WO2012155782A1 - 数据传输方法及系统 - Google Patents

数据传输方法及系统 Download PDF

Info

Publication number
WO2012155782A1
WO2012155782A1 PCT/CN2012/074760 CN2012074760W WO2012155782A1 WO 2012155782 A1 WO2012155782 A1 WO 2012155782A1 CN 2012074760 W CN2012074760 W CN 2012074760W WO 2012155782 A1 WO2012155782 A1 WO 2012155782A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
enodeb
interface
rnc
nodeb
Prior art date
Application number
PCT/CN2012/074760
Other languages
English (en)
French (fr)
Inventor
黄侃
杨立
吕应权
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110285266.1A external-priority patent/CN103024817B/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012155782A1 publication Critical patent/WO2012155782A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • a Universal Terrestrial Radio Access Network includes a Radio Network Controller (RNC) and a base station ( NodeB) Two basic network elements, commonly known as 3G networks.
  • RNC Radio Network Controller
  • NodeB base station
  • E-UTRAN includes an evolved base station (eNodeB, e B), a basic network element, commonly known as a 4G network.
  • eNodeB evolved base station
  • 4G 4G network
  • High Speed Uplink Packet Access (HSUPA), Dual Carrier-High Speed Downlink Packet Access (DC-HSDPA) Dual-Band Dual-High Speed Downlink Packet Access Dual-carrier high speed downlink packet access (DC-HSUPA), dual carrier-high speed uplink packet access (DC-HSUPA) (4C-HSDPA, eight carrier-high speed downlink packet access), the carrier-high speed downlink packet access (8C-HSDPA), the multi-carrier aggregation technology in these 3G systems are introduced one after another.
  • the uplink and downlink data transmission rates of the user equipment (UE, User Equipment) are continuously increased and increased.
  • the following line direction is taken as an example.
  • the UE must be equipped with multiple 3G-related Receive Data Processing Chains (3G- Receiver Chain), which can receive and process simultaneously from the same The same base station (sector), the 3G data block sent by the uplink and downlink of several carriers.
  • 3G- Receiver Chain 3G-related Receive Data Processing Chains
  • the WCDMA system that has evolved to today is also called: HSPA Ten System (High Speed Packet Access+) o
  • CA High Speed Packet Access+
  • the UE must be equipped with multiple 4G-received data processing chains (4G- Receiver Chain), which can receive and process the same sector from the same base station simultaneously, and several carriers are sent upstream and downstream.
  • 4G- Receiver Chain 4G- Receiver Chain
  • the 4G data block that comes.
  • An operator has two carrier frequency resources Fl, F2, which allocates F1 to the HSPA ten network operation, and allocates F2 to the LTE network operation.
  • the eNB receives data from an MME (Mobility Management Entity)/S-GW (Serving Gateway) using an S1 interface, and transmits 4G data to an LTE UE through an LTE system, or LTE. +HSPA aggregation UE.
  • the RNC receives data from the Serving GPRS Support Node (SGSN) using the IU interface and sends it to the NodeB through the IUB interface, which will be The 3G data is sent to the LTE+HSPA aggregation UE through the HSPDA, or the HSPA UE.
  • the NodeB and the eNB are connected by an X2 and IUB-like (X2 and IUB alike) interface.
  • the scheduling command in the physical downlink control channel (PDCCH, Physical Downlink Control Channel) of the UE on a certain working carrier of the eNB (for example, resource allocation, hybrid automatic repeat request (HARQ) operation) Related Information)
  • a part of user data is received from the Physical Downlink Shared Channel (PDSCH).
  • the UE is controlled by the scheduling command of the HS-SCCH (High Speed Shared Control Channel) on a working carrier of the NodeB, from the High Speed-Downlink Shared Channel (HS-DSCH). Receive another part of the user data.
  • HS-SCCH High Speed Shared Control Channel
  • the anchor eNB is responsible for allocating upper layer protocol data packets generated by the eNB, and in a certain manner, determining which part of the data packet is sent from the air interface of the LTE, and which part of the data packet is sent from the air interface of the HSPA ten.
  • the protocol packet allocated to the NodeB needs to be transmitted through a new interface between the eNB and the NodeB, and the NodeB transmits according to the characteristics of the protocol and the HSPA+ air interface.
  • the 7G technology does not conflict with the carrier aggregation technology in the HSPA+ system or the LTE system. That is to say: the UE may perform data reception on the M carriers of the HSPA+ system, and may perform data reception on the N carriers of the LTE system at the same time.
  • the basic principle of the operation is the same as above, and the data may be extended to a higher dimension.
  • 7G aggregation technology can fully and flexibly utilize the different distribution characteristics of 3G and 4G system resources. In the past, based on existing methods such as system load balancing, switching, and redirection, 3G, 4G can be realized deeper. The system works together.
  • 3G, 4G systems can share different types of services (such as voice services as far as possible through the HSPA+ system circuit switching (CS) circuit, high-speed data services as much as possible through the LTE system), or can also undertake the same services (such as: data The service is assigned to both systems for simultaneous transmission).
  • CS system circuit switching
  • the service is assigned to both systems for simultaneous transmission.
  • the structure corresponding to the 7G aggregation technology has some drawbacks to be solved. Specifically, for the physical connection between the NodeB and the eNodeB, the number of NodeBs is generally large due to the original commercial office, and each NodeB and the eNodeB need to establish a connection. Expendable resources.
  • the present invention provides a data transmission method and system, in the case of a large number of NodeBs in the related art, in which a new physical connection is established between all NodeBs and eNodeBs, which requires a large amount of resources. To at least solve the above problem.
  • a data transmission method including: a fourth generation evolved base station (4G eNodeB) receives data, and performs shunting, and transmits 3G data to a third generation radio network controller. (3G RNC), transmitting 4G data to the user equipment UE; the 3G RNC transmitting the 3G data to a third generation base station (3G NodeB), and transmitting the data to the UE by the 3G NodeB.
  • the receiving, by the 4G eNodeB the data includes: the 4G eNodeB receiving data from the S1 interface.
  • the method includes: the sequence number corresponding to the data identifier received by the 4G eNodeB from the S1 interface.
  • the 4G eN 0 deB is coupled to the 3G RNC through a specified interface, wherein the designated interface matches an X2 interface of the 4G eNodeB, and matches an IU interface of the 3G RNC.
  • the protocol hierarchical relationship of the specified interface includes: a General Packet Radio Service Tunneling Protocol User Plane Part (GTPU), a User Datagram Protocol (UDP), and an Internet Protocol (IP) layer.
  • GTPU General Packet Radio Service Tunneling Protocol User Plane Part
  • UDP User Datagram Protocol
  • IP Internet Protocol
  • the 4G eNodeB receives data from the S1 interface and performs offloading, and the method includes: the 4G eNodeB performs a packet data convergence protocol on the data received from the S1 interface according to the first preset rule. (PDCP) offloading; or the 4G eNodeB performs radio link control (RLC) offloading of data received from the S1 interface according to a second preset rule.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • the first preset rule includes any one of the following: the data of the same Transmission Control Protocol (TCP) connection is divided into 3G data; the data of the same TCP connection is divided into 4G data; The data below the preset priority is divided into 3G data; the data with the priority higher than the preset priority is divided into 4G data; if the 3G data buffer in the PDCP buffer is more than the first preset threshold , selecting a specified number of 3G data, converting it into 4G data; if the 4G data buffer in the PDCP buffer is more than the second preset threshold, selecting a specified amount of 4G data, converting it For 3G data.
  • TCP Transmission Control Protocol
  • the second preset rule includes any one of the following: an uplink state packet of the RLC layer is divided into 4G data; an uplink state packet is prohibited from being sent within a set time; and the uplink normal data is offloaded into 4G data, Transmitting through the 4G air interface; the 3G RNC sends the air interface transmittable traffic threshold received from the 3G NodeB to the 4G eNodeB, where the 4G eNodeB ensures that the downlink traffic to the 3G RNC is smaller than the air interface.
  • a traffic threshold can be sent.
  • the method further includes: the UE receiving the data of the 3G and the data of the 4G, and sorting according to the sequence number identified on each data.
  • the method is applied to 3G and 4G carrier aggregation systems.
  • a data transmission system including a third generation radio network controller (3G RNC), a third generation base station GG NodeB, and a fourth generation evolved base station (4G eNodeB) and user equipment.
  • the 4G eNodeB is configured to receive data, and perform shunting, and send 3G data to a third generation radio network controller (3G RNC), and send 4G data to the UE; 3G RNC, configured to send the 3G data to the 3G NodeB; the 3G NodeB is configured to send the 3G data to the UE.
  • the 4G eNodeB is further configured to receive data from the S1 interface.
  • the 4G eNodeB is further configured to identify a sequence number corresponding to the data received from the S1 interface.
  • the 4G eNodeB includes: a first offloading module, configured to perform packet data convergence protocol (PDCP) offloading on data received from the S1 interface according to a first preset rule; and the second offloading module is configured to follow The second preset rule performs radio link control (RLC) offloading on data received from the S1 interface.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • the UE is configured to receive the data of the 3G and the data of the 4G, and perform sorting according to the sequence number identified on each data.
  • the 3G RNC is connected to the 4G eNodeB, and the data received by the 4G eNodeB is offloaded, and the 3G data is sent to the 3G NodeB, and the 4G data is sent to the 4G eNodeB. That is, in the embodiment of the present invention, the connection between the NodeB and the eNodeB mentioned in the related art is replaced by the connection between the 3G RNC and the 4G eNodeB. Since the number of RNCs in the system is much smaller than the number of NodeBs, even In the case where the number of NodeBs is large, it does not consume a large amount of resources as in the related art, thereby achieving the purpose of saving resources.
  • FIG. 1 is a schematic diagram of an eNB main control anchor architecture according to the related art
  • FIG. 2 is a processing flowchart of a data transmission method according to an embodiment of the present invention
  • FIG. 3 is a 3 ⁇ 3 ⁇ 4 according to an embodiment of the present invention.
  • 4 is a schematic structural diagram of a 4G carrier aggregation scenario
  • FIG. 4 is a schematic structural diagram of an implementation environment according to Embodiment 1 of the present invention
  • FIG. 5 is a specific flowchart of a data transmission method according to Embodiment 1 of the present invention
  • 6 is a schematic structural diagram of an implementation environment according to Embodiment 2 of the embodiment of the present invention
  • FIG. 7 is a specific flowchart of a data transmission method according to Embodiment 2 of the present invention
  • FIG. 8 is a data transmission according to an embodiment of the present invention.
  • a schematic structural view of the system and
  • FIG. 9 is a schematic structural view of a 3G RNC according to an embodiment of the present invention.
  • the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
  • the structure corresponding to the 7G aggregation technology has some drawbacks to be solved. Specifically, for the physical connection between the NodeB and the eNodeB, the number of NodeBs is generally large due to the original commercial office. It takes a lot of resources to establish a connection between the NodeB and the eNodeB. Therefore, in the case of a large number of NodeBs, it takes almost a lot of resources to create a new physical connection, which is almost impossible.
  • the embodiment of the present invention provides a data transmission method, and the processing flow thereof is as shown in FIG.
  • Steps S202, 4G eNodeB receives data, and performs shunting, and 3G is performed.
  • the data is sent to the 3G RNC, and the 4G data is sent to the UE.
  • Steps S204 and 3G The RNC sends the 3G data to the 3G NodeB, and the 3G NodeB sends the data to the UE.
  • the 3G RNC is connected to the 4G eNodeB, and the data received by the 4G eNodeB is offloaded, and the 3G data is sent to the 3G NodeB, and the 4G data is sent to the 4G eNodeB.
  • connection between the NodeB and the eNodeB mentioned in the related art is replaced by the connection between the 3G RNC and the 4G eNodeB. Since the number of RNCs in the system is much smaller than the number of NodeBs, even In the case where the number of NodeBs is large, it does not consume a large amount of resources as in the related art, thereby achieving the purpose of saving resources.
  • the data received by the 4G eNodeB can usually be received from the S1 interface.
  • step S202 is implemented, and between the two specific operations involved, that is, after the 4G eNodeB receives data from the S1 interface, it can also be received by the 4G eNodeB from the S1 interface.
  • the serial number corresponding to the data identifier In the subsequent transmission process, the UE receives the data packet according to the sequence number on the data packet, which avoids the problem that the data packet may not be successfully parsed when the data packet is received out of order.
  • the 3G RNC and the 4G eNodeB are coupled, and the 4G eNodeB can transmit the offloaded 3G data to the 3G RNC, and the ij ij 3G RNC and the 4G eNodeB need to be coupled through the newly added designated interface.
  • the specified interface needs to match the IU interface of the 3G RNC, and also needs to match the X2 interface of the 4G eNodeB.
  • the original NodeB interface is basically fixed, and it is difficult to modify it. It can only adapt to the FP (frame protocol) interface mode of the IUB port.
  • the eNodeB does not have a similar IUB port, and there is no similar IUR port.
  • the interface layer is similar to the IU port of the 3G system, and includes: GTPU layer (User Plane part of GPRS) Tunneling Protocol, GPRS tunneling protocol user plane), UDP layer (User Datagram Protocol) and IP (Internet Protocol) layer. It is therefore connected to the RNC, preferably also through the IU port of the RNC. Therefore, the protocol hierarchy relationship of the specified interface provided by the embodiment of the present invention includes, as shown in Table 1, the GTPU layer, the UDP layer, and the IP layer. Table I
  • the protocol hierarchy of the specified interface is similar to the IU port of the 3G system, so that the 3G RNC and the 4G eNodeB can be better connected or coupled.
  • the purpose of the embodiments of the present invention is to provide an LTE and HSPA+ carrier aggregation scenario, using 4G as an anchor point, an interface mode of a 3G system and a 4G system, and the interface mode can be compared on the original structural basic mode as much as possible. A small modification is done.
  • the interface structure of the 3 ⁇ 4 ⁇ 4 4G carrier aggregation scenario involved in the data transmission method provided by the embodiment of the present invention is shown in FIG. 3, which is different from that in FIG. 1 in that NodeB and eNodeB no longer pass X2 and IUB.
  • the alike interface is connected, but is connected between the RNC and the eNodeB through the X2 and IUB alike interfaces.
  • the 4G eNodeB receives data from the S1 interface and performs offloading.
  • the data may be split at any rate, and the data may be split according to a specified ratio.
  • 2: 1, 3: 1, 4: 1, and so on can also be allocated according to the carrying capacity of the 3G or 4G system.
  • the splitting can be performed as follows:
  • the 4G eNodeB performs PDCP (Packet Data Converge Protocol) offloading data received from the S1 interface according to the first preset rule; or
  • PDCP Packet Data Converge Protocol
  • the 4G eNodeB performs RLC (Radio Link Control) offloading of data received from the S1 interface according to the second preset rule.
  • the first preset rule and the second preset rule may be multiple, and several preferred rules are listed.
  • the first preset rule may include any one of the following: The same TCP (Transmission Control Protocol, The data of the connection control protocol is divided into 3G data; the data of the same TCP connection is divided into 4G data; the data with the priority lower than the preset priority is divided into 3G data; the priority is higher than the pre- The priority data is divided into 4G data; If the 3G data buffer in the PDCP buffer is more than the first preset threshold, select a specified number of 3G data and convert it into 4G data; if the 4G data buffer in the PDCP buffer is more than the second The preset threshold is used to select a specified amount of 4G data and convert it into 3G data.
  • the second preset rule may include any one of the following:
  • the uplink state packet of the RLC layer is divided into 4G data; the uplink state packet is forbidden to be sent within the set time; the uplink normal data is offloaded to 4G data, and is transmitted through the 4G air interface;
  • the 3G RNC sends the traffic threshold of the air interface received from the 3G NodeB to the 4G eNodeB.
  • the 4G eNodeB ensures that the traffic of the downlink traffic to the 3G RNC is smaller than the traffic threshold of the air interface. In other words, the air interface can be sent by 3G.
  • the traffic threshold determines the data that is offloaded to the 3G portion.
  • the method further includes: the UE receives the 3G data and the 4G data, and sorts according to the sequence number identified on each data.
  • the purpose of the embodiments of the present invention is to provide an LTE and HSPA+ carrier aggregation scenario, which uses an 4G system as an anchor point, an interface mode of a 4G system and a 3G system, and the interface mode can be performed on the original structural basic mode as much as possible. Minor modifications are done.
  • the core part of the embodiment of the present invention is in the spectrum aggregation scenario, and it is proposed to use a new interface configuration structure between network elements, and further, how to perform efficient data under the new structure. transmission.
  • the embodiment of the present invention provides two implementation manners, one is to perform offload transmission after processing by the PDCP module (Embodiment 1), and the other is The shunt transmission is performed after the RLC processing (Embodiment 2).
  • Embodiment 1 In this transmission, the biggest problem involved is how to allocate data for 4G and 3G transmission.
  • PDCP is used for shunting.
  • Figure 4. Two systems are independent.
  • the sequence problem is marked by the serial number (SN) of the PDCP.
  • the two independent RLC instances of the UE process the data, they are sorted according to the serial number (SN) of the PDCP.
  • the following special processing is required: First, the PDCP module of the 4G eNodeB adds a sequence number to the received data. After the two RLC modules on the UE side are delivered to the PDCP module, the PDCP layer sorts according to the sequence number. Secondly, the PDCP module of the 4G eNodeB can be offloaded between 4G and 3G according to certain rules.
  • the data of the same TCP connection is placed in 4G or 3G, and the high priority data is sent to the 4G transmission, and the low priority data is placed.
  • the PDCP module in the 4G eNodeB can also query the data of the 4G and 3G PDCP buffers. If the data buffer of the 3G buffer is more, it can be sent through 4G, and vice versa.
  • the specific steps of implementing the data transmission method in this example are as shown in FIG. 5, including steps S502 to S516: Steps S502, 4G The eNodeB receives the data of the SI interface; Steps S504, 4G The GTPU module of the eNodeB de-frames and transmits the data.
  • the PDCP module of the 4G eNodeB is provided; Steps S506, 4G The PDCP module of the eNodeB tags the data and performs offloading, and sends the 4G data to the RLC module of the 4G eNodeB, and passes the 3G data to the group of another GTPU module of the 4G eNodeB.
  • the frame is sent to the 3G RNC; Step S508, 4G The RLC module of the eNodeB sends the data to the MAC module of the 4G eNodeB to
  • Step S510 3G RNC GTPU module de-frames the data and sends it to the PDCP module of the 3G RNC, and the PDCP module of the 3G RNC transmits the data to the RLC module of the 3G RNC;
  • Step S512 3G RNC RLC module passes 3G The HSFP FP framing of the RNC sends the data to the 3G NodeB.
  • Step S514, 3G NodeB's HSFP (Hsdpa Frame Protocol) is de-framed, and the data is sent to the UE through the MACEHS module of the 3 GNodeB. ;
  • Step S516 After the physical layer of the UE extracts the data, the data is processed by two independent RLC modules, and is summarized into one PDCP module for sorting.
  • Embodiment 2 uses the RLC to perform the offloading.
  • the structure of the system involved is similar to that in the first embodiment.
  • the following special processing is required: First, the PDCP of the 4G eNodeB The module needs to be serialized. After the RLC out-of-order delivery, the PDCP layer needs to be sorted. Secondly, for the uplink state packet of the RLC layer, feedback is required on the 4G system, which facilitates the 4G system to retransmit as soon as possible. In order to reduce the amount of feedback caused by the RLC out-of-order, it is necessary to limit the parameter configuration and reduce the amount of RLC feedback.
  • the 3G side needs to send the data traffic that can be sent to the RLC module of the 4G eNodeB by using the originally defined capability allocation frame.
  • the 4G eNodeB The RLC module is used to determine how much data is sent to the RLC module of the 3G RNC.
  • the device adopts two independent RLC instances, and the PDCP performs the offloading.
  • the relatively few network element modules are relatively used, and the second embodiment uses the RLC to perform the shunting method, and the flow is more simplified, but at the same time
  • the complexity of the RLC module has increased.
  • the PDCP module of the 4G eNodeB still numbers the data. Because the RLC module supports out-of-order delivery in this state, when the PDCP module is delivered to the UE side, data out of order may still occur.
  • the specific steps of implementing the data transmission method in this example are as shown in FIG. 7, including steps S702 to S714: Steps S702, 4G The eNodeB receives the data of the SI interface; Steps S704, 4G The GTPU module of the eNodeB de-frames and transmits the data.
  • Steps S706, 4G The PDCP module of the eNodeB numbers the data and sends the data to the RLC module of the 4G eNodeB.
  • Steps S708, 4G The RLC module of the eNodeB encodes the data, and passes the RLC data allocated to the 4G through the MAC of the 4G eNodeB (Medium Access The control, the media access control module sends the data to the UE, and the RLC data allocated to the 3G is transmitted through another GTPU module of the 4G eNodeB and transmitted by using the GTPU framing, and then forwarded through the X2 interface; Step S710, 3G RNC The GTPU module will perform special processing to deframe the data.
  • an embodiment of the present invention further provides a data transmission system, which is shown in FIG. 8 and includes a 3G RNC 801, a 3 G NodeB 802 4G eNodeB 803, and a UE 804:
  • 4G NodeB 803, set to receive data, and shunt it, send 3G data to 3G RNC 801, and send 4G data to UE;
  • 3 G NodeB 802, coupled to the 3G RNC 801, is set to send 3G data to the UE.
  • the 4G NodeB 803 may also be configured to receive data from the S1 interface.
  • the 4G NodeB 803 may also be configured to identify a sequence number corresponding to the data received from the S1 interface. In an embodiment, as shown in FIG.
  • the 4G NodeB 803 may include: a first offloading module 901, configured to perform PDCP offloading of data received from the S1 interface according to a first preset rule;
  • the second offloading module 902 is coupled to the first offloading module 901 and configured to perform RLC offloading of data received from the S1 interface according to a second preset rule.
  • the UE 804 may be configured to receive 3G data and 4G data, and sort according to the sequence numbers identified on the respective data.
  • the present invention achieves the following technical effects:
  • the 3G RNC is connected to the 4G eNodeB, and the data received by the 4G eNodeB is split, and the 3G data is respectively sent to 3G NodeB, sends 4G data to the 4G eNodeB. That is, in the embodiment of the present invention, the connection between the NodeB and the eNodeB mentioned in the related art is replaced by the connection between the 3G RNC and the 4G eNodeB.
  • the technical solution of the present invention considers the impact of the number of NodeBs on resource consumption, and uses a relatively small number of RNCs to connect the 4G eNodeB with the 4G eNodeB instead of the connection between the NodeB and the eNodeB mentioned in the related art, thereby saving A lot of resources have been optimized to optimize overall system performance.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种数据传输方法及系统,该方法包括:4G eNodeB从S1接口接收数据,并对其进行分流,将3G的数据发送至3G RNC,将4G的数据发送至UE;3G RNC将3G的数据发送至3G NodeB,由3G NodeB发送至UE。采用本发明能够解决相关技术中在NodeB数量很大的情况下,要在全部NodeB和eNodeB之间建立新的物理连接,需要耗费大量的资源的问题。

Description

数据传输方法及系统 技术领域 本发明涉及通信领域, 具体而言, 涉及一种数据传输方法及系统。 背景技术 在宽带码分多址 (WCDMA, Wideband Code Division Multiple Access) 网络中, 通用陆地无线接入网 (UTRAN, Universal Terrestrial Radio Access Network) 包括无线 网络控制器 (RNC, Radio Network Controller)和基站 (NodeB)两种基本网元, 俗称 3G网络。 在长期演进 (LTE, Long Time Evolution) 网络中, 演进型的通用陆地无线 接入网 (E-UTRAN)包括演进型基站(eNodeB, e B)一种基本网元, 俗称 4G网络。 随着 WCDMA 网络的发展, 高速下行接收链路分组接入 (HSDPA, High Speed
Downlink Packet Access ) 高速上行发送链路分组接入 (HSUPA, High Speed Uplink Packet Access )、 双载波高速下行分组接入 (DC-HSDPA, Dual Carrier-High speed downlink packet access) 双频段双载波高速下行分组接入 (DB-DC-HSDPA, Dual band-Dual carrier-high speed downlink packet access )、 双载波高速上行分组接入 (DC-HSUPA, Dual Carrier-high speed uplink packet access ) 四载波高速下行分组接入 (4C-HSDPA, Four carrier-high speed downlink packet access), 八载波高速下行分组接 入 (8C-HSDPA, Eight carrier-high speed downlink packet access) 这些 3G系统内的多 载波聚合技术陆续地被引入, 使得用户设备 (UE, User Equipment) 的上下行数据传 输率不断得到倍增提高。 对于上述不同维数的多载波技术, 以下行方向为例, 一个重 要的基本特征是: UE必须配备有多条 3G相关的接收数据处理链 (3G- Receiver Chain), 可以同时接收处理来自同一个基站同一个扇区 (sector), 若干个载波上下行发送来的 3G数据块。 演进到今天的 WCDMA系统又被称为: HSPA十系统 (High Speed Packet Access+) o 随着 LTE 网络的发展, 类似 WCDMA 多载波聚合概念的技术 CA(carrier aggregation)也逐渐产生, 以下行方向为例, 截至目前, LTE系统内最大可以对 5个下 行带宽为 20MHz的载波进行聚合操作。 其中一个重要的基本特征是: UE必须配备有 多条 4G相关的接收数据处理链(4G- Receiver Chain), 可以同时接收处理来自同一个 基站同一个扇区 (sector), 若干个载波上下行发送来的 4G数据块。 在运营商将部署的 HSPA+网络朝 LTE网络演进的长期过程中,必然有很长一段时 间, 两种系统同时存在并且协同工作, 共同承担着来自或者面向核心网一侧的数据传 输的任务。 比如: 某运营商有两个载波频点资源 Fl, F2, 将 F1分配给 HSPA十网络 运营使用, 而将将 F2分配给 LTE网络运营使用。对于其网路中, 只有 3G功能的终端 只能在 F1上工作, 只有 4G功能的终端只能在 F2上工作, 同时具备 3G, 4G功能的 终端, 在同一个时间, 只能在 F1或者 F2上工作, 不能同时在 F1和 F2上工作。 那么 为了充分利用这一类 UE的接收能力和提高下行峰值速率, 7G技术(3G+4G)又称跨 HSPA+LTE系统载波聚合技术诞生了。 目前 7G技术的雏形架构如图 1所示, 其中 LTE的基站 (e B) 作为终端无线资 源控制 (RRC, Radio Resource Connection)连接的主控制锚点和数据分流控制点。 在 图 1中, eNB利用 S1接口从 MME(Mobility Management Entity,移动管理单元)/S-GW ( Serving Gateway,业务网关)处接收数据,将 4G的数据通过 LTE系统发送至 LTE UE, 或者是 LTE+HSPA聚合( aggregation) UE。 在 3G的一侧, RNC利用 IU接口从服务 GPRS (General Packet Radio Service, 通用分组无线业务) 支持节点 (SGSN, Serving GPRS Support Node)接收数据, 并通过 IUB接口将其发送至 NodeB, 由 NodeB将 3G 的数据通过 HSPDA发送至 LTE+HSPA aggregation UE,或者是 HSPA UE。其中, NodeB 和 eNB间通过 X2和 IUB类似的 (X2 and IUB alike) 接口进行连接。 以图 1为例, UE在 eNB某工作载波上的物理下行控制信道 (PDCCH, Physical Downlink Control Channel)里面的调度命令(如:资源分配,混合自动重传请求(HARQ, Hybrid Automatic Repeat Request ) 操作相关信息) 控制下, 从物理下行共享信道 (PDSCH, Physical Downlink Shared Channel) 上接收一部分用户数据。 同时, UE在 NodeB 某工作载波上的高速共享控制信道 (HS-SCCH, High Speed Shared Control Channel ) 的调度命令控制下, 从高速下行共享信道信道 ( HS-DSCH, High Speed-Downlink Shared Channel) 上接收另一部分用户数据。 锚点 eNB负责把 eNB产 生的上层协议数据包进行分配, 按照一定的方式, 决定哪部分数据包从 LTE的空中接 口发送, 哪部分数据包从 HSPA十的空中接口发送。 被分配到 NodeB那一部分的协议 数据包, 需要通过 eNB和 NodeB之间一个新接口传输, 由 NodeB根据自己协议特点 和 HSPA+空中接口的方式进行发送。
7G技术和 HSPA+系统或者 LTE系统内的载波聚合技术并不发生冲突。也就是说: UE有可能在 HSPA+系统的 M个载波上做数据接收, 又可以同时在 LTE系统的 N个 载波上做数据接收, 工作基本原理同上, 可以向更高的维数进行扩展。 7G聚合技术能够充分且灵活地利用 3G, 4G系统资源不同的分布特点, 在过去跨 系统负荷均衡, 切换, 重定向 (redirect) 等已有手段的基础之上, 能够更深层次地实 现 3G, 4G系统的协同工作。 3G, 4G系统既可以分担不同类型的业务 (如语音业务 尽量经 HSPA+系统电路交换 (CS, Circuit Switch) 域, 高速数据业务尽量经 LTE系 统传输), 也可以同时承担相同的业务 (如: 数据业务被分配到两个系统同时传输)。 但是 7G聚合技术对应的结构有一些弊端需要解决,具体的,对于 NodeB和 eNodeB 之间的物理连接, 由于原有的商用局, NodeB数量一般很大, 每个 NodeB和 eNodeB 之间建立连接均需要耗费资源。 因此, 在 NodeB数量很大的情况下, 要完全建立新的 物理连接, 需要耗费大量的资源, 这几乎是不可能的事情。 针对相关技术中在 NodeB数量很大的情况下,要在全部 NodeB和 eNodeB之间建 立新的物理连接, 需要耗费大量的资源的问题, 目前尚未提出有效的解决方案。 发明内容 针对相关技术中在 NodeB数量很大的情况下,要在全部 NodeB和 eNodeB之间建 立新的物理连接, 需要耗费大量的资源的问题, 本发明实施例提供了一种数据传输方 法及系统, 以至少解决上述问题。 根据本发明的一个实施例, 提供了一种数据传输方法, 包括: 第四代演进型基站 (4G eNodeB)接收数据, 并对其进行分流, 将 3G的数据发送至第三代无线网络控制 器 (3G RNC), 将 4G的数据发送至用户设备 UE; 所述 3G RNC将所述 3G的数据发 送至第三代基站 (3G NodeB), 由所述 3G NodeB发送至 UE。 优选的, 所述 4G eNodeB接收数据, 包括: 所述 4G eNodeB从 S1接口接收数据。 优选的, 所述 4G eNodeB从 S1接口接收数据之后, 对其进行分流之前, 包括: 所述 4G eNodeB对从所述 S1接口接收的数据标识对应的序号。 优选的, 所述 4G eN0deB与所述 3G RNC间通过指定接口相耦合, 其中, 所述指 定接口与所述 4G eNodeB的 X2接口相匹配, 与所述 3G RNC的 IU接口相匹配。 优选的, 所述指定接口的协议层次关系依次包括: 通用分组无线业务隧道协议用 户面部分 (GTPU)、 用户数据报协议 (UDP) 以及因特网协议 (IP) 层。 优选的, 所述 4G eNodeB从 S1接口接收数据, 并对其进行分流, 包括: 所述 4G eNodeB 按照第一预设规则对从所述 S1 接口接收的数据进行分组数据汇聚协议 (PDCP)分流; 或者所述 4G eNodeB按照第二预设规则对从所述 S1接口接收的数据 进行无线链路控制 (RLC) 分流。 优选的, 所述第一预设规则包括下列任意之一: 同一个传输控制协议 (TCP) 连 接的数据均分流为 3G的数据; 同一个 TCP连接的数据均分流为 4G的数据; 将优先 级低于预设优先级的数据分流为 3G的数据; 将优先级高于预设优先级的数据分流为 4G的数据; 若 PDCP缓冲区中的 3G的数据缓存多于第一预设门限值, 选择指定数量 的 3G的数据, 将其转化为 4G的数据; 若所述 PDCP缓冲区中的 4G的数据缓存多于 第二预设门限值, 选择指定数量的 4G的数据, 将其转化为 3G的数据。 优选的,所述第二预设规则包括下列任意之一: RLC层的上行状态包被分流为 4G 的数据; 在设定时间内禁止发送上行状态包; 将上行普通数据分流为 4G的数据, 通 过 4G空口进行发送;所述 3G RNC将从所述 3G NodeB收到的空口可发送流量阈值发 送给所述 4G eNodeB, 由所述 4G eNodeB确保下行分流给所述 3G RNC的流量小于所 述空口可发送流量阈值。 优选的,所述 3G RNC将所述 3G的数据经由 3G NodeB发送至 UE之后,还包括: 所述 UE接收所述 3G的数据和所述 4G的数据, 根据各数据上标识的序号进行排序。 优选的, 所述方法应用于 3G和 4G载波聚合系统中。 根据本发明的一个实施例, 提供了一种数据传输系统, 包括第三代无线网络控制 器 (3G RNC)、 第三代基站 GG NodeB) 和第四代演进型基站 (4G eNodeB) 以及用 户设备(UE): 所述 4G eNodeB, 设置为接收数据, 并对其进行分流, 将 3G的数据发 送至第三代无线网络控制器(3G RNC), 将 4G的数据发送至所述 UE; 所述 3G RNC, 设置为将所述 3G的数据发送至所述 3G NodeB;所述 3G NodeB,设置为将所述 3G的 数据发送至 UE。 优选的, 所述 4G eNodeB还设置为从 S1接口接收数据。 优选的,所述 4G eNodeB还设置为对从所述 S1接口接收的数据标识对应的序号。 优选的, 所述 4G eNodeB包括: 第一分流模块, 设置为按照第一预设规则对从所 述 S1接口接收的数据进行分组数据汇聚协议 (PDCP) 分流; 第二分流模块, 设置为 按照第二预设规则对从所述 S1接口接收的数据进行无线链路控制 (RLC) 分流。 优选的, 所述 UE设置为接收所述 3G的数据和所述 4G的数据, 根据各数据上标 识的序号进行排序。 在本发明实施例中,利用 3G RNC与 4G eNodeB进行连接,将 4G eNodeB接收的 数据分流后, 分别将 3G的数据发送至 3G NodeB, 将 4G的数据发送至 4G eNodeB。 即, 在本发明实施例中, 利用 3G RNC与 4G eNodeB进行连接替代了相关技术中提到 的 NodeB与 eNodeB间的连接,由于 RNC在系统中的数量要远远小于 NodeB的数量, 因此, 即使在 NodeB数量很大的情况下, 也不会如相关技术一般耗费大量资源, 从而 达到节省资源的目的。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据相关技术的 eNB为主控制锚点架构示意图; 图 2是根据本发明实施例的数据传输方法的处理流程图; 图 3是根据本发明实施例的 3<¾ 4G载波聚合场景的接口结构示意图; 图 4是根据本发明实施例的实施例一的实施环境的结构示意图; 图 5是根据本发明实施例的实施例一的数据传输方法的具体流程图; 图 6是根据本发明实施例的实施例二的实施环境的结构示意图; 图 7是根据本发明实施例的实施例二的数据传输方法的具体流程图; 图 8是根据本发明实施例的数据传输系统的结构示意图; 以及 图 9是根据本发明实施例的 3G RNC的结构示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 相关技术中提到, 7G聚合技术对应的结构有一些弊端需要解决, 具体的, 对于 NodeB和 eNodeB之间的物理连接, 由于原有的商用局, NodeB数量一般很大, 每个 NodeB和 eNodeB之间建立连接均需要耗费资源。因此,在 NodeB数量很大的情况下, 要全部建立新的物理连接, 需要耗费大量的资源, 这几乎是不可能的事情。 为解决上述技术问题, 本发明实施例提供了一种数据传输方法, 其处理流程如图 2所示, 包括步骤 S202至步骤 S204: 步骤 S202、 4G eNodeB接收数据,并对其进行分流,将 3G的数据发送至 3G RNC, 将 4G的数据发送至 UE; 步骤 S204、 3G RNC将 3G的数据发送至 3G NodeB, 由 3G NodeB发送至 UE。 在本发明实施例中,利用 3G RNC与 4G eNodeB进行连接,将 4G eNodeB接收的 数据分流后, 分别将 3G的数据发送至 3G NodeB, 将 4G的数据发送至 4G eNodeB。 BP , 在本发明实施例中, 利用 3G RNC与 4G eNodeB进行连接替代了相关技术中提到 的 NodeB与 eNodeB间的连接,由于 RNC在系统中的数量要远远小于 NodeB的数量, 因此, 即使在 NodeB数量很大的情况下, 也不会如相关技术一般耗费大量资源, 从而 达到节省资源的目的。 其中, 4G eNodeB接收的数据通常可以从 S1接口进行接收。 如图 2所示流程, 步骤 S202在实施时, 其涉及的两个具体的操作之间, 即 4G eNodeB从 S1接口接收数据之后, 对其进行分流之前, 还可以由 4G eNodeB从 S1接 口接收的数据标识对应的序号。在后续传输过程中, UE接收数据包可以根据数据包上 的序号对其进行排序, 避免了数据包无序接收时可能导致无法顺利解析的问题。 在本发明实施例中, 3G RNC与 4G eNodeB之间进行耦合, 4G eNodeB能够将分 流的 3G的数据传送至 3G RNC, 贝 ij 3G RNC与 4G eNodeB之间需要通过新增的指定 接口相耦合, 并且, 指定接口需要与 3G RNC的 IU接口相匹配, 也需要与 4G eNodeB 的 X2接口相匹配。 而原有的 NodeB的接口基本固定, 很难有修改的可能, 只能适应 IUB口的 FP (frame protocol, 帧协议)接口方式, 而 eNodeB没有类似的 IUB口, 也 没有和类似的 IUR口, 如果新增的话, 需要新增的话接口改动很大。 进一步, eNodeB 虽然有 X2接口, 但是 eNodeB的 X2接口和原先 IUR口完全不同, 不支持宏分集的模 式,其接口层次类似于 3G系统的 IU口,都依次包括: GTPU层(User Plane part of GPRS Tunneling Protocol, GPRS隧道协议用户面部分), UDP层 (User Datagram Protocol, 用户数据报协议) 以及 IP (Internet Protocol, 因特网协议)层。 因此将其和 RNC进行 连接, 最好也通过 RNC的 IU口。 因此,本发明实施例提供的指定接口的协议层次关系如表一所示依次包括: GTPU 层、 UDP层以及 IP层。 表一
Figure imgf000009_0001
指定接口的协议层次关系类似于 3G系统的 IU口,则 3G RNC与 4G eNodeB之间 能够更好的连接或耦合。 本发明实施例的目的在于: 提供一种 LTE和 HSPA+载波聚合场景, 以 4G作为锚 点, 3G系统和 4G系统的接口模式, 这种接口模式可以在尽可能的原有结构基础模式 上进行较小的修改来完成。采用本发明实施例提供的数据传输方法涉及的 3<¾ 4G载波 聚合场景的接口结构如图 3所示, 其与图 1相比, 不同之处在于, NodeB和 eNodeB 间不再通过 X2 and IUB alike接口进行连接,而是由 RNC和 eNodeB间通过 X2 and IUB alike接口进行连接。 在一个优选的实施例中, 4G eNodeB从 S1接口接收数据, 并对其进行分流, 分流 的方式及规则有多种, 例如, 可以对数据进行任意比例分流, 可以对其按指定比例进 行分流, 例如 2: 1, 3: 1, 4: 1, 等等, 还可以根据 3G或 4G系统的承载能力进行 分配, 优选的, 可以按如下分配方式进行分流:
4G eNodeB按照第一预设规则对从 S1接口接收的数据进行 PDCP (Packet Data Converge Protocol, 分组数据汇聚协议) 分流; 或者
4G eNodeB 按照第二预设规则对从 S1 接口接收的数据进行 RLC (Radio Link Control, 无线链路控制) 分流。 其中, 第一预设规则及第二预设规则均可以有多种, 现列举出几个优选的规则, 例如, 第一预设规则可以包括下列任意之一: 同一个 TCP (Transmission Control Protocol, 传输控制协议)连接的数据均分流为 3G的数据; 同一个 TCP连接的数据均分流为 4G的数据; 将优先级低于预设优先级的数据分流为 3G的数据; 将优先级高于预设优先级的数据分流为 4G的数据; 若 PDCP缓冲区中的 3G的数据缓存多于第一预设门限值,选择指定数量的 3G的 数据, 将其转化为 4G的数据; 若 PDCP缓冲区中的 4G的数据缓存多于第二预设门限值,选择指定数量的 4G的 数据, 将其转化为 3G的数据。 第二预设规则可以包括下列任意之一:
RLC层的上行状态包被分流为 4G的数据; 在设定时间内禁止发送上行状态包; 将上行普通数据分流为 4G的数据, 通过 4G空口进行发送;
3G RNC将从 3G NodeB收到的空口可发送流量阈值发送给 4G eNodeB, 由 4G eNodeB确保下行分流给 3G RNC的流量小于所述空口可发送流量阈值,换个说法,即, 按 3G的空口可发送流量阈值确定分流为 3G部分的数据。 实施时, 3G RNC将 3G的数据经由 3G NODEB发送至 UE之后, 还包括: UE接 收 3G的数据和 4G的数据, 根据各数据上标识的序号进行排序。 本发明实施例的目的在于: 提出一种 LTE和 HSPA+载波聚合场景, 以 4G系统为 锚点, 4G系统和 3G系统的接口模式, 这种接口模式可以在尽可能的原有结构基础模 式上进行较小的修改来完成。 综上可知, 本发明实施例的核心部分在于频谱聚合场景下, 提出需要用一种新的 网元间的接口配置结构, 更进一步的, 给出如何在这种新的结构下进行高效的数据传 输。 为将本发明实施例提供的数据传输方法阐述地更清楚更明白, 本发明实施例提供 了两种实现方式, 一种是在 PDCP 模块处理后进行分流传输 (实施例一), 一种是在 RLC处理之后进行分流传输 (实施例二)。 具体的协议层处理, 见后面的实施例。 实施例一 在这种传输下, 涉及的最大的问题就是如何分配 4G以及 3G传输的数据, 实施例 一采用 PDCP进行分流的方法, 涉及的系统的结构示意图请参见图 4, 两个系统独立 的 RLC实例进行传输以及反馈, 以达到最高的数据使用效率, 另外为了解决上层数据 的顺序问题, 由 PDCP打上序号 (SN), UE的两个独立的 RLC实例处理完数据之后, 按照 PDCP的序号 (SN) 进行排序。 本例中, 对于 PDCP分流的方式, 需要进行如下特殊处理: 首先, 4G eNodeB的 PDCP模块对接收的数据打上序号, 用于 UE侧两个 RLC模 块投递给 PDCP模块之后, PDCP层根据序号进行排序; 其次, 4G eNodeB的 PDCP模块可以根据一定的规则在 4G和 3G之间进行分流, 比如同一个 TCP连接的数据都放到 4G或者 3G, 高优先级数据放到 4G发送, 低优先 级数据放到 3G发送。 另夕卜, 4G eNodeB中的 PDCP模块, 还可以查询 4G以及 3G的 PDCP缓冲区的数 据, 如果 3G的缓冲区的数据缓存较多, 则可以通过 4G进行发送, 反之亦然。 本例中实施数据传输方法的具体步骤如图 5所示, 包括步骤 S502至步骤 S516: 步骤 S502、 4G eNodeB接收到 SI接口的数据; 步骤 S504、 4G eNodeB 的 GTPU模块将数据进行解帧,传递给 4G eNodeB的 PDCP 模块; 步骤 S506、 4G eNodeB的 PDCP模块将数据打上序号, 并且进行分流, 将 4G的 数据发送给 4G eNodeB的 RLC模块, 将 3G的数据通过 4G eNodeB的另一个 GTPU 模块的组帧发往 3G RNC; 步骤 S508、 4G eNodeB的 RLC模块通过 4G eNodeB的 MAC模块将数据发送给
UE; 步骤 S510、 3G RNC的 GTPU模块将数据进行解帧, 并发送给 3G RNC的 PDCP 模块, 3G RNC的 PDCP模块将数据传给 3G RNC的 RLC模块; 步骤 S512、 3G RNC的 RLC模块通过 3G RNC的 HSFP FP组帧, 将数据发往 3G NodeB; 步骤 S514、 3G NodeB 的 HSFP (Hsdpa Frame Protocol, 高速链路分组接入帧协 议) 解帧后, 通过 3 GNodeB的 MACEHS模块将数据发往 UE; 步骤 S516、 UE的物理层解出数据后, 通过 2个独立的 RLC模块进行处理, 汇总 到一个 PDCP模块进行排序。
实施例二 实施例二采用 RLC 进行分流的方法, 涉及的系统的结构示意图与实施例一相类 似, 具体请参见图 6, 对于 RLC分流的方式, 需要进行如下特殊处理: 首先, 4G eNodeB的 PDCP模块需要打上序号, 用于 RLC乱序投递之后, PDCP 层需要进行排序; 其次, 对于 RLC层的上行状态包, 都需要都在 4G的系统上进行反馈, 便于 4G 系统尽快地进行重发。 并且为了减少 RLC 乱序带来的大量反馈, 需要在参数配置方面进行限制, 减少 RLC反馈的量, 需要配置上行状态包禁止定时器, 减少反馈发送的数量; 由于上行的数据量一般不大, 因此建议上行的普通数据都通过 4G的空口进行发 送, 减少转发的时延; 3G 侧需要将能发送的数据流量用原来定义过的能力分配帧的方式发送给 4G eNodeB的 RLC模块, 由 4G eNodeB的 RLC模块用于决定向 3G RNC的 RLC模块发 送多少数据。 实施例一采用了两个独立的 RLC实例的装置, 由 PDCP来进行分流, 相对来说经 过的网元模块比较多, 而实施例二采用 RLC来进行分流的方法, 流程更为简化, 但是 同时对于 RLC模块的复杂度有所增加。 同时 4G eNodeB的 PDCP模块仍然对数据进 行编号, 因为 RLC模块在这种状态下, 支持乱序投递, 投递到 UE侧的 PDCP模块的 时候, 仍然有可能发生数据乱序的情况。 本例中实施数据传输方法的具体步骤如图 7所示, 包括步骤 S702至步骤 S714: 步骤 S702、 4G eNodeB接收到 SI接口的数据; 步骤 S704、 4G eNodeB的 GTPU模块将数据进行解帧,传递给 4GeNodeB的 PDCP 模块; 步骤 S706、 4G eNodeB的 PDCP模块将数据进行编号,发送给 4G eNodeB的 RLC 模块; 步骤 S708、 4G eNodeB的 RLC模块将数据编上序号, 将分配给 4G的 RLC数据 通过 4G eNodeB的 MAC (Medium Access Control, 媒体接入控制)模块将数据发送给 UE, 将分配给 3G的 RLC数据通过 4G eNodeB的另一个 GTPU模块并利用 GTPU组 帧进行传输之后, 通过 X2接口进行转发; 步骤 S710、 3G RNC的 GTPU模块将进行特殊处理, 将数据进行解帧, 由于此时 已经是 RLC数据, 因此解帧后可以直接发送给 3G RNC的 HSFP模块进行组帧, 然后 将数据发往 3G NodeB; 步骤 S712、 3G NodeB的 HSFP解帧后,通过 3G NodeB的 MAC-EHS模块将数据 发往 UE; 步骤 S714、 UE的物理层解出数据后, 只需要单独的 RLC模块, 按照序号进行重 组乱序投递, 汇总到一个 PDCP模块再次进行排序。 基于同一发明构思, 本发明实施例还提供了一种数据传输系统, 其结构示意图如 图 8所示, 包括 3G RNC 801、 3 G NodeB 802 4G eNodeB 803以及 UE 804:
4G NodeB 803 , 设置为接收数据, 并对其进行分流, 将 3G的数据发送至 3G RNC 801, 将 4G的数据发送至 UE;
3G RNC 801,与 4G NodeB 803相耦合,设置为将 3G的数据发送至 3G NodeB 802;
3 G NodeB 802, 与 3G RNC 801相耦合, 设置为将 3G的数据发送至 UE。 在一个实施例中, 优选的, 4G NodeB 803还可以设置为从 S1接口接收数据。 在一个实施例中, 优选的, 4G NodeB 803还可以设置为对从 S1接口接收的数据 标识对应的序号。 在一个实施例中, 优选的, 如图 9所示, 4G NodeB 803可以包括: 第一分流模块 901, 设置为按照第一预设规则对从 S1接口接收的数据进行 PDCP 分流; 第二分流模块 902, 与第一分流模块 901相耦合, 设置为按照第二预设规则对从 S1接口接收的数据进行 RLC分流。 在一个实施例中, 优选的, UE 804可以设置为接收 3G的数据和 4G的数据, 根 据各数据上标识的序号进行排序。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 在本发明实施例中,利用 3G RNC与 4G eNodeB进行连接,将 4G eNodeB接收的 数据分流后, 分别将 3G的数据发送至 3G NodeB, 将 4G的数据发送至 4G eNodeB。 即, 在本发明实施例中, 利用 3G RNC与 4G eNodeB进行连接替代了相关技术中提到 的 NodeB与 eNodeB间的连接,由于 RNC在系统中的数量要远远小于 NodeB的数量, 因此, 即使在 NodeB数量很大的情况下, 也不会如相关技术一般耗费大量资源, 从而 达到节省资源的目的。 工业实用性 本发明技术方案考虑了 NodeB 的数量对资源耗费的影响, 采用数量相对较小的 RNC,利用 3G RNC与 4G eNodeB进行连接替代了相关技术中提到的 NodeB与 eNodeB 间的连接, 节省了大量资源, 优化了整个系统性能。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种数据传输方法, 包括:
第四代演进型基站 4G eN0deB接收数据, 并对其进行分流, 将 3G的数据 发送至第三代无线网络控制器 3G RNC, 将 4G的数据发送至用户设备 UE; 所述 3G RNC将所述 3G的数据发送至第三代基站 3G NodeB, 由所述 3G NodeB发送至 UE。
2. 根据权利要求 1所述的方法, 其中, 所述 4G eNodeB接收数据, 包括: 所述 4G eNodeB从 S1接口接收数据。
3. 根据权利要求 2所述的方法, 其中, 所述 4G eNodeB从 S1接口接收数据之后, 对其进行分流之前, 包括: 所述 4G eNodeB对从所述 S1接口接收的数据标识 对应的序号。
4. 根据权利要求 3所述的方法, 其中, 所述 4G eNodeB与所述 3G RNC间通过指 定接口相耦合, 其中, 所述指定接口与所述 4G eN0deB的 X2接口相匹配, 与 所述 3G RNC的接口单元 IU接口相匹配。
5. 根据权利要求 4所述的方法, 其中, 所述指定接口的协议层次关系依次包括: 通用分组无线业务隧道协议用户面部分 GTPU、用户数据报协议 UDP以及因特 网协议 IP层。
6. 根据权利要求 2所述的方法, 其中, 所述 4G eNodeB从 S1接口接收数据, 并 对其进行分流, 包括:
所述 4G eNodeB按照第一预设规则对从所述 S1接口接收的数据进行分组 数据汇聚协议 PDCP分流; 或者
所述 4G eNodeB按照第二预设规则对从所述 S1接口接收的数据进行无线 链路控制 RLC分流。
7. 根据权利要求 6所述的方法, 其中, 所述第一预设规则包括下列任意之一: 同一个传输控制协议 TCP连接的数据均分流为 3G的数据;
同一个 TCP连接的数据均分流为 4G的数据;
将优先级低于预设优先级的数据分流为 3G的数据; 将优先级高于预设优先级的数据分流为 4G的数据;
若 PDCP缓冲区中的 3G的数据缓存多于第一预设门限值, 选择指定数量 的 3G的数据, 将其转化为 4G的数据;
若所述 PDCP缓冲区中的 4G的数据缓存多于第二预设门限值, 选择指定 数量的 4G的数据, 将其转化为 3G的数据。
8. 根据权利要求 6所述的方法, 其中, 所述第二预设规则包括下列任意之一:
RLC层的上行状态包被分流为 4G的数据;
在设定时间内禁止发送上行状态包;
将上行普通数据分流为 4G的数据, 通过 4G空口进行发送; 所述 3G RNC将从所述 3G NodeB收到的空口可发送流量阈值发送给所述 4G eNodeB, 由所述 4G eNodeB确保下行分流给所述 3G RNC的流量小于所述 空口可发送流量阈值。
9. 根据权利要求 3-8任一项所述的方法, 其中, 所述 3G RNC将所述 3G的数据 经由 3G NodeB发送至 UE之后, 还包括: 所述 UE接收所述 3G的数据和所述
4G的数据, 根据各数据上标识的序号进行排序。
10. 根据权利要求 1-8任一项所述的方法, 其中, 所述方法应用于 3G和 4G载波聚 合系统中。
11. 一种数据传输系统, 包括第三代无线网络控制器 3G RNC、 第三代基站 3G NodeB和第四代演进型基站 4G eNodeB以及用户设备 UE:
所述 4G eNodeB, 设置为接收数据, 并对其进行分流, 将 3G的数据发送 至第三代无线网络控制器 3G RNC, 将 4G的数据发送至所述 UE;
所述 3G RNC, 设置为将所述 3G的数据发送至所述 3G NodeB; 所述 3G NodeB, 设置为将所述 3G的数据发送至 UE。
12. 根据权利要求 11所述的系统, 其中, 所述 4G eNodeB还设置为从 S1接口接收 数据。
13. 根据权利要求 12所述的系统, 其中, 所述 4G eNodeB还设置为对从所述 S1接 口接收的数据标识对应的序号。
14. 根据权利要求 12所述的系统, 其中, 所述 4G eNodeB包括: 第一分流模块, 设置为按照第一预设规则对从所述 S1 接口接收的数据进 行分组数据汇聚协议 PDCP分流;
第二分流模块, 设置为按照第二预设规则对从所述 S1 接口接收的数据进 行无线链路控制 RLC分流。
15. 根据权利要求 13所述的系统, 其中, 所述 UE设置为接收所述 3G的数据和所 述 4G的数据, 根据各数据上标识的序号进行排序。
PCT/CN2012/074760 2011-09-23 2012-04-26 数据传输方法及系统 WO2012155782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110285266.1A CN103024817B (zh) 2011-09-23 数据传输方法及系统
CN201110285266.1 2011-09-23

Publications (1)

Publication Number Publication Date
WO2012155782A1 true WO2012155782A1 (zh) 2012-11-22

Family

ID=47176302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074760 WO2012155782A1 (zh) 2011-09-23 2012-04-26 数据传输方法及系统

Country Status (1)

Country Link
WO (1) WO2012155782A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104080121A (zh) * 2013-03-26 2014-10-01 中兴通讯股份有限公司 一种传输数据的方法及系统
WO2017143853A1 (zh) * 2016-02-25 2017-08-31 努比亚技术有限公司 多链路智能分流方法及移动终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101287285A (zh) * 2007-04-10 2008-10-15 华为技术有限公司 电路域呼叫建立、触发方法、系统及设备
CN101296479A (zh) * 2007-04-24 2008-10-29 华为技术有限公司 下行数据处理方法及通信系统
CN101374111A (zh) * 2008-10-22 2009-02-25 华为技术有限公司 Ps业务发送的方法、设备和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101287285A (zh) * 2007-04-10 2008-10-15 华为技术有限公司 电路域呼叫建立、触发方法、系统及设备
CN101296479A (zh) * 2007-04-24 2008-10-29 华为技术有限公司 下行数据处理方法及通信系统
CN101374111A (zh) * 2008-10-22 2009-02-25 华为技术有限公司 Ps业务发送的方法、设备和系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104080121A (zh) * 2013-03-26 2014-10-01 中兴通讯股份有限公司 一种传输数据的方法及系统
WO2014153937A1 (zh) * 2013-03-26 2014-10-02 中兴通讯股份有限公司 一种传输数据的方法及系统
US9736751B2 (en) 2013-03-26 2017-08-15 Zte Corporation Data transmission method and system
CN104080121B (zh) * 2013-03-26 2019-04-26 中兴通讯股份有限公司 一种传输数据的方法及系统
WO2017143853A1 (zh) * 2016-02-25 2017-08-31 努比亚技术有限公司 多链路智能分流方法及移动终端

Also Published As

Publication number Publication date
CN103024817A (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
RU2709480C1 (ru) Эффективный механизм отбрасывания при развертывании небольших сот
JP6635350B2 (ja) デュアルコネクティビティのための効率的アップリンクスケジューリングメカニズム
US10721754B2 (en) Data transmission method and apparatus
JP2022009836A (ja) 集積回路
JP7043506B2 (ja) ロングタームエボリューション通信システムのためのマルチテクノロジアグリゲーションアーキテクチャ
WO2013026290A1 (zh) 一种rlc分流传输方法及系统
CN108337633B (zh) 数据分流配置方法、基站系统和用户终端
TWI657708B (zh) 用於新型無線電系統的分段與級聯方法及使用者設備
WO2019141239A1 (zh) 通信方法、装置和系统
WO2019149248A1 (zh) 通信的方法和装置
JP2019514249A (ja) データユニットを送信する方法及び装置
JP2017516395A (ja) 改善されたマルチ・キャリア通信のための方法および装置
WO2013155846A1 (zh) 数据分流配置方法、基站系统和用户终端
WO2016161594A1 (zh) 一种数据传输的方法及装置
WO2012155783A1 (zh) 数据传输方法及系统
KR20150099471A (ko) 무선 통신 시스템에서 데이터 처리 시스템 및 방법
WO2012155782A1 (zh) 数据传输方法及系统
WO2014032513A1 (zh) 数据调度处理方法及装置
RU2782866C2 (ru) Архитектура с агрегированием технологий для систем связи стандарта долгосрочного развития
WO2014207930A1 (ja) 基地局装置、移動局装置、サービス品質制御装置及び通信方法
WO2014032512A1 (zh) Hsdpa多流的基站间分流的数据均衡方法及系统
EP3024296A1 (en) Method and device for transmitting data
WO2016127297A1 (zh) 一种rlc数据包重传方法及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12784990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12784990

Country of ref document: EP

Kind code of ref document: A1