WO2019107807A1 - 에너지 저장 시스템 - Google Patents

에너지 저장 시스템 Download PDF

Info

Publication number
WO2019107807A1
WO2019107807A1 PCT/KR2018/013995 KR2018013995W WO2019107807A1 WO 2019107807 A1 WO2019107807 A1 WO 2019107807A1 KR 2018013995 W KR2018013995 W KR 2018013995W WO 2019107807 A1 WO2019107807 A1 WO 2019107807A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
voltage
battery
load
energy storage
Prior art date
Application number
PCT/KR2018/013995
Other languages
English (en)
French (fr)
Inventor
원성하
Original Assignee
엘에스산전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170159942A external-priority patent/KR102323938B1/ko
Priority claimed from KR1020170159941A external-priority patent/KR102389302B1/ko
Application filed by 엘에스산전 주식회사 filed Critical 엘에스산전 주식회사
Priority to EP18884397.3A priority Critical patent/EP3719950A4/en
Priority to JP2020528924A priority patent/JP6977167B2/ja
Priority to CN201880076825.8A priority patent/CN111406352B/zh
Priority to US16/765,759 priority patent/US11205911B2/en
Publication of WO2019107807A1 publication Critical patent/WO2019107807A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads

Definitions

  • the present invention relates to an energy storage system capable of efficiently performing charge and discharge of a battery.
  • Energy Storage System is a system that stores generated power in each link system including power plant, substation and transmission line, and then uses energy selectively and efficiently at necessary time to enhance energy efficiency.
  • the energy storage system can reduce the power generation cost when the overall load ratio is improved by leveling the electric load with large time and seasonal variation, and it is possible to reduce the investment cost and the operation cost required for the electric power facility expansion, can do.
  • the energy storage system is divided into physical energy storage and chemical energy storage depending on the storage method.
  • Physical energy storage includes pumped storage, compressed air storage, and flywheel.
  • Chemical storage includes lithium ion batteries, lead acid batteries, and Nas batteries.
  • FIG. 1 is a schematic diagram illustrating a conventional energy storage system.
  • the electric power discharged from the battery 180 is supplied to the load 230 through the DC-DC converter 150.
  • An object of the present invention is to provide an energy storage system capable of efficiently performing charging and discharging of a battery.
  • the energy storage system of the present invention is an energy storage system for managing the power of a DC (direct current) distribution system and a grid connected to the system, A second converter connected to the DC distribution, a load connected to the second converter and controlled by the second converter, a battery connected to the DC distribution, and a battery connected between the load and the battery And a third converter for controlling discharge of the battery.
  • DC direct current
  • the voltage discharged from the battery by the third converter is directly transferred to the load.
  • Each of the first and fourth converters converts the voltage supplied from the system and charges the battery.
  • the voltage discharged from the battery by the third converter is directly transferred to the load, and the voltage discharged from the battery by the fourth converter is transferred to the system.
  • a switching switch for selectively connecting the auxiliary converter and the fourth converter to the load and to a second node between the load and the first node or auxiliary system between the system and the first converter.
  • One end of the switch is connected to the fourth converter, and the other end of the switch is selectively connected to either the first node or the second node.
  • the fourth converter When the fourth converter is connected to the first node, the fourth converter is connected to the second node by the switching operation of the changeover switch, the battery is discharged by the fourth converter, The resulting voltage is transferred to the load via the second node.
  • the first converter is driven in a DC voltage control mode to control the voltage of the DC distribution
  • the second converter is driven in a CVCF (Constant Voltage Constant Frequency) mode to control the voltage of the load
  • the third and fourth The converter is driven in a power control mode to control the power of the battery.
  • the first converter converts an alternating current (AC) voltage provided from the system into a DC voltage and supplies the DC voltage to the DC distribution system or the DC voltage supplied from the DC distribution system to an AC voltage
  • the DC converter converts the DC voltage supplied from the DC power supply to an AC voltage and supplies the AC voltage to the load.
  • the third converter converts the DC voltage supplied from the battery to an AC voltage to provide the load. To a DC voltage and supplies the DC voltage to the battery or converts the DC voltage supplied from the battery into an AC voltage to provide the system.
  • the energy storage system of the present invention is an energy storage system for managing the power of a DC (direct current) distribution system and a grid connected to the system, A second converter connected to the DC distribution, a battery connected to the second converter and controlled to be charged and discharged by the second converter, a third converter connected to the DC distribution, a second converter connected to the third converter, And a fourth converter connected between the battery and the load, the fourth converter being connected between the battery and the load, the voltage being controlled by the third converter, and controlling the discharging of the battery.
  • a second converter connected to the DC distribution
  • a battery connected to the second converter and controlled to be charged and discharged by the second converter
  • a third converter connected to the DC distribution
  • a second converter connected to the third converter
  • a fourth converter connected between the battery and the load, the fourth converter being connected between the battery and the load, the voltage being controlled by the third converter, and controlling the discharging of the battery.
  • the voltage discharged from the battery by the second converter is transferred to the load through the DC distribution, and the voltage discharged from the battery by the fourth converter is directly transferred to the load.
  • a fifth converter connected between the battery and the system for controlling charge and discharge of the battery.
  • the second converter converts the voltage supplied from the DC distribution and charges the battery
  • the fifth converter converts the voltage supplied from the system to charge the battery
  • the voltage discharged from the battery by the second converter is transferred to the load through the DC distribution, the voltage discharged from the battery by the fourth converter is directly transferred to the load, and the voltage discharged from the battery by the fifth converter is System.
  • a switching switch for selectively connecting the auxiliary converter and the fifth converter connected to the load to the second node between the first node or the auxiliary system and the load between the system and the first converter.
  • One end of the switch is connected to the fifth converter, and the other end of the switch is selectively connected to either the first node or the second node.
  • the fifth converter is connected to the second node by the switching operation of the change-over switch, the battery is discharged by the fifth converter, and when the fifth converter is connected to the first node, The resulting voltage is transferred to the load via the second node.
  • the first converter is driven in a DC voltage control mode to control the voltage of the DC distribution
  • the second converter and the fourth and fifth converters are driven in a power control mode to control the power of the battery
  • Is driven in CVCF (Constant Voltage Constant Frequency) mode to control the voltage of the load.
  • the first converter converts an alternating current (AC) voltage provided from the system into a DC voltage and supplies the DC voltage to the DC distribution system or the DC voltage supplied from the DC distribution system to an AC voltage
  • the DC converter converts the DC voltage supplied from the DC power supply to a DC voltage and supplies it to the battery, or converts the DC voltage supplied from the battery to a DC voltage to provide DC power.
  • the third converter supplies a DC voltage
  • the fourth converter converts the DC voltage supplied from the battery to an AC voltage and supplies the AC voltage to the load.
  • the fifth converter converts the AC voltage supplied from the system to a DC voltage and supplies the DC voltage to the battery. Or the DC voltage supplied from the battery is converted into an AC voltage and supplied to the system.
  • charging / discharging of the battery is efficiently performed through various converters, thereby overload applied to the converter at the time of discharging can be reduced. Further, even if some of the converters connected to the battery are out of order, it is possible to secure a power supply path connecting the battery and the load through the remaining converters, thereby ensuring the reliability of the energy storage system.
  • FIG. 1 is a schematic diagram illustrating a conventional energy storage system.
  • FIG. 2 is a schematic diagram illustrating an energy storage system according to one embodiment of the present invention.
  • FIG. 3 is a schematic view for explaining the power flow according to the charge and discharge of the battery of FIG.
  • FIG. 4 is a schematic diagram illustrating an energy storage system according to another embodiment of the present invention.
  • FIG. 5 is a schematic view for explaining the power flow according to the charge and discharge of the battery of FIG.
  • FIG. 6 is a schematic diagram illustrating an energy storage system according to another embodiment of the present invention.
  • FIGS. 7 and 8 are schematic views for explaining the power flow according to the charge and discharge of the battery of FIG.
  • FIG. 9 is a schematic diagram illustrating an energy storage system according to another embodiment of the present invention.
  • FIG. 10 is a schematic view for explaining the power flow according to the charge and discharge of the battery of FIG.
  • FIG. 11 is a schematic diagram illustrating an energy storage system according to another embodiment of the present invention.
  • FIG. 12 is a schematic diagram for explaining the power flow according to the charge / discharge of the battery of FIG.
  • FIG. 13 is a schematic diagram illustrating an energy storage system according to another embodiment of the present invention.
  • FIGS. 14 and 15 are schematic views for explaining the power flow according to the charge and discharge of the battery of FIG.
  • FIG. 1 An energy storage system according to an embodiment of the present invention will be described with reference to FIGS. 2 and 3.
  • FIG. 1
  • FIG. 2 is a schematic diagram illustrating an energy storage system according to one embodiment of the present invention.
  • 3 is a schematic view for explaining the power flow according to the charge and discharge of the battery of FIG.
  • an energy storage system 1 manages the power of a DC grid 20 (i.e., a DC grid) associated with the grid 10 and the grid 10 can do.
  • a DC grid 20 i.e., a DC grid
  • the energy storage system 1 includes a first converter 100, a battery 180, a second converter 200, a load 230, and a third converter 250 can do.
  • the energy storage system may further include a system 10 and a DC distribution 20 as well as a distributed power system (not shown) and an emergency generator (not shown).
  • a DC load or an AC load For example, a DC load or an AC load.
  • the system 10 may include, for example, a power station, a substation, a transmission line
  • the load 230 may include, for example, a home, a large building, a factory
  • Distributed power systems can also produce electricity using one or more of fossil fuel, nuclear fuel, renewable energy (solar, wind, tidal power, etc.)
  • the emergency generator may, for example, include a diesel generator and may be connected between the system 10 and the first converter 100. If a problem arises in the system 10, such as power failure of the system 10, And to supply power to the load 230.
  • the energy storage system 1 includes a first converter 100, a battery 180, a second converter 200, a load 230, a third converter 250, Will be described as an example.
  • the first converter 100 may be connected between the system 10 and the DC distribution 20 to control the voltage of the DC distribution 20.
  • the first converter 100 converts the AC voltage supplied from the system 10 to a DC voltage to provide the DC voltage to the DC power distribution system 20, or converts the DC voltage supplied from the DC power distribution system 20 to an AC voltage To the system (10).
  • the first converter 100 may be an AC-DC converter.
  • the first converter 100 may also be driven in a DC voltage control mode to control the voltage of the DC distribution 20 during normal operation of the system 10.
  • the first converter 100 may turn off the gate signal to stop the drive have.
  • the second converter 200 is connected to the DC power source 20 and can control the voltage of the load 230.
  • the second converter 200 may convert the DC voltage supplied from the DC power supply 20 into an AC voltage and provide the AC voltage to the load 230.
  • the second converter 200 may be driven in the CVCF mode to control the voltage of the load 230.
  • the second converter 200 may be a DC-AC converter, and the load 230 may be an AC load.
  • the third converter 250 is connected between the battery 180 and the load 230 and can control the discharge of the battery 180.
  • the third converter 250 may convert the DC voltage supplied from the battery 180 to an AC voltage and provide the DC voltage to the load 230.
  • the third converter 250 may be driven in a power control mode to control the power of the battery 180.
  • the third converter 250 may be a DC-AC converter.
  • the battery 180 is connected to the DC power source 20, and the discharge can be controlled by the third converter 250.
  • the battery 180 may be charged by receiving power transmitted from the system 10 through the first converter 100 to the DC distribution 20.
  • the battery 180 may include at least one battery cell, and each battery cell may include a plurality of bare cells.
  • the discharge of the battery 180 can be controlled by the third converter 250, and the discharging operation can be performed by receiving a discharge command from the host controller to be described later.
  • the load 230 is connected to the second converter 200 and the voltage (i.e., power) can be controlled by the second converter 200.
  • the load 230 may also be, for example, an AC load.
  • the load 230 may be a DC load, in which case the second converter 200 and the third converter 250 may be DC-DC converters.
  • the embodiment of the present invention will be described by taking as an example that the load 230 is an AC load.
  • the energy storage system 1 may further include a communication unit (not shown) and an upper controller (not shown).
  • the communication unit can receive system information (for example, system fault occurrence) from the first converter 100 and consumption power information of the load 230 from the second converter 200.
  • system information for example, system fault occurrence
  • the communication unit also transmits information provided from the first to third converters 100, 200 and 250 to at least one of the host controller (not shown) and the first to third converters 100, 200 and 250 You may.
  • This communication unit may be implemented in a high-speed communication base (for example, a CAN (Controller Area Network)) and may communicate with the first to third converters 100, 200 and 250 and the host controller in a wired or wireless manner .
  • a high-speed communication base for example, a CAN (Controller Area Network)
  • CAN Controller Area Network
  • the energy storage system 1 may not include a communication unit. That is, the first to third converters 100, 200, and 250 and the host controller may directly communicate with each other without a separate communication unit.
  • the host controller may be, for example, a PLC (Programmable Logic Controller) or an EMS (Energy Management System) and controls all sequence operations of the energy storage system 1 and instructs each component according to each situation To perform an operation.
  • PLC Programmable Logic Controller
  • EMS Electronicgy Management System
  • the battery 180 can be charged by receiving a direct voltage from the DC distribution 20.
  • the AC voltage supplied from the system 10 to the first converter 100 is converted to a DC voltage by the first converter 100 and delivered to the DC power distribution 20, May be delivered directly to the battery 180 without going through a separate converter.
  • the energy storage system 1 does not include a converter for the battery (that is, a converter provided between the DC power supply 20 and the battery 180 as a DC-DC converter) unlike the conventional energy storage system , It is possible to improve the conversion efficiency of the electric power transmitted from the DC power source 20 to the battery 180 and to reduce the cost due to the non-installation of the battery converter.
  • a converter for the battery that is, a converter provided between the DC power supply 20 and the battery 180 as a DC-DC converter
  • the power flow path due to the discharge of the battery 180 can be divided into two types.
  • the voltage discharged from the battery 180 can be transferred to the load 230 through the DC power source 20 and the second converter 200 and can be directly supplied to the load 230 through the third converter 250 . Accordingly, even when the load 230 requires a power equal to or more than the power required amount (that is, in an overload state), the discharge path of the battery 180 is not biased on one hand and the overload applied to each converter is reduced .
  • the power of the battery 180 can be transferred to the load 230 through the remaining converters.
  • the power of the battery 180 may be supplied to the load 230 in a seamless state through the second and third converters 200 and 250 when the system 10 has a problem. It is possible to increase the reliability of the power supply to the power supply.
  • FIG. 1 An energy storage system 2 according to another embodiment of the present invention will be described with reference to FIGS. 4 and 5.
  • FIG. 1 is a diagrammatic representation of an energy storage system 2 according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram illustrating an energy storage system according to another embodiment of the present invention.
  • 5 is a schematic view for explaining the power flow according to the charge and discharge of the battery of FIG.
  • the energy storage system 2 is similar to the energy storage system 1 described above except for some configurations and effects, and focuses on differences.
  • the reference numerals shown in Figs. 4 and 5 are applied only to Fig. 4 and Fig. 5.
  • the energy storage system 2 includes a first converter 100, a battery 180, a second converter 200, a load 230, a third converter 250, a fourth converter 270).
  • the energy storage system 2 may further include a fourth converter 270 than the energy storage system 1 described above.
  • the fourth converter 270 is connected between the battery 180 and the system 10, and can control the charging / discharging of the battery 180.
  • the fourth converter 270 converts the AC voltage supplied from the system 10 to a DC voltage and supplies the DC voltage to the battery 180 or the DC voltage supplied from the battery 180 to an AC voltage, ).
  • the fourth converter 270 may be an AC-DC converter.
  • the fourth converter 270 may communicate with the communication unit or the host controller described above in a wired or wireless manner and may be driven in a power control mode to control the power of the battery 180.
  • the power flow path according to the charging of the battery 180 can be divided into two.
  • the battery 180 may be charged by receiving a direct voltage from the DC power source 20, or may be charged by receiving a voltage through the fourth converter 270.
  • the charging path by the fourth converter 270 may be set as the basic charging path of the battery 180, and the charging path by the DC power source 20 may be set as the auxiliary charging path of the battery 180. [ Of course, the opposite is also possible.
  • the battery 180 may be charged only through the fourth converter 270 so as not to place a burden on the DC distribution 20.
  • the power flow path according to the discharge of the battery 180 can be divided into three.
  • the voltage discharged from the battery 180 may be transferred to the load 230 through the DC power source 20 and the second converter 200 and may be supplied to the load 230 via the third converter 250 . Accordingly, even when the load 230 requires a power equal to or more than the power required amount (that is, in an overload state), the discharge path of the battery 180 is not biased on one hand and the overload applied to each converter is reduced .
  • the power of the battery 180 can be transferred to the load 230 through the remaining converters. And may provide the discharged voltage to the system 10 by discharging the battery 180 through the fourth converter 270 if necessary (e.g., if there is a problem with the system 10).
  • the voltage discharged from the battery 180 by the fourth converter 270 is supplied to the load 230 through the fourth converter 270, the first converter 100, and the second converter 200 in order It is possible.
  • the power of the battery 180 can be supplied to the load 230 in a seamless state through the second and third converters 200 and 250, ) Can be increased.
  • FIG. 6 is a schematic diagram illustrating an energy storage system according to another embodiment of the present invention.
  • FIGS. 7 and 8 are schematic views for explaining the power flow according to the charge and discharge of the battery of FIG.
  • the energy storage system 3 is similar to the energy storage system 2 described above except for some configurations and effects, and focuses on differences.
  • the reference numerals shown in Figs. 6 to 8 are applied only to Figs. 6 to 8.
  • the energy storage system 3 includes a first converter 100, a battery 180, a second converter 200, a load 230, a third converter 250, a fourth converter 270, an auxiliary system (30), and a switch (290).
  • the energy storage system 3 may further include the auxiliary system 30 and the changeover switch 290 rather than the energy storage system 2 described above.
  • the energy storage system 3 may not include the auxiliary system 30, but in another embodiment of the present invention, the energy storage system 3 includes an auxiliary system 30 .
  • the auxiliary system (30) can be connected to the load (230).
  • the auxiliary system 30 can include, for example, a power plant, a substation, a transmission line, and the like, and can supply power to the load 230.
  • the auxiliary system 30 may be driven at all times, such as the system 10 described above, but may be set to be driven only in an emergency (for example, when a problem occurs in the system 10). However, in another embodiment of the present invention, the auxiliary system 30 is driven only in an emergency, for example.
  • the switching switch 290 switches the fourth converter 270 between the first node N1 between the system 10 and the first converter 100 or between the auxiliary system 30 and the load 230, (N2).
  • one end of the switch 290 may be connected to the fourth converter 270, and the other end of the switch 290 may be selectively connected to either the first node N1 or the second node N2. That is, the switch 290 may be connected to the first node N1 when the system 10 is normally driven, and may be connected to the second node N2 when the system 10 has a problem.
  • auxiliary system 30 and the changeover switch 290 may communicate with the above-mentioned communication unit or the host controller in a wireless or wired manner.
  • the energy storage system 3 and the energy storage system 2 described above according to yet another embodiment of the present invention can be used to control the power consumption of the battery 180 when the system 10 is driven normally, Can be the same.
  • the discharge power of the battery 180 is lower than the discharge power of the battery 180 even if there is a problem in the DC distribution 20 and the discharge power of the battery 180 can not be delivered to the load 230 through the DC distribution 20 Can be transmitted to the load 230 in a non-stepped state through the fourth converter 270 and the third converter 250, and the power supply reliability to the load 230 can be increased.
  • the third converter 250 and the fourth converter 270 share the discharge path of the battery 180, The overload applied to the converter of FIG.
  • charge / discharge of the battery 180 is performed through various converters (e.g., the third converter 250 and the fourth converter 270)
  • the overload applied to the converter at the time of discharging can be reduced.
  • a battery converter ie, a DC-DC converter
  • a battery converter ie, a DC-DC converter
  • FIG. 9 is a schematic diagram illustrating an energy storage system according to another embodiment of the present invention. 10 is a schematic view for explaining the power flow according to the charge and discharge of the battery of FIG.
  • the energy storage system 4 includes the energy storage system 1 and the battery converter (that is, the DC power source 20 and the battery 180) as the DC- Except for the presence or absence of a converter (not shown). Also, the reference numerals shown in Figs. 9 and 10 are applied only to Fig. 9 and Fig.
  • an energy storage system 4 includes a first converter 100, a second converter 150, a battery 180, a third converter 200, A load 230, and a fourth converter 250.
  • the first converter 100 may sense the occurrence of an accident in the system 10 and provide the detection result to the second converter 150 and the second converter 150 may be connected to the DC power source 20, The charging and discharging of the battery 180 can be controlled.
  • the second converter 150 converts the DC voltage supplied from the DC power supply 20 to a DC voltage and supplies the DC voltage to the battery 180, or converts a DC voltage supplied from the battery 180 to a DC voltage to generate DC And can be provided to the distribution system 20.
  • the second converter 150 may be a DC-DC converter.
  • the conversion of the DC voltage to the DC voltage may mean boosting or reducing the DC voltage to a DC voltage of another level.
  • the second converter 150 may be driven in a power control mode to control the power of the battery 180 when the system 10 is in normal operation.
  • the second converter 150 can charge / discharge the battery 180 based on the SOC of the battery 180 and the power supply / demand condition of the system 10 when the system 10 is in normal operation . That is, the second converter 150 discharges the battery 180, for example, at a maximum load time (when the load power consumption is the maximum), and when the minimum load time (when the load power consumption is minimum) It is possible to perform the peak reducing function by charging the buffer 180.
  • the second converter 150 can control the voltage of the DC power source 20.
  • the second converter 150 receives the systematic accident detection result from the first converter 100 or receives the voltage change rate of the DC distribution 20 Voltage change rate) of the system 10, it is possible to determine whether or not an accident has occurred in the system 10.
  • the second converter 150 can control the voltage of the DC distribution board 20 based on the grid fault detection result.
  • the second converter 150 controls the voltage of the DC power source 20, so that the power of the battery 180 is supplied to the load 230 without delay Can supply.
  • the battery 180 is connected to the second converter 150, the charge / discharge is controlled by the second converter 150, and the discharge can be controlled by the fourth converter 250.
  • the battery 180 may include at least one battery cell, and each battery cell may include a plurality of bare cells.
  • the energy storage system 4 may further include a communication unit (not shown) and an upper controller (not shown).
  • the communication unit receives information on the system 10 from the first converter 100 or information on the state of charge of the battery 180 from the second converter 150 or DC distribution information 20, the third converter 200, the power consumption information of the load 230, and the like.
  • the communication unit may transmit the information provided from the first to fourth converters 100, 150, 200 and 250 to an upper controller (not shown) and first to fourth converters 100, 150, 200 and 250 It may be transmitted to at least one.
  • the communication unit may be implemented on a high-speed communication base (e.g., a CAN (Controller Area Network)) and may communicate with the first to fourth converters 100, 150, 200, 250 and the host controller in a wired or wireless manner .
  • a high-speed communication base e.g., a CAN (Controller Area Network)
  • the communication unit may be implemented on a high-speed communication base (e.g., a CAN (Controller Area Network)) and may communicate with the first to fourth converters 100, 150, 200, 250 and the host controller in a wired or wireless manner .
  • the energy storage system 4 may not include a communication unit. That is, the first to fourth converters 100, 150, 200, and 250 and the host controller may directly communicate with each other without a separate communication unit.
  • the battery 180 may be charged by receiving the voltage of the DC distribution 20 from the second converter 150.
  • the power flow path due to the discharge of the battery 180 can be divided into two.
  • the voltage discharged from the battery 180 by the second converter 150 is transferred to the load 230 through the DC distribution 20 and is discharged from the battery 180 by the fourth converter 250
  • the voltage may be directly transferred to the load 230.
  • the second converter 150 and the fourth converter 250 share the discharge path of the battery 180 even when the load 230 requires a power equal to or larger than the power required amount at normal times (i.e., in an overload state)
  • the overload applied to each converter can be reduced.
  • the power of the battery 180 can be transferred to the load 230 through the remaining converters.
  • the power of the battery 180 may be supplied to the load 230 in a seamless state through the second and fourth converters 150 and 250 when the system 10 has a problem. It is possible to increase the reliability of the power supply to the power supply.
  • 11 is a schematic diagram illustrating an energy storage system according to another embodiment of the present invention.
  • 12 is a schematic diagram for explaining the power flow according to the charge / discharge of the battery of FIG.
  • the energy storage system 5 is similar to the energy storage system 4 described above except for some configurations and effects, and focuses on differences.
  • the reference numerals shown in Figs. 11 and 12 are applied only to Fig. 11 and Fig. 12.
  • the energy storage system 5 includes a first converter 100, a second converter 150, a battery 180, a third converter 200, a load 230, a fourth converter 250, and a fifth converter 270.
  • the energy storage system 5 may further include a fifth converter 270 than the energy storage system 4 described above.
  • the fifth converter 270 is connected between the battery 180 and the system 10, and can control the charging and discharging of the battery 180.
  • the fifth converter 270 converts the AC voltage supplied from the system 10 to a DC voltage and supplies the DC voltage to the battery 180 or the DC voltage supplied from the battery 180 to an AC voltage, ).
  • the fifth converter 270 may be an AC-DC converter.
  • the fifth converter 270 may communicate with the communication unit or the host controller described above in a wired or wireless manner and may be driven in a power control mode to control the power of the battery 180.
  • the power flow path due to the charging of the battery 180 can be divided into two.
  • the second converter 150 converts the voltage supplied from the DC power source 20 to charge the battery 180
  • the fifth converter 270 converts the voltage supplied from the system 10, 180).
  • the charging path by the fifth converter 270 may be set as the basic charging path of the battery 180, and the charging path by the second converter 150 may be set as the auxiliary charging path of the battery 180. [ Of course, the opposite is also possible.
  • the power flow path according to the discharge of the battery 180 can be divided into three.
  • the voltage discharged from the battery 180 by the second converter 150 is transferred to the load 230 via the DC distribution 20, and discharged from the battery 180 by the fourth converter 250
  • the applied voltage can be transferred directly to the load 230.
  • the second converter 150 and the fourth converter 250 share the discharge path of the battery 180 even when the load 230 requires a power equal to or larger than the power required amount at normal times (i.e., in an overload state)
  • the overload applied to each converter can be reduced.
  • the power of the battery 180 can be transferred to the load 230 through the remaining converters. It is also possible to provide the discharged voltage to the system 10 by discharging the battery 180 through the fifth converter 270 when necessary (for example, when a problem arises in the system 10). Of course, the voltage discharged from the battery 180 by the fifth converter 270 is supplied to the load 230 through the fifth converter 270, the first converter 100, and the third converter 200 in order It is possible. In addition, when a problem occurs in the system 10, the power of the battery 180 may be supplied to the load 230 in a seamless state through the second and fourth converters 150 and 250, ) Can be increased.
  • FIG. 13 An energy storage system 6 according to another embodiment of the present invention will be described with reference to FIGS. 13 to 15.
  • FIG. 13 is a diagrammatic representation of an energy storage system 6 according to another embodiment of the present invention.
  • FIG. 13 is a schematic diagram illustrating an energy storage system according to another embodiment of the present invention.
  • FIGS. 14 and 15 are schematic views for explaining the power flow according to the charge and discharge of the battery of FIG.
  • the energy storage system 6 is similar to the above-described energy storage system 5 except for some configurations and effects.
  • the reference numerals shown in Figs. 13 to 15 are applied only to Figs. 13 to 15. Fig.
  • the energy storage system 6 includes a first converter 100, a second converter 150, a battery 180, a third converter 200, a load 230, a fourth converter 250, a fifth converter 270, an auxiliary system 30, and a changeover switch 290.
  • the energy storage system 6 may further include the auxiliary system 30 and the changeover switch 290 rather than the energy storage system 5 described above.
  • the energy storage system 6 may not include the auxiliary system 30, but in yet another embodiment of the present invention, the energy storage system 6 includes an auxiliary system 30 .
  • the auxiliary system (30) can be connected to the load (230).
  • the auxiliary system 30 can include, for example, a power plant, a substation, a transmission line, and the like, and can supply power to the load 230.
  • the auxiliary system 30 may be driven at all times, such as the system 10 described above, but may be set to be driven only in an emergency (for example, when a problem occurs in the system 10). However, in another embodiment of the present invention, the auxiliary system 30 is driven only in an emergency, for example.
  • the switch 290 switches the fifth converter 270 from the first node N1 between the system 10 and the first converter 100 or the second node N2 between the auxiliary system 30 and the load 230. [ (N2).
  • one end of the switch 290 is connected to the fifth converter 270, and the other end of the switch 290 is selectively connected to one of the first and second nodes N1 and N2. That is, the switch 290 may be connected to the first node N1 when the system 10 is normally driven, and may be connected to the second node N2 when the system 10 has a problem.
  • auxiliary system 30 and the changeover switch 290 may communicate with the above-mentioned communication unit or the host controller in a wireless or wired manner.
  • the energy storage system 6 according to another embodiment of the present invention is configured such that the energy storage system 5 and the power supply 10 according to the charging and discharging of the battery 180 when the system 10 is normally driven, Can be the same.
  • the discharge power of the battery 180 is Can be transmitted to the load 230 in a seamless state through the fifth converter 270 and the fourth converter 250 to increase the power supply reliability to the load 230.
  • the fourth converter 250 and the fifth converter 270 share the discharge path of the battery 180, The overload applied to the converter of FIG.
  • various converters e.g., second converter 150, fourth converter 250, fifth converter 270
  • overload applied to the converter at the time of discharging can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

본 발명은 에너지 저장 시스템에 관한 것이다. 본 발명의 실시예에 따른 에너지 저장 시스템은 계통 및 계통에 연계된 DC(Direct Current) 배전망의 전력을 관리하는 에너지 저장 시스템에 있어서, 계통과 DC 배전망 사이에 연결되어 DC 배전망의 전압을 제어하는 제1 컨버터, DC 배전망에 연결된 제2 컨버터, 제2 컨버터에 연결되고, 제2 컨버터에 의해 전압이 제어되는 부하, DC 배전망에 연결된 배터리 및 배터리와 부하 사이에 연결되고, 배터리의 방전을 제어하는 제3 컨버터를 포함한다.

Description

에너지 저장 시스템
본 발명은 배터리의 충방전을 효율적으로 수행할 수 있는 에너지 저장 시스템에 관한 것이다.
에너지 저장 시스템(Energy Storage System)은 생산된 전력을 발전소, 변전소 및 송전선 등을 포함한 각각의 연계 시스템에 저장한 후, 전력이 필요한 시기에 선택적, 효율적으로 사용하여 에너지 효율을 높이는 시스템이다.
에너지 저장 시스템은 시간대 및 계절별 변동이 큰 전기부하를 평준화시켜 전반적인 부하율을 향상시킬 경우, 발전 단가를 낮출 수 있으며 전력설비 증설에 필요한 투자비와 운전비 등을 절감할 수 있어서 전기요금을 인하하고 에너지를 절약할 수 있다.
이러한 에너지 저장 시스템은 전력계통에서 발전, 송배전, 수용가에 설치되어 이용되고 있으며, 주파수 조정(Frequency Regulation), 신재생에너지를 이용한 발전기 출력 안정화, 첨두부하 저감(Peak Shaving), 부하 평준화(Load Leveling), 비상 전원 등의 기능으로 사용되고 있다.
또한 에너지 저장 시스템은 저장방식에 따라 크게 물리적 에너지 저장과 화학적 에너지 저장으로 구분된다. 물리적 에너지 저장으로는 양수발전, 압축 공기 저장, 플라이휠 등을 이용한 방법이 있고, 화학적 에너지 저장으로는 리튬이온 배터리, 납축전지, Nas 전지 등을 이용한 방법이 있다.
여기에서, 도 1을 참조하여, 종래의 에너지 저장 시스템에 대해 설명하도록 한다.
도 1은 종래의 에너지 저장 시스템을 설명하는 개략도이다.
종래의 에너지 저장 시스템에서는, 도 1에 도시된 바와 같이, 배터리(180)에서 방전된 전력이 DC-DC 컨버터(150)를 통해 부하(230)로 공급된다.
이에 따라, 부하(230)에 정상 부하보다 1.5배의 과부하가 걸린 경우, 배터리(180)의 방전 동작시, DC-DC 컨버터(150)에도 1.5배의 과부하가 걸린다는 문제가 있다. 또한 DC-DC 컨버터(150)에 문제가 발생한 경우, 배터리(180)의 전력을 부하(230)로 공급할 수 없다는 문제도 있다.
본 발명은 배터리의 충방전을 효율적으로 수행할 수 있는 에너지 저장 시스템을 제공하는 것을 목적으로 한다.
상기의 목적을 달성하기 위해 본 발명의 에너지 저장 시스템은 계통 및 계통에 연계된 DC(Direct Current) 배전망의 전력을 관리하는 에너지 저장 시스템에 있어서, 계통과 DC 배전망 사이에 연결되어 DC 배전망의 전압을 제어하는 제1 컨버터, DC 배전망에 연결된 제2 컨버터, 제2 컨버터에 연결되고, 제2 컨버터에 의해 전압이 제어되는 부하, DC 배전망에 연결된 배터리 및 배터리와 부하 사이에 연결되고, 배터리의 방전을 제어하는 제3 컨버터를 포함한다.
상기 제3 컨버터에 의해 배터리에서 방전된 전압은 부하로 직접 전달된다.
상기 배터리와 계통 사이에 연결되고, 배터리의 충방전을 제어하는 제4 컨버터를 더 포함한다.
상기 제1 및 제4 컨버터는 각각 계통으로부터 제공받은 전압을 변환하여 배터리에 충전시킨다.
상기 제3 컨버터에 의해 배터리에서 방전된 전압은 부하로 직접 전달되고, 제4 컨버터에 의해 배터리에서 방전된 전압은 계통으로 전달된다.
상기 부하에 연결된 보조 계통 및 제4 컨버터를 계통과 제1 컨버터 사이의 제1 노드 또는 보조 계통과 부하 사이의 제2 노드에 선택적으로 연결하는 절환 스위치를 더 포함한다.
상기 절환 스위치의 일단은 제4 컨버터에 연결되고, 절환 스위치의 타단은 제1 및 제2 노드 중 어느 하나에 선택적으로 연결된다.
상기 제4 컨버터가 제1 노드에 연결된 상태에서 계통에 문제가 생긴 경우, 제4 컨버터는 절환 스위치의 절환 동작에 의해 제2 노드에 연결되고, 배터리는 제4 컨버터에 의해 방전되며, 배터리에서 방전된 전압은 제2 노드를 거쳐 부하로 전달된다.
상기 제1 컨버터는 DC 배전망의 전압을 제어하기 위해 DC 전압 제어 모드로 구동되고, 제2 컨버터는 부하의 전압을 제어하기 위해 CVCF(Constant Voltage Constant Frequency) 모드로 구동되고, 제3 및 제4 컨버터는 배터리의 전력을 제어하기 위해 전력 제어 모드로 구동된다.
상기 제1 컨버터는 계통으로부터 제공받은 AC(Alternating Current) 전압을 DC 전압으로 변환하여 DC 배전망에 제공하거나 DC 배전망으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 계통에 제공하고, 제2 컨버터는 DC 배전망으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 부하에 제공하고, 제3 컨버터는 배터리로부터 제공받은 DC 전압을 AC 전압으로 변환하여 부하에 제공하고, 제4 컨버터는 계통으로부터 제공받은 AC 전압을 DC 전압으로 변환하여 배터리에 제공하거나 배터리로부터 제공받은 DC 전압을 AC 전압으로 변환하여 계통에 제공한다.
상기의 목적을 달성하기 위해 본 발명의 에너지 저장 시스템은 계통 및 계통에 연계된 DC(Direct Current) 배전망의 전력을 관리하는 에너지 저장 시스템에 있어서, 계통과 DC 배전망 사이에 연결되어 DC 배전망의 전압을 제어하는 제1 컨버터, DC 배전망에 연결된 제2 컨버터, 제2 컨버터에 연결되고, 제2 컨버터에 의해 충방전이 제어되는 배터리, DC 배전망에 연결된 제3 컨버터, 제3 컨버터에 연결되고, 제3 컨버터에 의해 전압이 제어되는 부하 및 배터리와 부하 사이에 연결되고, 배터리의 방전을 제어하는 제4 컨버터를 포함한다.
상기 제2 컨버터에 의해 배터리에서 방전된 전압은 DC 배전망을 통해 부하로 전달되고, 제4 컨버터에 의해 배터리에서 방전된 전압은 부하로 직접 전달된다.
상기 배터리와 계통 사이에 연결되고, 배터리의 충방전을 제어하는 제5 컨버터를 더 포함한다.
상기 제2 컨버터는 DC 배전망으로부터 제공받은 전압을 변환하여 배터리에 충전시키고, 제5 컨버터는 계통으로부터 제공받은 전압을 변환하여 배터리에 충전시킨다.
상기 제2 컨버터에 의해 배터리에서 방전된 전압은 DC 배전망을 통해 부하로 전달되고, 제4 컨버터에 의해 배터리에서 방전된 전압은 부하로 직접 전달되고, 제5 컨버터에 의해 배터리에서 방전된 전압은 계통으로 전달된다.
상기 부하에 연결된 보조 계통 및 제5 컨버터를 계통과 제1 컨버터 사이의 제1 노드 또는 보조 계통과 부하 사이의 제2 노드에 선택적으로 연결하는 절환 스위치를 더 포함한다.
상기 절환 스위치의 일단은 제5 컨버터에 연결되고, 절환 스위치의 타단은 제1 및 제2 노드 중 어느 하나에 선택적으로 연결된다.
상기 제5 컨버터가 제1 노드에 연결된 상태에서 계통에 문제가 생긴 경우, 제5 컨버터는 절환 스위치의 절환 동작에 의해 제2 노드에 연결되고, 배터리는 제5 컨버터에 의해 방전되며, 배터리에서 방전된 전압은 제2 노드를 거쳐 부하로 전달된다.
상기 제1 컨버터는 DC 배전망의 전압을 제어하기 위해 DC 전압 제어 모드로 구동되고, 제2 컨버터와 제4 및 제5 컨버터는 배터리의 전력을 제어하기 위해 전력 제어 모드로 구동되고, 제3 컨버터는 부하의 전압을 제어하기 위해 CVCF(Constant Voltage Constant Frequency) 모드로 구동된다.
상기 제1 컨버터는 계통으로부터 제공받은 AC(Alternating Current) 전압을 DC 전압으로 변환하여 DC 배전망에 제공하거나 DC 배전망으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 계통에 제공하고, 제2 컨버터는 DC 배전망으로부터 제공받은 DC 전압을 DC 전압으로 변환하여 배터리에 제공하거나 배터리로부터 제공받은 DC 전압을 DC 전압으로 변환하여 DC 배전망에 제공하고, 제3 컨버터는 DC 배전망으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 부하에 제공하고, 제4 컨버터는 배터리로부터 제공받은 DC 전압을 AC 전압으로 변환하여 부하에 제공하고, 제5 컨버터는 계통으로부터 제공받은 AC 전압을 DC 전압으로 변환하여 배터리에 제공하거나 배터리로부터 제공받은 DC 전압을 AC 전압으로 변환하여 계통에 제공한다.
전술한 바와 같이, 본 발명에 의하면, 다양한 컨버터를 통해 배터리의 충방전을 효율적으로 수행함으로써, 방전시 컨버터에 인가되는 과부하를 경감할 수 있다. 나아가, 배터리에 연결된 일부 컨버터가 고장난 경우에도, 나머지 컨버터를 통해 배터리와 부하를 연결하는 전력 공급 경로를 확보할 수 있는바, 에너지 저장 시스템의 신뢰성을 확보할 수 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1은 종래의 에너지 저장 시스템을 설명하는 개략도이다.
도 2는 본 발명의 일 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다.
도 3은 도 2의 배터리 충방전에 따른 전력 흐름을 설명하는 개략도이다.
도 4는 본 발명의 다른 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다.
도 5는 도 4의 배터리 충방전에 따른 전력 흐름을 설명하는 개략도이다.
도 6은 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다.
도 7 및 도 8은 도 6의 배터리 충방전에 따른 전력 흐름을 설명하는 개략도이다.
도 9는 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다.
도 10은 도 9의 배터리 충방전에 따른 전력 흐름을 설명하는 개략도이다.
도 11은 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다.
도 12는 도 11의 배터리 충방전에 따른 전력 흐름을 설명하는 개략도이다.
도 13은 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다.
도 14 및 도 15는 도 13의 배터리 충방전에 따른 전력 흐름을 설명하는 개략도이다.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.
이하에서는, 도 2 및 도 3을 참조하여 본 발명의 일 실시예에 따른 에너지 저장 시스템을 설명하도록 한다.
도 2는 본 발명의 일 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다. 도 3은 도 2의 배터리 충방전에 따른 전력 흐름을 설명하는 개략도이다.
먼저, 도 2를 참조하면, 본 발명의 일 실시예에 따른 에너지 저장 시스템(1)은 계통(10) 및 계통(10)에 연계된 DC 배전망(20; 즉, DC 계통)의 전력을 관리할 수 있다.
참고로, 도 2 및 도 3에 도시된 도면 부호는 도 2 및 도 3에서만 적용되는 것으로 한다.
구체적으로, 본 발명의 일 실시예에 따른 에너지 저장 시스템(1)은 제1 컨버터(100), 배터리(180), 제2 컨버터(200), 부하(230), 제3 컨버터(250)를 포함할 수 있다.
참고로, 에너지 저장 시스템은 계통(10)과 DC 배전망(20) 뿐만 아니라 분산 전원 시스템(미도시)과 비상 발전기(미도시)도 더 포함할 수 있고, 부하(230) 외에 추가 부하(예를 들어, DC 부하 또는 AC 부하)를 더 포함할 수도 있다.
여기에서, 계통(10)은 예를 들어, 발전소, 변전소, 송전선 등을 포함할 수 있고, 부하(230)는 예를 들어, 가정, 대형 건물, 공장 등을 포함할 수 있다. 또한 분산 전원 시스템은 에너지원을 이용하여 전력을 생산하는 시스템으로 화석 연료, 원자력 연료, 신재생 에너지(태양광, 풍력, 조력 등) 중 하나 이상을 이용하여 전력을 생산할 수 있다. 그리고 비상 발전기는 예를 들어, 디젤 발전기를 포함할 수 있고, 계통(10)과 제1 컨버터(100) 사이에 연결될 수 있으며, 계통(10) 정전 등과 같이 계통(10)에 문제가 발생한 경우, 부하(230)에 전력을 공급하는 역할을 수행할 수 있다.
다만, 설명의 편의를 위해, 본 발명에서는, 에너지 저장 시스템(1)이 제1 컨버터(100), 배터리(180), 제2 컨버터(200), 부하(230), 제3 컨버터(250)를 포함하는 것을 예로 들어 설명하기로 한다.
제1 컨버터(100)는 계통(10)과 DC 배전망(20) 사이에 연결되어 DC 배전망(20)의 전압을 제어할 수 있다.
구체적으로, 제1 컨버터(100)는 계통(10)으로부터 제공받은 AC전압을 DC 전압으로 변환하여 DC 배전망(20)에 제공하거나 DC 배전망(20)으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 계통(10)에 제공할 수 있다.
이에 따라, 제1 컨버터(100)는 AC-DC 컨버터일 수 있다.
또한 제1 컨버터(100)는 계통(10)이 정상 운전시, DC 배전망(20)의 전압을 제어하기 위해 DC 전압 제어 모드로 구동될 수 있다.
참고로, 계통(10)에 사고가 발생한 경우(즉, 계통(10)이 정전되거나 분리된 경우), 제1 컨버터(100)는 게이트 신호를 턴오프(turn-off)하여 구동을 중단할 수 있다.
제2 컨버터(200)는 DC 배전망(20)에 연결되고, 부하(230)의 전압을 제어할 수 있다.
구체적으로, 제2 컨버터(200)는 DC 배전망(20)으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 부하(230)에 제공할 수 있다. 또한, 제2 컨버터(200)는 부하(230)의 전압을 제어하기 위해 CVCF 모드로 구동될 수 있다.
이에 따라, 제2 컨버터(200)는 DC-AC 컨버터일 수 있고, 부하(230)는 AC 부하일 수 있다.
제3 컨버터(250)는 배터리(180)와 부하(230) 사이에 연결되고, 배터리(180)의 방전을 제어할 수 있다.
구체적으로, 제3 컨버터(250)는 배터리(180)로부터 제공받은 DC 전압을 AC 전압으로 변환하여 부하(230)에 제공할 수 있다. 또한, 제3 컨버터(250)는 배터리(180)의 전력을 제어하기 위해 전력 제어 모드로 구동될 수 있다.
이에 따라, 제3 컨버터(250)는 DC-AC 컨버터일 수 있다.
배터리(180)는 DC 배전망(20)에 연결되고, 제3 컨버터(250)에 의해 방전이 제어될 수 있다.
구체적으로, 배터리(180)는 계통(10)에서 제1 컨버터(100)를 거쳐 DC 배전망(20)으로 전달된 전력을 제공받아 충전될 수 있다. 또한 배터리(180)는 적어도 하나 이상의 배터리 셀로 이루어질 수 있으며, 각 배터리 셀은 복수의 베어셀을 포함할 수 있다.
그리고, 배터리(180)는 제3 컨버터(250)에 의해 방전이 제어될 수 있고, 후술하는 상위 제어기로부터 방전 지령을 제공받아 방전 작업을 수행할 수도 있다.
부하(230)는 제2 컨버터(200)에 연결되고, 제2 컨버터(200)에 의해 전압(즉, 전력)이 제어될 수 있다.
또한 부하(230)는 예를 들어, AC 부하일 수 있다.
물론, 부하(230)는 DC 부하일 수도 있고, 이 경우, 제2 컨버터(200)와 제3 컨버터(250)는 DC-DC 컨버터일 수 있다. 다만, 설명의 편의를 위해, 본 발명의 실시예에서는, 부하(230)가 AC 부하인 것을 예로 들어 설명하기로 한다.
참고로, 도면에 도시되어 있지는 않지만, 본 발명의 일 실시예에 따른 에너지 저장 시스템(1)에는 통신부(미도시)와 상위 제어기(미도시)가 더 포함될 수 있다.
통신부는 제1 컨버터(100)로부터 계통(10) 정보(예를 들어, 계통 사고 발생 여부 등), 제2 컨버터(200)로부터 부하(230)의 소모 전력 정보 등을 수신할 수 있다.
또한 통신부는 제1 내지 제3 컨버터(100, 200, 250)로부터 제공받은 정보를 상황에 따라, 상위 제어기(미도시) 및 제1 내지 제3 컨버터(100, 200, 250) 중 적어도 하나에 송신할 수도 있다.
이러한 통신부는 고속 통신 기반(예를 들어, CAN(Controller Area Network))으로 구현될 수 있고, 제1 내지 제3 컨버터(100, 200, 250) 및 상위 제어기와 유선 또는 무선 방식으로 통신할 수 있다.
물론, 본 발명의 일 실시예에 따른 에너지 저장 시스템(1)은 통신부를 포함하지 않을 수도 있다. 즉, 별도의 통신부 없이 제1 내지 제3 컨버터(100, 200, 250)와 상위 제어기가 서로 직접 통신할 수도 있다.
또한 상위 제어기는 예를 들어, PLC(Programmable Logic Controller) 또는 EMS(Energy Management System)일 수 있고, 에너지 저장 시스템(1)의 모든 시퀀스 동작을 관제하며 각각의 상황에 따라 각 구성요소에 지령을 내려 동작을 수행하게 할 수도 있다.
이어서, 도 3을 참조하여, 배터리(180)의 충방전에 따른 전력 흐름을 살펴보면 다음과 같다.
구체적으로, 본 발명의 일 실시예에 따른 에너지 저장 시스템(1)에서, 배터리(180)는 DC 배전망(20)으로부터 직접 전압을 제공받아 충전될 수 있다.
보다 구체적으로, 계통(10)에서 제1 컨버터(100)로 공급된 AC 전압은 제1 컨버터(100)에 의해 DC 전압으로 변환되어 DC 배전망(20)으로 전달되고, DC 배전망(20)으로 전달된 전압은 별도의 컨버터를 거치지 않고 직접 배터리(180)로 전달될 수 있다.
즉, 에너지 저장 시스템(1)은 종래의 에너지 저장 시스템과 달리, 배터리용 컨버터(즉, DC-DC 컨버터로 DC 배전망(20)과 배터리(180) 사이에 구비되는 컨버터)를 포함하지 않는바, DC 배전망(20)에서 배터리(180)로 전달되는 전력의 변환 효율 개선 및 배터리용 컨버터 미설치로 인한 비용 절감이 가능하다.
한편, 배터리(180)의 방전에 따른 전력 흐름 경로는 2가지로 나뉠 수 있다.
즉, 배터리(180)에서 방전된 전압은 DC 배전망(20) 및 제2 컨버터(200)를 통해 부하(230)로 전달될 수 있고, 제3 컨버터(250)를 통해 부하(230)로 직접 전달될 수도 있다. 이에 따라, 부하(230)에 평상시 전력 필요량 이상의 전력이 요구되는 경우(즉, 과부하 상태)에도, 배터리(180)의 방전 경로가 한편으로 편중되지 않는바, 각각의 컨버터에 인가되는 과부하를 경감할 수 있다.
또한 제2 컨버터(200) 및 제3 컨버터(250) 중 어느 하나가 고장난 경우에, 나머지 컨버터를 통해 배터리(180)의 전력을 부하(230)로 전달할 수 있다. 그리고, 계통(10)에 문제가 발생한 경우, 제2 및 제3 컨버터(200, 250)를 통해 배터리(180)의 전력을 무순단 상태로 부하(230)에 공급할 수도 있는바, 부하(230)에 대한 전력 공급 신뢰성을 높일 수 있다.
이하에서는, 도 4 및 도 5를 참조하여, 본 발명의 다른 실시예에 따른 에너지 저장 시스템(2)에 대해 설명하도록 한다.
도 4는 본 발명의 다른 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다. 도 5는 도 4의 배터리 충방전에 따른 전력 흐름을 설명하는 개략도이다.
참고로, 본 발명의 다른 실시예에 따른 에너지 저장 시스템(2)은 전술한 에너지 저장 시스템(1)과 일부 구성 및 효과를 제외하고는 동일한바, 차이점을 중심으로 설명하도록 한다. 또한 도 4 및 도 5에 도시된 도면 부호는 도 4 및 도 5에서만 적용되는 것으로 한다.
먼저, 도 4를 참조하면, 에너지 저장 시스템(2)은 제1 컨버터(100), 배터리(180), 제2 컨버터(200), 부하(230), 제3 컨버터(250), 제4 컨버터(270)를 포함할 수 있다.
즉, 에너지 저장 시스템(2)은 전술한 에너지 저장 시스템(1)보다 제4 컨버터(270)를 더 포함할 수 있다.
여기에서, 제4 컨버터(270)는 배터리(180)와 계통(10) 사이에 연결되고, 배터리(180)의 충방전을 제어할 수 있다.
구체적으로, 제4 컨버터(270)는 계통(10)으로부터 제공받은 AC 전압을 DC 전압으로 변환하여 배터리(180)에 제공하거나 배터리(180)로부터 제공받은 DC 전압을 AC 전압으로 변환하여 계통(10)에 제공할 수 있다.
이에 따라, 제4 컨버터(270)는 AC-DC 컨버터일 수 있다.
또한 제4 컨버터(270)는 전술한 통신부 또는 상위 제어기와 유선 또는 무선 방식으로 통신할 수 있고, 배터리(180)의 전력을 제어하기 위해 전력 제어 모드로 구동될 수 있다.
이어서, 도 5를 참조하여, 배터리(180)의 충방전에 따른 전력 흐름을 살펴보면 다음과 같다.
구체적으로, 본 발명의 다른 실시예에 따른 에너지 저장 시스템(2)에서는, 배터리(180)의 충전에 따른 전력 흐름 경로가 2가지로 나뉠 수 있다.
즉, 배터리(180)는 DC 배전망(20)으로부터 직접 전압을 제공받아 충전될 수도 있고, 제4 컨버터(270)를 통해 전압을 제공받아 충전될 수도 있다.
이 때, 제4 컨버터(270)에 의한 충전 경로를 배터리(180)의 기본 충전 경로로 설정하고, DC 배전망(20)에 의한 충전 경로를 배터리(180)의 보조 충전 경로로 설정할 수 있다. 물론, 그 반대의 경우도 가능하다.
또한 배터리(180)에 추가 충전이 필요한 경우, DC 배전망(20)에 부담을 주지 않도록 제4 컨버터(270)를 통해서만 배터리(180)가 충전될 수도 있다.
또한 본 발명의 다른 실시예에 따른 에너지 저장 시스템(2)에서는, 배터리(180)의 방전에 따른 전력 흐름 경로가 3가지로 나뉠 수 있다.
구체적으로, 배터리(180)에서 방전된 전압은 DC 배전망(20) 및 제2 컨버터(200)를 통해 부하(230)로 전달될 수 있고, 제3 컨버터(250)를 통해 부하(230)로 전달될 수도 있다. 이에 따라, 부하(230)에 평상시 전력 필요량 이상의 전력이 요구되는 경우(즉, 과부하 상태)에도, 배터리(180)의 방전 경로가 한편으로 편중되지 않는바, 각각의 컨버터에 인가되는 과부하를 경감할 수 있다.
또한 제2 컨버터(200) 및 제3 컨버터(250) 중 어느 하나가 고장난 경우에, 나머지 컨버터를 통해 배터리(180)의 전력을 부하(230)로 전달할 수 있다. 그리고 필요한 경우(예를 들어, 계통(10)에 문제가 생긴 경우), 제4 컨버터(270)를 통해 배터리(180)를 방전시킴으로써 방전된 전압을 계통(10)에 제공할 수도 있다. 물론, 제4 컨버터(270)에 의해 배터리(180)에서 방전된 전압은 제4 컨버터(270), 제1 컨버터(100), 제2 컨버터(200)를 순차적으로 거쳐 부하(230)로 제공될 수도 있다. 그뿐만 아니라 계통(10)에 문제가 발생한 경우, 제2 및 제3 컨버터(200, 250)를 통해 배터리(180)의 전력을 무순단 상태로 부하(230)에 공급할 수도 있는바, 부하(230)에 대한 전력 공급 신뢰성을 높일 수 있다.
이하에서는, 도 6 내지 도 8을 참조하여, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(2)에 대해 설명하도록 한다.
도 6은 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다. 도 7 및 도 8은 도 6의 배터리 충방전에 따른 전력 흐름을 설명하는 개략도이다.
참고로, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(3)은 전술한 에너지 저장 시스템(2)과 일부 구성 및 효과를 제외하고는 동일한바, 차이점을 중심으로 설명하도록 한다. 또한 도 6 내지 도 8에 도시된 도면 부호는 도 6 내지 도 8에서만 적용되는 것으로 한다.
먼저, 도 6을 참조하면, 에너지 저장 시스템(3)은 제1 컨버터(100), 배터리(180), 제2 컨버터(200), 부하(230), 제3 컨버터(250), 제4 컨버터(270), 보조 계통(30), 절환 스위치(290)를 포함할 수 있다.
즉, 에너지 저장 시스템(3)은 전술한 에너지 저장 시스템(2)보다 보조 계통(30)과 절환 스위치(290)를 더 포함할 수 있다.
물론, 에너지 저장 시스템(3)은 보조 계통(30)을 포함하지 않을 수도 있으나, 본 발명의 또 다른 실시예에서는, 에너지 저장 시스템(3)이 보조 계통(30)을 포함하는 것을 예로 들어 설명하기로 한다.
보조 계통(30)은 부하(230)에 연결될 수 있다.
구체적으로, 보조 계통(30)은 예를 들어, 발전소, 변전소, 송전선 등을 포함할 수 있고, 부하(230)에 전력을 공급할 수 있다.
또한, 보조 계통(30)은 전술한 계통(10)과 같이, 상시로 구동될 수도 있으나, 비상시(예를 들어, 계통(10)에 문제가 발생한 경우)에만 구동되도록 설정될 수도 있다. 다만, 본 발명의 또 다른 실시예에서는, 보조 계통(30)이 비상시에만 구동되는 것을 예로 들어 설명하기로 한다.
한편, 절환 스위치(290)는 제4 컨버터(270)를 계통(10)과 제1 컨버터(100) 사이의 제1 노드(N1) 또는 보조 계통(30)과 부하(230) 사이의 제2 노드(N2)에 선택적으로 연결할 수 있다.
구체적으로, 절환 스위치(290)의 일단은 제4 컨버터(270)에 연결되고, 절환 스위치(290)의 타단은 제1 및 제2 노드(N1, N2) 중 어느 하나에 선택적으로 연결될 수 있다. 즉, 절환 스위치(290)는 계통(10)이 정상 구동되는 경우, 제1 노드(N1)에 연결되고, 계통(10)에 문제가 발생한 경우, 제2 노드(N2)에 연결될 수 있다.
참고로, 보조 계통(30)과 절환 스위치(290)는 전술한 통신부 또는 상위 제어기와 무선 또는 유선 방식으로 통신할 수도 있다.
이어서, 도 7을 참조하여, 계통(10)이 정상 구동될 때의 배터리(180)의 충방전에 따른 전력 흐름을 살펴보면 다음과 같다.
구체적으로, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(3)과 전술한 에너지 저장 시스템(2)은, 계통(10)이 정상 구동될 때의 배터리(180)의 충방전에 따른 전력 흐름이 동일할 수 있다.
이는, 계통(10)이 정상 구동되는 경우, 절환 스위치(290)에 의해 계통(10)과 제4 컨버터(270)가 연결되기 때문이다.
반면에, 도 8을 참조하여, 계통(10)에 문제가 발생했을 때의 배터리(180)의 충방전에 따른 전력 흐름을 살펴보면 다음과 같다.
구체적으로, 제4 컨버터(270)가 제1 노드(N1)에 연결된 상태에서 계통(10)에 문제가 발생한 경우, 절환 스위치(290)의 절환 동작에 의해 제4 컨버터(270)는 제2 노드(N2)에 연결될 수 있다.
이에 따라, DC 배전망(20)에도 문제가 발생하여, 배터리(180)의 방전 전력이 DC 배전망(20)을 통해 부하(230)로 전달되지 못하는 상황이더라도, 배터리(180)의 방전 전력은 제4 컨버터(270) 및 제3 컨버터(250)를 통해 무순단 상태로 부하(230)로 전달될 수 있는바, 부하(230)에 대한 전력 공급 신뢰성을 높일 수 있다.
나아가, 부하(230)에 평상시 전력 필요량 이상의 전력이 요구되는 경우(즉, 과부하 상태)에도, 배터리(180)의 방전 경로를 제3 컨버터(250) 및 제4 컨버터(270)가 분담함으로써, 각각의 컨버터에 인가되는 과부하를 경감할 수 있다.
전술한 바와 같이, 본 발명의 몇몇 실시예들(1~3)에 의하면, 다양한 컨버터(예를 들어, 제3 컨버터(250), 제4 컨버터(270))를 통해 배터리(180)의 충방전을 효율적으로 수행함으로써, 방전시 컨버터에 인가되는 과부하를 경감할 수 있다. 또한 배터리용 컨버터(즉, DC-DC 컨버터)의 미설치를 통해 비용 절감 및 전력 변환 효율 개선이 가능하다. 나아가, 배터리(180)에 연결된 일부 컨버터가 고장난 경우에도, 나머지 컨버터를 통해 배터리(180)와 부하(230)를 연결하는 전력 공급 경로를 확보할 수 있는바, 에너지 저장 시스템의 신뢰성을 확보할 수 있다.
이하에서는, 도 9 및 도 10을 참조하여, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(4)에 대해 설명하도록 한다.
도 9는 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다. 도 10은 도 9의 배터리 충방전에 따른 전력 흐름을 설명하는 개략도이다.
참고로, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(4)은 전술한 에너지 저장 시스템(1)과 배터리용 컨버터(즉, DC-DC 컨버터로 DC 배전망(20)과 배터리(180) 사이에 구비되는 컨버터)의 유무를 제외하고는 동일한바, 차이점을 중심으로 설명하도록 한다. 또한 도 9 및 도 10에 도시된 도면 부호는 도 9 및 도 10에서만 적용되는 것으로 한다.
먼저, 도 9를 참조하면, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(4)은 제1 컨버터(100), 제2 컨버터(150), 배터리(180), 제3 컨버터(200), 부하(230), 제4 컨버터(250)를 포함할 수 있다.
참고로, 도 9의 에너지 저장 시스템(4)에 포함된 제1 컨버터(100), 배터리(180), 제3 컨버터(200), 부하(230), 제4 컨버터(250)는 각각 도 1의 제1 컨버터, 배터리, 제2 컨버터, 부하, 제3 컨버터와 동일할 수 있다.
다만, 도 9의 제2 컨버터(150)의 기능 및 연결 관계 등이 도 1에는 도시되지 않은바, 이러한 차이점을 중심으로 도 9의 에너지 저장 시스템(4)에 대해 설명하도록 한다.
제1 컨버터(100)는 계통(10)의 사고 발생을 감지하여 감지 결과를 제2 컨버터(150)에 제공할 수 있고, 제2 컨버터(150)는 DC 배전망(20)에 연결되고, 배터리(180)의 충방전을 제어할 수 있다.
구체적으로, 제2 컨버터(150)는 DC 배전망(20)으로부터 제공받은 DC 전압을 DC 전압으로 변환하여 배터리(180)에 제공하거나 배터리(180)로부터 제공받은 DC 전압을 DC 전압으로 변환하여 DC 배전망(20)에 제공할 수 있다.
이에 따라, 제2 컨버터(150)는 DC-DC 컨버터일 수 있다.
여기에서, DC 전압을 DC 전압으로 변환한다는 의미는 DC 전압을 다른 레벨의 DC 전압으로 승압하거나 감압한다는 것을 의미할 수 있다.
또한 제2 컨버터(150)는 계통(10)이 정상 운전시, 배터리(180)의 전력을 제어하기 위해 전력 제어 모드로 구동될 수 있다.
구체적으로, 제2 컨버터(150)는 계통(10)이 정상 구동 중일 때, 배터리(180)의 SOC와 계통(10)의 전력 수급상황을 기반으로 배터리(180)의 충방전을 수행할 수 있다. 즉, 제2 컨버터(150)는 예를 들어, 최대부하시간(부하의 전력소비량이 최대일 때)에는 배터리(180)를 방전시키고, 최소부하시간(부하의 전력소비량이 최소일 때)에는 배터리(180)를 충전시킴으로써 피크 저감 기능을 수행할 수 있다.
반면에, 계통(10)에 사고가 발생한 경우에, 제1 컨버터(100)는 구동 중단되는바, 제2 컨버터(150)가 DC 배전망(20)의 전압을 제어할 수 있다.
구체적으로, 제2 컨버터(150)는 계통(10)에 사고가 발생한 경우, 제1 컨버터(100)로부터 계통 사고 감지 결과를 제공받거나 DC 배전망(20)의 전압 변화율(즉, 시간에 따른 DC 전압 변화율)을 감지함으로써, 계통(10)에 사고가 발생했는지 여부를 파악할 수 있다.
또한 제2 컨버터(150)는 계통 사고 감지 결과를 토대로 DC 배전망(20)의 전압을 제어할 수 있다.
즉, 계통(10) 사고시, 제2 컨버터(150)가 DC 배전망(20)의 전압을 제어하는바, 지체 없이(즉, 무순단 상태로) 배터리(180)의 전력을 부하(230)에 공급할 수 있다.
배터리(180)는 제2 컨버터(150)에 연결되고, 제2 컨버터(150)에 의해 충방전이 제어되며, 제4 컨버터(250)에 의해 방전이 제어될 수 있다.
또한 배터리(180)는 적어도 하나 이상의 배터리 셀로 이루어질 수 있으며, 각 배터리 셀은 복수의 베어셀을 포함할 수 있다.
참고로, 도면에 도시되어 있지는 않지만, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(4)에는 통신부(미도시)와 상위 제어기(미도시)가 더 포함될 수 있다.
통신부는 제1 컨버터(100)로부터 계통(10) 정보(예를 들어, 계통 사고 발생 여부 등), 제2 컨버터(150)로부터 배터리(180)의 SOC(State of Charge) 정보 또는 DC 배전망(20)의 전압 변화율 정보, 제3 컨버터(200)로부터 부하(230)의 소모 전력 정보 등을 수신할 수 있다.
또한 통신부는 제1 내지 제4 컨버터(100, 150, 200, 250)로부터 제공받은 정보를 상황에 따라, 상위 제어기(미도시) 및 제1 내지 제4 컨버터(100, 150, 200, 250) 중 적어도 하나에 송신할 수도 있다.
이러한 통신부는 고속 통신 기반(예를 들어, CAN(Controller Area Network))으로 구현될 수 있고, 제1 내지 제4 컨버터(100, 150, 200, 250) 및 상위 제어기와 유선 또는 무선 방식으로 통신할 수 있다.
물론, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(4)은 통신부를 포함하지 않을 수도 있다. 즉, 별도의 통신부 없이 제1 내지 제4 컨버터(100, 150, 200, 250)와 상위 제어기가 서로 직접 통신할 수도 있다.
이어서, 도 10을 참조하여, 배터리(180)의 충방전에 따른 전력 흐름을 살펴보면 다음과 같다.
구체적으로, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(4)에서, 배터리(180)는 제2 컨버터(150)로부터 DC 배전망(20)의 전압을 제공받아 충전될 수 있다. 반면에, 배터리(180)의 방전에 따른 전력 흐름 경로는 2가지로 나뉠 수 있다.
즉, 제2 컨버터(150)에 의해 배터리(180)에서 방전된 전압은 DC 배전망(20)을 통해 부하(230)로 전달되고, 제4 컨버터(250)에 의해 배터리(180)에서 방전된 전압은 부하(230)로 직접 전달될 수 있다. 이에 따라, 부하(230)에 평상시 전력 필요량 이상의 전력이 요구되는 경우(즉, 과부하 상태)에도, 배터리(180)의 방전 경로를 제2 컨버터(150) 및 제4 컨버터(250)가 분담함으로써, 각각의 컨버터에 인가되는 과부하를 경감할 수 있다.
또한 제2 컨버터(150) 및 제4 컨버터(250) 중 어느 하나가 고장난 경우에, 나머지 컨버터를 통해 배터리(180)의 전력을 부하(230)로 전달할 수 있다. 그리고, 계통(10)에 문제가 발생한 경우, 제2 및 제4 컨버터(150, 250)를 통해 배터리(180)의 전력을 무순단 상태로 부하(230)에 공급할 수도 있는바, 부하(230)에 대한 전력 공급 신뢰성을 높일 수 있다.
이하에서는, 도 11 및 도 12를 참조하여, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(5)에 대해 설명하도록 한다.
도 11은 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다. 도 12는 도 11의 배터리 충방전에 따른 전력 흐름을 설명하는 개략도이다.
참고로, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(5)은 전술한 에너지 저장 시스템(4)과 일부 구성 및 효과를 제외하고는 동일한바, 차이점을 중심으로 설명하도록 한다. 또한 도 11 및 도 12에 도시된 도면 부호는 도 11 및 도 12에서만 적용되는 것으로 한다.
먼저, 도 11을 참조하면, 에너지 저장 시스템(5)은 제1 컨버터(100), 제2 컨버터(150), 배터리(180), 제3 컨버터(200), 부하(230), 제4 컨버터(250), 제5 컨버터(270)를 포함할 수 있다.
즉, 에너지 저장 시스템(5)은 전술한 에너지 저장 시스템(4)보다 제5 컨버터(270)를 더 포함할 수 있다.
여기에서, 제5 컨버터(270)는 배터리(180)와 계통(10) 사이에 연결되고, 배터리(180)의 충방전을 제어할 수 있다.
구체적으로, 제5 컨버터(270)는 계통(10)으로부터 제공받은 AC 전압을 DC 전압으로 변환하여 배터리(180)에 제공하거나 배터리(180)로부터 제공받은 DC 전압을 AC 전압으로 변환하여 계통(10)에 제공할 수 있다.
이에 따라, 제5 컨버터(270)는 AC-DC 컨버터일 수 있다.
또한 제5 컨버터(270)는 전술한 통신부 또는 상위 제어기와 유선 또는 무선 방식으로 통신할 수 있고, 배터리(180)의 전력을 제어하기 위해 전력 제어 모드로 구동될 수 있다.
이어서, 도 12를 참조하여, 배터리(180)의 충방전에 따른 전력 흐름을 살펴보면 다음과 같다.
구체적으로, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(5)에서는, 배터리(180)의 충전에 따른 전력 흐름 경로가 2가지로 나뉠 수 있다.
즉, 제2 컨버터(150)는 DC 배전망(20)으로부터 제공받은 전압을 변환하여 배터리(180)에 충전시키고, 제5 컨버터(270)는 계통(10)으로부터 제공받은 전압을 변환하여 배터리(180)에 충전시킬 수 있다.
이 때, 제5 컨버터(270)에 의한 충전 경로를 배터리(180)의 기본 충전 경로로 설정하고, 제2 컨버터(150)에 의한 충전 경로를 배터리(180)의 보조 충전 경로로 설정할 수 있다. 물론, 그 반대의 경우도 가능하다.
또한 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(5)에서는, 배터리(180)의 방전에 따른 전력 흐름 경로가 3가지로 나뉠 수 있다.
구체적으로, 제2 컨버터(150)에 의해 배터리(180)에서 방전된 전압은 DC 배전망(20)을 통해 부하(230)로 전달되고, 제4 컨버터(250)에 의해 배터리(180)에서 방전된 전압은 부하(230)로 직접 전달될 수 있다. 이에 따라, 부하(230)에 평상시 전력 필요량 이상의 전력이 요구되는 경우(즉, 과부하 상태)에도, 배터리(180)의 방전 경로를 제2 컨버터(150) 및 제4 컨버터(250)가 분담함으로써, 각각의 컨버터에 인가되는 과부하를 경감할 수 있다.
또한 제2 컨버터(150) 및 제4 컨버터(250) 중 어느 하나가 고장난 경우에, 나머지 컨버터를 통해 배터리(180)의 전력을 부하(230)로 전달할 수 있다. 그리고, 필요한 경우(예를 들어, 계통(10)에 문제가 생긴 경우), 제5 컨버터(270)를 통해 배터리(180)를 방전시킴으로써 방전된 전압을 계통(10)에 제공할 수도 있다. 물론, 제5 컨버터(270)에 의해 배터리(180)에서 방전된 전압은 제5 컨버터(270), 제1 컨버터(100), 제3 컨버터(200)를 순차적으로 거쳐 부하(230)로 제공될 수도 있다. 그뿐만 아니라 계통(10)에 문제가 발생한 경우, 제2 및 제4 컨버터(150, 250)를 통해 배터리(180)의 전력을 무순단 상태로 부하(230)에 공급할 수도 있는바, 부하(230)에 대한 전력 공급 신뢰성을 높일 수 있다.
이하에서는, 도 13 내지 도 15를 참조하여, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(6)에 대해 설명하도록 한다.
도 13은 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다. 도 14 및 도 15는 도 13의 배터리 충방전에 따른 전력 흐름을 설명하는 개략도이다.
참고로, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(6)은 전술한 에너지 저장 시스템(5)과 일부 구성 및 효과를 제외하고는 동일한바, 차이점을 중심으로 설명하도록 한다. 또한 도 13 내지 도 15에 도시된 도면 부호는 도 13 내지 도 15에서만 적용되는 것으로 한다.
먼저, 도 13을 참조하면, 에너지 저장 시스템(6)은 제1 컨버터(100), 제2 컨버터(150), 배터리(180), 제3 컨버터(200), 부하(230), 제4 컨버터(250), 제5 컨버터(270), 보조 계통(30), 절환 스위치(290)를 포함할 수 있다.
즉, 에너지 저장 시스템(6)은 전술한 에너지 저장 시스템(5)보다 보조 계통(30)과 절환 스위치(290)를 더 포함할 수 있다.
물론, 에너지 저장 시스템(6)은 보조 계통(30)을 포함하지 않을 수도 있으나, 본 발명의 또 다른 실시예에서는, 에너지 저장 시스템(6)이 보조 계통(30)을 포함하는 것을 예로 들어 설명하기로 한다.
보조 계통(30)은 부하(230)에 연결될 수 있다.
구체적으로, 보조 계통(30)은 예를 들어, 발전소, 변전소, 송전선 등을 포함할 수 있고, 부하(230)에 전력을 공급할 수 있다.
또한, 보조 계통(30)은 전술한 계통(10)과 같이, 상시로 구동될 수도 있으나, 비상시(예를 들어, 계통(10)에 문제가 발생한 경우)에만 구동되도록 설정될 수도 있다. 다만, 본 발명의 또 다른 실시예에서는, 보조 계통(30)이 비상시에만 구동되는 것을 예로 들어 설명하기로 한다.
한편, 절환 스위치(290)는 제5 컨버터(270)를 계통(10)과 제1 컨버터(100) 사이의 제1 노드(N1) 또는 보조 계통(30)과 부하(230) 사이의 제2 노드(N2)에 선택적으로 연결할 수 있다.
구체적으로, 절환 스위치(290)의 일단은 제5 컨버터(270)에 연결되고, 절환 스위치(290)의 타단은 제1 및 제2 노드(N1, N2) 중 어느 하나에 선택적으로 연결될 수 있다. 즉, 절환 스위치(290)는 계통(10)이 정상 구동되는 경우, 제1 노드(N1)에 연결되고, 계통(10)에 문제가 발생한 경우, 제2 노드(N2)에 연결될 수 있다.
참고로, 보조 계통(30)과 절환 스위치(290)는 전술한 통신부 또는 상위 제어기와 무선 또는 유선 방식으로 통신할 수도 있다.
이어서, 도 14를 참조하여, 계통(10)이 정상 구동될 때의 배터리(180)의 충방전에 따른 전력 흐름을 살펴보면 다음과 같다.
구체적으로, 본 발명의 또 다른 실시예에 따른 에너지 저장 시스템(6)은, 전술한 에너지 저장 시스템(5)과 계통(10)이 정상 구동될 때의 배터리(180)의 충방전에 따른 전력 흐름이 동일할 수 있다.
이는, 계통(10)이 정상 구동되는 경우, 절환 스위치(290)에 의해 계통(10)과 제5 컨버터(270)가 연결되기 때문이다.
반면에, 도 15를 참조하여, 계통(10)에 문제가 발생했을 때의 배터리(180)의 충방전에 따른 전력 흐름을 살펴보면 다음과 같다.
구체적으로, 제5 컨버터(270)가 제1 노드(N1)에 연결된 상태에서 계통(10)에 문제가 발생한 경우, 절환 스위치(290)의 절환 동작에 의해 제5 컨버터(270)는 제2 노드(N2)에 연결될 수 있다.
이에 따라, 제2 컨버터(150)에도 문제가 발생하여, 배터리(180)의 방전 전력이 제2 컨버터(150)를 통해 부하(230)로 전달되지 못하는 상황이더라도, 배터리(180)의 방전 전력은 제5 컨버터(270) 및 제4 컨버터(250)를 통해 무순단 상태로 부하(230)로 전달될 수 있는바, 부하(230)에 대한 전력 공급 신뢰성을 높일 수 있다.
나아가, 부하(230)에 평상시 전력 필요량 이상의 전력이 요구되는 경우(즉, 과부하 상태)에도, 배터리(180)의 방전 경로를 제4 컨버터(250) 및 제5 컨버터(270)가 분담함으로써, 각각의 컨버터에 인가되는 과부하를 경감할 수 있다.
전술한 바와 같이, 본 발명의 몇몇 실시예들(4~6)에 의하면, 다양한 컨버터(예를 들어, 제2 컨버터(150), 제4 컨버터(250), 제5 컨버터(270))를 통해 배터리(180)의 충방전을 효율적으로 수행함으로써, 방전시 컨버터에 인가되는 과부하를 경감할 수 있다. 나아가, 배터리(180)에 연결된 일부 컨버터가 고장난 경우에도, 나머지 컨버터를 통해 배터리(180)와 부하(230)를 연결하는 전력 공급 경로를 확보할 수 있는바, 에너지 저장 시스템의 신뢰성을 확보할 수 있다.
전술한 본 발명은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.

Claims (20)

  1. 계통 및 상기 계통에 연계된 DC(Direct Current) 배전망의 전력을 관리하는 에너지 저장 시스템에 있어서,
    상기 계통과 상기 DC 배전망 사이에 연결되어 상기 DC 배전망의 전압을 제어하는 제1 컨버터;
    상기 DC 배전망에 연결된 제2 컨버터;
    상기 제2 컨버터에 연결되고, 상기 제2 컨버터에 의해 전압이 제어되는 부하;
    상기 DC 배전망에 연결된 배터리; 및
    상기 배터리와 상기 부하 사이에 연결되고, 상기 배터리의 방전을 제어하는 제3 컨버터를 포함하는
    에너지 저장 시스템.
  2. 제1항에 있어서,
    상기 제3 컨버터에 의해 상기 배터리에서 방전된 전압은 상기 부하로 직접 전달되는
    에너지 저장 시스템.
  3. 제1항에 있어서,
    상기 배터리와 상기 계통 사이에 연결되고, 상기 배터리의 충방전을 제어하는 제4 컨버터를 더 포함하는
    에너지 저장 시스템.
  4. 제3항에 있어서,
    상기 제1 및 제4 컨버터는 각각 상기 계통으로부터 제공받은 전압을 변환하여 상기 배터리에 충전시키는
    에너지 저장 시스템.
  5. 제3항에 있어서,
    상기 제3 컨버터에 의해 상기 배터리에서 방전된 전압은 상기 부하로 직접 전달되고,
    상기 제4 컨버터에 의해 상기 배터리에서 방전된 전압은 상기 계통으로 전달되는
    에너지 저장 시스템.
  6. 제3항에 있어서,
    상기 부하에 연결된 보조 계통; 및
    상기 제4 컨버터를 상기 계통과 상기 제1 컨버터 사이의 제1 노드 또는 상기 보조 계통과 상기 부하 사이의 제2 노드에 선택적으로 연결하는 절환 스위치를 더 포함하는
    에너지 저장 시스템.
  7. 제6항에 있어서,
    상기 절환 스위치의 일단은 상기 제4 컨버터에 연결되고,
    상기 절환 스위치의 타단은 상기 제1 및 제2 노드 중 어느 하나에 선택적으로 연결되는
    에너지 저장 시스템.
  8. 제6항에 있어서,
    상기 제4 컨버터가 상기 제1 노드에 연결된 상태에서 상기 계통에 문제가 생긴 경우,
    상기 제4 컨버터는 상기 절환 스위치의 절환 동작에 의해 상기 제2 노드에 연결되고,
    상기 배터리는 상기 제4 컨버터에 의해 방전되며,
    상기 배터리에서 방전된 전압은 상기 제2 노드를 거쳐 상기 부하로 전달되는
    에너지 저장 시스템.
  9. 제3항에 있어서,
    상기 제1 컨버터는 상기 DC 배전망의 전압을 제어하기 위해 DC 전압 제어 모드로 구동되고,
    상기 제2 컨버터는 상기 부하의 전압을 제어하기 위해 CVCF(Constant Voltage Constant Frequency) 모드로 구동되고,
    상기 제3 및 제4 컨버터는 상기 배터리의 전력을 제어하기 위해 전력 제어 모드로 구동되는
    에너지 저장 시스템.
  10. 제3항에 있어서,
    상기 제1 컨버터는 상기 계통으로부터 제공받은 AC(Alternating Current) 전압을 DC 전압으로 변환하여 상기 DC 배전망에 제공하거나 상기 DC 배전망으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 상기 계통에 제공하고,
    상기 제2 컨버터는 상기 DC 배전망으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 상기 부하에 제공하고,
    상기 제3 컨버터는 상기 배터리로부터 제공받은 DC 전압을 AC 전압으로 변환하여 상기 부하에 제공하고,
    상기 제4 컨버터는 상기 계통으로부터 제공받은 AC 전압을 DC 전압으로 변환하여 상기 배터리에 제공하거나 상기 배터리로부터 제공받은 DC 전압을 AC 전압으로 변환하여 상기 계통에 제공하는
    에너지 저장 시스템.
  11. 계통 및 상기 계통에 연계된 DC(Direct Current) 배전망의 전력을 관리하는 에너지 저장 시스템에 있어서,
    상기 계통과 상기 DC 배전망 사이에 연결되어 상기 DC 배전망의 전압을 제어하는 제1 컨버터;
    상기 DC 배전망에 연결된 제2 컨버터;
    상기 제2 컨버터에 연결되고, 상기 제2 컨버터에 의해 충방전이 제어되는 배터리;
    상기 DC 배전망에 연결된 제3 컨버터;
    상기 제3 컨버터에 연결되고, 상기 제3 컨버터에 의해 전압이 제어되는 부하; 및
    상기 배터리와 상기 부하 사이에 연결되고, 상기 배터리의 방전을 제어하는 제4 컨버터를 포함하는
    에너지 저장 시스템.
  12. 제11항에 있어서,
    상기 제2 컨버터에 의해 상기 배터리에서 방전된 전압은 상기 DC 배전망을 통해 상기 부하로 전달되고,
    상기 제4 컨버터에 의해 상기 배터리에서 방전된 전압은 상기 부하로 직접 전달되는
    에너지 저장 시스템.
  13. 제11항에 있어서,
    상기 배터리와 상기 계통 사이에 연결되고, 상기 배터리의 충방전을 제어하는 제5 컨버터를 더 포함하는
    에너지 저장 시스템.
  14. 제13항에 있어서,
    상기 제2 컨버터는 상기 DC 배전망으로부터 제공받은 전압을 변환하여 상기 배터리에 충전시키고,
    상기 제5 컨버터는 상기 계통으로부터 제공받은 전압을 변환하여 상기 배터리에 충전시키는
    에너지 저장 시스템.
  15. 제13항에 있어서,
    상기 제2 컨버터에 의해 상기 배터리에서 방전된 전압은 상기 DC 배전망을 통해 상기 부하로 전달되고,
    상기 제4 컨버터에 의해 상기 배터리에서 방전된 전압은 상기 부하로 직접 전달되고,
    상기 제5 컨버터에 의해 상기 배터리에서 방전된 전압은 상기 계통으로 전달되는
    에너지 저장 시스템.
  16. 제13항에 있어서,
    상기 부하에 연결된 보조 계통; 및
    상기 제5 컨버터를 상기 계통과 상기 제1 컨버터 사이의 제1 노드 또는 상기 보조 계통과 상기 부하 사이의 제2 노드에 선택적으로 연결하는 절환 스위치를 더 포함하는
    에너지 저장 시스템.
  17. 제16항에 있어서,
    상기 절환 스위치의 일단은 상기 제5 컨버터에 연결되고,
    상기 절환 스위치의 타단은 상기 제1 및 제2 노드 중 어느 하나에 선택적으로 연결되는
    에너지 저장 시스템.
  18. 제16항에 있어서,
    상기 제5 컨버터가 상기 제1 노드에 연결된 상태에서 상기 계통에 문제가 생긴 경우,
    상기 제5 컨버터는 상기 절환 스위치의 절환 동작에 의해 상기 제2 노드에 연결되고,
    상기 배터리는 상기 제5 컨버터에 의해 방전되며,
    상기 배터리에서 방전된 전압은 상기 제2 노드를 거쳐 상기 부하로 전달되는
    에너지 저장 시스템.
  19. 제13항에 있어서,
    상기 제1 컨버터는 상기 DC 배전망의 전압을 제어하기 위해 DC 전압 제어 모드로 구동되고,
    상기 제2 컨버터와 상기 제4 및 제5 컨버터는 상기 배터리의 전력을 제어하기 위해 전력 제어 모드로 구동되고,
    상기 제3 컨버터는 상기 부하의 전압을 제어하기 위해 CVCF(Constant Voltage Constant Frequency) 모드로 구동되는
    에너지 저장 시스템.
  20. 제13항에 있어서,
    상기 제1 컨버터는 상기 계통으로부터 제공받은 AC(Alternating Current) 전압을 DC 전압으로 변환하여 상기 DC 배전망에 제공하거나 상기 DC 배전망으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 상기 계통에 제공하고,
    상기 제2 컨버터는 상기 DC 배전망으로부터 제공받은 DC 전압을 DC 전압으로 변환하여 상기 배터리에 제공하거나 상기 배터리로부터 제공받은 DC 전압을 DC 전압으로 변환하여 상기 DC 배전망에 제공하고,
    상기 제3 컨버터는 상기 DC 배전망으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 상기 부하에 제공하고,
    상기 제4 컨버터는 상기 배터리로부터 제공받은 DC 전압을 AC 전압으로 변환하여 상기 부하에 제공하고,
    상기 제5 컨버터는 상기 계통으로부터 제공받은 AC 전압을 DC 전압으로 변환하여 상기 배터리에 제공하거나 상기 배터리로부터 제공받은 DC 전압을 AC 전압으로 변환하여 상기 계통에 제공하는
    에너지 저장 시스템.
PCT/KR2018/013995 2017-11-28 2018-11-15 에너지 저장 시스템 WO2019107807A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18884397.3A EP3719950A4 (en) 2017-11-28 2018-11-15 ENERGY STORAGE SYSTEM
JP2020528924A JP6977167B2 (ja) 2017-11-28 2018-11-15 エネルギー貯蔵システム
CN201880076825.8A CN111406352B (zh) 2017-11-28 2018-11-15 储能系统
US16/765,759 US11205911B2 (en) 2017-11-28 2018-11-15 Energy storage system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0159942 2017-11-28
KR1020170159942A KR102323938B1 (ko) 2017-11-28 2017-11-28 에너지 저장 시스템
KR1020170159941A KR102389302B1 (ko) 2017-11-28 2017-11-28 에너지 저장 시스템
KR10-2017-0159941 2017-11-28

Publications (1)

Publication Number Publication Date
WO2019107807A1 true WO2019107807A1 (ko) 2019-06-06

Family

ID=66664568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013995 WO2019107807A1 (ko) 2017-11-28 2018-11-15 에너지 저장 시스템

Country Status (5)

Country Link
US (1) US11205911B2 (ko)
EP (1) EP3719950A4 (ko)
JP (1) JP6977167B2 (ko)
CN (1) CN111406352B (ko)
WO (1) WO2019107807A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093868A (ja) * 2008-10-03 2010-04-22 Yanmar Co Ltd 双方向電力変換器
KR20160129153A (ko) * 2015-04-29 2016-11-09 한국산업기술대학교산학협력단 에너지저장시스템 및 이의 에너지 효율 향상 방법
KR20170048992A (ko) * 2015-10-27 2017-05-10 엘지전자 주식회사 에너지 저장 시스템
KR20170079184A (ko) * 2015-12-30 2017-07-10 엘지전자 주식회사 에너지 저장장치의 제어방법
JP2017205007A (ja) * 2016-05-11 2017-11-16 エルエス産電株式会社Lsis Co., Ltd. 電気エネルギー蓄積装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6487096B1 (en) 1997-09-08 2002-11-26 Capstone Turbine Corporation Power controller
CA2326192A1 (en) * 1998-04-02 1999-10-14 Capstone Turbine Corporation Power controller
JP2008228517A (ja) * 2007-03-15 2008-09-25 Toshiba Corp 無停電電源装置
US8232676B2 (en) * 2008-05-02 2012-07-31 Bloom Energy Corporation Uninterruptible fuel cell system
KR101097261B1 (ko) * 2009-12-17 2011-12-22 삼성에스디아이 주식회사 전력 저장 시스템 및 그 제어 방법
KR101097266B1 (ko) * 2010-02-26 2011-12-21 삼성에스디아이 주식회사 전력 저장 시스템 및 그 제어방법
CN102142703A (zh) * 2011-02-25 2011-08-03 西安华强航天电子有限责任公司 一种单进三出的不间断电源
KR20120100157A (ko) 2011-03-03 2012-09-12 엘에스전선 주식회사 에너지 저장 장치를 이용한 부하 전력 공급 시스템 및 방법
US20130088900A1 (en) * 2011-10-10 2013-04-11 Jong-Ho Park Energy storage system and controlling method of the same
US9293923B2 (en) * 2011-12-19 2016-03-22 Samsung Sdi Co., Ltd. Energy storage system and controlling method of the same
JP5744307B2 (ja) 2012-02-13 2015-07-08 三菱電機株式会社 電力変換装置
CN102856978A (zh) * 2012-07-11 2013-01-02 郑小军 太阳能不间断电源
CN103683466B (zh) * 2012-09-17 2015-08-12 周锡卫 一种基于现有光伏控制器的应急直供离网光伏供电系统
CN102856976A (zh) * 2012-09-25 2013-01-02 广东易事特电源股份有限公司 一种不间断电源、电池管理系统及不间断供电系统
CN103545896B (zh) * 2013-11-07 2015-09-30 成都芯源系统有限公司 一种双向开关电路、移动电源电路及其控制方法
US9385562B2 (en) * 2013-12-19 2016-07-05 Btu Research Llc System and method for supplying uninterruptible power to a PoE device
KR101556893B1 (ko) * 2013-12-30 2015-10-05 주식회사 효성 풍력 발전기용 에너지 저장 시스템 및 방법
KR101989758B1 (ko) * 2015-06-19 2019-06-14 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 무정전 전원 장치
KR102400502B1 (ko) 2015-09-24 2022-05-20 삼성에스디아이 주식회사 에너지 저장 시스템
JP6266700B2 (ja) * 2015-10-23 2018-01-24 エルジー エレクトロニクス インコーポレイティド エネルギー貯蔵システム
CN205791774U (zh) * 2016-05-16 2016-12-07 广州市漫联电子科技有限公司 高效率的不间断电源装置
KR20180031455A (ko) * 2016-09-20 2018-03-28 한국전력공사 독립형 마이크로그리드의 주파수 제어방법 및 이를 제어하는 에너지 저장장치용 전력변환장치
US20190067989A1 (en) * 2017-08-25 2019-02-28 Schneider Electric It Corporation Uninterruptible power supply system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093868A (ja) * 2008-10-03 2010-04-22 Yanmar Co Ltd 双方向電力変換器
KR20160129153A (ko) * 2015-04-29 2016-11-09 한국산업기술대학교산학협력단 에너지저장시스템 및 이의 에너지 효율 향상 방법
KR20170048992A (ko) * 2015-10-27 2017-05-10 엘지전자 주식회사 에너지 저장 시스템
KR20170079184A (ko) * 2015-12-30 2017-07-10 엘지전자 주식회사 에너지 저장장치의 제어방법
JP2017205007A (ja) * 2016-05-11 2017-11-16 エルエス産電株式会社Lsis Co., Ltd. 電気エネルギー蓄積装置

Also Published As

Publication number Publication date
CN111406352B (zh) 2023-11-10
US11205911B2 (en) 2021-12-21
EP3719950A1 (en) 2020-10-07
JP6977167B2 (ja) 2021-12-08
JP2021505115A (ja) 2021-02-15
EP3719950A4 (en) 2020-12-23
CN111406352A (zh) 2020-07-10
US20200287391A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
WO2019156373A1 (ko) 계통 연계형 인버터 시스템
WO2018159910A1 (ko) 에너지 저장 장치를 포함하는 무정전 전원 공급 시스템
WO2019031686A1 (ko) 에너지 저장 시스템
WO2017043751A1 (ko) 독립형 마이크로그리드 자율제어 시스템 및 방법
WO2018117530A1 (ko) Ess용 pcs 및 pcs 운전 방법
WO2019107802A1 (ko) 에너지 저장 시스템
WO2021162190A1 (ko) 전기차 충전 장치 및 이의 제어방법
WO2023113169A1 (ko) 에너지 저장 시스템 및 에너지 저장 시스템의 접지구조 제어 방법
WO2023153651A1 (ko) 배터리 충방전 장치
WO2022154498A1 (ko) 배터리 뱅크 전력 제어 장치 및 방법
WO2020251273A1 (ko) 모니터링 장치, 및 이를 구비하는 태양광 시스템
WO2019107806A1 (ko) 계층형 전력 제어 시스템
WO2019151639A1 (ko) 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기 및 이를 이용한 독립형 다중 마이크로 그리드 시스템
WO2019107801A1 (ko) 에너지 저장 시스템
WO2019059489A1 (ko) 마이크로그리드 시스템
WO2018216899A1 (ko) 군용 마이크로그리드 시스템
WO2018230831A1 (ko) 에너지 저장 시스템
WO2018105990A1 (ko) 마이크로그리드 시스템 및 고장 처리 방법
WO2021182815A2 (ko) 전기 자동차 충전 컨트롤러 및 이를 포함하는 전기 자동차 충전 장치
WO2019059487A1 (ko) 에너지 저장 시스템
WO2022196846A1 (ko) 에너지저장시스템 계층형 관리시스템
WO2023243943A1 (ko) Pcs를 최적 효율구간에서 운용하는 방법/장치
WO2021157920A1 (ko) 배터리 랙의 개별 방전 시스템 및 방법
WO2023140671A1 (ko) 에너지 저장 장치
WO2019107807A1 (ko) 에너지 저장 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884397

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018884397

Country of ref document: EP

Effective date: 20200629