does not need to Each service data stream is matched with another access network device, and the service data stream is matched to the access network device corresponding to the service quality, that is, the processing efficiency on the network side is improved, and the performance of the entire network system is improved.
  • Step 604 The network side device sends the data packet belonging to each service data stream to the user equipment by using the matching access network device.
  • the data packet belonging to the video service data stream is sent to the first access network device, and the data flow of the video service data stream is sent by the first access network device to the user equipment, and the data packet belonging to the mail service data stream is sent.
  • the data flow of the video service data stream is sent by the second access network device to the user equipment.
  • the core network device or the access network device reduces the window stop caused by packet loss by judging that different data streams pass through the base station whose service quality matches. Reduce the occurrence of a steep drop in throughput due to TCP window stalls, etc., and maximize throughput performance.
  • the corresponding access network device is matched for different service data flows, and multiple data packets to be sent are offloaded in units of service data flows (ie, allocated to the first access network device and the first Two access network devices), throughput can achieve the best performance, improve the user experience of different businesses.
  • the problem of overall network performance degradation caused by packet loss of one of the two access network devices is solved.
  • FIG. 9 is an embodiment of a network side device according to an embodiment of the present application. Schematic diagram of the structure.
  • the first acquiring module 901 is configured to obtain at least one service data flow to be sent to the at least two access network devices, where the first feature parameter is used to indicate the service quality of the access network device;
  • the second obtaining module 902 is configured to acquire first feature parameters of at least two access network devices.
  • the determining module 903 is configured to determine, according to the first feature parameter acquired by the second obtaining module 902, the service quality in the at least two access network devices and each of the at least one service data flow acquired by the first obtaining module 901 Matched access network equipment;
  • the sending module 904 is configured to send all the data packets in each service data stream to the user equipment by using the matching access network device determined by the determining module 903.
  • At least two access network devices include a first access network device and a second access network device, where the first feature parameter includes Extension and transmission rate,
  • the determining module 903 is further specifically configured to:
  • the product of the delay of the first access network device and the transmission rate of the second access network device is not less than a threshold, determining that the first access network device is an access network device that matches the service quality of the single service data stream;
  • the second access network device Determining a product of a delay of the second access network device and a transmission rate of the first access network device and a threshold; if the product of the delay of the second access network device and the transmission rate of the second access network device is not If the threshold is less than the threshold, the second access network device is determined to be an access network device that matches the quality of service of the single service data stream.
  • FIG. 10 another embodiment of the network side device 1000 is provided by the present application, including:
  • the network side device further includes: a third obtaining module 905;
  • the third obtaining module 905 is configured to acquire a second feature parameter of each service data flow in the multi-service data stream
  • the determining module 903 is further configured to determine, according to the first feature parameter acquired by the second obtaining module 902 and the second feature parameter acquired by the third acquiring module 905, the quality of service in the at least two access network devices and the multi-service data stream. Each service data stream matches the access network device.
  • the at least one access network device includes a first access network device and a second access network device, where the network side device further includes:
  • the classification module 906 classifies the multi-service data stream by using the second feature parameter acquired by the third obtaining module 905 to obtain the first type of service data stream and the second type of service data stream;
  • the determining module 903 is further configured to determine, according to the first feature parameter of the first access network device, that the quality of service of the first access network device matches the first type of service data flow; according to the first access network device The feature parameter determines that the quality of service of the second access network device matches the traffic of the second type of service data.
  • the determining module 903 is further configured to determine, in the multiple service data flows, the first access network device according to the second feature parameter and the first feature parameter of the first access network device. To the matching target business data stream;
  • the service data flows of the plurality of service data flows except the target service data stream are matched with the second access network device.
  • the acquiring module is further configured to obtain a plurality of data packets to be sent, and parse the plurality of data includes: obtaining a flow identifier of each of the plurality of data packets; The identification determines at least one service data flow to which the plurality of data packets belong.
  • FIGS. 9 and 10 are presented in the form of functional modules.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above. Device.
  • ASIC application-specific integrated circuit
  • FIGS. 9 and 10 can take the form shown in Figure 11.
  • the network side device 1100 may generate a large difference due to different configurations or performances.
  • the network side device may be a core network device or an access device.
  • a network device which may include one or more processors 1122 and memory 1132, one or more storage media 1130 that store application 1142 or data 1144 (eg, one or one storage device in Shanghai).
  • the memory 1132 and the storage medium 1130 may be short-term storage or persistent storage.
  • the program stored on the storage medium 1130 may include one or more modules (not shown), each of which may include a series of instruction operations in the network side device.
  • the processor 1122 can be configured to communicate with the storage medium 1130 to perform a series of instruction operations in the storage medium 1130 on the network side device 1100.
  • Network side device 1100 may also include one or more power sources 1126, one or more wired or wireless network interfaces 1150, one or more input and output interfaces 1158, and/or one or more operating systems 1141.
  • the processor 1122 is configured to enable the network side device to perform the method steps that are actually performed by the network side device in the foregoing method embodiment.
  • the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method described in the above method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种数据传输的方法及设备。本申请实施例方法包括:网络侧设备获取待发送到至少两个接入网设备的至少一个业务数据流;所述网络侧设备获取所述至少两个接入网设备的第一特征参数,所述第一特征参数用于指示接入网设备的服务质量;所述网络侧设备根据所述第一特征参数确定在所述至少两个接入网设备中服务质量与所述至少一个业务数据流中的每个业务数据流相匹配的接入网设备;所述网络侧设备将每个业务数据流中的所有数据包通过与之相匹配的接入网设备向用户设备发送。本申请实施例还提供了一种网络侧设备,用于提高系统性能及传输数据的质量。

Description

一种数据传输的方法及设备
本申请要求于2017年12月05日提交中国专利局、申请号为201711271887.8、申请名称为“一种数据传输的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种数据传输的方法及设备。
背景技术
多流并发(Multiple Streaming Aggregation,缩写:MSA)技术,通过采用多制式、多载波和多层网络的深度融合,为用户设备提供数据接入服务。MSA架构是典型的控制面和用户面分离的网络架构,多流并发技术采用网络侧分流架构实现对数据的分流和控制,实现跨制式、跨频段的多流并发。
MSA使用分组数据汇聚协议(Packet Data Convergence Protocol,缩写:PDCP)层对数据进行分流,当用户设备通过MSA连接到第一接入网设备和第二接入网设备进行业务时,会将数据分解到MeNB和SeNB进行传输,但是分解到MeNB和SeNB的数据可能属于一个业务数据。
MSA应用场景中,是通过非理想回程连接,回程的性能影响这系统性能和用户吞吐量,由于第一接入网设备和第二接入网设备这两个网元对应的时延、吞吐率各不相同,因此,通过两个性能不同的网元传输同一个业务的数据,将影响整个网络的传输性能,数据的传输质量降低。
发明内容
本申请实施例提供了一种数据传输的方法及设备,用于提高系统性能及传输数据的质量。
第一方面,本申请实施例提供了一种数据传输的方法,该方法应用于多流并发架构的通信系统,多流并发是指在无线资源控制连接态的用户设备同时至少由两个接入网设备服务。该两个接入网设备可以包括第一接入网设备和第二接入网设备,多流并发是典型的控制面(Control plane,缩写:CP)与用户面(User plane,缩写:UP)相分离的架构,第一接入网设备可以进行控制面信令的传输,第一接入网设备和第二接入网设备对用户面数据进行传输。本申请实施例中的方法应用于网络侧设备,该网络侧设备可以为核心网设备,也可以为接入网设备,网络侧设备获取待发送的多个数据包,对多个数据包括进行解析,得到多个数据包中每个数据包的流标识,网络侧设备根据流标识确定多个数据包所属的至少一个业务数据流。网络侧设备获取待发送到至少两个接入网设备的至少一个业务数据流;网络侧设备获取至少两个接入网设备的第一特征参数,第一特征参数用于指示接入网设备的服务质量;网络侧设备根据第一特征参数确定在至少两个接入网设备中服务质量 与至少一个业务数据流中的每个业务数据流相匹配的接入网设备;将每个业务数据流中的所有数据包通过与之相匹配的接入网设备向用户设备发送。该“相匹配”是指按照对业务的服务质量确定可以满足该服务质量的接入网设备。例如,指高速业务数据流与高制式,高速率的接入网设备相匹配,低速业务数据流与低制式,低速率的接入网设备相匹配。本申请实施例中,网络侧设备确定待发送的数据包所属的业务数据流,以业务数据流为分流单元对待发送的数据包进行分流,将每个业务数据流中的数据包通过与之相匹配的接入网设备向用户设备发送。相对比于传统方法中只是将待发送的数据分割到两个接入网设备进行转发,可能将同一个业务的数据分配到速率和吞吐率都不同的网元,本实施例中以业务数据流为单位进行分流,将每个业务数据流中的所有数据包通过与之相匹配的接入网设备向用户设备发送,能够提高整个网络的性能及传输数据的质量。
在一种可能的实现方式中,当至少一个业务数据流为单业务数据流时,至少两个接入网设备包括第一接入网设备和第二接入网设备,第一特征参数包括时延和传输速率,当第一接入网设备的时延大于第二接入网设备的时延时,网络侧设备判断第一接入网设备的时延和第二接入网设备的传输速率的乘积与阈值的大小;可选的,该阈值可以为用户设备的接收窗口的大小,若第一接入网设备的时延和第二接入网设备的传输速率的乘积不小于阈值,则确定第一接入网设备为与单业务数据流服务质量相匹配的接入网设备;或者,第二接入网设备的时延大于第一接入网设备的时延时,网络侧设备判断第二接入网设备的时延和第一接入网设备的传输速率的乘积与阈值的大小,若第二接入网设备的时延和第一接入网设备的传输速率的乘积不小于阈值,则确定第二接入网设备为与单业务数据流服务质量相匹配的接入网设备。本申请实施例中,在单业务数据流的场景中,解决了由于两个接入网设备中的一个接入网设备丢包导致的整体网络性能下降问题。核心网设备或者接入网设备通过判断不同的数据流通过服务质量相匹配的基站,减少丢包导致的窗口停等。减少由于TCP窗口停等导致吞吐率陡降现象的出现,最大化提升吞吐率性能。
在一种可能的实现方式中,当至少一个业务数据流为多业务数据流时,网络侧设备根据第一特征参数确定在至少两个接入网设备中服务质量与至少一个业务数据流中的每个业务数据流相匹配的接入网设备之前,方法还可以包括:网络侧设备获取多业务数据流中每个业务数据流的第二特征参数;该第二特征参数包括但不限定于缓存大小、业务类型和速率大小等等;网络侧设备根据第一特征参数和第二特征参数确定在至少两个接入网设备中服务质量与多业务数据流中的每个业务数据流相匹配的接入网设备;在多业务数据流场景中,不会将属于同一个业务数据流的数据包分配到不同的接入网设备,可以理解的是,将属于同一个业务数据流的数据包分配到同一个与之相匹配接入网设备,针对不同的业务数据流匹配对应的接入网设备,将待发送的多个数据包以业务数据流为单位进行分流(即分配到第一接入网设备和第二接入网设备),吞吐率可以达到性能最佳,提高不同业务用户体验。
在一种可能的实现方式中,至少接入网设备包括第一接入网设备和第二接入网设备,网络侧设备根据第二特征参数对多业务数据流进行分类,得到第一类业务数据流和第二类业务数据流;网络侧设备根据第一接入网设备的第一特征参数确定第一接入网设备的服务 质量与第一类业务数据流相匹配;网络侧设备根据第二接入网设备的第一特征参数确定第二接入网设备的服务质量与第二类业务数据流相匹配。本示例中,可以首先对多个业务数据流进行分类,按照类别直接对多个业务数据流进行分流,可以提高网络侧对多个业务数据流进行分流的处理效率。
在一种可能的实现方式中,网络侧设备根据第一特征参数确定在至少两个接入网设备中服务质量与至少一个业务数据流中的每个业务数据流相匹配的接入网设备可以包括:网络侧设备根据第二特征参数和第一接入网设备的第一特征参数确定在多个业务数据流中与第一接入网设备相匹配的目标业务数据流;将多个业务数据流中除了目标业务数据流之外的业务数据流与第二接入网设备相匹配。
在一种可能的实现方式中,网络侧设备获取待发送至少一个业务数据流具体包括:网络侧设备获取待发送的多个数据包;网络侧设备对多个数据包括进行解析,得到多个数据包中每个数据包的流标识;该流标识包括但不限定于数据包包头中的源IP、目的IP、源port和目的port和MAC地址。例如,当多个数据包包头中的源IP、目的IP、源port和目的port和MAC地址均相同时,则可以确定该多个数据包属于同一个业务数据流,网络侧设备根据流标识确定多个数据包所属的至少一个业务数据流。
第二方面,本申请实施例提供了一种计算机存储介质,用于储存上述网络侧设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第三方面,本申请实施例提供了一种网络侧设备,具有实现上述方法中实际中网络侧设备所执行的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,网络侧设备的结构中包括存储器,网络接口和处理器。其中存储器用于存储计算机可执行程序代码。该程序代码包括指令,当该处理器执行该指令时,该指令使该网络侧设备执行上述方法中所涉及的信息或者指令。
附图说明
图1为本申请实施例中提供的通信系统网络架构场景示意图;
图2为本申请实施例中1A分流方式的架构示意图;
图3为本申请实施例中3C分流方式的架构示意图;
图4为本申请实施例中1A分流方式的架构示意图;
图5为本申请实施例中3C分流方式的架构示意图;
图6为本申请实施例中一种数据传输的方法的步骤流程示意图;
图7为本申请实施例中单业务数据流时MSA传输数据的示意图;
图8为本申请实施例中单业务数据流时MSA传输数据的示意图;
图9为本申请实施例中一种网络侧设备的一个实施例的结构示意图;
图10为本申请实施例中一种网络侧设备另的一个实施例的结构示意图;
图11为本申请实施例中一种网络侧设备另的一个实施例的结构示意图。
具体实施方式
本申请实施例提供了一种数据传输的方法及设备,用于提高系统性能及传输数据的质量。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了满足人们对更大系统容量,更好数据传输速率及高可靠性的通信要求,第五代移动通信系统(fifth generation,缩写:5G)被提出并逐渐被标准化,5G中采用高频通信,高频具有可用频谱大、系统容量高,但高频覆盖能力弱的特点,无法进行大面积覆盖,移动性会出现问题,当前,应用两种组网方式解决其移动性问题。
其中,一种方式为:5G与长期演进(Long Term Evolution,缩写:LTE)协作组网(Non-standalone),另一种方式可以为:5G高低频融合组网(Standalone),通过上述两种组网方式,既可以通过低频连续覆盖组网,解决移动性问题,又可以最大程度发挥高频大容量的优势。
多流并发(multiple streaming aggregation,缩写:MSA)技术可以应用于上述两种不同的组网架构,MSA是指在无线资源控制(radio resource control,缩写:RRC)连接态的用户设备(user equipment,缩写:UE)同时至少由两个接入网设备服务。例如,该两个接入网设备一个可以是主基站(Master eNB,缩写:MeNB),另一个是辅基站(Secondary eNB,缩写:SeNB),用户设备可以通过MeNB连接到主小区(Primary Cell,缩写:PCell)或主小区组(Master Cell Group,缩写:MCG),同时用户设备还可以通过SeNB连接到主辅小区(Primary SCell,缩写:PSCell)或辅小区组(Secondary Cell Group,缩写:SCG)。
请参阅图1进行理解,图1本申请实施例中提供的通信系统网络架构场景示意图。该通信系统包括核心网设备101、第一接入网设备102、第二接入网设备103和用户设备104,第一接入网设备102和第二接入网设备103均与核心网络设备101连接,用户设备104与第一接入网设备102、第二接入网设备103连接,MSA是典型的控制面(Control plane,缩写:CP)与用户面(User plane,缩写:UP)相分离的架构,主基站可以进行控制面信令的传输,主基站和辅基站对用户面数据进行传输。
下面分别对5G与LTE协作组网,5G高低频融合组网这两种组网方式分流架构进行说 明:
一、5G与LTE协作组网
具体包括两种分流方式:
1、请参阅图2所示,图2为此种组网方式下第一种分流方式(1A分流方式)的架构示意图,由核心网设备对数据直接进行分流,主基站中控制面和用户面相分离,控制面协议栈由5个子层组成包括:由上到下的顺序分别是无线资源控制(Radio Resource Control,缩写:RRC)层、分组数据汇聚协议(Packet Data Convergence Protocol,缩写:PDCP)层、无线链路层控制(Radio Link Control,缩写:RLC)层、介质访问控制(Media Access Control,缩写:MAC)层和物理层(Physical Layer,缩写:PHY)。用户面协议栈包括:PDCP层、RLC层、MAC)层和PHY层。
辅基站的用户面协议栈与主基站的用户面协议栈相对应,辅基站的用户面协议栈包括:PDCP层、RLC层、MAC层和PHY层。
2、请参阅图3所示,图3为此种组网方式下第二种分流方式(3C分流方式)的架构示意图,核心网设备将数据发送给主基站,由主基站的PDCP层对数据进行分流,主基站中控制面和用户面相分离,控制面协议栈由5个子层组成包括:由上到下的顺序分别是RRC层、PDCP层、RLC层、MAC层和PHY层。用户面协议栈包括:PDCP层、RLC层、MAC层和PHY层。
辅基站的用户面协议栈不包含PDCP层,由上到下的协议子层包括:RLC层、MAC层和PHY层。
二、5G高低频组网方式
1、请参阅图4所示,图4为此种组网方式下第一种分流方式(1A分流方式)的架构示意图,主基站的用户面协议层增加业务适应协议层(Service Data Adaptation Protocol,缩写:SDAP)子层,同样采用PDCP层进行分流,主基站控制面协议层包括:RRC层、PDCP层、RLC层、MAC层和PHY层,用户面协议栈包括:SDAP层、PDCP层、RLC层、MAC层和PHY层。
辅基站的用户面协议栈由上到下的协议子层包括:SDAP层、PDCP层、RLC层、MAC层和PHY层。
2、请参阅图5所示,图5为此种组网方式下第二种分流方式(3C分流方式)的架构示意图,主基站控制面协议层包括:RRC层、PDCP层、RLC层、MAC层和PHY层,用户面协议栈包括:SDAP层、PDCP层、RLC层、MAC层和PHY层。
辅基站的用户面协议栈由上到下的协议子层包括:RLC层、MAC层和PHY层。
本申请实施例中提供的方法应用于网络侧设备,该网络侧设备可以为核心网设备,也可以为接入网设备。具体的,网络侧设备获取待发送到至少两个接入网设备的至少一个业务数据流,获取至少两个接入网设备的第一特征参数。本申请实施例中,该至少两个接入网设备可以为第一接入网设备和第二接入网设备为例进行说明。网络侧设备可以根据第一特征参数确定在第一接入网设备和第二接入网设备中服务质量与至少一个业务数据流中的每个业务数据流相匹配的接入网设备。也就是确定与第一接入网设备相匹配的业务数据 流,确定与第二接入网设备相匹配的业务数据流,将每个业务数据流中的所有数据包通过与之相匹配的接入网设备向用户设备发送。本申请实施例中的“相匹配”是指按照对业务的服务质量确定可以满足该服务质量的接入网设备。例如,指高速业务数据流与高制式,高速率的接入网设备相匹配,低速业务数据流与低制式,低速率的接入网设备相匹配。
本申请实施例中,网络侧设备可以根据待发送的数据包确定出这些数据包所归属的至少一个业务数据流。可以理解的是,网络侧设备确定待发送的数据包所属的业务数据流,以业务数据流为分流单元对待发送的数据包进行分流,将每个业务数据流中的数据包通过与之相匹配的接入网设备向用户设备发送。相对比于传统方法中只是将待发送的数据分割到两个接入网设备进行转发,可能将同一个业务的数据分配到速率和吞吐率都不同的网元,本实施例中以业务数据流为单位进行分流,将每个业务数据流中的所有数据包通过与之相匹配的接入网设备向用户设备发送,能够提高整个网络的性能及传输数据的质量。
请参阅图6所示,本申请实施例提供了一种数据传输的方法进行具体说明,在MSA架构中,对待发送的数据包以业务数据流为单位进行分流,以提高整个网络的性能,该方法应用于网络侧设备,该网络侧设备可以为核心网设备,也可以为接入网设备。
步骤601、网络侧设备获取待发送到至少两个接入网设备的至少一个业务数据流。
网络侧设备获取待发送的多个数据包,对多个数据包括进行解析,得到多个数据包中每个数据包的流标识,该流标识包括但不限定于数据包包头中的源IP、目的IP、源port和目的port和MAC地址。例如,当多个数据包包头中的源IP、目的IP、源port和目的port和MAC地址均相同时,则可以确定该多个数据包属于同一个业务数据流,网络侧设备根据流标识确定多个数据包所属的至少一个业务数据流。例如,确定的业务数据流的数量具体的并不限定。
步骤602、网络侧设备获取至少两个接入网设备的第一特征参数。
本示例中,该至少两个接入网设备以一个主基站和一个辅基站为例进行说明,在实际应用中,该接入网设备的数量限定,例如,该接入网设备的数量可以为1个、2个及3个等等。
本示例中的第一特征参数包括但不限定于接入网设备的制式(如LET、高频、低频等等)和传输速率等。第一特征参数用于指示该接入网设备的服务质量。本示例中,若该网络侧设备为核心网设备,核心网设备可以根据在一个时间段内接收到第一接入网设备和第二接入网设备发送的数据包的数量,进而可以确定第一接入网设备和第二接入网设备的传输速率。
当该网络侧设备为第一接入网设备时,核心网设备可以获取到第二接入网设备的传输数率后,将第二接入网设备的制式及传输数率发送给第一接入网设备。需要说明的是,网络侧设备获取该两个接入网设备的第一特征参数的具体方法本示例中只是举例说明,并不造成对本申请的限定性说明。
步骤603、网络侧设备根据第一特征参数确定在至少两个接入网设备中服务质量与至少一个业务数据流中的每个业务数据流相匹配的接入网设备。
一、至少一个业务数据流为单数据流的场景中:
增加删除机制,该删除机制是指在用户设备同时与第一接入网设备和第二接入网设备连接时,可以通过两个接入网设备中的一个接入网设备的小区来传输该单数据流。
本示例中,第一接入网设备可以为主基站,第二接入网设备可以为辅基站。
请结合图7进行理解,图7为单业务数据流时MSA传输数据示意图。
网络侧设备为核心网设备时,该核心网设备判断第二接入网设备的时延和第一接入网设备的传输速率的乘积是否大于阈值,该阈值可以为用户设备的TCP接收窗口的大小,该接收窗口可以为最大接收窗口,固定值;也可以为可用接收窗口,动态值。
具体的,核心网设备获取SeNB和MeNB的时延及速率,核心网设备分别向SeNB和MeNB发送数据包,通过SeNB和MeNB反馈的ACK数据包的时长来确定SeNB的时延和MeNB的时延,通过在一个预置时间段内接收到ACK数据包的数量来确定SeNB的传输数率和MeNB的传输数率。
当SeNB的时延大于MeNB的时延,MeNB的传输数据大于SeNB的传输数据时,核心网设备发送数据包到SeNB和MeNB,若SeNB反馈的ACK数据包的时长超过预置时长,则判定该SeNB发生了丢包,那么会继续根据公式1(SeNB时延*MeNB速率<接收窗口)来判断SeNB丢包是否会导致接收窗口的停止等待。可以理解的是,时延与速率的乘积可以得到传输数据量,当两个较大的值的乘积得到的传输数据量大于或者等于接收窗口,则表明SeNB的丢包会导致接收窗口的停止等待,因此,可以确定此时SeNB不适合传输该单数据流,会影响传输数据的质量,删除SeNB小区,进行可以确定该MeNB为与该单业务数据流服务质量相匹配的接入网设备。
或者,当MeNB的时延大于SeNB的时延时,MeNB的传输速率大于MeNB的传输速率时;判断该MeNB小区是否为需要删除,核心网设备判断MeNB的时延和SeNB的传输速率的乘积是否小于阈值,若MeNB的时延和MeNB的传输速率的乘积大于阈值,则确定SeNB为与单业务数据流服务质量相匹配的接入网设备。
在另一种可以实现的方式中,请结合图8进行理解,图8为单业务数据流时MSA传输数据示意图。当网络侧设备为接入网设备时,具体的,该网络侧设备为MeNB为例,主基站可以从核心网设备获取SeNB时延及速率,判断SeNB是否丢包,根据公式1(SeNB时延*MeNB速率<接收窗口)判断SeNB丢包是否导致接收窗口的停止等待,若不满足上述公式2,则表明SeNB不适合传输该数据流,则确定MeNB为与该单业务数据流相匹配的接入网设备,通过该MeNB将该单业务数据流发送给用户设备。
当MeNB的时延大于SeNB的时延时,根据公式2(MeNB时延*SeNB速率<接收窗口)判断MeNB丢包是否会导致接收窗口的停止等待时,若MeNB时延与SeNB速率的乘积不满足上述公式2,则判定MeNB的服务质量不适合传输该单数据流,则该MeNB将属于该单业务数据流的数据包向SeNB发送,由SeNB将该单业务数据流的数据发送给用户设备。
在另一种可能实现的方式中,若SeNB时延与MeNB速率的乘积小于接收窗口,则表明SeNB的丢包率较低,不会导致接收窗口的停止等待,可以保持该SeNB,SeNB和MeNB都可以传输该单业务数据流,且不会影响该单业务数据流的传输质量,可以理解的是,若在单业务数据流的场景下,当SeNB和MeNB的服务质量均良好,则SeNB和MeNB为该单业务数 据流相匹配的接入网设备。
本示例中,在单业务数据流的场景下,解决了由于两个接入网设备中的一个接入网设备丢包导致的整体网络性能下降问题。
需要说明的是图7和图8是以5G和LTE组网方式为例进行说明,本示例中的方法也可以应用到5G高低频组网方式架构中,本示例中不赘述举例。
二、至少一个业务数据流为多数据流的场景中:
请结合图2-图5进行理解,在第一种可能实现的方式中,网络侧设备还需要获取多业务数据流中每个业务数据流的第二特征参数,该第二特征参数包括但不限定于缓存大小、业务类型和速率大小等等。
网络侧设备根据第一特征参数和第二特征参数确定在至少两个接入网设备中服务质量与多业务数据流中的每个业务数据流相匹配的接入网设备。该第二特征参数以业务类型为例,例如,网络侧设备获取每个业务数据流的数据包进行解析,获取业务类型,例如,多业务数据流的数量具体为2个业务数据流(该2个业务数据流分别记作“F1”和“F2”),该2个业务数据流分别为视频业务数据流和邮件业务数据流,主基站为高速率制式的接入网设备,辅基站为低速率制式的接入网设备,网络侧设备确定视频业务数据流(高速率业务数据流)与主基站匹配,邮件业务数据流(低速率业务数据流)与辅基站匹配。
当然,本示例中多业务数据流的数量以2个为例只是举例说明,并不造成对本申请的限定性说明,例如,当网络侧设备确定待发送的数据包所属的业务数据流的数量为3个,根据第一特征参数和第二特征参数将2个业务数据流与主基站匹配,将1个业务数据流与辅基站匹配,本示例中,在多业务数据流的场景下,属于同一个业务数据流的数据包均发送到同一个接入网设备。本示例中的网络侧设备执行的方法可以由核心网设备执行,也可以为第一接入网设备执行。
本示例中,在MSA单用户多业务数据流场景中,不会将属于同一个业务数据流的数据包分配到不同的接入网设备,可以理解的是,将属于同一个业务数据流的数据包分配到同一个与之相匹配接入网设备,针对不同的业务数据流匹配对应的接入网设备,将待发送的多个数据包以业务数据流为单位进行分流(即分配到第一接入网设备和第二接入网设备),吞吐率可以达到性能最佳,提高不同业务用户体验。
在另一种可能的实现方式中,所述网络侧设备根据所述第二特征参数对所述多业务数据流进行分类,得到第一类业务数据流和第二类业务数据流;例如,网络侧设备可以根据业务类型对多个业务数据流进行分类,第一类业务数据流为高速率业务数据流(如高速率业务数据流包括2个数据流),第二类业务数据流为低速率业务数据流(如低速率业务数据流包括1个数据流),所述网络侧设备根据所述第一接入网设备的第一特征参数确定所述第一接入网设备的服务质量与所述第一类业务数据流相匹配,所述网络侧设备根据所述第二接入网设备的业务类型确定所述第二接入网设备的服务质量与所述第二类业务数据流相匹配。本示例中,可以首先对多个业务数据流进行分类,按照类别直接对多个业务数据流进行分流,可以提高网络侧对多个业务数据流进行分流的处理效率。
所述网络侧设备根据所述第一接入网设备的第一特征参数确定所述第一接入网设备的 服务质量与所述第一类业务数据流相匹配;所述网络侧设备根据所述第二接入网设备的第一特征参数确定所述第二接入网设备的服务质量与所述第二类业务数据流相匹配。
在另一种可能实现的方式中,网络侧设备可以根据第二特征参数和第一接入网设备的第一特征参数确定在多个业务数据流中与第一接入网设备向匹配的目标业务数据流。例如,该多业务数据流包括3个业务数据流,该3个业务数据流分别为视频数据流,邮件数据流,背景类业务数据流(如下载文件),网络侧设备可以将每个业务数据流的业务类型与主基站的第一特征参数进行匹配,确定与该主基站进行匹配的目标数据流,如,该目标数据流为视频业务数据流,然后,将多个业务数据流中除了目标业务数据流之外的业务数据流与第二接入网设备相匹配。例如,确定邮件数据流和背景类业务数据流与辅基站相匹配。此种方式较适用于接入网设备的数量为2个的情况下,网络侧设备只需要将每个业务数据流与两个接入网设备中的一个接入网设备进行匹配,不需要将每个业务数据流与另一个接入网设备进行匹配,将业务数据流匹配到服务质量对应的接入网设备,即提高网络侧的处理效率,又可以提高整个网络系统的性能。
步骤604、网络侧设备将属于每个业务数据流中的数据包通过与之相匹配的接入网设备向用户设备发送。
例如,将属于视频业务数据流的数据包发送到第一接入网设备,由第一接入网设备将视频业务数据流的数据流发送到用户设备,将属于邮件业务数据流的数据包发送到第二接入网设备,由第二接入网设备将视频业务数据流的数据流发送到用户设备。
本申请中核心网设备或者接入网设备通过判断不同的数据流通过服务质量相匹配的基站,减少丢包导致的窗口停等。减少由于TCP窗口停等导致吞吐率陡降现象的出现,最大化提升吞吐率性能。在多业务数据流场景中,针对不同的业务数据流匹配对应的接入网设备,将待发送的多个数据包以业务数据流为单位进行分流(即分配到第一接入网设备和第二接入网设备),吞吐率可以达到性能最佳,提高不同业务用户体验。在单业务数据流的场景下,解决了由于两个接入网设备中的一个接入网设备丢包导致的整体网络性能下降问题。
上面对一种数据传输的方法进行了描述,下面对该方法应用的网络侧设备进行说明,请参阅图9进行理解,图9为本申请实施例中一种网络侧设备的一个实施例的结构示意图。
第一获取模块901,用于获取待发送到至少两个接入网设备的至少一个业务数据流,第一特征参数用于指示接入网设备的服务质量;
第二获取模块902,用于获取至少两个接入网设备的第一特征参数;
确定模块903,用于根据第二获取模块902获取的第一特征参数确定在至少两个接入网设备中服务质量与第一获取模块901获取的至少一个业务数据流中的每个业务数据流相匹配的接入网设备;
发送模块904,用于将每个业务数据流中的所有数据包通过确定模块903确定的与之相匹配的接入网设备向用户设备发送。
在一种可能的实现方式中,当至少一个业务数据流为单业务数据流时,至少两个接入 网设备包括第一接入网设备和第二接入网设备,第一特征参数包括时延和传输速率,
确定模块903,还具体用于:
判断第一接入网设备的时延和第二接入网设备的传输速率的乘积与阈值的大小;
若第一接入网设备的时延和第二接入网设备的传输速率的乘积不小于阈值,则确定第一接入网设备为与单业务数据流服务质量相匹配的接入网设备;
或者,
判断第二接入网设备的时延和第一接入网设备的传输速率的乘积与阈值的大小;若第二接入网设备的时延和第二接入网设备的传输速率的乘积不小于阈值,则确定第二接入网设备为与单业务数据流服务质量相匹配的接入网设备。
在图9对应的实施例的基础上,请结合图10所示,本申请提供了一种网络侧设备1000的另一个实施例包括:
当至少一个业务数据流为多业务数据流时,网络侧设备还包括:第三获取模块905;
第三获取模块905,用于获取多业务数据流中每个业务数据流的第二特征参数;
确定模块903,还用于根据第二获取模块902获取的第一特征参数和第三获取模块905获取的第二特征参数确定在至少两个接入网设备中服务质量与多业务数据流中的每个业务数据流相匹配的接入网设备。
在另一种可能的实现方式中,至少接入网设备包括第一接入网设备和第二接入网设备,网络侧设备还包括:
分类模块906,用根据第三获取模块905获取的第二特征参数对多业务数据流进行分类,得到第一类业务数据流和第二类业务数据流;
确定模块903,还具体用于根据第一接入网设备的第一特征参数确定第一接入网设备的服务质量与第一类业务数据流相匹配;根据第二接入网设备的第一特征参数确定第二接入网设备的服务质量与第二类业务数据流相匹配。
在另一种可能的实现方式中,确定模块903,还具体用于根据第二特征参数和第一接入网设备的第一特征参数确定在多个业务数据流中与第一接入网设备向匹配的目标业务数据流;
将多个业务数据流中除了目标业务数据流之外的业务数据流与第二接入网设备相匹配。
在另一种可能的实现方式中,获取模块,还具体用于获取待发送的多个数据包;对多个数据包括进行解析,得到多个数据包中每个数据包的流标识;根据流标识确定多个数据包所属的至少一个业务数据流。
进一步的,图9和10中的网络侧设备是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到图9和10中的网络侧设备可以采用图11所示的形式。
图11是本申请实施例提供的一种网络侧设备结构示意图,该网络侧设备1100可因配 置或性能不同而产生比较大的差异,该网络侧设备可以为核心网设备,也可以为接入网设备,该网络侧设备可以包括一个或一个以上处理器1122和存储器1132,一个或一个以上存储应用程序1142或数据1144的存储介质1130(例如一个或一个以上海量存储设备)。其中,存储器1132和存储介质1130可以是短暂存储或持久存储。存储在存储介质1130的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对网络侧设备中的一系列指令操作。更进一步地,处理器1122可以设置为与存储介质1130通信,在网络侧设备1100上执行存储介质1130中的一系列指令操作。
网络侧设备1100还可以包括一个或一个以上电源1126,一个或一个以上有线或无线网络接口1150,一个或一个以上输入输出接口1158,和/或,一个或一个以上操作系统1141。
处理器1122,用于使所述网络侧设备执行如上述方法实施例中网络侧设备实际执行的方法步骤。
本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例中所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (14)

  1. 一种数据传输的方法,其特征在于,所述方法包括:
    网络侧设备获取待发送到至少两个接入网设备的至少一个业务数据流;
    所述网络侧设备获取所述至少两个接入网设备的第一特征参数,所述第一特征参数用于指示接入网设备的服务质量;
    所述网络侧设备根据所述第一特征参数确定在所述至少两个接入网设备中服务质量与所述至少一个业务数据流中的每个业务数据流相匹配的接入网设备;
    所述网络侧设备将每个业务数据流中的所有数据包通过与之相匹配的接入网设备向用户设备发送。
  2. 根据权利要求1所述的方法,其特征在于,当所述至少一个业务数据流为单业务数据流时,所述至少两个接入网设备包括第一接入网设备和第二接入网设备,所述第一特征参数包括时延和传输速率,所述网络侧设备根据所述第一特征参数确定在所述至少两个接入网设备中服务质量与所述至少一个业务数据流中的每个业务数据流相匹配的接入网设备,包括:
    所述网络侧设备判断所述第一接入网设备的时延和第二接入网设备的传输速率的乘积与阈值的大小,所述第一接入网设备的时延大于所述第二接入网设备的时延;
    若所述第一接入网设备的时延和第二接入网设备的传输速率的乘积不小于所述阈值,则确定所述第一接入网设备为与所述单业务数据流服务质量相匹配的接入网设备;
    或者,
    所述网络侧设备判断所述第二接入网设备的时延和所述第一接入网设备的传输速率的乘积与所述阈值的大小,所述第二接入网设备的时延大于所述第一接入网设备的时延;
    若所述第二接入网设备的时延和所述第一接入网设备的传输速率的乘积不小于所述阈值,则确定所述第二接入网设备为与所述单业务数据流服务质量相匹配的接入网设备。
  3. 根据权利要求1所述的方法,其特征在于,所述当所述至少一个业务数据流为多业务数据流时,所述网络侧设备根据所述第一特征参数确定在所述至少两个接入网设备中服务质量与所述至少一个业务数据流中的每个业务数据流相匹配的接入网设备之前,所述方法还包括:
    所述网络侧设备获取所述多业务数据流中每个业务数据流的第二特征参数;
    所述网络侧设备根据所述第一特征参数确定在所述至少两个接入网设备中服务质量与所述至少一个业务数据流中的每个业务数据流相匹配的接入网设备,包括:
    所述网络侧设备根据所述第一特征参数和所述第二特征参数确定在所述至少两个接入网设备中服务质量与所述多业务数据流中的每个业务数据流相匹配的接入网设备。
  4. 根据权利要求3所述的所述的方法,其特征在于,所述至少接入网设备包括第一接入网设备和第二接入网设备,所述方法还包括:
    所述网络侧设备根据所述第二特征参数对所述多业务数据流进行分类,得到第一类业务数据流和第二类业务数据流;
    所述网络侧设备根据所述第一特征参数确定在所述至少两个接入网设备中服务质量与所述至少一个业务数据流中的每个业务数据流相匹配的接入网设备,包括:
    所述网络侧设备根据所述第一接入网设备的第一特征参数确定所述第一接入网设备的服务质量与所述第一类业务数据流相匹配;
    所述网络侧设备根据所述第二接入网设备的第一特征参数确定所述第二接入网设备的服务质量与所述第二类业务数据流相匹配。
  5. 根据权利要求3所述的方法,其特征在于,所述网络侧设备根据所述第一特征参数确定在所述至少两个接入网设备中服务质量与所述至少一个业务数据流中的每个业务数据流相匹配的接入网设备,包括:
    所述网络侧设备根据所述第二特征参数和所述第一接入网设备的第一特征参数确定在所述多个业务数据流中与所述第一接入网设备相匹配的目标业务数据流;
    将所述多个业务数据流中除了所述目标业务数据流之外的业务数据流与所述第二接入网设备相匹配。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述网络侧设备获取待发送至少一个业务数据流,包括:
    所述网络侧设备获取待发送的多个数据包;
    所述网络侧设备对所述多个数据包括进行解析,得到所述多个数据包中每个数据包的流标识;
    所述网络侧设备根据所述流标识确定所述多个数据包所属的至少一个业务数据流。
  7. 一种网络侧设备,其特征在于,包括:
    第一获取模块,用于获取待发送到至少两个接入网设备的至少一个业务数据流,所述第一特征参数用于指示接入网设备的服务质量;
    第二获取模块,用于获取所述至少两个接入网设备的第一特征参数;
    确定模块,用于根据所述第二获取模块获取的所述第一特征参数确定在所述至少两个接入网设备中服务质量与所述第一获取模块获取的至少一个业务数据流中的每个业务数据流相匹配的接入网设备;
    发送模块,用于将每个业务数据流中的所有数据包通过所述确定模块确定的与之相匹配的接入网设备向用户设备发送。
  8. 根据权利要求7所述的网络侧设备,其特征在于,当所述至少一个业务数据流为单业务数据流时,所述至少两个接入网设备包括第一接入网设备和第二接入网设备,所述第一特征参数包括时延和传输速率,
    所述确定模块,还具体用于:
    判断所述第一接入网设备的时延和第二接入网设备的传输速率的乘积与阈值的大小;
    若所述第一接入网设备的时延和第二接入网设备的传输速率的乘积不小于所述阈值,则确定所述第一接入网设备为与所述单业务数据流服务质量相匹配的接入网设备,所述第一接入网设备的时延大于所述第二接入网设备的时延;
    或者,
    判断所述第二接入网设备的时延和所述第一接入网设备的传输速率的乘积与所述阈值的大小,所述第二接入网设备的时延大于所述第一接入网设备的时延;
    若所述第二接入网设备的时延和所述第二接入网设备的传输速率的乘积不小于所述阈值,则确定所述第二接入网设备为与所述单业务数据流服务质量相匹配的接入网设备。
  9. 根据权利要求7所述的网络侧设备,其特征在于,所述当所述至少一个业务数据流为多业务数据流时,所述网络侧设备还包括:第三获取模块;
    所述第三获取模块,用于获取所述多业务数据流中每个业务数据流的第二特征参数;
    所述确定模块,还用于根据所述第二获取模块获取的第一特征参数和所述第三获取模块获取的所述第二特征参数确定在所述至少两个接入网设备中服务质量与所述多业务数据流中的每个业务数据流相匹配的接入网设备。
  10. 根据权利要求9所述的所述的网络侧设备,其特征在于,所述至少接入网设备包括第一接入网设备和第二接入网设备,所述网络侧设备还包括:
    分类模块,用根据所述第二特征参数对所述多业务数据流进行分类,得到第一类业务数据流和第二类业务数据流;
    所述确定模块,还具体用于根据所述第一接入网设备的第一特征参数确定第一接入网设备的服务质量与所述第一类业务数据流相匹配;根据所述第二接入网设备的第一特征参数确定第二接入网设备的服务质量与所述第二类业务数据流相匹配。
  11. 根据权利要求9所述的网络侧设备,其特征在于,
    所述确定模块,还具体用于根据所述第二特征参数和所述第一接入网设备的第一特征参数确定在所述多个业务数据流中与所述第一接入网设备向匹配的目标业务数据流;
    将所述多个业务数据流中除了所述目标业务数据流之外的业务数据流与所述第二接入网设备相匹配。
  12. 根据权利要求7至11中任一项所述的网络侧设备,其特征在于,所述获取模块,还具体用于获取待发送的多个数据包;对所述多个数据包括进行解析,得到所述多个数据包中每个数据包的流标识;根据所述流标识确定所述多个数据包所属的至少一个业务数据流。
  13. 一种网络侧设备,其特征在于,包括:
    存储器,用于存储计算机可执行程序代码;
    网络接口,以及
    处理器,与所述存储器和所述网络接口耦合;
    其中所述程序代码包括指令,当所述处理器执行所述指令时,所述指令使所述网络侧设备执行如权利要求1至6中任一项所述的方法。
  14. 一种计算机存储介质,其特征在于,用于储存上述网络侧设备所用的计算机软件指令,其包含用于执行如权利要求1至6中任一项所设计的程序。
PCT/CN2018/119370 2017-12-05 2018-12-05 一种数据传输的方法及设备 WO2019109949A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711271887.8A CN108235379A (zh) 2017-12-05 2017-12-05 一种数据传输的方法及设备
CN201711271887.8 2017-12-05

Publications (1)

Publication Number Publication Date
WO2019109949A1 true WO2019109949A1 (zh) 2019-06-13

Family

ID=62653219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119370 WO2019109949A1 (zh) 2017-12-05 2018-12-05 一种数据传输的方法及设备

Country Status (2)

Country Link
CN (1) CN108235379A (zh)
WO (1) WO2019109949A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108235379A (zh) * 2017-12-05 2018-06-29 上海华为技术有限公司 一种数据传输的方法及设备
WO2020048336A1 (zh) * 2018-09-04 2020-03-12 Oppo广东移动通信有限公司 标识显示控制方法及装置
CN109348513B (zh) * 2018-11-15 2023-08-11 Oppo广东移动通信有限公司 一种数据包传输方法、终端及计算机存储介质
CN109257771B (zh) 2018-11-16 2020-11-06 腾讯科技(深圳)有限公司 业务数据的传输方法、装置及设备
CN110072245B (zh) * 2019-03-22 2021-04-09 华为技术有限公司 一种数据传输方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594694A (zh) * 2012-03-06 2012-07-18 北京中创信测科技股份有限公司 数据分流方法和设备
CN102695291A (zh) * 2011-03-25 2012-09-26 中兴通讯股份有限公司 多网接入系统和多模无线终端
CN103501209A (zh) * 2013-09-25 2014-01-08 中国科学院声学研究所 一种异构多网协同传输的单业务分流方法和设备
CN104427554A (zh) * 2013-08-29 2015-03-18 中兴通讯股份有限公司 一种协作多流传输数据的方法及基站
US20150215923A1 (en) * 2014-01-30 2015-07-30 Satish Chandra Jha Radio resource control messaging for dual connectivity networks
CN108235379A (zh) * 2017-12-05 2018-06-29 上海华为技术有限公司 一种数据传输的方法及设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101754319A (zh) * 2008-12-10 2010-06-23 华为技术有限公司 路由方法、装置及系统
WO2014047942A1 (zh) * 2012-09-29 2014-04-03 华为技术有限公司 传输数据的方法、用户设备和网络侧设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695291A (zh) * 2011-03-25 2012-09-26 中兴通讯股份有限公司 多网接入系统和多模无线终端
CN102594694A (zh) * 2012-03-06 2012-07-18 北京中创信测科技股份有限公司 数据分流方法和设备
CN104427554A (zh) * 2013-08-29 2015-03-18 中兴通讯股份有限公司 一种协作多流传输数据的方法及基站
CN103501209A (zh) * 2013-09-25 2014-01-08 中国科学院声学研究所 一种异构多网协同传输的单业务分流方法和设备
US20150215923A1 (en) * 2014-01-30 2015-07-30 Satish Chandra Jha Radio resource control messaging for dual connectivity networks
CN108235379A (zh) * 2017-12-05 2018-06-29 上海华为技术有限公司 一种数据传输的方法及设备

Also Published As

Publication number Publication date
CN108235379A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2019109949A1 (zh) 一种数据传输的方法及设备
US11425600B2 (en) Wireless backhaul data transmission method and apparatus
TWI234372B (en) Packet compression system, packet restoration system, packet compression method, and packet restoration method
WO2017201677A1 (zh) 数据传输的方法及装置
WO2021232568A1 (zh) 无线局域网收发数据的方法、终端和系统及网络接入设备
WO2010034255A1 (zh) 数据传输方法及网络节点和数据传输系统
US11502962B2 (en) Method, apparatus, and system for implementing data transmission
US11509597B2 (en) Data transmission method and device
US20210036955A1 (en) Integrated access backhaul network metric exchange for 5g or other next generation network
WO2022100264A1 (zh) 数据传输方法、装置、存储介质及电子设备
WO2023051515A1 (zh) 一种业务数据的传输方法及相关设备
CN111585906A (zh) 一种面向工业互联网的低时延自适应数据分流传输方法
US11310686B2 (en) Utilization of crowd-sourced access point data for 5G or other next generation network
US11425592B2 (en) Packet latency reduction in mobile radio access networks
US9755793B2 (en) Heterogeneous network integrating device and method thereof
Ndao et al. Optimal placement of virtualized DUs in O-RAN architecture
US9426086B2 (en) Sub flow based queueing management
WO2022063187A1 (zh) 一种通信方法和装置
WO2022007829A1 (zh) 数据的传输方法、装置及设备
TWI592035B (zh) Wireless network transmission method and system
US9479351B2 (en) Method and apparatus for providing voice service in communication system
WO2012155782A1 (zh) 数据传输方法及系统
EP3139554B1 (en) Multiflow transmission method and device
WO2020220160A1 (zh) 基于多个数据通道并发捆绑承载大数据量业务的传输方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886700

Country of ref document: EP

Kind code of ref document: A1