WO2019107589A1 - Ribbon soldering apparatus for thin silicon solar cell module - Google Patents

Ribbon soldering apparatus for thin silicon solar cell module Download PDF

Info

Publication number
WO2019107589A1
WO2019107589A1 PCT/KR2017/013776 KR2017013776W WO2019107589A1 WO 2019107589 A1 WO2019107589 A1 WO 2019107589A1 KR 2017013776 W KR2017013776 W KR 2017013776W WO 2019107589 A1 WO2019107589 A1 WO 2019107589A1
Authority
WO
WIPO (PCT)
Prior art keywords
ribbon
cell
solar cell
soldering
module
Prior art date
Application number
PCT/KR2017/013776
Other languages
French (fr)
Korean (ko)
Inventor
김학동
정인수
최규훈
금재열
김슬기
Original Assignee
주식회사 씨엔아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 씨엔아이 filed Critical 주식회사 씨엔아이
Priority to PCT/KR2017/013776 priority Critical patent/WO2019107589A1/en
Publication of WO2019107589A1 publication Critical patent/WO2019107589A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a ribbon soldering apparatus for a thin silicon solar cell module, and more particularly, to a ribbon soldering apparatus for a thin silicon solar cell module that automatically transfers and sold a plurality of solar cells and a ribbon.
  • a solar cell converts the energy of solar light into electric energy, and is usually realized by arranging a plurality of solar cells in rows and columns. At this time, the solar cell is largely divided into a silicon semiconductor as a material and a compound semiconductor as materials, and silicon is widely used because of its high productivity and reliability.
  • the solar cell includes a solar cell module in which square-shaped solar cells are connected by a metal ribbon (hereinafter, referred to as ribbon).
  • ribbon is welded to each solar cell Lt; / RTI >
  • a prior art related thereto is disclosed in Patent Publication No. 10-2012-0033691 under the name of a solar cell ribbon soldering apparatus and method.
  • the solar cell module is composed of several tens of solar cells, for example, 24 solar cells, it is a very important factor to increase the productivity of the solar cell by accurately and quickly soldering the ribbon to the finger electrode of each solar cell. Accordingly, there is a growing need for a technique for automatically performing a series of processes for supplying solar cells, supplying the ribbon, and automatically soldering the supplied ribbon to the finger electrode of the solar cell.
  • a ribbon soldering apparatus for a thin silicon solar cell module includes a robot 10 for picking up and transferring a solar cell C loaded from a cassette Ca, (20) for aligning the position of the solar cell (C) to be picked up by the aligner (10), a cell for transporting the solar cell (C)
  • a ribbon supply unit 50 for supplying a plurality of ribbons R and a table T for installing a solar cell C on which the paste is applied and a module stage 60 on which the plurality of ribbons R are arranged , And a pair of base gauges provided on both sides of the module stage (60)
  • An operation guide rail 110 which is transported on the drain 111;
  • the cell pickup transfer unit 120 is installed to be transferred to one side of the operation guide rail 110 and includes a cell pickup cell 120 for picking up and transferring the solar cell C between the cell transfer unit 30 and the module stage 60, ;
  • the cell pickup transport unit 120 includes a first slider 121 transported on the operation guide rail 110; A first vertical rail 122 installed on the first slider 121; A first vertical rake bracket 123 installed on the first vertical rail 122 to be elevated; And a pick-up head 124 supported by the first lifting bracket 123 and having a plurality of suction nozzles 124a for suctioning the corner side of the solar cell C.
  • the ribbon pickup transfer unit 130 includes: a second slider 131 transferred on the operation guide rail 110; A second vertical rail 132 installed on the second slider 131; A second lifting bracket 133 installed on the second vertical rail 132 so as to be lifted and lowered; And a ribbon pick-up head 134 supported by the second lifting bracket 133 and having a plurality of suction nozzles 134a for simultaneously attracting a plurality of ribbons R seated on the ribbon stage 53 do.
  • the soldering portion 140 includes a third slider 141 to be transferred on the operation guide rail 110; A third vertical rail 142 installed on the third slider 141; A third lifting bracket 143 mounted on the third vertical rail 142 so as to be lifted and lowered; And a soldering head 144 supported by the third lifting bracket 143 for soldering the plurality of ribbons R to the finger electrodes E.
  • a pair of electrode tips 144a and 144b are provided at both ends of the soldering head 144 and press both ends of the ribbon R seated on the finger electrode E.
  • a plurality of pressing tips 144c are provided between the pair of electrode tips 144a and 144b to elastically press the soldering head 144 downward.
  • the cell pickup section, the ribbon pickup section, and the soldering section are independently transported on the operation guide rail, pickup and transport of the solar cell C, pickup and transport of the plurality of ribbons R, A series of operations for soldering the solar cell module R to the finger electrode E of the solar cell cell are automatically performed so that the solar cell module M in which the solar cell C is connected by a plurality of ribbons R It can be manufactured quickly and accurately, and productivity can be improved.
  • the ribbon R can be uniformly soldered to the finger electrode E, it is possible to realize a solar cell module with a constant quality.
  • FIG. 1 is a view illustrating a ribbon soldering apparatus for a thin silicon solar cell module according to the present invention installed on a table
  • Fig. 2 is a side view of Fig. 1,
  • FIG. 3 is a perspective view showing the robot, the cell, and the paste dispenser of FIG. 1,
  • FIG. 4 is a view for explaining a cell transferring and paste transferring unit of FIG. 3,
  • Fig. 5 is a perspective view illustrating the ribbon supply unit of Fig. 1,
  • FIG. 6 is a perspective view illustrating the module stage of FIG. 1,
  • FIG. 7 is a perspective view illustrating the module transfer of FIG. 1,
  • FIG. 8 is a perspective view showing the ribbon soldering apparatus of the present invention shown in FIG. 1,
  • Fig. 9 is a plan view of the ribbon soldering apparatus of Fig. 8,
  • Fig. 10 is a front view of the ribbon soldering apparatus of Fig. 8,
  • FIG. 11 is a perspective view illustrating the cell pickup of FIG. 8 through FIG. 10,
  • FIG. 12 is a perspective view illustrating the cell pickup of FIG. 8 through FIG. 10,
  • FIG. 13 is a perspective view showing the soldering portion of FIGS. 8 to 10,
  • FIG. 1 is a view for explaining that a ribbon soldering apparatus for a thin silicon solar cell module according to the present invention is installed on a table
  • FIG. 2 is a side view of FIG.
  • a ribbon soldering apparatus (100) for a thin silicon solar cell module comprises a robot (10) picking up and transferring a solar cell (C) loaded from a cassette (Ca); An aligner (20) for aligning the position of the solar cell (C) picked up by the robot (10); A cell transfer section 30 for transferring the solar cell C aligned by the aligner 20; A paste dispenser 40 for applying a conductive paste to the finger electrode E of the solar cell C transferred by the cell transfer section 30; A ribbon supply unit (50) for supplying a plurality of ribs (R) cut by a predetermined length; A module stage 60 in which a plurality of ribbon Rs are arranged and a solar cell module M in which a ribbon R is composed of a plurality of solar cells C soldered On the table T on which the module transfer 70 for picking up and transferring the module transfer 70 is mounted.
  • the solar cell C includes a large number of finger electrodes formed on both sides, that is, four finger electrodes E in this embodiment.
  • a plurality of (R) ribbons R are soldered to each of the finger electrodes E on both sides of the solar cell C to form a solar cell module M in which the solar cell and the other solar cell are connected to each other .
  • FIG. 3 is a perspective view showing the robot, the cell, and the paste dispenser of FIG. 1
  • FIG. 4 is a view for explaining a cell transferring and paste transferring unit of FIG.
  • Fig. 6 is a perspective view showing an excerpt of the module stage of Fig. 1
  • Fig. 7 is a perspective view showing an excerpt of the module transfer of Fig. 1. As shown in Fig.
  • the robot 10 includes an arm 12 rotated by a robot body 11 supported on a table T, and an arm 12 mounted on the arm 12 and mounted on the cassette Ca, And a pick-up head 13 for picking up the battery cell C.
  • the aligner 20 includes a vision camera installed inside the table T on the rotation path of the pickup head 13 of the robot as shown in Figs.
  • the aligner 20 generates alignment information of the solar cell C picked up on the pick-up head 13 so that the pickup head 13 picks up the solar cell C from the cell- So that it can be accurately mounted on the cell stage 33.
  • the cell conveying section 30 includes a cell conveying guide rail 31 supported on the table T, a driving slider 32 conveyed on the cell conveying guide rail 31, A cell stage 33 on which an aligned solar cell C transported by the cell array 10 is mounted and a cell stage pivotal portion 34 for rotatably supporting the cell stage 33 on the driving slider 32, .
  • a plurality of electrode exposed line holes 33a are formed so that the finger electrodes E formed on the back surface of the solar cell C to be mounted on the cell stage 33 are exposed downward.
  • the cell stage 33 transports the aligned aligned solar cell C between the paste dispenser 40 and the module stage 60. At this time, on the surface of the cell stage 33, there are formed a plurality of adsorption holes (not shown) in which adsorption vacuum pressure is formed so as to maintain the state where the solar cell C is fixed during transportation.
  • the cell stage swivel portion 34 applies a paste to the finger electrode E on the front surface of the solar cell C after the paste dispenser 40 described later is applied to the finger electrode formed on the back surface of the solar cell C
  • the cell stage 33 is rotated by 180 DEG to apply the paste.
  • the finger electrode on the back surface of the solar cell C is exposed to the paste dispenser 40 side through the electrode exposure line hole 33a by the cell stage swivel portion 34.
  • the paste dispenser 40 is for applying a conductive paste to the finger electrode E of the solar cell C mounted on the cell stage 33. 3 and 4, the paste dispenser 40 includes a plurality of discharge nozzles (four discharge nozzles 41 in this embodiment) for discharging the paste, and a plurality of discharge nozzles 41 for supporting the discharge nozzles 41 A bracket 42 and a support 43 for supporting the bracket 42 on the table.
  • the cell is then conveyed by the conveyor 30 and the paste dispenser 40.
  • the aligned cell cell C transported by the pick-up head 13 is seated on the cell stage 33 and the cell stage 33 is transported on the cell transport guide rail 31 by the drive slider 32
  • the discharge nozzle 41 is transported to the lower side of the paste dispenser 40.
  • the discharge nozzle 41 is electrically connected to the finger electrode E on the front surface of the solar cell C transferred by the cell stage, .
  • the conductive slider 32 moves the cell stage 33 away from the position corresponding to the paste dispenser 40 and the cell stage 33
  • the coil 34 rotates the cell stage 33 to expose the finger electrode on the back surface of the solar cell C through the electrode exposure line hole 33a and by repeating the above operation, And the conductive face is applied to the finger electrode exposed through the exposed line hole 33a.
  • the ribbon supply unit 50 includes a plurality of ribbon supply wheels 51, in this embodiment, four ribbon supply wheels 51; A cutter (52) for cutting the ribbon (R) supplied independently from the plurality of ribbon supply wheels (51) by a predetermined length; And a ribbon stage 53 in which a plurality of seating grooves 53a on which the ribbon R cut by the cutter 52 is seated is formed. A plurality of ribbons supplied from the ribbon supply wheel 51 are cut to a predetermined length via the cutter 52 and the cut ribbons R are inserted into the seating grooves 53a of the ribbon stage 53, Respectively.
  • the module stage 60 is provided inside the table T and includes a plurality of suction holes (not shown) for sucking and fixing the photovoltaic cell C coated with the paste, And a plurality of ribbon placement grooves 61 in which a plurality of ribbons R are disposed.
  • the module stage 60 has a structure in which the solar cell C is arranged in six rows and four columns.
  • the module transfer 70 includes: a column 71 supported by an outer table of the module stage 60; A conveying guide rail 72 supported by the column 71; A feed slider 73 which is fed to the feed guide rail 72; A lifting bracket 74 which is lifted and lowered by the transfer slider 73; And a module feed pick-up 75 for picking up and transporting the solar cell module M composed of a plurality of cells C supported on the module stage 60 and supported by the lift brackets 74.
  • the module transfer 110 transfers the module transfer pick- The module transfer pick-up 115 is transferred to the outside of the table T to transfer the picked-up solar cell module M to the module M side.
  • FIG. 8 is a perspective view showing the ribbon soldering apparatus of the present invention shown in FIG. 1
  • FIG. 9 is a plan view of the ribbon soldering apparatus of FIG. 8
  • FIG. 10 is a front view of the ribbon soldering apparatus of FIG.
  • the ribbon soldering apparatus 100 for a thin silicon solar cell module according to the present invention installed in the table T of FIGS. 1 and 2 is mounted on a pair of base guide rails 111 provided on both sides of the module stage 60 An operation guide rail 110; A cell pickup transfer unit 120 which is installed to be transferred to one side of the operation guide rail 110 and which picks up and transfers the solar cell C between the cell transfer unit 30 and the module stage 60; A ribbon pickup transferring part 130 installed to be transferred to the other side of the operation guide rail 110 and picking up and transferring a plurality of ribbons R between the ribbon supply unit 50 and the module stage 60; A soldering portion 140 installed to be transferred to the operation guide rail 110 between the cell pickup 120 and the ribbon pickup transferring portion 130 and soldering the ribbon R to the finger electrode C; .
  • the operation guide rails 110 are transportably supported on a pair of base guide rails 1111 provided on both sides of the module stage 60, as shown in Fig.
  • the cell pickup-up transfer unit 120, the ribbon pickup transfer unit 130, and the soldering unit 140 are independently transportably installed on the operation guide rail 110, and operate independently of each other.
  • Fig. 11 is a perspective view showing the cell pickup of Figs.
  • the cell pickup transfer unit 120 is provided so as to be transferable to one side of the operation guide rail 110 and picks up and transfers the solar cell C between the cell transfer unit 30 and the module stage 60.
  • the cell pickup transfer unit 120 includes a first slider 121 to be transported on the operation guide rail 110; A first vertical rail 122 installed on the first slider 121; A first vertical rake bracket 123 mounted on the first vertical rail 122 so as to be raised and lowered; And a pick-up head 124 supported by the first lifting bracket 123 and having a plurality of suction nozzles 124a for suctioning the corner side of the solar cell C.
  • the pickup head 124 is moved on the operation guide rail 110 by the first slider 121 and moved to the position corresponding to the cell stage 33 of the sending section 30 by the cell pickup- And then the first lifting bracket 123 is lifted on the first vertical rail 122 to pick up the solar cell C that is seated on the cell stage 33 and then the pickup head 124 is transported
  • the photovoltaic cell C is placed on the small section of the module stage 60.
  • FIG. 12 is a perspective view illustrating the cell pickup of FIG. 8 through FIG.
  • the ribbon pick-up transfer unit 130 is provided so as to be transferable to the other side of the operation guide rail 110 to pick up and transfer the plurality of ribbons between the ribbon supply unit 50 and the module stage 60.
  • the ribbon pickup transfer unit 130 includes a second slider 131 to be transferred on the operation guide rail 110; A second vertical rail 132 installed on the second slider 131; A second lifting bracket 133 mounted on the second vertical rail 132 so as to be lifted and lowered; And a ribbon pick-up head 134 supported by the second lifting bracket 133 and having a plurality of suction nozzles 134a for simultaneously attracting a plurality of ribbons R seated on the ribbon stage 53.
  • the ribbon pick-up head 134 is transported on the operation guide rail 110 by the second slider 131 to be transported to the ribbon stage 53 of the ribbon supply unit 50 And then the second lifting bracket 133 is lifted and lowered on the second vertical rail 132 to pick up a plurality of ribbons R seated on the ribbon stage 53 at one time,
  • the plurality of ribbons R are mounted on the finger electrode F of the solar cell C or the ribbon placement groove 61 of the module stage.
  • FIG. 13 is a perspective view illustrating the soldering portion of FIGS. 8 to 10.
  • FIG. 13 is a perspective view illustrating the soldering portion of FIGS. 8 to 10.
  • the soldering portion 140 is soldered to the finger electrode C while being transferred to the operation guide rail 110 between the cell pickup transfer portion 120 and the ribbon pickup transfer portion 130.
  • the soldering portion 140 includes a third slider 141 to be transported on the operation guide rail 110; A third vertical rail 142 installed on the third slider 141; A third lifting bracket 143 mounted on the third vertical rail 142 so as to move up and down; And a soldering head 144 supported by the third lifting bracket 143 for soldering a plurality of ribbons R to the finger electrodes E.
  • Both ends of the soldering head 144 include a pair of electrode tips 144a and 144b for pressing both ends of the ribbon R that are seated on the finger electrode E.
  • the electrode tips 144a and 144b supply power to the ribbon R for a power supply of, for example, 150 to 160 V for about three seconds to heat the ribbon R itself,
  • the ribbon (R) and the finger electrode (E) are soldered.
  • a plurality of pressing tips 144c are provided between the pair of electrode tips 144a and 144b so as to be elastically pressed downward from the soldering head 144.
  • This pressure tip 144c is elastically pressed downward from the soldering head 144 so that the pressure tip 144c evenly presses the ribbon R between the electrode tips 144a and 144b, To be evenly soldered to the finger electrode (E).
  • the soldering head 144 is moved by the third slider 141 to the position corresponding to the photovoltaic cell C that is carried on the operation guide rail 110 and is seated on the module stage 60 by the soldering part 140, And then the third lift bracket 143 is lifted and lowered on the third vertical rail 142 so that the electrode tips 144a and 144b of the soldering head 144 and the pressure tip 144c are moved to the finger electrodes E And presses the plurality of placed ribbons R.
  • a plurality of ribbons R are soldered to the finger electrodes E at once by applying power to the electrode tips 144a and 144b to heat the ribbon R and the conductive paste.
  • the cell pickup transfer section 120, the ribbon pickup transfer section 130 and the soldering section 140 are independently transported on the operation guide rail 110 to pick up and transport the solar cell C, A series of operations for soldering the plurality of ribbons R to the finger electrode E of the solar cell are automatically performed so that the solar cell C is divided into a plurality of ribbons R
  • the solar cell module M can be manufactured quickly and accurately, and productivity can be improved.
  • the ribbon R can be uniformly soldered to the finger electrode E, it is possible to realize a solar cell module with a constant quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a ribbon soldering apparatus for a thin silicon solar cell module, the apparatus being provided on a table (T) having a robot (10) for picking up and transporting a solar cell (C) loaded from a cassette (Ca), a cell transport unit (30) for transporting the solar cell (C) picked up by the robot (10), a paste dispenser (40) for applying a conductive paste on finger electrodes (E) of the solar cell (C) transported by the cell transport unit (30), a ribbon supply unit (50) for supplying a plurality of ribbons (R) cut into predetermined lengths, and a module stage (60) having the paste-coated solar cell (C) and the plurality of ribbons (R) arranged thereon. The ribbon soldering apparatus comprises: a working guide rail (110) transported on one pair of base guide rails (111) provided on both sides of the module stage (60); a cell pickup and transport unit (120), which is provided on one side of the working guide rail (110) so as to be transported, and picks up and transports the solar cell (C) between the cell transport unit (30) and the module stage (60); a ribbon pickup and transport unit (130), which is provided on the other side of the working guide rail (110) so as to be transported, and picks up and transports the plurality of ribbons (R) between the ribbon supply unit (50) and the module stage (60); and a soldering unit (140), which is provided on the working guide rail (110) between the cell pickup and transport unit (120) and the ribbon pickup and transport unit (130) so as to be transported, and solders the ribbons (R) to the finger electrodes (C).

Description

박형 실리콘 태양전지모듈용 리본 솔더링 장치Ribbon Soldering Device for Thin Silicon Solar Module
본 발명은 박형 실리콘 태양전지모듈용 리본 솔더링 장치에 관한 것으로서, 더욱 상세하게는 다수의 태양전지셀 및 리본을 자동으로 이송 및 솔더링하는 박형 실리콘 태양전지모듈용 리본 솔더링 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ribbon soldering apparatus for a thin silicon solar cell module, and more particularly, to a ribbon soldering apparatus for a thin silicon solar cell module that automatically transfers and sold a plurality of solar cells and a ribbon.
태양전지란 태양빛의 에너지를 전기에너지로 바꾸는 것으로, 통상 다수개의 태양전지셀이 행 및 열로 배치되어 구현된다. 이때 태양전지셀은 실리콘 반도체를 재료로 사용하는 것과 화합물 반도체를 재료로 하는 것으로 크게 대별되는데, 이중 실리콘을 재료로 하는 것이 생산성 및 신뢰성이 높아 널리 사용되고 있다. A solar cell converts the energy of solar light into electric energy, and is usually realized by arranging a plurality of solar cells in rows and columns. At this time, the solar cell is largely divided into a silicon semiconductor as a material and a compound semiconductor as materials, and silicon is widely used because of its high productivity and reliability.
한편 태양전지는, 사각형태의 태양전지셀들이 금속 리본(metal ribbon, 이하, 리본이라 함)에 의하여 연결되는 태양전지모듈을 포함하며, 이때 리본은 웰딩(welding) 공정에 의하여 각각의 태양전지셀에 형성된 핑거전극에 솔더링되었다. 이와 관련된 선행기술이 특허공개번호 10-2012-0033691호에 태양전지 리본 솔더링 장치 및 방법이란 명칭으로 개시되어 있다. Meanwhile, the solar cell includes a solar cell module in which square-shaped solar cells are connected by a metal ribbon (hereinafter, referred to as ribbon). The ribbon is welded to each solar cell Lt; / RTI > A prior art related thereto is disclosed in Patent Publication No. 10-2012-0033691 under the name of a solar cell ribbon soldering apparatus and method.
그런데 태양전지모듈을 수십장, 예를 들면 24 장의 태양전지셀로 구성되기 때문에, 각각의 태양전지셀의 핑거전극에 리본을 정확하고 빠르게 솔더링하는 것은 태양전지의 생산성을 높이는 매우 중요한 요소이다. 따라서 태양전지셀의 공급과, 리본의 공급과, 공급된 리본을 태양전지셀의 핑거전극에 자동으로 솔더링하는 일련의 공정들이 자동으로 수행되도록 하는 기술의 필요성이 커지고 있다. However, since the solar cell module is composed of several tens of solar cells, for example, 24 solar cells, it is a very important factor to increase the productivity of the solar cell by accurately and quickly soldering the ribbon to the finger electrode of each solar cell. Accordingly, there is a growing need for a technique for automatically performing a series of processes for supplying solar cells, supplying the ribbon, and automatically soldering the supplied ribbon to the finger electrode of the solar cell.
본 발명은 상기와 같은 필요성을 충족하기 위하여 창출된 것으로서, 다수의 태양전지셀과 리본을 자동으로 이송 및 솔더링함으로써, 생산성을 높일 수 있는 박형 실리콘 태양전지모듈용 리본 솔더링 장치를 제공하는 것을 목적으로 한다. It is an object of the present invention to provide a ribbon soldering apparatus for a thin silicon solar module capable of increasing productivity by automatically transferring and soldering a plurality of solar cells and ribbons to meet the above needs do.
상기와 같은 목적을 달성하기 위하여, 본 발명에 따른 박형 실리콘 태양전지모듈용 리본 솔더링 장치는, 카세트(Ca)로부터 적재된 태양전지셀(C)을 픽업 및 이송하는 로봇(10)과, 상기 로봇(10)에 의하여 픽업 이송되는 태양전지셀(C)의 위치를 얼라인하기 위한 얼라이너(20)와, 상기 얼라이너(20)에 의하여 얼라인된 상기 태양전지셀(C)을 이송하는 셀이송부(30)와, 상기 셀이송부(30)에 의하여 이송된 상기 태양전지셀(C)의 핑거전극(E)에 전도성 페이스트를 도포하는 페이스트 디스펜서(40)와, 상기 일정한 길이만큼 절단된 다수의 리본(R)을 공급하는 리본공급유닛(50)과, 상기 페이스트가 도포된 태양전지셀(C) 및 상기 다수의 리본(R)이 배치되는 모듈스테이지(60)가 설치되는 테이블(T)에 설치되는 것으로서, 상기 모듈스테이지(60) 양측에 설치된 한쌍의 베이스가이드레일(111) 상에서 이송되는 작동가이드레일(110); 상기 작동가이드레일(110)의 일측에 이송되게 설치되는 것으로서, 상기 셀이송부(30)와 모듈스테이지(60) 사이에서 상기 태양전지셀(C)을 픽업 및 이송하는 셀픽업이송부(120); 상기 작동가이드레일(110)의 타측에 이송되게 설치되는 것으로서, 상기 리본공급유닛(50)과 모듈스테이지(60) 사이에서 상기 다수의 리본(R)을 픽업 및 이송하는 리본픽업이송부(130); 및 상기 셀픽업이송부(120)와 리본픽업이송부(130) 사이의 작동가이드레일(110)에 이송되게 설치되는 것으로서, 상기 리본(R)을 상기 핑거전극(C)에 솔더링하는 솔더링부(140);를 포함하는 것을 특징으로 한다. In order to achieve the above object, a ribbon soldering apparatus for a thin silicon solar cell module according to the present invention includes a robot 10 for picking up and transferring a solar cell C loaded from a cassette Ca, (20) for aligning the position of the solar cell (C) to be picked up by the aligner (10), a cell for transporting the solar cell (C) A paste dispenser 40 for applying a conductive paste to the finger electrode E of the solar cell C transferred by the cell transfer section 30, A ribbon supply unit 50 for supplying a plurality of ribbons R and a table T for installing a solar cell C on which the paste is applied and a module stage 60 on which the plurality of ribbons R are arranged , And a pair of base gauges provided on both sides of the module stage (60) An operation guide rail 110 which is transported on the drain 111; The cell pickup transfer unit 120 is installed to be transferred to one side of the operation guide rail 110 and includes a cell pickup cell 120 for picking up and transferring the solar cell C between the cell transfer unit 30 and the module stage 60, ; The ribbon pick-up transferring unit 130, which is installed to be transferred to the other side of the operation guide rail 110 and picks up and transfers the plurality of ribbons R between the ribbon supply unit 50 and the module stage 60, ; And a soldering part for soldering the ribbon R to the finger electrode C, which is installed to be transferred to the operation guide rail 110 between the transfer part 120 and the ribbon pickup transfer part 130, 140). ≪ / RTI >
본 발명에 있어서, 상기 셀픽업이송부(120)는, 상기 작동가이드레일(110) 상에서 이송되는 제1슬라이더(121)와; 상기 제1슬라이더(121)에 설치되는 제1수직레일(122)과; 상기 제1수직레일(122)에 승강되게 설치되는 제1승강브라켓(123)과; 상기 제1승강브라켓(123)에 지지되는 것으로서 상기 태양전지셀(C)의 모서리측을 흡착하는 다수의 흡착노즐(124a)을 가지는 픽업헤드(124);를 포함한다.In the present invention, the cell pickup transport unit 120 includes a first slider 121 transported on the operation guide rail 110; A first vertical rail 122 installed on the first slider 121; A first vertical rake bracket 123 installed on the first vertical rail 122 to be elevated; And a pick-up head 124 supported by the first lifting bracket 123 and having a plurality of suction nozzles 124a for suctioning the corner side of the solar cell C.
본 발명에 있어서, 상기 리본픽업이송부(130)는, 상기 작동가이드레일(110) 상에서 이송되는 제2슬라이더(131)와; 상기 제2슬라이더(131)에 설치되는 제2수직레일(132)과; 상기 제2수직레일(132)에 승강되게 설치되는 제2승강브라켓(133)과; 상기 제2승강브라켓(133)에 지지되는 것으로서 상기 리본스테이지(53)에 안착된 다수의 리본(R)을 동시에 흡착하기 위한 다수의 흡착노즐(134a)을 가지는 리본픽업헤드(134);를 포함한다.In the present invention, the ribbon pickup transfer unit 130 includes: a second slider 131 transferred on the operation guide rail 110; A second vertical rail 132 installed on the second slider 131; A second lifting bracket 133 installed on the second vertical rail 132 so as to be lifted and lowered; And a ribbon pick-up head 134 supported by the second lifting bracket 133 and having a plurality of suction nozzles 134a for simultaneously attracting a plurality of ribbons R seated on the ribbon stage 53 do.
본 발명에 있어서, 상기 솔더링부(140)는, 상기 작동가이드레일(110) 상에서 이송되는 제3슬라이더(141)와; 상기 제3슬라이더(141)에 설치되는 제3수직레일(142)과; 상기 제3수직레일(142)에 승강되게 설치되는 제3승강브라켓(143)과; 상기 제3승강브라켓(143)에 지지되는 것으로서 상기 다수의 리본(R)을 상기 핑거전극(E)에 솔더링하기 위한 솔더링헤드(144);를 포함한다.In the present invention, the soldering portion 140 includes a third slider 141 to be transferred on the operation guide rail 110; A third vertical rail 142 installed on the third slider 141; A third lifting bracket 143 mounted on the third vertical rail 142 so as to be lifted and lowered; And a soldering head 144 supported by the third lifting bracket 143 for soldering the plurality of ribbons R to the finger electrodes E.
본 발명에 있어서, 상기 솔더링헤드(144)의 양단에 설치된 것으로서, 상기 핑거전극(E)에 안착된 리본(R) 양단을 가압하는 한쌍의 전극팁(144a)(144b)을 포함한다. A pair of electrode tips 144a and 144b are provided at both ends of the soldering head 144 and press both ends of the ribbon R seated on the finger electrode E.
본 발명에 있어서, 상기 한쌍의 전극팁(144a)(144b) 사이에는 상기 솔더링헤드(144)로부터 하방측으로 탄성 가압되도록 하는 다수의 가압팁(144c)이 설치된다. In the present invention, a plurality of pressing tips 144c are provided between the pair of electrode tips 144a and 144b to elastically press the soldering head 144 downward.
본 발명에 따르면, 작동가이드레일 상에서 셀픽업이송부, 리본픽업이송부 및 솔더링부가 독립적으로 이송되면서 태양전지셀(C)의 픽업 및 이송, 다수의 리본(R)의 픽업 및 이송, 다수의 리본(R)을 태양전지셀의 핑거전극(E)에 솔더링하는 일련의 동작들이 자동으로 진행됨으로서, 태양전지셀(C)이 다수의 리본(R)으로 연결되어 구현되는 태양전지모듈(M)을 빠르고 정확하게 제조할 수 있어 생산성을 높일 수 있다.According to the present invention, as the cell pickup section, the ribbon pickup section, and the soldering section are independently transported on the operation guide rail, pickup and transport of the solar cell C, pickup and transport of the plurality of ribbons R, A series of operations for soldering the solar cell module R to the finger electrode E of the solar cell cell are automatically performed so that the solar cell module M in which the solar cell C is connected by a plurality of ribbons R It can be manufactured quickly and accurately, and productivity can be improved.
또한 리본(R)을 핑거전극(E)에 고르게 솔더링할 수 있어 일정한 품질의 태양전지모듈의 구현이 가능하다. In addition, since the ribbon R can be uniformly soldered to the finger electrode E, it is possible to realize a solar cell module with a constant quality.
그리고 솔더링이 자동으로 이루어지므로, 작업자가 해로운 솔더 증기에 노출되지 않게 되어 작업 환경을 개선할 수 있다. And because the soldering is done automatically, the worker is not exposed to harmful solder vapors and the work environment can be improved.
도 1은 본 발명에 따른 박형 실리콘 태양전지모듈용 리본 솔더링 장치가 테이블에 설치된 것을 설명하기 위한 도면,1 is a view illustrating a ribbon soldering apparatus for a thin silicon solar cell module according to the present invention installed on a table,
도 2는 도 1의 측면도, Fig. 2 is a side view of Fig. 1,
도 3은 도 1의 로봇, 셀이송부 및 페이스트 디스펜서를 발췌하여 도시한 사시도,FIG. 3 is a perspective view showing the robot, the cell, and the paste dispenser of FIG. 1,
도 4는 도 3의 셀이송부 및 페이스트 이송부를 설명하기 위한 도면,FIG. 4 is a view for explaining a cell transferring and paste transferring unit of FIG. 3,
도 5는 도 1의 리본공급유닛을 발췌하여 도시한 사시도, Fig. 5 is a perspective view illustrating the ribbon supply unit of Fig. 1,
도 6은 도 1의 모듈스테이지를 발췌하여 도시한 사시도,FIG. 6 is a perspective view illustrating the module stage of FIG. 1,
도 7은 도 1의 모듈트랜스퍼를 발췌하여 도시한 사시도, FIG. 7 is a perspective view illustrating the module transfer of FIG. 1,
도 8은도 1에 도시된 본 발명의 리본 솔더링 장치를 발췌하여 도시한 사시도,FIG. 8 is a perspective view showing the ribbon soldering apparatus of the present invention shown in FIG. 1,
도 9는 도 8의 리본 솔더링 장치의 평면도,Fig. 9 is a plan view of the ribbon soldering apparatus of Fig. 8,
도 10은 도 8의 리본 솔더링 장치의 정면도, Fig. 10 is a front view of the ribbon soldering apparatus of Fig. 8,
도 11은 도 8 내지 도 10의 셀픽업이송부를 발췌하여 도시한 사시도,FIG. 11 is a perspective view illustrating the cell pickup of FIG. 8 through FIG. 10,
도 12는 도 8 내지 도 10의 셀픽업이송부를 발췌하여 도시한 사시도,FIG. 12 is a perspective view illustrating the cell pickup of FIG. 8 through FIG. 10,
도 13은 도 8 내지 도 10의 솔더링부를 발췌하여 도시한 사시도,FIG. 13 is a perspective view showing the soldering portion of FIGS. 8 to 10,
이하, 본 발명에 따른 박형 실리콘 태양전지모듈용 리본 솔더링 장치를 첨부된 도면들을 참조하여 상세히 설명한다. Hereinafter, a ribbon soldering apparatus for a thin silicon solar cell module according to the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 박형 실리콘 태양전지모듈용 리본 솔더링 장치가 테이블에 설치된 것을 설명하기 위한 도면이고, 도 2는 도 1의 측면도이다. FIG. 1 is a view for explaining that a ribbon soldering apparatus for a thin silicon solar cell module according to the present invention is installed on a table, and FIG. 2 is a side view of FIG.
본 발명에 따른 박형 실리콘 태양전지모듈용 리본 솔더링 장치(100)는, 카세트(Ca)로부터 적재된 태양전지셀(C)을 픽업 및 이송하는 로봇(10)과; 로봇(10)에 의하여 픽업 이송되는 태양전지셀(C)의 위치를 얼라인하기 위한 얼라이너(20)와; 얼라이너(20)에 의하여 얼라인된 상기 태양전지셀(C)을 이송하는 셀이송부(30)와; 셀이송부(30)에 의하여 이송된 상기 태양전지셀(C)의 핑거전극(E)에 전도성 페이스트를 도포하는 페이스트 디스펜서(40)와; 일정한 길이만큼 절단된 다수의 리본(R)을 공급하는 리본공급유닛(50)과; 페이스트가 도포된 태양전지셀(C) 및 다수의 리본(R)이 배치되는 모듈스테이지(60)와, 리본(R)이 솔더링된 다수의 태양전지셀(C)로 구성되는 태양전지모듈(M)을 픽업 및 이송시키는 모듈트랜스퍼(70)가 탑재된 테이블(T)에 설치된다.A ribbon soldering apparatus (100) for a thin silicon solar cell module according to the present invention comprises a robot (10) picking up and transferring a solar cell (C) loaded from a cassette (Ca); An aligner (20) for aligning the position of the solar cell (C) picked up by the robot (10); A cell transfer section 30 for transferring the solar cell C aligned by the aligner 20; A paste dispenser 40 for applying a conductive paste to the finger electrode E of the solar cell C transferred by the cell transfer section 30; A ribbon supply unit (50) for supplying a plurality of ribs (R) cut by a predetermined length; A module stage 60 in which a plurality of ribbon Rs are arranged and a solar cell module M in which a ribbon R is composed of a plurality of solar cells C soldered On the table T on which the module transfer 70 for picking up and transferring the module transfer 70 is mounted.
여기서, 태양전지셀(C)은, 도 3에 도시된 바와 같이, 양면에 길게 형성된 다수의 핑거전극, 본 실시예에서는 4 개의 핑거전극(E)을 포함한다. 이러한 태양전지셀(C) 양면의 핑거전극(E) 각각에는 다수, 본 실시예에서는 4 개의 리본(R)이 솔더링됨으로써 태양전지셀과 다른 태양전지셀이 연결되는 태양전지모듈(M)이 된다. Here, as shown in FIG. 3, the solar cell C includes a large number of finger electrodes formed on both sides, that is, four finger electrodes E in this embodiment. A plurality of (R) ribbons R are soldered to each of the finger electrodes E on both sides of the solar cell C to form a solar cell module M in which the solar cell and the other solar cell are connected to each other .
도 3은 도 1의 로봇, 셀이송부 및 페이스트 디스펜서를 발췌하여 도시한 사시도이고, 도 4는 도 3의 셀이송부 및 페이스트 이송부를 설명하기 위한 도면이며, 도 5는 도 1의 리본공급유닛을 발췌하여 도시한 사시도이고, 도 6은 도 1의 모듈스테이지를 발췌하여 도시한 사시도이며, 도 7은 도 1의 모듈트랜스퍼를 발췌하여 도시한 사시도이다.FIG. 3 is a perspective view showing the robot, the cell, and the paste dispenser of FIG. 1, and FIG. 4 is a view for explaining a cell transferring and paste transferring unit of FIG. Fig. 6 is a perspective view showing an excerpt of the module stage of Fig. 1, and Fig. 7 is a perspective view showing an excerpt of the module transfer of Fig. 1. As shown in Fig.
로봇(10)은, 도 3에 도시된 바와 같이, 테이블(T)에 지지되는 로봇몸체(11)에서 회동되는 아암(12)과, 아암(12)에 설치되어 카세트(Ca)에 적재된 태양전지셀(C)을 픽업하는 픽업헤드(13)를 포함한다. 3, the robot 10 includes an arm 12 rotated by a robot body 11 supported on a table T, and an arm 12 mounted on the arm 12 and mounted on the cassette Ca, And a pick-up head 13 for picking up the battery cell C.
얼라이너(20)는, 도 1 및 도 4에 도시된 바와 같이, 로봇의 픽업헤드(13)의 회동경로상의 테이블(T) 내부에 설치되는 비젼카메라를 포함한다. 이러한 얼라이너(20)는 픽업헤드(13)에 픽업된 태양전지셀(C)의 얼라인 정보를 발생함으로써 픽업헤드(13)가 태양전지셀(C)을 후술할 셀이송부(30)의 셀스테이지(33)에 정확히 안착시킬 수 있게 한다.The aligner 20 includes a vision camera installed inside the table T on the rotation path of the pickup head 13 of the robot as shown in Figs. The aligner 20 generates alignment information of the solar cell C picked up on the pick-up head 13 so that the pickup head 13 picks up the solar cell C from the cell- So that it can be accurately mounted on the cell stage 33.
셀이송부(30)는, 도 3에 도시된 바와 같이, 테이블(T)에 지지되는 셀이송가이드레일(31)과, 셀이송가이드레일(31) 상에서 이송되는 구동슬라이더(32)와, 로봇(10)에 의하여 이송되는 얼라인된 태양전지셀(C)이 안착되는 셀스테이지(33)와, 셀스테이지(33)를 구동슬라이더(32)에 회전 가능하게 지지하는 셀스테이지 회동부(34)를 포함한다. 이때 셀스테이지(33)에는 안착되는 태양전지셀(C) 배면에 형성된 핑거전극(E)이 하부측으로 노출될 수 있도록 다수의 전극노출라인홀(33a)이 형성되어 있다. 3, the cell conveying section 30 includes a cell conveying guide rail 31 supported on the table T, a driving slider 32 conveyed on the cell conveying guide rail 31, A cell stage 33 on which an aligned solar cell C transported by the cell array 10 is mounted and a cell stage pivotal portion 34 for rotatably supporting the cell stage 33 on the driving slider 32, . At this time, a plurality of electrode exposed line holes 33a are formed so that the finger electrodes E formed on the back surface of the solar cell C to be mounted on the cell stage 33 are exposed downward.
셀스테이지(33)는 안착된 얼라인 태양전지셀(C)을 페이스트 디스펜서(40)와 모듈스테이지(60) 사이에서 이송시킨다. 이때 셀스테이지(33)의 표면에는, 이송도중에 태양전지셀(C)이 위치고정된 상태를 유지할 수 있도록 흡착진공압이 형성되는 다수의 흡착공(미도시)이 형성되어 있다. The cell stage 33 transports the aligned aligned solar cell C between the paste dispenser 40 and the module stage 60. At this time, on the surface of the cell stage 33, there are formed a plurality of adsorption holes (not shown) in which adsorption vacuum pressure is formed so as to maintain the state where the solar cell C is fixed during transportation.
셀스테이지 회동부(34)는, 후술할 페이스트 디스펜서(40)가 태양전지셀(C) 전면의 핑거전극(E)에 페이스트를 도포한 후, 태양전지셀(C)의 배면에 형성된 핑거전극에 페이스트를 도포하기 위하여 셀스테이지(33)를 180° 회전시킨다. 이러한 셀스테이지 회동부(34)에 의하여 태양전지셀(C) 배면의 핑거전극은 전극노출라인홀(33a)을 통하여 페이스트 디스펜서(40) 측으로 노출된다. The cell stage swivel portion 34 applies a paste to the finger electrode E on the front surface of the solar cell C after the paste dispenser 40 described later is applied to the finger electrode formed on the back surface of the solar cell C The cell stage 33 is rotated by 180 DEG to apply the paste. The finger electrode on the back surface of the solar cell C is exposed to the paste dispenser 40 side through the electrode exposure line hole 33a by the cell stage swivel portion 34. [
페이스트 디스펜서(40)는, 셀스테이지(33)에 안착된 태양전지셀(C)의 핑거전극(E)에 전도성 페이스를 도포하기 위한 것이다. 이러한 페이스트 디스펜서(40)는, 도 3 및 도 4에 도시된 바와 같이, 페이스트를 토출하기 위한 다수의 토출노즐, 본 실시예에서는 4 개의 토출노즐(41)과, 토출노즐(41)을 지지하는 브라켓(42)과, 브라켓(42)을 테이블에 지지하는 지지대(43)를 포함한다. The paste dispenser 40 is for applying a conductive paste to the finger electrode E of the solar cell C mounted on the cell stage 33. 3 and 4, the paste dispenser 40 includes a plurality of discharge nozzles (four discharge nozzles 41 in this embodiment) for discharging the paste, and a plurality of discharge nozzles 41 for supporting the discharge nozzles 41 A bracket 42 and a support 43 for supporting the bracket 42 on the table.
상기 셀이송부(30) 및 페이스트 디스펜서(40)에 의하여. 픽업헤드(13)에 의하여 이송되는 얼라인된 태양전지셀(C)은 셀스테이지(33)에 안착되고, 셀스테이지(33)는 구동슬라이더(32)에 의하여 셀이송가이드레일(31) 상에서 이송되어 페이스트 디스펜서(40)의 하부측으로 이송되며, 토출노즐(41)은 셀스테이지에 의하여 이송된 태양전지셀(C) 전면의 핑거전극(E)으로 전도성 페이스트, 예를 들면 주석을 주재로 하는 페이스트를 도포한다. The cell is then conveyed by the conveyor 30 and the paste dispenser 40. The aligned cell cell C transported by the pick-up head 13 is seated on the cell stage 33 and the cell stage 33 is transported on the cell transport guide rail 31 by the drive slider 32 And the discharge nozzle 41 is transported to the lower side of the paste dispenser 40. The discharge nozzle 41 is electrically connected to the finger electrode E on the front surface of the solar cell C transferred by the cell stage, .
태양전지셀(C) 전면의 핑거전극(E)에 전도성 페이스트가 완전히 도포되면, 구동슬라이더(32)는 셀스테이지(33)를 페이스트 디스펜서(40)에 대응하는 위치에서 벗어나게 이동시키고, 셀스테이지 회동부(34)는 셀스테이지(33)를 회전시켜 태양전지셀(C) 배면의 핑거전극을 전극노출라인홀(33a)을 통하여 노출되게 하며, 상기한 동작을 반복함으로써 토출노즐(41)은 전극노출라인홀(33a)을 통하여 노출되는 핑거전극에 전도성 페이스를 도포시킨다. The conductive slider 32 moves the cell stage 33 away from the position corresponding to the paste dispenser 40 and the cell stage 33 The coil 34 rotates the cell stage 33 to expose the finger electrode on the back surface of the solar cell C through the electrode exposure line hole 33a and by repeating the above operation, And the conductive face is applied to the finger electrode exposed through the exposed line hole 33a.
리본공급유닛(50)은, 도 5에 도시된 바와 같이, 다수의 리본공급휠(51), 본 실시예에서는 4 개의 리본공급휠(51)과; 다수의 리본공급휠(51)로부터 독립적으로 공급되는 리본(R)을 일정한 길이만큼 절단하기 위한 커터(52)와; 상기 커터(52)에 의하여 절단된 리본(R)이 안착되는 다수의 안착홈(53a)이 형성된 리본스테이지(53);를 포함한다. 이러한 구조에 의하여, 리본공급휠(51)에서 공급되는 다수의 리본은 커터(52)를 경유하면서 소정의 길이로 절단되고, 절단된 리본(R)은 리본스테이지(53)의 안착홈(53a)에 안착된다. As shown in Fig. 5, the ribbon supply unit 50 includes a plurality of ribbon supply wheels 51, in this embodiment, four ribbon supply wheels 51; A cutter (52) for cutting the ribbon (R) supplied independently from the plurality of ribbon supply wheels (51) by a predetermined length; And a ribbon stage 53 in which a plurality of seating grooves 53a on which the ribbon R cut by the cutter 52 is seated is formed. A plurality of ribbons supplied from the ribbon supply wheel 51 are cut to a predetermined length via the cutter 52 and the cut ribbons R are inserted into the seating grooves 53a of the ribbon stage 53, Respectively.
모듈스테이지(60)는, 테이블(T)의 내측에 설치되는 것으로서, 도 6에 도시된 바와 같이, 페이스트가 도포된 태양전지셀(C)을 흡착 고정시키기 위한 다수의 흡착공(미도시)과, 다수의 리본(R)이 배치되는 다수의 리본배치홈(61)이 형성된다. 본 실시예에서 모듈스테이지(60)에는 6 행 및 4 열로 태양전지셀(C)이 배치되는 구조를 가진다. 6, the module stage 60 is provided inside the table T and includes a plurality of suction holes (not shown) for sucking and fixing the photovoltaic cell C coated with the paste, And a plurality of ribbon placement grooves 61 in which a plurality of ribbons R are disposed. In the present embodiment, the module stage 60 has a structure in which the solar cell C is arranged in six rows and four columns.
모듈트랜스퍼(70)는, 도 7에 도시된 바와 같이, 모듈스테이지(60) 외측 테이블에 지지되는 기둥(71)과; 기둥(71)에 지지되는 이송가이드레일(72)과; 이송가이드레일(72)에 대하여 이송되는 이송슬라이더(73)와; 이송슬라이더(73)에서 승강되는 승강브라켓(74)과; 승강브라켓(74)에 지지된 것으로서 모듈스테이지(60)에 안착되는 다수의 셀(C)로 이루어지는 태양전지모듈(M)을 픽업 및 이송하기 위한 모듈이송픽업(75);을 포함한다. 이러한 모듈트랜스퍼(110)는, 모듈스테이지(60) 상에서 다수의 태양전지셀(C)이 리본(R)에 의하여 연결되어 태양전지모듈(M)이 되었을 때, 모듈이송픽업(115)을 태양전지모듈(M) 측으로 이송 및 승강시켜 그 태양전지모듈(M)을 픽업하고, 이후 모듈이송픽업(115)을 테이블(T)의 외측으로 이송시켜 픽업된 태양전지모듈(M)을 배출한다. As shown in Fig. 7, the module transfer 70 includes: a column 71 supported by an outer table of the module stage 60; A conveying guide rail 72 supported by the column 71; A feed slider 73 which is fed to the feed guide rail 72; A lifting bracket 74 which is lifted and lowered by the transfer slider 73; And a module feed pick-up 75 for picking up and transporting the solar cell module M composed of a plurality of cells C supported on the module stage 60 and supported by the lift brackets 74. When the plurality of solar cells C on the module stage 60 are connected by the ribbon R to become the solar cell module M, the module transfer 110 transfers the module transfer pick- The module transfer pick-up 115 is transferred to the outside of the table T to transfer the picked-up solar cell module M to the module M side.
도 8은 도 1에 도시된 본 발명의 리본 솔더링 장치를 발췌하여 도시한 사시도이고, 도 9는 도 8의 리본 솔더링 장치의 평면도이며, 도 10은 도 8의 리본 솔더링 장치의 정면도이다.FIG. 8 is a perspective view showing the ribbon soldering apparatus of the present invention shown in FIG. 1, FIG. 9 is a plan view of the ribbon soldering apparatus of FIG. 8, and FIG. 10 is a front view of the ribbon soldering apparatus of FIG.
도 1 및 도 2의 테이블(T)에 설치되는 본 발명에 따른 박형 실리콘 태양전지모듈용 리본 솔더링 장치(100)는, 모듈스테이지(60) 양측에 설치된 한쌍의 베이스가이드레일(111) 상에서 이송되는 작동가이드레일(110)과; 작동가이드레일(110)의 일측에 이송되게 설치되는 것으로서, 셀이송부(30)와 모듈스테이지(60) 사이에서 태양전지셀(C)을 픽업 및 이송하는 셀픽업이송부(120)와; 작동가이드레일(110)의 타측에 이송되게 설치되는 것으로서, 리본공급유닛(50)과 모듈스테이지(60) 사이에서 다수의 리본(R)을 픽업 및 이송하는 리본픽업이송부(130)와; 셀픽업이송부(120)와 리본픽업이송부(130) 사이의 작동가이드레일(110)에 이송되게 설치되는 것으로서, 리본(R)을 상기 핑거전극(C)에 솔더링하는 솔더링부(140);를 포함한다.The ribbon soldering apparatus 100 for a thin silicon solar cell module according to the present invention installed in the table T of FIGS. 1 and 2 is mounted on a pair of base guide rails 111 provided on both sides of the module stage 60 An operation guide rail 110; A cell pickup transfer unit 120 which is installed to be transferred to one side of the operation guide rail 110 and which picks up and transfers the solar cell C between the cell transfer unit 30 and the module stage 60; A ribbon pickup transferring part 130 installed to be transferred to the other side of the operation guide rail 110 and picking up and transferring a plurality of ribbons R between the ribbon supply unit 50 and the module stage 60; A soldering portion 140 installed to be transferred to the operation guide rail 110 between the cell pickup 120 and the ribbon pickup transferring portion 130 and soldering the ribbon R to the finger electrode C; .
작동가이드레일(110)은, 도 8에 도시된 바와 같이, 모듈스테이지(60) 양측에 설치된 한쌍의 베이스가이드레일(1111) 상에 이송가능하게 지지된다.The operation guide rails 110 are transportably supported on a pair of base guide rails 1111 provided on both sides of the module stage 60, as shown in Fig.
작동가이드레일(110)에는 셀픽업이송부(120), 리본픽업이송부(130) 및 솔더링부(140)가 각각 독립적으로 이송 가능하게 설치되어 상호 독립적인 동작을 한다. The cell pickup-up transfer unit 120, the ribbon pickup transfer unit 130, and the soldering unit 140 are independently transportably installed on the operation guide rail 110, and operate independently of each other.
도 11은 도 8 내지 도 10의 셀픽업이송부를 발췌하여 도시한 사시도이다.Fig. 11 is a perspective view showing the cell pickup of Figs.
셀픽업이송부(120)는 작동가이드레일(110)의 일측에 이송가능하게 설치되는 것으로서 셀이송부(30)와 모듈스테이지(60) 사이에서 태양전지셀(C)을 픽업 및 이송한다. 이러한 셀픽업이송부(120)는, 작동가이드레일(110) 상에서 이송되는 제1슬라이더(121)와; 제1슬라이더(121)에 설치되는 제1수직레일(122)과; 제1수직레일(122)에 승강되게 설치되는 제1승강브라켓(123)과; 제1승강브라켓(123)에 지지되는 것으로서 태양전지셀(C)의 모서리측을 흡착하는 다수의 흡착노즐(124a)을 가지는 픽업헤드(124);를 포함한다.The cell pickup transfer unit 120 is provided so as to be transferable to one side of the operation guide rail 110 and picks up and transfers the solar cell C between the cell transfer unit 30 and the module stage 60. The cell pickup transfer unit 120 includes a first slider 121 to be transported on the operation guide rail 110; A first vertical rail 122 installed on the first slider 121; A first vertical rake bracket 123 mounted on the first vertical rail 122 so as to be raised and lowered; And a pick-up head 124 supported by the first lifting bracket 123 and having a plurality of suction nozzles 124a for suctioning the corner side of the solar cell C.
이러한 셀픽업이송부(120)에 의하여, 픽업헤드(124)는 제1슬라이더(121)에 의하여 작동가이드레일(110) 상에서 이송되어 셀이송부(30)의 셀스테이지(33)에 대응되는 위치까지 이송되고, 이후 제1승강브라켓(123)이 제1수직레일(122) 상에서 승강되면서 셀스테이지(33)에 안착된 태양전지셀(C)을 픽업하며, 이후 픽업헤드(124)는 이송되어 모듈스테이지(60)의 소정부에 태양전지셀(C)을 안착시킨다. The pickup head 124 is moved on the operation guide rail 110 by the first slider 121 and moved to the position corresponding to the cell stage 33 of the sending section 30 by the cell pickup- And then the first lifting bracket 123 is lifted on the first vertical rail 122 to pick up the solar cell C that is seated on the cell stage 33 and then the pickup head 124 is transported The photovoltaic cell C is placed on the small section of the module stage 60.
도 12는 도 8 내지 도 10의 셀픽업이송부를 발췌하여 도시한 사시도이다.FIG. 12 is a perspective view illustrating the cell pickup of FIG. 8 through FIG.
리본픽업이송부(130)는 작동가이드레일(110)의 타측에 이송가능하게 설치되어 리본공급유닛(50)과 모듈스테이지(60) 사이에서 상기 다수의 리본을 픽업 및 이송한다. 이러한 리본픽업이송부(130)는, 작동가이드레일(110) 상에서 이송되는 제2슬라이더(131)와; 제2슬라이더(131)에 설치되는 제2수직레일(132)과; 제2수직레일(132)에 승강되게 설치되는 제2승강브라켓(133)과; 제2승강브라켓(133)에 지지되는 것으로서 리본스테이지(53)에 안착된 다수의 리본(R)을 동시에 흡착하기 위한 다수의 흡착노즐(134a)을 가지는 리본픽업헤드(134);를 포함한다. The ribbon pick-up transfer unit 130 is provided so as to be transferable to the other side of the operation guide rail 110 to pick up and transfer the plurality of ribbons between the ribbon supply unit 50 and the module stage 60. The ribbon pickup transfer unit 130 includes a second slider 131 to be transferred on the operation guide rail 110; A second vertical rail 132 installed on the second slider 131; A second lifting bracket 133 mounted on the second vertical rail 132 so as to be lifted and lowered; And a ribbon pick-up head 134 supported by the second lifting bracket 133 and having a plurality of suction nozzles 134a for simultaneously attracting a plurality of ribbons R seated on the ribbon stage 53. [
이러한 리본픽업이송부(130)에 의하여, 리본픽업헤드(134)는 제2슬라이더(131)에 의하여 작동가이드레일(110) 상에서 이송되어 리본공급유닛(50)의 리본스테이지(53)에 대응되는 위치까지 이송되고, 이후 제2승강브라켓(133)이 제2수직레일(132) 상에서 승강되면서 리본스테이지(53)에 안착된 다수의 리본(R)을 한번에 픽업하며, 이후 리본픽업헤드(134)는 이송되어 모듈스테이지(60)에 안착된 태양전지셀(C)의 핑거전극(F) 또는 모듈스테이지의 리본배치홈(61)에 다수의 리본(R)을 안착시킨다. The ribbon pick-up head 134 is transported on the operation guide rail 110 by the second slider 131 to be transported to the ribbon stage 53 of the ribbon supply unit 50 And then the second lifting bracket 133 is lifted and lowered on the second vertical rail 132 to pick up a plurality of ribbons R seated on the ribbon stage 53 at one time, The plurality of ribbons R are mounted on the finger electrode F of the solar cell C or the ribbon placement groove 61 of the module stage.
도 13은 도 8 내지 도 10의 솔더링부를 발췌하여 도시한 사시도이다. FIG. 13 is a perspective view illustrating the soldering portion of FIGS. 8 to 10. FIG.
솔더링부(140)는 셀픽업이송부(120)와 리본픽업이송부(130) 사이의 작동가이드레일(110)에 이송되면서 상기 리본(R)을 상기 핑거전극(C)에 솔더링한다. 이러한 솔더링부(140)는, 도 10에 도시된 바와 같이, 작동가이드레일(110) 상에서 이송되는 제3슬라이더(141)와; 제3슬라이더(141)에 설치되는 제3수직레일(142)과; 제3수직레일(142)에 승강되게 설치되는 제3승강브라켓(143)과; 제3승강브라켓(143)에 지지되는 것으로서 다수의 리본(R)을 핑거전극(E)에 솔더링하기 위한 솔더링헤드(144)를 포함한다. The soldering portion 140 is soldered to the finger electrode C while being transferred to the operation guide rail 110 between the cell pickup transfer portion 120 and the ribbon pickup transfer portion 130. 10, the soldering portion 140 includes a third slider 141 to be transported on the operation guide rail 110; A third vertical rail 142 installed on the third slider 141; A third lifting bracket 143 mounted on the third vertical rail 142 so as to move up and down; And a soldering head 144 supported by the third lifting bracket 143 for soldering a plurality of ribbons R to the finger electrodes E.
여기서 솔더링헤드(144)의 양단에는, 핑거전극(E)에 안착된 리본(R) 양단을 가압하는 한쌍의 전극팁(144a)(144b)을 포함한다. 이러한 전극팁(144a)(144b)은 리본(R)으로 전원, 예를 들면 150~160V의 전원을 3초 가량 공급함으로써 리본(R) 자체가 발열되도록 하고, 이에 따라 리본(R)에 의하여 가열되는 전도성 페이스트가 저온 용융되면서 리본(R)과 핑거전극(E)은 솔더링된다. Both ends of the soldering head 144 include a pair of electrode tips 144a and 144b for pressing both ends of the ribbon R that are seated on the finger electrode E. The electrode tips 144a and 144b supply power to the ribbon R for a power supply of, for example, 150 to 160 V for about three seconds to heat the ribbon R itself, The ribbon (R) and the finger electrode (E) are soldered.
또한 한쌍의 전극팁(144a)(144b) 사이에는 솔더링헤드(144)로부터 하방측으로 탄성 가압되는 다수의 가압팁(144c)이 설치된다. 이러한 가압팁(144c)은 솔더링헤드(144)로부터 하방으로 탄성 가압되고, 이에 따라 가압팁(144c)은 전극팁(144a)(144b) 사이의 리본(R)을 고르게 가압하여 리본(R)이 핑거전극(E)에 고르게 솔더링되도록 한다.A plurality of pressing tips 144c are provided between the pair of electrode tips 144a and 144b so as to be elastically pressed downward from the soldering head 144. This pressure tip 144c is elastically pressed downward from the soldering head 144 so that the pressure tip 144c evenly presses the ribbon R between the electrode tips 144a and 144b, To be evenly soldered to the finger electrode (E).
이러한 솔더링부(140)에 의하여, 솔더링헤드(144)는 제3슬라이더(141)에 의하여 작동가이드레일(110) 상에서 이송되어 모듈스테이지(60)에 안착된 태양전지셀(C)에 대응되는 위치까지 이송되고, 이후 제3승강브라켓(143)이 제3수직레일(142) 상에서 승강되면서 솔더링헤드(144)의 전극팁(144a)(144b) 및 가압팁(144c)을 핑거전극(E)에 안착된 다수의 리본(R)을 가압한다. 이후 전극팁(144a)(144b)에 전원을 인가하여 리본(R) 및 전도성 페이스트를 발열시킴으로써, 다수의 리본(R)을 핑거전극(E)에 한번에 솔더링한다.The soldering head 144 is moved by the third slider 141 to the position corresponding to the photovoltaic cell C that is carried on the operation guide rail 110 and is seated on the module stage 60 by the soldering part 140, And then the third lift bracket 143 is lifted and lowered on the third vertical rail 142 so that the electrode tips 144a and 144b of the soldering head 144 and the pressure tip 144c are moved to the finger electrodes E And presses the plurality of placed ribbons R. A plurality of ribbons R are soldered to the finger electrodes E at once by applying power to the electrode tips 144a and 144b to heat the ribbon R and the conductive paste.
본 발명은 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
본 발명에 따르면, 작동가이드레일(110) 상에서 셀픽업이송부(120), 리본픽업이송부(130) 및 솔더링부(140)가 독립적으로 이송되면서 태양전지셀(C)의 픽업 및 이송, 다수의 리본(R)의 픽업 및 이송, 다수의 리본(R)을 태양전지셀의 핑거전극(E)에 솔더링하는 일련의 동작들이 자동으로 진행됨으로서, 태양전지셀(C)이 다수의 리본(R)으로 연결되어 구현되는 태양전지모듈(M)을 빠르고 정확하게 제조할 수 있어 생산성을 높일 수 있다. According to the present invention, the cell pickup transfer section 120, the ribbon pickup transfer section 130 and the soldering section 140 are independently transported on the operation guide rail 110 to pick up and transport the solar cell C, A series of operations for soldering the plurality of ribbons R to the finger electrode E of the solar cell are automatically performed so that the solar cell C is divided into a plurality of ribbons R The solar cell module M can be manufactured quickly and accurately, and productivity can be improved.
또한 리본(R)을 핑거전극(E)에 고르게 솔더링할 수 있어 일정한 품질의 태양전지모듈의 구현이 가능하다. In addition, since the ribbon R can be uniformly soldered to the finger electrode E, it is possible to realize a solar cell module with a constant quality.
그리고 솔더링이 자동으로 이루어지므로, 작업자가 해로운 솔더 증기에 노출되지 않게 되어 작업 환경을 개선할 수 있다.And because the soldering is done automatically, the worker is not exposed to harmful solder vapors and the work environment can be improved.

Claims (6)

  1. 카세트(Ca)로부터 적재된 태양전지셀(C)을 픽업 및 이송하는 로봇(10)과, 상기 로봇(10)에 의하여 픽업 이송되는 태양전지셀(C)의 위치를 얼라인하기 위한 얼라이너(20)와, 상기 얼라이너(20)에 의하여 얼라인된 상기 태양전지셀(C)을 이송하는 셀이송부(30)와, 상기 셀이송부(30)에 의하여 이송된 상기 태양전지셀(C)의 핑거전극(E)에 전도성 페이스트를 도포하는 페이스트 디스펜서(40)와, 상기 일정한 길이만큼 절단된 다수의 리본(R)을 공급하는 리본공급유닛(50)과, 상기 페이스트가 도포된 태양전지셀(C) 및 상기 다수의 리본(R)이 배치되는 모듈스테이지(60)가 설치되는 테이블(T)에 설치되는 것으로서, A robot 10 for picking up and transporting the solar cell C loaded from the cassette Ca and an aligner for aligning the position of the solar cell C picked up and transported by the robot 10 A cell transfer unit 30 for transferring the solar cell C aligned by the aligner 20 and a transfer unit 30 for transferring the solar cell C A ribbon dispensing unit 50 for supplying a plurality of ribs R cut by the predetermined length to the finger electrode E of the photovoltaic cell E, Is provided in a table (T) on which a cell (C) and a module stage (60) on which the plurality of ribbons (R)
    상기 모듈스테이지(60) 양측에 설치된 한쌍의 베이스가이드레일(111) 상에서 이송되는 작동가이드레일(110);An operation guide rail 110 which is conveyed on a pair of base guide rails 111 provided on both sides of the module stage 60;
    상기 작동가이드레일(110)의 일측에 이송되게 설치되는 것으로서, 상기 셀이송부(30)와 모듈스테이지(60) 사이에서 상기 태양전지셀(C)을 픽업 및 이송하는 셀픽업이송부(120);The cell pickup transfer unit 120 is installed to be transferred to one side of the operation guide rail 110 and includes a cell pickup cell 120 for picking up and transferring the solar cell C between the cell transfer unit 30 and the module stage 60, ;
    상기 작동가이드레일(110)의 타측에 이송되게 설치되는 것으로서, 상기 리본공급유닛(50)과 모듈스테이지(60) 사이에서 상기 다수의 리본(R)을 픽업 및 이송하는 리본픽업이송부(130); 및The ribbon pick-up transferring unit 130, which is installed to be transferred to the other side of the operation guide rail 110 and picks up and transfers the plurality of ribbons R between the ribbon supply unit 50 and the module stage 60, ; And
    상기 셀픽업이송부(120)와 리본픽업이송부(130) 사이의 작동가이드레일(110)에 이송되게 설치되는 것으로서, 상기 리본(R)을 상기 핑거전극(C)에 솔더링하는 솔더링부(140);를 포함하는 것을 특징으로 하는 박형 실리콘 태양전지모듈용 리본 솔더링 장치. The cell pick-up is provided to be transferred to the operation guide rail 110 between the transfer unit 120 and the ribbon pick-up transfer unit 130 and is provided with a soldering unit 140 for soldering the ribbon R to the finger electrode C ); And a ribbon soldering apparatus for a thin silicon solar cell module.
  2. 제1항에 있어서, 상기 셀픽업이송부(120),The method of claim 1, wherein the cell pickup is a transfer unit (120)
    상기 작동가이드레일(110) 상에서 이송되는 제1슬라이더(121)와;A first slider 121 to be transported on the operation guide rail 110;
    상기 제1슬라이더(121)에 설치되는 제1수직레일(122)과;A first vertical rail 122 installed on the first slider 121;
    상기 제1수직레일(122)에 승강되게 설치되는 제1승강브라켓(123)과; A first vertical rake bracket 123 installed on the first vertical rail 122 to be elevated;
    상기 제1승강브라켓(123)에 지지되는 것으로서 상기 태양전지셀(C)의 모서리측을 흡착하는 다수의 흡착노즐(124a)을 가지는 픽업헤드(124);를 포함하는 것을 특징으로 하는 박형 실리콘 태양전지모듈용 리본 솔더링 장치. And a pick-up head (124) supported by the first lifting bracket (123) and having a plurality of suction nozzles (124a) for suctioning the corner side of the solar cell (C) Ribbon soldering device for battery module.
  3. 제1항에 있어서, 상기 리본픽업이송부(130)는,The ribbon pick-up transferring apparatus according to claim 1,
    상기 작동가이드레일(110) 상에서 이송되는 제2슬라이더(131)와;A second slider 131 which is transferred on the operation guide rail 110;
    상기 제2슬라이더(131)에 설치되는 제2수직레일(132)과; A second vertical rail 132 installed on the second slider 131;
    상기 제2수직레일(132)에 승강되게 설치되는 제2승강브라켓(133)과;A second lifting bracket 133 installed on the second vertical rail 132 so as to be lifted and lowered;
    상기 제2승강브라켓(133)에 지지되는 것으로서 상기 리본스테이지(53)에 안착된 다수의 리본(R)을 동시에 흡착하기 위한 다수의 흡착노즐(134a)을 가지는 리본픽업헤드(134);를 포함하는 것을 특징으로 하는 박형 실리콘 태양전지모듈용 리본 솔더링 장치. And a ribbon pick-up head 134 supported by the second lifting bracket 133 and having a plurality of suction nozzles 134a for simultaneously attracting a plurality of ribbons R seated on the ribbon stage 53 Wherein the ribbon-like solder is a ribbon soldering device for a thin silicon solar cell module.
  4. 제1항에 있어서, 상기 솔더링부(140)는,The method of claim 1, wherein the soldering portion (140)
    상기 작동가이드레일(110) 상에서 이송되는 제3슬라이더(141)와;A third slider 141 to be transported on the operation guide rail 110;
    상기 제3슬라이더(141)에 설치되는 제3수직레일(142)과;A third vertical rail 142 installed on the third slider 141;
    상기 제3수직레일(142)에 승강되게 설치되는 제3승강브라켓(143)과;A third lifting bracket 143 mounted on the third vertical rail 142 so as to be lifted and lowered;
    상기 제3승강브라켓(143)에 지지되는 것으로서 상기 다수의 리본(R)을 상기 핑거전극(E)에 솔더링하기 위한 솔더링헤드(144);를 포함하는 것을 특징으로 하는 박형 실리콘 태양전지모듈용 리본 솔더링 장치. And a soldering head (144) supported by the third lifting bracket (143) for soldering the plurality of ribbons (R) to the finger electrodes (E) Soldering device.
  5. 제4항에 있어서, 5. The method of claim 4,
    상기 솔더링헤드(144)의 양단에 설치된 것으로서, 상기 핑거전극(E)에 안착된 리본(R) 양단을 가압하는 한쌍의 전극팁(144a)(144b)을 포함하는 것을 특징으로 하는 박형 실리콘 태양전지모듈용 리본 솔더링 장치. And a pair of electrode tips 144a and 144b provided at both ends of the soldering head 144 to press both ends of the ribbon R that are seated on the finger electrodes E. [ Ribbon soldering device for module.
  6. 제5항에 있어서, 6. The method of claim 5,
    상기 한쌍의 전극팁(144a)(144b) 사이에는 상기 솔더링헤드(144)로부터 하방측으로 탄성 가압되도록 하는 다수의 가압팁(144c)이 설치된 것을 특징으로 하는 박형 실리콘 태양전지모듈용 리본 솔더링 장치. Wherein a plurality of pressing tips 144c are provided between the pair of electrode tips 144a and 144b so as to be elastically pressed downward from the soldering head 144. The ribbon soldering apparatus of claim 1,
PCT/KR2017/013776 2017-11-29 2017-11-29 Ribbon soldering apparatus for thin silicon solar cell module WO2019107589A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/013776 WO2019107589A1 (en) 2017-11-29 2017-11-29 Ribbon soldering apparatus for thin silicon solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/013776 WO2019107589A1 (en) 2017-11-29 2017-11-29 Ribbon soldering apparatus for thin silicon solar cell module

Publications (1)

Publication Number Publication Date
WO2019107589A1 true WO2019107589A1 (en) 2019-06-06

Family

ID=66663979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013776 WO2019107589A1 (en) 2017-11-29 2017-11-29 Ribbon soldering apparatus for thin silicon solar cell module

Country Status (1)

Country Link
WO (1) WO2019107589A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111192940A (en) * 2020-01-15 2020-05-22 杭州康奋威科技股份有限公司 Two-stage welding type IBC solar cell string welding device and welding method thereof
CN113414118A (en) * 2021-06-08 2021-09-21 深圳市思榕科技有限公司 Product assembling equipment and product assembling method
WO2024058522A1 (en) * 2022-09-13 2024-03-21 주식회사 한화 Tabbing device and tabbing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101000495B1 (en) * 2008-12-10 2010-12-15 주식회사 에스에프에이 Apparatus for manufacturing of solar cell string
KR101224123B1 (en) * 2011-01-28 2013-01-21 주식회사 에스에프에이 Apparatus for manufacturing of back contact solar cell string
KR101305008B1 (en) * 2013-05-06 2013-09-09 한복우 A solar cell fabrication system
KR101530035B1 (en) * 2013-12-30 2015-06-18 주식회사 에스에프에이 Apparatus for manufacturing solar cell string
KR20170105694A (en) * 2016-03-09 2017-09-20 주식회사 제우스 Soldering apparatus of tabbing apparatus
KR101846133B1 (en) * 2017-11-28 2018-04-05 주식회사 씨엔아이 Apparatus for manufacturing thin silicon solar cell module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101000495B1 (en) * 2008-12-10 2010-12-15 주식회사 에스에프에이 Apparatus for manufacturing of solar cell string
KR101224123B1 (en) * 2011-01-28 2013-01-21 주식회사 에스에프에이 Apparatus for manufacturing of back contact solar cell string
KR101305008B1 (en) * 2013-05-06 2013-09-09 한복우 A solar cell fabrication system
KR101530035B1 (en) * 2013-12-30 2015-06-18 주식회사 에스에프에이 Apparatus for manufacturing solar cell string
KR20170105694A (en) * 2016-03-09 2017-09-20 주식회사 제우스 Soldering apparatus of tabbing apparatus
KR101846133B1 (en) * 2017-11-28 2018-04-05 주식회사 씨엔아이 Apparatus for manufacturing thin silicon solar cell module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111192940A (en) * 2020-01-15 2020-05-22 杭州康奋威科技股份有限公司 Two-stage welding type IBC solar cell string welding device and welding method thereof
CN111192940B (en) * 2020-01-15 2021-06-08 杭州康奋威科技股份有限公司 Two-stage welding type IBC solar cell string welding device and welding method thereof
CN113414118A (en) * 2021-06-08 2021-09-21 深圳市思榕科技有限公司 Product assembling equipment and product assembling method
WO2024058522A1 (en) * 2022-09-13 2024-03-21 주식회사 한화 Tabbing device and tabbing method

Similar Documents

Publication Publication Date Title
KR101846133B1 (en) Apparatus for manufacturing thin silicon solar cell module
KR101000495B1 (en) Apparatus for manufacturing of solar cell string
WO2019107589A1 (en) Ribbon soldering apparatus for thin silicon solar cell module
KR101014750B1 (en) Apparatus for manufacturing of solar cell string
KR101042997B1 (en) soldering apparatus and soldering method for manufacturing solar cell module
US20110289772A1 (en) Component mounting apparatus and method
CN217655893U (en) Photovoltaic module arrangement device and photovoltaic module production system
CN115172527A (en) Typesetting stitch welding machine
CN218069878U (en) Typesetting stitch welding machine
CN113447797A (en) Full-automatic chip testing and burning equipment
KR101936072B1 (en) Stringer for solar cell module manufacturing apparatus
CN113183451A (en) Protective film laminating and check out test set of product
KR101959177B1 (en) Apparatus for manufacturing solar cell module
CN209920716U (en) Screen printing equipment and battery piece lamination system
KR20200052469A (en) A conveyer for manufacturing solar cell module
KR100965787B1 (en) Soldering apparatus for lead frame
CN217018970U (en) Platform is refuted to arm between chip mounter
JP5897106B2 (en) String wiring device
CN214812725U (en) A handling device for display module assembly
CN211090489U (en) COB lamp strip processing equipment
CN114784144A (en) Typesetting and stitch welding integrated machine
KR20150136169A (en) Tabbing apparatus and controlling method
KR20150136170A (en) Cell carrying apparatus and controlling method thereof
CN215435012U (en) Protective film laminating and check out test set of product
KR20040005654A (en) Acf feeder machine, and method for feeding acf tape

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933442

Country of ref document: EP

Kind code of ref document: A1