US20210036955A1 - Integrated access backhaul network metric exchange for 5g or other next generation network - Google Patents
Integrated access backhaul network metric exchange for 5g or other next generation network Download PDFInfo
- Publication number
- US20210036955A1 US20210036955A1 US17/072,106 US202017072106A US2021036955A1 US 20210036955 A1 US20210036955 A1 US 20210036955A1 US 202017072106 A US202017072106 A US 202017072106A US 2021036955 A1 US2021036955 A1 US 2021036955A1
- Authority
- US
- United States
- Prior art keywords
- data
- network
- quality
- quality data
- network node
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0268—Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/70—Routing based on monitoring results
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0805—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/12—Network monitoring probes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/50—Testing arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0231—Traffic management, e.g. flow control or congestion control based on communication conditions
- H04W28/0236—Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0278—Traffic management, e.g. flow control or congestion control using buffer status reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/18—Negotiating wireless communication parameters
- H04W28/20—Negotiating bandwidth
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/12—Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/16—Interfaces between hierarchically similar devices
- H04W92/20—Interfaces between hierarchically similar devices between access points
Definitions
- This disclosure relates generally to an integrated access backhaul network metric exchange for a 5G new radio (NR) networks.
- this disclosure relates to an integrated access backhaul network metric exchange to facilitate routing and scheduling for a 5G, or other next generation network, air interface.
- NR new radio
- 5th generation (5G) wireless systems represent a next major phase of mobile telecommunications standards beyond the current telecommunications standards of 4 th generation (4G).
- 5G planning aims at higher capacity than current 4G, allowing a higher number of mobile broadband users per area unit, and allowing consumption of higher or unlimited data quantities. This would enable a large portion of the population to stream high-definition media many hours per day with their mobile devices, when out of reach of wireless fidelity hotspots.
- 5G research and development also aims at improved support of machine-to-machine communication, also known as the Internet of things, aiming at lower cost, lower battery consumption, and lower latency than 4G equipment.
- FIG. 1 illustrates an example wireless communication system in which a network node device (e.g., network node) and user equipment (UE) can implement various aspects and embodiments of the subject disclosure.
- a network node device e.g., network node
- UE user equipment
- FIG. 2 illustrates an example schematic system block diagram of a new radio access architecture according to one or more embodiments.
- FIG. 3 illustrates an example schematic system block diagram of integrated access and backhaul links according to one or more embodiments.
- FIG. 4 illustrates an example user-plane protocol stack according to one or more embodiments.
- FIG. 5 illustrates an example schematic system block diagram of integrated access and backhaul links according to one or more embodiments.
- FIG. 6 illustrates an example flow diagram of a method that facilitates an integrated access backhaul network metric exchange according to one or more embodiments.
- FIG. 7 illustrates an example flow diagram of a system that facilitates an integrated access backhaul network metric exchange according to one or more embodiments.
- FIG. 8 illustrates an example flow diagram of a machine-readable medium that facilitates an integrated access backhaul network metric exchange according to one or more embodiments.
- FIG. 9 illustrates an example block diagram of an example mobile handset operable to engage in a system architecture that facilitates secure wireless communication according to one or more embodiments described herein.
- FIG. 10 illustrates an example block diagram of an example computer operable to engage in a system architecture that facilitates secure wireless communication according to one or more embodiments described herein.
- ком ⁇ онент can be a processor, a process running on a processor, an object, an executable, a program, a storage device, and/or a computer.
- an application running on a server and the server can be a component.
- One or more components can reside within a process, and a component can be localized on one computer and/or distributed between two or more computers.
- these components can execute from various machine-readable media having various data structures stored thereon.
- the components can communicate via local and/or remote processes such as in accordance with a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network, e.g., the Internet, a local area network, a wide area network, etc. with other systems via the signal).
- a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network, e.g., the Internet, a local area network, a wide area network, etc. with other systems via the signal).
- a component can be an apparatus with specific functionality provided by mechanical parts operated by electric or electronic circuitry; the electric or electronic circuitry can be operated by a software application or a firmware application executed by one or more processors; the one or more processors can be internal or external to the apparatus and can execute at least a part of the software or firmware application.
- a component can be an apparatus that provides specific functionality through electronic components without mechanical parts; the electronic components can include one or more processors therein to execute software and/or firmware that confer(s), at least in part, the functionality of the electronic components.
- a component can emulate an electronic component via a virtual machine, e.g., within a cloud computing system.
- exemplary and/or “demonstrative” are used herein to mean serving as an example, instance, or illustration. For the avoidance of doubt, the subject matter disclosed herein is not limited by such examples.
- any aspect or design described herein as “exemplary” and/or “demonstrative” is not necessarily to be construed as preferred or advantageous over other aspects or designs, nor is it meant to preclude equivalent exemplary structures and techniques known to those of ordinary skill in the art.
- the terms “includes,” “has,” “contains,” and other similar words are used in either the detailed description or the claims, such terms are intended to be inclusive—in a manner similar to the term “comprising” as an open transition word—without precluding any additional or other elements.
- the term “infer” or “inference” refers generally to the process of reasoning about, or inferring states of, the system, environment, user, and/or intent from a set of observations as captured via events and/or data. Captured data and events can include user data, device data, environment data, data from sensors, sensor data, application data, implicit data, explicit data, etc. Inference can be employed to identify a specific context or action, or can generate a probability distribution over states of interest based on a consideration of data and events, for example.
- Inference can also refer to techniques employed for composing higher-level events from a set of events and/or data. Such inference results in the construction of new events or actions from a set of observed events and/or stored event data, whether the events are correlated in close temporal proximity, and whether the events and data come from one or several event and data sources.
- Various classification schemes and/or systems e.g., support vector machines, neural networks, expert systems, Bayesian belief networks, fuzzy logic, and data fusion engines
- the disclosed subject matter can be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer to implement the disclosed subject matter.
- article of manufacture as used herein is intended to encompass a computer program accessible from any computer-readable device, machine-readable device, computer-readable carrier, computer-readable media, or machine-readable media.
- computer-readable media can include, but are not limited to, a magnetic storage device, e.g., hard disk; floppy disk; magnetic strip(s); an optical disk (e.g., compact disk (CD), a digital video disc (DVD), a Blu-ray DiscTM (BD)); a smart card; a flash memory device (e.g., card, stick, key drive); and/or a virtual device that emulates a storage device and/or any of the above computer-readable media.
- a magnetic storage device e.g., hard disk; floppy disk; magnetic strip(s); an optical disk (e.g., compact disk (CD), a digital video disc (DVD), a Blu-ray DiscTM (BD)); a smart card; a flash memory device (e.g., card, stick, key drive); and/or a virtual device that emulates a storage device and/or any of the above computer-readable media.
- a magnetic storage device e.g., hard disk; floppy disk; magnetic
- various embodiments are described herein to facilitate an integrated access backhaul network metric exchange for a 5G or other next generation networks.
- the methods or algorithms are depicted and described as a series of acts. It is to be understood and appreciated that the various embodiments are not limited by the acts illustrated and/or by the order of acts. For example, acts can occur in various orders and/or concurrently, and with other acts not presented or described herein. Furthermore, not all illustrated acts may be required to implement the methods. In addition, the methods could alternatively be represented as a series of interrelated states via a state diagram or events.
- article of manufacture e.g., a machine-readable storage medium
- article of manufacture is intended to encompass a computer program accessible from any computer-readable device, carrier, or media, including a non-transitory machine-readable storage medium.
- Such wireless communication technologies can include UMTS, Code Division Multiple Access (CDMA), Wi-Fi, Worldwide Interoperability for Microwave Access (WiMAX), General Packet Radio Service (GPRS), Enhanced GPRS, Third Generation Partnership Project (3GPP), LTE, Third Generation Partnership Project 2 (3GPP2) Ultra Mobile Broadband (UMB), High Speed Packet Access (HSPA), Evolved High Speed Packet Access (HSPA+), High-Speed Downlink Packet Access (HSDPA), High-Speed Uplink Packet Access (HSUPA), Zigbee, or another IEEE 802.XX technology. Additionally, substantially all aspects disclosed herein can be exploited in legacy telecommunication technologies.
- Facilitating an integrated access backhaul network metric exchange for a 5G network can be implemented in connection with any type of device with a connection to the communications network (e.g., a mobile handset, a computer, a handheld device, etc.) any Internet of things (TOT) device (e.g., toaster, coffee maker, blinds, music players, speakers, etc.), and/or any connected vehicles (cars, airplanes, space rockets, and/or other at least partially automated vehicles (e.g., drones)).
- TOT Internet of things
- UE user equipment
- UE can refer to any type of wireless device that communicates with a radio network node in a cellular or mobile communication system.
- Examples of UE are target device, device to device (D2D) UE, machine type UE or UE capable of machine to machine (M2M) communication, PDA, Tablet, mobile terminals, smart phone, laptop embedded equipped (LEE), laptop mounted equipment (LME), USB dongles, etc.
- D2D device to device
- M2M machine to machine
- PDA machine to machine
- Tablet mobile terminals
- smart phone laptop embedded equipped (LEE), laptop mounted equipment (LME), USB dongles, etc.
- LME laptop mounted equipment
- USB dongles etc.
- the terms element, elements and antenna ports can be interchangeably used but carry the same meaning in this disclosure.
- the embodiments are applicable to single carrier as well as to multicarrier (MC) or carrier aggregation (CA) operation of the UE.
- MC multicarrier
- CA carrier aggregation
- CA carrier aggregation
- radio network node, or simply network node. It can refer to any type of network node that serves UE is connected to other network nodes or network elements or any radio node from where UE receives a signal.
- radio network nodes are Node B, base station (BS), multi-standard radio (MSR) node such as MSR BS, eNode B, network controller, radio network controller (RNC), base station controller (BSC), relay, donor node controlling relay, base transceiver station (BTS), access point (AP), transmission points, transmission nodes, RRU, RRH, nodes in distributed antenna system (DAS), etc.
- Cloud radio access networks can enable the implementation of concepts such as software-defined network (SDN) and network function virtualization (NFV) in 5G networks.
- SDN software-defined network
- NFV network function virtualization
- This disclosure can facilitate a generic channel state information framework design for a 5G network.
- Certain embodiments of this disclosure can comprise an SDN controller that can control routing of traffic within the network and between the network and traffic destinations.
- the SDN controller can be merged with the 5G network architecture to enable service deliveries via open application programming interfaces (“APIs”) and move the network core towards an all internet protocol (“IP”), cloud based, and software driven telecommunications network.
- IP internet protocol
- the SDN controller can work with, or take the place of policy and charging rules function (“PCRF”) network elements so that policies such as quality of service and traffic management and routing can be synchronized and managed end to end.
- PCRF policy and charging rules function
- 5G networks can comprise the following: data rates of several tens of megabits per second supported for tens of thousands of users; 1 gigabit per second can be offered simultaneously to tens of workers on the same office floor; several hundreds of thousands of simultaneous connections can be supported for massive sensor deployments; spectral efficiency can be enhanced compared to 4G; improved coverage; enhanced signaling efficiency; and reduced latency compared to LTE.
- each subcarrier can occupy bandwidth (e.g., subcarrier spacing). If the carriers use the same bandwidth spacing, then it can be considered a single numerology. However, if the carriers occupy different bandwidth and/or spacing, then it can be considered a multiple numerology.
- This disclosure proposes a solution that allows an adaptation layer of a child IAB node to send a quality metric to its parent IAB node.
- the quality metric can indicate to the parent, information related to one or more of the following: quality of routes further down from the child node up to the serving IAB node for a UE bearer, and/or radio quality experienced by packets further down from the child node up to the serving node for a UE bearer.
- Such a quality metric can be transmitted by the child IAB node to the parent IAB node in one or more of the following solutions.
- the first solution can comprise the quality metric being transmitted by the child IAB node to the parent IAB node as part of a header field of the adaptation layer packet data unit (PDU) on an uplink channel of an IAB link. Note that this method assumes that there is data being transmitted from the child node to the parent node on the uplink.
- the second solution can comprise the quality metric being transmitted by the child IAB node to the parent IAB node as part of a new adaptation layer PDU defined for this purpose, which is different from the normal adaptation layer PDU defined for normal data transfer. It should be noted that the use of such an adaptation layer PDU is not dependent upon the existence of uplink data traffic between the child IAB node and the parent IAB node. Thus, the second solution is more robust than the first solution.
- the adaptation layer at the parent IAB node When the adaptation layer at the parent IAB node receives such a quality metric from the child node for a particular UE bearer, it can further modify this quality metric according to its view of the link between the child node and itself.
- This modified quality metric can be provided to a mobile termination (MT) of this IAB node for transmission to its parent, in a similar manner as to how it received the quality metric from its child IAB node. Consequently, the parent IAB nodes can have a cumulative view of the quality of the entire IAB route from itself all the way down to the serving IAB node for every UE bearer.
- MT mobile termination
- redundant routes can be labeled by the donor IAB node with a route identifier.
- the route identifier can be included as part of the adaptation layer header of the adaptation layer PDU.
- this solution can also be used for quality metric transmissions on redundant routes that are not currently being used for data transmission.
- a redundant route is established for UE bearer, it can be maintained by periodic transmission of quality metric information from children nodes to parent nodes. It follows naturally, that once cumulative quality metric information is available for redundant routes at each parent node for each UE bearer, each IAB node can have the information it needs to be able to dynamically make a route selection decision.
- Such a solution can allow IAB nodes to dynamically respond to impairments such as IAB link failure, congestion, poor radio conditions, etc.
- quality metric information can be used by the IAB node to influence the scheduling of packets of the IAB link.
- One of the issues faced by an IAB network is that the parent IAB node of an intermediate IAB hop can be unaware of the radio conditions experienced by the UEs served by the child IAB node. This can result in either over-allocation of resources to the child IAB node, causing congestion at the child IAB node, or can cause under-allocation of resources to the child IAB node, causing poor performance. In either case, not fully understanding the radio conditions experienced by UEs served by the children IAB nodes can have negative consequences.
- the quality metric can be received by an IAB node at the adaptation layer, so this quality metric can be provided to the scheduler at the media access control (MAC) layer of the IAB node, thereby utilizing cross-layer communication.
- MAC media access control
- a metric which can be used by the IAB nodes to perform scheduling is a combination of access and backhaul link L1 or L3 reference signal received power (RSRP)/signal interference-to-noise ratio (SINR) measurements based on SSBs or CSI-RS.
- the metric can be based on access and backhaul link CSI information (e.g. CQI, RI).
- the metric can comprise a fixed weight which is applied to the scheduling of a packet if it contains data intended for a child IAB node to be carried over a backhaul link served by the IAB node.
- the metric can comprise a weight based on the topology associated with the child IAB node.
- the weight can be based on loading information (e.g., buffer status or data rate) of the child IAB node and associated descendent IAB nodes of the backhaul and access link hops on the route of the scheduled packet.
- the metric can comprise computing the mutual information (e.g., normalized link capacity expressed as log 2(1+SNR)) metric across the access and backhaul links between the scheduling IAB node and the destination.
- the mutual information can be computed based on estimated or measured SNR/SINR of the access and backhaul links on the route of the packet.
- the end-to-end quality metric can be directly computed by the IAB node based on exchanged information described in the previous alternatives and a configured function (e.g. max/min, logarithm, linear or exponential scaling).
- the end-to-end quality metric can be aggregated by IAB nodes along the route and updated with a per-link component by each IAB node until it reaches the scheduling IAB node.
- an IAB node can make a routing information decision, which can be communicated between IAB s. For example, if there is a link failure further down from a first IAB node, then the first IAB node cannot be able to detect the link failure. However, if the scheduler at the IAB node has information about links further down from the IAB node, then that information can be used for making additional decisions. Thus, the concept is that a mechanism between IAB nodes can change a metric between the IAB nodes to indicate radio quality.
- the adaptation layer which can also known as the backhaul adaptation protocol, is the layer that can perform routing within the IAB network.
- the header field that is associated with that packet can contain a field related to the quality.
- another adaptation layer can be defined to have control PDUs (e.g., uplink scheduling request, beam switching, etc.) where data other than user plane data is sent, thereby allowing another type of control PDU (e.g., a data PDU) to be defined, which can incorporate the quality data, regardless of whether there is packet data to be sent.
- the data PDU can comprise a header field that comprises the quality metric as well.
- a method comprising receiving, by a first wireless network device comprising a processor from a second wireless network device, quality data representative of a quality metric associated with a route for packet data.
- the method can comprise modifying, by the first wireless network device, the quality data in accordance with a link between the first wireless network device and the second wireless network device, resulting in modified quality data.
- the method can comprise sending, by the first wireless network device, the modified quality data to a mobile termination function of the first wireless network device.
- a system can facilitate, receiving, from a first node device of a wireless network, quality data representative of a quality metric associated with a route for packet data.
- the system can facilitate modifying the quality data in accordance with a link between the first node device and a second node device of the wireless network, resulting in modified quality data.
- the system can facilitate sending the modified quality data to a mobile termination function of the second node device.
- a machine-readable storage medium that can perform the operations comprising facilitating receiving, from a first node device of a wireless network, quality data representative of a quality metric associated with a route for packet data.
- the machine-readable storage medium can perform the operations comprising facilitating modifying the quality data in accordance with a link between the first node device and a second node device of the wireless network, resulting in modified quality data.
- the machine-readable storage medium can perform the operations comprising facilitating sending the modified quality data to a mobile termination function of the second node device.
- system 100 can comprise one or more UEs 102 .
- the non-limiting term user equipment can refer to any type of device that can communicate with a network node in a cellular or mobile communication system.
- a UE can have one or more antenna panels having vertical and horizontal elements.
- Examples of a UE comprise a target device, device to device (D2D) UE, machine type UE or UE capable of machine to machine (M2M) communications, personal digital assistant (PDA), tablet, mobile terminals, smart phone, laptop mounted equipment (LME), universal serial bus (USB) dongles enabled for mobile communications, a computer having mobile capabilities, a mobile device such as cellular phone, a laptop having laptop embedded equipment (LEE, such as a mobile broadband adapter), a tablet computer having a mobile broadband adapter, a wearable device, a virtual reality (VR) device, a heads-up display (HUD) device, a smart car, a machine-type communication (MTC) device, and the like.
- User equipment UE 102 can also comprise IOT devices that communicate wirelessly.
- system 100 is or comprises a wireless communication network serviced by one or more wireless communication network providers.
- a UE 102 can be communicatively coupled to the wireless communication network via a network node 104 .
- the network node e.g., network node device
- UE user equipment
- the UE 102 can send transmission type recommendation data to the network node 104 .
- the transmission type recommendation data can comprise a recommendation to transmit data via a closed loop MIMO mode and/or a rank-1 precoder mode.
- a network node can have a cabinet and other protected enclosures, an antenna mast, and multiple antennas for performing various transmission operations (e.g., MIMO operations).
- Network nodes can serve several cells, also called sectors, depending on the configuration and type of antenna.
- the UE 102 can send and/or receive communication data via a wireless link to the network node 104 .
- the dashed arrow lines from the network node 104 to the UE 102 represent downlink (DL) communications and the solid arrow lines from the UE 102 to the network nodes 104 represents an uplink (UL) communication.
- System 100 can further include one or more communication service provider networks 106 that facilitate providing wireless communication services to various UEs, including UE 102 , via the network node 104 and/or various additional network devices (not shown) included in the one or more communication service provider networks 106 .
- the one or more communication service provider networks 106 can include various types of disparate networks, including but not limited to: cellular networks, femto networks, picocell networks, microcell networks, internet protocol (IP) networks Wi-Fi service networks, broadband service network, enterprise networks, cloud based networks, and the like.
- IP internet protocol
- system 100 can be or include a large scale wireless communication network that spans various geographic areas.
- the one or more communication service provider networks 106 can be or include the wireless communication network and/or various additional devices and components of the wireless communication network (e.g., additional network devices and cell, additional UEs, network server devices, etc.).
- the network node 104 can be connected to the one or more communication service provider networks 106 via one or more backhaul links 108 .
- the one or more backhaul links 108 can comprise wired link components, such as a T1/E1 phone line, a digital subscriber line (DSL) (e.g., either synchronous or asynchronous), an asymmetric DSL (ADSL), an optical fiber backbone, a coaxial cable, and the like.
- the one or more backhaul links 108 can also include wireless link components, such as but not limited to, line-of-sight (LOS) or non-LOS links which can include terrestrial air-interfaces or deep space links (e.g., satellite communication links for navigation).
- LOS line-of-sight
- non-LOS links which can include terrestrial
- Wireless communication system 100 can employ various cellular systems, technologies, and modulation modes to facilitate wireless radio communications between devices (e.g., the UE 102 and the network node 104 ). While example embodiments might be described for 5G new radio (NR) systems, the embodiments can be applicable to any radio access technology (RAT) or multi-RAT system where the UE operates using multiple carriers e.g., LTE FDD/TDD, GSM/GERAN, CDMA2000, etc.
- RAT radio access technology
- system 100 can operate in accordance with global system for mobile communications (GSM), universal mobile telecommunications service (UMTS), long term evolution (LTE), LTE frequency division duplexing (LTE FDD, LTE time division duplexing (TDD), high speed packet access (HSPA), code division multiple access (CDMA), wideband CDMA (WCMDA), CDMA2000, time division multiple access (TDMA), frequency division multiple access (FDMA), multi-carrier code division multiple access (MC-CDMA), single-carrier code division multiple access (SC-CDMA), single-carrier FDMA (SC-FDMA), orthogonal frequency division multiplexing (OFDM), discrete Fourier transform spread OFDM (DFT-spread OFDM) single carrier FDMA (SC-FDMA), Filter bank based multi-carrier (FBMC), zero tail DFT-spread-OFDM (ZT DFT-s-OFDM), generalized frequency division multiplexing (GFDM), fixed mobile convergence (FMC), universal fixed mobile convergence (UFMC), unique word
- system 100 various features and functionalities of system 100 are particularly described wherein the devices (e.g., the UEs 102 and the network node 104 ) of system 100 are configured to communicate wireless signals using one or more multi carrier modulation schemes, wherein data symbols can be transmitted simultaneously over multiple frequency subcarriers (e.g., OFDM, CP-OFDM, DFT-spread OFMD, UFMC, FMBC, etc.).
- the embodiments are applicable to single carrier as well as to multicarrier (MC) or carrier aggregation (CA) operation of the UE.
- MC multicarrier
- CA carrier aggregation
- CA carrier aggregation
- multi-carrier system multi-cell operation
- multi-carrier operation multi-carrier
- Multi- RAB radio bearers
- system 100 can be configured to provide and employ 5G wireless networking features and functionalities.
- 5G wireless communication networks are expected to fulfill the demand of exponentially increasing data traffic and to allow people and machines to enjoy gigabit data rates with virtually zero latency.
- 5G supports more diverse traffic scenarios.
- 5G networks can be employed to support data communication between smart cars in association with driverless car environments, as well as machine type communications (MTCs).
- MTCs machine type communications
- the ability to dynamically configure waveform parameters based on traffic scenarios while retaining the benefits of multi carrier modulation schemes can provide a significant contribution to the high speed/capacity and low latency demands of 5G networks.
- multi carrier modulation schemes e.g., OFDM and related schemes
- waveforms that split the bandwidth into several sub-bands different types of services can be accommodated in different sub-bands with the most suitable waveform and numerology, leading to an improved spectrum utilization for 5G networks.
- features of proposed 5G networks may comprise: increased peak bit rate (e.g., 20 Gbps), larger data volume per unit area (e.g., high system spectral efficiency—for example about 3.5 times that of spectral efficiency of long term evolution (LTE) systems), high capacity that allows more device connectivity both concurrently and instantaneously, lower battery/power consumption (which reduces energy and consumption costs), better connectivity regardless of the geographic region in which a user is located, a larger numbers of devices, lower infrastructural development costs, and higher reliability of the communications.
- increased peak bit rate e.g., 20 Gbps
- larger data volume per unit area e.g., high system spectral efficiency—for example about 3.5 times that of spectral efficiency of long term evolution (LTE) systems
- LTE long term evolution
- 5G networks may allow for: data rates of several tens of megabits per second should be supported for tens of thousands of users, 1 gigabit per second to be offered simultaneously to tens of workers on the same office floor, for example; several hundreds of thousands of simultaneous connections to be supported for massive sensor deployments; improved coverage, enhanced signaling efficiency; reduced latency compared to LTE.
- the upcoming 5G access network may utilize higher frequencies (e.g., >6 GHz) to aid in increasing capacity.
- higher frequencies e.g., >6 GHz
- mmWave millimeter wave
- Ghz gigahertz
- the millimeter waves have shorter wavelengths that range from 10 millimeters to 1 millimeter, and these mmWave signals experience severe path loss, penetration loss, and fading.
- the shorter wavelength at mmWave frequencies also allows more antennas to be packed in the same physical dimension, which allows for large-scale spatial multiplexing and highly directional beamforming.
- Multi-antenna techniques can significantly increase the data rates and reliability of a wireless communication system.
- MIMO multiple input multiple output
- 3GPP third-generation partnership project
- LTE third-generation partnership project
- MIMO multiple-input multiple-output
- MIMO multiple-input multiple-output
- MIMO can improve mmWave communications, and has been widely recognized a potentially important component for access networks operating in higher frequencies.
- MIMO can be used for achieving diversity gain, spatial multiplexing gain and beamforming gain. For these reasons, MIMO systems are an important part of the 3rd and 4th generation wireless systems, and are planned for use in 5G systems.
- 3GPP NR-based 5G mobile networks can be deployed using a split RAN protocol architecture such that on the user plane the packet data convergence protocol (PDCP) sublayers can reside at a centralized unit (CU) 304 , while the radio link control (RLC), media access control (MAC), and physical layer (PHY) layers can reside at the distributed unit (DU) 306 .
- PDCP packet data convergence protocol
- RLC radio link control
- MAC media access control
- PHY physical layer
- DU distributed unit
- User plane data can be carried on data radio bearers (DRBs) that traverse the above described user plane RAN protocol architecture.
- DRBs data radio bearers
- signaling radio bearers can be set up to carry control messages from the radio resource control (RRC) layer, also utilize the packet data control protocol (PDCP) layer at the CU, and are further carry the control messages down through the RLC, medium access control (MAC), and physical (PHY) layers at the DU 306 to be delivered to the UE 102 over the air interface.
- RRC radio resource control
- PDCP packet data control protocol
- MAC medium access control
- PHY physical layers
- Each network user can be allocated multiple DRBs and SRBs by the network.
- the network interface between the CU 304 and DU 306 can be called the F1 interface per 3GPP specifications.
- An IAB feature can enable future cellular network deployment scenarios and applications to the support wireless backhaul and relay links enabling flexible and very dense deployment of NR cells without the need for densifying the transport network proportionately.
- IAB links Due to the expected larger bandwidth available for NR compared to LTE (e.g., mmWave spectrum) along with the native deployment of massive MIMO or multi-beam systems in NR, IAB links can be developed and deployed. This can allow easier deployment of a dense network of self-backhauled NR cells in a more integrated manner by building upon many of the control and data channels/procedures defined for providing access to UEs.
- LTE e.g., mmWave spectrum
- the network 300 can allow a relay node to multiplex access and backhaul links in time, frequency, and/or space (e.g., beam-based operation).
- FIG. 3 illustrates a generic IAB set-up comprising a core network 302 , a centralized unit 304 , donor distributed unit 306 , relay distributed unit 308 , and UEs 1021 , 1022 , 1023 .
- the donor distributed unit 306 e.g., access point
- the relay distributed unit 308 can take the backhaul link and convert it into different strains for the connected UEs 1021 , 1022 , 1023 .
- FIG. 3 depicts a single hop (e.g., over the air), it should be noted that multiple backhaul hops can occur in other embodiments.
- FIG. 4 illustrated is an example user-plane protocol stack 400 according to one or more embodiments.
- FIG. 4 depicts a new protocol stack layer, currently called an adaptation layer.
- the adaptation layer at each IAB node 402 , 404 can perform routing of packets across the IAB backhaul network. It can also perform a many-to-one mapping of UE bearers into a radio link control (RLC) channel across an IAB hop.
- RLC radio link control
- an exchange of a quality metric can occur between a child IAB node (e.g., IAB node 402 ) and a parent IAB node (e.g., IAB node parent 404 ) at the adaptation layer (e.g., adapt) to improve routing and/or scheduling of user data packets across the IAB network.
- a child IAB node e.g., IAB node 402
- a parent IAB node e.g., IAB node parent 404
- the adaptation layer e.g., adapt
- the adaptation (e.g., adapt) layer can either be above the RLC layer or below the RLC layer in various alternatives.
- data from multiple UE bearers can be aggregated into one or more backhaul channels.
- the aggregation of data from multiple UE bearers into one or more backhaul channels can be performed at the adapt layer above the RLC.
- the routing functionality can be a part of the adapt layer.
- the adapt layer is below the RLC, there can be a routing sublayer at the top of the protocol stack at each IAB node
- the protocol stack from the mobile termination (MT) of a serving IAB node 402 to the distributed unit (DU) of the donor IAB node 406 can comprise a general packet radio services tunneling protocol (GTP-U) layer, a user datagram protocol (UDP) layer, a security layer, an internet protocol (IP) layer, an adaption (adapt) layer, a radio link control (RLC) layer, a media access control (MAC) layer, and a physical (PHY) layer.
- GTP-U general packet radio services tunneling protocol
- UDP user datagram protocol
- IP internet protocol
- RLC radio link control
- MAC media access control
- PHY physical
- the adapt layer can perform a routing function from one IAB node (e.g., IAB node 402 ) to the IAB node parent 404 , via the adapt layer, while also communicating via the RLC, MAC, and/or PHY layers.
- the IAB node parent 404 can then communicate this data to the donor IAB node 406 .
- FIG. 5 illustrated is an example schematic system block diagram of integrated access and backhaul links 500 according to one or more embodiments.
- the child IAB nodes 402 , 502 can send a quality metric via link 2 and link 3 , respectively, to its parent IAB node 404 , to indicate to the parent IAB node 404 information related to the quality of further down from the child IAB nodes 402 , 502 .
- this information can comprise information associated with the UE bearer of the UE 102 and/or radio quality experienced by packets being transmitted between the UE bearer and the child IAB node 402 .
- This information can be transmitted within a header field of the adapt layers between the child IAB node 402 , the parent IAB node 404 , and the donor IAB node 406 .
- another adapt layer can be used to transmit the aforementioned data, wherein the utilization of the other adapt layer is not dependent upon the existence of uplink data traffic between the child IAB node 402 and the parent IAB node 404 .
- the parent IAB node 404 can modify the information to comprise its assessment of the links (e.g., link 2 and link 3 ) between the parent IAB node 404 and the child IAB nodes 402 , 502 . This data can then be sent to the donor IAB node 406 .
- a method can comprise receiving (e.g. via parent IAB node 404 ) from a second wireless network device (e.g., via IAB node 402 ), quality data representative of a quality metric associated with a route for packet data.
- the method can comprise modifying, (e.g. via parent IAB node 404 ), the quality data in accordance with a link between the first wireless network device (e.g. parent IAB node 404 ) and the second wireless network device (e.g., donor IAB node 406 ), resulting in modified quality data.
- the method can comprise sending (e.g., from the parent IAB node 404 ), the modified quality data to a mobile termination function of the first wireless network device (e.g., parent IAB node 404 ).
- FIG. 7 illustrated is an example flow diagram of a system that facilitates an integrated access backhaul network metric exchange according to one or more embodiments.
- a system can facilitate, receiving (e.g. by a parent IAB node 404 ), from a first node device (e.g., via IAB node 402 ) of a wireless network, quality data representative of a quality metric associated with a route for packet data.
- the system can facilitate modifying (e.g. via parent IAB node 404 ) the quality data in accordance with a link between the first node device (e.g., via IAB node 402 ) and a second node device (e.g. the parent IAB node 404 ) of the wireless network, resulting in modified quality data.
- the system can facilitate sending (e.g. via parent IAB node 404 ) the modified quality data to a mobile termination function of the second node device (e.g. parent IAB node 404 ).
- FIG. 8 illustrated is an example flow diagram of a machine-readable medium that facilitates an integrated access backhaul network metric exchange according to one or more embodiments.
- a machine-readable storage medium that can perform the operations comprising facilitating receiving, from a first node device of a wireless network (e.g., via IAB node 402 ), quality data representative of a quality metric associated with a route for packet data.
- the machine-readable storage medium can perform the operations comprising facilitating modifying (e.g. via parent IAB node 404 ) the quality data in accordance with a link between the first node device (e.g., via IAB node 402 ) and a second node device (e.g. via parent IAB node 404 ) of the wireless network, resulting in modified quality data.
- the machine-readable storage medium can perform the operations comprising facilitating sending (e.g. via parent IAB node 404 ) the modified quality data to a mobile termination function of the second node device (e.g. via parent IAB node 404 ).
- FIG. 9 illustrated is an example block diagram of an example mobile handset 900 operable to engage in a system architecture that facilitates wireless communications according to one or more embodiments described herein.
- a mobile handset is illustrated herein, it will be understood that other devices can be a mobile device, and that the mobile handset is merely illustrated to provide context for the embodiments of the various embodiments described herein.
- the following discussion is intended to provide a brief, general description of an example of a suitable environment in which the various embodiments can be implemented. While the description includes a general context of computer-executable instructions embodied on a machine-readable storage medium, those skilled in the art will recognize that the innovation also can be implemented in combination with other program modules and/or as a combination of hardware and software.
- applications can include routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types.
- applications e.g., program modules
- routines programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types.
- systems including single-processor or multiprocessor systems, minicomputers, mainframe computers, as well as personal computers, hand-held computing devices, microprocessor-based or programmable consumer electronics, and the like, each of which can be operatively coupled to one or more associated devices.
- a computing device can typically include a variety of machine-readable media.
- Machine-readable media can be any available media that can be accessed by the computer and includes both volatile and non-volatile media, removable and non-removable media.
- Computer-readable media can comprise computer storage media and communication media.
- Computer storage media can include volatile and/or non-volatile media, removable and/or non-removable media implemented in any method or technology for storage of information, such as computer-readable instructions, data structures, program modules, or other data.
- Computer storage media can include, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD ROM, digital video disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.
- Communication media typically embodies computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and includes any information delivery media.
- modulated data signal means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
- communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer-readable media.
- the handset includes a processor 902 for controlling and processing all onboard operations and functions.
- a memory 904 interfaces to the processor 902 for storage of data and one or more applications 906 (e.g., a video player software, user feedback component software, etc.). Other applications can include voice recognition of predetermined voice commands that facilitate initiation of the user feedback signals.
- the applications 906 can be stored in the memory 904 and/or in a firmware 908 , and executed by the processor 902 from either or both the memory 904 or/and the firmware 908 .
- the firmware 908 can also store startup code for execution in initializing the handset 900 .
- a communications component 910 interfaces to the processor 902 to facilitate wired/wireless communication with external systems, e.g., cellular networks, VoIP networks, and so on.
- the communications component 910 can also include a suitable cellular transceiver 911 (e.g., a GSM transceiver) and/or an unlicensed transceiver 913 (e.g., Wi-Fi, WiMax) for corresponding signal communications.
- the handset 900 can be a device such as a cellular telephone, a PDA with mobile communications capabilities, and messaging-centric devices.
- the communications component 910 also facilitates communications reception from terrestrial radio networks (e.g., broadcast), digital satellite radio networks, and Internet-based radio services networks.
- the handset 900 includes a display 912 for displaying text, images, video, telephony functions (e.g., a Caller ID function), setup functions, and for user input.
- the display 912 can also be referred to as a “screen” that can accommodate the presentation of multimedia content (e.g., music metadata, messages, wallpaper, graphics, etc.).
- the display 912 can also display videos and can facilitate the generation, editing and sharing of video quotes.
- a serial I/O interface 914 is provided in communication with the processor 902 to facilitate wired and/or wireless serial communications (e.g., USB, and/or IEEE 1394) through a hardwire connection, and other serial input devices (e.g., a keyboard, keypad, and mouse).
- Audio capabilities are provided with an audio I/O component 916 , which can include a speaker for the output of audio signals related to, for example, indication that the user pressed the proper key or key combination to initiate the user feedback signal.
- the audio I/O component 916 also facilitates the input of audio signals through a microphone to record data and/or telephony voice data, and for inputting voice signals for telephone conversations.
- the handset 900 can include a slot interface 918 for accommodating a SIC (Subscriber Identity Component) in the form factor of a card Subscriber Identity Module (SIM) or universal SIM 920 , and interfacing the SIM card 920 with the processor 902 .
- SIM Subscriber Identity Module
- the SIM card 920 can be manufactured into the handset 900 , and updated by downloading data and software.
- the handset 900 can process IP data traffic through the communications component 910 to accommodate IP traffic from an IP network such as, for example, the Internet, a corporate intranet, a home network, a person area network, etc., through an ISP or broadband cable provider.
- IP network such as, for example, the Internet, a corporate intranet, a home network, a person area network, etc.
- VoIP traffic can be utilized by the handset 900 and IP-based multimedia content can be received in either an encoded or decoded format.
- a video processing component 922 (e.g., a camera) can be provided for decoding encoded multimedia content.
- the video processing component 922 can aid in facilitating the generation, editing, and sharing of video quotes.
- the handset 900 also includes a power source 924 in the form of batteries and/or an AC power subsystem, which power source 924 can interface to an external power system or charging equipment (not shown) by a power I/O component 926 .
- the handset 900 can also include a video component 930 for processing video content received and, for recording and transmitting video content.
- the video component 930 can facilitate the generation, editing and sharing of video quotes.
- a location tracking component 932 facilitates geographically locating the handset 900 . As described hereinabove, this can occur when the user initiates the feedback signal automatically or manually.
- a user input component 934 facilitates the user initiating the quality feedback signal.
- the user input component 934 can also facilitate the generation, editing and sharing of video quotes.
- the user input component 934 can include such conventional input device technologies such as a keypad, keyboard, mouse, stylus pen, and/or touchscreen, for example.
- a hysteresis component 936 facilitates the analysis and processing of hysteresis data, which is utilized to determine when to associate with the access point.
- a software trigger component 938 can be provided that facilitates triggering of the hysteresis component 936 when the Wi-Fi transceiver 913 detects the beacon of the access point.
- a SIP client 940 enables the handset 900 to support SIP protocols and register the subscriber with the SIP registrar server.
- the applications 906 can also include a client 942 that provides at least the capability of discovery, play and store of multimedia content, for example, music.
- the handset 900 includes an indoor network radio transceiver 913 (e.g., Wi-Fi transceiver). This function supports the indoor radio link, such as IEEE 802.11, for the dual-mode GSM handset 900 .
- the handset 900 can accommodate at least satellite radio services through a handset that can combine wireless voice and digital radio chipsets into a single handheld device.
- FIG. 10 illustrated is an example block diagram of an example computer 1000 operable to engage in a system architecture that facilitates wireless communications according to one or more embodiments described herein.
- the computer 1000 can provide networking and communication capabilities between a wired or wireless communication network and a server (e.g., Microsoft server) and/or communication device.
- a server e.g., Microsoft server
- FIG. 10 and the following discussion are intended to provide a brief, general description of a suitable computing environment in which the various aspects of the innovation can be implemented to facilitate the establishment of a transaction between an entity and a third party. While the description above is in the general context of computer-executable instructions that can run on one or more computers, those skilled in the art will recognize that the innovation also can be implemented in combination with other program modules and/or as a combination of hardware and software.
- program modules include routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types.
- program modules include routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types.
- program modules include routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types.
- program modules include routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types.
- program modules include routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types.
- the illustrated aspects of the innovation can also be practiced in distributed computing environments where certain tasks are performed by remote processing devices that are linked through a communications network.
- program modules can be located in both local and remote memory storage devices.
- Computing devices typically include a variety of media, which can include computer-readable storage media or communications media, which two terms are used herein differently from one another as follows.
- Computer-readable storage media can be any available storage media that can be accessed by the computer and includes both volatile and nonvolatile media, removable and non-removable media.
- Computer-readable storage media can be implemented in connection with any method or technology for storage of information such as computer-readable instructions, program modules, structured data, or unstructured data.
- Computer-readable storage media can include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other tangible and/or non-transitory media which can be used to store desired information.
- Computer-readable storage media can be accessed by one or more local or remote computing devices, e.g., via access requests, queries or other data retrieval protocols, for a variety of operations with respect to the information stored by the medium.
- Communications media can embody computer-readable instructions, data structures, program modules or other structured or unstructured data in a data signal such as a modulated data signal, e.g., a carrier wave or other transport mechanism, and includes any information delivery or transport media.
- modulated data signal or signals refers to a signal that has one or more of its characteristics set or changed in such a manner as to encode information in one or more signals.
- communication media include wired media, such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media.
- implementing various aspects described herein with regards to the end-user device can include a computer 1000 , the computer 1000 including a processing unit 1004 , a system memory 1006 and a system bus 1008 .
- the system bus 1008 couples system components including, but not limited to, the system memory 1006 to the processing unit 1004 .
- the processing unit 1004 can be any of various commercially available processors. Dual microprocessors and other multi-processor architectures can also be employed as the processing unit 1004 .
- the system bus 1008 can be any of several types of bus structure that can further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures.
- the system memory 1006 includes read-only memory (ROM) 1027 and random access memory (RAM) 1012 .
- ROM read-only memory
- RAM random access memory
- a basic input/output system (BIOS) is stored in a non-volatile memory 1027 such as ROM, EPROM, EEPROM, which BIOS contains the basic routines that help to transfer information between elements within the computer 1000 , such as during start-up.
- the RAM 1012 can also include a high-speed RAM such as static RAM for caching data.
- the computer 1000 further includes an internal hard disk drive (HDD) 1014 (e.g., EIDE, SATA), which internal hard disk drive 1014 can also be configured for external use in a suitable chassis (not shown), a magnetic floppy disk drive (FDD) 1016 , (e.g., to read from or write to a removable diskette 1018 ) and an optical disk drive 1020 , (e.g., reading a CD-ROM disk 1022 or, to read from or write to other high capacity optical media such as the DVD).
- the hard disk drive 1014 , magnetic disk drive 1016 and optical disk drive 1020 can be connected to the system bus 1008 by a hard disk drive interface 1024 , a magnetic disk drive interface 1026 and an optical drive interface 1028 , respectively.
- the interface 1024 for external drive implementations includes at least one or both of Universal Serial Bus (USB) and IEEE 1394 interface technologies. Other external drive connection technologies are within contemplation of the subject innovation.
- the drives and their associated computer-readable media provide nonvolatile storage of data, data structures, computer-executable instructions, and so forth.
- the drives and media accommodate the storage of any data in a suitable digital format.
- computer-readable media refers to a HDD, a removable magnetic diskette, and a removable optical media such as a CD or DVD, it should be appreciated by those skilled in the art that other types of media which are readable by a computer 1000 , such as zip drives, magnetic cassettes, flash memory cards, cartridges, and the like, can also be used in the exemplary operating environment, and further, that any such media can contain computer-executable instructions for performing the methods of the disclosed innovation.
- a number of program modules can be stored in the drives and RAM 1012 , including an operating system 1030 , one or more application programs 1032 , other program modules 1034 and program data 1036 . All or portions of the operating system, applications, modules, and/or data can also be cached in the RAM 1012 . It is to be appreciated that the innovation can be implemented with various commercially available operating systems or combinations of operating systems.
- a user can enter commands and information into the computer 1000 through one or more wired/wireless input devices, e.g., a keyboard 1038 and a pointing device, such as a mouse 1040 .
- Other input devices can include a microphone, an IR remote control, a joystick, a game pad, a stylus pen, touchscreen, or the like.
- These and other input devices are often connected to the processing unit 1004 through an input device interface 1042 that is coupled to the system bus 1008 , but can be connected by other interfaces, such as a parallel port, an IEEE 1394 serial port, a game port, a USB port, an IR interface, etc.
- a monitor 1044 or other type of display device is also connected to the system bus 1008 through an interface, such as a video adapter 1046 .
- a computer 1000 typically includes other peripheral output devices (not shown), such as speakers, printers, etc.
- the computer 1000 can operate in a networked environment using logical connections by wired and/or wireless communications to one or more remote computers, such as a remote computer(s) 1048 .
- the remote computer(s) 1048 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment device, a peer device or other common network node, and typically includes many or all of the elements described relative to the computer, although, for purposes of brevity, only a memory/storage device 1050 is illustrated.
- the logical connections depicted include wired/wireless connectivity to a local area network (LAN) 1052 and/or larger networks, e.g., a wide area network (WAN) 1054 .
- LAN and WAN networking environments are commonplace in offices and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which can connect to a global communications network, e.g., the Internet.
- the computer 1000 When used in a LAN networking environment, the computer 1000 is connected to the local network 1052 through a wired and/or wireless communication network interface or adapter 1056 .
- the adapter 1056 can facilitate wired or wireless communication to the LAN 1052 , which can also include a wireless access point disposed thereon for communicating with the wireless adapter 1056 .
- the computer 1000 can include a modem 1058 , or is connected to a communications server on the WAN 1054 , or has other means for establishing communications over the WAN 1054 , such as by way of the Internet.
- the modem 1058 which can be internal or external and a wired or wireless device, is connected to the system bus 1008 through the input device interface 1042 .
- program modules depicted relative to the computer, or portions thereof, can be stored in the remote memory/storage device 1050 . It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers can be used.
- the computer is operable to communicate with any wireless devices or entities operatively disposed in wireless communication, e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, communications satellite, any piece of equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news stand, restroom), and telephone.
- any wireless devices or entities operatively disposed in wireless communication e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, communications satellite, any piece of equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news stand, restroom), and telephone.
- the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices.
- Wi-Fi Wireless Fidelity
- Wi-Fi is a wireless technology similar to that used in a cell phone that enables such devices, e.g., computers, to send and receive data indoors and out, anywhere within the range of a base station.
- Wi-Fi networks use radio technologies called IEEE 802.11 (a, b, g, etc.) to provide secure, reliable, fast wireless connectivity.
- IEEE 802.11 a, b, g, etc.
- a Wi-Fi network can be used to connect computers to each other, to the Internet, and to wired networks (which use IEEE 802.3 or Ethernet).
- Wi-Fi networks operate in the unlicensed 2.4 and 5 GHz radio bands, at an 7 Mbps (802.11a) or 54 Mbps (802.11b) data rate, for example, or with products that contain both bands (dual band), so the networks can provide real-world performance similar to the basic 16BaseT wired Ethernet networks used in many offices.
- NR architecture can be designed to support multiple deployment cases for independent configuration of resources used for RACH procedures. Since the NR can provide additional services than those provided by LTE, efficiencies can be generated by leveraging the pros and cons of LTE and NR to facilitate the interplay between LTE and NR, as discussed herein.
- the terms “component,” “system,” “interface,” and the like are intended to refer to, or comprise, a computer-related entity or an entity related to an operational apparatus with one or more specific functionalities, wherein the entity can be either hardware, a combination of hardware and software, software, or software in execution, and/or firmware.
- a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, computer-executable instructions, a program, and/or a computer.
- an application running on a server and the server can be a component.
- One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers. In addition, these components can execute from various computer readable media having various data structures stored thereon. The components can communicate via local and/or remote processes such as in accordance with a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems via the signal).
- a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems via the signal).
- a component can be an apparatus with specific functionality provided by mechanical parts operated by electric or electronic circuitry, which is operated by a software application or firmware application executed by one or more processors, wherein the processor can be internal or external to the apparatus and can execute at least a part of the software or firmware application.
- a component can be an apparatus that provides specific functionality through electronic components without mechanical parts, the electronic components can comprise a processor therein to execute software or firmware that confer(s) at least in part the functionality of the electronic components.
- a component can emulate an electronic component via a virtual machine, e.g., within a cloud computing system. While various components have been illustrated as separate components, it will be appreciated that multiple components can be implemented as a single component, or a single component can be implemented as multiple components, without departing from example embodiments.
- example and exemplary are used herein to mean serving as an instance or illustration. Any embodiment or design described herein as “example” or “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs. Rather, use of the word example or exemplary is intended to present concepts in a concrete fashion.
- the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations.
- mobile device equipment can refer to a wireless device utilized by a subscriber or mobile device of a wireless communication service to receive or convey data, control, voice, video, sound, gaming or substantially any data-stream or signaling-stream.
- mobile device can refer to a wireless device utilized by a subscriber or mobile device of a wireless communication service to receive or convey data, control, voice, video, sound, gaming or substantially any data-stream or signaling-stream.
- AP access point
- BS Base Station
- BS transceiver BS device, cell site, cell site device
- AP access point
- BS Base Station
- BS transceiver BS device, cell site, cell site device
- AP access point
- BS Base Station
- BS transceiver BS device, cell site, cell site device
- NB Node B
- eNode B evolved Node B
- HNB home Node B
- Data and signaling streams can be packetized or frame-based flows.
- the terms “device,” “communication device,” “mobile device,” “subscriber,” “customer entity,” “consumer,” “customer entity,” “entity” and the like are employed interchangeably throughout, unless context warrants particular distinctions among the terms. It should be appreciated that such terms can refer to human entities or automated components supported through artificial intelligence (e.g., a capacity to make inference based on complex mathematical formalisms), which can provide simulated vision, sound recognition and so forth.
- artificial intelligence e.g., a capacity to make inference based on complex mathematical formalisms
- Embodiments described herein can be exploited in substantially any wireless communication technology, comprising, but not limited to, wireless fidelity (Wi-Fi), global system for mobile communications (GSM), universal mobile telecommunications system (UMTS), worldwide interoperability for microwave access (WiMAX), enhanced general packet radio service (enhanced GPRS), third generation partnership project (3GPP) long term evolution (LTE), third generation partnership project 2 (3GPP2) ultra mobile broadband (UMB), high speed packet access (HSPA), Z-Wave, Zigbee and other 802.XX wireless technologies and/or legacy telecommunication technologies.
- Wi-Fi wireless fidelity
- GSM global system for mobile communications
- UMTS universal mobile telecommunications system
- WiMAX worldwide interoperability for microwave access
- enhanced GPRS enhanced general packet radio service
- third generation partnership project (3GPP) long term evolution (LTE) third generation partnership project 2 (3GPP2) ultra mobile broadband (UMB)
- HSPA high speed packet access
- Z-Wave Zigbe
- NR New Radio
- LTE Long Term Evolution
- 5G Universal Mobile Telecommunications System
- UMTS Universal Mobile Telecommunications System
- LTE Long Term Evolution
- the disclosed aspects are not limited to 5G, a UMTS implementation, and/or an LTE implementation as the techniques can also be applied in 3G, 4G, or LTE systems.
- aspects or features of the disclosed embodiments can be exploited in substantially any wireless communication technology.
- Such wireless communication technologies can include UMTS, Code Division Multiple Access (CDMA), Wi-Fi, Worldwide Interoperability for Microwave Access (WiMAX), General Packet Radio Service (GPRS), Enhanced GPRS, Third Generation Partnership Project (3GPP), LTE, Third Generation Partnership Project 2 (3GPP2) Ultra Mobile Broadband (UMB), High Speed Packet Access (HSPA), Evolved High Speed Packet Access (HSPA+), High-Speed Downlink Packet Access (HSDPA), High-Speed Uplink Packet Access (HSUPA), Zigbee, or another IEEE 802.XX technology. Additionally, substantially all aspects disclosed herein can be exploited in legacy telecommunication technologies.
- the term “infer” or “inference” refers generally to the process of reasoning about, or inferring states of, the system, environment, user, and/or intent from a set of observations as captured via events and/or data. Captured data and events can include user data, device data, environment data, data from sensors, sensor data, application data, implicit data, explicit data, etc. Inference can be employed to identify a specific context or action, or can generate a probability distribution over states of interest based on a consideration of data and events, for example.
- Inference can also refer to techniques employed for composing higher-level events from a set of events and/or data. Such inference results in the construction of new events or actions from a set of observed events and/or stored event data, whether the events are correlated in close temporal proximity, and whether the events and data come from one or several event and data sources.
- Various classification procedures and/or systems e.g., support vector machines, neural networks, expert systems, Bayesian belief networks, fuzzy logic, and data fusion engines
- the various embodiments can be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer to implement the disclosed subject matter.
- article of manufacture as used herein is intended to encompass a computer program accessible from any computer-readable device, machine-readable device, computer-readable carrier, computer-readable media, machine-readable media, computer-readable (or machine-readable) storage/communication media.
- computer-readable media can comprise, but are not limited to, a magnetic storage device, e.g., hard disk; floppy disk; magnetic strip(s); an optical disk (e.g., compact disk (CD), a digital video disc (DVD), a Blu-ray DiscTM (BD)); a smart card; a flash memory device (e.g., card, stick, key drive); and/or a virtual device that emulates a storage device and/or any of the above computer-readable media.
- a magnetic storage device e.g., hard disk; floppy disk; magnetic strip(s); an optical disk (e.g., compact disk (CD), a digital video disc (DVD), a Blu-ray DiscTM (BD)); a smart card; a flash memory device (e.g., card, stick, key drive); and/or a virtual device that emulates a storage device and/or any of the above computer-readable media.
- a magnetic storage device e.g., hard disk; floppy disk; magnetic
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Environmental & Geological Engineering (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
- The subject patent application is a continuation of, and claims priority to, U.S. patent application Ser. No. 16/401,468, filed May 2, 2019, and entitled “INTEGRATED ACCESS BACKHAUL NETWORK METRIC EXCHANGE FOR 5G OR OTHER NEXT GENERATION NETWORK,” the entirety of which application is hereby incorporated by reference herein.
- This disclosure relates generally to an integrated access backhaul network metric exchange for a 5G new radio (NR) networks. For example, this disclosure relates to an integrated access backhaul network metric exchange to facilitate routing and scheduling for a 5G, or other next generation network, air interface.
- 5th generation (5G) wireless systems represent a next major phase of mobile telecommunications standards beyond the current telecommunications standards of 4th generation (4G). Rather than faster peak Internet connection speeds, 5G planning aims at higher capacity than current 4G, allowing a higher number of mobile broadband users per area unit, and allowing consumption of higher or unlimited data quantities. This would enable a large portion of the population to stream high-definition media many hours per day with their mobile devices, when out of reach of wireless fidelity hotspots. 5G research and development also aims at improved support of machine-to-machine communication, also known as the Internet of things, aiming at lower cost, lower battery consumption, and lower latency than 4G equipment.
- The above-described background relating to facilitating an integrated access backhaul network metric exchange to is merely intended to provide a contextual overview of some current issues, and is not intended to be exhaustive. Other contextual information may become further apparent upon review of the following detailed description.
- Non-limiting and non-exhaustive embodiments of the subject disclosure are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
-
FIG. 1 illustrates an example wireless communication system in which a network node device (e.g., network node) and user equipment (UE) can implement various aspects and embodiments of the subject disclosure. -
FIG. 2 illustrates an example schematic system block diagram of a new radio access architecture according to one or more embodiments. -
FIG. 3 illustrates an example schematic system block diagram of integrated access and backhaul links according to one or more embodiments. -
FIG. 4 illustrates an example user-plane protocol stack according to one or more embodiments. -
FIG. 5 illustrates an example schematic system block diagram of integrated access and backhaul links according to one or more embodiments. -
FIG. 6 illustrates an example flow diagram of a method that facilitates an integrated access backhaul network metric exchange according to one or more embodiments. -
FIG. 7 illustrates an example flow diagram of a system that facilitates an integrated access backhaul network metric exchange according to one or more embodiments. -
FIG. 8 illustrates an example flow diagram of a machine-readable medium that facilitates an integrated access backhaul network metric exchange according to one or more embodiments. -
FIG. 9 illustrates an example block diagram of an example mobile handset operable to engage in a system architecture that facilitates secure wireless communication according to one or more embodiments described herein. -
FIG. 10 illustrates an example block diagram of an example computer operable to engage in a system architecture that facilitates secure wireless communication according to one or more embodiments described herein. - In the following description, numerous specific details are set forth to provide a thorough understanding of various embodiments. One skilled in the relevant art will recognize, however, that the techniques described herein can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring certain aspects.
- Reference throughout this specification to “one embodiment,” or “an embodiment,” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrase “in one embodiment,” “in one aspect,” or “in an embodiment,” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
- As utilized herein, terms “component,” “system,” “interface,” and the like are intended to refer to a computer-related entity, hardware, software (e.g., in execution), and/or firmware. For example, a component can be a processor, a process running on a processor, an object, an executable, a program, a storage device, and/or a computer. By way of illustration, an application running on a server and the server can be a component. One or more components can reside within a process, and a component can be localized on one computer and/or distributed between two or more computers.
- Further, these components can execute from various machine-readable media having various data structures stored thereon. The components can communicate via local and/or remote processes such as in accordance with a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network, e.g., the Internet, a local area network, a wide area network, etc. with other systems via the signal).
- As another example, a component can be an apparatus with specific functionality provided by mechanical parts operated by electric or electronic circuitry; the electric or electronic circuitry can be operated by a software application or a firmware application executed by one or more processors; the one or more processors can be internal or external to the apparatus and can execute at least a part of the software or firmware application. As yet another example, a component can be an apparatus that provides specific functionality through electronic components without mechanical parts; the electronic components can include one or more processors therein to execute software and/or firmware that confer(s), at least in part, the functionality of the electronic components. In an aspect, a component can emulate an electronic component via a virtual machine, e.g., within a cloud computing system.
- The words “exemplary” and/or “demonstrative” are used herein to mean serving as an example, instance, or illustration. For the avoidance of doubt, the subject matter disclosed herein is not limited by such examples. In addition, any aspect or design described herein as “exemplary” and/or “demonstrative” is not necessarily to be construed as preferred or advantageous over other aspects or designs, nor is it meant to preclude equivalent exemplary structures and techniques known to those of ordinary skill in the art. Furthermore, to the extent that the terms “includes,” “has,” “contains,” and other similar words are used in either the detailed description or the claims, such terms are intended to be inclusive—in a manner similar to the term “comprising” as an open transition word—without precluding any additional or other elements.
- As used herein, the term “infer” or “inference” refers generally to the process of reasoning about, or inferring states of, the system, environment, user, and/or intent from a set of observations as captured via events and/or data. Captured data and events can include user data, device data, environment data, data from sensors, sensor data, application data, implicit data, explicit data, etc. Inference can be employed to identify a specific context or action, or can generate a probability distribution over states of interest based on a consideration of data and events, for example.
- Inference can also refer to techniques employed for composing higher-level events from a set of events and/or data. Such inference results in the construction of new events or actions from a set of observed events and/or stored event data, whether the events are correlated in close temporal proximity, and whether the events and data come from one or several event and data sources. Various classification schemes and/or systems (e.g., support vector machines, neural networks, expert systems, Bayesian belief networks, fuzzy logic, and data fusion engines) can be employed in connection with performing automatic and/or inferred action in connection with the disclosed subject matter.
- In addition, the disclosed subject matter can be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer to implement the disclosed subject matter. The term “article of manufacture” as used herein is intended to encompass a computer program accessible from any computer-readable device, machine-readable device, computer-readable carrier, computer-readable media, or machine-readable media. For example, computer-readable media can include, but are not limited to, a magnetic storage device, e.g., hard disk; floppy disk; magnetic strip(s); an optical disk (e.g., compact disk (CD), a digital video disc (DVD), a Blu-ray Disc™ (BD)); a smart card; a flash memory device (e.g., card, stick, key drive); and/or a virtual device that emulates a storage device and/or any of the above computer-readable media.
- As an overview, various embodiments are described herein to facilitate an integrated access backhaul network metric exchange for a 5G or other next generation networks. For simplicity of explanation, the methods (or algorithms) are depicted and described as a series of acts. It is to be understood and appreciated that the various embodiments are not limited by the acts illustrated and/or by the order of acts. For example, acts can occur in various orders and/or concurrently, and with other acts not presented or described herein. Furthermore, not all illustrated acts may be required to implement the methods. In addition, the methods could alternatively be represented as a series of interrelated states via a state diagram or events. Additionally, the methods described hereafter are capable of being stored on an article of manufacture (e.g., a machine-readable storage medium) to facilitate transporting and transferring such methodologies to computers. The term article of manufacture, as used herein, is intended to encompass a computer program accessible from any computer-readable device, carrier, or media, including a non-transitory machine-readable storage medium.
- It should be noted that although various aspects and embodiments have been described herein in the context of 5G, Universal Mobile Telecommunications System (UMTS), and/or Long Term Evolution (LTE), or other next generation networks, the disclosed aspects are not limited to 5G, a UMTS implementation, and/or an LTE implementation as the techniques can also be applied in 3G, 4G or LTE systems. For example, aspects or features of the disclosed embodiments can be exploited in substantially any wireless communication technology. Such wireless communication technologies can include UMTS, Code Division Multiple Access (CDMA), Wi-Fi, Worldwide Interoperability for Microwave Access (WiMAX), General Packet Radio Service (GPRS), Enhanced GPRS, Third Generation Partnership Project (3GPP), LTE, Third Generation Partnership Project 2 (3GPP2) Ultra Mobile Broadband (UMB), High Speed Packet Access (HSPA), Evolved High Speed Packet Access (HSPA+), High-Speed Downlink Packet Access (HSDPA), High-Speed Uplink Packet Access (HSUPA), Zigbee, or another IEEE 802.XX technology. Additionally, substantially all aspects disclosed herein can be exploited in legacy telecommunication technologies.
- Described herein are systems, methods, articles of manufacture, and other embodiments or implementations that can facilitate an integrated access backhaul network metric exchange for a 5G network. Facilitating an integrated access backhaul network metric exchange for a 5G network can be implemented in connection with any type of device with a connection to the communications network (e.g., a mobile handset, a computer, a handheld device, etc.) any Internet of things (TOT) device (e.g., toaster, coffee maker, blinds, music players, speakers, etc.), and/or any connected vehicles (cars, airplanes, space rockets, and/or other at least partially automated vehicles (e.g., drones)). In some embodiments the non-limiting term user equipment (UE) is used. It can refer to any type of wireless device that communicates with a radio network node in a cellular or mobile communication system. Examples of UE are target device, device to device (D2D) UE, machine type UE or UE capable of machine to machine (M2M) communication, PDA, Tablet, mobile terminals, smart phone, laptop embedded equipped (LEE), laptop mounted equipment (LME), USB dongles, etc. Note that the terms element, elements and antenna ports can be interchangeably used but carry the same meaning in this disclosure. The embodiments are applicable to single carrier as well as to multicarrier (MC) or carrier aggregation (CA) operation of the UE. The term carrier aggregation (CA) is also called (e.g., interchangeably called) “multi-carrier system”, “multi-cell operation”, “multi-carrier operation”, “multi-carrier” transmission and/or reception.
- In some embodiments the non-limiting term radio, network node, or simply network node is used. It can refer to any type of network node that serves UE is connected to other network nodes or network elements or any radio node from where UE receives a signal. Examples of radio network nodes are Node B, base station (BS), multi-standard radio (MSR) node such as MSR BS, eNode B, network controller, radio network controller (RNC), base station controller (BSC), relay, donor node controlling relay, base transceiver station (BTS), access point (AP), transmission points, transmission nodes, RRU, RRH, nodes in distributed antenna system (DAS), etc.
- Cloud radio access networks (RAN) can enable the implementation of concepts such as software-defined network (SDN) and network function virtualization (NFV) in 5G networks. This disclosure can facilitate a generic channel state information framework design for a 5G network. Certain embodiments of this disclosure can comprise an SDN controller that can control routing of traffic within the network and between the network and traffic destinations. The SDN controller can be merged with the 5G network architecture to enable service deliveries via open application programming interfaces (“APIs”) and move the network core towards an all internet protocol (“IP”), cloud based, and software driven telecommunications network. The SDN controller can work with, or take the place of policy and charging rules function (“PCRF”) network elements so that policies such as quality of service and traffic management and routing can be synchronized and managed end to end.
- To meet the huge demand for data centric applications, 4G standards can be applied 5G, also called new radio (NR) access. 5G networks can comprise the following: data rates of several tens of megabits per second supported for tens of thousands of users; 1 gigabit per second can be offered simultaneously to tens of workers on the same office floor; several hundreds of thousands of simultaneous connections can be supported for massive sensor deployments; spectral efficiency can be enhanced compared to 4G; improved coverage; enhanced signaling efficiency; and reduced latency compared to LTE. In multicarrier system such as OFDM, each subcarrier can occupy bandwidth (e.g., subcarrier spacing). If the carriers use the same bandwidth spacing, then it can be considered a single numerology. However, if the carriers occupy different bandwidth and/or spacing, then it can be considered a multiple numerology.
- This disclosure proposes a solution that allows an adaptation layer of a child IAB node to send a quality metric to its parent IAB node. The quality metric can indicate to the parent, information related to one or more of the following: quality of routes further down from the child node up to the serving IAB node for a UE bearer, and/or radio quality experienced by packets further down from the child node up to the serving node for a UE bearer. Such a quality metric can be transmitted by the child IAB node to the parent IAB node in one or more of the following solutions. The first solution can comprise the quality metric being transmitted by the child IAB node to the parent IAB node as part of a header field of the adaptation layer packet data unit (PDU) on an uplink channel of an IAB link. Note that this method assumes that there is data being transmitted from the child node to the parent node on the uplink. The second solution can comprise the quality metric being transmitted by the child IAB node to the parent IAB node as part of a new adaptation layer PDU defined for this purpose, which is different from the normal adaptation layer PDU defined for normal data transfer. It should be noted that the use of such an adaptation layer PDU is not dependent upon the existence of uplink data traffic between the child IAB node and the parent IAB node. Thus, the second solution is more robust than the first solution. When the adaptation layer at the parent IAB node receives such a quality metric from the child node for a particular UE bearer, it can further modify this quality metric according to its view of the link between the child node and itself. This modified quality metric can be provided to a mobile termination (MT) of this IAB node for transmission to its parent, in a similar manner as to how it received the quality metric from its child IAB node. Consequently, the parent IAB nodes can have a cumulative view of the quality of the entire IAB route from itself all the way down to the serving IAB node for every UE bearer. In case there are multiple redundant routes between the donor IAB node and the serving IAB node, redundant routes can be labeled by the donor IAB node with a route identifier. The route identifier can be included as part of the adaptation layer header of the adaptation layer PDU.
- This can allow the donor distributed unit (DU) and all the parent IAB nodes, to maintain a cumulative quality metric for each redundant route to the serving IAB node. It should also be noted that an additional benefit of the second solution, described above, is that this solution can also be used for quality metric transmissions on redundant routes that are not currently being used for data transmission. In fact, when a redundant route is established for UE bearer, it can be maintained by periodic transmission of quality metric information from children nodes to parent nodes. It follows naturally, that once cumulative quality metric information is available for redundant routes at each parent node for each UE bearer, each IAB node can have the information it needs to be able to dynamically make a route selection decision.
- Such a solution can allow IAB nodes to dynamically respond to impairments such as IAB link failure, congestion, poor radio conditions, etc. In another embodiment, such quality metric information can be used by the IAB node to influence the scheduling of packets of the IAB link. One of the issues faced by an IAB network is that the parent IAB node of an intermediate IAB hop can be unaware of the radio conditions experienced by the UEs served by the child IAB node. This can result in either over-allocation of resources to the child IAB node, causing congestion at the child IAB node, or can cause under-allocation of resources to the child IAB node, causing poor performance. In either case, not fully understanding the radio conditions experienced by UEs served by the children IAB nodes can have negative consequences. Having access to a cumulative quality metric at the scheduler can allow the scheduler to make more appropriate scheduling decisions, thereby improving overall performance of the IAB network and user experience. It should be noted that in the proposed solution, the quality metric can be received by an IAB node at the adaptation layer, so this quality metric can be provided to the scheduler at the media access control (MAC) layer of the IAB node, thereby utilizing cross-layer communication.
- One example of a metric which can be used by the IAB nodes to perform scheduling, is a combination of access and backhaul link L1 or L3 reference signal received power (RSRP)/signal interference-to-noise ratio (SINR) measurements based on SSBs or CSI-RS. In another alternative, the metric can be based on access and backhaul link CSI information (e.g. CQI, RI). In another alternative, the metric can comprise a fixed weight which is applied to the scheduling of a packet if it contains data intended for a child IAB node to be carried over a backhaul link served by the IAB node. In another alternative, the metric can comprise a weight based on the topology associated with the child IAB node. For example, the number of descendent IAB nodes or hops between the serving IAB node and the destination. In yet another alternative, the weight can be based on loading information (e.g., buffer status or data rate) of the child IAB node and associated descendent IAB nodes of the backhaul and access link hops on the route of the scheduled packet. In yet another alternative, the metric can comprise computing the mutual information (e.g., normalized link capacity expressed as log 2(1+SNR)) metric across the access and backhaul links between the scheduling IAB node and the destination. In one example, the mutual information can be computed based on estimated or measured SNR/SINR of the access and backhaul links on the route of the packet.
- The end-to-end quality metric can be directly computed by the IAB node based on exchanged information described in the previous alternatives and a configured function (e.g. max/min, logarithm, linear or exponential scaling). Alternatively, the end-to-end quality metric can be aggregated by IAB nodes along the route and updated with a per-link component by each IAB node until it reaches the scheduling IAB node.
- When the network environment is changing dynamically, an IAB node can make a routing information decision, which can be communicated between IAB s. For example, if there is a link failure further down from a first IAB node, then the first IAB node cannot be able to detect the link failure. However, if the scheduler at the IAB node has information about links further down from the IAB node, then that information can be used for making additional decisions. Thus, the concept is that a mechanism between IAB nodes can change a metric between the IAB nodes to indicate radio quality. The adaptation layer, which can also known as the backhaul adaptation protocol, is the layer that can perform routing within the IAB network. When a data packet is being sent from the first IAB node to a second IAB node, the header field that is associated with that packet can contain a field related to the quality. Alternatively, another adaptation layer can be defined to have control PDUs (e.g., uplink scheduling request, beam switching, etc.) where data other than user plane data is sent, thereby allowing another type of control PDU (e.g., a data PDU) to be defined, which can incorporate the quality data, regardless of whether there is packet data to be sent. The data PDU can comprise a header field that comprises the quality metric as well.
- In one embodiment, described herein is a method comprising receiving, by a first wireless network device comprising a processor from a second wireless network device, quality data representative of a quality metric associated with a route for packet data. The method can comprise modifying, by the first wireless network device, the quality data in accordance with a link between the first wireless network device and the second wireless network device, resulting in modified quality data. Additionally, the method can comprise sending, by the first wireless network device, the modified quality data to a mobile termination function of the first wireless network device.
- According to another embodiment, a system can facilitate, receiving, from a first node device of a wireless network, quality data representative of a quality metric associated with a route for packet data. In response to the receiving the quality data, the system can facilitate modifying the quality data in accordance with a link between the first node device and a second node device of the wireless network, resulting in modified quality data. Furthermore, in response to the modifying the quality data, the system can facilitate sending the modified quality data to a mobile termination function of the second node device.
- According to yet another embodiment, described herein is a machine-readable storage medium that can perform the operations comprising facilitating receiving, from a first node device of a wireless network, quality data representative of a quality metric associated with a route for packet data. In response to the facilitating the receiving the quality data, the machine-readable storage medium can perform the operations comprising facilitating modifying the quality data in accordance with a link between the first node device and a second node device of the wireless network, resulting in modified quality data. Additionally, in response to the facilitating the modifying the quality data, the machine-readable storage medium can perform the operations comprising facilitating sending the modified quality data to a mobile termination function of the second node device.
- These and other embodiments or implementations are described in more detail below with reference to the drawings.
- Referring now to
FIG. 1 , illustrated is an examplewireless communication system 100 in accordance with various aspects and embodiments of the subject disclosure. In one or more embodiments,system 100 can comprise one ormore UEs 102. The non-limiting term user equipment can refer to any type of device that can communicate with a network node in a cellular or mobile communication system. A UE can have one or more antenna panels having vertical and horizontal elements. Examples of a UE comprise a target device, device to device (D2D) UE, machine type UE or UE capable of machine to machine (M2M) communications, personal digital assistant (PDA), tablet, mobile terminals, smart phone, laptop mounted equipment (LME), universal serial bus (USB) dongles enabled for mobile communications, a computer having mobile capabilities, a mobile device such as cellular phone, a laptop having laptop embedded equipment (LEE, such as a mobile broadband adapter), a tablet computer having a mobile broadband adapter, a wearable device, a virtual reality (VR) device, a heads-up display (HUD) device, a smart car, a machine-type communication (MTC) device, and the like.User equipment UE 102 can also comprise IOT devices that communicate wirelessly. - In various embodiments,
system 100 is or comprises a wireless communication network serviced by one or more wireless communication network providers. In example embodiments, aUE 102 can be communicatively coupled to the wireless communication network via anetwork node 104. The network node (e.g., network node device) can communicate with user equipment (UE), thus providing connectivity between the UE and the wider cellular network. TheUE 102 can send transmission type recommendation data to thenetwork node 104. The transmission type recommendation data can comprise a recommendation to transmit data via a closed loop MIMO mode and/or a rank-1 precoder mode. - A network node can have a cabinet and other protected enclosures, an antenna mast, and multiple antennas for performing various transmission operations (e.g., MIMO operations). Network nodes can serve several cells, also called sectors, depending on the configuration and type of antenna. In example embodiments, the
UE 102 can send and/or receive communication data via a wireless link to thenetwork node 104. The dashed arrow lines from thenetwork node 104 to theUE 102 represent downlink (DL) communications and the solid arrow lines from theUE 102 to thenetwork nodes 104 represents an uplink (UL) communication. -
System 100 can further include one or more communication service provider networks 106 that facilitate providing wireless communication services to various UEs, includingUE 102, via thenetwork node 104 and/or various additional network devices (not shown) included in the one or more communication service provider networks 106. The one or more communication service provider networks 106 can include various types of disparate networks, including but not limited to: cellular networks, femto networks, picocell networks, microcell networks, internet protocol (IP) networks Wi-Fi service networks, broadband service network, enterprise networks, cloud based networks, and the like. For example, in at least one implementation,system 100 can be or include a large scale wireless communication network that spans various geographic areas. According to this implementation, the one or more communication service provider networks 106 can be or include the wireless communication network and/or various additional devices and components of the wireless communication network (e.g., additional network devices and cell, additional UEs, network server devices, etc.). Thenetwork node 104 can be connected to the one or more communication service provider networks 106 via one or more backhaul links 108. For example, the one ormore backhaul links 108 can comprise wired link components, such as a T1/E1 phone line, a digital subscriber line (DSL) (e.g., either synchronous or asynchronous), an asymmetric DSL (ADSL), an optical fiber backbone, a coaxial cable, and the like. The one ormore backhaul links 108 can also include wireless link components, such as but not limited to, line-of-sight (LOS) or non-LOS links which can include terrestrial air-interfaces or deep space links (e.g., satellite communication links for navigation). -
Wireless communication system 100 can employ various cellular systems, technologies, and modulation modes to facilitate wireless radio communications between devices (e.g., theUE 102 and the network node 104). While example embodiments might be described for 5G new radio (NR) systems, the embodiments can be applicable to any radio access technology (RAT) or multi-RAT system where the UE operates using multiple carriers e.g., LTE FDD/TDD, GSM/GERAN, CDMA2000, etc. - For example,
system 100 can operate in accordance with global system for mobile communications (GSM), universal mobile telecommunications service (UMTS), long term evolution (LTE), LTE frequency division duplexing (LTE FDD, LTE time division duplexing (TDD), high speed packet access (HSPA), code division multiple access (CDMA), wideband CDMA (WCMDA), CDMA2000, time division multiple access (TDMA), frequency division multiple access (FDMA), multi-carrier code division multiple access (MC-CDMA), single-carrier code division multiple access (SC-CDMA), single-carrier FDMA (SC-FDMA), orthogonal frequency division multiplexing (OFDM), discrete Fourier transform spread OFDM (DFT-spread OFDM) single carrier FDMA (SC-FDMA), Filter bank based multi-carrier (FBMC), zero tail DFT-spread-OFDM (ZT DFT-s-OFDM), generalized frequency division multiplexing (GFDM), fixed mobile convergence (FMC), universal fixed mobile convergence (UFMC), unique word OFDM (UW-OFDM), unique word DFT-spread OFDM (UW DFT-Spread-OFDM), cyclic prefix OFDM CP-OFDM, resource-block-filtered OFDM, Wi Fi, WLAN, WiMax, and the like. However, various features and functionalities ofsystem 100 are particularly described wherein the devices (e.g., theUEs 102 and the network node 104) ofsystem 100 are configured to communicate wireless signals using one or more multi carrier modulation schemes, wherein data symbols can be transmitted simultaneously over multiple frequency subcarriers (e.g., OFDM, CP-OFDM, DFT-spread OFMD, UFMC, FMBC, etc.). The embodiments are applicable to single carrier as well as to multicarrier (MC) or carrier aggregation (CA) operation of the UE. The term carrier aggregation (CA) is also called (e.g., interchangeably called) “multi-carrier system”, “multi-cell operation”, “multi-carrier operation”, “multi-carrier” transmission and/or reception. Note that some embodiments are also applicable for Multi RAB (radio bearers) on some carriers (that is data plus speech is simultaneously scheduled). - In various embodiments,
system 100 can be configured to provide and employ 5G wireless networking features and functionalities. 5G wireless communication networks are expected to fulfill the demand of exponentially increasing data traffic and to allow people and machines to enjoy gigabit data rates with virtually zero latency. Compared to 4G, 5G supports more diverse traffic scenarios. For example, in addition to the various types of data communication between conventional UEs (e.g., phones, smartphones, tablets, PCs, televisions, Internet enabled televisions, etc.) supported by 4G networks, 5G networks can be employed to support data communication between smart cars in association with driverless car environments, as well as machine type communications (MTCs). Considering the drastic different communication demands of these different traffic scenarios, the ability to dynamically configure waveform parameters based on traffic scenarios while retaining the benefits of multi carrier modulation schemes (e.g., OFDM and related schemes) can provide a significant contribution to the high speed/capacity and low latency demands of 5G networks. With waveforms that split the bandwidth into several sub-bands, different types of services can be accommodated in different sub-bands with the most suitable waveform and numerology, leading to an improved spectrum utilization for 5G networks. - To meet the demand for data centric applications, features of proposed 5G networks may comprise: increased peak bit rate (e.g., 20 Gbps), larger data volume per unit area (e.g., high system spectral efficiency—for example about 3.5 times that of spectral efficiency of long term evolution (LTE) systems), high capacity that allows more device connectivity both concurrently and instantaneously, lower battery/power consumption (which reduces energy and consumption costs), better connectivity regardless of the geographic region in which a user is located, a larger numbers of devices, lower infrastructural development costs, and higher reliability of the communications. Thus, 5G networks may allow for: data rates of several tens of megabits per second should be supported for tens of thousands of users, 1 gigabit per second to be offered simultaneously to tens of workers on the same office floor, for example; several hundreds of thousands of simultaneous connections to be supported for massive sensor deployments; improved coverage, enhanced signaling efficiency; reduced latency compared to LTE.
- The upcoming 5G access network may utilize higher frequencies (e.g., >6 GHz) to aid in increasing capacity. Currently, much of the millimeter wave (mmWave) spectrum, the band of spectrum between 30 gigahertz (Ghz) and 300 Ghz is underutilized. The millimeter waves have shorter wavelengths that range from 10 millimeters to 1 millimeter, and these mmWave signals experience severe path loss, penetration loss, and fading. However, the shorter wavelength at mmWave frequencies also allows more antennas to be packed in the same physical dimension, which allows for large-scale spatial multiplexing and highly directional beamforming.
- Performance can be improved if both the transmitter and the receiver are equipped with multiple antennas. Multi-antenna techniques can significantly increase the data rates and reliability of a wireless communication system. The use of multiple input multiple output (MIMO) techniques, which was introduced in the third-generation partnership project (3GPP) and has been in use (including with LTE), is a multi-antenna technique that can improve the spectral efficiency of transmissions, thereby significantly boosting the overall data carrying capacity of wireless systems. The use of multiple-input multiple-output (MIMO) techniques can improve mmWave communications, and has been widely recognized a potentially important component for access networks operating in higher frequencies. MIMO can be used for achieving diversity gain, spatial multiplexing gain and beamforming gain. For these reasons, MIMO systems are an important part of the 3rd and 4th generation wireless systems, and are planned for use in 5G systems.
- Referring now to
FIG. 2 , illustrated is an example schematic system block diagram 200 of a new radio access architecture according to one or more embodiments. 3GPP NR-based 5G mobile networks can be deployed using a split RAN protocol architecture such that on the user plane the packet data convergence protocol (PDCP) sublayers can reside at a centralized unit (CU) 304, while the radio link control (RLC), media access control (MAC), and physical layer (PHY) layers can reside at the distributed unit (DU) 306. User plane data can be carried on data radio bearers (DRBs) that traverse the above described user plane RAN protocol architecture. On the control plane, signaling radio bearers (SRBs) can be set up to carry control messages from the radio resource control (RRC) layer, also utilize the packet data control protocol (PDCP) layer at the CU, and are further carry the control messages down through the RLC, medium access control (MAC), and physical (PHY) layers at theDU 306 to be delivered to theUE 102 over the air interface. Each network user can be allocated multiple DRBs and SRBs by the network. The network interface between theCU 304 andDU 306 can be called the F1 interface per 3GPP specifications. - Referring now to
FIG. 3 , illustrated is an example schematic system block diagram of integrated access and backhaul links according to one or more embodiments. An IAB feature can enable future cellular network deployment scenarios and applications to the support wireless backhaul and relay links enabling flexible and very dense deployment of NR cells without the need for densifying the transport network proportionately. - Due to the expected larger bandwidth available for NR compared to LTE (e.g., mmWave spectrum) along with the native deployment of massive MIMO or multi-beam systems in NR, IAB links can be developed and deployed. This can allow easier deployment of a dense network of self-backhauled NR cells in a more integrated manner by building upon many of the control and data channels/procedures defined for providing access to UEs.
- For example, the
network 300, as represented inFIG. 3 with integrated access and backhaul links, can allow a relay node to multiplex access and backhaul links in time, frequency, and/or space (e.g., beam-based operation). Thus,FIG. 3 illustrates a generic IAB set-up comprising acore network 302, acentralized unit 304, donor distributedunit 306, relay distributedunit 308, andUEs UEs unit 308 can take the backhaul link and convert it into different strains for the connectedUEs FIG. 3 depicts a single hop (e.g., over the air), it should be noted that multiple backhaul hops can occur in other embodiments. - Referring now to
FIG. 4 , illustrated is an example user-plane protocol stack 400 according to one or more embodiments.FIG. 4 depicts a new protocol stack layer, currently called an adaptation layer. The adaptation layer at eachIAB node - The adaptation (e.g., adapt) layer can either be above the RLC layer or below the RLC layer in various alternatives. For alternatives that place the adapt layer below the RLC, data from multiple UE bearers can be aggregated into one or more backhaul channels. For alternatives that place the adapt layer above the RLC the aggregation of data from multiple UE bearers into one or more backhaul channels can be performed at the adapt layer above the RLC.
- In the case of alternatives that place the adapt layer above the RLC, the routing functionality can be a part of the adapt layer. In the case where the adapt layer is below the RLC, there can be a routing sublayer at the top of the protocol stack at each IAB node
- As depicted in
FIG. 4 , the protocol stack from the mobile termination (MT) of a servingIAB node 402 to the distributed unit (DU) of thedonor IAB node 406 can comprise a general packet radio services tunneling protocol (GTP-U) layer, a user datagram protocol (UDP) layer, a security layer, an internet protocol (IP) layer, an adaption (adapt) layer, a radio link control (RLC) layer, a media access control (MAC) layer, and a physical (PHY) layer. The adapt layer can perform a routing function from one IAB node (e.g., IAB node 402) to theIAB node parent 404, via the adapt layer, while also communicating via the RLC, MAC, and/or PHY layers. TheIAB node parent 404 can then communicate this data to thedonor IAB node 406. - Referring now to
FIG. 5 , illustrated is an example schematic system block diagram of integrated access andbackhaul links 500 according to one or more embodiments. - As depicted in
FIG. 5 , thechild IAB nodes link 2 andlink 3, respectively, to itsparent IAB node 404, to indicate to theparent IAB node 404 information related to the quality of further down from thechild IAB nodes UE 102 and/or radio quality experienced by packets being transmitted between the UE bearer and thechild IAB node 402. This information can be transmitted within a header field of the adapt layers between thechild IAB node 402, theparent IAB node 404, and thedonor IAB node 406. Additionally, another adapt layer can be used to transmit the aforementioned data, wherein the utilization of the other adapt layer is not dependent upon the existence of uplink data traffic between thechild IAB node 402 and theparent IAB node 404. It should also be noted that when theparent IAB node 404 receives this information, theparent IAB node 404 can modify the information to comprise its assessment of the links (e.g., link 2 and link 3) between theparent IAB node 404 and thechild IAB nodes donor IAB node 406. - Referring now to
FIG. 6 , illustrated is an example flow diagram of a method that facilitates an integrated access backhaul network metric exchange according to one or more embodiments. Atelement 600, a method can comprise receiving (e.g. via parent IAB node 404) from a second wireless network device (e.g., via IAB node 402), quality data representative of a quality metric associated with a route for packet data. The method can comprise modifying, (e.g. via parent IAB node 404), the quality data in accordance with a link between the first wireless network device (e.g. parent IAB node 404) and the second wireless network device (e.g., donor IAB node 406), resulting in modified quality data. Additionally, the method can comprise sending (e.g., from the parent IAB node 404), the modified quality data to a mobile termination function of the first wireless network device (e.g., parent IAB node 404). - Referring now to
FIG. 7 , illustrated is an example flow diagram of a system that facilitates an integrated access backhaul network metric exchange according to one or more embodiments. - According to another embodiment, a system can facilitate, receiving (e.g. by a parent IAB node 404), from a first node device (e.g., via IAB node 402) of a wireless network, quality data representative of a quality metric associated with a route for packet data. In response to the receiving the quality data, the system can facilitate modifying (e.g. via parent IAB node 404) the quality data in accordance with a link between the first node device (e.g., via IAB node 402) and a second node device (e.g. the parent IAB node 404) of the wireless network, resulting in modified quality data. Furthermore, in response to the modifying the quality data, the system can facilitate sending (e.g. via parent IAB node 404) the modified quality data to a mobile termination function of the second node device (e.g. parent IAB node 404).
- Referring now to
FIG. 8 , illustrated is an example flow diagram of a machine-readable medium that facilitates an integrated access backhaul network metric exchange according to one or more embodiments. - According to yet another embodiment, described herein is a machine-readable storage medium that can perform the operations comprising facilitating receiving, from a first node device of a wireless network (e.g., via IAB node 402), quality data representative of a quality metric associated with a route for packet data. In response to the facilitating the receiving the quality data, the machine-readable storage medium can perform the operations comprising facilitating modifying (e.g. via parent IAB node 404) the quality data in accordance with a link between the first node device (e.g., via IAB node 402) and a second node device (e.g. via parent IAB node 404) of the wireless network, resulting in modified quality data. Additionally, in response to the facilitating the modifying the quality data, the machine-readable storage medium can perform the operations comprising facilitating sending (e.g. via parent IAB node 404) the modified quality data to a mobile termination function of the second node device (e.g. via parent IAB node 404).
- Referring now to
FIG. 9 , illustrated is an example block diagram of an examplemobile handset 900 operable to engage in a system architecture that facilitates wireless communications according to one or more embodiments described herein. Although a mobile handset is illustrated herein, it will be understood that other devices can be a mobile device, and that the mobile handset is merely illustrated to provide context for the embodiments of the various embodiments described herein. The following discussion is intended to provide a brief, general description of an example of a suitable environment in which the various embodiments can be implemented. While the description includes a general context of computer-executable instructions embodied on a machine-readable storage medium, those skilled in the art will recognize that the innovation also can be implemented in combination with other program modules and/or as a combination of hardware and software. - Generally, applications (e.g., program modules) can include routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the methods described herein can be practiced with other system configurations, including single-processor or multiprocessor systems, minicomputers, mainframe computers, as well as personal computers, hand-held computing devices, microprocessor-based or programmable consumer electronics, and the like, each of which can be operatively coupled to one or more associated devices.
- A computing device can typically include a variety of machine-readable media. Machine-readable media can be any available media that can be accessed by the computer and includes both volatile and non-volatile media, removable and non-removable media. By way of example and not limitation, computer-readable media can comprise computer storage media and communication media. Computer storage media can include volatile and/or non-volatile media, removable and/or non-removable media implemented in any method or technology for storage of information, such as computer-readable instructions, data structures, program modules, or other data. Computer storage media can include, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD ROM, digital video disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.
- Communication media typically embodies computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer-readable media.
- The handset includes a
processor 902 for controlling and processing all onboard operations and functions. Amemory 904 interfaces to theprocessor 902 for storage of data and one or more applications 906 (e.g., a video player software, user feedback component software, etc.). Other applications can include voice recognition of predetermined voice commands that facilitate initiation of the user feedback signals. Theapplications 906 can be stored in thememory 904 and/or in afirmware 908, and executed by theprocessor 902 from either or both thememory 904 or/and thefirmware 908. Thefirmware 908 can also store startup code for execution in initializing thehandset 900. Acommunications component 910 interfaces to theprocessor 902 to facilitate wired/wireless communication with external systems, e.g., cellular networks, VoIP networks, and so on. Here, thecommunications component 910 can also include a suitable cellular transceiver 911 (e.g., a GSM transceiver) and/or an unlicensed transceiver 913 (e.g., Wi-Fi, WiMax) for corresponding signal communications. Thehandset 900 can be a device such as a cellular telephone, a PDA with mobile communications capabilities, and messaging-centric devices. Thecommunications component 910 also facilitates communications reception from terrestrial radio networks (e.g., broadcast), digital satellite radio networks, and Internet-based radio services networks. - The
handset 900 includes adisplay 912 for displaying text, images, video, telephony functions (e.g., a Caller ID function), setup functions, and for user input. For example, thedisplay 912 can also be referred to as a “screen” that can accommodate the presentation of multimedia content (e.g., music metadata, messages, wallpaper, graphics, etc.). Thedisplay 912 can also display videos and can facilitate the generation, editing and sharing of video quotes. A serial I/O interface 914 is provided in communication with theprocessor 902 to facilitate wired and/or wireless serial communications (e.g., USB, and/or IEEE 1394) through a hardwire connection, and other serial input devices (e.g., a keyboard, keypad, and mouse). This can support updating and troubleshooting thehandset 900, for example. Audio capabilities are provided with an audio I/O component 916, which can include a speaker for the output of audio signals related to, for example, indication that the user pressed the proper key or key combination to initiate the user feedback signal. The audio I/O component 916 also facilitates the input of audio signals through a microphone to record data and/or telephony voice data, and for inputting voice signals for telephone conversations. - The
handset 900 can include aslot interface 918 for accommodating a SIC (Subscriber Identity Component) in the form factor of a card Subscriber Identity Module (SIM) oruniversal SIM 920, and interfacing theSIM card 920 with theprocessor 902. However, it is to be appreciated that theSIM card 920 can be manufactured into thehandset 900, and updated by downloading data and software. - The
handset 900 can process IP data traffic through thecommunications component 910 to accommodate IP traffic from an IP network such as, for example, the Internet, a corporate intranet, a home network, a person area network, etc., through an ISP or broadband cable provider. Thus, VoIP traffic can be utilized by thehandset 900 and IP-based multimedia content can be received in either an encoded or decoded format. - A video processing component 922 (e.g., a camera) can be provided for decoding encoded multimedia content. The
video processing component 922 can aid in facilitating the generation, editing, and sharing of video quotes. Thehandset 900 also includes apower source 924 in the form of batteries and/or an AC power subsystem, whichpower source 924 can interface to an external power system or charging equipment (not shown) by a power I/O component 926. - The
handset 900 can also include avideo component 930 for processing video content received and, for recording and transmitting video content. For example, thevideo component 930 can facilitate the generation, editing and sharing of video quotes. Alocation tracking component 932 facilitates geographically locating thehandset 900. As described hereinabove, this can occur when the user initiates the feedback signal automatically or manually. Auser input component 934 facilitates the user initiating the quality feedback signal. Theuser input component 934 can also facilitate the generation, editing and sharing of video quotes. Theuser input component 934 can include such conventional input device technologies such as a keypad, keyboard, mouse, stylus pen, and/or touchscreen, for example. - Referring again to the
applications 906, ahysteresis component 936 facilitates the analysis and processing of hysteresis data, which is utilized to determine when to associate with the access point. Asoftware trigger component 938 can be provided that facilitates triggering of thehysteresis component 936 when the Wi-Fi transceiver 913 detects the beacon of the access point. ASIP client 940 enables thehandset 900 to support SIP protocols and register the subscriber with the SIP registrar server. Theapplications 906 can also include aclient 942 that provides at least the capability of discovery, play and store of multimedia content, for example, music. - The
handset 900, as indicated above related to thecommunications component 910, includes an indoor network radio transceiver 913 (e.g., Wi-Fi transceiver). This function supports the indoor radio link, such as IEEE 802.11, for the dual-mode GSM handset 900. Thehandset 900 can accommodate at least satellite radio services through a handset that can combine wireless voice and digital radio chipsets into a single handheld device. - Referring now to
FIG. 10 , illustrated is an example block diagram of anexample computer 1000 operable to engage in a system architecture that facilitates wireless communications according to one or more embodiments described herein. Thecomputer 1000 can provide networking and communication capabilities between a wired or wireless communication network and a server (e.g., Microsoft server) and/or communication device. In order to provide additional context for various aspects thereof,FIG. 10 and the following discussion are intended to provide a brief, general description of a suitable computing environment in which the various aspects of the innovation can be implemented to facilitate the establishment of a transaction between an entity and a third party. While the description above is in the general context of computer-executable instructions that can run on one or more computers, those skilled in the art will recognize that the innovation also can be implemented in combination with other program modules and/or as a combination of hardware and software. - Generally, program modules include routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the various methods can be practiced with other computer system configurations, including single-processor or multiprocessor computer systems, minicomputers, mainframe computers, as well as personal computers, hand-held computing devices, microprocessor-based or programmable consumer electronics, and the like, each of which can be operatively coupled to one or more associated devices.
- The illustrated aspects of the innovation can also be practiced in distributed computing environments where certain tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.
- Computing devices typically include a variety of media, which can include computer-readable storage media or communications media, which two terms are used herein differently from one another as follows.
- Computer-readable storage media can be any available storage media that can be accessed by the computer and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer-readable storage media can be implemented in connection with any method or technology for storage of information such as computer-readable instructions, program modules, structured data, or unstructured data. Computer-readable storage media can include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other tangible and/or non-transitory media which can be used to store desired information. Computer-readable storage media can be accessed by one or more local or remote computing devices, e.g., via access requests, queries or other data retrieval protocols, for a variety of operations with respect to the information stored by the medium.
- Communications media can embody computer-readable instructions, data structures, program modules or other structured or unstructured data in a data signal such as a modulated data signal, e.g., a carrier wave or other transport mechanism, and includes any information delivery or transport media. The term “modulated data signal” or signals refers to a signal that has one or more of its characteristics set or changed in such a manner as to encode information in one or more signals. By way of example, and not limitation, communication media include wired media, such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media.
- With reference to
FIG. 10 , implementing various aspects described herein with regards to the end-user device can include acomputer 1000, thecomputer 1000 including aprocessing unit 1004, asystem memory 1006 and asystem bus 1008. Thesystem bus 1008 couples system components including, but not limited to, thesystem memory 1006 to theprocessing unit 1004. Theprocessing unit 1004 can be any of various commercially available processors. Dual microprocessors and other multi-processor architectures can also be employed as theprocessing unit 1004. - The
system bus 1008 can be any of several types of bus structure that can further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures. Thesystem memory 1006 includes read-only memory (ROM) 1027 and random access memory (RAM) 1012. A basic input/output system (BIOS) is stored in anon-volatile memory 1027 such as ROM, EPROM, EEPROM, which BIOS contains the basic routines that help to transfer information between elements within thecomputer 1000, such as during start-up. TheRAM 1012 can also include a high-speed RAM such as static RAM for caching data. - The
computer 1000 further includes an internal hard disk drive (HDD) 1014 (e.g., EIDE, SATA), which internalhard disk drive 1014 can also be configured for external use in a suitable chassis (not shown), a magnetic floppy disk drive (FDD) 1016, (e.g., to read from or write to a removable diskette 1018) and anoptical disk drive 1020, (e.g., reading a CD-ROM disk 1022 or, to read from or write to other high capacity optical media such as the DVD). Thehard disk drive 1014,magnetic disk drive 1016 andoptical disk drive 1020 can be connected to thesystem bus 1008 by a harddisk drive interface 1024, a magneticdisk drive interface 1026 and anoptical drive interface 1028, respectively. Theinterface 1024 for external drive implementations includes at least one or both of Universal Serial Bus (USB) and IEEE 1394 interface technologies. Other external drive connection technologies are within contemplation of the subject innovation. - The drives and their associated computer-readable media provide nonvolatile storage of data, data structures, computer-executable instructions, and so forth. For the
computer 1000 the drives and media accommodate the storage of any data in a suitable digital format. Although the description of computer-readable media above refers to a HDD, a removable magnetic diskette, and a removable optical media such as a CD or DVD, it should be appreciated by those skilled in the art that other types of media which are readable by acomputer 1000, such as zip drives, magnetic cassettes, flash memory cards, cartridges, and the like, can also be used in the exemplary operating environment, and further, that any such media can contain computer-executable instructions for performing the methods of the disclosed innovation. - A number of program modules can be stored in the drives and
RAM 1012, including anoperating system 1030, one ormore application programs 1032,other program modules 1034 andprogram data 1036. All or portions of the operating system, applications, modules, and/or data can also be cached in theRAM 1012. It is to be appreciated that the innovation can be implemented with various commercially available operating systems or combinations of operating systems. - A user can enter commands and information into the
computer 1000 through one or more wired/wireless input devices, e.g., akeyboard 1038 and a pointing device, such as amouse 1040. Other input devices (not shown) can include a microphone, an IR remote control, a joystick, a game pad, a stylus pen, touchscreen, or the like. These and other input devices are often connected to theprocessing unit 1004 through aninput device interface 1042 that is coupled to thesystem bus 1008, but can be connected by other interfaces, such as a parallel port, an IEEE 1394 serial port, a game port, a USB port, an IR interface, etc. - A
monitor 1044 or other type of display device is also connected to thesystem bus 1008 through an interface, such as avideo adapter 1046. In addition to themonitor 1044, acomputer 1000 typically includes other peripheral output devices (not shown), such as speakers, printers, etc. - The
computer 1000 can operate in a networked environment using logical connections by wired and/or wireless communications to one or more remote computers, such as a remote computer(s) 1048. The remote computer(s) 1048 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment device, a peer device or other common network node, and typically includes many or all of the elements described relative to the computer, although, for purposes of brevity, only a memory/storage device 1050 is illustrated. The logical connections depicted include wired/wireless connectivity to a local area network (LAN) 1052 and/or larger networks, e.g., a wide area network (WAN) 1054. Such LAN and WAN networking environments are commonplace in offices and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which can connect to a global communications network, e.g., the Internet. - When used in a LAN networking environment, the
computer 1000 is connected to thelocal network 1052 through a wired and/or wireless communication network interface oradapter 1056. Theadapter 1056 can facilitate wired or wireless communication to theLAN 1052, which can also include a wireless access point disposed thereon for communicating with thewireless adapter 1056. - When used in a WAN networking environment, the
computer 1000 can include amodem 1058, or is connected to a communications server on theWAN 1054, or has other means for establishing communications over theWAN 1054, such as by way of the Internet. Themodem 1058, which can be internal or external and a wired or wireless device, is connected to thesystem bus 1008 through theinput device interface 1042. In a networked environment, program modules depicted relative to the computer, or portions thereof, can be stored in the remote memory/storage device 1050. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers can be used. - The computer is operable to communicate with any wireless devices or entities operatively disposed in wireless communication, e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, communications satellite, any piece of equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news stand, restroom), and telephone. This includes at least Wi-Fi and Bluetooth™ wireless technologies. Thus, the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices.
- Wi-Fi, or Wireless Fidelity, allows connection to the Internet from a couch at home, in a hotel room, or a conference room at work, without wires. Wi-Fi is a wireless technology similar to that used in a cell phone that enables such devices, e.g., computers, to send and receive data indoors and out, anywhere within the range of a base station. Wi-Fi networks use radio technologies called IEEE 802.11 (a, b, g, etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used to connect computers to each other, to the Internet, and to wired networks (which use IEEE 802.3 or Ethernet). Wi-Fi networks operate in the unlicensed 2.4 and 5 GHz radio bands, at an 7 Mbps (802.11a) or 54 Mbps (802.11b) data rate, for example, or with products that contain both bands (dual band), so the networks can provide real-world performance similar to the basic 16BaseT wired Ethernet networks used in many offices.
- An aspect of 5G, which differentiates from previous 4G systems, is the use of NR. NR architecture can be designed to support multiple deployment cases for independent configuration of resources used for RACH procedures. Since the NR can provide additional services than those provided by LTE, efficiencies can be generated by leveraging the pros and cons of LTE and NR to facilitate the interplay between LTE and NR, as discussed herein.
- Reference throughout this specification to “one embodiment,” or “an embodiment,” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrase “in one embodiment,” “in one aspect,” or “in an embodiment,” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics can be combined in any suitable manner in one or more embodiments.
- As used in this disclosure, in some embodiments, the terms “component,” “system,” “interface,” and the like are intended to refer to, or comprise, a computer-related entity or an entity related to an operational apparatus with one or more specific functionalities, wherein the entity can be either hardware, a combination of hardware and software, software, or software in execution, and/or firmware. As an example, a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, computer-executable instructions, a program, and/or a computer. By way of illustration and not limitation, both an application running on a server and the server can be a component.
- One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers. In addition, these components can execute from various computer readable media having various data structures stored thereon. The components can communicate via local and/or remote processes such as in accordance with a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems via the signal). As another example, a component can be an apparatus with specific functionality provided by mechanical parts operated by electric or electronic circuitry, which is operated by a software application or firmware application executed by one or more processors, wherein the processor can be internal or external to the apparatus and can execute at least a part of the software or firmware application. As yet another example, a component can be an apparatus that provides specific functionality through electronic components without mechanical parts, the electronic components can comprise a processor therein to execute software or firmware that confer(s) at least in part the functionality of the electronic components. In an aspect, a component can emulate an electronic component via a virtual machine, e.g., within a cloud computing system. While various components have been illustrated as separate components, it will be appreciated that multiple components can be implemented as a single component, or a single component can be implemented as multiple components, without departing from example embodiments.
- In addition, the words “example” and “exemplary” are used herein to mean serving as an instance or illustration. Any embodiment or design described herein as “example” or “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs. Rather, use of the word example or exemplary is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.
- Moreover, terms such as “mobile device equipment,” “mobile station,” “mobile,” subscriber station,” “access terminal,” “terminal,” “handset,” “communication device,” “mobile device” (and/or terms representing similar terminology) can refer to a wireless device utilized by a subscriber or mobile device of a wireless communication service to receive or convey data, control, voice, video, sound, gaming or substantially any data-stream or signaling-stream. The foregoing terms are utilized interchangeably herein and with reference to the related drawings. Likewise, the terms “access point (AP),” “Base Station (BS),” BS transceiver, BS device, cell site, cell site device, “Node B (NB),” “evolved Node B (eNode B),” “home Node B (HNB)” and the like, are utilized interchangeably in the application, and refer to a wireless network component or appliance that transmits and/or receives data, control, voice, video, sound, gaming or substantially any data-stream or signaling-stream from one or more subscriber stations. Data and signaling streams can be packetized or frame-based flows.
- Furthermore, the terms “device,” “communication device,” “mobile device,” “subscriber,” “customer entity,” “consumer,” “customer entity,” “entity” and the like are employed interchangeably throughout, unless context warrants particular distinctions among the terms. It should be appreciated that such terms can refer to human entities or automated components supported through artificial intelligence (e.g., a capacity to make inference based on complex mathematical formalisms), which can provide simulated vision, sound recognition and so forth.
- Embodiments described herein can be exploited in substantially any wireless communication technology, comprising, but not limited to, wireless fidelity (Wi-Fi), global system for mobile communications (GSM), universal mobile telecommunications system (UMTS), worldwide interoperability for microwave access (WiMAX), enhanced general packet radio service (enhanced GPRS), third generation partnership project (3GPP) long term evolution (LTE), third generation partnership project 2 (3GPP2) ultra mobile broadband (UMB), high speed packet access (HSPA), Z-Wave, Zigbee and other 802.XX wireless technologies and/or legacy telecommunication technologies.
- The various aspects described herein can relate to New Radio (NR), which can be deployed as a standalone radio access technology or as a non-standalone radio access technology assisted by another radio access technology, such as Long Term Evolution (LTE), for example. It should be noted that although various aspects and embodiments have been described herein in the context of 5G, Universal Mobile Telecommunications System (UMTS), and/or Long Term Evolution (LTE), or other next generation networks, the disclosed aspects are not limited to 5G, a UMTS implementation, and/or an LTE implementation as the techniques can also be applied in 3G, 4G, or LTE systems. For example, aspects or features of the disclosed embodiments can be exploited in substantially any wireless communication technology. Such wireless communication technologies can include UMTS, Code Division Multiple Access (CDMA), Wi-Fi, Worldwide Interoperability for Microwave Access (WiMAX), General Packet Radio Service (GPRS), Enhanced GPRS, Third Generation Partnership Project (3GPP), LTE, Third Generation Partnership Project 2 (3GPP2) Ultra Mobile Broadband (UMB), High Speed Packet Access (HSPA), Evolved High Speed Packet Access (HSPA+), High-Speed Downlink Packet Access (HSDPA), High-Speed Uplink Packet Access (HSUPA), Zigbee, or another IEEE 802.XX technology. Additionally, substantially all aspects disclosed herein can be exploited in legacy telecommunication technologies.
- As used herein, the term “infer” or “inference” refers generally to the process of reasoning about, or inferring states of, the system, environment, user, and/or intent from a set of observations as captured via events and/or data. Captured data and events can include user data, device data, environment data, data from sensors, sensor data, application data, implicit data, explicit data, etc. Inference can be employed to identify a specific context or action, or can generate a probability distribution over states of interest based on a consideration of data and events, for example.
- Inference can also refer to techniques employed for composing higher-level events from a set of events and/or data. Such inference results in the construction of new events or actions from a set of observed events and/or stored event data, whether the events are correlated in close temporal proximity, and whether the events and data come from one or several event and data sources. Various classification procedures and/or systems (e.g., support vector machines, neural networks, expert systems, Bayesian belief networks, fuzzy logic, and data fusion engines) can be employed in connection with performing automatic and/or inferred action in connection with the disclosed subject matter.
- In addition, the various embodiments can be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer to implement the disclosed subject matter. The term “article of manufacture” as used herein is intended to encompass a computer program accessible from any computer-readable device, machine-readable device, computer-readable carrier, computer-readable media, machine-readable media, computer-readable (or machine-readable) storage/communication media. For example, computer-readable media can comprise, but are not limited to, a magnetic storage device, e.g., hard disk; floppy disk; magnetic strip(s); an optical disk (e.g., compact disk (CD), a digital video disc (DVD), a Blu-ray Disc™ (BD)); a smart card; a flash memory device (e.g., card, stick, key drive); and/or a virtual device that emulates a storage device and/or any of the above computer-readable media. Of course, those skilled in the art will recognize many modifications can be made to this configuration without departing from the scope or spirit of the various embodiments.
- The above description of illustrated embodiments of the subject disclosure, including what is described in the Abstract, is not intended to be exhaustive or to limit the disclosed embodiments to the precise forms disclosed. While specific embodiments and examples are described herein for illustrative purposes, various modifications are possible that are considered within the scope of such embodiments and examples, as those skilled in the relevant art can recognize.
- In this regard, while the subject matter has been described herein in connection with various embodiments and corresponding figures, where applicable, it is to be understood that other similar embodiments can be used or modifications and additions can be made to the described embodiments for performing the same, similar, alternative, or substitute function of the disclosed subject matter without deviating therefrom. Therefore, the disclosed subject matter should not be limited to any single embodiment described herein, but rather should be construed in breadth and scope in accordance with the appended claims below.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/072,106 US20210036955A1 (en) | 2019-05-02 | 2020-10-16 | Integrated access backhaul network metric exchange for 5g or other next generation network |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/401,468 US10833984B1 (en) | 2019-05-02 | 2019-05-02 | Integrated access backhaul network metric exchange for 5G or other next generation network |
US17/072,106 US20210036955A1 (en) | 2019-05-02 | 2020-10-16 | Integrated access backhaul network metric exchange for 5g or other next generation network |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/401,468 Continuation US10833984B1 (en) | 2019-05-02 | 2019-05-02 | Integrated access backhaul network metric exchange for 5G or other next generation network |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210036955A1 true US20210036955A1 (en) | 2021-02-04 |
Family
ID=73016921
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/401,468 Active 2039-07-04 US10833984B1 (en) | 2019-05-02 | 2019-05-02 | Integrated access backhaul network metric exchange for 5G or other next generation network |
US17/072,106 Abandoned US20210036955A1 (en) | 2019-05-02 | 2020-10-16 | Integrated access backhaul network metric exchange for 5g or other next generation network |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/401,468 Active 2039-07-04 US10833984B1 (en) | 2019-05-02 | 2019-05-02 | Integrated access backhaul network metric exchange for 5G or other next generation network |
Country Status (1)
Country | Link |
---|---|
US (2) | US10833984B1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110475267B (en) * | 2018-05-11 | 2021-09-17 | 华为技术有限公司 | Configuration method, data transmission method and device |
US10833984B1 (en) * | 2019-05-02 | 2020-11-10 | At&T Intellectual Property I, L.P. | Integrated access backhaul network metric exchange for 5G or other next generation network |
CN114365529B (en) * | 2019-07-08 | 2023-11-14 | Lg电子株式会社 | Method for determining link availability of IAB node and node using the same |
US11109405B2 (en) * | 2019-08-16 | 2021-08-31 | Dish Wireless L.L.C. | Downlink scheduling across a cellular carrier aggregation |
US11844062B2 (en) * | 2019-12-13 | 2023-12-12 | Qualcomm Incorporated | Local interference management in an integrated access backhaul network |
US11647419B2 (en) * | 2020-03-31 | 2023-05-09 | T-Mobile Usa, Inc. | Adjusting window size based on quality of experience |
WO2021230915A1 (en) * | 2020-05-12 | 2021-11-18 | Assia Spe, Llc | Systems and methods for closed loop automation between wireless network nodes |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140226676A1 (en) * | 2013-02-14 | 2014-08-14 | Qualcomm Incorporated | Proportional scheduling in communications systems |
US20160226575A1 (en) * | 2013-09-17 | 2016-08-04 | Kabushiki Kaisha Toshiba | Methods and apparatus for a tdma mesh network |
US20180176800A1 (en) * | 2016-12-20 | 2018-06-21 | Netsia, Inc. | System and apparatus for programmable virtualization and optimization of aggregated wireless radio access technologies |
US20180279319A1 (en) * | 2017-03-23 | 2018-09-27 | Nokia Technologies Oy | Dynamic provisioning of quality of service for end-to-end quality of service control in device-to-device communication |
US20200107383A1 (en) * | 2018-09-28 | 2020-04-02 | At&T Intellectual Property I, L.P. | On-demand backhaul link management measurements for integrated access backhaul for 5g or other next generation network |
US10833984B1 (en) * | 2019-05-02 | 2020-11-10 | At&T Intellectual Property I, L.P. | Integrated access backhaul network metric exchange for 5G or other next generation network |
US20210007011A1 (en) * | 2018-03-26 | 2021-01-07 | Huawei Technologies Co., Ltd. | Information Transmission Method And Apparatus |
US20210022040A1 (en) * | 2018-04-04 | 2021-01-21 | Huawei Technologies Co., Ltd. | Data transmission method and apparatus |
US20210127319A1 (en) * | 2018-04-05 | 2021-04-29 | Zte Corporation | Method for performing relay forwarding on integrated access and backhaul links, information acquisition method, node, and storage medium |
-
2019
- 2019-05-02 US US16/401,468 patent/US10833984B1/en active Active
-
2020
- 2020-10-16 US US17/072,106 patent/US20210036955A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140226676A1 (en) * | 2013-02-14 | 2014-08-14 | Qualcomm Incorporated | Proportional scheduling in communications systems |
US20160226575A1 (en) * | 2013-09-17 | 2016-08-04 | Kabushiki Kaisha Toshiba | Methods and apparatus for a tdma mesh network |
US20180176800A1 (en) * | 2016-12-20 | 2018-06-21 | Netsia, Inc. | System and apparatus for programmable virtualization and optimization of aggregated wireless radio access technologies |
US20180279319A1 (en) * | 2017-03-23 | 2018-09-27 | Nokia Technologies Oy | Dynamic provisioning of quality of service for end-to-end quality of service control in device-to-device communication |
US20210007011A1 (en) * | 2018-03-26 | 2021-01-07 | Huawei Technologies Co., Ltd. | Information Transmission Method And Apparatus |
US20210022040A1 (en) * | 2018-04-04 | 2021-01-21 | Huawei Technologies Co., Ltd. | Data transmission method and apparatus |
US20210127319A1 (en) * | 2018-04-05 | 2021-04-29 | Zte Corporation | Method for performing relay forwarding on integrated access and backhaul links, information acquisition method, node, and storage medium |
US20200107383A1 (en) * | 2018-09-28 | 2020-04-02 | At&T Intellectual Property I, L.P. | On-demand backhaul link management measurements for integrated access backhaul for 5g or other next generation network |
US10833984B1 (en) * | 2019-05-02 | 2020-11-10 | At&T Intellectual Property I, L.P. | Integrated access backhaul network metric exchange for 5G or other next generation network |
Also Published As
Publication number | Publication date |
---|---|
US10833984B1 (en) | 2020-11-10 |
US20200351198A1 (en) | 2020-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10979891B2 (en) | Integrated access backhaul under a non-standalone network architecture for 5G or other next generation network | |
US10833984B1 (en) | Integrated access backhaul network metric exchange for 5G or other next generation network | |
US11678214B2 (en) | Configuration and reconfiguration of aggregated backhaul bearers in a multi-hop integrated access backhaul network for 5G or other next generation network | |
US11432290B2 (en) | Facilitation of signal alignment for 5G or other next generation network | |
US11910453B2 (en) | Mesh connectivity between network nodes in hierarchical network | |
US20230071237A1 (en) | Connectionless segment routing for 5g or other next generation network | |
US20220294523A1 (en) | System model and architecture for mobile integrated access and backhaul in advanced networks | |
US11350409B2 (en) | Radio resource management for full-duplex operation of integrated access and backhaul for 5G or other next generation network | |
US20220303867A1 (en) | Flexible framework for multi-hop routing in an integrated access and backhaul network for 5g or other next generation network | |
US11284376B2 (en) | Distributed control information for multiple party communications for 5G or other next generation network | |
US11271624B2 (en) | Context-based precoding matrix computations for radio access network for 5G or other next generation network | |
US20190394828A1 (en) | Indication of multiple in multiple out network layers across carriers to optimize 5g or other next generation network | |
US12088418B2 (en) | Hybrid automatic repeat request feedback for outer loop adaptation for 5G or other next generation network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AT&T INTELLECTUAL PROPERTY I, L.P., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAJMUNDAR, MILAP;NOVLAN, THOMAS;REEL/FRAME:054073/0327 Effective date: 20190503 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |