WO2019109438A1 - 一种叠层oled器件及其制作方法 - Google Patents

一种叠层oled器件及其制作方法 Download PDF

Info

Publication number
WO2019109438A1
WO2019109438A1 PCT/CN2018/070039 CN2018070039W WO2019109438A1 WO 2019109438 A1 WO2019109438 A1 WO 2019109438A1 CN 2018070039 W CN2018070039 W CN 2018070039W WO 2019109438 A1 WO2019109438 A1 WO 2019109438A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
oled structure
inverted
anode
transparent
Prior art date
Application number
PCT/CN2018/070039
Other languages
English (en)
French (fr)
Inventor
夏存军
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/749,187 priority Critical patent/US10431631B2/en
Publication of WO2019109438A1 publication Critical patent/WO2019109438A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/441Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present invention relates to the field of screen display technologies, and in particular, to a stacked OLED device and a method of fabricating the same.
  • the display types of OLED panels generally include three types: red, green, and blue (RGB) side-by-side pixel independent illumination, light color conversion, and color filter film.
  • the mainstream OLED panel display types are red, blue, and green.
  • the three primary color pixel points are juxtaposed on the same side of the panel.
  • the display of the screen is realized by the control of the driving circuit.
  • This type of display mode determines the pixel resolution by compressing the pixel arrangement space. It is very difficult, costly, and the yield is very low.
  • the common red, blue and green three-primary color pixels need to use five FMM (precision mask) and CCD high-precision alignment. The process, which brings about problems such as low process complexity and high production cost.
  • the technical problem to be solved by the present invention is to provide a stacked OLED device and a manufacturing method thereof to improve pixel resolution, improve product yield, and save cost.
  • the present invention provides a stacked OLED device comprising:
  • first forward OLED structure a first forward OLED structure, a first inverted OLED structure, and a second forward OLED structure stacked in this order from bottom to top on the substrate;
  • a charge generating layer disposed between the first forward OLED structure and the first inverted OLED structure as a common cathode of the first forward OLED structure and the first inverted OLED structure,
  • Each of the organic functional layers in a forward OLED structure and each of the organic functional layers in the first inverted OLED structure are symmetrical with the charge generating layer;
  • a transparent insulating layer disposed between the first inverted OLED structure and the second forward OLED structure
  • the anode of the first forward OLED structure and the anode of the second forward OLED structure are connected by a conductive layer.
  • the first forward OLED structure includes: a first anode, a first hole injection layer, a first hole transport layer, a first light emitting layer, and a first electron transport layer stacked in this order from bottom to top on a substrate. a layer and a first electron injecting layer; the first inverting OLED structure includes: a second electron injecting layer, a second electron transporting layer, a second emissive layer, and a second layer stacked on the charge generating layer a hole transport layer, a second hole injection layer, and a second transparent anode.
  • the second forward OLED structure includes: a third transparent anode, a third hole injection layer, a third hole transport layer, and a third light emitting layer which are sequentially stacked from bottom to top on the transparent insulating layer. a third electron transport layer, a third electron injection layer, and a transparent cathode.
  • the conductive layer is covered with a second insulating layer and a third insulating layer, the second insulating layer is located between the first anode and the third transparent anode, and the third insulating layer is located at the The first anode is between the third hole injecting layer.
  • the colors of the first luminescent layer, the second luminescent layer, and the third luminescent layer are different.
  • the invention also provides a method for fabricating a stacked OLED device, comprising:
  • the charge generation layer is symmetrical;
  • An anode of the first forward OLED structure is coupled to an anode of the second forward OLED structure through a conductive layer.
  • the first forward OLED structure and the first inverted OLED structure are sequentially stacked on the substrate from bottom to top, and specifically include:
  • the mask type used for vapor deposition of the second transparent anode is a second open mask
  • each of the other The reticle type used by the layer is a first open reticle
  • the reticle type used when the transparent insulating layer is disposed between the second forward OLED structures on the first inverted OLED structure is the second open Mask version.
  • the second forward OLED structure is laminated on the first inverting OLED structure, and specifically includes:
  • the mask type used for vapor deposition of the third transparent anode is a first open mask
  • the type of mask used for vapor deposition transparent cathode is a third open mask
  • the masks used by other layers are used.
  • the film type is the first open mask.
  • the beneficial effects of the embodiments of the present invention are that the application of the precision mask can be omitted in the process of preparing the full-color panel preparation process, and the difficulty of preparing the full-color OLED panel is reduced, and the occupation of the three primary colors is adopted due to the laminated structure.
  • the reduction of space can greatly improve the pixel resolution, which is beneficial to the improvement of product yield and thus can save costs and improve the competitiveness of products.
  • FIG. 1 is a schematic structural view of a stacked OLED device according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the specific structure of a stacked OLED device according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a method for fabricating a stacked OLED device according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural view of a pixel defining layer, a conductive layer, and a protective layer covering the conductive layer prepared on the substrate in the second embodiment of the present invention.
  • 5a to 5f are schematic structural views of a stacked OLED device prepared by each intermediate process in the second embodiment of the present invention.
  • a first embodiment of the present invention provides a stacked OLED device, including:
  • first forward OLED structure a first forward OLED structure, a first inverted OLED structure, and a second forward OLED structure stacked in this order from bottom to top on the substrate;
  • a charge generating layer disposed between the first forward OLED structure and the first inverted OLED structure as a common cathode of the first forward OLED structure and the first inverted OLED structure,
  • Each of the organic functional layers in a forward OLED structure and each of the organic functional layers in the first inverted OLED structure are symmetrical with the charge generating layer;
  • a transparent insulating layer disposed between the first inverted OLED structure and the second forward OLED structure
  • the anode of the first forward OLED structure and the anode of the second forward OLED structure are connected by a conductive layer.
  • the first forward OLED structure and the first inverted OLED structure are driven by a high frequency pulse voltage and a current signal, and the amplitude amplitude of the high frequency pulse voltage and current signal in the positive and negative directions is adjusted.
  • the first forward OLED structure, the first inverted OLED structure independently emits corresponding primary light and a plurality of composite lights of the two primary colors, and the second forward OLED structure is driven by a direct current signal, thereby Achieve this single pixel structure to independently emit three primary colors and their composite colors.
  • the OLED device of the embodiment can be used in the process of the full color panel preparation process, the use of the FMM (precision mask) can be omitted, and the difficulty of preparing the full color OLED is reduced, and the OLED device of the laminated structure reduces the possession of the three primary colors. Space can greatly improve the pixel resolution, which is beneficial to the improvement of product yield and thus can save costs and improve the competitiveness of products.
  • FMM precision mask
  • the first forward OLED structure includes a first anode, a first hole injection layer HIL, a first hole transport layer HTL, and a first layer stacked in this order from bottom to top on the substrate.
  • a light emitting layer EML 1 a first electron transporting layer ETL, and a first electron injecting layer EIL
  • the first inverting OLED structure includes a charge generating layer, a second electron injecting layer EIL, and a second electron injecting layer, which are sequentially stacked on the charge generating layer CGL a second electron transport layer ETL, a second light emitting layer EML 2, a second hole transport layer HTL, a second hole injection layer HIL, and a second transparent anode.
  • the stacking order of the organic functional layers in the first forward OLED structure is opposite to the stacking order of the organic functional layers in the first inverted OLED structure, that is, each of the first forward OLED structures.
  • the organic functional layer is symmetrical to each of the organic functional layers in the first inverted OLED structure, for example, the first electron injection layer EIL and the first inversion of the first forward OLED structure on the upper and lower sides of the charge generation layer, respectively.
  • the second electron injection layer EIL of the OLED structure is then the first electron transport layer ETL of the first forward OLED structure and the second electron transport layer ETL of the first inverted OLED structure, respectively, and so on.
  • the "forward" of the first forward OLED structure means that the stacking order is the same as the usual OLED stacking sequence, that is, the anode - the organic functional layer - the cathode; the first reverse OLED structure Turn” means that the stacking order is reversed from the usual OLED stacking order.
  • the stacking order of the respective organic functional layers of the second forward OLED structure is the same as the stacking order of the respective organic functional layers of the first forward OLED structure, specifically, including: bottom-up on the transparent insulating layer
  • the third transparent anode, the third hole injection layer HIL, the third hole transport layer HTL, the third light-emitting layer EML 3, the third electron transport layer ETL, the third electron injection layer EIL, and the transparent cathode are sequentially laminated.
  • the main function of the first forward OLED structure and the charge generating layer in the first inverted OLED structure is to ensure that the stacked OLED device of the embodiment can be driven by alternating current (AC). Lighting and improving luminous efficiency; the main function of the transparent insulating layer between the second forward OLED structure and the first inverted OLED structure is to ensure that the driving of the second forward OLED structure is not affected by the first inverted OLED structure.
  • the color of the luminescent layer included in the first forward OLED structure, the first inverted OLED structure, and the second forward OLED structure may be arbitrarily set in three primary colors of red, green, and blue, and The order of the layers in the stacked structure is not limited.
  • the first luminescent layer 1 in the first forward OLED structure may be a red luminescent layer
  • the second luminescent layer 2 in the first inverted OLED structure may be green illuminating.
  • the third luminescent layer 3 in the second forward OLED structure may be a blue luminescent layer; for example, the first luminescent layer 1 in the first forward OLED structure may be a blue luminescent layer, the first inverted OLED
  • the second luminescent layer 2 in the structure may be a red luminescent layer
  • the third luminescent layer 3 in the second forward OLED structure may be a green luminescent layer.
  • the first luminescent layer 1 in the first forward OLED structure is a green luminescent layer
  • the second luminescent layer 2 in the first inverted OLED structure is a red luminescent layer
  • the third illuminating in the second forward OLED structure Layer 3 is a blue light-emitting layer.
  • the conductive layer is covered with a second insulating layer and a third insulating layer, the second insulating layer is located between the first anode and the third transparent anode, and the third insulating layer is located at the first anode and the third Between the hole injection layers, the electrical connection between the first anode of the first forward OLED structure and the third transparent anode of the second forward OLED structure serves as an insulation protection.
  • a second embodiment of the present invention provides a method for fabricating a stacked OLED device, as shown in FIG. 3, including:
  • the charge generation layer is symmetrical;
  • An anode of the first forward OLED structure is coupled to an anode of the second forward OLED structure through a conductive layer.
  • a pixel defining layer 11 (PDL), a conductive layer 12, and a conductive layer 12 are first prepared on a substrate by a coating, exposure, and development process of a film forming process and a photolithography process. Covered protective layer 13.
  • a first hole injection layer of the first forward OLED structure is sequentially deposited on the first anode of the substrate (as the anode of the first forward OLED structure) by thermal evaporation, first a hole transport layer, a first light-emitting layer 1, a first electron transport layer, a first electron injection layer, and a charge generation layer; since the charge generation layer is a common cathode of the first forward OLED structure and the first inverted OLED structure, And each of the organic functional layers in the first forward OLED structure is symmetrical with each of the organic functional layers in the first inverted OLED structure, so that the first inverted OLED structure is stacked on the charge generating layer from bottom to bottom.
  • Each of the organic functional layers has a stacking order which is opposite to the order of superposition of the respective organic functional layers of the first forward OLED structure, that is, the second electrons of the first inverted OLED structure are stacked in this order from the bottom on the charge generating layer.
  • An injection layer, a second electron transport layer, a second light-emitting layer 2, a second hole transport layer, a second hole injection layer, and a second transparent anode (which will serve as an anode of the first inverted OLED structure), thereby completing the first A forward OLED structure and a first inversion OLE Preparation of the D structure.
  • a transparent insulating layer is deposited on the second transparent anode.
  • the mask type used for vapor-depositing the second transparent anode and the transparent insulating layer is a second open mask (OPEN-MASK 2), which facilitates the overlapping of the second transparent anode and the corresponding surrounding leads.
  • the transparent insulating layer protects the second transparent anode; the other types of masks used are the first open mask (OPEN-MASK 1).
  • the protective layer covering the pixel defining layer and the conductive layer prepared on the substrate is removed by a stripping technique.
  • an inverted trapezoidal pixel definition layer 14 is formed on the structure shown in Fig. 5b by a coating, exposure, and development process of photolithography.
  • the second transparent anode is separately shown from the first inverted OLED structure in FIGS. 5a, 5b, and 5c. Out.
  • a transparent anode, a third transparent anode is formed on the structure shown in Figure 5c by means of thermal evaporation, which will serve as the anode of the second forward OLED structure.
  • the type of mask used therein is the first open mask (OPEN-MASK 1).
  • the inverted trapezoidal pixel defining layer 14 prepared as shown in Fig. 5c is removed by a stripping technique.
  • the third transparent anode is separately shown from the second forward OLED structure in FIGS. 5d and 5e.
  • a third hole injection layer, a third hole transport layer, a third light-emitting layer 3, and a third of the second forward OLED structure are sequentially deposited on the third transparent anode by thermal evaporation.
  • the third transparent anode and the transparent cathode are separately shown from the second forward OLED structure, respectively.
  • the type of mask used for vaporizing the transparent cathode is the third open mask (OPEN-MASK 3), which facilitates the overlapping of the transparent cathode and the corresponding surrounding leads, and the mask type used in the other layers is the first type.
  • the beneficial effects of the embodiments of the present invention are that the application of the precision mask can be omitted in the process of preparing the full-color panel preparation process, and the difficulty of preparing the full-color OLED panel is reduced.
  • the space occupied by the three primary colors is reduced, the pixel resolution can be greatly improved, the product yield is improved, the cost can be saved, and the competitiveness of the product can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种叠层OLED器件及其制作方法,其中,叠层OLED器件包括:在基板上由下至上依次叠层的第一正向OLED结构、第一反转OLED结构和第二正向OLED结构;作为第一正向OLED结构和第一反转OLED结构共同阴极的电荷产生层,第一正向OLED结构中的各有机功能层与第一反转OLED结构中的各有机功能层以电荷产生层相对称;设置在第一反转OLED结构与第二正向OLED结构之间的透明绝缘层;第一正向OLED结构的阳极与第二正向OLED结构的阳极通过导电层相连接。可以省去精密掩膜版的使用,使得三基色的占有空间减少,大幅提高像素分辨率,有利于产品良率的提高进而可以节省成本,提高产品的竞争力。

Description

一种叠层OLED器件及其制作方法
本申请要求于2017年12月4日提交中国专利局、申请号为201711258605.0、发明名称为“一种叠层OLED器件及其制作方法”的中国专利申请的优先权,上述专利的全部内容通过引用结合在本申请中。
技术领域
本发明涉及屏幕显示技术领域,尤其涉及一种叠层OLED器件及其制作方法。
背景技术
现在OLED面板的显示类型通常包括三种:红、绿、蓝(RGB)并列像素独立发光,光色转换和彩色滤光膜。主流的OLED面板显示类型是红、蓝、绿三基色像素点在面板同一面并列分布,通过驱动电路的控制来实现画面的显示,这类显示模式决定通过压缩像素排布空间来提高像素分辨率难度很大、成本很高、良品率会很低,且现在通用的红、蓝、绿三基色象素独立发光制备过程中需要用五道FMM(精密掩膜版)及CCD高精密对位等工艺,这就带来的工艺复杂良品率低、制备成本较高等问题。
发明内容
本发明所要解决的技术问题在于,提供一种叠层OLED器件及其制作方法,以提高像素分辨率,提高产品良率,同时节省成本。
为了解决上述技术问题,本发明提供一种叠层OLED器件,包括:
在基板上由下至上依次叠层的第一正向OLED结构、第一反转OLED结构和第二正向OLED结构;
设置在所述第一正向OLED结构和所述第一反转OLED结构之间、作为所述第一正向OLED结构和所述第一反转OLED结构共同阴极的电荷产生层,所述第一正向OLED结构中的各有机功能层与所述第一反转OLED结构中的各有机功能层以所述电荷产生层相对称;
设置在所述第一反转OLED结构与所述第二正向OLED结构之间的透 明绝缘层;
所述第一正向OLED结构的阳极与所述第二正向OLED结构的阳极通过导电层相连接。
其中,所述第一正向OLED结构包括:在基板上自下而上依次叠层的第一阳极、第一空穴注入层、第一空穴传输层、第一发光层、第一电子传输层和第一电子注入层;所述第一反转OLED结构包括:在所述电荷产生层上自下依次叠层的第二电子注入层、第二电子传输层、第二发光层、第二空穴传输层、第二空穴注入层和第二透明阳极。
其中,所述第二正向OLED结构包括:在所述透明绝缘层上自下而上依次叠层的第三透明阳极、第三空穴注入层、第三空穴传输层、第三发光层、第三电子传输层、第三电子注入层以及透明阴极。
其中,所述导电层上覆盖有第二绝缘层和第三绝缘层,所述第二绝缘层位于所述第一阳极与所述第三透明阳极之间,所述第三绝缘层位于所述第一阳极与所述第三空穴注入层之间。
其中,所述第一发光层、所述第二发光层和所述第三发光层的颜色各不相同。
本发明还提供一种叠层OLED器件的制作方法,包括:
在基板上由下至上依次叠层第一正向OLED结构和第一反转OLED结构,其中,在第一正向OLED结构和第一反转OLED结构之间设置电荷产生层作为所述第一正向OLED结构和所述第一反转OLED结构的共同阴极,并且使所述第一正向OLED结构中的各有机功能层与所述第一反转OLED结构中的各有机功能层以所述电荷产生层相对称;
在所述第一反转OLED结构上叠层第二正向OLED结构,并在所述第一反转OLED结构与所述第二正向OLED结构之间设置透明绝缘层;
将所述第一正向OLED结构的阳极与所述第二正向OLED结构的阳极通过导电层相连接。
其中,在基板上由下至上依次叠层第一正向OLED结构和第一反转OLED结构,具体包括:
利用成膜工艺及光刻技术的涂布、曝光、显影工艺,在基板上制备出像 素定义层、导电层以及对所述像素定义层和所述导电层进行覆盖的保护层;
利用热蒸发的方式在基板的第一阳极上依次沉积叠层第一正向OLED结构的第一空穴注入层、第一空穴传输层、第一发光层、第一电子传输层、第一电子注入层以及电荷产生层;
在所述电荷产生层上自下依次叠层第一反转OLED结构的第二电子注入层、第二电子传输层、第二发光层、第二空穴传输层、第二空穴注入层、第二透明阳极。
其中,在基板上由下至上依次叠层第一正向OLED结构和第一反转OLED结构过程中,蒸镀第二透明阳极使用的掩膜版类型为第二开放式掩膜版,其他各层使用的掩膜版类型为第一开放式掩膜版,在所述第一反转OLED结构上设置第二正向OLED结构之间设置透明绝缘层时使用的掩膜版类型为第二开放式掩膜版。
其中,在所述第一反转OLED结构上叠层第二正向OLED结构,具体包括:
利用脱膜技术,把覆盖在制备于基板上的像素定义层、导电层上的保护层去除;
利用光刻技术的涂布、曝光、显影工艺,制备一层倒梯形像素定义层;
利用热蒸发的方式,在制备有所述倒梯形像素定义层的结构上制备第三透明阳极;
利用脱膜技术,将所述倒梯形像素定义层除去;
利用热蒸发的方式,在所述第三透明阳极上依次沉积所述第二正向OLED结构的第三空穴注入层、第三空穴传输层、第三发光层、第三电子传输层、第三电子注入层以及透明阴极。
其中,蒸镀所述第三透明阳极使用的掩膜版类型为第一开放式掩膜版,蒸镀透明阴极使用的掩膜版类型为第三开放式掩膜版,其他各层使用的掩膜版类型为第一开放式掩膜版。
本发明实施例的有益效果在于:应用于全彩面板制备工艺制程中可以省去精密掩膜版的使用,降低了制备全彩OLED面板的难度,由于采用叠层的结构,使得三基色的占有空间减少,可以大幅提高像素分辨率,有利于产品 良率的提高进而可以节省成本,提高产品的竞争力。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一一种叠层OLED器件的结构示意图。
图2是本发明实施例一一种叠层OLED器件的具体结构示意图。
图3是本发明实施例二一种叠层OLED器件的制作方法的流程示意图。
图4是本发明实施例二中在基板上制备出的像素定义层、导电层及对导电层进行覆盖的保护层的结构示意图。
图5a至图5f分别是本发明实施例二中各中间制程制备的叠层OLED器件结构示意图。
具体实施方式
以下各实施例的说明是参考附图,用以示例本发明可以用以实施的特定实施例。
请参照图1所示,本发明实施例一提供一种叠层OLED器件,包括:
在基板上由下至上依次叠层的第一正向OLED结构、第一反转OLED结构和第二正向OLED结构;
设置在所述第一正向OLED结构和所述第一反转OLED结构之间、作为所述第一正向OLED结构和所述第一反转OLED结构共同阴极的电荷产生层,所述第一正向OLED结构中的各有机功能层与所述第一反转OLED结构中的各有机功能层以所述电荷产生层相对称;
设置在所述第一反转OLED结构与所述第二正向OLED结构之间的透明绝缘层;
所述第一正向OLED结构的阳极与所述第二正向OLED结构的阳极通过导电层相连接。
对于本实施例的叠层OLED器件,对第一正向OLED结构、第一反转OLED结构采用高频率脉冲电压、电流信号驱动,并通过调节正负方向高频 脉冲电压、电流信号的振幅幅值,让第一正向OLED结构、第一反转OLED结构独立发相应的基色光以及两者基色光的多种复合光,对第二正向OLED结构采用直流电流信号来驱动等,以此实现这一单像素点结构可独立发出三种基色光及其复合色光。同时,本实施例的OLED器件应用于全彩面板制备工艺制程中可以省去FMM(精密掩膜版)使用,降低了制备全彩OLED的难度,叠层结构的OLED器件减少了三基色的占有空间,可以大幅提高像素分辨率,有利于产品良率的提高进而可以节省成本,提高产品的竞争力。
具体地,请结合图2所示,第一正向OLED结构包括在基板上自下而上依次叠层的第一阳极、第一空穴注入层HIL、第一空穴传输层HTL、第一发光层EML 1、第一电子传输层ETL、第一电子注入层EIL;第一反转OLED结构包括在电荷产生层CGL上自下依次叠层的电荷产生层、第二电子注入层EIL、第二电子传输层ETL、第二发光层EML 2、第二空穴传输层HTL、第二空穴注入层HIL和第二透明阳极。由此可以看出,第一正向OLED结构中各有机功能层的叠层顺序与第一反转OLED结构中各有机功能层的叠层顺序相反,也即第一正向OLED结构中的各有机功能层与第一反转OLED结构中的各有机功能层以电荷产生层相对称,例如电荷产生层上下两侧分别为第一正向OLED结构的第一电子注入层EIL和第一反转OLED结构的第二电子注入层EIL,然后再分别是第一正向OLED结构的第一电子传输层ETL和第一反转OLED结构的第二电子传输层ETL,以此类推。可以理解的是,第一正向OLED结构的“正向”表示其叠层顺序与通常的OLED叠层顺序相同,即阳极——有机功能层——阴极;第一反转OLED结构的“反转”表示其叠层顺序与通常的OLED叠层顺序相反。因此,第二正向OLED结构的各有机功能层的叠层顺序与第一正向OLED结构的各有机功能层的叠层顺序相同,具体地,其包括:在透明绝缘层上自下而上依次叠层的第三透明阳极、第三空穴注入层HIL、第三空穴传输层HTL、第三发光层EML 3、第三电子传输层ETL、第三电子注入层EIL以及透明阴极。
需要说明的是,本实施例中,第一正向OLED结构与第一反转OLED结构中的电荷产生层的主要作用在于,保证本实施例的叠层OLED器件能够在交流电(AC)驱动下点亮及提高发光效率;第二正向OLED结构与第一 反转OLED结构中间的透明绝缘层的主要作用在于,保证驱动第二正向OLED结构时不受第一反转OLED结构的影响。
本实施例的叠层OLED器件中,第一正向OLED结构、第一反转OLED结构和第二正向OLED结构所包含的发光层颜色可以在红、绿、蓝三基色中任意设置,并且不对其在叠层结构中的顺序做限制,例如,第一正向OLED结构中的第一发光层1可以是红色发光层,第一反转OLED结构中的第二发光层2可以是绿色发光层,第二正向OLED结构中的第三发光层3可以是蓝色发光层;又如,第一正向OLED结构中的第一发光层1可以是蓝色发光层,第一反转OLED结构中的第二发光层2可以是红色发光层,第二正向OLED结构中的第三发光层3可以是绿色发光层。作为优选,第一正向OLED结构中的第一发光层1是绿色发光层,第一反转OLED结构中的第二发光层2是红色发光层,第二正向OLED结构中的第三发光层3是蓝色发光层。
进一步地,本实施例中,导电层上覆盖有第二绝缘层和第三绝缘层,第二绝缘层位于第一阳极与第三透明阳极之间,第三绝缘层位于第一阳极与第三空穴注入层之间,以对第一正向OLED结构的第一阳极与第二正向OLED结构的第三透明阳极之间的电性连接起到绝缘保护作用。
相应于本发明实施例一,本发明实施例二提供一种叠层OLED器件的制作方法,如图3所示,包括:
在基板上由下至上依次叠层第一正向OLED结构和第一反转OLED结构,其中,在第一正向OLED结构和第一反转OLED结构之间设置电荷产生层作为所述第一正向OLED结构和所述第一反转OLED结构的共同阴极,并且使所述第一正向OLED结构中的各有机功能层与所述第一反转OLED结构中的各有机功能层以所述电荷产生层相对称;
在所述第一反转OLED结构上叠层第二正向OLED结构,并在所述第一反转OLED结构与所述第二正向OLED结构之间设置透明绝缘层;
将所述第一正向OLED结构的阳极与所述第二正向OLED结构的阳极通过导电层相连接。
具体地,请参照图4所示,首先利用成膜工艺及光刻技术的涂布、曝光、显影工艺,在基板上制备出像素定义层11(PDL)、导电层12及对导电层 12进行覆盖的保护层13。
然后参照图5a所示,利用热蒸发的方式在基板的第一阳极(作为第一正向OLED结构的阳极)上依次沉积叠层第一正向OLED结构的第一空穴注入层、第一空穴传输层、第一发光层1、第一电子传输层、第一电子注入层以及电荷产生层;由于电荷产生层是作为第一正向OLED结构和第一反转OLED结构的共同阴极,并且第一正向OLED结构中的各有机功能层与第一反转OLED结构中的各有机功能层以电荷产生层相对称,因此在电荷产生层上自下依次叠层第一反转OLED结构的各有机功能层时,其叠层顺序将与第一正向OLED结构的各有机功能层的叠加顺序相反,即在电荷产生层上自下依次叠层第一反转OLED结构的第二电子注入层、第二电子传输层、第二发光层2、第二空穴传输层、第二空穴注入层、第二透明阳极(将作为第一反转OLED结构的阳极),由此完成第一正向OLED结构和第一反转OLED结构的制备。之后继续在第二透明阳极上沉积透明绝缘层。需要说明的是,前述蒸镀第二透明阳极、透明绝缘层所使用的掩膜版类型为第二开放式掩膜版(OPEN-MASK 2),便于第二透明阳极与对应周围引线的搭接及透明绝缘层对第二透明阳极的保护;其他各层使用的掩膜版类型为第一开放式掩膜版(OPEN-MASK 1)。
请再参照图5b所示,利用脱膜技术,把覆盖在制备于基板上的像素定义层、导电层上的保护层去除。然后如图5c所示,利用光刻技术的涂布、曝光、显影工艺,在图5b所示结构上制备一层倒梯形像素定义层14。需要说明的是,为了更清楚地展现本实施例一种叠层OLED器件的制作方法的流程,图5a、图5b以及图5c中是将第二透明阳极从第一反转OLED结构中单独示出。接着如图5d所示,利用热蒸发的方式,图5c所示的结构上制备一层透明阳极——第三透明阳极,将作为第二正向OLED结构的阳极。其中所使用的掩膜版类型为第一开放式掩膜版(OPEN-MASK 1)。再如图5e所示,利用脱膜技术,将图5c所示制备的倒梯形像素定义层14除去。同样地,为了更清楚地展现本实施例一种叠层OLED器件的制作方法的流程,图5d、图5e中是将第三透明阳极从第二正向OLED结构中单独示出。最后如图5f所示,利用热蒸发的方式,在第三透明阳极上依次沉积第二正向OLED结构 的第三空穴注入层、第三空穴传输层、第三发光层3、第三电子传输层、第三电子注入层以及透明阴极,由此完成第二正向OLED结构的制备。需注意的是,为了更清楚地展现本实施例一种叠层OLED器件的制作方法的流程,图5f中是将第三透明阳极和透明阴极分别从第二正向OLED结构中单独示出。其中,蒸镀透明阴极所使用的掩膜版类型为第三开放式掩膜版(OPEN-MASK 3),便于透明阴极与对应周围引线的搭接,其他各层使用的掩膜版类型为第一开放式掩膜版(OPEN-MASK 1)。
将所述第一正向OLED结构的阳极与所述第二正向OLED结构的阳极通过导电层相连接,这样在驱动时可以对第一正向OLED结构、第一反转OLED结构采用高频率脉冲电压、电流信号驱动,并通过调节正负方向高频脉冲电压、电流信号的振幅幅值,让第一正向OLED结构、第一反转OLED结构独立发相应的基色光以及两者基色光的多种复合光。
通过上述说明可知,本发明实施例的有益效果在于:应用于全彩面板制备工艺制程中可以省去精密掩膜版的使用,降低了制备全彩OLED面板的难度,由于采用叠层的结构,使得三基色的占有空间减少,可以大幅提高像素分辨率,有利于产品良率的提高进而可以节省成本,提高产品的竞争力。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

  1. 一种叠层OLED器件,其中,包括:
    在基板上由下至上依次叠层的第一正向OLED结构、第一反转OLED结构和第二正向OLED结构;
    设置在所述第一正向OLED结构和所述第一反转OLED结构之间、作为所述第一正向OLED结构和所述第一反转OLED结构共同阴极的电荷产生层,所述第一正向OLED结构中的各有机功能层与所述第一反转OLED结构中的各有机功能层以所述电荷产生层相对称;
    设置在所述第一反转OLED结构与所述第二正向OLED结构之间的透明绝缘层;
    所述第一正向OLED结构的阳极与所述第二正向OLED结构的阳极通过导电层相连接。
  2. 根据权利要求1所述的叠层OLED器件,其中,所述第一正向OLED结构包括:在基板上自下而上依次叠层的第一阳极、第一空穴注入层、第一空穴传输层、第一发光层、第一电子传输层和第一电子注入层;所述第一反转OLED结构包括:在所述电荷产生层上自下依次叠层的第二电子注入层、第二电子传输层、第二发光层、第二空穴传输层、第二空穴注入层和第二透明阳极。
  3. 根据权利要求2所述的叠层OLED器件,其中,所述第二正向OLED结构包括:在所述透明绝缘层上自下而上依次叠层的第三透明阳极、第三空穴注入层、第三空穴传输层、第三发光层、第三电子传输层、第三电子注入层以及透明阴极。
  4. 根据权利要求3所述的叠层OLED器件,其中,所述导电层上覆盖有第二绝缘层和第三绝缘层,所述第二绝缘层位于所述第一阳极与所述第三透明阳极之间,所述第三绝缘层位于所述第一阳极与所述第三空穴注入层之间。
  5. 根据权利要求1所述的叠层OLED器件,其中,所述第一发光层、所述第二发光层和所述第三发光层的颜色各不相同。
  6. 一种叠层OLED器件的制作方法,包括:
    在基板上由下至上依次叠层第一正向OLED结构和第一反转OLED结构,其中,在第一正向OLED结构和第一反转OLED结构之间设置电荷产生层作为所述第一正向OLED结构和所述第一反转OLED结构的共同阴极,并且使所述第一正向OLED结构中的各有机功能层与所述第一反转OLED结构中的各有机功能层以所述电荷产生层相对称;
    在所述第一反转OLED结构上叠层第二正向OLED结构,并在所述第一反转OLED结构与所述第二正向OLED结构之间设置透明绝缘层;
    将所述第一正向OLED结构的阳极与所述第二正向OLED结构的阳极通过导电层相连接。
  7. 根据权利要求6所述的制作方法,其中,在基板上由下至上依次叠层第一正向OLED结构和第一反转OLED结构,具体包括:
    利用成膜工艺及光刻技术的涂布、曝光、显影工艺,在基板上制备出像素定义层、导电层以及对所述像素定义层和所述导电层进行覆盖的保护层;
    利用热蒸发的方式在基板的第一阳极上依次沉积叠层第一正向OLED结构的第一空穴注入层、第一空穴传输层、第一发光层、第一电子传输层、第一电子注入层以及电荷产生层;
    在所述电荷产生层上自下依次叠层第一反转OLED结构的第二电子注入层、第二电子传输层、第二发光层、第二空穴传输层、第二空穴注入层、第二透明阳极。
  8. 根据权利要求7所述的制作方法,其中,在基板上由下至上依次叠层第一正向OLED结构和第一反转OLED结构过程中,蒸镀第二透明阳极使用的掩膜版类型为第二开放式掩膜版,其他各层使用的掩膜版类型为第一开放式掩膜版,在所述第一反转OLED结构上和第二正向OLED结构之间设置透明绝缘层时使用的掩膜版类型为第二开放式掩膜版。
  9. 根据权利要求8所述的制作方法,其中,在所述第一反转OLED结构上叠层第二正向OLED结构,具体包括:
    利用脱膜技术,把覆盖在制备于基板上的像素定义层、导电层上的保护层去除;
    利用光刻技术的涂布、曝光、显影工艺,制备一层倒梯形像素定义层;
    利用热蒸发的方式,在制备有所述倒梯形像素定义层的结构上制备第三透明阳极;
    利用脱膜技术,将所述倒梯形像素定义层除去;
    利用热蒸发的方式,在所述第三透明阳极上依次沉积所述第二正向OLED结构的第三空穴注入层、第三空穴传输层、第三发光层、第三电子传输层、第三电子注入层以及透明阴极。
  10. 根据权利要求9所述的制作方法,其中,蒸镀所述第三透明阳极使用的掩膜版类型为第一开放式掩膜版,蒸镀透明阴极使用的掩膜版类型为第三开放式掩膜版,其他各层使用的掩膜版类型为第一开放式掩膜版。
PCT/CN2018/070039 2017-12-04 2018-01-02 一种叠层oled器件及其制作方法 WO2019109438A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/749,187 US10431631B2 (en) 2017-12-04 2018-01-02 Stacked OLED device and method of making the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711258605.0 2017-12-04
CN201711258605.0A CN108198945B (zh) 2017-12-04 2017-12-04 一种叠层oled器件及其制作方法

Publications (1)

Publication Number Publication Date
WO2019109438A1 true WO2019109438A1 (zh) 2019-06-13

Family

ID=62573476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/070039 WO2019109438A1 (zh) 2017-12-04 2018-01-02 一种叠层oled器件及其制作方法

Country Status (2)

Country Link
CN (1) CN108198945B (zh)
WO (1) WO2019109438A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102604311B1 (ko) 2018-06-29 2023-11-20 엘지디스플레이 주식회사 유기 발광 소자, 이를 이용한 유기 발광 표시 장치 및 차량용 표시 장치
CN113421984A (zh) * 2021-06-23 2021-09-21 上海晶合光电科技有限公司 一种oled器件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016362A1 (en) * 1998-09-15 2000-03-23 The Trustees Of Princeton University Full-color light emitting device
US20090078955A1 (en) * 2007-09-26 2009-03-26 Iii-N Technlogy, Inc Micro-Emitter Array Based Full-Color Micro-Display
CN102916136A (zh) * 2011-08-03 2013-02-06 伊格尼斯创新公司 有机发光二极管及其制造方法
US20160181560A1 (en) * 2014-12-17 2016-06-23 Universal Display Corporation Color-Stable Organic Light Emitting Diode Stack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016362A1 (en) * 1998-09-15 2000-03-23 The Trustees Of Princeton University Full-color light emitting device
US20090078955A1 (en) * 2007-09-26 2009-03-26 Iii-N Technlogy, Inc Micro-Emitter Array Based Full-Color Micro-Display
CN102916136A (zh) * 2011-08-03 2013-02-06 伊格尼斯创新公司 有机发光二极管及其制造方法
US20160181560A1 (en) * 2014-12-17 2016-06-23 Universal Display Corporation Color-Stable Organic Light Emitting Diode Stack

Also Published As

Publication number Publication date
CN108198945B (zh) 2019-10-15
CN108198945A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
TWI283549B (en) Organic electroluminescent display device with improved color saturation and method of fabricating the same
CN102610630B (zh) 电激发光显示面板的像素结构
US10872929B2 (en) Electroluminescent display and display device
CN106981504B (zh) 一种显示面板及显示装置
US10431631B2 (en) Stacked OLED device and method of making the same
WO2016000364A1 (zh) Oled单元及其制作方法、oled显示面板、oled显示设备
CN103840092B (zh) 有机发光装置及其制作方法
WO2020233284A1 (zh) 显示面板及其制作方法、显示装置
JP2006041471A (ja) 有機電界発光素子及びその製造方法
US9660000B2 (en) Organic light emitting diode (OLED) array substrate and fabricating method thereof, display device
TW201324891A (zh) 電激發光顯示面板之畫素結構
WO2017198008A1 (zh) 电致发光显示器件、其制作方法及显示装置
JP2005235741A (ja) 有機電界発光表示装置及びその製造方法
KR20150095543A (ko) 풀컬러 유기발광다이오드 구조
US8674598B2 (en) Polychromatic electronic display device with electroluminescent screen
JP2000195664A (ja) 発光装置
WO2016000337A1 (zh) 有机发光二极管基板及其制作方法、显示装置
TWI658583B (zh) 畫素陣列及其製造方法
WO2015085681A1 (zh) Oled显示面板及其制作方法、显示装置、电子产品
WO2019024192A1 (zh) 一种有机电致发光器件和显示面板
WO2019109438A1 (zh) 一种叠层oled器件及其制作方法
WO2018179272A1 (ja) El表示装置及びel表示装置の製造方法
CN108878495B (zh) 显示面板、其制造方法及显示装置
US10692937B2 (en) Manufacturing method of OLED display panel with stacks structure
WO2020041993A1 (zh) 一种采用混合型发光二极管的显示屏幕及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886665

Country of ref document: EP

Kind code of ref document: A1