WO2019107755A1 - 말단 봉지재를 이용한 폴리아마이드의 제조 방법 및 이에 의해 제조된 폴리아마이드 - Google Patents
말단 봉지재를 이용한 폴리아마이드의 제조 방법 및 이에 의해 제조된 폴리아마이드 Download PDFInfo
- Publication number
- WO2019107755A1 WO2019107755A1 PCT/KR2018/012908 KR2018012908W WO2019107755A1 WO 2019107755 A1 WO2019107755 A1 WO 2019107755A1 KR 2018012908 W KR2018012908 W KR 2018012908W WO 2019107755 A1 WO2019107755 A1 WO 2019107755A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyamide
- group
- weight
- present
- alcohol
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/08—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
- C08G69/14—Lactams
- C08G69/16—Preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/08—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
- C08G69/14—Lactams
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/08—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
- C08G69/14—Lactams
- C08G69/16—Preparatory processes
- C08G69/18—Anionic polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/10—Metal compounds
- C08K3/12—Hydrides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
- C08K5/057—Metal alcoholates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/17—Amines; Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/02—Polyamides derived from omega-amino carboxylic acids or from lactams thereof
Definitions
- the present invention relates to a process for producing a polyamide using an end encapsulant and a polyamide produced by the process, and more particularly, to a process for producing a polyamide by using an end encapsulant for suppressing side reaction by an eco-
- the present invention relates to a method for producing a polyamide using a terminal encapsulant capable of polymerizing a polymer having a uniform molecular weight and having a high conversion ratio at a low temperature in a short polymerization time as compared with a polymerization method and a polyamide produced by the method.
- the polyamide resin is a linear polymer bonded by an amide (-NHCO-) bond and is strong and has excellent properties such as abrasion resistance, abrasion resistance, oil resistance and solvent resistance, and is easily melt-molded. , Engineering plastics, and the like.
- Polyamides can be classified into aliphatic polyamides, aromatic polyamides and aliphatic cyclic polyamides depending on the molecular structure.
- Nylon is referred to as an aliphatic polyamide, and aramid as an aromatic polyamide. do.
- Such polyamides are prepared by various polymerization methods, such as by ring-opening polymerization of lactams such as nylon 6, by polycondensation of diamines and dibasic acids such as nylon 6,6, nylon 6,10 and nylon 4,6, Such as nylon 11 and nylon 12, by the polycondensation of aminocarboxylic acid.
- lactams such as nylon 6,
- diamines and dibasic acids such as nylon 6,6, nylon 6,10 and nylon 4,6,
- nylon 11 and nylon 12 by the polycondensation of aminocarboxylic acid.
- So-called hybridized nylon such as a condensation product of caprolactam and 6,10-nylon salt (hexamethylenediamine and sebacate) is industrially produced.
- functional groups such as a side chain and a hydroxyl group, And various types of polyamides including heterocyclic rings have been studied.
- the lactam such as caprolactam
- the lactam may be anionic polymerized.
- This method generally uses a catalyst, and also an initiator (also referred to as an activator) (activated anion polymerization).
- an initiator also referred to as an activator
- activator activated anion polymerization
- EP 1091991 discloses compositions comprising as component A polyisocyanurate having an average of more than 3.5 NCO functional groups, and also a method of making a surface coating composition using the compositions described.
- US 3423372 uses a non-capped polyisocyanate (thus significantly reducing reactivity) and the concentration of activator in that example is very low (1/200 to 1/50 moles). Polymerization takes more than three minutes for the concentration used in this US patent.
- EP 0156129 uses rubber (i.e., an elastomer) as a precursor of a multifunctional activator, and thus the resulting PA is not as hard as a maximum of 1.12 GPa.
- the active agent has a high Mw, wherein a large amount of activator is required (20% or more).
- a mixture of a bifunctional activator and a multifunctional activator is used; Thus, the resulting polyamide is not a crosslinked material.
- U.S. Patent No. 4,067,861 (1978) discloses an anionic polymerization technique of lactam through an extruder in which a metering pump is provided between an extruder body and an extruder die to obtain a constant output, uniform viscosity, (metering pump) was installed to solve the viscosity non-uniformity mechanically, but it is not a fundamental solution.
- U.S. Patent 5,747,634 (1998) introduces a solution liquid system that simultaneously contains a catalyst and an initiator (reaction promoter) to obtain a more uniform product.
- a solution system is introduced to obtain a uniform product having a uniform quality and a reproducible result is described.
- it is not efficient due to a solvent removal problem in applying to the reaction extrusion method.
- the present invention has been made to solve the above-mentioned problems of the prior art and the technical problems required from the past.
- Still another object of the present invention is to provide a method for producing polyamide using an end encapsulant having improved heat resistance and processability by including an end encapsulant containing an amine group or an alcohol group for inhibiting side reactions generated in an anion reaction, And to provide the polyamide produced thereby.
- the present invention provides a method for producing polyamide using an end-
- Lactam 0.01 to 20 parts by weight of an alkali metal as an initiator, 0.002 to 1.0 part by weight of an activator, and at least one selected from the group consisting of an amine-based, urea-based or alcohol-based compound, May be contained in an amount of 0.1 to 100 parts by weight.
- the end sealant may include at least one member selected from the group consisting of compounds represented by the following general formulas (1) to (2)
- Each of R 1 , R 2 and R 3 is independently a primary, secondary, tertiary or quaternary amine, alcohol, amide, ether, alkyl or aryl and x, y or z is an integer of 1 to 20.
- R 1 , R 2 , R 3 and R 4 are each independently a primary, secondary, tertiary or quaternary amine, alcohol, amide, ether, to be.
- the polymerization can be carried out at a temperature range of 140 to 250 ⁇ .
- the activating agent may be carbon dioxide (CO 2 ), but is not limited to, for example, benzoyl chloride, N-acetyl caprolactam, N- (N-acetyllaurolactam), octadecyl isocyanate (SIC), toluene diisocyanate (TDI), hexamethylene diisocyanate (HDI), and mixtures thereof. And the like.
- the end sealant may include at least one member selected from the group consisting of aliphatic amines, aromatic amines, aliphatic ureas, aromatic ureas, aliphatic alcohols and aromatic alcohol compounds.
- the end encapsulant when the end encapsulant is an aliphatic amine, it may be contained in an amount of 0.001 to 1.0 mol% based on the lactam.
- the end encapsulant when it is an aromatic amine, it may be contained in an amount of 0.001 to 0.5 mol% based on the lactam.
- the N / C ratio of the amine terminated encapsulant may be within the range of 0.05 to 1.0.
- the N / C ratio of the urea-based end encapsulant may range from 0.05 to 1.0.
- the O / C ratio of the alcohol-based end encapsulant may be within the range of 0.05 to 1.0.
- the alkali metal may include at least one selected from the group consisting of a metal hydride, a metal hydroxide, and a metal alkoxide.
- the molecular weight regulator ethylene-bis-stearamide (EBS), amine compound, urea compound and di-urea compound At least one kind selected from the group consisting of
- the polymerization reaction can be carried out in the range of 0.5 to 120 minutes based on the laboratory reactor.
- the polymerization reaction time is not particularly limited and may be appropriately adjusted depending on the weight of the compound to be charged or the size and type of the reactor.
- the lactam in the polymerization reaction may have a conversion of at least 95%.
- the present invention provides a polyamide produced by the above production method, wherein the polyamide has a polydispersity index (PDI) of 3.0 or less.
- PDI polydispersity index
- the weight average molecular weight (Mw) of the polyamide may range from 20,000 to less than 80,000.
- the present invention also relates to a process for producing a polyamide resin composition for a vehicle, a material for an electronic device, an industrial pipe material, an architectural civil engineering material, a 3D printer material, a fiber material, a cladding material, It provides parts materials selected from the group consisting of materials for aviation, materials for solar cells, materials for batteries, materials for sports, materials for home appliances, household materials and cosmetics.
- the product comprising the component material is selected from the group consisting of automotive air ducts, plastic / rubber compounds, adhesives, lights, polymer optical fibers, fuel filter caps, line systems, cables of electronics, reflectors, Wire protection tube, control unit, light tube, pipe tube, liner, pipe coating agent, oilfield hose, 3D printer, multifilament, spray hose, valve, duct, pulp, gear, medical catheter, aircraft fire retardant, , High hardness film, ski boots, headset, eyeglass frame, toothbrush, water bottle or outsole.
- the present invention provides an eco-friendly process that does not use a solvent as a catalyst, and it has a high end-capping agent that suppresses side reactions, There is an effect that a polymer having a narrow molecular weight distribution and a uniform molecular weight can be polymerized with a conversion ratio.
- the present invention includes a terminal encapsulant containing an amine group or an alcohol group for inhibiting side reactions generated in an anion reaction, the heat stability of the produced polyamide is improved, and the processability is improved.
- FIG. 1 is a schematic diagram showing a process of converting the unstable structure of the end encapsulant and the polymer according to the present invention into a stable structure.
- substituted to “substituted” means that at least one hydrogen atom of the functional group of the present invention is substituted with a halogen atom (-F, -Cl, -Br or -I)
- a halogen atom (-F, -Cl, -Br or -I)
- substituted means an aryl group substituted with a substituent such as a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, .
- hydrocarbon group means a linear, branched or cyclic saturated or unsaturated hydrocarbon group unless otherwise specified, and the alkyl group, alkenyl group, alkynyl group and the like may be linear, branched or cyclic.
- alkyl group means C1 to C30 alkyl group
- aryl group means C6 to C30 aryl group.
- heterocyclic group refers to a group containing 1 to 3 hetero atoms selected from the group consisting of O, S, N, P, Si and combinations thereof in one ring. Examples thereof include pyridine, Thiophene, pyrazine, and the like, but is not limited thereto.
- CO2 carbon dioxide
- a process for producing polyamides by anionic polymerization using an end encapsulant comprising the steps of: 0.01 to 20 parts by weight of an alkali metal as an initiator, 0.002 to 10 parts by weight of carbon dioxide as an activator, And 0.1 to 50 parts by weight of an amine-based, urea-based or alcohol-based end encapsulant.
- compositions included in the polyamide production using the end encapsulant according to the present invention will be described below.
- the lactam according to the present invention can be preferably used as a monomer for producing a polyamide, but is not limited thereto.
- laurolactam, caprolactam, piperidone, pyrrolidone, Lactam and capryllactam and may optionally contain at least one of propiolactam, 2-pyrrolidone, valerolactam, caprolactam, heptanolactam, heptanolactam, octanolactam, nonanolactam, decanolactam, undecanolactam, and dodecanolactam.
- the alkali metal catalyst according to the present invention is an initiator for producing a polyamide and is a compound which permits the formation of the lactam anion, and includes metal hydrides, metal hydroxides and metal alkoxides ), And the like.
- alkali metals such as sodium or potassium, alkali metal bases
- sodium hydride, sodium hydride, sodium hydroxide, sodium methanolate, sodium ethanolate, sodium propanolate or sodium butanolate or potassium base such as potassium hydride, potassium, potassium hydroxide, potassium methanolate, Potassium ethanolate, potassium propanolate, potassium butanolate, or a mixture thereof, preferably sodium caprolactamate, potassium caprolactamate, magnesium bromide caprolactamate, magnesium Sodium hydroxide, sodium hydroxide, sodium methanolate, sodium propanolate, sodium butanolate, potassium hydroxide, potassium hydroxide, potassium methanolate, potassium ethanolate, potassium carbonate, , Potassium propanolate, potassium butano
- Such metal catalysts can be used in solid form or as a solution, and it is preferable to use the catalyst in the form of a solid.
- the catalyst is preferably added to the caprolactam melt, where the catalyst can be dissolved.
- the alkali metal catalyst may be contained in an amount of 0.01 to 20 parts by weight based on 100 parts by weight of the total lactam. Preferably 0.03 to 10 parts by weight, and more preferably 0.05 to 2 parts by weight.
- the alkali metal catalyst is added in an amount of less than 0.01 part by weight, there may be a problem of unreacted or reduced reaction rate. If the alkali metal catalyst is more than 20 parts by weight, there may be a problem of generating a low molecular weight polymer The above range is good.
- the end encapsulant is added in order to suppress side reactions generated by anionic polymerization and to prevent gelation, whereby the end encapsulant is selected from the group consisting of compounds represented by the following formulas (1) to Or more.
- Each of R 1 , R 2 and R 3 is independently a primary, secondary, tertiary or quaternary amine, alcohol, amide, ether, alkyl or aryl and x, y or z is an integer of 1 to 20.
- R 1 , R 2 , R 3 and R 4 are each independently a primary, secondary, tertiary or quaternary amine, alcohol, amide, ether, to be.
- the end sealant may be contained in an amount of 0.001 to 0.5 mole based on 1 mole of the total lactam. Preferably from 0.001 to 0.3 molar ratio, and more preferably from 0.001 to 0.25 molar ratio.
- the catalyst is added in an amount of less than 0.001 molar ratio, there may be a gelation problem due to side reactions. If the catalyst is used in an amount exceeding 0.5 molar ratio, the polymerization does not proceed, The above range is good.
- the N / C ratio may be in the range of 0.05 to 1.0 when the endblock is an amine.
- the N / C ratio may range from 0.1 to 0.75, and more preferably the N / C ratio may range from 0.15 to 0.7.
- the N / C ratio may range from 0.05 to 1.0 when the end encapsulant is a urea type.
- the N / C ratio may range from 0.1 to 0.8, and more preferably the N / C ratio may range from 0.15 to 0.75.
- the O / C ratio may range from 0.05 to 1.0.
- the O / C ratio may range from 0.1 to 0.8, and more preferably the N / C ratio may range from 0.15 to 0.75.
- the present invention can include a molecular weight modifier, preferably ethylene-bis-stearamide (EBS), but not limited thereto, A urea compound, a urea compound, and a di-urea compound.
- EBS ethylene-bis-stearamide
- the molecular weight modifier may be contained in an amount of 0.3 to 10 parts by weight based on 100 parts by weight of the total laurolactam. Preferably 0.4 to 7.0 parts by weight, and more preferably 0.5 to 3.0 parts by weight.
- the molecular weight modifier When the molecular weight modifier is added in an amount of less than 0.3 part by weight, there may be a problem of a high molecular weight polymer or gelation. If the molecular weight adjuster is more than 10 parts by weight, there may be a problem of low molecular weight polymer formation or non- The above range is good.
- the activator may be preferably carbon dioxide (CO2), but is not limited thereto.
- CO2 carbon dioxide
- benzoyl chloride N-acetyl caprolactam
- N-acetyl laurolactam N-acetyl laurolactam
- octadecyl isocyanate SIC
- toluene diisocyanate TDI
- HDI hexamethylene diisocyanate
- the carbon dioxide may be contained in an amount of 0.002 to 1.0 part by weight based on 100 parts by weight of the total laurolactam. Preferably 0.005 to 5 parts by weight, and more preferably 0.01 to 0.1 part by weight.
- carbon dioxide is added in an amount of less than 0.002 parts by weight, there may be a problem of non-polymerization or reduction in the reaction rate. If the amount of carbon dioxide exceeds 1.0 part by weight, gelation may occur.
- the thus-prepared sample was washed with distilled water, dried in a vacuum oven at 100 ° C. for 24 hours, and then the weight of the polyamide was measured. Then, the weight of the polyamide was measured for 8 hours in ethanol as a solvent. And the results are shown in Table 2 below.
- Lactam (g) Alkali metal (mol%) End sealant (mol%) Activator CO 2 content (ml) NAC content (ml)
- Example 1 20 One 0.25 1.7
- Example 2 20
- Example 3 20
- Example 4 20
- a polyamide was prepared in the same manner as in Example 1, except that dodecylamine was used as a terminal sealing material.
- a polyamide was prepared in the same manner as in Example 1 except that Dodecanol was used as a terminal sealing material.
- a polyamide was prepared by the same method as in Example 1 except that 1 mol% of N-acetyl caprolactam was used as an activating agent.
- a polyamide sample was prepared in the same manner as in Example 1 except that the end sealing material (ECA) was not used, and conversion ratios were determined. The results are shown in Table 2 below.
- Example 1 73,500 2.2 98.4
- Example 2 69,700 2.2 98.1
- Example 3 71,800 2.3 98.9
- Example 4 77,300 2.3 98.4 Comparative Example 1 1,254,000 Not measurable Gelling
- Example 4 using the end encapsulant and NAC as the activator with respect to the lactam had a somewhat higher molecular weight and lower molecular weight than the Example 1 to Example 2 and Example 3 Wide molecular weight distribution.
- Comparative Example 1 which did not contain the end encapsulant, exhibited a gelation phenomenon to such an extent that the molecular weight and molecular weight distribution of the lactam could not be measured much higher than that of Example 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyamides (AREA)
Abstract
본 발명은 촉매로 용매를 사용하지 않는 친환경 공정 방법으로 부반응을 억제하는 말단 봉지재를 이용하여 기존 중합 방법에 비교하여 저온에서 짧은 중합 반응시간 내에서 높은 전환율을 갖고 균일한 분자량의 고분자 중합이 가능한 말단 봉지재를 이용한 폴리아마이드 제조방법 및 이에 의해 제조된 폴리아마이드를 제공한다.
Description
본원발명은 말단 봉지재를 이용한 폴리아마이드의 제조 방법 및 이에 의해 제조된 폴리아마이드에 관한 것으로, 더욱 상세하게는 촉매로 용매를 사용하지 않는 친환경 공정 방법으로 부반응을 억제하는 말단 봉지재를 이용하여 기존 중합 방법에 비교하여 저온에서 짧은 중합 반응시간 내에서 높은 전환율을 갖고 균일한 분자량의 고분자 중합이 가능한 말단 봉지재를 이용한 폴리아마이드 제조방법 및 이에 의해 제조된 폴리아마이드에 관한 것이다.
폴리아미드 수지는 아미드(-NHCO-) 결합에 의해 결합된 직선형 고분자로서 강인하고 내마찰, 내마모, 내유, 내용제성 등의 물성이 우수하고 용융 성형이 용이하여, 의복 소재용, 산업자재용 섬유, 엔지니어링 플라스틱 등으로서 널리 이용되고 있다. 폴리아미드는 분자 구조에 따라 지방족 폴리아미드, 방향족 폴리아미드, 지방족 고리 폴리아미드로 분류될 수 있으며, 이중 지방족 폴리아미드의 경우 나일론(Nylon), 방향족 폴리아미드의 경우 아라미드(Aramid)라 통칭하여 부르기도 한다.
이러한 폴리아미드는 다양한 중합방법으로 제조되며, 나일론 6와 같이 락탐의 개환중합에 의한 것, 나일론 6,6, 나일론 6,10 및 나일론 4,6과 같이 디아민과 이염기산의 중축합에 의한 것, 나일론 11 및 나일론 12와 같이 아미노카르본산의 중축합에 의한 것으로 크게 나눌 수 있다. 이외에 카프로락탐과 6, 10-나일론염(헥사메틸렌디아민과 세바스산염)과의 혼성 축합물 등의 소위 혼성 중합 나일론이 공업적으로 생산되고 있으며, 또 분자 중에 곁사슬, 수산기 등의 작용기, 방향 고리와 헤테로 고리를 포함한 각종의 폴리아미드가 연구되고 있다.
락탐, 예컨대 카프로락탐은 음이온 중합될 수 있다. 이 방법은 일반적으로 촉매, 및 또한 개시제(활성제로도 일 컬어짐)를 사용한다(활성화된 음이온 중합). 지금까지 자주 사용되는 개시제 또는 활성제는 디이소시아네이트 또는 이들의 유도체를 포함하였다.
US 4,754,000호(Bayer AG)에는, 뷰렛기(biuret group)를 포함하고 비방향족 디이소시아네이트로부터 유도되는 폴리 이소시아네이트를 활성제로 사용하여 폴리아마이드를 제조하는 락탐의 활성화된 음이온 중합이 기술되어 있다.
EP 1091991호(BASF AG)에는, 평균 3.5개 초과의 NCO 작용기를 갖는 폴리이소시아누레이트를 성분 A로서 포함하는 조성물, 및 또한 기술한 조성물을 이용하여 표면 코팅 조성물을 제조하는 방법이 개시되어 있다.
US 3423372호는 캡핑되지 않은 폴리이소시아네이트를 사용하며(따라서, 반응성을 현저히 감소시킴), 그 실시예에서의 활성제 농도는 매우 낮다(1/200∼ 1/50 몰). 중합은, 이 미국 특허에서 이용된 농도로는 3분 초과가 소요 된다.
EP 0156129호는 다중 작용성 활성제의 전구체로서 고무(즉, 탄성중합체)를 사용하며, 따라서 그 결과로 생성된 PA는 최대 1.12 GPa로서 경질이 아니다. 상기 활성제는 높은 Mw를 가지며, 여기서는 다량의 활성제가 필요하다(20% 이상). 이작용성 활성제와 다작용성 활성제의 혼합물이 사용되며; 따라서, 생성된 폴리아마이드는 가교된 물질이 아니다.
또한, 미국 특허 제 4,067,861호(1978년)에서는 압출기를 통한 락탐의 음이온 중합기술로서 일정한 토출량(output) 및 균일한 점도와 물성을 얻기 위해 압출기 몸체(body)와 압출기 다이(die) 사이에 미터링 펌프(metering pump)를 설치한 방법으로, 점도의 불균일성을 기계적으로 해결하려고 하였으나 근본적인 해결책은 아니다.
미국 특허 제 3,878,173호(1975년)에서는 열분해에 의해 점도가 불안정한 문제와 구조적으로 불규칙한 브랜칭 구조(disorderly branching structure) 형성을 지적하고 있지만, 합성한 중합체의 분해(decomposition)를 막기 위해 보다 산성을 띄는 첨가제로 문제해결을 시도하고 있을 뿐, 불균일한 브랜칭 구조 해결에 대한 언급은 전혀 없다. 참고로 폴리아마이드 음이온 중합 시 발생되는 브랜칭 부반응에 대해서는 M. P. Stevens, 'Polymer Chemistry', 2nd Ed., Oxford University Press, p 429 (1990)와 G. Odian, 'Principles of Polymerization', 2nd Ed., John Wiley & Sons, p541 (1981)에서 자세하게 언급하고 있다.
특히, 미국 특허 제 5,747,634호(1998년)에서는 보다 균일한 제품을 얻기 위해 촉매와 개시제(반응 촉진제)를 동시에 함유하는 용액 액체 시스템(solution liquid system)을 도입하고 있다. 여기서는 용액 시스템을 도입하여 일정한 품질을 갖는 균일한 제품을 얻고, 재현성 높은 결과를 얻은 것으로 서술하고 있으나, 반응 압출 방법에 적용하기에는 용매 제거 문제 등으로 인해 효율적이지 못한 문제점이 있다.
본원 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본원 발명의 목적은, 용매를 사용하지 않는 친환경 공정 방법으로 부반응을 억제하는 말단 봉지재(End-Capping Agent)를 이용하여 기존 중합 방법에 비교하여 저온에서 짧은 중합 반응시간 내에서 높은 전환율을 갖고 좁고 균일한 분자량의 고분자 중합이 가능한 말단 봉지재를 이용한 폴리아마이드 제조방법 및 이에 의해 제조된 폴리아마이드를 제공하는 데 있다.
또한, 본 발명의 또 다른 목적은 음이온 반응에서 발생되는 부반응 억제를 위한 아민기혹은 알코올기가 포함되는 말단 봉지재를 포함함으로써, 내열 안정성이 향상되어 가공성이 우수한 말단 봉지재를 이용한 폴리아마이드 제조방법 및 이에 의해 제조된 폴리아마이드를 제공하는 데 있다.
이러한 목적을 달성하기 위한 본원 발명에 따른 말단 봉지재를 이용한 폴리아마이드 제조방법은,
말단 봉지재를 이용하여 음이온 중합 반응에 의한 폴리아마이드 제조방법으로써,
락탐, 상기 락탐 전체 100 중량부에 대하여, 개시제로써 알카리 금속 0.01 내지 20 중량부, 활성화제 0.002 내지 1.0 중량부 및 아민계 또는 우레아계 또는 알코올계 및 이들의 화합물로 이루어진 군으로부터 선택된 1종 이상을 포함한 말단 봉지재를 0.1 내지 100 중량부로 포함할 수 있다.
따라서, 락탐의 음이온 중합 시 발생되는 부반응을 효과적으로 억제하여 균일한 분자량의 고분자 중합이 가능하다.
본 발명의 하나의 바람직한 예에서, 상기 말단 봉지재는 하기 화학식 1 내지 화학식 2로 표시되는 화합물로 이루어진 군에서 선택된 적어도 1종 이상을 포함할 수 있다,
[화학식 1]
R1(CH2)x R2(CH2)y R3
R1, R2, R3는 각각 독립적으로 1차, 2차, 3차 또는 4차 아민, 알코올, 아마이드, 에테르, 알킬 또는 아릴이고, x,y 또는 z 는 1 내지 20의 정수이다.
[화학식 2]
R1(CH2)x R2(CH2)yR3(CH2)zR4
R1, R2, R3, R4 는 각각 독립적으로 1차, 2차, 3차 또는 4차 아민, 알코올, 아마이드, 에테르, 알킬 또는 아릴이고, x,y 또는 z 는 1 내지 20의 정수이다.
본 발명의 하나의 바람직한 예에서, 상기 중합은 140 내지 250℃ 온도 범위에서 수행될 수 있다.
본 발명의 하나의 바람직한 예에서, 상기 활성화제는 이산화탄소(CO2)일 수 있으나, 이에 한정되는 것은 아니며, 예컨대 벤조일클로라이드(benzoyl chloride), N-아세틸 카프로락탐(N-acetyl caprolactam), N-아세틸 라우로락탐(N-acetyl laurolactam), 옥타데실 이소시아네이트(octadecyl isocyanate(SIC)), 톨루엔 디이소시아네이트(toluene diisocyanate(TDI)), 헥사메틸렌 디이소시아네이트(hexamethylene diisocyanate(HDI)) 및 이들의 혼합물로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
본 발명의 하나의 바람직한 예에서, 상기 말단 봉지재는 지방족 아민, 방향족 아민, 지방족 우레아, 방향족 우레아, 지방족 알코올 및 방향족 알코올계 화합물로 이루어진 군에서 선택된 적어도 1종 이상을 포함할 수 있다.
여기서, 본 발명의 하나의 바람직한 예에서, 상기 말단 봉지재가 지방족 아민인 경우에 상기 락탐 대비 0.001 내지 1.0몰%로 포함할 수 있다.
본 발명의 하나의 바람직한 예에서, 상기 말단 봉지재가 방향족 아민인 경우에 상기 락탐 대비 0.001 내지 0.5몰%로 포함할 수 있다.
본 발명의 하나의 바람직한 예에서, 상기 아민계 말단 봉지재의 N/C ratio가 0.05 내지 1.0 범위 이내일 수 있다.
본 발명의 하나의 바람직한 예에서, 상기 우레아계 말단 봉지재의 N/C ratio가 0.05 내지 1.0 범위 이내일 수 있다.
본 발명의 하나의 바람직한 예에서, 상기 알코올계 말단 봉지재의 O/C ratio가 0.05 내지 1.0 범위 이내일 수 있다.
본 발명의 하나의 바람직한 예에서, 상기 알카리 금속은 금속 수소화물(metal hydride), 금속 수산화물(metal hydroxide) 및 금속 알콕시화물(metal alkoxide)로 이루어진 군에서 선택된 적어도 1종 이상을 포함할 수 있다.
본 발명의 하나의 바람직한 예에서, 분자량 조절제인 에틸렌-비스-스테어아마이드(EBS: ethylene-bis-stearamide), 아민(amine) 화합물, 우레아(urea) 화합물 및 디우레아(di-urea) 화합물로 이루어진 군에서 선택된 적어도 1종 이상을 더 포함할 수 있다.
본 발명의 하나의 바람직한 예에서, 상기 중합 반응은 실험용 반응기를 기준으로 0.5 내지 120분 범위 내에서 수행될 수 있다. 여기서, 상기 중합 반응 시간은 특히 제한되는 것은 아니며, 투입되는 화합물의 중량 또는 반응기의 사이즈 및 종류에 따라 적절히 조절될 수 있음은 물론이다.
본 발명의 하나의 바람직한 예에서, 상기 중합 반응에서 상기 락탐은 95% 이상의 전환율을 갖을 수 있다.
한편, 본 발명은 상기의 제조방법으로 제조된 폴리아마이드를 제공하는 바, 상기 폴리아마이드는 3.0 이하의 분자량 분포 범위(PDI: polydispersity index)를 갖을 수 있다.
본 발명의 하나의 바람직한 예에서, 상기 폴리아마이드의 중량평균분자량(Mw)은 20,000 내지 80,000 이내의 범위일 수 있다.
또한, 본 발명은, 상기 폴리아마이드를 포함하여 제조되는 차량용 소재, 전자기기용 소재, 산업용 파이프 소재, 건축토목용 소재, 3D 프린터용 소재, 섬유용 소재, 피복 소재, 공작 기계용 소재, 의료용 소재, 항공용 소재, 태양광 소재, 전지용 소재, 스포츠용 소재, 가전용 소재, 가정용 소재 및 화장품용 소재로 이루어진 군에서 선택되는 부품 소재를 제공한다.
구체적인 예에서, 상기 부품 소재를 포함하는 제품은 차량용 에어덕트, 플라스틱/고무 화합물, 접착제, 라이트, 고분자 광학 섬유, 연료 필터 캡, 라인 시스템, 전자기기의 케이블, 반사체, 케이블의 시스, 광학 섬유, 전선 보호관, 컨트롤 유닛, 라이트, 파이프용 관, 라이너, 파이프 코팅제, 유전 탐사 호스, 3D 프린터, 멀티 필라멘트, 스프레이 호스, 벨브, 덕트, 펄프, 기어, 의료용 카테터, 항공기용 난연제, 태양전지 보호판, 화장료, 고경도 필름, 스키부츠, 헤드셋, 안경 프레임, 칫솔, 물병 또는 아웃솔일 수 있으나, 이에 한정되는 것은 아니다.
이상 설명한 바와 같이, 본 발명은 촉매로 용매를 사용하지 않는 친환경 공정 방법으로 부반응을 억제하는 말단 봉지재(End-Capping Agent)를 이용하여 기존 중합 방법에 비교하여 저온에서 짧은 중합 반응시간 내에서 높은 전환율을 갖고 좁은 분자량 분포의 균일한 분자량의 고분자 중합이 가능한 효과가 있다.
또한, 본 발명은 음이온 반응에서 발생되는 부반응 억제를 위한 아민기 혹은 알코올기가 포함되는 말단 봉지재를 포함함으로써, 제조되는 폴리아마이드의 내열 안정성이 향상되어 가공성이 향상되는 효과가 있다.
도 1은 본 발명에 따른 말단 봉지재와 고분자의 불안정한 구조가 안정한 구조로 전환되는 과정을 나타내는 반응식이다.
후술하는 본 발명에 대한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 기술적 사상 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다.
따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다.
또한, 본 명세서에서 특별한 언급이 없는 한, "치환" 내지 "치환된"이란, 본 발명의 작용기 중의 하나 이상의 수소 원자가 할로겐 원자(-F, -Cl, -Br 또는 -I), 하이드록시기, 니트로기, 시아노기, 아미노기, 아미디노기, 하이드라진기, 하이드라존기, 카르복실기, 에스테르기, 케톤기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 지환족유기기, 치환 또는 비치환된 아릴기, 치환 또는 비치환된 알케닐기, 치환 또는 비치환된 알키닐기, 치환 또는 비치환된 헤테로아릴기, 및 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환된 것을 의미하며, 상기 치환기들은 서로 연결되어 고리를 형성할 수도 있다.
본 발명에서, 상기 "치환"은 특별한 언급이 없는 한, 수소 원자가 할로겐 원자, 탄소수 1 내지 20의 탄화수소기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴옥시기 등의 치환기로 치환된 것을 의미한다.
또한, 상기 "탄화수소기"는 특별한 언급이 없는 한, 선형, 분지형 또는 환형의 포화 또는 불포화 탄화수소기를 의미하고, 상기 알킬기, 알케닐기, 알키닐기 등은 선형, 분지형 또는 환형일 수 있다.
또한, 본 명세서에서 특별한 언급이 없는 한, "알킬기"란 C1 내지 C30 알킬기를 의미하고, "아릴기"란 C6 내지 C30 아릴기를 의미한다. 본 명세서에서, "헤테로 고리기"란 O, S, N, P, Si 및 이들의 조합으로 이루어진 군에서 선택되는 헤테로 원자를 하나의 고리 내에 1개 내지 3개 함유하는 기를 말하며, 예컨대, 피리딘, 티오펜, 피라진 등을 의미하나 이에 제한되지 않는다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 상세히 설명하기로 한다.
상술한 바와 같이, 종래의 폴리아마이드의 중합 방법 중 가수분해 중합(Hydrolytic Polymerization), 촉매 개환 중합(Catalytic Ring Opening Polymerization) 및 음이온 개환 중합(Anionic Ring Opening Polymerization)에서 발생되는 문제점에 의한 공정 과정의 비효율성 및 고온 중합에서의 부반응에 따른 점도 증가를 제한하는데 한계가 있었다.
이에 본 발명에서는 아민계 혹은 알코올계 말단 봉지재를 이용하여 폴리아미이드 음이온 제조시에 발생되는 부반응을 제어하고 촉매로 용매를 사용하지 않고 이산화탄소(CO2)를 사용함으로써, 친환경 공정으로 기존 중합 방법에 비교하여 저온에서 짧은 중합 반응시간 내에서 높은 전환율을 갖고 균일한 분자량의 고분자 중합이 가능하도록 하여 전술한 문제점에 대한 해결안을 모색하였다.
본 발명에 따르면, 말단 봉지재를 이용하여 음이온 중합 반응에 의한 폴리아마이드 제조방법으로써, 락탐, 상기 락탐 전체 100 중량부에 대하여, 개시제로써 알카리 금속 0.01 내지 20 중량부, 활성화제로써 이산화탄소 0.002 내지 10 중량부 및 아민계 또는 우레아계 또는 알코올계 말단 봉지재를0.1내지 50 중량부로 포함하는 말단 봉지재를 이용한 폴리아마이드의 제조방법을 제공한다.
구체적으로, 이하에서는 본 발명에 따른 말단 봉지재를 이용한 폴리아마이드 제조에 포함되는 조성물들을 설명한다.
먼저, 본 발명에 따른 상기 락탐은 폴리아마이드를 제조하기 위한 모노머로써 바람직하게 사용될 수 있다, 다만 이에 한정되는 것은 아니며, 예를 들어, 라우로락탐, 카프로락탐, 피페리돈, 피롤리돈, 에난토락탐 및 카프릴락탐을 포함할 수 있으며, 경우에 따라서, 프로피오락탐(propiolactam), 2-피롤리돈(2-pyrrolidone), 발러로락탐(valerolactam), 카프로락탐(caprolactam), 헵타노락탐(heptanolactam), 옥타노락탐(octanolactam), 노네노락탐(nonanolactam), 데카노락탐(decanolactam), 언데카노락탐(undecanolactam) 및 도데카노락탐(dodecanolactam)을 포함할 수 있다.
또한, 본 발명에 따른 상기 알카리 금속 촉매는 폴리아마이드를 제조하기 위한 개시제이며 상기 락탐 음이온 형성을 허용하는 화합물로써, 금속 수소화물(metal hydride), 금속 수산화물(metal hydroxide) 및 금속 알콕시화물(metal alkoxide)로 이루어진 군에서 선택된 적어도 1종 이상을 포함할 수 있다.
구체적인 예에서, 상기 금속 수소화물은 소듐 하이드라이드(sodium hydride) 및 포타슘 하이드라이드(potassium hydride)을 포함할 수 있고, 상기 금속 수산화물은 소듐 하이드록사이드(sodium hydroxide) 및 포타슘 하이드록사이드(potassium hydroxide)을 포함할 수 있으며, 상기 금속 알콕시화물은 포타슘 테트라-부톡사이드(potassium tert-butoxide) 및 알루미늄 이소프로포사이드(aluminum isopropoxide)을 포함할 수 있으나, 이에 한정되는 것은 아니다.
예컨대 나트륨 카프로락타메이트 또는 칼륨 카프로락타메이트, 알칼리 토류 금속 카프로락타메이트, 예컨대 마그네슘 브로마이드 카프로락타메이트, 마그네슘 클로라이드 카프로락타메이트, 또는 마그네슘 비스카프로락타메이트, 알칼리 금속, 예컨대 나트륨 또는 칼륨, 알칼리 금속 염기, 예 나트륨 염기, 예컨대 수소화나트륨, 나트륨, 수산화나트륨, 나트륨 메탄올레이트, 나트륨 에탄올레이트, 나트륨 프로판올레이트, 또는 나트륨 부탄올레이트, 또는 예를 들어 칼륨 염기, 예컨대 수소화칼륨, 칼륨, 수산화칼륨, 칼륨 메탄올레이트, 칼륨 에탄올레이트, 칼륨 프로판올레이트, 칼륨 부탄올레이트, 또는 이들의 혼합물로 이루어진 군, 바람직하게는 나트륨 카프로락타메이트, 칼륨 카프로락타메이트, 마그네슘 브로마이드 카프로락타메이트, 마그네슘 클로라이드 카프로락타메이트, 마그네슘 비스카프로락타메이트, 수소화나트륨, 나트륨, 수산화나트륨, 나트륨 에탄올레이트, 나트륨 메탄올레이트, 나트륨 프로판올레이트, 나트륨 부탄올레이트, 수소화칼륨, 칼륨, 수산화칼륨, 칼륨 메탄올레이트, 칼륨 에탄올레이트, 칼륨 프로판올레이트, 칼륨 부탄올레이트, 또는 이들의 혼합물로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 또한, 수소화나트륨, 나트륨, 및 나트륨 카프로락타메이트, 및 이들의 혼합물로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
이러한 금속 촉매는 고체의 형태 또는 용액으로 사용될 수 있으며 촉매를 고체의 형태로 사용하는 것이 바람직하다. 촉매는 바람직하게는 촉매가 용해될 수 있는 카프로락탐 용융물에 첨가된다. 이들 촉매는 특히 신속한 반응을 가져오며, 이에 의해 본 발명에 따른 폴리아마이드를 위한 제조 공정의 효율을 증가시킬 수 있다.
여기서, 본 발명에 따르면, 상기 알카리 금속 촉매는 상기 락탐 전체 100 중량부에 대해, 0.01 내지 20 중량부로 포함할 수 있다. 바람직하게는 0.03 내지 10 중량부로 포함할 수 있고, 더욱 바람직하게는 0.05 내지 2 중량부로 포함할 수 있다.
이 때, 상기 알카리 금속 촉매가 0.01 중량부 미만으로 첨가되는 경우에는 미중합 또는 반응속도 저하 문제가 있을 수 있고, 상기 알카리 금속 촉매가 20 중량부를 초과하는 경우에는 저분자량 고분자 생성 문제가 있을 수 있으므로 상기의 범위 좋다.
또한, 본 발명에 따르면, 상기 말단 봉지재는 음이온 중합으로 생성되는 부반응을 억제하고, 겔화 되는 현상을 방지하기 위하여 첨가되는 것으로써, 하기의 화학식 1 내지 화학식 2로 표시되는 화합물로 이루어진 군에서 선택된 적어도 1종 이상을 포함한다.
[화학식 1]
R1(CH2)x R2(CH2)y R3
R1, R2, R3는 각각 독립적으로 1차, 2차, 3차 또는 4차 아민, 알코올, 아마이드, 에테르, 알킬 또는 아릴이고, x,y 또는 z 는 1 내지 20의 정수이다.
[화학식 2]
R1(CH2)x R2(CH2)yR3(CH2)zR4
R1, R2, R3, R4 는 각각 독립적으로 1차, 2차, 3차 또는 4차 아민, 알코올, 아마이드, 에테르, 알킬 또는 아릴이고, x,y 또는 z 는 1 내지 20의 정수이다.
여기서, 본 발명에 따르면, 상기 말단 봉지재는 상기 락탐 전체 1몰에 대하여 0.001 내지 0.5몰비로 포함할 수 있다. 바람직하게는 0.001 내지 0.3 몰비로 포함할 수 있고, 더욱 바람직하게는 0.001 내지 0.25 몰비로 포함할 수 있다.
이 때, 상기 촉매가 0.001 몰비 미만으로 첨가되는 경우에는 부반응에 의한 겔화 문제가 있을 수 있고, 상기 촉매가 0.5몰비를 초과하는 경우에는 중합이 진행되지 않는, 또는 중합이 되더라도 전환율이 극히 낮은 문제가 있을 수 있으므로 상기의 범위 좋다.
또한, 본 발명에 따르면, 상기 말단 봉지재가 아민계일 경우에 N/C ratio가 0.05 내지 1.0 범위일 수 있다. 바람직하게는 N/C ratio가 0.1 내지 0.75 범위일 수 있고, 더욱 바람직하게는 N/C ratio가 0.15 내지 0.7 범위일 수 있다.
상기 말단 봉지재가 우레아계일 경우에 N/C ratio가 0.05 내지 1.0 범위일 수 있다. 바람직하게는 N/C ratio가 0.1 내지 0.8 범위일 수 있고, 더욱 바람직하게는 N/C ratio가 0.15 내지 0.75 범위일 수 있다.
상기 말단 봉지재가 알코올계일 경우에 O/C ratio가 0.05 내지 1.0 범위일 수 있다. 바람직하게는 O/C ratio가 0.1 내지 0.8 범위일 수 있고, 더욱 바람직하게는 N/C ratio가 0.15 내지 0.75 범위일 수 있다.
한편, 경우에 따라서, 본 발명에 따르면 분자량 조절제를 포함할 수 있으며, 바람직하게는 에틸렌-비스-스테아마이드(EBS: ethylene-bis-stearamide)일 수 있으나, 이에 한정되는 것은 아니며, 아민(amine) 화합물, 우레아(urea) 화합물 및 디우레아(di-urea) 화합물로 이루어진 군에서 선택된 적어도 1종 이상을 포함할 수 있다.
여기서, 본 발명에 따르면, 상기 분자량 조절제는 상기 라우로락탐 전체 100 중량부에 대해, 0.3 내지 10 중량부로 포함할 수 있다. 바람직하게는 0.4 내지 7.0 중량부로 포함할 수 있고, 더욱 바람직하게는 0.5 내지3.0 중량부로 포함할 수 있다.
이 때, 상기 분자량 조절제가 0.3 중량부 미만으로 첨가되는 경우에는 고분자량 고분자 또는 겔화 문제가 있을 수 있고, 상기 분자량 조절제가 10 중량부를 초과하는 경우에는 저분자량 고분자 생성 또는 미중합 문제가 있을 수 있으므로 상기의 범위 좋다.
마지막으로, 본 발명에 따르면, 상기 활성화제로써 바람직하게는 이산화탄소(CO2)일 수 있으나, 이에 한정되는 것은 아니며, 예를 들어, 벤조일클로라이드(benzoyl chloride), N-아세틸 카프로락탐(N-acetyl caprolactam), N-아세틸 라우로락탐(N-acetyl laurolactam), 옥타데실 이소시아네이트(octadecyl isocyanate(SIC)), 톨루엔 디이소시아네이트(toluene diisocyanate(TDI)), 헥사메틸렌 디이소시아네이트(hexamethylene diisocyanate(HDI)) 및 이들의 혼합물로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
이 경우, 활성화제로 상기 이산화탄소를 사용할 경우에 매우 높은 반응성으로 인하여 과중합 혹은 부반응 현상이 나타날 수 있다. 따라서, 도 1에 나타난 바와 같이, 본 발명에 따른 말단 봉지재를 투입하는 경우에 반응이 일어나지 않도록 함으로써 락탐의 음이온 중합에서 발생되는 부반응 등을 방지하여 균일한 제품 제조가 가능할 수 있다.
여기서, 본 발명에 따르면, 상기 이산화탄소는 상기 라우로락탐 전체 100 중량부에 대해, 0.002 내지 1.0 중량부로 포함할 수 있다. 바람직하게는 0.005 내지 5 중량부로 포함할 수 있고, 더욱 바람직하게는 0.01 내지 0.1 중량부로 포함할 수 있다.
이 때, 상기 이산화탄소가 0.002 중량부 미만으로 첨가되는 경우에는 미중합 또는 반응속도 저하 문제가 있을 수 있고, 상기 이산화탄소가 1.0 중량부를 초과하는 경우에는 겔화 문제가 있을 수 있으므로 상기의 범위 좋다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예(example)를 제시한다. 다만, 하기의 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.
[실시예]
<실시예 1>
말단 봉지재(ECA)로 Hexamethylenediamine을 이용한 중합 시료의 제조
락탐 20g에 대하여 통상적인 개시제 NaH를 1mol%를 혼합하여 RB플라스크에 넣고, 질소 분위기에서 165℃까지 승온 시킨 후 30분간 충분히 혼련 시켰다. 그 다음, 시린지를 이용하여 미리 용융시켜 놓은 0.25mol%의 Hexamethylenediamine 을 주입 후 반응온도까지 혼련시키며 승온시켰다. 반응온도 도달 시 질소를 끊고 활성화제인 이산화탄소(CO2)를 주입하여 반응을 진행 시키고, 반응이 종료되면 formic acid와 증류수가 1:1(v)로 섞여있는 용액을 주입하여 활성된 음이온을 제거하여, 하기 표 1에 따른 함량을 갖는 시료를 회수하였다. 이렇게 제조된 시료에 증류수를 이용하여 세척하고, 24시간 100℃ 진공오븐에서 건조 한 후 폴리아미드의 무게를 측정 한 후 용매인 에탄올에 8시간 동안 넣어두고, 이 후 재 건조 하여 무게를 측정하여 전환율을 구한 후, 그 결과를 하기 표 2에 나타내었다.
락탐(g) | 알칼리 금속(mol%) | 말단 봉지재(mol%) | 활성화제 | ||
CO2 함량(ml) | NAC함량(ml) | ||||
실시예 1 | 20 | 1 | 0.25 | 1.7 | |
실시예 2 | 20 | 1 | 0.125 | 1.7 | |
실시예 3 | 20 | 1 | 0.125 | 1.7 | - |
실시예 4 | 20 | 1 | 0.25 | - | 0.14 |
비교예 1 | 20 | 1 | - | 1.7 |
<실시예 2>
말단 봉지재로 Dodecylamine을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 폴리아미드를 제조하였다.
<실시예 3>
말단 봉지재로 Dodecanol을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 폴리아미드를 제조하였다.
<실시예 4>
활성화제로 N-acetyl caprolactam을 1mol% 사용한 것을 제외하고 실시예 1과 동인한 방법으로 폴리아미드를 제조하였다.
[비교예]
<비교예 1>
말단 봉지재(ECA)를 사용하지 않은 것을 제외하고, 상기 실시예1과 동일한 방법으로 폴리아마이드 시료를 제조하여 전환율을 구한 후, 그 결과를 하기 표 2에 나타내었다.
분자량(g/mol) | 분자량 분포도(PDI) | 전환율(%) | |
실시예 1 | 73,500 | 2.2 | 98.4 |
실시예 2 | 69,700 | 2.2 | 98.1 |
실시예 3 | 71,800 | 2.3 | 98.9 |
실시예 4 | 77,300 | 2.3 | 98.4 |
비교예 1 | 1,254,000 | 측정 불가 | 겔화 |
상기 표 2에 나타난 바와 같이, 상기 락탐에 대하여, 상기 말단 봉지재를 포함하고, 활성화제를 NAC를 사용한 실시예4는 실시예 1 내지 실시예 2, 실시예 3과 비교하여, 다소 높은 분자량과 넓은 분자량 분포도를 나타냈다.
또한, 상기 락탐에 대하여, 상기 말단 봉지재를 포함하지 않는 비교예 1은 실시예 1과 비교하여, 매우 높은 분자량과 분자량 분포를 측정할 수 없을 정도의 겔화 현상을 보였다.
이상 본 발명의 실시예에 따른 도면을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
Claims (16)
- 말단 봉지재를 이용하여 음이온 중합 반응에 의한 폴리아마이드 제조방법으로써,락탐, 상기 락탐 전체 100 중량부에 대하여, 개시제로써 알카리 금속 0.01 내지 20 중량부, 활성화제 0.002 내지 1.0 중량부 및아민계, 우레아계 또는 알코올계 말단 봉지재를 0.1 내지 100 중량부로 포함하는 말단 봉지재를 이용한 폴리아마이드의 제조방법.
- 제 1 항에 있어서,상기 말단 봉지재는 하기 화학식 1 내지 화학식 2로 표시되는 화합물로 이루어진 군에서 선택된 적어도 1종 이상을 포함하는 것을 특징으로 하는 말단 봉지재를 이용한 폴리아마이드의 제조방법,[화학식 1]R1(CH2)x R2(CH2)y R3R1, R2, R3는 각각 독립적으로 1차, 2차, 3차 또는 4차 아민, 알코올, 아마이드, 에테르, 알킬 또는 아릴이고, x,y 또는 z 는 1 내지 20의 정수이다.[화학식 2]R1(CH2)x R2(CH2)yR3(CH2)zR4R1, R2, R3, R4 는 각각 독립적으로 1차, 2차, 3차 또는 4차 아민, 알코올, 아마이드, 에테르, 알킬 또는 아릴이고, x,y 또는 z 는 1 내지 20의 정수이다.
- 제 1 항에 있어서,상기 중합은 140 내지 250℃ 온도 범위에서 수행되는 것을 특징으로 하는 말단 봉지재를 이용한 폴리아마이드의 제조방법.
- 제 1 항에 있어서,상기 활성화제는 이산화탄소(CO2), 벤조일클로라이드(benzoyl chloride), N-아세틸 카프로락탐(N-acetyl caprolactam), N-아세틸 라우로락탐(N-acetyl laurolactam), 옥타데실 이소시아네이트(octadecyl isocyanate(SIC)), 톨루엔 디이소시아네이트(toluene diisocyanate(TDI)), 헥사메틸렌 디이소시아네이트(hexamethylene diisocyanate(HDI)) 및 이들의 혼합물로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 말단 봉지재를 이용한 폴리아마이드의 제조방법.
- 제 1 항에 있어서,상기 말단 봉지재는 지방족 아민, 방향족 아민, 지방족 우레아, 방향족 우레아, 지방족 알코올 및 방향족 알코올계 화합물로 이루어진 군에서 선택된 적어도 1종 이상을 포함하는 것을 특징으로 하는 말단 봉지재를 이용한 폴리아마이드의 제조방법.
- 제 5 항에 있어서,상기 말단 봉지재는 상기 락탐 1몰 대비 0.001 내지 1.0몰%로 포함하는 것을 특징으로 하는 말단 봉지재를 이용한 폴리아마이드의 제조방법.
- 제 1 항에 있어서,아민계, 우레아계 또는 말단 봉지재의 N/C ratio는 0.05 내지 1.0 범위 이내인 것을 특징으로 하는 말단 봉지재를 이용한 폴리아마이드의 제조방법.
- 제 1 항에 있어서,상기 알코올계 말단 봉지재의 O/C ratio는 0.05 내지 1.0 범위 이내인 것을 특징으로 하는 말단 봉지재를 이용한 폴리아마이드의 제조방법.
- 제 1 항에 있어서,상기 알카리 금속은 금속 수소화물(metal hydride), 금속 수산화물(metal hydroxide) 및 금속 알콕시화물(metal alkoxide)로 이루어진 군에서 선택된 적어도 1종 이상을 포함하는 것을 특징으로 하는 말단 봉지재를 이용한 폴리아마이드의 제조방법.
- 제 1 항에 있어서,분자량 조절제인 에틸렌-비스-스테어아마이드(EBS: ethylene-bis-stearamide), 아민(amine) 화합물, 우레아(urea) 화합물 및 디우레아(di-urea) 화합물로 이루어진 군에서 선택된 적어도 1종 이상을 더 포함하는 것을 특징으로 하는 말단 봉지재를 이용한 폴리아마이드의 제조방법.
- 제 1 항에 있어서,상기 중합 반응은 0.5 내지 120분 범위 내에서 수행되는 것을 특징으로 하는 말단 봉지재를 이용한 폴리아마이드의 제조방법.
- 제 1 항에 있어서,상기 중합 반응에서 상기 락탐은 95% 이상의 전환율을 갖는 것을 특징으로 하는 말단 봉지재를 이용한 폴리아마이드의 제조방법.
- 제 1 항 내지 제 12 항 중 어느 한 항에 따른 폴리아마이드 제조방법으로 제조된 폴리아마이드.
- 제 13 항에 있어서,상기 폴리아마이드는 3.0 이하의 분자량 분포 범위를 갖는 것을 특징으로 하는 폴리아마이드.
- 제 13 항에 있어서,상기 폴리아마이드의 중량평균분자량(Mw)은 20,000 내지 80,000 이내의 범위를 갖는 것을 특징으로 하는 폴리아마이드.
- 제 13 항에 따른 폴리아마이드를 포함하는 차량용 소재, 전자기기용 소재, 산업용 파이프 소재, 건축토목용 소재, 3D 프린터용 소재, 섬유용 소재, 피복 소재, 공작 기계용 소재, 의료용 소재, 항공용 소재, 태양광 소재, 전지용 소재, 스포츠용 소재, 가전용 소재, 가정용 소재 및 화장품용 소재로 이루어진 군에서 선택되는 것을 특징으로 하는 부품 소재.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18884305.6A EP3719049A4 (en) | 2017-11-28 | 2018-10-29 | METHOD OF MANUFACTURING POLYAMIDE USING AN END ENCAPSULATING AGENT, AND THE POLYAMIDE PRODUCED THEREOF |
CN201880077244.6A CN111491975B (zh) | 2017-11-28 | 2018-10-29 | 使用封端剂的聚酰胺的制备方法及由此制备的聚酰胺 |
JP2020549523A JP7091465B2 (ja) | 2017-11-28 | 2018-10-29 | 末端封止材を用いたポリアマイドの製造方法及びそれにより製造されたポリアマイド |
US16/767,331 US20200385520A1 (en) | 2017-11-28 | 2018-10-29 | Method for producing polyamide using terminal encapsulant and polyamide produced thereby |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170160737A KR102275688B1 (ko) | 2017-11-28 | 2017-11-28 | 말단 봉지재를 이용한 폴리아마이드의 제조 방법 및 이에 의해 제조된 폴리아마이드 |
KR10-2017-0160737 | 2017-11-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019107755A1 true WO2019107755A1 (ko) | 2019-06-06 |
Family
ID=66665693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/012908 WO2019107755A1 (ko) | 2017-11-28 | 2018-10-29 | 말단 봉지재를 이용한 폴리아마이드의 제조 방법 및 이에 의해 제조된 폴리아마이드 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200385520A1 (ko) |
EP (1) | EP3719049A4 (ko) |
JP (1) | JP7091465B2 (ko) |
KR (1) | KR102275688B1 (ko) |
CN (1) | CN111491975B (ko) |
WO (1) | WO2019107755A1 (ko) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3423372A (en) | 1963-03-11 | 1969-01-21 | Polymer Corp | Polylactams produced by the anionic polymerization of higher lactams using polymethylene polyphenyl isocyanate as promoter |
US3878173A (en) | 1971-08-25 | 1975-04-15 | Aquitaine Total Organico | Process for obtaining high molecular weight polyamides from lactams |
US4067861A (en) | 1974-11-12 | 1978-01-10 | Ato Chimie | Anionic polymerization of lactams in an extruder with controlled output rate |
EP0156129A1 (en) | 1984-02-09 | 1985-10-02 | Stamicarbon B.V. | Process for the preparation of a nylon block copolymer composition |
US4754000A (en) | 1984-07-10 | 1988-06-28 | Bayer Aktiengesellschaft | Activated anionic polymerization of lactams |
US5747634A (en) | 1996-01-25 | 1998-05-05 | Ems-Inventa Ag | Continuous process for activated anionic lactam polymerization |
EP1091991A1 (de) | 1998-06-29 | 2001-04-18 | Basf Aktiengesellschaft | Hochviskose polyisocyanate enthaltende zusammensetzungen |
KR20050106021A (ko) * | 2003-02-21 | 2005-11-08 | 디에스엠 아이피 어셋츠 비.브이. | 용융-가공가능한 폴리아마이드 조성물의 제조방법 |
KR100603151B1 (ko) * | 1998-04-03 | 2006-07-24 | 도레이 가부시끼가이샤 | 폴리아미드의 제조방법 |
KR20130097294A (ko) * | 2012-02-24 | 2013-09-03 | 지에스칼텍스 주식회사 | 고수율로 고분자량의 폴리아미드를 제조하는 방법 |
KR20140073536A (ko) * | 2011-09-28 | 2014-06-16 | 바스프 에스이 | 음이온 중합을 통한 폴리아미드의 제조 방법 |
KR20170045889A (ko) * | 2015-10-20 | 2017-04-28 | 코오롱인더스트리 주식회사 | 폴리아마이드의 제조방법 및 이를 이용하여 제조된 폴리아마이드 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3883608A (en) | 1970-11-30 | 1975-05-13 | Aquitaine Total Organico | Process for the polymerization of dodecalactam in the presence of potassium carbonate |
FR2221478B1 (ko) * | 1973-03-14 | 1977-09-30 | Monsanto Ltd | |
IT1229220B (it) * | 1989-03-31 | 1991-07-26 | Montedipe Spa | Processo per la produzione di articoli formati di grandi dimensioni, costituiti da poliammide modificata |
JP2530780B2 (ja) | 1991-08-22 | 1996-09-04 | 宇部興産株式会社 | ラウロラクタムの連続重合方法及びその装置 |
DE4405161A1 (de) | 1994-02-18 | 1995-08-24 | Huels Chemische Werke Ag | Verfahren zur kontinuierlichen hydrolytischen Polymerisation von Laurinlactam |
KR100322263B1 (ko) * | 1999-12-08 | 2002-02-06 | 김윤 | 분자량 조절제를 사용한 폴리아미드 12의 음이온 중합반응 방법 |
DE10341811B4 (de) | 2003-09-10 | 2006-09-28 | Ems-Chemie Ag | Katalysatorlösung zur Durchführung der anionischen Lactampolymerisation, Verfahren zu deren Herstellung und Polyamidformmasse |
DE102004023900A1 (de) * | 2004-05-12 | 2005-12-01 | Woco Industrietechnik Gmbh | Verfahren zur Herstellung von polymeren Verbundmaterialien sowie die nach diesem Verfahren enthaltenen Verbundmaterialien |
JP5061607B2 (ja) * | 2006-12-12 | 2012-10-31 | 東洋紡績株式会社 | ナイロン6樹脂の製造方法 |
JP5251022B2 (ja) * | 2007-07-23 | 2013-07-31 | 東洋紡株式会社 | ポリアミドフィルムおよびその製造方法 |
CN103038058B (zh) * | 2011-02-25 | 2015-04-01 | 住友理工株式会社 | 树脂制进油管及其制法 |
DE102013210424A1 (de) | 2013-06-05 | 2014-12-11 | Evonik Industries Ag | Ringöffnende Laurinlactam-Polymerisation mit latenten Initiatoren |
WO2015125886A1 (ja) * | 2014-02-21 | 2015-08-27 | 旭化成ケミカルズ株式会社 | ポリアミド樹脂組成物、ポリアミド樹脂組成物の製造方法、及び成形品 |
US20190023843A9 (en) * | 2015-07-06 | 2019-01-24 | Basf Se | Method for producing a polyamide |
-
2017
- 2017-11-28 KR KR1020170160737A patent/KR102275688B1/ko active IP Right Grant
-
2018
- 2018-10-29 CN CN201880077244.6A patent/CN111491975B/zh active Active
- 2018-10-29 EP EP18884305.6A patent/EP3719049A4/en active Pending
- 2018-10-29 JP JP2020549523A patent/JP7091465B2/ja active Active
- 2018-10-29 WO PCT/KR2018/012908 patent/WO2019107755A1/ko unknown
- 2018-10-29 US US16/767,331 patent/US20200385520A1/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3423372A (en) | 1963-03-11 | 1969-01-21 | Polymer Corp | Polylactams produced by the anionic polymerization of higher lactams using polymethylene polyphenyl isocyanate as promoter |
US3878173A (en) | 1971-08-25 | 1975-04-15 | Aquitaine Total Organico | Process for obtaining high molecular weight polyamides from lactams |
US4067861A (en) | 1974-11-12 | 1978-01-10 | Ato Chimie | Anionic polymerization of lactams in an extruder with controlled output rate |
EP0156129A1 (en) | 1984-02-09 | 1985-10-02 | Stamicarbon B.V. | Process for the preparation of a nylon block copolymer composition |
US4754000A (en) | 1984-07-10 | 1988-06-28 | Bayer Aktiengesellschaft | Activated anionic polymerization of lactams |
US5747634A (en) | 1996-01-25 | 1998-05-05 | Ems-Inventa Ag | Continuous process for activated anionic lactam polymerization |
KR100603151B1 (ko) * | 1998-04-03 | 2006-07-24 | 도레이 가부시끼가이샤 | 폴리아미드의 제조방법 |
EP1091991A1 (de) | 1998-06-29 | 2001-04-18 | Basf Aktiengesellschaft | Hochviskose polyisocyanate enthaltende zusammensetzungen |
KR20050106021A (ko) * | 2003-02-21 | 2005-11-08 | 디에스엠 아이피 어셋츠 비.브이. | 용융-가공가능한 폴리아마이드 조성물의 제조방법 |
KR20140073536A (ko) * | 2011-09-28 | 2014-06-16 | 바스프 에스이 | 음이온 중합을 통한 폴리아미드의 제조 방법 |
KR20130097294A (ko) * | 2012-02-24 | 2013-09-03 | 지에스칼텍스 주식회사 | 고수율로 고분자량의 폴리아미드를 제조하는 방법 |
KR20170045889A (ko) * | 2015-10-20 | 2017-04-28 | 코오롱인더스트리 주식회사 | 폴리아마이드의 제조방법 및 이를 이용하여 제조된 폴리아마이드 |
Non-Patent Citations (3)
Title |
---|
G. ODIAN: "Principles of Polymerization", 1981, JOHN WILEY & SONS, pages: 541 |
M. P. STEVENS: "Polymer Chemistry", 1990, OXFORD UNIVERSITY PRESS, pages: 429 |
See also references of EP3719049A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3719049A4 (en) | 2021-08-25 |
US20200385520A1 (en) | 2020-12-10 |
KR20190061892A (ko) | 2019-06-05 |
CN111491975A (zh) | 2020-08-04 |
CN111491975B (zh) | 2023-05-09 |
EP3719049A1 (en) | 2020-10-07 |
KR102275688B1 (ko) | 2021-07-12 |
JP7091465B2 (ja) | 2022-06-27 |
JP2021508354A (ja) | 2021-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102287634B1 (ko) | 음이온 개환 중합에 의한 폴리아마이드의 제조 방법 및 이에 의해 제조된 폴리아마이드 | |
WO2019098569A1 (ko) | 활성화제 투입 방식 조절을 통한 폴리아마이드 제조방법 및 이에 의해 제조된 폴리아마이드 | |
WO2019107758A1 (ko) | 아마이드계-분자량조절제를 포함하는 폴리아마이드 제조방법 및 이에 의해 제조된 폴리아마이드 | |
WO2019107756A1 (ko) | 이중 활성기를 지닌 분자량조절제를 이용한 폴리아마이드 제조방법 및 이에 의해 제조된 폴리아마이드 | |
WO2019093729A2 (ko) | 음이온 개환 중합에 의한 폴리아마이드의 제조 방법 및 이에 의해 제조된 폴리아마이드 | |
WO2019098570A1 (ko) | 배위-음이온 개환 중합에 의한 폴리아마이드의 제조 방법 및 이에 의해 제조된 폴리아마이드 | |
WO2019107755A1 (ko) | 말단 봉지재를 이용한 폴리아마이드의 제조 방법 및 이에 의해 제조된 폴리아마이드 | |
WO2020116791A1 (ko) | 음이온 개환 공중합에 의한 폴리아마이드 제조방법 및 이에 제조된 폴리아마이드 | |
WO2020130326A1 (ko) | 실리카계 촉매를 이용한 배위-음이온 개환 중합에 의한 폴리아마이드의 제조방법 및 이에 의해 제조된 폴리아마이드 | |
US3671500A (en) | Lactam polymerization with n,n{40 -dialkyl-azetidinedione initiators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18884305 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020549523 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018884305 Country of ref document: EP Effective date: 20200629 |