WO2019109684A1 - 一种支持NVMe协议PCIE信号的系统 - Google Patents

一种支持NVMe协议PCIE信号的系统 Download PDF

Info

Publication number
WO2019109684A1
WO2019109684A1 PCT/CN2018/103408 CN2018103408W WO2019109684A1 WO 2019109684 A1 WO2019109684 A1 WO 2019109684A1 CN 2018103408 W CN2018103408 W CN 2018103408W WO 2019109684 A1 WO2019109684 A1 WO 2019109684A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
hard disk
switching module
pcie switch
nvme
Prior art date
Application number
PCT/CN2018/103408
Other languages
English (en)
French (fr)
Inventor
张凯
Original Assignee
郑州云海信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州云海信息技术有限公司 filed Critical 郑州云海信息技术有限公司
Publication of WO2019109684A1 publication Critical patent/WO2019109684A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/382Information transfer, e.g. on bus using universal interface adapter
    • G06F13/385Information transfer, e.g. on bus using universal interface adapter for adaptation of a particular data processing system to different peripheral devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4204Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus
    • G06F13/4221Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus being an input/output bus, e.g. ISA bus, EISA bus, PCI bus, SCSI bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/0026PCI express

Definitions

  • the present invention relates to the field of computer technologies, and in particular, to a system supporting a NVMe protocol PCIE signal.
  • NVMe Non-Volatile Memory Express
  • AHCI Serial ATA Advanced Host Controller Interface
  • PCIE Peripheral Component Interconnect Express, high-speed serial computer expansion bus standard
  • the storage system is also loaded with the NVMe protocol's high-speed SSD (Solid State Disk).
  • the latest NVMe protocol supports single-port and dual-port signaling, namely single-port NVMe and dual-port NVMe.
  • the interface is PCIEX4 interface, only one PCIEX4 SSD can be connected.
  • dual-port NVMe is used for signal transmission, the interface is two PCIEX2 interfaces, and two PCIEX2 SSDs are connected.
  • different backplanes must be designed to support single-port NVMe and dual-port NVMe, which increases development costs and is not conducive to market competition.
  • the object of the present invention is to provide a system supporting the NVMe protocol PCIE signal, which does not need to develop different backplanes to support single-port NVMe and dual-port NVMe, thereby reducing development cost and facilitating market competition.
  • the present invention provides a system for supporting a NVMe protocol PCIE signal, including a hard disk backplane and a switching module, a first connector, a second connector, and an NVMe based on the hard disk backplane.
  • Protocol hard disk connector including a hard disk backplane and a switching module, a first connector, a second connector, and an NVMe based on the hard disk backplane. Protocol hard disk connector;
  • An output end of the hard disk connector is connected to an input end of the switching module, and is configured to output a switching signal sent by a user to the switching module, where an output end of the switching module and an input of the first connector respectively The end is connected to the input end of the second connector, the output end of the first connector is connected to the first hard disk, and the output end of the second connector is connected to the second hard disk, and the switching module is configured to The switching signal is switched to the PCIEX4 channel to effect its communication with the first connector or to two PCIEX2 channels to enable its communication with the first connector and the second connector.
  • the switching module includes a high-order PCIE switch, an input end of the high-order PCIE switch serves as an input end of the switching module, and an output end of the high-order PCIE switch serves as an output end of the switching module.
  • the switching module includes a first low-order PCIE switch and a second low-order PCIE switch, and an input end of the first low-order PCIE switch and an input end of the second low-order PCIE switch serve as the switching module
  • the input end of the first low-order PCIE switch and the output end of the second low-order PCIE switch serve as an output of the switching module.
  • the hard disk connector is a connector of a U.2 interface.
  • the system further includes a hard disk mounting case for placing the first hard disk and the second hard disk.
  • the hard disk mounting shell is an iron shell.
  • the first hard disk and the second hard disk are both M.2 SSDs, and the first connector and the second connector are both M.2 connectors.
  • the present invention provides a system for supporting a PCIE signal of an NVMe protocol, including a hard disk backplane and a switching module, a first connector, a second connector, and a hard disk connector based on the NVMe protocol, both of which are disposed on the backplane of the hard disk;
  • the output end of the device is connected to the input end of the switching module, and is configured to output a switching signal sent by the user to the switching module, and the output end of the switching module is respectively connected to the input end of the first connector and the input end of the second connector,
  • An output end of a connector is connected to the first hard disk, and an output end of the second connector is connected to the second hard disk, and the switching module is configured to switch to the PCIEX4 channel according to the switching signal to achieve communication with the first connector, or switch to Two PCIEX2 channels are implemented to communicate with the first connector and the second connector.
  • the switch module switches the PCIE channel, so that the channel of the switch module can satisfy the PCIEX4 channel of the PCIEX4 signal or the two PCIEX2 channels of the PCIEX2 signal. That is, the hard disk backplane of the present invention supports the single port mode of the NVMe protocol. It also supports the dual-port mode of the NVMe protocol. When developing a storage system, the same hard disk backplane can satisfy the PCIEX4 interface and the PCIEX2 dual interface. It is not necessary to develop different backplanes to support single-port NVMe and dual-port NVMe. The development cost is conducive to market competition.
  • FIG. 1 is a schematic structural diagram of a system for supporting a PCIE signal of an NVMe protocol according to the present invention
  • FIG. 2 is a schematic structural diagram of another system for supporting a PCIE signal of an NVMe protocol according to the present invention
  • FIG. 3 is a schematic structural diagram of another system for supporting a PCIE signal of an NVMe protocol according to the present invention.
  • the core of the present invention is to provide a system that supports the NVMe protocol PCIE signal, and does not need to develop different backplanes to support single-port NVMe and dual-port NVMe, which reduces development cost and is conducive to market competition.
  • FIG. 1 is a schematic structural diagram of a system for supporting a PCIE signal of an NVMe protocol according to the present invention, including a hard disk backplane 1 and a switching module 2 and a first connector 3 both disposed on the hard disk backplane 1 , a second connector 4 and a hard disk connector 5 based on the NVMe protocol;
  • An output end of the hard disk connector 5 is connected to the input end of the switching module 2, and is configured to output a switching signal sent by the user to the switching module 2, and the output end of the switching module 2 is respectively connected to the input end and the second connection of the first connector 3.
  • the input end of the first connector 3 is connected to the first hard disk
  • the output end of the second connector 4 is connected to the second hard disk
  • the switching module 2 is configured to switch to the PCIEX 4 channel according to the switching signal to realize In communication with the first connector 3, or switching to two PCIEX2 channels to achieve communication with the first connector 3 and the second connector 4.
  • the hard board backplane 1 and the hard disk are mutually supported, and the NVMe protocol is divided into an NVMe protocol supporting single port transmission and an NVMe protocol supporting dual port transmission (hereinafter referred to as single port NVMe and below).
  • Dual-port NVMe the single-port NVMe protocol interface is PCIEX4 interface
  • the dual-port NVMe protocol interface is two PCIEX2 interfaces.
  • the storage system corresponding to the single-port NVMe must have a NVMe PCIEX4 hard disk and a dual-port NVMe.
  • the hard disk of the corresponding storage system must be a hard disk of NVMe dual PCIEX2 (two PCIEX2 interfaces).
  • the protocols of the two hard disks are different and cannot be shared. It is conceivable that the hard disk backplane 1 corresponding to the two hard disks is different.
  • the output end of the switching module 2 of the present invention is connected to the input end of the first connector 3, and is also connected to the input end of the second connector 4, where the switching signal may specifically include a single port NVMe switching signal and a dual port NVMe switching signal.
  • the switching module 2 switches to the PCIEX4 channel to transmit the PCIEX4 signal.
  • the communication line with the first connector 3 is conductive, and the communication line with the second connector 4 is not.
  • the switching module 2 switches to the two PCIEX2 channels, at which time the connecting line with the first connector 3 is part (two of the four connecting lines in FIG. 1 , for example The lower two of the four connecting lines are turned on, and the connecting line with the second connector 4 is also turned on at the same time.
  • Two PCIEX2 channels can transmit two PCIEX2 signals.
  • the hard disk backplane 1 of the present invention is Supports single-port NVMe, and also supports dual-port NVMe, and switches between single-port NVMe and dual-port NVMe according to the switching signal and through switching module 2.
  • the switching module switches the PCIE channel, so that the channel of the switching module can satisfy both the PCIEX4 channel of the PCIEX4 signal and the two PCIEX2 channels of the PCIEX2 signal. That is, the hard disk backplane of the present invention supports both NVMe.
  • the single-port mode of the protocol also supports the dual-port mode of the NVMe protocol.
  • the same hard disk backplane can satisfy the PCIEX4 interface and the PCIEX2 dual interface. There is no need to develop different backplanes to support single-port NVMe and Dual-port NVMe reduces development costs and is conducive to market competition.
  • the switching module 2 includes a high-order PCIE switch.
  • the input end of the high-order PCIE switch serves as the input end of the switching module 2, and the output end of the high-order PCIE switch serves as the output end of the switching module 2.
  • FIG. 2 is a schematic structural diagram of another system for supporting a PCIE signal of the NVMe protocol according to the present invention.
  • the high-order PCIE switch is switched to the PCIEX4 channel, as shown in FIG. 2 .
  • the high-order PCIE switch When the dotted line is turned on, the upper part of the output of the high-order PCIE switch, PCIE0, PCIE1, PCIE2, and PCIE3 form a PCIEX4 channel, which can transmit the PCIEX4 signal.
  • the high-order PCIE switch is connected to the first connector 3, and thus The PCIEX4 signal is transmitted between the first hard disk and the high-end PCIE switch, that is, the single-port NVMe transmission mode is supported; when the user transmits the dual-port NVMe switching signal, the high-order PCIE switch switches to two PCIEX2 channels, for example, in FIG.
  • the PCIE0 and PCIE1 of the upper part of the output of the high-order PCIE switch form a PCIEX2 channel, which is connected to the first connector 3; the PCIE0 and PCIE1 of the lower part of the output of the high-order PCIE switch form another PCIEX2 channel. And communicating with the second connector 4, so two PCIEX2 signals can be transmitted between the first hard disk, the second hard disk, and the high-order PCIE switch, that is, the transmission mode supporting the dual port NVMe It can be seen that the switching between single-port NVMe and dual-port NVMe can be achieved through the high-order PCIE switch.
  • the switching module 2 may be, but not limited to, the above-mentioned high-order PCIE switch, as long as the above functions can be implemented, the present invention is not particularly limited herein, and the connection relationship shown in FIG. 2 is only one. In other cases, other connection relationships are easily conceivable by those skilled in the art, and the above description of the drawings is merely for convenience and cannot be regarded as a limitation.
  • the high-end PCIE switch provided by the present invention is used as a switching module, and the PCIE channel is switched by a high-order PCIE switch, so that the hard disk backplane provided by the present invention supports the single port mode of the NVMe protocol. It also supports the dual port mode of the NVMe protocol.
  • the same hard disk backplane can satisfy the PCIEX4 interface and the PCIEX2 dual interface, which improves resource utilization and saves costs, which is conducive to market development and competition.
  • the high-order PCIE switch is used as the switching module, and the signal transmission speed is fast, which is conducive to market competition.
  • the switching module 2 includes a first low-order PCIE switch and a second low-order PCIE switch, and the input end of the first low-order PCIE switch and the input end of the second low-order PCIE switch serve as the switching module 2 At the input end, the output of the first low-order PCIE switch and the output of the second low-order PCIE switch serve as the output of the switching module 2.
  • the switching module 2 is two low-order PCIE switches
  • the input ends of the two low-order PCIE switches are used as the input ends of the switching module 2
  • the outputs of the two low-order PCIE switches are used as the output of the switching module 2.
  • the PCIE signal can be transmitted to the low-order PCIE switch through the hard disk connector 5, and then the single-port NVMe and the dual-port NVMe are supported by the internal switching of the low-order PCIE switch (the conduction and non-conduction of the pin).
  • the low-order PCIE switch has a simple structure and a small size.
  • the two low-order PCIE switches are switched to one PCIEX4 channel.
  • the output of the first low-order PCIE switch is turned on.
  • PCIE0, PCIE1 in the upper part of the end and PCIE0 and PCIE1 in the upper part of the output end of the second low-order PCIE switch form a PCIEX4 channel, then the PCIEX4 signal is connected to the first connector 3, and finally the first hard disk is accessed; when the user sends the double When the port NVMe switches signals, the two low-order PCIE switches are switched to two PCIEX2 channels.
  • the PCIE0 and PCIE1 of the upper part of the output of the first low-order PCIE switch form a PCIEX2 channel.
  • the PCIE0 and PCIE1 of the lower part of the output of the second low-order PCIE switch form another PCIEX2 channel, and then a PCIEX2 signal is connected to the first connector 3 through the PCIEX2 channel formed by the first low-order PCIE switch, and finally accesses the first The hard disk, another PCIEX2 signal is connected to the second connector 4 through the PCIEX2 channel formed by the second low-order PCIE switch, and finally connected to the second hard disk.
  • the connection method of PCIE0 and PCIE1 in the upper part of the output of the first low-order PCIE switch is always unchanged. On the surface, the first can be removed.
  • the low-order PCIE switch directly connects the signal transmitted by the hard disk connector 5 through the first low-order PCIE switch to the first connector 3.
  • the second low-order PCIE switch switches the signal transmitted by the hard disk connector 5, the purpose can be achieved.
  • the PCIE signal is a high-speed signal
  • the signal passing through the second low-order PCIE switch will have a slight delay. If there is no first low-order PCIE switch, the PCIE signal will be mismatched, and serious problems will occur.
  • the first low-order PCIE switch is connected to ensure a consistent time difference, but this is not a limitation.
  • the switching module 2 may be, but not limited to, the above-mentioned low-order PCIE switch, as long as the above functions can be implemented, the present invention is not particularly limited herein, and the connection relationship shown in FIG. 3 is only In one case, other connection relationships are easily conceivable by those skilled in the art, and the above description of the drawings is merely for convenience and cannot be regarded as a limitation.
  • the PCIE channel is switched by the low-order PCIE switch.
  • the low-order PCIE switch does not require a voltage converter (converting a large voltage to a small voltage to a high-order PCIE switch), and does not require Writing software, the low-end PCIE switch itself is much cheaper, reducing development costs and facilitating market competition, and the low-order PCIE switch is small in size, which is conducive to the layout of the hard disk backplane.
  • the hard disk connector 5 is a connector of the U.2 interface.
  • the switching module 2 is switched through this pin, for example, by DualPortEn#
  • the foot selects the connection lines represented by the dashed lines in Figures 2 and 3 to be either conductive or non-conducting, thereby enabling the system of the present invention to support single port NVMe and dual port NVMe.
  • the hard disk connector 5 may be a connector of the U.2 interface, or may be other connectors, and may be determined according to actual conditions, and the present invention is not particularly limited herein.
  • the U.2 interface is a high-speed interface, which facilitates the transmission of PCIE signals.
  • the U.2 interface connector does not require additional data lines and external power supply, which reduces development costs, and the connector performance of the U.2 interface is good. Conducive to market competition.
  • the system further includes a hard disk mounting case for placing the first hard disk and the second hard disk.
  • the hard disk mounting case is an iron case.
  • the first hard disk and the second hard disk are placed in the hard disk mounting shell.
  • the switching module 2 can connect the PCIE signal to the first hard disk or simultaneously access the first hard disk.
  • the second hard disk the storage system supports dual-port NVMe, and also supports single-port NVMe.
  • the first hard disk is connected to the output end of the first connector through the hard disk mounting shell
  • the second hard disk is connected to the output end of the second connector through the hard disk mounting shell
  • the hard disk mounting shell can fix the hard disk or pass the electromagnetic
  • the protection hard disk such as shielding is damaged.
  • the hard disk mounting case is 2.5 inches in size.
  • the hard disk mounting case is as small as possible, which is convenient for installation, but is not limited to the above dimensions.
  • the material of the hard disk mounting case may be variously selected, and may be a hard disk iron shell or a shell of other materials, and the present invention is not particularly limited herein.
  • the first hard disk and the second hard disk are both M.2 SSDs, and the first connector 3 and the second connector 4 are both M.2 connectors.
  • a system supporting single-port NVMe requires only one M.2 SSD, and a system supporting dual-port NVMe requires two M.2 SSDs. Accordingly, when the hard disk is an M.2 SSD, the first connector 3 and the first The two connectors 4 each use an M.2 connector.
  • the test terminal when testing a storage system that supports the NVMe protocol, the test terminal needs to have a hard disk corresponding to the single-port NVMe and dual-port NVMe storage systems for the single-port NVMe and the dual-port NVMe.
  • the hard disk of the NVMe protocol is expensive. This makes the test cost of the test terminal too high.
  • the hard disk backplane 1 of the present invention when the storage system supporting the NVMe protocol is tested at the factory, the hard disk backplane 1 of the present invention is used. Simply prepare a low-cost M.2 SSD type of hard disk to reduce the cost of the test end.
  • the present invention uses the same hard disk backplane 1 during testing. Reduce test time and number of disassembly and assembly, thus improving test efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Information Transfer Systems (AREA)

Abstract

一种支持NVMe协议PCIE信号的系统,包括硬盘背板(1)和均设置在硬盘背板(1)上的切换模块(2)、第一连接器(3)、第二连接器(4)和硬盘连接器(5);硬盘连接器(5)的输出端与切换模块(2)的输入端连接,用于将用户发送的切换信号输出至切换模块(2),切换模块(2)的输出端分别与第一连接器(3)的输入端及第二连接器(4)的输入端连接,第一连接器(3)的输出端与第一硬盘连接,第二连接器(4)的输出端与第二硬盘连接,切换模块(2)用于根据切换信号切换至PCIEX4通道以实现其与第一连接器(3)的连通,或切换至两个PCIEX2通道以实现其与第一连接器(3)和第二连接器(4)的连通。开发存储系统时,用同一个硬盘背板(1)就可满足PCIEX4接口和PCIEX2双接口,减少了开发成本,有利于市场竞争。

Description

一种支持NVMe协议PCIE信号的系统
本申请要求于2017年12月6日提交至中国专利局、申请号为201711276106.4、发明名称为“一种支持NVMe协议PCIE信号的系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及计算机技术领域,特别是涉及一种支持NVMe协议PCIE信号的系统。
背景技术
NVMe(Non-Volatile Memory express,非易失性存储器)是一种高速传输协议规范,用来取代AHCI(Serial ATA Advanced Host Controller Interface,串行ATA高级主控接口)传输协议,它是专门针对PCIE(Peripheral Component Interconnect Express,高速串行计算机扩展总线标准)总线定制的“优化驱动”。
随着NVMe协议的出现,存储系统也开始装入NVMe协议的高速SSD(Solid State Disk,固态硬盘),最新的NVMe协议支持了单端口和双端口的信号传输,即单端口NVMe和双端口NVMe,采用单端口NVMe进行信号传输时,接口为PCIEX4接口,只能连接一个PCIEX4 SSD,采用双端口NVMe进行信号传输时,接口为两个PCIEX2的接口,连接两个PCIEX2 SSD。针对上述两种端口,在设计存储系统时,必须设计不同的背板来支持单端口NVMe和双端口NVMe,增加了开发成本,不利于市场竞争。
因此,如何提供一种能解决上述技术问题的方案,是本领域的技术人员目前需要解决的问题。
发明内容
本发明的目的是提供一种支持NVMe协议PCIE信号的系统,无需开发不同的背板来支持单端口NVMe和双端口NVMe,减少了开发成本,有利于市场竞争。
为解决上述技术问题,本发明提供了一种支持NVMe协议PCIE信号的系统,包括硬盘背板以及均设置在所述硬盘背板上的切换模块、第一连接器、第二连接器和基于NVMe协议的硬盘连接器;
所述硬盘连接器的输出端与所述切换模块的输入端连接,用于将用户发送的切换信号输出至所述切换模块,所述切换模块的输出端分别与所述第一连接器的输入端及所述第二连接器的输入端连接,所述第一连接器的输出端与第一硬盘连接,所述第二连接器的输出端与第二硬盘连接,所述切换模块用于根据所述切换信号切换至PCIEX4通道以实现其与所述第一连接器的连通,或切换至两个PCIEX2通道以实现其与所述第一连接器和所述第二连接器的连通。
优选地,所述切换模块包括一个高阶PCIE开关,所述高阶PCIE开关的输入端作为所述切换模块的输入端,所述高阶PCIE开关的输出端作为所述切换模块的输出端。
优选地,所述切换模块包括第一低阶PCIE开关和第二低阶PCIE开关,所述第一低阶PCIE开关的输入端和所述第二低阶PCIE开关的输入端作为所述切换模块的输入端,所述第一低阶PCIE开关的输出端和所述第二低阶PCIE开关的输出端作为所述切换模块的输出端。
优选地,所述硬盘连接器为U.2接口的连接器。
优选地,所述系统还包括用于放置所述第一硬盘和所述第二硬盘的硬盘安装壳。
优选地,所述硬盘安装壳为铁壳。
优选地,所述第一硬盘和所述第二硬盘均为M.2 SSD,所述第一连接器以及所述第二连接器均为M.2连接器。
本发明提供了一种支持NVMe协议PCIE信号的系统,包括硬盘背板以及均设置在硬盘背板上的切换模块、第一连接器、第二连接器和基于NVMe协议的硬盘连接器;硬盘连接器的输出端与切换模块的输入端连接,用于将用户发送的切换信号输出至切换模块,切换模块的输出端分别与第一连接器的输入端及第二连接器的输入端连接,第一连接器的输出端与第一硬盘连接,第二连接器的输出端与第二硬盘连接,切换模块用于根据切 换信号切换至PCIEX4通道以实现其与第一连接器的连通,或切换至两个PCIEX2通道以实现其与第一连接器和第二连接器的连通。
通过切换模块切换PCIE通道,使得切换模块的通道既可以满足PCIEX4信号的PCIEX4通道,也可以满足PCIEX2信号的两个PCIEX2通道,也就是说,本发明的硬盘背板既支持NVMe协议的单端口模式,也同时支持NVMe协议的双端口模式,在开发存储系统时,用同一个硬盘背板就可以满足PCIEX4接口和PCIEX2双接口,无需开发不同的背板来支持单端口NVMe和双端口NVMe,减少了开发成本,有利于市场竞争。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所提供的一种支持NVMe协议PCIE信号的系统的结构示意图;
图2为本发明所提供的另一种支持NVMe协议PCIE信号的系统的结构示意图;
图3为本发明所提供的另一种支持NVMe协议PCIE信号的系统的结构示意图。
具体实施方式
本发明的核心是提供一种支持NVMe协议PCIE信号的系统,无需开发不同的背板来支持单端口NVMe和双端口NVMe,减少了开发成本,有利于市场竞争。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提 下所获得的所有其他实施例,都属于本发明保护的范围。
请参照图1,图1为本发明所提供的一种支持NVMe协议PCIE信号的系统的结构示意图,包括硬盘背板1以及均设置在硬盘背板1上的切换模块2、第一连接器3、第二连接器4和基于NVMe协议的硬盘连接器5;
硬盘连接器5的输出端与切换模块2的输入端连接,用于将用户发送的切换信号输出至切换模块2,切换模块2的输出端分别与第一连接器3的输入端及第二连接器4的输入端连接,第一连接器3的输出端与第一硬盘连接,第二连接器4的输出端与第二硬盘连接,切换模块2用于根据切换信号切换至PCIEX4通道以实现其与第一连接器3的连通,或切换至两个PCIEX2通道以实现其与第一连接器3和第二连接器4的连通。
具体地,如图1所示,硬板背板1与硬盘是相互支持的,而NVMe协议分为支持单端口传输的NVMe协议和支持双端口传输的NVMe协议(以下均简称为单端口NVMe和双端口NVMe),单端口NVMe的协议接口为PCIEX4接口,双端口NVMe的协议接口为两个PCIEX2接口,目前,与单端口NVMe对应的存储系统的硬盘必须为NVMe PCIEX4的硬盘,与双端口NVMe对应的存储系统的硬盘必须为NVMe dual PCIEX2(两个PCIEX2接口)的硬盘,这两种硬盘的协议不同,是不能共享的,可以想到,对应这两种硬盘的硬盘背板1也是不同的。本发明中的切换模块2的输出端与第一连接器3的输入端连接,还与第二连接器4的输入端连接,这里切换信号具体可包括单端口NVMe切换信号和双端口NVMe切换信号,当用户发送单端口NVMe切换信号时,切换模块2切换至PCIEX4通道,传输PCIEX4信号,这时与第一连接器3的连通线是导通的,与第二连接器4的连通线不导通;当用户发送双端口NVMe切换信号时,切换模块2切换至两个PCIEX2通道,这时与第一连接器3的连通线是部分(图1中的4条连通线的其中2条,例如4条连通线中的下面的2条)导通的,与第二连接器4的连通线也同时导通,两个PCIEX2通道可以传输两个PCIEX2信号,可见,本发明的硬盘背板1既支持单端口NVMe,也同时支持双端口NVMe,且根据切换信号并通过切换模块2来实现单端口NVMe 和双端口NVMe的切换。
综上所述,通过切换模块切换PCIE通道,使得切换模块的通道既可以满足PCIEX4信号的PCIEX4通道,也可以满足PCIEX2信号的两个PCIEX2通道,也就是说,本发明的硬盘背板既支持NVMe协议的单端口模式,也同时支持NVMe协议的双端口模式,在开发存储系统时,用同一个硬盘背板就可以满足PCIEX4接口和PCIEX2双接口,无需开发不同的背板来支持单端口NVMe和双端口NVMe,减少了开发成本,有利于市场竞争。
在上述实施例的基础上:
作为一种优选的实施例,切换模块2包括一个高阶PCIE开关,高阶PCIE开关的输入端作为切换模块2的输入端,高阶PCIE开关的输出端作为切换模块2的输出端。
具体地,当切换模块2为一个高阶PCIE开关时,高阶PCIE开关的输入端即为上述的切换模块2的输入端,这样,PCIE信号就可以经过硬盘连接器5传输给高阶PCIE开关,在高阶PCIE开关的内部进行切换(引脚的导通与不导通)来支持单端口NVMe和双端口NVMe。请参考图2,图2为本发明所提供的另一种支持NVMe协议PCIE信号的系统的结构示意图,当用户发送单端口NVMe切换信号时,高阶PCIE开关切换至PCIEX4通道,如图2中所示的虚线导通时,高阶PCIE开关的输出端的上部分PCIE0、PCIE1、PCIE2和PCIE3形成PCIEX4通道,可以传输PCIEX4信号,此时高阶PCIE开关与第一连接器3连通,进而可以在第一硬盘与高阶PCIE开关之间传输PCIEX4信号,即支持单端口NVMe的传输模式;当用户发送双端口NVMe切换信号时,高阶PCIE开关切换至两个PCIEX2通道,例如,当图2中虚线不导通时,高阶PCIE开关的输出端的上部分的PCIE0、PCIE1形成一个PCIEX2通道,与第一连接器3连通;高阶PCIE开关的输出端的下部分的PCIE0、PCIE1形成另一个PCIEX2通道,与第二连接器4连通,所以在第一硬盘、第二硬盘与高阶PCIE开关之间可以传输两个PCIEX2信号,即支持双端口NVMe的传输模式,可见,通过高阶PCIE 开关可以实现单端口NVMe和双端口NVMe的切换。
需要说明的是,切换模块2可以为但不限于上述的高阶PCIE开关,只要可以实现上述的功能即可,本发明在此不做特别的限定,另外,图2所示的连接关系只是一种情况,本领域技术人员很容易想到其他的连接关系,上述对图的说明只是方便介绍,并不能作为一种限制。
由此可以看出,在实际应用中,使用本发明提供的高阶PCIE开关作为切换模块,通过高阶PCIE开关切换PCIE通道,使得本发明提供的硬盘背板既支持NVMe协议的单端口模式,也同时支持NVMe协议的双端口模式,在开发存储系统时,用同一个硬盘背板就可以满足PCIEX4接口和PCIEX2双接口,提高了资源的利用率,节省了成本,有利于市场的开发和竞争,同时采用高阶PCIE开关作为切换模块,信号传输速度快,有利于市场竞争。
作为一种优选的实施例,切换模块2包括第一低阶PCIE开关和第二低阶PCIE开关,第一低阶PCIE开关的输入端和第二低阶PCIE开关的输入端作为切换模块2的输入端,第一低阶PCIE开关的输出端和第二低阶PCIE开关的输出端作为切换模块2的输出端。
具体地,当切换模块2为两个低阶PCIE开关时,两个低阶PCIE开关的输入端均作为切换模块2的输入端,两个低阶PCIE开关的输出端均作为切换模块2的输出端,这样,PCIE信号就可以经过硬盘连接器5传输给低阶PCIE开关,然后通过低阶PCIE开关的内部切换(引脚的导通与不导通)来支持单端口NVMe和双端口NVMe,与上述的高阶PCIE开关相比,低阶PCIE开关的结构简单,体积小。
具体地,当用户发送单端口NVMe切换信号时,两个低阶PCIE开关切换至一个PCIEX4通道,例如图3所示的切换模块2的虚线连接线导通时,第一低阶PCIE开关的输出端的上部分的PCIE0、PCIE1以及第二低阶PCIE开关的输出端的上部分的PCIE0、PCIE1形成一个PCIEX4通道,然后PCIEX4信号接入第一连接器3,最后接入第一硬盘;当用户发送双端口NVMe切换信号时,两个低阶PCIE开关切换至两个PCIEX2通道,例如图3中虚线连接线不导通时,第一低阶PCIE开关的输出端的上部分的 PCIE0和PCIE1形成一个PCIEX2通道,第二低阶PCIE开关的输出端的下部分的PCIE0和PCIE1形成另一个PCIEX2通道,然后一个PCIEX2信号通过第一低阶PCIE开关形成的PCIEX2通道接入第一连接器3,最后接入第一硬盘,另一个PCIEX2信号通过第二低阶PCIE开关形成的PCIEX2通道接入第二连接器4,最后接入第二硬盘。
需要说明的是,可以看出,在支持单端口NVMe和双端口NVMe时,第一低阶PCIE开关的输出端的上部分的PCIE0和PCIE1的连接方法始终不变,表面看来,可以去掉第一低阶PCIE开关,使得硬盘连接器5经过第一低阶PCIE开关传输的信号直接接入第一连接器3,只要第二低阶PCIE开关切换硬盘连接器5传输过来的信号就可实现目的,但是,考虑到PCIE信号是高速信号,经过第二低阶PCIE开关的信号会有一点延迟,若没有第一低阶PCIE开关,就会造成PCIE信号不匹配,进而出现严重的问题,所以,本实施例中接入了第一低阶PCIE开关,保证一致的时间差,但这并不是一种限制。
还需要说明的是,切换模块2可以为但不限于上述的低阶PCIE开关,只要可以实现上述的功能即可,本发明在此不做特别的限定,另外,图3所示的连接关系只是一种情况,本领域技术人员很容易想到其他的连接关系,上述对图的说明只是方便介绍,并不能作为一种限制。
本实施例用低阶PCIE开关进行PCIE通道的切换,与高阶PCIE开关相比,低阶PCIE开关不需要电压转换器(将大电压转换为小电压提供给高阶PCIE开关),也不需要编写软件,低阶PCIE开关本身价格便宜很多,减少了开发成本,有利于市场竞争,而且低阶PCIE开关的体积小,有利于硬盘背板的布局。
作为一种优选的实施例,硬盘连接器5为U.2接口的连接器。
具体地,在标准的U.2接口的连接器中,有一个引脚为DualPortEn#,当插入支持NVMe协议的硬盘后,通过这个引脚对切换模块2进行切换操作,例如,通过DualPortEn#引脚选择图2和图3中虚线代表的连接线导通或不导通,从而使本发明的系统实现支持单端口NVMe和双端口NVMe。
需要说明的是,硬盘连接器5可以为U.2接口的连接器,也可以为其 他的连接器,可以根据实际情况而定,本发明在此不做特别的限定。
U.2接口是高速接口,有利于PCIE信号的传输,采用U.2接口的连接器,不需要额外的数据线和外接供电,减少了开发成本,而且U.2接口的连接器性能好,有利于市场竞争。
作为一种优选的实施例,该系统还包括用于放置第一硬盘和第二硬盘的硬盘安装壳。
作为一种优选的实施例,硬盘安装壳为铁壳。
具体地,将第一硬盘和第二硬盘放置于硬盘安装壳,当硬盘安装壳插入支持NVMe协议的存储系统时,通过切换模块2可以将PCIE信号接入第一硬盘或者同时接入第一硬盘和第二硬盘,此时存储系统支持双端口的NVMe,也支持单端口的NVMe。本实施例中,第一硬盘通过硬盘安装壳与第一连接器的输出端连接,第二硬盘通过硬盘安装壳与第二连接器的输出端连接,硬盘安装壳可以固定硬盘,也可以通过电磁屏蔽等保护硬盘受到破坏,硬盘安装壳为2.5寸的大小,原则上硬盘安装壳越小越好,方便安装,但并不限于上述的尺寸。此外,硬盘安装壳的材料可以有多种选择,可以为硬盘铁壳,也可以为其他材料的壳体,本发明在此不做特别的限定。
作为一种优选的实施例,第一硬盘和第二硬盘均为M.2 SSD,第一连接器3以及第二连接器4均为M.2连接器。
具体地,支持单端口NVMe的系统只需一个M.2 SSD,支持双端口NVMe的系统需要两个M.2 SSD,相应地,当硬盘为M.2 SSD时,第一连接器3以及第二连接器4均采用M.2连接器。
目前在测试支持NVMe协议的存储系统时,针对单端口NVMe和双端口NVMe,测试端需要备有对应单端口NVMe和双端口NVMe两种存储系统的硬盘,而且,为了保证测试效率,这两种类型的硬盘还需备有很多个,NVMe协议的硬盘价格昂贵,这使得测试端的测试成本太高,通过本发明,在工厂测试支持NVMe协议的存储系统时,采用本发明的硬盘背板1后,只需准备成本低的M.2 SSD这种类型的硬盘即可,可以降低测试端的成本,同时,针对单端口NVMe和双端口NVMe,本发明在测试时采用同样的硬盘背板1,可以减少更换时间和拆装的次数,从而提高了测试效 率。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

  1. 一种支持NVMe协议PCIE信号的系统,其特征在于,包括硬盘背板以及均设置在所述硬盘背板上的切换模块、第一连接器、第二连接器和基于NVMe协议的硬盘连接器;
    所述硬盘连接器的输出端与所述切换模块的输入端连接,用于将用户发送的切换信号输出至所述切换模块,所述切换模块的输出端分别与所述第一连接器的输入端及所述第二连接器的输入端连接,所述第一连接器的输出端与第一硬盘连接,所述第二连接器的输出端与第二硬盘连接,所述切换模块用于根据所述切换信号切换至PCIEX4通道以实现其与所述第一连接器的连通,或切换至两个PCIEX2通道以实现其与所述第一连接器和所述第二连接器的连通。
  2. 根据权利要求1所述的系统,其特征在于,所述切换模块包括一个高阶PCIE开关,所述高阶PCIE开关的输入端作为所述切换模块的输入端,所述高阶PCIE开关的输出端作为所述切换模块的输出端。
  3. 根据权利要求1所述的系统,其特征在于,所述切换模块包括第一低阶PCIE开关和第二低阶PCIE开关,所述第一低阶PCIE开关的输入端和所述第二低阶PCIE开关的输入端作为所述切换模块的输入端,所述第一低阶PCIE开关的输出端和所述第二低阶PCIE开关的输出端作为所述切换模块的输出端。
  4. 根据权利要求1所述的系统,其特征在于,所述硬盘连接器为U.2接口的连接器。
  5. 根据权利要求1-4任一项所述的系统,其特征在于,所述系统还包括用于放置所述第一硬盘和所述第二硬盘的硬盘安装壳。
  6. 根据权利要求5所述的系统,其特征在于,所述硬盘安装壳为铁壳。
  7. 根据权利要求5所述的系统,其特征在于,所述第一硬盘和所述第二硬盘均为M.2SSD,所述第一连接器以及所述第二连接器均为M.2连接器。
PCT/CN2018/103408 2017-12-06 2018-08-31 一种支持NVMe协议PCIE信号的系统 WO2019109684A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711276106.4A CN107943730A (zh) 2017-12-06 2017-12-06 一种支持NVMe协议PCIE信号的系统
CN201711276106.4 2017-12-06

Publications (1)

Publication Number Publication Date
WO2019109684A1 true WO2019109684A1 (zh) 2019-06-13

Family

ID=61945957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103408 WO2019109684A1 (zh) 2017-12-06 2018-08-31 一种支持NVMe协议PCIE信号的系统

Country Status (2)

Country Link
CN (1) CN107943730A (zh)
WO (1) WO2019109684A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107943730A (zh) * 2017-12-06 2018-04-20 郑州云海信息技术有限公司 一种支持NVMe协议PCIE信号的系统
CN109002407A (zh) * 2018-06-20 2018-12-14 郑州云海信息技术有限公司 一种存储系统
CN109002328B (zh) * 2018-07-20 2021-08-31 郑州云海信息技术有限公司 一种存储设备的启动方法及装置
CN109448779B (zh) * 2018-11-14 2020-11-20 苏州浪潮智能科技有限公司 一种Dual Port SSD的SI测试方法、装置
CN109994147B (zh) * 2019-04-11 2021-02-02 环旭电子股份有限公司 一种固态硬盘的测试装置及方法
CN111104360B (zh) * 2019-11-30 2021-08-10 北京浪潮数据技术有限公司 一种基于NVMe协议的固态硬盘
CN112905507B (zh) * 2021-03-19 2023-05-26 杭州华澜微电子股份有限公司 一种硬盘转换控制器
CN113254297B (zh) * 2021-05-28 2022-05-24 长江存储科技有限责任公司 用于测试双端口硬盘的装置及系统
CN113609035B (zh) * 2021-06-29 2023-07-14 苏州浪潮智能科技有限公司 一种实现硬盘背板线缆防呆的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160154765A1 (en) * 2014-12-01 2016-06-02 Sk Hynix Memory Solutions Inc. Storage node based on pci express interface
CN206058061U (zh) * 2016-08-11 2017-03-29 北京飞杰信息技术有限公司 兼容非易失性存储器标准固态硬盘的适配卡及电脑装置
CN106649162A (zh) * 2016-12-19 2017-05-10 杭州海莱电子科技有限公司 一种Pci‑Express多端口聚合系统及其使用方法
CN107357376A (zh) * 2017-07-21 2017-11-17 郑州云海信息技术有限公司 一种硬盘背板、制作及其实现方法
CN107943730A (zh) * 2017-12-06 2018-04-20 郑州云海信息技术有限公司 一种支持NVMe协议PCIE信号的系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107357367A (zh) * 2017-07-11 2017-11-17 合肥雷呈信息技术有限公司 一种具有空气净化功能的计算机机箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160154765A1 (en) * 2014-12-01 2016-06-02 Sk Hynix Memory Solutions Inc. Storage node based on pci express interface
CN206058061U (zh) * 2016-08-11 2017-03-29 北京飞杰信息技术有限公司 兼容非易失性存储器标准固态硬盘的适配卡及电脑装置
CN106649162A (zh) * 2016-12-19 2017-05-10 杭州海莱电子科技有限公司 一种Pci‑Express多端口聚合系统及其使用方法
CN107357376A (zh) * 2017-07-21 2017-11-17 郑州云海信息技术有限公司 一种硬盘背板、制作及其实现方法
CN107943730A (zh) * 2017-12-06 2018-04-20 郑州云海信息技术有限公司 一种支持NVMe协议PCIE信号的系统

Also Published As

Publication number Publication date
CN107943730A (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
WO2019109684A1 (zh) 一种支持NVMe协议PCIE信号的系统
CN107111588B (zh) 经由USB端口使用PCIe协议的数据传输
US5649128A (en) Multiple bus interface adapter for connection to a plurality of computer bus architectures
CN107391419B (zh) 支持多主机的通用序列汇流排集线设备及车用主机
US20110302357A1 (en) Systems and methods for dynamic multi-link compilation partitioning
US20110191503A1 (en) Motherboard Compatible with Multiple Versions of Universal Serial Bus (USB) and Related Method
TW201321940A (zh) 擴充卡
US10235313B2 (en) Connecting circuitry and computing system having the same
US20090268743A1 (en) Data transmission bridge device and control chip thereof for transmitting data
US20120102251A1 (en) Serial attached small computer system interface (sas) domain access through a universal serial bus interface of a data processing device
TW201407362A (zh) 堆疊式電子系統
KR102318130B1 (ko) 외부 전기 커넥터 및 컴퓨터 시스템
CN101599050A (zh) 可适配的pci-e控制器核及其方法
TWI483123B (zh) 擴充模組及其雲端裝置
CN210534770U (zh) 一种硬盘转接板及信号处理系统
CN209560534U (zh) 一种支持PCIe M.2 SSD的转接卡
CN204189089U (zh) 一种服务器
CN115061958A (zh) 一种硬盘识别方法、识别系统、存储介质和计算机设备
CN203673396U (zh) 一种采用ops接口的多功能主板
KR20160081852A (ko) 스토리지 제어 메커니즘을 구비한 전자 시스템 및 그것의 동작 방법
CN112347009A (zh) 多个处理器共享硬盘存储的实现装置
TWI609270B (zh) 一種可自動轉換傳輸介面的系統
CN117407347B (zh) 一种PCIe转接芯片及其控制方法与电子设备
CN212694410U (zh) 一种新型显示控制计算模块
US11768795B2 (en) Thunderbolt device module and electronic device having root complex and integrating with such thunderbolt device module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885698

Country of ref document: EP

Kind code of ref document: A1