WO2019109881A1 - Réseau d'antennes et dispositif de communication sans fil - Google Patents

Réseau d'antennes et dispositif de communication sans fil Download PDF

Info

Publication number
WO2019109881A1
WO2019109881A1 PCT/CN2018/118883 CN2018118883W WO2019109881A1 WO 2019109881 A1 WO2019109881 A1 WO 2019109881A1 CN 2018118883 W CN2018118883 W CN 2018118883W WO 2019109881 A1 WO2019109881 A1 WO 2019109881A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
reflector
antenna element
switch
antenna array
Prior art date
Application number
PCT/CN2018/118883
Other languages
English (en)
Chinese (zh)
Inventor
朱毛毛
袁博
华睿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to MX2020005597A priority Critical patent/MX2020005597A/es
Priority to EP18886691.7A priority patent/EP3719930B1/fr
Priority to JP2020530952A priority patent/JP6984019B2/ja
Publication of WO2019109881A1 publication Critical patent/WO2019109881A1/fr
Priority to US16/884,211 priority patent/US11264731B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/30Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching

Definitions

  • the present application relates to the field of communications, and in particular, to an antenna array and a wireless communication device.
  • the antenna points the radio wave in a specific direction to improve the anti-interference ability.
  • a smart antenna consisting of multiple directional antennas pointing in different directions can change its radio transmission and reception direction. Since the directional antenna is bulky, it is difficult to miniaturize a smart antenna composed of a plurality of directional antennas pointing in different directions.
  • the present application provides an antenna array and a wireless communication device to implement a miniaturized smart antenna.
  • an antenna array comprising a first directional antenna and a second directional antenna.
  • the directions of the first directional antenna and the second directional antenna are different.
  • the first directional antenna includes a first antenna element, a first reflector, a first feeder connected to the first antenna element, and a first switch that controls the first feeder.
  • the second directional antenna includes a second antenna element, a second reflector, a second feeder connected to the second antenna element, and a second switch that controls the second feeder.
  • the first antenna element is a microstrip dipole antenna element.
  • the length of the first antenna element is about half of the operating wavelength of the antenna array.
  • the first reflector is a parasitic microstrip antenna vibrator.
  • the length of the first reflector is slightly larger than the length of the first antenna element.
  • the distance from the midpoint of the first reflector to the first antenna element is about one quarter of the operating wavelength. Both sides of the first reflector are bent toward the first antenna element.
  • the second antenna element is a microstrip dipole antenna element.
  • the length of the second antenna element is about one half of the operating wavelength.
  • the second reflector is a parasitic microstrip antenna vibrator.
  • the length of the second reflector is slightly larger than the length of the second antenna element.
  • the distance from the midpoint of the second reflector to the second antenna element is about one quarter of the operating wavelength. Both sides of the second reflector are bent toward the second antenna element.
  • a distance between a midpoint of the first reflector and a midpoint of the second reflector is smaller than a distance between a midpoint of the first antenna element and a midpoint of the second antenna element.
  • the reflector of the above antenna array is located inside the pattern surrounded by the antenna elements of the directional antennas. Therefore, the size of the antenna array is small. Moreover, the two sides of the reflector are bent in the direction of the antenna element to prevent the reflectors on the inner side of the pattern surrounded by the antenna element from overlapping each other.
  • the antenna array further includes a first printed circuit board and a second printed circuit board.
  • the first antenna element, the first feed line, the first switch, the second antenna element, the second feed line, and the second switch are disposed on the first printed circuit board.
  • the first reflector and the second reflector are disposed on the second printed circuit board.
  • the first printed circuit board is parallel to the second printed circuit board and is fixed to the second printed circuit board.
  • the design of the antenna array is complicated by the arrangement of the feeder and the reflector on a printed circuit board. Placing feeders and reflectors on different printed circuit boards simplifies the antenna array.
  • the length of the first reflector is about 0.54 to 0.6 times the operating wavelength.
  • the length of the second reflector is about 0.54 to 0.6 times the operating wavelength.
  • the first switch and the first switch are PIN-type diodes.
  • a wireless communication device comprising the antenna array of any of the first aspect or the first implementation to the third implementation of the first aspect described above.
  • the wireless communication device also includes a control circuit.
  • the control circuit is configured to turn off the first switch or the second switch to control the antenna array to be in an directional mode.
  • control circuit is further configured to turn on the first switch and the second switch to control the antenna array to be in an omni mode.
  • FIG. 1 is a schematic diagram of an antenna array including two directional antennas according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an antenna array including four directional antennas according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an antenna array of feeder lines and reflectors on different printed circuit boards according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a wireless communication device in an embodiment of the present invention.
  • the antenna array includes at least two directional antennas.
  • the orientation of these directional antennas varies.
  • the antenna array includes two directional antennas, the directional antenna on the left side points to the left front, and the directional antenna on the right side points to the right front.
  • the antenna array includes four directional antennas, the directional antenna on the left side points to the left, the directional antenna on the right side points to the right, the front directional antenna points to the front, and the rear directional antenna points to the rear.
  • the antenna array may also include directional antennas of 3, 5, 6, or more. All directional antennas are arranged in a centrally symmetrical manner and point to the outside.
  • Each of these directional antennas includes an antenna element, a reflector, a feed line that connects the antenna element, and a switch that controls the line.
  • the directional antenna is a microstrip antenna.
  • the feeder can be a double-sided parallel-strip line.
  • the switch can be a PIN type diode.
  • the antenna element is a microstrip dipole antenna element.
  • the antenna element is connected to the feed line and is therefore a driven element.
  • the length of the antenna element is about half of the operating wavelength of the antenna array (English: operating wavelength).
  • the operating wavelength is the wavelength of the electromagnetic wave corresponding to the center frequency of the operating band of the antenna array (English: operating band), hereinafter also referred to as ⁇ .
  • is the wavelength in the medium and is related to the dielectric constant.
  • the dielectric constant corresponding to ⁇ is related to the dielectric constant of the medium and the dielectric constant of the air.
  • the dielectric constant corresponding to ⁇ is the average of the dielectric constant of the medium and the dielectric constant of air.
  • the length of the antenna element may be as close as 1/2 ⁇ , for example, about 0.44 ⁇ - 0.53 ⁇ .
  • the reflector is a parasitic microstrip antenna vibrator.
  • the length of the reflector is slightly larger than the length of the antenna element, for example about 0.54 ⁇ - 0.6 ⁇ .
  • the distance from the midpoint of the reflector to the antenna element is approximately 1/4 ⁇ . Since the length of the reflector is slightly larger than the length of the antenna element, the reflector has an inductive reactance, meaning that the phase of its current lags behind the phase of the open circuit voltage caused by the receiving field.
  • the electromagnetic waves emitted by the reflector and the antenna element are constructively interfered in the forward direction (from the direction of the reflector to the antenna element) and destructively interfered in the opposite direction (from the direction of the antenna element to the reflector). Therefore, the electromagnetic wave emitted by the combination of the antenna element and the reflector is directed from the reflector to the direction of the antenna element.
  • all of the reflectors are located inside the pattern enclosed by the antenna elements of each directional antenna. Therefore, the distance between the midpoints of the two reflectors is less than the distance between the midpoints of the corresponding two antenna elements.
  • placing the reflector in the pattern enclosed by the antenna element may cause the reflectors to overlap each other. In order to prevent the reflector from affecting, both sides of the reflector are bent toward the antenna element to avoid overlap between the reflectors.
  • the antenna array employing the above structure is small in size.
  • the four-way antenna array shown in FIG. 2 operating in the 2.4 GHz range can be as small as 56 millimeters (mm) * 56 mm.
  • the design of the antenna array can be complicated by arranging the feeder and the reflector on a printed circuit board (PCB).
  • the feeder and reflector can be placed on different PCBs.
  • the antenna array employing this structure includes two PCBs, a first PCB 301 and a second PCB 302.
  • the first PCB 301 and the second PCB 302 are placed one on top of the other, that is, the first PCB 301 and the second PCB 302 are parallel and the projections of the first PCB 301 and the second PCB 302 overlap.
  • the first PCB 301 is fixed to the second PCB 302.
  • a hole may be opened at a position corresponding to the parallel relationship between the first PCB 301 and the second PCB 302, and fixed by a fixing member (such as a plastic screw, a plastic stud or a spacer support) through the corresponding opening.
  • a fixing member such as a plastic screw, a plastic stud or a spacer support
  • Figure 3 shows only one side of the first PCB 301 on which one arm of the microstrip dipole antenna element is arranged, the other arm of the microstrip dipole antenna element being on the other side of the first PCB.
  • the second PCB 302 in FIG. 3 is above the first PCB 301.
  • the second PCB 302 can also be below the first PCB.
  • the wireless communication device includes a control circuit and an antenna array in the embodiment shown in Figures 1-3.
  • the control circuit can turn off one or more of the directional antenna switches to control the antenna array to be in an directional mode.
  • the control circuit can also turn on the switches of all directional antennas to control the antenna array to be in omni mode. If the switch is a PIN diode, the control circuit can apply a forward bias to the switch to be turned on to open the switch.
  • the wireless communication device also includes a radio frequency (RF) circuit coupled to the feeder.
  • the RF circuit also known as the RF module, is used to transmit and receive RF signals.
  • the control circuit can be integrated in the RF circuit or it can be another device.
  • the control circuit can be a complex programmable logic device (CPLD), a field programmable gate (FPGA), a central processing unit (CPU), or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field programmable gate
  • CPU central processing unit

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Abstract

L'invention concerne un réseau d'antennes, et un dispositif de communication sans fil. Le réseau d'antennes comprend au moins deux antennes directionnelles dans des directions différentes. Chaque antenne directionnelle comprend un vibrateur d'antenne, un réflecteur, une ligne d'alimentation connectée au vibrateur d'antenne, et un commutateur destiné à commander la ligne d'alimentation. Le vibrateur d'antenne est un vibrateur d'antenne dipolaire à micropuce. Le réflecteur est un vibrateur d'antenne à micropuce parasite. La longueur du réflecteur est supérieure à celle du vibrateur d'antenne. Deux côtés du réflecteur sont courbés dans la direction du vibrateur d'antenne. La distance entre des points centraux de réflecteurs de deux antennes quelconques parmi les antennes directionnelles est inférieure à la distance entre des points centraux de leurs vibrateurs d'antennes. Des réflecteurs du réseau d'antennes sont situés dans des côtés intérieurs de motifs entourés par des vibrateurs d'antennes des antennes directionnelles. La taille du réseau d'antennes est donc petite.
PCT/CN2018/118883 2017-12-06 2018-12-03 Réseau d'antennes et dispositif de communication sans fil WO2019109881A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2020005597A MX2020005597A (es) 2017-12-06 2018-12-03 Conjunto de antena y dispositivo de comunicacion inalambrica.
EP18886691.7A EP3719930B1 (fr) 2017-12-06 2018-12-03 Réseau d'antennes et dispositif de communication sans fil
JP2020530952A JP6984019B2 (ja) 2017-12-06 2018-12-03 アンテナアレイ及び無線通信デバイス
US16/884,211 US11264731B2 (en) 2017-12-06 2020-05-27 Antenna array and wireless communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711278751.X 2017-12-06
CN201711278751.XA CN109888513B (zh) 2017-12-06 2017-12-06 天线阵列及无线通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/884,211 Continuation US11264731B2 (en) 2017-12-06 2020-05-27 Antenna array and wireless communications device

Publications (1)

Publication Number Publication Date
WO2019109881A1 true WO2019109881A1 (fr) 2019-06-13

Family

ID=66751261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118883 WO2019109881A1 (fr) 2017-12-06 2018-12-03 Réseau d'antennes et dispositif de communication sans fil

Country Status (6)

Country Link
US (1) US11264731B2 (fr)
EP (1) EP3719930B1 (fr)
JP (1) JP6984019B2 (fr)
CN (1) CN109888513B (fr)
MX (1) MX2020005597A (fr)
WO (1) WO2019109881A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110450658B (zh) * 2019-08-16 2022-11-11 哈尔滨工业大学 基于定向pcb板载天线动态无线充电电动汽车的位置检测装置
US11456521B2 (en) * 2020-04-02 2022-09-27 Softbank Corp. Controlling antenna beam generation to compensate for motion of a high-altitude platform
US11431102B2 (en) * 2020-09-04 2022-08-30 Dell Products L.P. Pattern reflector network for a dual slot antenna
CN114512798B (zh) * 2020-11-16 2023-04-11 华为技术有限公司 可重构天线及通信设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1825704A (zh) * 2006-03-06 2006-08-30 浙江大学 角反射平面印制板偶极子天线
JP2007158826A (ja) * 2005-12-06 2007-06-21 Ntt Docomo Inc アンテナ装置
CN202871960U (zh) * 2012-09-17 2013-04-10 西安天和防务技术股份有限公司 全向赋形微带阵列天线
CN204834891U (zh) * 2015-07-14 2015-12-02 华南理工大学 一种具有阶梯型反射器的八木天线
CN105356041A (zh) * 2015-11-20 2016-02-24 西安华为技术有限公司 双极化天线
CN106025529A (zh) * 2016-06-29 2016-10-12 广东顺德中山大学卡内基梅隆大学国际联合研究院 电容加载变频平面指向性双频天线
CN106159464A (zh) * 2016-08-26 2016-11-23 深圳前海科蓝通信有限公司 一种定向窄波选择智能天线系统

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2287550A (en) * 1939-02-28 1942-06-23 Rca Corp Radio signaling
US2627028A (en) * 1945-07-03 1953-01-27 Welville B Nowak Antenna system
US2875438A (en) * 1953-04-10 1959-02-24 Donald L Hings Directional antenna array
US4611214A (en) * 1984-06-27 1986-09-09 The United States Of America As Represented By The Secretary Of The Army Tactical high frequency array antennas
JP3636920B2 (ja) * 1999-03-18 2005-04-06 Dxアンテナ株式会社 多周波数帯用アンテナ
US6498589B1 (en) * 1999-03-18 2002-12-24 Dx Antenna Company, Limited Antenna system
JP2002330024A (ja) * 2001-05-01 2002-11-15 Iwatsu Electric Co Ltd スロットアンテナ
ATE323954T1 (de) * 2003-10-07 2006-05-15 Philippe Herman Rundstrahlende antenne zum senden und empfangen von audio/video signalen
CN100336269C (zh) * 2004-07-28 2007-09-05 西安海天天线科技股份有限公司 四极化六扇区阵列全向天线
US7193562B2 (en) * 2004-11-22 2007-03-20 Ruckus Wireless, Inc. Circuit board having a peripheral antenna apparatus with selectable antenna elements
US7292198B2 (en) * 2004-08-18 2007-11-06 Ruckus Wireless, Inc. System and method for an omnidirectional planar antenna apparatus with selectable elements
JP2006060756A (ja) * 2004-08-19 2006-03-02 Masaru Noguchi 移動機用アンテナ
JP2006066993A (ja) * 2004-08-24 2006-03-09 Sony Corp マルチビームアンテナ
US7477204B2 (en) * 2005-12-30 2009-01-13 Micro-Mobio, Inc. Printed circuit board based smart antenna
US7629938B1 (en) * 2006-07-24 2009-12-08 The United States Of America As Represented By The Secretary Of The Navy Open Yaggi antenna array
US8604994B2 (en) * 2008-10-07 2013-12-10 Panasonic Corporation Antenna apparatus including feeding elements and parasitic elements activated as reflectors
US9634373B2 (en) * 2009-06-04 2017-04-25 Ubiquiti Networks, Inc. Antenna isolation shrouds and reflectors
US20110063181A1 (en) * 2009-09-16 2011-03-17 Michael Clyde Walker Passive repeater for wireless communications
US9246235B2 (en) * 2012-10-26 2016-01-26 Telefonaktiebolaget L M Ericsson Controllable directional antenna apparatus and method
WO2016081036A1 (fr) * 2014-11-18 2016-05-26 CommScope Technologies, LLC Éléments de bande basse masqués pour réseaux rayonnants multibande
KR101524528B1 (ko) * 2015-02-17 2015-06-10 주식회사 감마누 다중대역 복사소자
TWI572093B (zh) * 2015-07-30 2017-02-21 啟碁科技股份有限公司 天線系統
CN205565000U (zh) * 2016-04-26 2016-09-07 深圳前海智讯中联科技有限公司 一种多波束选择智能天线阵列及具有该天线阵列的系统
CN205944449U (zh) * 2016-08-26 2017-02-08 深圳前海科蓝通信有限公司 一种定向窄波选择智能天线系统
CN111684653B (zh) * 2018-02-06 2022-04-22 康普技术有限责任公司 产生具有全向方位角图案的天线波束的带透镜的基站天线
WO2019161104A1 (fr) * 2018-02-15 2019-08-22 Space Exploration Technologies Corp. Antennes à auto-multiplexage

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007158826A (ja) * 2005-12-06 2007-06-21 Ntt Docomo Inc アンテナ装置
CN1825704A (zh) * 2006-03-06 2006-08-30 浙江大学 角反射平面印制板偶极子天线
CN202871960U (zh) * 2012-09-17 2013-04-10 西安天和防务技术股份有限公司 全向赋形微带阵列天线
CN204834891U (zh) * 2015-07-14 2015-12-02 华南理工大学 一种具有阶梯型反射器的八木天线
CN105356041A (zh) * 2015-11-20 2016-02-24 西安华为技术有限公司 双极化天线
CN106025529A (zh) * 2016-06-29 2016-10-12 广东顺德中山大学卡内基梅隆大学国际联合研究院 电容加载变频平面指向性双频天线
CN106159464A (zh) * 2016-08-26 2016-11-23 深圳前海科蓝通信有限公司 一种定向窄波选择智能天线系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3719930A4

Also Published As

Publication number Publication date
EP3719930A1 (fr) 2020-10-07
US20200287292A1 (en) 2020-09-10
CN109888513B (zh) 2021-07-09
EP3719930A4 (fr) 2020-12-23
MX2020005597A (es) 2020-09-25
JP6984019B2 (ja) 2021-12-17
JP2021506165A (ja) 2021-02-18
CN109888513A (zh) 2019-06-14
EP3719930B1 (fr) 2023-04-19
US11264731B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2019109881A1 (fr) Réseau d'antennes et dispositif de communication sans fil
US9407012B2 (en) Antenna with dual polarization and mountable antenna elements
US7180465B2 (en) Compact smart antenna for wireless applications and associated methods
US9570799B2 (en) Multiband monopole antenna apparatus with ground plane aperture
TWI671951B (zh) 智慧型天線裝置
EP2290746B1 (fr) Antenne planaire avec rayonnement isotrope
EP1756914A2 (fr) Antenne a faisceaux multiples commutee
JP2008503941A (ja) 無線アプリケーション用低背型スマートアンテナおよびその関連方法
US9525207B2 (en) Reconfigurable antenna structure with parasitic elements
US10164325B1 (en) Communication device
Nor et al. Dual-band, switched-beam, reconfigurable antenna for WLAN applications
TWI668917B (zh) 雙頻天線模組
JP4542866B2 (ja) 指向性制御マイクロストリップアンテナ
TWI761669B (zh) 行動裝置和天線結構
CN110277651B (zh) 智能型天线装置
TWI683480B (zh) 雙模式天線陣列及具有雙模式天線陣列的電子裝置
TWI686010B (zh) 雙模式天線陣列及具有雙模式天線陣列的電子裝置
TWI706600B (zh) 可調式元素因子的陣列天線模組
US20220158344A1 (en) Reconfigurable Antenna and Communications Device
KR20070022161A (ko) 무선 애플리케이션을 위한 낮은 프로파일 스마트 안테나 및그 관련 방법
GB2547917A (en) Antenna reconfigurable circuit
SE515378C2 (sv) Antennanordning för sändning och/eller mottagning av RF-vågor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530952

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018886691

Country of ref document: EP

Effective date: 20200629