WO2017143853A1 - 多链路智能分流方法及移动终端 - Google Patents

多链路智能分流方法及移动终端 Download PDF

Info

Publication number
WO2017143853A1
WO2017143853A1 PCT/CN2016/112407 CN2016112407W WO2017143853A1 WO 2017143853 A1 WO2017143853 A1 WO 2017143853A1 CN 2016112407 W CN2016112407 W CN 2016112407W WO 2017143853 A1 WO2017143853 A1 WO 2017143853A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
size
wifi network
network
lte network
Prior art date
Application number
PCT/CN2016/112407
Other languages
English (en)
French (fr)
Inventor
张建
Original Assignee
努比亚技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 努比亚技术有限公司 filed Critical 努比亚技术有限公司
Publication of WO2017143853A1 publication Critical patent/WO2017143853A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/14Multichannel or multilink protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/24Negotiation of communication capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]

Definitions

  • This document relates to but not limited to the field of communication technologies, and in particular to a multi-link intelligent offloading method and a mobile terminal.
  • the ingress network for accessing the Internet as a mobile terminal is mainly a Long Term Evolution (LTE) network and a WiFi (WIreless-Fidelity) network.
  • LTE Long Term Evolution
  • WiFi WIreless-Fidelity
  • This paper proposes a multi-link intelligent offloading method and mobile terminal, which can realize optimal traffic distribution.
  • a mobile terminal provided by the embodiment of the present invention the mobile terminal simultaneously accesses a long-term evolution LTE network and a WiFi network, where the mobile terminal includes:
  • a request sending module configured to send a query request to the server after the first TCP (Transmission Control Protocol) flow is established, where the query request is used to acquire the first data to be transmitted by the first TCP flow size;
  • TCP Transmission Control Protocol
  • a dividing module configured to: after receiving the size of the first data fed back by the server, according to the monitored first transmission rate of the LTE network and the second transmission speed of the WiFi network And dividing the size of the first data to obtain a size of the second data transmitted by using the LTE network and a size of the third data transmitted by using the WiFi network, respectively;
  • a flow sending module configured to send, by using the LTE network, a second data request message that includes a size of the second data to the server, and send, by using the WiFi network, the third data by using the third data a third data request message of a size to obtain the first data by means of offloading.
  • the dividing module includes:
  • the first determining module is configured to determine a distribution ratio of the size of the first data according to the first transmission rate of the LTE network, the second transmission rate of the WiFi network, and a preset delay;
  • the second determining module is configured to divide the size of the first data according to the allocation ratio, determine a size of the second data transmitted through the LTE network, and a size of the third data transmitted by using the WiFi network.
  • the first determining module is configured to:
  • R represents the percentage of the third data transmitted through the WiFi network to the first data
  • C represents the size of the first data
  • V W represents the second transmission rate of the WiFi network
  • V L represents the LTE network.
  • the first transmission rate, t represents the preset delay, wherein the allocation ratio includes R and 1-R, and 1-R represents the percentage of the second data transmitted through the LTE network as a percentage of the first data .
  • the stream sending module includes:
  • a first sending module configured to generate, according to the first TCP stream, a second data request message that includes a size of the second data, by using the LTE, if the first TCP stream is established based on an LTE network Sending, by the network, the second data request message to the server, and based on the
  • the WiFi network establishes a second TCP stream, generates a third data request message including the size of the third data, and sends the third data request message to the server by using the WiFi network.
  • a second sending module configured to: if the first TCP stream is established based on a WiFi network, establish a third TCP stream based on the LTE network, and generate a size including the second data based on the third TCP stream Sending, by the second data request message, the second data request message to the server by using the LTE network, and generating a third data request that includes a size of the third data based on the first TCP flow And sending, by the WiFi network, the third data request message to the server by using the WiFi network.
  • the mobile terminal further includes:
  • the monitoring module is configured to monitor the first data traffic of the LTE network in a preset time period and monitor the second data traffic of the WiFi network in the preset time period;
  • a rate determining module configured to determine the first transmission rate by using the first data traffic and the preset time period, and determining the second transmission rate by using the second data traffic and the preset time period .
  • the request sending module is configured to: after determining that the first TCP flow is established, send a query request directly to the server, or, after determining that the first TCP flow is established, determine to send the query by means of monitoring. The timing of the request.
  • the query request includes a resource address corresponding to the first TCP stream.
  • the preset delay corresponds to a type of current service.
  • the second data request message includes a size of the second data and a resource address, where the size of the second data refers to a range of the second data in the data corresponding to the resource address; and the third data request message The size of the third data and the resource address are included, and the size of the third data refers to the range of the third data in the data corresponding to the resource address.
  • the embodiment of the present invention further provides a multi-link intelligent offloading method, where the mobile terminal simultaneously accesses the long-term evolution LTE network and the WiFi network, and the method includes:
  • the mobile terminal After the first TCP stream is established, the mobile terminal sends a query request to the server, where the query request is used to obtain a size of the first data to be transmitted by the first TCP stream;
  • the first data is divided according to the first transmission rate of the LTE network and the second transmission rate of the WiFi network, and respectively obtained by using the LTE network.
  • the size of the second data and the size of the third data transmitted through the WIFI network including:
  • the determining, according to the first transmission rate of the LTE network, the second transmission rate of the WiFi network, and a preset delay, determining a distribution ratio of the size of the first data including:
  • R represents the percentage of the third data transmitted through the WiFi network to the first data
  • C represents the size of the first data
  • V W represents the second transmission rate of the WiFi network
  • V L represents the LTE network.
  • the first transmission rate, t represents the preset delay, wherein the allocation ratio includes R and 1-R, and 1-R represents the percentage of the second data transmitted through the LTE network as a percentage of the first data .
  • the third data request message of the size including:
  • the first TCP stream is established based on a WiFi network
  • establishing a third TCP flow based on the LTE network
  • generating, according to the third TCP flow the second data request report that includes a size of the second data
  • the network sends the third data request message to the server.
  • the method further includes:
  • the mobile terminal After determining that the first TCP flow is established, the mobile terminal directly sends a query request to the server, or determines the timing of sending the query request by means of monitoring after determining that the first TCP flow is established.
  • the query request includes a resource address corresponding to the first TCP stream.
  • the preset delay corresponds to a current type of service.
  • the second data request message includes a size of the second data and a resource address, where the size of the second data refers to a range of the second data in the data corresponding to the resource address; and the third data request message The size of the third data and the resource address, and the size of the third data refers to the third data The range in the data corresponding to the resource address.
  • the method further includes:
  • the mobile terminal When there is no data transmission, the mobile terminal periodically downloads data through the WiFi network to detect the transmission capability of the WiFi network.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented by the processor to implement the multi-link intelligent offloading method.
  • the mobile terminal provided by the embodiment of the present invention can simultaneously access the LTE network and the WiFi network, and the mobile terminal includes a request sending module, and is configured to send a query request to the server after the first TCP flow is established, and the query request is used to obtain the first a size of the first data to be transmitted by the TCP stream; the dividing module is configured to: after receiving the size of the first data fed back by the server, according to the first transmission rate of the monitored LTE network and the second transmission rate of the WiFi network The size of the first data is divided to obtain the size of the second data transmitted through the LTE network and the size of the third data transmitted through the WiFi network, and the stream sending module is configured to send the size of the second data to the server through the LTE network.
  • the request sending module is configured to send a query request to the server after the first TCP flow is established, and the query request is used to obtain the first a size of the first data to be transmitted by the TCP stream
  • the dividing module is configured to: after receiving the size of the first data fed back
  • the mobile terminal accesses both the LTE network and the WiFi network, the first transmission rate of the monitored LTE network and the second transmission rate of the WiFi network are used for offload processing, so that the LTE network and the WiFi network can be utilized to a greater extent. The characteristics of making full use of network bandwidth.
  • FIG. 1 is a schematic structural diagram of hardware of an optional mobile terminal implementing an embodiment of the present invention
  • FIG. 2 is a schematic diagram of functional modules of a mobile terminal according to a first embodiment of the present invention
  • FIG. 3 is a schematic diagram of a multi-link intelligent offloading principle according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a refinement function module of the partitioning module 302 in the first embodiment shown in FIG. 2 according to the present invention
  • FIG. 5 is a schematic diagram of a refinement function module of the stream sending module 303 in the first embodiment shown in FIG. 2;
  • FIG. 6 is a schematic diagram of functional modules of a mobile terminal according to a second embodiment of the present invention.
  • FIG. 7 is a schematic flowchart diagram of a multi-link intelligent offloading method according to a third embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a refinement step of step 802 in the third embodiment of the present invention.
  • FIG. 9 is a schematic flowchart diagram of a multi-link intelligent offloading method according to a fourth embodiment of the present invention.
  • the mobile terminal can be implemented in a variety of forms.
  • the terminal described in the embodiments of the present invention may include, for example, a mobile phone, a smart phone, a notebook computer, a digital broadcast receiver, a PDA (Personal Digital Assistant), a PAD (Tablet), a PMP (Portable Multimedia Player), a navigation device Mobile terminals of the like and fixed terminals such as digital TVs, desktop computers, and the like.
  • PDA Personal Digital Assistant
  • PAD Tablett
  • PMP Portable Multimedia Player
  • a navigation device Mobile terminals of the like and fixed terminals such as digital TVs, desktop computers, and the like.
  • the terminal is a mobile terminal.
  • those skilled in the art will appreciate that configurations in accordance with embodiments of the present invention can be applied to fixed type terminals in addition to components that are specifically for mobile purposes.
  • FIG. 1 is a schematic structural diagram of hardware of an optional mobile terminal implementing an embodiment of the present invention.
  • the mobile terminal 100 may include a wireless communication unit 110, an A/V (Audio/Video) input unit 120, a user input unit 130, a sensing unit 140, an output unit 150, a memory 160, an interface unit 170, a controller 180, and a power supply unit 190. and many more.
  • Figure 1 illustrates a mobile terminal having various components, but it should be understood that not all illustrated components are required to be implemented. More or fewer components can be implemented instead. The elements of the mobile terminal will be described in detail below.
  • Wireless communication unit 110 typically includes one or more components that permit radio communication between mobile terminal 100 and a wireless communication system or network.
  • the wireless communication unit 110 can include a broadcast At least one of the receiving module 111, the mobile communication module 112, the wireless internet module 113, the short-range communication module 114, and the location information module 115.
  • the broadcast receiving module 111 receives a broadcast signal and/or broadcast associated information from an external broadcast management server via a broadcast channel.
  • the broadcast channel can include a satellite channel and/or a terrestrial channel.
  • the broadcast management server may be a server that generates and transmits a broadcast signal and/or broadcast associated information or a server that receives a previously generated broadcast signal and/or broadcast associated information and transmits it to the terminal.
  • the broadcast signal may include a TV broadcast signal, a radio broadcast signal, a data broadcast signal, and the like.
  • the broadcast signal may further include a broadcast signal combined with a TV or radio broadcast signal.
  • the broadcast associated information may also be provided via a mobile communication network, and in this case, the broadcast associated information may be received by the mobile communication module 112.
  • the broadcast signal may exist in various forms, for example, it may exist in the form of Digital Multimedia Broadcasting (DMB) Electronic Program Guide (EPG), Digital Video Broadcasting Handheld (DVB-H) Electronic Service Guide (ESG), and the like.
  • the broadcast receiving module 111 can receive a signal broadcast by using a plurality of types of broadcast systems.
  • the broadcast receiving module 111 can use forward link media (MediaFLO) by using, for example, multimedia broadcast-terrestrial (DMB-T), digital multimedia broadcast-satellite (DMB-S), digital video broadcast-handheld (DVB-H)
  • MediaFLO forward link media
  • DMB-T multimedia broadcast-terrestrial
  • DMB-S digital multimedia broadcast-satellite
  • DVD-H digital video broadcast-handheld
  • the digital broadcasting system of the @ data broadcasting system
  • the terrestrial digital broadcasting integrated service (ISDB-T) and the like receives digital broadcasting.
  • the broadcast receiving module 111 can be constructed as a broadcast system suitable for providing a broadcast signal as well as the above-described digital broadcast system.
  • the broadcast signal and/or broadcast associated information received via the broadcast receiving module 111 may be stored in the memory 160 (or other type of storage medium).
  • the mobile communication module 112 transmits the radio signals to and/or receives radio signals from at least one of a base station (e.g., an access point, a Node B, etc.), an external terminal, and a server.
  • a base station e.g., an access point, a Node B, etc.
  • Such radio signals may include voice call signals, video call signals, or multiple types of data transmitted and/or received in accordance with text and/or multimedia messages.
  • the wireless internet module 113 supports wireless internet access of the mobile terminal.
  • the module can be internally or externally coupled to the terminal.
  • the wireless Internet access technologies involved in the module may include WLAN (Wireless LAN) (Wi-Fi), Wibro (Wireless Broadband), Wimax (Worldwide Interoperability for Microwave Access), HSDPA (High Speed Downlink Packet Access), etc. .
  • the short range communication module 114 is configured to support short range communication.
  • Some examples of short-range communication technology include Bluetooth TM, a radio frequency identification (RFID), infrared data association (IrDA), ultra wideband (UWB), ZigBee, etc. TM.
  • the location information module 115 is configured to check or obtain location information of the mobile terminal.
  • a typical example of a location information module is GPS (Global Positioning System).
  • GPS Global Positioning System
  • the GPS module calculates distance information and accurate time information from three or more satellites and applies triangulation to the calculated information to accurately calculate three-dimensional current position information based on longitude, latitude, and altitude.
  • the method for calculating position and time information uses three satellites and corrects the calculated position and time information errors by using another satellite.
  • the GPS module is capable of calculating rate information by continuously calculating current position information in real time.
  • the A/V input unit 120 is arranged to receive an audio or video signal.
  • the A/V input unit 120 may include a camera 121 and a microphone 122 that processes image data of still pictures or video obtained by the image capturing device in a video capturing mode or an image capturing mode.
  • the processed image frame can be displayed on the display unit 151.
  • the image frames processed by the camera 121 may be stored in the memory 160 (or other storage medium) or transmitted via the wireless communication unit 110, and two or more cameras 121 may be provided according to the configuration of the mobile terminal.
  • the microphone 122 can receive sound (audio data) via a microphone in an operation mode of a telephone call mode, a recording mode, a voice recognition mode, and the like, and can process such sound as audio data.
  • the processed audio (voice) data can be converted to a format output that can be transmitted to the mobile communication base station via the mobile communication module 112 in the case of a telephone call mode.
  • the microphone 122 may pass noise cancellation (or suppression) algorithms to cancel (or suppress) noise or interference generated during the process of receiving and transmitting audio signals.
  • the user input unit 130 may generate key input data according to a command input by the user to control the operation of the mobile terminal.
  • the user input unit 130 allows the user to input various types of information, and may include a keyboard, a pot, a touch pad (eg, a touch sensitive component that detects changes in resistance, pressure, capacitance, etc. due to contact), a scroll wheel , rocker, etc.
  • a touch screen can be formed.
  • the sensing unit 140 detects the current state of the mobile terminal 100 (eg, the open or closed state of the mobile terminal 100), the location of the mobile terminal 100, the presence or absence of contact (ie, touch input) by the user with the mobile terminal 100, and the mobile terminal.
  • the sensing unit 140 may sense that the slide type phone is playing On or off.
  • the sensing unit 140 can detect whether the power supply unit 190 provides power or whether the interface unit 170 is coupled to an external device.
  • the interface unit 170 serves as an interface through which at least one external device can connect with the mobile terminal 100.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device having an identification module, and an audio input/output. (I/O) port, video I/O port, headphone port, and more.
  • the identification module may be stored to verify a variety of information used by the user using the mobile terminal 100 and may include a User Identification Module (UIM), a Customer Identification Module (SIM), a Universal Customer Identification Module (USIM), and the like.
  • UIM User Identification Module
  • SIM Customer Identification Module
  • USB Universal Customer Identification Module
  • the device having the identification module may take the form of a smart card, and thus the identification device may be connected to the mobile terminal 100 via a port or other connection device.
  • the interface unit 170 may be arranged to receive input (eg, data information, power, etc.) from an external device and transmit the received input to one or more components within the mobile terminal 100 or may be configured to be at the mobile terminal and external device Transfer data between.
  • the interface unit 170 may function as a path through which power is supplied from the base to the mobile terminal 100 or may be used as a plurality of command signals allowed to be input from the base to be transmitted to the mobile The path to the terminal.
  • a variety of command signals or power input from the base can be used as a signal for identifying whether the mobile terminal is accurately mounted on the base.
  • Output unit 150 is configured to provide an output signal (eg, an audio signal, a video signal, an alarm signal, a vibration signal, etc.) in a visual, audio, and/or tactile manner.
  • the output unit 150 may include a display unit 151, an audio output module 152, and the like.
  • the display unit 151 can display information processed in the mobile terminal 100. For example, when the mobile terminal 100 is in a phone call mode, the display unit 151 can display a user interface (UI) or a graphical user interface (GUI) related to a call or other communication (eg, text messaging, multimedia file download, etc.). When the mobile terminal 100 is in a video call mode or an image capturing mode, the display unit 151 may display a captured image and/or a received image, a UI or GUI showing a video or image and related functions, and the like.
  • UI user interface
  • GUI graphical user interface
  • the display unit 151 can function as an input device and an output device.
  • the display unit 151 may include a liquid crystal display (LCD), a thin film transistor LCD (TFT-LCD), an organic light emitting diode (OLED) display, and a flexible At least one of a sexual display, a three-dimensional (3D) display, and the like.
  • LCD liquid crystal display
  • TFT-LCD thin film transistor LCD
  • OLED organic light emitting diode
  • 3D three-dimensional
  • Some of these displays may be configured to be transparent to allow a user to view from the outside, which may be referred to as a transparent display, and a typical transparent display may be, for example, a TOLED (Transparent Organic Light Emitting Diode) display or the like.
  • TOLED Transparent Organic Light Emitting Diode
  • the mobile terminal 100 may include two or more display units (or other display devices), for example, the mobile terminal may include an external display unit (not shown) and an internal display unit (not shown) .
  • the touch screen can be set to detect touch input pressure as well as touch input position and touch input area.
  • the audio output module 152 may convert audio data received by the wireless communication unit 110 or stored in the memory 160 when the mobile terminal is in a call signal receiving mode, a call mode, a recording mode, a voice recognition mode, a broadcast receiving mode, and the like.
  • the audio signal is output as sound.
  • the audio output module 152 can provide audio output (eg, call signal reception sound, message reception sound, etc.) associated with a particular function performed by the mobile terminal 100.
  • the audio output module 152 can include a speaker, a buzzer, and the like.
  • the memory 160 may store a software program or the like for processing and control operations performed by the controller 180, or may temporarily store data (for example, a phone book, a message, a still image, a video, etc.) that has been output or is to be output. Moreover, the memory 160 may store data regarding vibration and audio signals of various manners that are output when a touch is applied to the touch screen.
  • the memory 160 may include at least one type of storage medium including a flash memory, a hard disk, a multimedia card, a card type memory (eg, SD or DX memory, etc.), a random access memory (RAM), a static random access memory ( SRAM), read only memory (ROM), electrically erasable programmable read only memory (EEPROM), programmable read only memory (PROM), magnetic memory, magnetic disk, optical disk, and the like.
  • the mobile terminal 100 can cooperate with a network storage device that performs a storage function of the memory 160 through a network connection.
  • the controller 180 typically controls the overall operation of the mobile terminal. For example, the controller 180 performs the control and processing associated with voice calls, data communications, video calls, and the like.
  • the controller 180 may include a multimedia module 181 for reproducing (or playing back) multimedia data, which may be constructed within the controller 180 or may be configured to be separate from the controller 180.
  • the controller 180 may perform a pattern recognition process to recognize a handwriting input or a picture drawing input performed on the touch screen as a character or an image.
  • the power supply unit 190 receives external power or internal power under the control of the controller 180 and provides Operate the appropriate power required for each component and component.
  • the embodiments described herein can be implemented in a computer readable medium using, for example, computer software, hardware, or any combination thereof.
  • the embodiments described herein may be through the use of application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays ( An FPGA, a processor, a controller, a microcontroller, a microprocessor, at least one of the electronic units designed to perform the functions described herein, in some cases, such an embodiment may be at the controller 180 Implemented in the middle.
  • implementations such as procedures or functions may be implemented with separate software modules that permit the execution of at least one function or operation.
  • the software code can be implemented by a software application (or program) written in any suitable programming language, which can be stored in memory 160 and executed by controller
  • the mobile terminal has been described in terms of its function.
  • a slide type mobile terminal among a plurality of types of mobile terminals such as a folding type, a bar type, a swing type, a slide type mobile terminal, and the like will be described as an example. Therefore, the embodiment of the present invention can be applied to any type of mobile terminal, and is not limited to a slide type mobile terminal.
  • the mobile terminal 100 as shown in FIG. 1 may be configured to operate using a communication system such as a wired and wireless communication system and a satellite-based communication system that transmits data via frames or packets.
  • a communication system such as a wired and wireless communication system and a satellite-based communication system that transmits data via frames or packets.
  • a mobile terminal is provided.
  • the optimized offload can be effectively implemented, and the characteristics of the LTE network and the WiFi network are fully utilized.
  • the mobile terminal includes a request sending module 301, a dividing module 302, and a stream sending module 303.
  • the request sending module 301 is configured to send a query request to the server after the first TCP stream is established, and the query request is used to obtain the size of the first data to be transmitted by the first TCP stream;
  • the mobile terminal can simultaneously access the LTE network and the WiFi network, Therefore, the mobile terminal can simultaneously access the LTE network and the WiFi network by setting an LTE network card and a WiFi network card in the mobile terminal.
  • the technical solution in the embodiment of the present invention is performed when the mobile terminal has accessed the LTE network and the WiFi network.
  • the TCP flow is established, and after the first TCP flow is established, the request sending module 301 in the mobile terminal sends a query request to the server, where the query request is used to obtain the first
  • the size of the first data to be transmitted by the TCP stream that is, the first data is data that needs to be acquired from the server.
  • the establishment of the TCP stream is based on the resource address. Therefore, the size of the first data is the size of the data corresponding to the resource address.
  • the query request contains at least the resource address.
  • the request sending module 301 may send a query request to the server directly after determining that the first TCP flow is established, or the request sending module 301 may determine the timing of sending the query request by using a monitoring manner, for example, if the first request is required to pass the first
  • the TCP stream obtains the data of the HyperText Transfer Protocol (http://www.hypertext transfer protocol), and the application layer of the mobile terminal sends a request packet (such as a "get" packet) to the server, and the resource address to be acquired is included in the request packet.
  • the request packet is used to obtain the http data, and the request sending module 301 intercepts the request packet after the request packet is received, so that the request packet cannot be actually sent to the server, and the request sending module The 301 obtains the foregoing resource address from the request packet, and sends a query request including the resource address to the server to determine a size of the data corresponding to the resource address, where the size of the data is the first embodiment of the present invention.
  • the size of a data is used to obtain the http data
  • the request sending module 301 intercepts the request packet after the request packet is received, so that the request packet cannot be actually sent to the server, and the request sending module
  • the 301 obtains the foregoing resource address from the request packet, and sends a query request including the resource address to the server to determine a size of the data corresponding to the resource address, where the size of the data is the first embodiment of the present invention.
  • the size of a data is used to obtain the http data, and the request sending module 301 intercepts the request packet after the request
  • the foregoing query request may be sent through the LTE network. If the first TCP flow is established based on the WiFi network, the foregoing may be sent through the WiFi network. Query request.
  • the dividing module 302 is configured to: after receiving the size of the first data fed back by the server, divide the size of the first data according to the first transmission rate of the monitored LTE network and the second transmission rate of the WiFi network, respectively The size of the second data transmitted by the LTE network and the size of the third data transmitted through the WiFi network;
  • the server after receiving the query request, the server obtains the resource address included in the query request, and determines the size of the first data corresponding to the resource address, and the first The size of the data is fed back to the mobile terminal.
  • the mobile terminal After receiving the size of the first data, the mobile terminal divides the size of the first data according to the first transmission rate of the monitored LTE network and the second transmission rate of the WiFi network, and respectively obtains the transmission through the LTE network.
  • the size of the second data and the size of the third data transmitted over the WiFi network are the sizes of the first data according to the first transmission rate of the monitored LTE network and the second transmission rate of the WiFi network.
  • the mobile terminal can monitor the first transmission rate of the LTE network and the second transmission rate of the WiFi network in real time, and can also be monitored when the partitioning module 302 needs to be used.
  • the flow sending module 303 is configured to send, by using an LTE network, a second data request message that includes a size of the second data to the server, and send a third data request message that includes the size of the third data to the server through the WiFi network, to pass the The first data is obtained in a split manner.
  • the stream sending module 303 sends the second data to the server through the LTE network.
  • the second data request message of the size of the data, and the third data request message including the size of the third data is sent to the server through the WiFi network, to obtain the first data by means of offloading. For example, if the size of the first data corresponding to the resource address is 100M, and the determined size of the second data is 30M, and the size of the third data is 70M, the data of the first 30M of the resource address is obtained from the server through the LTE network. And obtaining the data of 70M after the resource address from the server through the WiFi network.
  • the request sending module 301 sends a query request to the server to obtain the first TCP flow to be transmitted.
  • the size of the data and after receiving the size of the first data fed back by the server, the dividing module 302 divides the size of the first data according to the first transmission rate of the monitored LTE network and the second transmission rate of the WiFi network.
  • the request sending module 301 in the embodiment of the present invention may be implemented by the mobile communication module 112 in FIG. 1
  • the dividing module 302 may be implemented by the controller 180 in FIG. 1
  • the streaming sending module 303 may pass through the The mobile communication module 112 is implemented.
  • LTE network is faster, but the price is relatively expensive, WiFi network is completely free, but the speed is slow.
  • the TCP stream is split based on the traffic volume of the TCP stream (that is, the size of the first data), so that the same TCP stream can be simultaneously used to the LTE network and the WiFi network, taking into consideration speed and price considerations. , to achieve optimal distribution of data.
  • the server After the mobile terminal sends the second data request message to the server through the LTE network, and after sending the third data request message to the server through the WiFi network, the server obtains the second data size based on the size of the second data included in the second data request message. Transmitting the second data to the mobile terminal through the LTE network; and acquiring the third data based on the size of the third data included in the third data request message, and feeding the third data to the WiFi network through the WiFi network. The mobile terminal, after receiving the second data and the third data, the mobile terminal combines the second data and the third data in a preset order to obtain the first data.
  • FIG. 3 is a schematic diagram of a multi-link intelligent shunting principle according to an embodiment of the present invention.
  • the multi-link includes at least one link of an LTE network and a link of a WiFi network.
  • a link of an LTE network and a link of a WiFi network are taken as an example.
  • the base station and WiFi hotspot are connected to the server via a router via a core network.
  • 1 represents the first data of the established first TCP stream
  • split refers to splitting the size of the first data into the size of the second data and the size of the third data, from the user side (mobile terminal side)
  • the 1-1 pointing to the server side indicates that the second data request message is sent to the server through the WiFi network
  • the 1-1 from the server side to the user side indicates that the server feeds back the second data based on the second data request message, pointing from the user side.
  • 1-2 on the server side indicates that the third data is sent to the server through the LTE network.
  • a message is obtained, and 1-2 from the server side to the user side indicates that the server feeds back the third data based on the third data request message.
  • the first data that is, 2, is obtained by combining.
  • FIG. 4 is a schematic diagram of a refinement function module of the partitioning module 302 in the first embodiment of the present invention.
  • the partitioning module 302 includes a first determining module 501 and a second determining module 502.
  • the first determining module 501 is configured to determine a distribution ratio of the size of the first data according to the first transmission rate of the LTE network, the second transmission rate of the WiFi network, and the preset time delay;
  • the second determining module 502 is configured to divide the size of the first data according to the allocation ratio, determine the size of the second data transmitted through the LTE network, and the size of the third data transmitted through the WiFi network.
  • the mobile terminal monitors the first transmission rate of the LTE network and the second transmission rate of the WiFi network, and after receiving the size of the first data fed back by the server, acquires the current first transmission rate and the first And a second transmission rate, and the first determining module 501 determines the allocation ratio of the size of the first data according to the first transmission rate, the second transmission rate, and the preset delay.
  • the first determining module 502 can determine the allocation ratio according to the following formula (1) or formula (2):
  • R represents the percentage of the third data transmitted through the WiFi network as a percentage of the first data
  • C represents the size of the first data
  • V W represents the second transmission rate of the WiFi network
  • V L represents the first transmission rate of the LTE network
  • t represents a preset delay
  • the allocation ratio includes R and 1-R
  • 1-R represents the percentage of the second data transmitted through the LTE network as a percentage of the first data.
  • the mobile terminal since the transmission speed of the LTE network is fast, it can be seen from the formula (1) that in most cases, the mobile terminal will first receive the second data transmitted through the LTE network, and After a delay of t seconds, the third number transmitted through the WiFi network is received. And combining the second data and the third data into the first data, where t may be different for different application layer services, for example, for a service with higher real-time performance such as voice, the value of t is smaller. For a service such as file downloading, the value of t is large.
  • the mobile terminal may acquire a preset delay t corresponding to the type of the service based on the current type of the service.
  • the second determining module 502 divides the size of the first data according to the obtained allocation ratio, determines the size of the second data transmitted through the LTE network, and the size of the third data transmitted through the WiFi network.
  • the size of the first data to be transmitted is divided according to the first transmission rate of the LTE network and the second transmission rate of the WiFi network, so that the characteristics of the LTE network and the WiFi network can be fully utilized to optimize the data. Diversion.
  • FIG. 5 is a schematic diagram of a refinement function module of the stream sending module 303 in the first embodiment of the present invention.
  • the stream sending module 303 includes a first sending module 601 and a second sending module 602.
  • the first sending module 601 is configured to: if the first TCP stream is established based on the LTE network, generate a second data request message that includes the size of the second data, send the second TCP stream to the server through the LTE network, and perform WiFi-based
  • the network establishes a third TCP stream, and sends a third TCP stream carrying the size of the third data to the server through the WiFi network;
  • the second sending module 602 is configured to: if the first TCP stream is established based on the WiFi network, establish a second TCP stream based on the LTE network, and send, by using the LTE network, a second TCP stream that carries the size of the second data, and The first TCP stream carrying the size of the third data is used as the third TCP stream, and the third TCP stream is transmitted to the server through the WiFi network.
  • a new TCP stream is also established, so that data can be transmitted through the LTE network and the WiFi network, respectively, where the second data request is reported.
  • the text includes the size of the second data and the resource address, and the size of the second data refers to the range of the second data in the data corresponding to the resource address, and the third data request report.
  • the text includes the size of the third data and the resource address, and the size of the third data refers to the range of the third data in the data corresponding to the resource address.
  • the size of the second data is data of 0 to (1-R) C length of data corresponding to the resource address
  • the size of the third data is data of data (1-R) C to C corresponding to the resource address
  • FIG. 6 is a schematic diagram of a function module of a mobile terminal according to a second embodiment of the present invention.
  • the mobile terminal includes a request sending module 301, a dividing module 302, and a stream sending module 303, and is described in the first embodiment shown in FIG. The content is similar and will not be described here.
  • the dividing module 302 includes a first determining module 501 and a second determining module 502, and is similar to the content described in the embodiment shown in FIG.
  • the flow sending module 303 includes a first sending module 601 and a second sending module 602, and is similar to the content described in the embodiment shown in FIG. 5, and details are not described herein.
  • the mobile terminal further includes: a monitoring module 701 and a rate determining module 702.
  • the monitoring module 701 is configured to monitor the first data traffic of the LTE network in the preset time period and monitor the second data traffic of the WiFi network in the preset time period;
  • the rate determining module 702 is configured to determine the first transmission rate by using the first data traffic and the preset time period, and determine the second transmission rate by using the second data traffic and the preset time period.
  • the monitoring module 701 can monitor the LTE network and the WiFi network in real time, and can also monitor the LTE network and the WiFi network after the mobile terminal receives the size of the first data fed back by the server.
  • the monitoring module 701 monitors the first data traffic of the LTE network in the preset time period and monitors the second data traffic of the WiFi network in the preset time period, where the preset time period may be a unit time. And the rate determining module 702 determines the first transmission rate by using the first data traffic and the preset time period, and determines the second transmission rate by using the second data traffic and the preset time period.
  • the request sending module 301 in the embodiment of the present invention may be implemented by the mobile communication module 112 in FIG. 1, and the dividing module 302 may be implemented by the controller 180 in FIG.
  • Block 303 can be implemented by the mobile communication module 112 of FIG. 1, and both the monitoring module 701 and the rate determining module 702 can be implemented by the controller 180 of FIG.
  • the rate of the WiFi network changes greatly.
  • the mobile terminal can periodically pass the WiFi network when there is no data transmission. A small amount of data is downloaded to detect the transmission capacity of the WiFi network, and since the WiFi is completely free and the power consumption is low, the overhead caused by the detection is small.
  • the transmission rate of the LTE network and the WiFi network can be monitored, and the size of the first data is determined by using the transmission rate of the LTE network and the WiFi network. Allocation to achieve shunt optimization.
  • FIG. 7 is a schematic flowchart of a multi-link intelligent offloading method according to a third embodiment of the present invention, in which a mobile terminal simultaneously accesses a long-term evolution LTE network and a WiFi network, and the method includes:
  • Step 801 After the first TCP stream is established, the mobile terminal sends a query request to the server, where the query request is used to obtain a size of the first data to be transmitted by the first TCP stream.
  • the mobile terminal can access the LTE network and the WiFi network at the same time, and the LTE network card and the WiFi network card can be set in the mobile terminal, so that the mobile terminal can simultaneously access the LTE network and the WiFi network.
  • the technical solution in the embodiment of the present invention is performed when the mobile terminal has accessed the LTE network and the WiFi network.
  • the TCP stream is established before the application layer of the mobile terminal transmits data, and after the first TCP stream is established, the mobile terminal sends a query request to the server, where the query request is used to obtain the first TCP stream to be transmitted.
  • the size of a data that is, the first data is data that needs to be obtained from a server.
  • the establishment of the TCP stream is based on the resource address. Therefore, the size of the first data is the size of the data corresponding to the resource address.
  • the query request contains at least the resource address.
  • the mobile terminal may directly send a query request to the server after determining that the first TCP flow is established, or may determine the timing of sending the query request by using a monitoring manner, for example. For example, if the http data needs to be obtained through the first TCP stream, the application layer of the mobile terminal sends a request message (such as a "get" message) to the server, and includes the resource address to be acquired in the request message, the request The packet is used to obtain the above-mentioned http data, and after detecting the request packet, the mobile terminal intercepts the request packet, so that the request packet cannot be actually sent to the server, and the above packet is obtained from the request packet. And the size of the data corresponding to the resource address, where the size of the data is the size of the first data in the embodiment of the present invention.
  • a request message such as a "get" message
  • the foregoing query request may be sent through the LTE network. If the first TCP flow is established based on the WiFi network, the foregoing may be sent through the WiFi network. Query request.
  • Step 802 After receiving the size of the first data that is fed back by the server, according to the monitored first transmission rate of the LTE network and the second transmission rate of the WiFi network, the first data is used. Dividing the size, respectively obtaining the size of the second data transmitted through the LTE network and the size of the third data transmitted through the WiFi network;
  • the server after receiving the query request, the server obtains the resource address included in the query request, determines the size of the first data corresponding to the resource address, and feeds back the size of the first data to the mobile terminal.
  • the mobile terminal After receiving the size of the first data, the mobile terminal divides the size of the first data according to the first transmission rate of the monitored LTE network and the second transmission rate of the WiFi network, and respectively obtains the transmission through the LTE network.
  • the size of the second data and the size of the third data transmitted over the WiFi network are the sizes of the first data according to the first transmission rate of the monitored LTE network and the second transmission rate of the WiFi network.
  • the mobile terminal can monitor the first transmission rate of the LTE network and the second transmission rate of the WiFi network in real time, and can also monitor when needed.
  • Step 803 Send, by using the LTE network, a second data request message that includes the size of the second data to the server, and send, by using the WiFi network, a size that includes the size of the third data to the server.
  • the third data request message is used to obtain the first data by means of offloading.
  • the size of the second data that needs to be transmitted through the LTE network is obtained.
  • the mobile terminal sends a second data request message including the size of the second data to the server through the LTE network, and sends the size of the third data to the server through the WiFi network.
  • the third data request message is used to obtain the first data by means of offloading. For example, if the size of the first data corresponding to the resource address is 100M, and the determined size of the second data is 30M, and the size of the third data is 70M, the data of the first 30M of the resource address is obtained from the server through the LTE network. And obtaining the data of 70M after the resource address from the server through the WiFi network.
  • the query is sent to the server to obtain the size of the first data to be transmitted by the first TCP flow.
  • the query is sent to the server to obtain the size of the first data to be transmitted by the first TCP flow.
  • the server after receiving the size of the first data that is fed back by the server, dividing the size of the first data according to the first transmission rate of the monitored LTE network and the second transmission rate of the WiFi network, respectively determining to transmit through the LTE network
  • the size of the second data and the size of the third data transmitted through the WiFi network and sending a second data request message including the size of the second data to the server through the LTE network, and transmitting the third data to the server through the WiFi network
  • the third data request message of the size to obtain the first data by means of offloading.
  • LTE network is faster, but the price is relatively expensive, WiFi network is completely free, but the speed is slow.
  • the TCP stream is split based on the traffic volume of the TCP stream (that is, the size of the first data), so that the same TCP stream can be simultaneously used to the LTE network and the WiFi network, taking into consideration speed and price considerations. , to achieve optimal distribution of data.
  • the server After the mobile terminal sends the second data request message to the server through the LTE network, and after sending the third data request message to the server through the WiFi network, the server obtains the second data size based on the size of the second data included in the second data request message. Two data, and feeding the second data to the mobile terminal through the LTE network; and acquiring the size of the third data included in the third data request message Third data, and the third data is fed back to the mobile terminal through the WiFi network, after receiving the second data and the third data, the mobile terminal combines the second data and the third data in a preset order to Get the first data.
  • FIG. 3 is a schematic diagram of a multi-link intelligent offloading principle according to an embodiment of the present invention.
  • the multi-link includes at least one link of an LTE network and a link of a WiFi network.
  • a link of an LTE network and a link of a WiFi network are taken as an example.
  • the base station and WiFi hotspot are connected to the server via a router via a core network.
  • 1 represents the first data of the established first TCP stream
  • split refers to splitting the size of the first data into the size of the second data and the size of the third data, from the user side (mobile terminal side)
  • the 1-1 pointing to the server side indicates that the second data request message is sent to the server through the WiFi network
  • the 1-1 from the server side to the user side indicates that the server feeds back the second data based on the second data request message, pointing from the user side.
  • the 1-2 on the server side indicates that the third data request message is sent to the server through the LTE network
  • the 1-2 from the server side to the user side indicates that the server feeds back the third data based on the third data request message.
  • FIG. 8 is a schematic flowchart of a refinement step of step 802 in the third embodiment shown in FIG. 7 according to the present invention.
  • the refinement step includes:
  • Step 901 Determine, according to the first transmission rate of the LTE network, the second transmission rate of the WiFi network, and a preset delay, a distribution ratio of the size of the first data.
  • Step 902 Divide the size of the first data according to the allocation ratio, determine a size of the second data transmitted by using the LTE network, and a size of the third data transmitted by using the WiFi network.
  • the mobile terminal monitors the first transmission rate of the LTE network and the second transmission rate of the WiFi network, and after receiving the size of the first data fed back by the server, acquires the current first transmission rate and the first Two transmission rates, and according to the first transmission rate, the second transmission rate And the preset delay determines the allocation ratio of the size of the first data.
  • the mobile terminal can determine the allocation ratio according to the following formula (1) or formula (2):
  • R represents a percentage of the first data through third data transfer WiFi network
  • C represents the size of the first data
  • V denotes a second transmission rate W is the WiFi network
  • V L represents the first transmission rate of the LTE network
  • t represents a preset delay
  • the allocation ratio includes R and 1-R
  • 1-R represents the percentage of the second data transmitted through the LTE network as a percentage of the first data.
  • the mobile terminal since the transmission speed of the LTE network is fast, it can be seen from the formula (1) that in most cases, the mobile terminal will first receive the second data transmitted through the LTE network, and After a delay of t seconds, receiving the third data transmitted through the WiFi network, and combining the second data and the third data into the first data, wherein t may be different for different application layer services, For example, for a service with high real-time performance such as voice, the value of t is small. For a service such as file downloading, the value of t is large.
  • the mobile terminal may acquire a preset delay t corresponding to the type of the service based on the current type of the service.
  • the mobile terminal divides the size of the first data according to the obtained allocation ratio, determines the size of the second data transmitted through the LTE network, and the size of the third data transmitted through the WiFi network.
  • the size of the first data to be transmitted is divided according to the first transmission rate of the LTE network and the second transmission rate of the WiFi network, so that the characteristics of the LTE network and the WiFi network can be fully utilized to optimize the data. Diversion.
  • step 803 in the third embodiment shown in FIG. 7 the second data that includes the size of the second data is sent to the server by using the LTE network. And obtaining a third data request message including the size of the third data by using the WiFi network to the server, where the method includes the following steps:
  • the first TCP stream is established based on a WiFi network
  • establishing a third TCP flow based on the LTE network
  • generating, according to the third TCP flow the second data request report that includes a size of the second data
  • the network sends the third data request message to the server.
  • a new TCP stream is also established, so that data can be transmitted through the LTE network and the WiFi network, respectively, where the second data request is reported.
  • the size of the second data and the resource address are included in the text, and the size of the second data refers to the range of the second data in the data corresponding to the resource address, and the third data request message includes the size and resource address of the third data.
  • the size of the third data refers to the range of the third data in the data corresponding to the resource address.
  • the size of the second data is data of 0 to (1-R) C length of data corresponding to the resource address
  • the size of the third data is data of data (1-R) C to C corresponding to the resource address
  • FIG. 9 is a schematic flowchart of a multi-link intelligent offloading method according to a fourth embodiment of the present invention, where the method includes:
  • Step 1001 After the first TCP stream is established, the mobile terminal sends a query request to the server, where the query request is used to obtain a size of the first data to be transmitted by the first TCP stream.
  • Step 1002 After receiving the size of the first data fed back by the server, monitoring the first data traffic of the LTE network in a preset time period and monitoring the WiFi network in the a second data flow within a preset time period;
  • Step 1003 Determine the first transmission rate by using the first data traffic and the preset time period, and determine the second transmission rate by using the second data traffic and the preset time period;
  • Step 1004 Divide the size of the first data according to the first transmission rate of the LTE network and the second transmission rate of the WiFi network, respectively, to obtain second data that is transmitted through the LTE network. a size and a size of the third data transmitted through the WiFi network;
  • Step 1005 Send, by using the LTE network, a second data request message that includes the size of the second data to the server, and send, by using the WiFi network, a size that includes the size of the third data to the server.
  • the third data request message is used to obtain the first data by means of offloading.
  • steps 1001, 1004, and 1005 are similar to those described in step 801, step 802, and step 803 in the third embodiment shown in FIG. 7, and are not described herein.
  • the mobile terminal may monitor the LTE network and the WiFi network in real time, and may also monitor the LTE network and the WiFi network after the mobile terminal receives the size of the first data fed back by the server.
  • the mobile terminal monitors the first data traffic of the LTE network in the preset time period and monitors the second data traffic of the WiFi network in the preset time period, where the preset time period may be a unit time. And determining, by the first data traffic and the preset time period, the first transmission rate, and determining the second transmission rate by using the second data traffic and the preset time period.
  • the rate of the WiFi network changes greatly.
  • the mobile terminal can periodically pass the WiFi network when there is no data transmission. A small amount of data is downloaded to detect the transmission capacity of the WiFi network, and since the WiFi is completely free and the power consumption is low, the overhead caused by the detection is small.
  • the WiFi network by monitoring the data traffic of the LTE network and the WiFi network, it is possible to monitor the transmission rate of the LTE network and the WiFi network, and facilitate the use of the LTE network and The transmission rate of the WiFi network determines the allocation of the size of the first data to achieve offload optimization.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented by the processor to implement the multi-link intelligent offloading method.
  • the technical solution of the present application can be embodied in the form of a software product stored in a storage medium (such as a ROM/RAM, a magnetic disk, an optical disk), and includes a plurality of instructions for making one
  • the terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) performs the method described in the embodiments of the present invention.
  • the first transmission rate of the monitored LTE network and the second transmission rate of the WiFi network are used for offload processing, which can be utilized to a greater extent.
  • the characteristics of LTE network and WiFi network make full use of network bandwidth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公布一种多链路智能分流方法及移动终端,所述移动终端,包括请求发送模块,设置为在第一TCP流建立完成后,向服务器发送查询请求,以获取第一数据的大小;划分模块,设置为在接收到第一数据的大小后,根据监测到的LTE网络的第一传输速率和WiFi网络的第二传输速率对第一数据的大小进行划分,分别得到通过LTE网络传输的第二数据的大小及通过WiFi网络传输的第三数据的大小;流发送模块,设置为通过LTE网络发送包含第二数据的大小的第二TCP流,及通过WiFi网络发送包含第三数据的大小的第三TCP流,以通过分流的方式获取第一数据。

Description

多链路智能分流方法及移动终端 技术领域
本文涉及但不限于通信技术领域,尤指一种多链路智能分流方法及移动终端。
背景技术
随着移动终端市场的发展,越来越多的用户将移动终端作为访问网络的工具。目前,作为移动终端访问互联网的入口网络主要是长期演进(Long Term Evolution,LTE)网络和WiFi(WIreless-Fidelity,无线保真)网络。
尽管目前的移动终端大多只能将LTE网络和WiFi网络中的一种作为接入网络,但为了同时利用LTE网络和WiFi网络的特点,更大限度的提升用户的网络访问体验,发展能够同时使用LTE网络和WiFi网络的智能终端已经成为一种极有可能的趋势。对于这种新型的智能终端,如何实现数据流量的优化分流成为要解决的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提出一种多链路智能分流方法及移动终端,可以实现数据流量的优化分流。
本发明实施例提供的一种移动终端,所述移动终端同时接入长期演进LTE网络和WiFi网络,所述移动终端包括:
请求发送模块,设置为在第一TCP(Transmission Control Protocol,传输控制协议)流建立完成后,向服务器发送查询请求,所述查询请求用于获取所述第一TCP流待传输的第一数据的大小;
划分模块,设置为在接收到所述服务器反馈的所述第一数据的大小后,根据监测到的所述LTE网络的第一传输速率和所述WiFi网络的第二传输速 率对所述第一数据的大小进行划分,分别得到通过所述LTE网络传输的第二数据的大小及通过所述WiFi网络传输的第三数据的大小;
流发送模块,设置为通过所述LTE网络向所述服务器发送包含所述第二数据的大小的第二数据请求报文,及通过所述WiFi网络向所述服务器发送包含所述第三数据的大小的第三数据请求报文,以通过分流的方式获取所述第一数据。
可选地,所述划分模块包括:
第一确定模块,设置为根据所述LTE网络的第一传输速率、所述WiFi网络的第二传输速率及预置的时延确定第一数据的大小的分配比例;
第二确定模块,设置为按照所述分配比例划分所述第一数据的大小,确定通过所述LTE网络传输的第二数据的大小及通过所述WiFi网络传输的第三数据的大小。
可选地,所述第一确定模块设置为:
按照如下公式确定所述分配比例:
Figure PCTCN2016112407-appb-000001
或者,按照如下公式确定所述分配比例:
Figure PCTCN2016112407-appb-000002
在上述公式中:R表示通过WiFi网络传输的第三数据占所述第一数据的百分比,C表示所述第一数据的大小,VW表示WiFi网络的第二传输速率,VL表示LTE网络的第一传输速率,t表示所述预置的时延,其中,所述分配比例包括R及1-R,且1-R表示通过LTE网络传输的第二数据占所述第一数据的百分比。
可选地,所述流发送模块,包括:
第一发送模块,设置为若所述第一TCP流是基于LTE网络建立的,则基于所述第一TCP流生成包含所述第二数据的大小的第二数据请求报文,通过所述LTE网络向所述服务器发送所述第二数据请求报文,及基于所述 WiFi网络建立第二TCP流,基于所述第二TCP流生成包含所述第三数据的大小的第三数据请求报文,通过所述WiFi网络向所述服务器发送所述第三数据请求报文;
第二发送模块,设置为若所述第一TCP流是基于WiFi网络建立的,则基于所述LTE网络建立第三TCP流,基于所述第三TCP流生成包含所述第二数据的大小的所述第二数据请求报文,通过所述LTE网络向所述服务器发送所述第二数据请求报文,及基于所述第一TCP流生成包含所述第三数据的大小的第三数据请求报文,通过所述WiFi网络向所述服务器发送所述第三数据请求报文。
可选地,所述移动终端还包括:
监测模块,设置为监测所述LTE网络在预置时间段内的第一数据流量及监测所述WiFi网络在所述预置时间段内的第二数据流量;
速率确定模块,设置为利用所述第一数据流量及所述预置时间段确定所述第一传输速率,及利用所述第二数据流量及所述预置时间段确定所述第二传输速率。
可选地,所述请求发送模块设置为:在确定第一TCP流建立完成之后,直接向服务器发送查询请求,或者,在确定第一TCP流建立完成之后,通过监测的方式确定发送所述查询请求的时机。
可选地,所述查询请求中包含所述第一TCP流对应的资源地址。
可选地,所述预置的时延与当前业务的类型相对应。
可选地,第二数据请求报文中包含第二数据的大小及资源地址,所述第二数据的大小是指第二数据在资源地址对应的数据中的范围;第三数据请求报文中包含第三数据的大小及资源地址,所述第三数据的大小是指第三数据在资源地址对应的数据中的范围。
本发明实施例还提供一种多链路智能分流方法,移动终端同时接入长期演进LTE网络和WiFi网络,所述方法包括:
在第一TCP流建立完成后,所述移动终端向服务器发送查询请求,所述查询请求用于获取所述第一TCP流待传输的第一数据的大小;
在接收到所述服务器反馈的所述第一数据的大小后,根据监测到的所述LTE网络的第一传输速率和所述WiFi网络的第二传输速率对所述第一数据的大小进行划分,分别得到通过所述LTE网络传输的第二数据的大小及通过所述WiFi网络传输的第三数据的大小;
通过所述LTE网络向所述服务器发送包含所述第二数据的大小的第二数据请求报文,及通过所述WiFi网络向所述服务器发送包含所述第三数据的大小的第三数据请求报文,以通过分流的方式获取所述第一数据。
可选地,所述根据监测到的所述LTE网络的第一传输速率和所述WiFi网络的第二传输速率对所述第一数据的大小进行划分,分别得到通过所述LTE网络上传输的第二数据的大小及通过所述WIFI网络传输的第三数据的大小,包括:
根据所述LTE网络的第一传输速率、所述WiFi网络的第二传输速率及预置的时延确定第一数据的大小的分配比例;
按照所述分配比例划分所述第一数据的大小,确定通过所述LTE网络传输的第二数据的大小及通过所述WiFi网络传输的第三数据的大小。
可选地,所述根据所述LTE网络的第一传输速率、所述WiFi网络的第二传输速率及预置的时延确定第一数据的大小的分配比例,包括:
按照如下公式确定所述分配比例:
Figure PCTCN2016112407-appb-000003
或者,按照如下公式确定所述分配比例:
Figure PCTCN2016112407-appb-000004
在上述公式中:R表示通过WiFi网络传输的第三数据占所述第一数据的百分比,C表示所述第一数据的大小,VW表示WiFi网络的第二传输速率,VL表示LTE网络的第一传输速率,t表示所述预置的时延,其中,所述分配比例包括R及1-R,且1-R表示通过LTE网络传输的第二数据占所述第一数据的百分比。
可选地,所述通过所述LTE网络向所述服务器发送包含所述第二数据的大小的第二数据请求报文,及通过所述WiFi网络向所述服务器发送包含所述第三数据的大小的第三数据请求报文,包括:
若所述第一TCP流是基于LTE网络建立的,则基于所述第一TCP流生成包含所述第二数据的大小的第二数据请求报文,通过所述LTE网络向所述服务器发送所述第二数据请求报文,及基于所述WiFi网络建立第二TCP流,基于所述第二TCP流生成包含所述第三数据的大小的第三数据请求报文,通过所述WiFi网络向所述服务器发送所述第三数据请求报文;
若所述第一TCP流是基于WiFi网络建立的,则基于所述LTE网络建立第三TCP流,基于所述第三TCP流生成包含所述第二数据的大小的所述第二数据请求报文,通过所述LTE网络向所述服务器发送所述第二数据请求报文,及基于所述第一TCP流生成包含所述第三数据的大小的第三数据请求报文,通过所述WiFi网络向所述服务器发送所述第三数据请求报文。
可选地,所述方法还包括:
监测所述LTE网络在预置时间段内的第一数据流量及监测所述WiFi网络在所述预置时间段内的第二数据流量;
利用所述第一数据流量及所述预置时间段确定所述第一传输速率,及利用所述第二数据流量及所述预置时间段确定所述第二传输速率。
可选地,所述在第一TCP流建立完成后,所述移动终端向服务器发送查询请求的步骤中,
所述移动终端在确定第一TCP流建立完成之后,直接向服务器发送查询请求,或者,在确定第一TCP流建立完成之后,通过监测的方式确定发送所述查询请求的时机。
可选地,所述查询请求中包含所述第一TCP流对应的资源地址。
可选地,所述预置的时延与当前的业务的类型相对应。
可选地,第二数据请求报文中包含第二数据的大小及资源地址,所述第二数据的大小是指第二数据在资源地址对应的数据中的范围;第三数据请求报文中包含第三数据的大小及资源地址,所述第三数据的大小是指第三数据 在资源地址对应的数据中的范围。
可选地,所述方法还包括:
移动终端在没有数据传输时,定时通过WiFi网络下载数据,以探测WiFi网络的传输能力。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述多链路智能分流方法。
本发明实施例提出的移动终端能够同时接入LTE网络和WiFi网络,且该移动终端包括请求发送模块,设置为在第一TCP流建立完成后,向服务器发送查询请求,查询请求用于获取第一TCP流待传输的第一数据的大小;划分模块,设置为在接收到服务器反馈的第一数据的大小后,根据监测到的LTE网络的第一传输速率和WiFi网络的第二传输速率对第一数据的大小进行划分,分别得到通过LTE网络传输的第二数据的大小及通过WiFi网络传输的第三数据的大小;流发送模块,设置为通过LTE网络向服务器发送包含第二数据的大小的第二TCP流,及通过WiFi网络向服务器发送包含第三数据的大小的第三TCP流,以通过分流的方式获取第一数据。在移动终端同时接入LTE网络和WiFi网络的情况下,基于监测到的LTE网络的第一传输速率和WiFi网络的第二传输速率进行分流处理,使得能够更大限度的利用LTE网络和WiFi网络的特性,充分利用网络带宽。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为实现本发明实施例一个可选的移动终端的硬件结构示意图;
图2为本发明第一实施例中移动终端的功能模块的示意图;
图3为本发明实施例中多链路智能分流原理的示意图;
图4为本发明图2所示第一实施例中划分模块302的细化功能模块的示意图;
图5为本发明图2所示第一实施例中流发送模块303的细化功能模块的示意图;
图6为本发明第二实施例中移动终端的功能模块的示意图;
图7为本发明第三实施例中多链路智能分流方法的流程示意图;
图8为本发明第三实施例中步骤802的细化步骤的流程示意图;
图9为本发明第四实施例中多链路智能分流方法的流程示意图。
本发明的实施方式
应当理解,此处所描述的实施例仅仅用以解释本申请,并不用于限定本申请。
现在将参考附图描述实现本发明实施例的移动终端。在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明实施例的说明,其本身并没有特定的意义。因此,"模块"与"部件"可以混合地使用。
移动终端可以以多种形式来实施。例如,本发明实施例中描述的终端可以包括诸如移动电话、智能电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、导航装置等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。下面,假设终端是移动终端。然而,本领域技术人员将理解的是,除了特别用于移动目的的元件之外,根据本发明的实施方式的构造也能够应用于固定类型的终端。
图1为实现本发明实施例一个可选的的移动终端的硬件结构示意图。
移动终端100可以包括无线通信单元110、A/V(音频/视频)输入单元120、用户输入单元130、感测单元140、输出单元150、存储器160、接口单元170、控制器180和电源单元190等等。图1示出了具有多种组件的移动终端,但是应理解的是,并不要求实施所有示出的组件。可以替代地实施更多或更少的组件。将在下面详细描述移动终端的元件。
无线通信单元110通常包括一个或多个组件,其允许移动终端100与无线通信系统或网络之间的无线电通信。例如,无线通信单元110可以包括广播 接收模块111、移动通信模块112、无线互联网模块113、短程通信模块114和位置信息模块115中的至少一个。
广播接收模块111经由广播信道从外部广播管理服务器接收广播信号和/或广播相关信息。广播信道可以包括卫星信道和/或地面信道。广播管理服务器可以是生成并发送广播信号和/或广播相关信息的服务器或者接收之前生成的广播信号和/或广播相关信息并且将其发送给终端的服务器。广播信号可以包括TV广播信号、无线电广播信号、数据广播信号等等。而且,广播信号可以进一步包括与TV或无线电广播信号组合的广播信号。广播相关信息也可以经由移动通信网络提供,并且在该情况下,广播相关信息可以由移动通信模块112来接收。广播信号可以以多种形式存在,例如,其可以以数字多媒体广播(DMB)的电子节目指南(EPG)、数字视频广播手持(DVB-H)的电子服务指南(ESG)等等的形式而存在。广播接收模块111可以通过使用多种类型的广播系统接收信号广播。特别地,广播接收模块111可以通过使用诸如多媒体广播-地面(DMB-T)、数字多媒体广播-卫星(DMB-S)、数字视频广播-手持(DVB-H),前向链路媒体(MediaFLO@)的数据广播系统、地面数字广播综合服务(ISDB-T)等等的数字广播系统接收数字广播。广播接收模块111可以被构造为适合提供广播信号的广播系统以及上述数字广播系统。经由广播接收模块111接收的广播信号和/或广播相关信息可以存储在存储器160(或者其它类型的存储介质)中。
移动通信模块112将无线电信号发送到基站(例如,接入点、节点B等等)、外部终端以及服务器中的至少一个和/或从其接收无线电信号。这样的无线电信号可以包括语音通话信号、视频通话信号、或者根据文本和/或多媒体消息发送和/或接收的多种类型的数据。
无线互联网模块113支持移动终端的无线互联网接入。该模块可以内部或外部地耦接到终端。该模块所涉及的无线互联网接入技术可以包括WLAN(无线LAN)(Wi-Fi)、Wibro(无线宽带)、Wimax(全球微波互联接入)、HSDPA(高速下行链路分组接入)等等。
短程通信模块114设置为支持短程通信。短程通信技术的一些示例包括蓝牙TM、射频识别(RFID)、红外数据协会(IrDA)、超宽带(UWB)、紫蜂TM等 等。
位置信息模块115设置为检查或获取移动终端的位置信息。位置信息模块的典型示例是GPS(全球定位系统)。根据当前的技术,GPS模块计算来自三个或更多卫星的距离信息和准确的时间信息并且对于计算的信息应用三角测量法,从而根据经度、纬度和高度准确地计算三维当前位置信息。当前,用于计算位置和时间信息的方法使用三颗卫星并且通过使用另外的一颗卫星校正计算出的位置和时间信息的误差。此外,GPS模块能够通过实时地连续计算当前位置信息来计算速率信息。
A/V输入单元120设置为接收音频或视频信号。A/V输入单元120可以包括相机121和麦克风122,相机121对在视频捕获模式或图像捕获模式中由图像捕获装置获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元151上。经相机121处理后的图像帧可以存储在存储器160(或其它存储介质)中或者经由无线通信单元110进行发送,可以根据移动终端的构造提供两个或更多相机121。麦克风122可以在电话通话模式、记录模式、语音识别模式等等运行模式中经由麦克风接收声音(音频数据),并且能够将这样的声音处理为音频数据。处理后的音频(语音)数据可以在电话通话模式的情况下转换为可经由移动通信模块112发送到移动通信基站的格式输出。麦克风122可以通过噪声消除(或抑制)算法以消除(或抑制)在接收和发送音频信号的过程中产生的噪声或者干扰。
用户输入单元130可以根据用户输入的命令生成键输入数据以控制移动终端的操作。用户输入单元130允许用户输入多种类型的信息,并且可以包括键盘、锅仔片、触摸板(例如,检测由于被接触而导致的电阻、压力、电容等等的变化的触敏组件)、滚轮、摇杆等等。特别地,当触摸板以层的形式叠加在显示单元151上时,可以形成触摸屏。
感测单元140检测移动终端100的当前状态,(例如,移动终端100的打开或关闭状态)、移动终端100的位置、用户对于移动终端100的接触(即,触摸输入)的有无、移动终端100的取向、移动终端100的加速或减速移动和方向等等,并且生成用于控制移动终端100的操作的命令或信号。例如,当移动终端100实施为滑动型移动电话时,感测单元140可以感测该滑动型电话是打 开还是关闭。另外,感测单元140能够检测电源单元190是否提供电力或者接口单元170是否与外部装置耦接。
接口单元170用作至少一个外部装置与移动终端100连接可以通过的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。识别模块可以是存储用于验证用户使用移动终端100的多种信息并且可以包括用户识别模块(UIM)、客户识别模块(SIM)、通用客户识别模块(USIM)等等。另外,具有识别模块的装置(下面称为"识别装置")可以采取智能卡的形式,因此,识别装置可以经由端口或其它连接装置与移动终端100连接。接口单元170可以设置为接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到移动终端100内的一个或多个元件或者可以设置为在移动终端和外部装置之间传输数据。
另外,当移动终端100与外部底座连接时,接口单元170可以用作允许通过其将电力从底座提供到移动终端100的路径或者可以用作允许从底座输入的多种命令信号通过其传输到移动终端的路径。从底座输入的多种命令信号或电力可以用作用于识别移动终端是否准确地安装在底座上的信号。输出单元150被构造为以视觉、音频和/或触觉方式提供输出信号(例如,音频信号、视频信号、警报信号、振动信号等等)。输出单元150可以包括显示单元151、音频输出模块152等等。
显示单元151可以显示在移动终端100中处理的信息。例如,当移动终端100处于电话通话模式时,显示单元151可以显示与通话或其它通信(例如,文本消息收发、多媒体文件下载等等)相关的用户界面(UI)或图形用户界面(GUI)。当移动终端100处于视频通话模式或者图像捕获模式时,显示单元151可以显示捕获的图像和/或接收的图像、示出视频或图像以及相关功能的UI或GUI等等。
同时,当显示单元151和触摸板以层的形式彼此叠加以形成触摸屏时,显示单元151可以用作输入装置和输出装置。显示单元151可以包括液晶显示器(LCD)、薄膜晶体管LCD(TFT-LCD)、有机发光二极管(OLED)显示器、柔 性显示器、三维(3D)显示器等等中的至少一种。这些显示器中的一些可以被构造为透明状以允许用户从外部观看,这可以称为透明显示器,典型的透明显示器可以例如为TOLED(透明有机发光二极管)显示器等等。根据特定想要的实施方式,移动终端100可以包括两个或更多显示单元(或其它显示装置),例如,移动终端可以包括外部显示单元(未示出)和内部显示单元(未示出)。触摸屏可设置为检测触摸输入压力以及触摸输入位置和触摸输入面积。
音频输出模块152可以在移动终端处于呼叫信号接收模式、通话模式、记录模式、语音识别模式、广播接收模式等等模式下时,将无线通信单元110接收的或者在存储器160中存储的音频数据转换音频信号并且输出为声音。而且,音频输出模块152可以提供与移动终端100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出模块152可以包括扬声器、蜂鸣器等等。
存储器160可以存储由控制器180执行的处理和控制操作的软件程序等等,或者可以暂时地存储己经输出或将要输出的数据(例如,电话簿、消息、静态图像、视频等等)。而且,存储器160可以存储关于当触摸施加到触摸屏时输出的多种方式的振动和音频信号的数据。
存储器160可以包括至少一种类型的存储介质,所述存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等等。而且,移动终端100可以与通过网络连接执行存储器160的存储功能的网络存储装置协作。
控制器180通常控制移动终端的总体操作。例如,控制器180执行与语音通话、数据通信、视频通话等等相关的控制和处理。另外,控制器180可以包括用于再现(或回放)多媒体数据的多媒体模块181,多媒体模块181可以构造在控制器180内,或者可以构造为与控制器180分离。控制器180可以执行模式识别处理,以将在触摸屏上执行的手写输入或者图片绘制输入识别为字符或图像。
电源单元190在控制器180的控制下接收外部电力或内部电力并且提供 操作每个元件和组件所需的适当的电力。
这里描述的实施方式可以以使用例如计算机软件、硬件或其任何组合的计算机可读介质来实施。对于硬件实施,这里描述的实施方式可以通过使用特定用途集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理装置(DSPD)、可编程逻辑装置(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、被设计为执行这里描述的功能的电子单元中的至少一种来实施,在一些情况下,这样的实施方式可以在控制器180中实施。对于软件实施,诸如过程或功能的实施方式可以与允许执行至少一种功能或操作的单独的软件模块来实施。软件代码可以由以任何适当的编程语言编写的软件应用程序(或程序)来实施,软件代码可以存储在存储器160中并且由控制器180执行。
至此,己经按照其功能描述了移动终端。下面,为了简要起见,将描述诸如折叠型、直板型、摆动型、滑动型移动终端等等的多种类型的移动终端中的滑动型移动终端作为示例。因此,本发明实施例能够应用于任何类型的移动终端,并且不限于滑动型移动终端。
如图1中所示的移动终端100可以被构造为利用经由帧或分组发送数据的诸如有线和无线通信系统以及基于卫星的通信系统来操作。
基于上述移动终端硬件结构,提出本发明实施例。
本发明实施例中提出一种移动终端,通过将一个TCP流分成通过LTE网络获取的数据和通过WiFi网络获取的数据,能够有效的实现优化分流,且充分利用LTE网络和WiFi网络的特性。
请参阅图2,为本发明第一实施例中移动终端的功能模块的示意图,该移动终端包括:请求发送模块301、划分模块302及流发送模块303。
请求发送模块301,设置为在第一TCP流建立完成后,向服务器发送查询请求,查询请求用于获取第一TCP流待传输的第一数据的大小;
在本发明实施例中,移动终端能够同时接入LTE网络和WiFi网络,可 以是通过在移动终端中设置LTE网络网卡和WiFi网络网卡的方式,使得移动终端能够同时接入LTE网络和WiFi网络。
本发明实施例中的技术方案是在移动终端已经接入LTE网络和WiFi网络的情况下执行的。
其中,在移动终端的应用层传输数据前,建立TCP流,且在第一TCP流建立完成后,移动终端内的请求发送模块301将向服务器发送查询请求,该查询请求用于获取该第一TCP流待传输的第一数据的大小,即该第一数据即为需要从服务器获取的数据。其中,建立TCP流是基于资源地址建立的,因此,该第一数据的大小即为该资源地址对应的数据的大小。且查询请求中至少包含该资源地址。
其中,请求发送模块301可以是在确定第一TCP流建立完成之后,直接向服务器发送查询请求,或者,请求发送模块301可以通过监测的方式确定发送查询请求的时机,例如:若需要通过第一TCP流获取http(HyperText Transfer Protocol,超文本传输协议)数据,移动终端的应用层将向服务器发送请求报文(如“get”报文),并在该请求报文中包含待获取的资源地址,该请求报文用于获取上述的http数据,请求发送模块301在监测到该请求报文之后,将截获该请求报文,使得该请求报文不能真正的发送给服务器,且该请求发送模块301将从该请求报文中获取上述的资源地址,并向服务器发送包含该资源地址的查询请求,以确定该资源地址对应的数据的大小,该数据的大小即为本发明实施例中的第一数据的大小。
在本发明实施例中,若第一TCP流是基于LTE网络建立的,则可以通过LTE网络发送上述的查询请求,若第一TCP流是基于WiFi网络建立的,则可以通过WiFi网络发送上述的查询请求。
划分模块302,设置为在接收到服务器反馈的第一数据的大小后,根据监测到的LTE网络的第一传输速率和WiFi网络的第二传输速率对第一数据的大小进行划分,分别得到通过LTE网络传输的第二数据的大小及通过WiFi网络传输的第三数据的大小;
在本发明实施例中,服务器在接收到查询请求之后,将获取该查询请求中包含的资源地址,并确定该资源地址对应的第一数据的大小,并将该第一 数据的大小反馈给移动终端。
其中,移动终端在接收到第一数据的大小之后,将根据监测到的LTE网络的第一传输速率和WiFi网络的第二传输速率对第一数据的大小进行划分,分别得到通过LTE网络传输的第二数据的大小及通过WiFi网络传输的第三数据的大小。
其中,移动终端可以实时监测LTE网络的第一传输速率和WiFi网络的第二传输速率,也可以在划分模块302需要使用的时候进行监测。
流发送模块303,设置为通过LTE网络向服务器发送包含第二数据的大小的第二数据请求报文,及通过WiFi网络向服务器发送包含第三数据的大小的第三数据请求报文,以通过分流的方式获取第一数据。
在本发明实施例中,划分模块302在得到需要通过LTE网络传输的第二数据的大小及通过WiFi网络传输的第三数据的大小之后,流发送模块303将通过LTE网络向服务器发送包含第二数据的大小的第二数据请求报文,及通过WiFi网络向服务器发送包含第三数据的大小的第三数据请求报文,以通过分流的方式获取第一数据。例如:若资源地址对应的第一数据的大小为100M,且确定的第二数据的大小为30M,第三数据的大小为70M,则将通过LTE网络从服务器获取资源地址的前30M的数据,及通过WiFi网络从服务器获取该资源地址后70M的数据。
在本发明实施例中,移动终端同时接入LTE网络和WiFi网络之后,在第一TCP流建立完成后,请求发送模块301向服务器发送查询请求,以获取该第一TCP流待传输的第一数据的大小,且在接收到服务器反馈的该第一数据的大小之后,划分模块302根据监测到的LTE网络的第一传输速率及WiFi网络的第二传输速率对该第一数据的大小进行划分,分别确定通过LTE网络传输的第二数据的大小及通过WiFi网络传输的第三数据的大小,并由流发送模块303通过LTE网络向服务器发送包含第二数据的大小的第二数据请求报文,及通过WiFi网络向服务器发送包含第三数据的大小的第三数据请求报文,以通过分流的方式获取第一数据。其中,通过将待获取的第一数据的大小基于第一传输速率和第二传输速率在LTE网络和WiFi网络之间进行分流,使得能够充分利用LTE网络和WiFi网络的特性,实现优化 的分流方式。
参照图1,本发明实施例中的请求发送模块301可通过图1中的移动通信模块112实现,划分模块302可通过图1中的控制器180实现,流发送模块303可通过图1中的移动通信模块112实现。
LTE网络和WiFi网络的特性分别是:LTE网络的速度较快,但是价格相对昂贵,WiFi网络完全免费,但是速度较慢。本发明实施例中基于TCP流的业务量(即第一数据的大小)将TCP流进行拆分,使得对于同一个TCP流,能够同时使用到LTE网络和WiFi网络,兼顾了速度及价格的考虑,实现了数据的优化分流。
移动终端通过LTE网络向服务器发送第二数据请求报文,及通过WiFi网络向服务器发送第三数据请求报文之后,服务器将基于该第二数据请求报文中包含的第二数据的大小获取第二数据,并通过LTE网络将该第二数据反馈给移动终端;及基于该第三数据请求报文中包含的第三数据的大小获取第三数据,且通过WiFi网络将该第三数据反馈给移动终端,移动终端在接收到第二数据及第三数据之后,将按照预置的顺序将第二数据及第三数据进行合并,以得到第一数据。
为了更好的理解本发明图2所示第一实施例中的技术方案,请参阅图3,为本发明实施例中多链路智能分流原理的示意图。
其中,多链路至少包含一条LTE网络的链路和一条WiFi网络的链路,本发明实施例中是以一条LTE网络的链路和一条WiFi网络的链路为例的。在图3中,基站和WiFi热点通过核心网络经由路由器,连接到服务器。其中,1表示建立的第一TCP流的第一数据,“拆分”是指将第一数据的大小拆分为第二数据的大小和第三数据的大小,从用户侧(移动终端侧)指向服务器侧的1-1表示通过WiFi网络向服务器发送第二数据请求报文,从服务器侧指向用户侧的1-1表示服务器基于第二数据请求报文反馈的第二数据,从用户侧指向服务器侧的1-2表示通过LTE网络向服务器发送第三数据请 求报文,从服务器侧指向用户侧的1-2表示服务器基于第三数据请求报文反馈的第三数据。且用户侧在接收到服务器反馈的1-1和1-2之后,将通过合并的方式得到第一数据,即2。
请参阅图4,为本发明图2所示第一实施例中划分模块302的细化功能模块的示意图,该划分模块302包括:第一确定模块501及第二确定模块502。
第一确定模块501,设置为根据LTE网络的第一传输速率、WiFi网络的第二传输速率及预置的时延确定第一数据的大小的分配比例;
第二确定模块502,设置为按照分配比例划分第一数据的大小,确定通过LTE网络传输的第二数据的大小及通过WiFi网络传输的第三数据的大小。
在本发明实施例中,移动终端将监测LTE网络的第一传输速率及WiFi网络的第二传输速率,且在接收到服务器反馈的第一数据的大小之后,获取当前的第一传输速率及第二传输速率,并由第一确定模块501根据第一传输速率、第二传输速率及预置的时延确定第一数据的大小的分配比例。
第一确定模块502可以按照如下公式(1)或者公式(2)确定分配比例:
Figure PCTCN2016112407-appb-000005
Figure PCTCN2016112407-appb-000006
在上述公式(1)和公式(2)中:R表示通过WiFi网络传输的第三数据占第一数据的百分比,C表示第一数据的大小,VW表示WiFi网络的第二传输速率,VL表示LTE网络的第一传输速率,t表示预置的时延,其中,分配比例包括R及1-R,且1-R表示通过LTE网络传输的第二数据占第一数据的百分比。
在本发明实施例中,由于LTE网络的传输速度较快,因此,从公式(1)中可以看出:在大多数情况下,移动终端将先接收到通过LTE网络传输的第二数据,且在经过t秒的时延之后,接收到通过WiFi网络传输的第三数 据,并将第二数据及第三数据合并成第一数据,其中,对于不同的应用层业务,t可以是不同的,例如对于语音等实时性较高的业务,t的取值较小,对于文件下载等一类的业务,t的取值较大。移动终端可以基于当前的业务的类型获取该业务的类型对应的预置的时延t。
从公式(2)中可以看出:在WiFi网络的速度越快(即VW越大),预置的时延t越大时,划分给WiFi网络传输的第三数据占第一数据的比例越大。
在本发明实施例中,第二确定模块502将按照得到的分配比例划分第一数据的大小,确定通过LTE网络传输的第二数据的大小及通过WiFi网络传输的第三数据的大小。
在本发明实施例中,通过基于LTE网络的第一传输速率及WiFi网络的第二传输速率划分待传输的第一数据的大小,使得能够充分利用LTE网络和WiFi网络的特性,实现数据的优化分流。
请参阅图5,为本发明图2所示第一实施例中流发送模块303的细化功能模块的示意图,该流发送模块303包括:第一发送模块601及第二发送模块602。
第一发送模块601,设置为若第一TCP流是基于LTE网络建立的,则生成包含第二数据的大小的第二数据请求报文,通过LTE网络向服务器发送第二TCP流,及基于WiFi网络建立第三TCP流,通过WiFi网络向服务器发送携带第三数据的大小的第三TCP流;
第二发送模块602,设置为若第一TCP流是基于WiFi网络建立的,则基于LTE网络建立第二TCP流,通过LTE网络向服务器发送携带第二数据的大小的第二TCP流,及将携带第三数据的大小的第一TCP流作为第三TCP流,通过WiFi网络向服务器发送第三TCP流。
在本发明实施例中,在划分得到第二数据的大小和第三数据的大小之后,还建立一个新的TCP流,使得能够分别通过LTE网络和WiFi网络传输数据,其中,第二数据请求报文中包含第二数据的大小及资源地址,且第二数据的大小是指第二数据在资源地址对应的数据中的范围,第三数据请求报 文中包含第三数据的大小及资源地址,该第三数据的大小是指第三数据在资源地址对应的数据中的范围。例如:第二数据的大小为资源地址对应的数据的0~(1-R)C长度的数据,第三数据的大小为资源地址对应的数据(1-R)C~C长度的数据,因此,通过上述的方式,能够有效的实现数据报文请求的发送。
请参阅图6,为本发明第二实施例中移动终端的功能模块的示意图,该移动终端包括请求发送模块301、划分模块302及流发送模块303,且与图2所示第一实施例中描述的内容相似,此处不做赘述。
其中,划分模块302包括第一确定模块501及第二确定模块502,且与图4所示实施例中描述的内容相似。
其中,流发送模块303包括第一发送模块601及第二发送模块602,且与图5所示实施例中描述的内容相似,此处不做赘述。
在本发明实施例中,移动终端还包括:监测模块701及速率确定模块702。
监测模块701,设置为监测LTE网络在预置时间段内的第一数据流量及监测WiFi网络在预置时间段内的第二数据流量;
速率确定模块702,设置为利用第一数据流量及预置时间段确定第一传输速率,及利用第二数据流量及预置时间段确定第二传输速率。
在本发明实施例中,监测模块701可以实时监测LTE网络和WiFi网络,也可以在移动终端接收到服务器反馈的第一数据的大小后,对LTE网络和WiFi网络进行监测。
其中,监测模块701监测LTE网络在预置时间段内的第一数据流量及监测WiFi网络在预置时间段内的第二数据流量,其中,该预置时间段可以是单位时间。且将由速率确定模块702利用第一数据流量及预置时间段确定第一传输速率,及利用第二数据流量及预置时间段确定第二传输速率。
参照图1,本发明实施例中的请求发送模块301可通过图1中的移动通信模块112实现,划分模块302可通过图1中的控制器180实现,流发送模 块303可通过图1中的移动通信模块112实现,监测模块701及速率确定模块702均可通过图1中的控制器180实现。
在本发明实施例中,考虑到LTE网络的传输能力较为稳定,WiFi网络的速率变化较大,为了获取WiFi网络较准确的第二传输速率,移动终端可以在没有数据传输时,定时通过WiFi网络下载少量数据,以探测WiFi网络的传输能力,且由于WiFi完全免费,并且功耗较低,探测带来的开销较小。
在本发明实施例中,通过对LTE网络和WiFi网络的数据流量进行监测,使得能够监测到LTE网络和WiFi网络的传输速率,便于利用LTE网络和WiFi网络的传输速率确定第一数据的大小的分配,以实现分流优化。
图7为本发明第三实施例中多链路智能分流方法的流程示意图,在该方法中移动终端同时接入长期演进LTE网络和WiFi网络,且该方法包括:
步骤801、在第一TCP流建立完成后,所述移动终端向服务器发送查询请求,所述查询请求用于获取所述第一TCP流待传输的第一数据的大小;
在本发明实施例中,移动终端能够同时接入LTE网络和WiFi网络,可以是通过在移动终端中设置LTE网络网卡和WiFi网络网卡的方式,使得移动终端能够同时接入LTE网络和WiFi网络。
本发明实施例中的技术方案是在移动终端已经接入LTE网络和WiFi网络的情况下执行的。
其中,在移动终端的应用层传输数据前,建立TCP流,且在第一TCP流建立完成后,移动终端将向服务器发送查询请求,该查询请求用于获取该第一TCP流待传输的第一数据的大小,即该第一数据即为需要从服务器获取的数据。其中,建立TCP流是基于资源地址建立的,因此,该第一数据的大小即为该资源地址对应的数据的大小。且查询请求中至少包含该资源地址。
其中,移动终端可以是在确定第一TCP流建立完成之后,直接向服务器发送查询请求,或者,可以通过监测的方式确定发送查询请求的时机,例 如:若需要通过第一TCP流获取http数据,移动终端的应用层将向服务器发送请求报文(如“get”报文),并在该请求报文中包含待获取的资源地址,该请求报文用于获取上述的http数据,移动终端在监测到该请求报文之后,将截获该请求报文,使得该请求报文不能真正的发送给服务器,且将从该请求报文中获取上述的资源地址,并向服务器发送包含该资源地址的查询请求,以确定该资源地址对应的数据的大小,该数据的大小即为本发明实施例中的第一数据的大小。
在本发明实施例中,若第一TCP流是基于LTE网络建立的,则可以通过LTE网络发送上述的查询请求,若第一TCP流是基于WiFi网络建立的,则可以通过WiFi网络发送上述的查询请求。
步骤802、在接收到所述服务器反馈的所述第一数据的大小后,根据监测到的所述LTE网络的第一传输速率和所述WiFi网络的第二传输速率对所述第一数据的大小进行划分,分别得到通过所述LTE网络传输的第二数据的大小及通过所述WiFi网络传输的第三数据的大小;
在本发明实施例中,服务器在接收到查询请求之后,将获取该查询请求中包含的资源地址,并确定该资源地址对应的第一数据的大小,并将该第一数据的大小反馈给移动终端。
其中,移动终端在接收到第一数据的大小之后,将根据监测到的LTE网络的第一传输速率和WiFi网络的第二传输速率对第一数据的大小进行划分,分别得到通过LTE网络传输的第二数据的大小及通过WiFi网络传输的第三数据的大小。
其中,移动终端可以实时监测LTE网络的第一传输速率和WiFi网络的第二传输速率,也可以在需要使用的时候进行监测。
步骤803、通过所述LTE网络向所述服务器发送包含所述第二数据的大小的第二数据请求报文,及通过所述WiFi网络向所述服务器发送包含所述第三数据的大小的第三数据请求报文,以通过分流的方式获取所述第一数据。
在本发明实施例中,在得到需要通过LTE网络传输的第二数据的大小 及通过WiFi网络传输的第三数据的大小之后,移动终端将通过LTE网络向服务器发送包含第二数据的大小的第二数据请求报文,及通过WiFi网络向服务器发送包含第三数据的大小的第三数据请求报文,以通过分流的方式获取第一数据。例如:若资源地址对应的第一数据的大小为100M,且确定的第二数据的大小为30M,第三数据的大小为70M,则将通过LTE网络从服务器获取资源地址的前30M的数据,及通过WiFi网络从服务器获取该资源地址后70M的数据。
在本发明实施例中,移动终端同时接入LTE网络和WiFi网络之后,在第一TCP流建立完成后,向服务器发送查询请求,以获取该第一TCP流待传输的第一数据的大小,且在接收到服务器反馈的该第一数据的大小之后,根据监测到的LTE网络的第一传输速率及WiFi网络的第二传输速率对该第一数据的大小进行划分,分别确定通过LTE网络传输的第二数据的大小及通过WiFi网络传输的第三数据的大小,并通过LTE网络向服务器发送包含第二数据的大小的第二数据请求报文,及通过WiFi网络向服务器发送包含第三数据的大小的第三数据请求报文,以通过分流的方式获取第一数据。其中,通过将待获取的第一数据的大小基于第一传输速率和第二传输速率在LTE网络和WiFi网络之间进行分流,使得能够充分利用LTE网络和WiFi网络的特性,实现优化的分流方式。
LTE网络和WiFi网络的特性分别是:LTE网络的速度较快,但是价格相对昂贵,WiFi网络完全免费,但是速度较慢。本发明实施例中基于TCP流的业务量(即第一数据的大小)将TCP流进行拆分,使得对于同一个TCP流,能够同时使用到LTE网络和WiFi网络,兼顾了速度及价格的考虑,实现了数据的优化分流。
移动终端通过LTE网络向服务器发送第二数据请求报文,及通过WiFi网络向服务器发送第三数据请求报文之后,服务器将基于该第二数据请求报文中包含的第二数据的大小获取第二数据,并通过LTE网络将该第二数据反馈给移动终端;及基于该第三数据请求报文中包含的第三数据的大小获取 第三数据,且通过WiFi网络将该第三数据反馈给移动终端,移动终端在接收到第二数据及第三数据之后,将按照预置的顺序将第二数据及第三数据进行合并,以得到第一数据。
为了更好的理解本发明图7所示第三实施例中的技术方案,请参阅图3,为本发明实施例中多链路智能分流原理的示意图。
其中,多链路至少包含一条LTE网络的链路和一条WiFi网络的链路,本发明实施例中是以一条LTE网络的链路和一条WiFi网络的链路为例的。在图3中,基站和WiFi热点通过核心网络经由路由器,连接到服务器。其中,1表示建立的第一TCP流的第一数据,“拆分”是指将第一数据的大小拆分为第二数据的大小和第三数据的大小,从用户侧(移动终端侧)指向服务器侧的1-1表示通过WiFi网络向服务器发送第二数据请求报文,从服务器侧指向用户侧的1-1表示服务器基于第二数据请求报文反馈的第二数据,从用户侧指向服务器侧的1-2表示通过LTE网络向服务器发送第三数据请求报文,从服务器侧指向用户侧的1-2表示服务器基于第三数据请求报文反馈的第三数据。且用户侧在接收到服务器反馈的1-1和1-2之后,将通过合并的方式得到第一数据,即2。
请参阅图8,为本发明图7所示第三实施例中步骤802的细化步骤的流程示意图,该细化步骤包括:
步骤901、根据所述LTE网络的第一传输速率、所述WiFi网络的第二传输速率及预置的时延确定第一数据的大小的分配比例;
步骤902、按照所述分配比例划分所述第一数据的大小,确定通过所述LTE网络传输的第二数据的大小及通过所述WiFi网络传输的第三数据的大小。
在本发明实施例中,移动终端将监测LTE网络的第一传输速率及WiFi网络的第二传输速率,且在接收到服务器反馈的第一数据的大小之后,获取当前的第一传输速率及第二传输速率,并根据第一传输速率、第二传输速率 及预置的时延确定第一数据的大小的分配比例。
移动终端可以按照如下公式(1)或者公式(2)确定分配比例:
Figure PCTCN2016112407-appb-000007
Figure PCTCN2016112407-appb-000008
在上述公式(1)和公式(2)中:R表示通过WiFi网络传输的第三数据占第一数据的百分比,C表示第一数据的大小,VW表示WiFi网络的第二传输速率,VL表示LTE网络的第一传输速率,t表示预置的时延,其中,分配比例包括R及1-R,且1-R表示通过LTE网络传输的第二数据占第一数据的百分比。
在本发明实施例中,由于LTE网络的传输速度较快,因此,从公式(1)中可以看出:在大多数情况下,移动终端将先接收到通过LTE网络传输的第二数据,且在经过t秒的时延之后,接收到通过WiFi网络传输的第三数据,并将第二数据及第三数据合并成第一数据,其中,对于不同的应用层业务,t可以是不同的,例如对于语音等实时性较高的业务,t的取值较小,对于文件下载等一类的业务,t的取值较大。移动终端可以基于当前的业务的类型获取该业务的类型对应的预置的时延t。
从公式(2)中可以看出:在WiFi网络的速度越快(即VW越大),预置的时延t越大时,划分给WiFi网络传输的第三数据占第一数据的比例越大。
在本发明实施例中,移动终端将按照得到的分配比例划分第一数据的大小,确定通过LTE网络传输的第二数据的大小及通过WiFi网络传输的第三数据的大小。
在本发明实施例中,通过基于LTE网络的第一传输速率及WiFi网络的第二传输速率划分待传输的第一数据的大小,使得能够充分利用LTE网络和WiFi网络的特性,实现数据的优化分流。
可选地,在本发明实施例中,图7所示第三实施例中的步骤803所述通过所述LTE网络向所述服务器发送包含所述第二数据的大小的第二数据请 求报文,及通过所述WiFi网络向所述服务器发送包含所述第三数据的大小的第三数据请求报文包括以下步骤:
若所述第一TCP流是基于LTE网络建立的,则基于所述第一TCP流生成包含所述第二数据的大小的第二数据请求报文,通过所述LTE网络向所述服务器发送所述第二数据请求报文,及基于所述WiFi网络建立第二TCP流,基于所述第二TCP流生成包含所述第三数据的大小的第三数据请求报文,通过所述WiFi网络向所述服务器发送所述第三数据请求报文;
若所述第一TCP流是基于WiFi网络建立的,则基于所述LTE网络建立第三TCP流,基于所述第三TCP流生成包含所述第二数据的大小的所述第二数据请求报文,通过所述LTE网络向所述服务器发送所述第二数据请求报文,及基于所述第一TCP流生成包含所述第三数据的大小的第三数据请求报文,通过所述WiFi网络向所述服务器发送所述第三数据请求报文。
在本发明实施例中,在划分得到第二数据的大小和第三数据的大小之后,还建立一个新的TCP流,使得能够分别通过LTE网络和WiFi网络传输数据,其中,第二数据请求报文中包含第二数据的大小及资源地址,且第二数据的大小是指第二数据在资源地址对应的数据中的范围,第三数据请求报文中包含第三数据的大小及资源地址,该第三数据的大小是指第三数据在资源地址对应的数据中的范围。例如:第二数据的大小为资源地址对应的数据的0~(1-R)C长度的数据,第三数据的大小为资源地址对应的数据(1-R)C~C长度的数据,因此,通过上述的方式,能够有效的实现数据报文请求的发送。
请参阅图9,为本发明第四实施例中多链路智能分流方法的流程示意图,该方法包括:
步骤1001、在第一TCP流建立完成后,所述移动终端向服务器发送查询请求,所述查询请求用于获取所述第一TCP流待传输的第一数据的大小;
步骤1002、在接收到所述服务器反馈的所述第一数据的大小后,监测所述LTE网络在预置时间段内的第一数据流量及监测所述WiFi网络在所述 预置时间段内的第二数据流量;
步骤1003、利用所述第一数据流量及所述预置时间段确定所述第一传输速率,及利用所述第二数据流量及所述预置时间段确定所述第二传输速率;
步骤1004、根据监测到的所述LTE网络的第一传输速率和所述WiFi网络的第二传输速率对所述第一数据的大小进行划分,分别得到通过所述LTE网络传输的第二数据的大小及通过所述WiFi网络传输的第三数据的大小;
步骤1005、通过所述LTE网络向所述服务器发送包含所述第二数据的大小的第二数据请求报文,及通过所述WiFi网络向所述服务器发送包含所述第三数据的大小的第三数据请求报文,以通过分流的方式获取所述第一数据。
在本发明实施例中,步骤1001、步骤1004及步骤1005分别与图7所示第三实施例中的步骤801、步骤802及步骤803描述的内容相似,此次不做赘述。
在本发明实施例中,移动终端可以实时监测LTE网络和WiFi网络,也可以在移动终端接收到服务器反馈的第一数据的大小后,对LTE网络和WiFi网络进行监测。
其中,移动终端监测LTE网络在预置时间段内的第一数据流量及监测WiFi网络在预置时间段内的第二数据流量,其中,该预置时间段可以是单位时间。且利用第一数据流量及预置时间段确定第一传输速率,及利用第二数据流量及预置时间段确定第二传输速率。
在本发明实施例中,考虑到LTE网络的传输能力较为稳定,WiFi网络的速率变化较大,为了获取WiFi网络较准确的第二传输速率,移动终端可以在没有数据传输时,定时通过WiFi网络下载少量数据,以探测WiFi网络的传输能力,且由于WiFi完全免费,并且功耗较低,探测带来的开销较小。
在本发明实施例中,通过对LTE网络和WiFi网络的数据流量进行监测,使得能够监测到LTE网络和WiFi网络的传输速率,便于利用LTE网络和 WiFi网络的传输速率确定第一数据的大小的分配,以实现分流优化。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述多链路智能分流方法。
在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括多个指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明实施例所述的方法。
以上仅为本发明的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
工业实用性
通过本发明实施例,在移动终端同时接入LTE网络和WiFi网络的情况下,基于监测到的LTE网络的第一传输速率和WiFi网络的第二传输速率进行分流处理,能够更大限度的利用LTE网络和WiFi网络的特性,充分利用网络带宽。

Claims (20)

  1. 一种移动终端,所述移动终端同时接入长期演进LTE网络和无线保真WiFi网络,所述移动终端包括:
    请求发送模块,设置为在第一传输控制协议TCP流建立完成后,向服务器发送查询请求,所述查询请求用于获取所述第一TCP流待传输的第一数据的大小;
    划分模块,设置为在接收到所述服务器反馈的所述第一数据的大小后,根据监测到的所述LTE网络的第一传输速率和所述WiFi网络的第二传输速率对所述第一数据的大小进行划分,分别得到通过所述LTE网络传输的第二数据的大小及通过所述WiFi网络传输的第三数据的大小;
    流发送模块,设置为通过所述LTE网络向所述服务器发送包含所述第二数据的大小的第二数据请求报文,及通过所述WiFi网络向所述服务器发送包含所述第三数据的大小的第三数据请求报文,以通过分流的方式获取所述第一数据。
  2. 根据权利要求1所述的移动终端,其中,所述划分模块包括:
    第一确定模块,设置为根据所述LTE网络的第一传输速率、所述WiFi网络的第二传输速率及预置的时延确定第一数据的大小的分配比例;
    第二确定模块,设置为按照所述分配比例划分所述第一数据的大小,确定通过所述LTE网络传输的第二数据的大小及通过所述WiFi网络传输的第三数据的大小。
  3. 根据权利要求2所述的移动终端,其中,所述第一确定模块设置为:
    按照如下公式确定所述分配比例:
    Figure PCTCN2016112407-appb-100001
    或者,按照如下公式确定所述分配比例:
    Figure PCTCN2016112407-appb-100002
    在上述公式中:R表示通过WiFi网络传输的第三数据占所述第一数据 的百分比,C表示所述第一数据的大小,VW表示WiFi网络的第二传输速率,VL表示LTE网络的第一传输速率,t表示所述预置的时延,其中,所述分配比例包括R及1-R,且1-R表示通过LTE网络传输的第二数据占所述第一数据的百分比。
  4. 根据权利要求1所述的移动终端,其中,所述流发送模块包括:
    第一发送模块,设置为若所述第一TCP流是基于LTE网络建立的,则基于所述第一TCP流生成包含所述第二数据的大小的第二数据请求报文,通过所述LTE网络向所述服务器发送所述第二数据请求报文,及基于所述WiFi网络建立第二TCP流,基于所述第二TCP流生成包含所述第三数据的大小的第三数据请求报文,通过所述WiFi网络向所述服务器发送所述第三数据请求报文;
    第二发送模块,设置为若所述第一TCP流是基于WiFi网络建立的,则基于所述LTE网络建立第三TCP流,基于所述第三TCP流生成包含所述第二数据的大小的所述第二数据请求报文,通过所述LTE网络向所述服务器发送所述第二数据请求报文,及基于所述第一TCP流生成包含所述第三数据的大小的第三数据请求报文,通过所述WiFi网络向所述服务器发送所述第三数据请求报文。
  5. 根据权利要求1至4任意一项所述的移动终端,所述移动终端还包括:
    监测模块,设置为监测所述LTE网络在预置时间段内的第一数据流量及监测所述WiFi网络在所述预置时间段内的第二数据流量;
    速率确定模块,设置为利用所述第一数据流量及所述预置时间段确定所述第一传输速率,及利用所述第二数据流量及所述预置时间段确定所述第二传输速率。
  6. 根据权利要求1所述的移动终端,其中,
    所述请求发送模块设置为:在确定第一TCP流建立完成之后,直接向服务器发送查询请求,或者,在确定第一TCP流建立完成之后,通过监测的方式确定发送所述查询请求的时机。
  7. 根据权利要求1或6所述的移动终端,其中,
    所述查询请求中包含所述第一TCP流对应的资源地址。
  8. 根据权利要求2或3所述的移动终端,其中,
    所述预置的时延与当前业务的类型相对应。
  9. 根据权利要求4所述的移动终端,其中,
    第二数据请求报文中包含第二数据的大小及资源地址,所述第二数据的大小是指第二数据在资源地址对应的数据中的范围;第三数据请求报文中包含第三数据的大小及资源地址,所述第三数据的大小是指第三数据在资源地址对应的数据中的范围。
  10. 一种多链路智能分流方法,移动终端同时接入长期演进LTE网络和WiFi网络,所述方法包括:
    在第一TCP流建立完成后,所述移动终端向服务器发送查询请求,所述查询请求用于获取所述第一TCP流待传输的第一数据的大小;
    在接收到所述服务器反馈的所述第一数据的大小后,根据监测到的所述LTE网络的第一传输速率和所述WiFi网络的第二传输速率对所述第一数据的大小进行划分,分别得到通过所述LTE网络传输的第二数据的大小及通过所述WiFi网络传输的第三数据的大小;
    通过所述LTE网络向所述服务器发送包含所述第二数据的大小的第二数据请求报文,及通过所述WiFi网络向所述服务器发送包含所述第三数据的大小的第三数据请求报文,以通过分流的方式获取所述第一数据。
  11. 根据权利要求10所述的方法,其中,所述根据监测到的所述LTE网络的第一传输速率和所述WiFi网络的第二传输速率对所述第一数据的大小进行划分,分别得到通过所述LTE网络上传输的第二数据的大小及通过所述WIFI网络传输的第三数据的大小,包括:
    根据所述LTE网络的第一传输速率、所述WiFi网络的第二传输速率及预置的时延确定第一数据的大小的分配比例;
    按照所述分配比例划分所述第一数据的大小,确定通过所述LTE网络传输的第二数据的大小及通过所述WiFi网络传输的第三数据的大小。
  12. 根据权利要求11所述的方法,其中,所述根据所述LTE网络的第一传输速率、所述WiFi网络的第二传输速率及预置的时延确定第一数据的大小的分配比例,包括:
    按照如下公式确定所述分配比例:
    Figure PCTCN2016112407-appb-100003
    或者,按照如下公式确定所述分配比例:
    Figure PCTCN2016112407-appb-100004
    在上述公式中:R表示通过WiFi网络传输的第三数据占所述第一数据的百分比,C表示所述第一数据的大小,VW表示WiFi网络的第二传输速率,VL表示LTE网络的第一传输速率,t表示所述预置的时延,其中,所述分配比例包括R及1-R,且1-R表示通过LTE网络传输的第二数据占所述第一数据的百分比。
  13. 根据权利要求10所述的方法,其中,所述通过所述LTE网络向所述服务器发送包含所述第二数据的大小的第二数据请求报文,及通过所述WiFi网络向所述服务器发送包含所述第三数据的大小的第三数据请求报文,包括:
    若所述第一TCP流是基于LTE网络建立的,则基于所述第一TCP流生成包含所述第二数据的大小的第二数据请求报文,通过所述LTE网络向所述服务器发送所述第二数据请求报文,及基于所述WiFi网络建立第二TCP流,基于所述第二TCP流生成包含所述第三数据的大小的第三数据请求报文,通过所述WiFi网络向所述服务器发送所述第三数据请求报文;
    若所述第一TCP流是基于WiFi网络建立的,则基于所述LTE网络建立第三TCP流,基于所述第三TCP流生成包含所述第二数据的大小的所述第二数据请求报文,通过所述LTE网络向所述服务器发送所述第二数据请求报文,及基于所述第一TCP流生成包含所述第三数据的大小的第三数据请求报文,通过所述WiFi网络向所述服务器发送所述第三数据请求报文。
  14. 根据权利要求10至13任意一项所述的方法,所述方法还包括:
    监测所述LTE网络在预置时间段内的第一数据流量及监测所述WiFi网络在所述预置时间段内的第二数据流量;
    利用所述第一数据流量及所述预置时间段确定所述第一传输速率,及利用所述第二数据流量及所述预置时间段确定所述第二传输速率。
  15. 根据权利要求10所述的方法,其中,所述在第一TCP流建立完成后,所述移动终端向服务器发送查询请求的步骤中,
    所述移动终端在确定第一TCP流建立完成之后,直接向服务器发送查询请求,或者,在确定第一TCP流建立完成之后,通过监测的方式确定发送所述查询请求的时机。
  16. 根据权利要求10或15所述的方法,其中,
    所述查询请求中包含所述第一TCP流对应的资源地址。
  17. 根据权利要求11或12所述的方法,其中,
    所述预置的时延与当前的业务的类型相对应。
  18. 根据权利要求13所述的方法,其中,
    第二数据请求报文中包含第二数据的大小及资源地址,所述第二数据的大小是指第二数据在资源地址对应的数据中的范围;第三数据请求报文中包含第三数据的大小及资源地址,所述第三数据的大小是指第三数据在资源地址对应的数据中的范围。
  19. 根据权利要求14所述的方法,其中,所述方法还包括:
    移动终端在没有数据传输时,定时通过WiFi网络下载数据,以探测WiFi网络的传输能力。
  20. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现如权利要求10~19所述的方法。
PCT/CN2016/112407 2016-02-25 2016-12-27 多链路智能分流方法及移动终端 WO2017143853A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610104134.7 2016-02-25
CN201610104134.7A CN105682150A (zh) 2016-02-25 2016-02-25 多链路智能分流方法及移动终端

Publications (1)

Publication Number Publication Date
WO2017143853A1 true WO2017143853A1 (zh) 2017-08-31

Family

ID=56305592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112407 WO2017143853A1 (zh) 2016-02-25 2016-12-27 多链路智能分流方法及移动终端

Country Status (2)

Country Link
CN (1) CN105682150A (zh)
WO (1) WO2017143853A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11070466B2 (en) * 2018-08-23 2021-07-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for link aggregation and related devices

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105682150A (zh) * 2016-02-25 2016-06-15 努比亚技术有限公司 多链路智能分流方法及移动终端
CN106358211B (zh) * 2016-11-07 2019-08-02 北京邮电大学 一种异构网络的通信架构及通信方法
CN108259944B (zh) * 2018-02-11 2020-12-01 福州大学 一种基于链路代价的视频多路并行传输分流方法及其系统
CN110300337A (zh) 2018-03-21 2019-10-01 华为技术有限公司 无线保真链路重传报文的方法和装置
CN109743456B (zh) * 2018-12-29 2021-03-12 Oppo广东移动通信有限公司 数据传输方法及相关装置
CN110381080B (zh) * 2019-07-31 2022-01-04 视联动力信息技术股份有限公司 一种多媒体数据包发送方法及装置
CN111278051B (zh) * 2020-01-08 2024-01-12 Oppo广东移动通信有限公司 文件传输方法、装置、存储介质及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050185621A1 (en) * 2004-02-19 2005-08-25 Raghupathy Sivakumar Systems and methods for parallel communication
CN102595509A (zh) * 2012-04-09 2012-07-18 西安电子科技大学 异构网络中基于传输控制协议的并发数据分流方法
WO2012155782A1 (zh) * 2011-09-23 2012-11-22 中兴通讯股份有限公司 数据传输方法及系统
CN103634299A (zh) * 2013-11-14 2014-03-12 北京邮电大学 基于多连接的实时流媒体传输终端与方法
CN104796949A (zh) * 2015-04-21 2015-07-22 北京邮电大学 异构网络业务并行传输方法及系统
CN104869666A (zh) * 2015-04-10 2015-08-26 电信科学技术研究院 数据无线承载配置方法、数据传输方法及设备
CN105682150A (zh) * 2016-02-25 2016-06-15 努比亚技术有限公司 多链路智能分流方法及移动终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8432871B1 (en) * 2010-03-26 2013-04-30 Juniper Networks, Inc. Offloading mobile traffic from a mobile core network
CN103380581B (zh) * 2011-06-03 2017-12-05 Sk电信有限公司 收发装置和收发装置的操作方法
CN102355694A (zh) * 2011-09-29 2012-02-15 华为技术有限公司 无线异构网络中数据分流方法、设备和无线网络控制器
CN104980970A (zh) * 2014-04-04 2015-10-14 中兴通讯股份有限公司 一种实现制式间分流的方法及装置
CN105228210B (zh) * 2015-08-25 2017-05-24 努比亚技术有限公司 多通道路由方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050185621A1 (en) * 2004-02-19 2005-08-25 Raghupathy Sivakumar Systems and methods for parallel communication
WO2012155782A1 (zh) * 2011-09-23 2012-11-22 中兴通讯股份有限公司 数据传输方法及系统
CN102595509A (zh) * 2012-04-09 2012-07-18 西安电子科技大学 异构网络中基于传输控制协议的并发数据分流方法
CN103634299A (zh) * 2013-11-14 2014-03-12 北京邮电大学 基于多连接的实时流媒体传输终端与方法
CN104869666A (zh) * 2015-04-10 2015-08-26 电信科学技术研究院 数据无线承载配置方法、数据传输方法及设备
CN104796949A (zh) * 2015-04-21 2015-07-22 北京邮电大学 异构网络业务并行传输方法及系统
CN105682150A (zh) * 2016-02-25 2016-06-15 努比亚技术有限公司 多链路智能分流方法及移动终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11070466B2 (en) * 2018-08-23 2021-07-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for link aggregation and related devices

Also Published As

Publication number Publication date
CN105682150A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2017143853A1 (zh) 多链路智能分流方法及移动终端
WO2016173422A1 (zh) 多屏互动方法及系统
KR101991145B1 (ko) 저에너지 비콘 인코딩
WO2017071481A1 (zh) 一种移动终端及其实现分屏的方法
WO2017071310A1 (zh) 视频通话系统、装置和方法
WO2017008592A1 (zh) 实现终端设备控制的方法、智能设备及系统
US11610491B2 (en) Data transmission method and apparatus, and unmanned aerial vehicle
CN105282245B (zh) 跨服务器消息推送系统及方法
WO2018108049A1 (zh) 一种信息处理方法及终端、计算机存储介质
WO2017173893A1 (zh) 数据传输装置、方法及计算机存储介质
US9591524B2 (en) Method and apparatus for transmitting data in network system, and data transmission system
WO2016155509A1 (zh) 移动终端的握持方式判断方法及装置
WO2018045962A1 (zh) 基于位置的信息预警方法、终端、服务器及系统
WO2016161986A1 (zh) 操作识别方法、装置、移动终端及计算机存储介质
CN108093019B (zh) 一种成员信息的刷新方法及终端
WO2016188394A1 (zh) 降噪方法、降噪装置和计算机可读存储介质
CN111314444B (zh) 一种信息推送、显示方法和装置
WO2019100259A1 (zh) 数据传输方法、装置及无人机
WO2017032118A1 (zh) 来电处理方法、装置及系统
WO2016188495A1 (zh) 语音切换方法、终端、服务器及系统、存储介质
CN106507072A (zh) 一种无线投影装置、系统及方法
WO2016155425A1 (zh) 数据发送操作撤销方法、装置及计算机存储介质
WO2018032917A1 (zh) 一种移动终端、获取对焦值的方法以及计算机可读存储介质
WO2016155490A1 (zh) 触摸操作区域长按操作的识别方法及装置
CN107809448B (zh) 一种数据处理方法及终端

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891301

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891301

Country of ref document: EP

Kind code of ref document: A1