WO2019109572A1 - 一种高集成磁元件 - Google Patents

一种高集成磁元件 Download PDF

Info

Publication number
WO2019109572A1
WO2019109572A1 PCT/CN2018/083754 CN2018083754W WO2019109572A1 WO 2019109572 A1 WO2019109572 A1 WO 2019109572A1 CN 2018083754 W CN2018083754 W CN 2018083754W WO 2019109572 A1 WO2019109572 A1 WO 2019109572A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
core
wound
shape
transformer
Prior art date
Application number
PCT/CN2018/083754
Other languages
English (en)
French (fr)
Inventor
刘钧
冯颖盈
姚顺
徐金柱
Original Assignee
深圳威迈斯电源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳威迈斯电源有限公司 filed Critical 深圳威迈斯电源有限公司
Publication of WO2019109572A1 publication Critical patent/WO2019109572A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions

Definitions

  • This invention relates to electromagnetic components, and more particularly to a highly integrated magnetic component that integrates a transformer and an inductor.
  • the requirements for the volume of magnetic components are further miniaturized, especially in new energy fields, such as electric vehicle chargers.
  • a complete switching power supply at least one inductor and at least one transformer are often required.
  • even two or more transformers are needed to achieve multi-output.
  • the inductor and the transformer are independent components, which need to be separately soldered in the switching power supply, which causes the switching power supply to be too bulky, which limits the demand for high power density. Therefore, there is an urgent need in the industry to develop a highly integrated magnetic component that integrates a transformer and an inductor.
  • the present invention is to solve the above problems of the prior art, and proposes a highly integrated magnetic component capable of integrating a transformer and an inductor.
  • the technical solution proposed by the present invention is to design a highly integrated magnetic component having a first magnetic core and a second magnetic core with at least one groove, and the two magnetic cores are folded toward each other, and after being closed
  • the groove forms at least a first hole and a second hole penetrating through, wherein the side wall surrounding the first hole is disconnected to form an air gap, and the inductor coil is wound on the sidewall of the first hole; the second hole is surrounded The side walls are continuously closed, and the transformer coil is wound on the side wall of the second hole.
  • the first core and the second core are both E-shaped in cross section, the inductor is wound in a groove of an E-shape, and the transformer coil is wound in an E shape. Inside another groove.
  • the first core and the second core are both F-shaped in cross section, the inductor is wound at the lower end of the F-shape, and the transformer coil is wound in an F-shape. Inside the upper groove.
  • the first magnetic core has an E-shaped cross section
  • the second magnetic core has an I-shaped cross section
  • the inductor coil is wound in a concave shape of the first magnetic core E-shape. Inside the slot, the transformer coil is wound in another recess of the E-shape.
  • the first magnetic core has an F-shaped cross section
  • the second magnetic core has an I-shaped cross section
  • the inductor coil is wound at a lower end of the first magnetic core F-shaped shank.
  • the transformer coil is wound in a recess in the upper portion of the F-shape.
  • the first magnetic core and the second magnetic core respectively have three grooves, and the two magnetic core grooved faces are oppositely closed, and the closed groove forms a through hole.
  • the second hole and the third hole are wound on the side wall of the first hole, the side wall of the second hole is wound around the primary winding of the transformer, and the side wall of the third hole is wound around the secondary winding of the transformer.
  • the outer side of the transformer coil is covered with a copper skin layer, which is a secondary winding of the transformer.
  • the transformer coil includes at least one primary winding and one secondary winding, the primary winding and the secondary winding being interleaved on the first core and/or the second core.
  • the transformer coil includes at least one primary winding and one secondary winding, the primary winding and the secondary winding being concentratedly wound on the first magnetic core and/or the second magnetic core, respectively.
  • the invention Compared with the prior art, the invention combines the transformer and the inductor skillfully, the component volume is greatly reduced, the transformer and the inductor have no interference with each other, and the heat dissipation performance is good, and the utility model has the advantages of small volume, light weight, low cost and easy Expand the advantages of multiple outputs.
  • Figure 1 is a perspective view of a preferred embodiment of the present invention
  • Figure 2 is a plan view of a preferred embodiment of the present invention.
  • Figure 3 is a perspective view of a magnetic core in accordance with a preferred embodiment of the present invention.
  • Figure 4 is a perspective view of a copper skin layer in accordance with a preferred embodiment of the present invention.
  • Figure 5 is a cross-sectional winding method of a transformer coil in accordance with a preferred embodiment of the present invention.
  • FIG. 6 is a group winding method of a transformer coil according to a preferred embodiment of the present invention.
  • Figure 7 is a schematic view showing the combined structure of two F-shaped magnetic cores
  • Figure 8 is a schematic view showing the combined structure of an E-shaped magnetic core and an I-shaped magnetic core
  • Figure 9 is a schematic view showing the combined structure of an F-shaped magnetic core and an I-shaped magnetic core
  • Fig. 10 is a schematic view showing the structure of a magnetic core having three holes.
  • the invention discloses a highly integrated magnetic component.
  • the first magnetic core 10 and the second magnetic core 11 having at least one groove are formed.
  • the two magnetic cores are oppositely closed, and the closed grooves are formed at least through.
  • the first hole 2 and the second hole 3 wherein the side wall surrounding the first hole is disconnected to form an air gap 4.
  • the inductor coil 5 is wound on the sidewall of the first hole; the sidewall surrounding the second hole is continuously closed, and the sidewall of the second hole is wound around Transformer coil 8.
  • the cores of the first core 10 and the second core 11 are each E-shaped in cross section, and the inductor 5 is wound in a groove of the E-shape. That is, the first hole 2 is located on the left side of FIG. 5; the transformer coil is wound in the other groove of the E-shape, that is, the second hole 3 is located on the right side of FIG.
  • the side wall of the second hole 3 is closed and closed, the magnetic circuit is completely closed, and the magnetic flux is large, forming a transformer; the side wall of the first hole 2 is disconnected to form an air gap 4, and the size of the air gap can be adjusted to adjust the magnitude of the sense.
  • the inductor winding can avoid the air gap and reduce the loss.
  • the inductor and the transformer can share the center pillar of one magnet, which saves space and reduces magnetic loss.
  • the two E-shaped magnetic cores can be placed on the winding tool in the shape of the winding, and the rightmost side is wound to the rightmost side, and finally turned over to the buckle to form the final magnetic component. While increasing production efficiency, the reliability risk of withstand voltage is reduced.
  • the first core 10 and the second core 11 are both F-shaped in cross section, and the inductor 5 is wound around the lower end of the F-shape (located in FIG. 7).
  • the transformer coil 8 is wound in a groove in the upper portion of the F-shape (on the right side of Fig. 7).
  • the first magnetic core 10 has an E-shaped cross section
  • the second magnetic core 11 has an I-shape in cross section
  • the inductor 5 is wound on the first magnetic body.
  • the transformer coil 8 is wound in another recess of the E-shape (on the right side of Figure 8).
  • the first magnetic core 10 has an F-shape in cross section
  • the second magnetic core 11 has an I-shape in cross section
  • the inductor 5 is wound on the first magnetic body.
  • the lower end of the core F-shaped shank (on the left side of Fig. 9)
  • the transformer coil 8 is wound in a groove in the upper portion of the F-shape (on the right side of Fig. 9).
  • Figure 10 shows an embodiment having three holes, the first core 10 and the second core 11 respectively having three grooves, and the faces of the two cores with the grooves are closed toward each other.
  • the groove forms a first hole 2, a second hole 3 and a third hole 7 through which the inductor is wound on the side wall of the first hole (on the left side of FIG. 10), and the side wall of the second hole is wound
  • the primary winding 8a of the transformer located in the middle of Fig. 10
  • the secondary winding of the transformer on the right side of Fig. 10
  • the number of holes can be appropriately increased according to the number of primary windings and secondary windings.
  • an example of a three-hole is given, and is not intended to limit the scope of the patent.
  • the outer side of the transformer coil 5 is coated with a layer of copper skin 6, which is a secondary winding of the transformer.
  • the winding is equivalent to a winding with a number of turns of 1.
  • the winding can be used not only as a set of devices to assist heat dissipation, but also to form a second output voltage expansion by mating with the circuit.
  • Figure 4 shows a perspective view of a copper skin layer, designated 6a in the figure as a solder joint of a copper skin layer.
  • Fig. 5 shows a staggered winding method of a transformer coil of a preferred embodiment, the transformer coil 5 comprising at least one primary winding 5a and one secondary winding 5b, the primary winding and the secondary winding being interleaved in a first magnetic field On the core 10 and/or the second core 11. That is, one primary winding 5a and one secondary winding 5b are side by side and then wound on the magnetic core.
  • Figure 6 shows a group winding method of a transformer coil of a preferred embodiment, the transformer coil 5 comprising at least one primary winding 5a and one secondary winding 5b, the primary winding and the secondary winding being respectively concentratedly wound around the first On the magnetic core 10 and/or the second magnetic core 11. That is, the primary winding 5a is wound first, and then the secondary winding 5b is wound.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

一种高集成磁元件,其具有至少带有一个凹槽的第一磁芯和第二磁芯,两块磁芯相向合拢,合拢后的凹槽至少形成贯通的第一孔洞和第二孔洞,其中围拢第一孔洞的侧壁断开一段形成气隙,在第一孔洞的侧壁上绕制电感线圈;围拢第二孔洞的侧壁连续闭合,在第二孔洞的侧壁上绕制变压器线圈;与现有技术相比,本发明将变压器和电感结合在一起,变压器和电感相互无干扰、散热性能好,同时具有体积小、重量轻、成本低,且可拓展多路输出的优点。

Description

一种高集成磁元件 技术领域
本发明涉及电磁元件,尤其涉及一种将变压器和电感集成在一起的高集成磁元件。
背景技术
随着高功率密度电力转换电源的要求,对磁元件体积的要求更加小型化,尤其在新能源领域,如电动汽车充电机等。一个完整的开关电源中,往往至少需要一颗电感和至少一颗变压器,有些开关电源中,甚至需要两个及以上变压器,从而实现多路输出的目的。传统的元件中电感和变压器都是独立元件,需要分别焊接在开关电源中,造成开关电源体积过于庞大,限制了高功率密度的需求。故此业内亟需开发一种能将变压器和电感集成在一起的高集成磁元件。
发明内容
本发明是要解决现有技术的上述问题,提出一种能将变压器和电感集成在一起的高集成磁元件。
为解决上述技术问题,本发明提出的技术方案是设计一种高集成磁元件,其具有至少带有一个凹槽的第一磁芯和第二磁芯,两块磁芯相向合拢,合拢后的凹槽至少形成贯通的第一孔洞和第二孔洞,其中围拢所述第一孔洞的侧壁断开一段形成气隙,在第一孔洞的侧壁上绕制电感线圈;围拢所述第二孔洞的侧壁连续闭合,在第二孔洞的侧壁上绕制变压器线圈。
在一种设计方式中,所述第一磁芯和第二磁芯的横截面皆为E字形,所述电感线圈绕制在E字形的一个凹槽内,所述变压器线圈绕制在E字形的另一个凹槽内。
在另一种设计方式中,所述第一磁芯和第二磁芯的横截面皆为F字形,所述电感线圈绕制在F字形下端的柄部,所述变压器线圈绕制在F字形上部的凹槽内。
在另一种设计方式中,所述第一磁芯的横截面为E字形,所述第二磁芯 的横截面为I字形,所述电感线圈绕制在第一磁芯E字形的一个凹槽内,所述变压器线圈绕制在E字形的另一个凹槽内。
在另一种设计方式中,所述第一磁芯的横截面为F字形,所述第二磁芯的横截面为I字形,所述电感线圈绕制在第一磁芯F字形下端的柄部,所述变压器线圈绕制在F字形上部的凹槽内。
在另一种设计方式中,所述第一磁芯和第二磁芯分别具有3个凹槽,两块磁芯带凹槽的面相向合拢,合拢后的凹槽形成贯通的第一孔洞、第二孔洞和第三孔洞,第一孔洞的侧壁上绕制电感线圈,第二孔洞的侧壁上绕制变压器的初级绕组,第三孔洞的侧壁上绕制变压器的次级绕组。
所述变压器线圈的外侧包覆一层铜皮层,该铜皮层为变压器一个次级绕组。
在一种设计方式中,所述变压器线圈至少包括一个初级绕组和一个次级绕组,所述初级绕组和次级绕组交错缠绕在第一磁芯和/或第二磁芯上。
在另一种设计方式中,所述变压器线圈至少包括一个初级绕组和一个次级绕组,所述初级绕组和次级绕组分别集中缠绕在第一磁芯和/或第二磁芯上。
与现有技术相比,本发明将变压器和电感巧妙的结合在一起,元件体积极大缩小,变压器和电感相互无干扰、散热性能好,同时具有体积小、重量轻、成本低,且可轻易拓展多路输出的优点。
附图说明
图1为本发明较佳实施例的立体视图;
图2为本发明较佳实施例的俯视图;
图3为本发明较佳实施例磁芯的立体视图;
图4为本发明较佳实施例铜皮层的立体视图;
图5为本发明较佳实施例变压器线圈的交错绕法;
图6为本发明较佳实施例变压器线圈的分组绕法;
图7为两个F字形磁芯的组合结构示意图;
图8为一个E字形磁芯与一个I字形磁芯的组合结构示意图;
图9为一个F字形磁芯与一个I字形磁芯的组合结构示意图;
图10为具有3个孔洞的磁芯组合结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
本发明公开了一种高集成磁元件,参看图3其具有至少带有一个凹槽的第一磁芯10和第二磁芯11,两块磁芯相向合拢,合拢后的凹槽至少形成贯通的第一孔洞2和第二孔洞3,其中围拢所述第一孔洞的侧壁断开一段形成气隙4。参看图1和图2分别示出的立体视图和俯视图,在第一孔洞的侧壁上绕制电感线圈5;围拢所述第二孔洞的侧壁连续闭合,在第二孔洞的侧壁上绕制变压器线圈8。
参看图5示出的较佳实施例,第一磁芯10和第二磁芯11两块磁芯的横截面皆为E字形,所述电感线圈5绕制在E字形的一个凹槽内,即第一孔洞2位于图5左侧的;所述变压器线圈绕制在E字形的另一个凹槽内,即第二孔洞3位于图5右侧。第二孔洞3侧壁围拢闭合,磁路完整闭合,磁通量大,构成一款变压器;第一孔洞2侧壁断开一段形成气隙4,通过调整气隙的大小,可以调节感量的大小,且电感绕组可以避开气隙,降低损耗。藉此结构,可以将电感和变压器共用一个磁体的中柱,节约空间的同时,可以降低磁损。绕组在绕制加工时,可以将两个E字形磁芯成ШШ型放置在绕制工装上,由最左侧依次绕制到最右侧,最后将其翻转对扣,形成最终的磁元件,提高生产效率的同时,降低了耐压的可靠性性风险。
参看图7示出的一个实施例,所述第一磁芯10和第二磁芯11的横截面皆为F字形,所述电感线圈5绕制在F字形下端的柄部(位于图7的左侧),所述变压器线圈8绕制在F字形上部的凹槽内(位于图7的右侧)。
参看图8示出的另一个实施例,所述第一磁芯10的横截面为E字形,所述第二磁芯11的横截面为I字形,所述电感线圈5绕制在第一磁芯E字形的一个凹槽内(位于图8的左侧),所述变压器线圈8绕制在E字形的另一个凹槽内(位于图8的右侧)。
参看图9示出的另一个实施例,所述第一磁芯10的横截面为F字形,所述第二磁芯11的横截面为I字形,所述电感线圈5绕制在第一磁芯F字形下端的柄部(位于图9的左侧),所述变压器线圈8绕制在F字形上部的凹槽内(位于图9的右侧)。
图10示出了一个为具有3个孔洞的实施例,所述第一磁芯10和第二磁芯11分别具有3个凹槽,两块磁芯带凹槽的面相向合拢,合拢后的凹槽形成贯通的第一孔洞2、第二孔洞3和第三孔洞7,第一孔洞的侧壁上绕制电感线 圈5(位于图10的左侧),第二孔洞的侧壁上绕制变压器的初级绕组8a(位于图10的中部),第三孔洞的侧壁上绕制变压器的次级绕组(位于图10的右侧)。需要指出,孔洞的数量可以根据初级绕组和次级绕组数量适当的增加,这里是举出一个3孔洞的例子,并不用以限定本专利保护范围。
参看图1和图2示出的较佳实施例,所述变压器线圈5的外侧包覆一层铜皮层6,该铜皮层为变压器一个次级绕组。该绕组相当于一个匝数为1的绕组,此绕组不单可以当成一组协助散热的装置,也同时可以通过配合电路,形成第二路输出电压的拓展。图4示出了铜皮层的立体视图,图中6a所指为铜皮层的焊接脚。磁芯下方有一块PCB线路板15,电感线圈5和变压器线圈8的引脚跳线以及铜皮层6都焊接在该PCB线路板上。需要指出铜皮层有两块,分别包覆第一磁芯10和第二磁芯11的变压器线圈8的外侧。
图5示出了较佳实施例变压器线圈的一种交错绕法,所述变压器线圈5至少包括一个初级绕组5a和一个次级绕组5b,所述初级绕组和次级绕组交错缠绕在第一磁芯10和/或第二磁芯11上。即1根初级绕组5a和1根次级绕组5b并排,然后绕制在磁芯上。
图6示出了较佳实施例变压器线圈的一种分组绕法,所述变压器线圈5至少包括一个初级绕组5a和一个次级绕组5b,所述初级绕组和次级绕组分别集中缠绕在第一磁芯10和/或第二磁芯11上。即先绕制完初级绕组5a,然后再绕制完次级绕组5b。
以上实施例仅为举例说明,非起限制作用。任何未脱离本申请精神与范畴,而对其进行的等效修改或变更,均应包含于本申请的权利要求范围之中。

Claims (9)

  1. 一种高集成磁元件,其特征在于:具有至少带有一个凹槽的第一磁芯(10)和第二磁芯(11),两块磁芯相向合拢,合拢后的凹槽至少形成贯通的第一孔洞(2)和第二孔洞(3),其中
    围拢所述第一孔洞的侧壁断开一段形成气隙(4),在第一孔洞的侧壁上绕制电感线圈(5);
    围拢所述第二孔洞的侧壁连续闭合,在第二孔洞的侧壁上绕制变压器线圈(8)。
  2. 如权利要求1所述的高集成磁元件,其特征在于:所述第一磁芯(10)和第二磁芯(11)的横截面皆为E字形,所述电感线圈(5)绕制在E字形的一个凹槽内,所述变压器线圈绕制在E字形的另一个凹槽内。
  3. 如权利要求1所述的高集成磁元件,其特征在于:所述第一磁芯(10)和第二磁芯(11)的横截面皆为F字形,所述电感线圈(5)绕制在F字形下端的柄部,所述变压器线圈绕制在F字形上部的凹槽内。
  4. 如权利要求1所述的高集成磁元件,其特征在于:所述第一磁芯(10)的横截面为E字形,所述第二磁芯(11)的横截面为I字形,所述电感线圈(5)绕制在第一磁芯E字形的一个凹槽内,所述变压器线圈(8)绕制在E字形的另一个凹槽内。
  5. 如权利要求1所述的高集成磁元件,其特征在于:所述第一磁芯(10)的横截面为F字形,所述第二磁芯(11)的横截面为I字形,所述电感线圈(5)绕制在第一磁芯F字形下端的柄部,所述变压器线圈(8)绕制在F字形上部的凹槽内。
  6. 如权利要求1所述的高集成磁元件,其特征在于:所述第一磁芯(10)和第二磁芯(11)分别具有3个凹槽,两块磁芯带凹槽的面相向合拢,合拢后的凹槽形成贯通的第一孔洞(2)、第二孔洞(3)和第三孔洞(7),第一孔洞的侧壁上绕制电感线圈(5),第二孔洞的侧壁上绕制变压器的初级绕组(8a),第三孔洞的侧壁上绕制变压器的次级绕组。
  7. 如权利要求1至6任一项所述的高集成磁元件,其特征在于:所述变压器线圈(5)的外侧包覆一层铜皮层(6),该铜皮层为变压器一个次级绕组。
  8. 如权利要求7所述的高集成磁元件,其特征在于:所述变压器线圈(5)至少包括一个初级绕组(5a)和一个次级绕组(5b),所述初级绕组和次级绕组交错缠绕在第一磁芯(10)和/或第二磁芯(11)上。
  9. 如权利要求7所述的高集成磁元件,其特征在于:所述变压器线圈(5)至少包括一个初级绕组(5a)和一个次级绕组(5b),所述初级绕组和次级绕组分别集中缠绕在第一磁芯(10)和/或第二磁芯(11)上。
PCT/CN2018/083754 2017-12-06 2018-04-19 一种高集成磁元件 WO2019109572A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711276046.6 2017-12-06
CN201711276046.6A CN108109821A (zh) 2017-12-06 2017-12-06 一种高集成磁元件

Publications (1)

Publication Number Publication Date
WO2019109572A1 true WO2019109572A1 (zh) 2019-06-13

Family

ID=62209070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083754 WO2019109572A1 (zh) 2017-12-06 2018-04-19 一种高集成磁元件

Country Status (2)

Country Link
CN (1) CN108109821A (zh)
WO (1) WO2019109572A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3923307A4 (en) * 2019-08-14 2022-11-09 Huawei Digital Power Technologies Co., Ltd. BUILT-IN MAGNETIC DEVICE, POWER CONVERSION CIRCUIT, CHARGER AND ELECTRIC VEHICLE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110062715B (zh) * 2019-01-11 2022-07-15 广东美信科技股份有限公司 一种新能源汽车用车载变压器及新能源汽车
CN110164651A (zh) * 2019-06-28 2019-08-23 深圳威迈斯新能源股份有限公司 磁性元件的集成结构
CN110729903B (zh) 2019-09-11 2021-02-09 华为技术有限公司 磁件装置和双向dc变换电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404454A (zh) * 2008-11-24 2009-04-08 北京新雷能有限责任公司 集成磁元件的有源钳位正反激变换器
CN202034218U (zh) * 2011-04-08 2011-11-09 深圳市海光电子有限公司 一种新型集成式变压器
CN104701000A (zh) * 2013-12-04 2015-06-10 台达电子企业管理(上海)有限公司 集成磁性组件与应用其的全波整流变换器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312014A (ja) * 1989-06-07 1991-01-21 Fuji Elelctrochem Co Ltd 磁気ヘッドコア素体の製造方法
US5117214A (en) * 1991-01-28 1992-05-26 Powercube Corporation Integrated magnetic power converter core
US5790005A (en) * 1996-06-24 1998-08-04 Optimum Power Conversion, Inc. Low profile coupled inductors and integrated magnetics
JP2001274027A (ja) * 2000-03-24 2001-10-05 Tabuchi Electric Co Ltd 電磁誘導器
JP2001274026A (ja) * 2000-03-24 2001-10-05 Tabuchi Electric Co Ltd 電磁誘導器
EP2624260B1 (en) * 2012-02-02 2018-04-04 DET International Holding Limited Forward converter with magnetic component
EP2677526B1 (en) * 2012-06-22 2017-09-27 DET International Holding Limited Integrated magnetics for switched mode power converter
US20160307692A1 (en) * 2015-04-16 2016-10-20 Pulse Electronics, Inc. Self-leaded inductive device and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404454A (zh) * 2008-11-24 2009-04-08 北京新雷能有限责任公司 集成磁元件的有源钳位正反激变换器
CN202034218U (zh) * 2011-04-08 2011-11-09 深圳市海光电子有限公司 一种新型集成式变压器
CN104701000A (zh) * 2013-12-04 2015-06-10 台达电子企业管理(上海)有限公司 集成磁性组件与应用其的全波整流变换器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3923307A4 (en) * 2019-08-14 2022-11-09 Huawei Digital Power Technologies Co., Ltd. BUILT-IN MAGNETIC DEVICE, POWER CONVERSION CIRCUIT, CHARGER AND ELECTRIC VEHICLE
US11527354B2 (en) 2019-08-14 2022-12-13 Huawei Digital Power Technologies Co., Ltd. Magnetic integrated device, power conversion circuit, charger, and electric vehicle

Also Published As

Publication number Publication date
CN108109821A (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
WO2019109572A1 (zh) 一种高集成磁元件
CN1637969B (zh) 具有减小的直流电流饱和度的电力电感器
TWI389147B (zh) 導電繞組及應用該導電繞組之磁性元件
JP4504426B2 (ja) 平面高電圧変圧器デバイス
TW201541481A (zh) 具多氣隙之磁性組件
KR20180007177A (ko) 듀얼 코어 평면 트랜스포머
CN110970210A (zh) 变压器
JP2009059995A (ja) 複合磁気部品
CN214505209U (zh) 磁集成装置、直流-直流变换器及开关电源
US7268658B1 (en) Transformer having leakage inductance control structure
TW201539495A (zh) 具有堆疊組件承納的表面安裝功率電感器組件
KR101838227B1 (ko) 공통 권선 평면 트랜스포머
JPH1116751A (ja) トランス
KR20140117835A (ko) 인쇄회로기판에 의해 제조되는 트랜스포머
CN202678076U (zh) 功率变换器mos管的驱动变压器
US9672974B2 (en) Magnetic component and power transfer device
WO2021258352A1 (zh) 一种电气元件、电路板及开关电源
CN203760299U (zh) 一种逆变焊机变压器
JP2008270347A (ja) トランス
TWM601891U (zh) 磁感應組件
JP2004022721A (ja) トランスおよびその製造方法、電力変換装置、並びに、発電装置
KR20190014727A (ko) 듀얼 코어 평면 트랜스포머
CN203871154U (zh) 高频变压器
Quilici Embedded magnetic power transformer
TWI771711B (zh) 磁感應組件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885219

Country of ref document: EP

Kind code of ref document: A1