WO2019106723A1 - レドックスフロー電池 - Google Patents

レドックスフロー電池 Download PDF

Info

Publication number
WO2019106723A1
WO2019106723A1 PCT/JP2017/042652 JP2017042652W WO2019106723A1 WO 2019106723 A1 WO2019106723 A1 WO 2019106723A1 JP 2017042652 W JP2017042652 W JP 2017042652W WO 2019106723 A1 WO2019106723 A1 WO 2019106723A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
positive electrode
negative electrode
electrolyte
tank
Prior art date
Application number
PCT/JP2017/042652
Other languages
English (en)
French (fr)
Inventor
淳夫 池内
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201780004505.7A priority Critical patent/CN110100342A/zh
Priority to AU2017366666A priority patent/AU2017366666B2/en
Priority to KR1020187016570A priority patent/KR102381015B1/ko
Priority to EP17875070.9A priority patent/EP3719905A4/en
Priority to PCT/JP2017/042652 priority patent/WO2019106723A1/ja
Priority to JP2018521444A priority patent/JP6931467B2/ja
Priority to US16/060,286 priority patent/US11081708B2/en
Priority to TW107135247A priority patent/TWI788429B/zh
Publication of WO2019106723A1 publication Critical patent/WO2019106723A1/ja
Priority to US17/362,490 priority patent/US20210328242A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to redox flow batteries.
  • a redox flow battery (hereinafter sometimes referred to as "RF battery") which performs charge / discharge by circulating positive and negative electrolytes in battery cells (for example, See Patent Documents 1 and 2).
  • the RF battery includes a battery cell, a positive electrode electrolyte tank and a negative electrode electrolyte tank for storing a positive electrode electrolyte solution and a negative electrode electrolyte solution, a positive electrode circulation flow path for circulating each electrolyte solution between each tank and a battery cell, And a negative electrode circulation channel.
  • Patent Documents 1 and 2 describe an RF battery provided with a communication tube that connects a positive electrode electrolyte tank and a negative electrode electrolyte tank.
  • the redox flow battery of the present disclosure is Battery cell, A positive electrode electrolyte tank and a negative electrode electrolyte tank for storing a positive electrode electrolyte solution and a negative electrode electrolyte solution; A positive electrode circulation flow passage and a negative electrode circulation flow passage for circulating the electrolytic solution between the tank and the battery cell; A communication tube having a pipe member in which one open end is immersed in the positive electrode electrolyte, the intermediate portion is bridged above the liquid surface of the both electrolytes, and the other open end is immersed in the negative electrode electrolyte And.
  • FIG. 6 is a schematic configuration view of a redox flow battery according to a second modification
  • Patent Documents 1 and 2 the positive electrode electrolyte tank and the negative electrode electrolyte tank were connected by a communicating pipe in order to eliminate such problems caused by the liquid transfer, and a difference occurred in the liquid amount of the electrolyte in each tank.
  • the level of the electrolyte in each tank is adjusted to be the same height through the communication pipe.
  • the communication tubes are connected and disposed at substantially the same position as the liquid level of the electrolytic solution in each tank or lower than that. Therefore, when the electrolyte leaks from the connection portion of the communication tube of each tank or the communication tube is broken, the electrolyte may flow out from the communication tube.
  • this indication aims at providing the redox flow battery which can control that an electrolysis solution flows out out of a tank, being able to adjust the liquid volume of the electrolysis solution in a positive electrode electrolytic solution tank and a negative electrode electrolytic solution tank. .
  • a redox flow battery is Battery cell, A positive electrode electrolyte tank and a negative electrode electrolyte tank for storing a positive electrode electrolyte solution and a negative electrode electrolyte solution; A positive electrode circulation flow passage and a negative electrode circulation flow passage for circulating the electrolytic solution between the tank and the battery cell; A communication tube having a pipe member in which one open end is immersed in the positive electrode electrolyte, the intermediate portion is bridged above the liquid surface of the both electrolytes, and the other open end is immersed in the negative electrode electrolyte And.
  • one open end of the communication tube is immersed in the positive electrode electrolyte and the negative electrode electrolyte, and the middle portion of the communication tube is bridged above the liquid surface of both electrolytes.
  • the communication tube is filled with the electrolytic solution, the communication tube is in a siphon state, and when there is a difference in the amount of the electrolytic solution in each tank, the liquid surface of both the electrolytes is Adjust to be the same. Accordingly, the amount of electrolyte can be automatically adjusted so that the level of the electrolyte in each tank can be maintained. If the communication pipe is broken, air enters the communication pipe and the siphon state is broken.
  • the middle portion of the communication tube is disposed above the liquid level of both electrolytes, even if it is broken, the electrolyte in the communication tube is returned to the inside of each tank by breaking the siphon state. Therefore, even if the communication pipe is broken, the electrolytic solution can be prevented from flowing out of the tank from the communication pipe. Therefore, the said redox flow battery can suppress that electrolyte solution flows out out of a tank, adjusting the liquid volume of the electrolyte solution in a positive electrode electrolyte solution tank and a negative electrode electrolyte solution tank.
  • An introduction pipe that connects the communication pipe to at least one of the positive electrode circulation flow channel and the negative electrode circulation flow channel; And a switching valve for opening and closing the introduction pipe.
  • the electrolyte can be introduced into the communication pipe by using the introduction pipe at the start of the redox flow battery, and the electrolyte can be filled in the communication pipe.
  • an on-off valve is provided, and the introduction pipe is closed by the on-off valve in a state where the communication pipe is filled with the electrolytic solution to shut off the circulation passage and the communication pipe, thereby forming a siphon state. it can.
  • the open end of the communication pipe may be located on the bottom side in each of the tanks.
  • the siphon state may be broken. Since bubbles may be generated in the vicinity of the liquid level of the electrolyte solution in each tank, when the open end of the communication pipe is located at a position close to the liquid level in each tank, the bubbles are easily taken in from the open end. According to the above aspect, when the open end of the communication pipe is positioned on the bottom side in each tank, air bubbles are not easily taken in from the open end, and the siphon state of the communication pipe is easily maintained.
  • the open end of the communicating tube may be formed to face upward.
  • the open end of the communication pipe is formed to face upward, so that air bubbles are not easily taken in from the open end, and the siphon state of the communication pipe is easily maintained.
  • the communication pipe may be provided with a flow control valve.
  • the flow control valve in the communication pipe, the flow rate of the electrolyte flowing in the communication pipe when adjusting the amount of the electrolyte in both tanks according to the principle of siphon via the communication pipe
  • the movement amount can be controlled by the flow control valve.
  • a gas release pipe for removing air bubbles from the communication pipe One end of the gas vent pipe is connected to the communication pipe, and the other end is connected to at least one of the positive electrode circulation channel and the negative electrode circulation channel.
  • the gas vent pipe by providing the gas vent pipe, it is possible to discharge the air bubbles staying in the communication pipe to the circulation flow path through the gas vent pipe, and it is possible to maintain the siphon state of the communication pipe.
  • the RF battery according to the embodiment is typically connected to the power system via an AC / DC converter to perform charging and discharging.
  • the charge and discharge use a positive electrode electrolyte and a negative electrode electrolyte containing metal ions whose valence changes due to oxidation and reduction as an active material, and are included in the redox potential of the ions contained in the positive electrode electrolyte and in the negative electrode electrolyte It is performed utilizing the difference with the redox potential of the ion.
  • the RF battery 1 includes a battery cell 100, a positive electrode electrolyte tank 106 and a negative electrode electrolyte tank 107, and a positive electrode circulation channel 120 and a negative electrode circulation channel 130.
  • One of the features of the RF battery 1 is that it includes a communicating pipe 40 for adjusting the liquid levels of both electrolytes 10P and 10N in the positive electrode electrolyte tank 106 and the negative electrode electrolyte tank 107 to be the same according to the siphon principle. It is in.
  • the configuration of the RF battery 1 will be described in detail.
  • the battery cell 100 has a positive electrode 104, a negative electrode 105, and a diaphragm 101 interposed between the two electrodes 104 and 105. And 103 are formed.
  • the diaphragm 101 is, for example, an ion exchange membrane that transmits hydrogen ions.
  • the positive electrode circulation flow passage 120 and the negative electrode circulation flow passage 130 are connected to the battery cell 100 (the positive electrode cell 102 and the negative electrode cell 103), and the positive electrode electrolyte 10P and the negative electrode electrolyte 10N circulate. What contains the metal ion of the same kind as an active material is mentioned to the electrolyte solution 10P and 10N.
  • the electrolytes 10P and 10N include an electrolyte containing vanadium ion, an electrolyte containing manganese ion or titanium ion, or both manganese ion and titanium ion.
  • the battery cell 100 may be configured by a single cell including a single battery cell 100, or may be configured by multiple cells including a plurality of battery cells 100.
  • a form called a cell stack 2 formed by stacking a plurality of battery cells 100 as shown in FIG. 2 is used.
  • the cell stack 2 is configured by sandwiching the sub stack 200 from two sides thereof with two end plates 220 and clamping the end plates 220 on both sides by a clamping mechanism 230 (see the lower diagram in FIG. 2).
  • FIG. 2 exemplifies a mode including a plurality of substacks 200.
  • a plurality of cell frames 3, a positive electrode 104, a diaphragm 101, and a negative electrode 105 are stacked in order (see the upper diagram in FIG. 2), and the drain plates 210 are disposed at both ends of the stacked body. It is a structure. The number of stacked battery cells 100 in the cell stack 2 can be appropriately selected.
  • the cell frame 3 has a bipolar plate 31 disposed between the positive electrode 104 and the negative electrode 105, and a frame 32 provided around the bipolar plate 31, as shown in the upper view of FIG.
  • the positive electrode 104 is disposed on one surface side of the bipolar plate 31, and the negative electrode 105 is disposed on the other surface side of the bipolar plate 31.
  • a bipolar plate 31 is provided inside the frame 32, and a recess 32o is formed by the bipolar plate 31 and the frame 32. Recesses 32 o are respectively formed on both sides of the bipolar plate 31.
  • the positive electrode 104 and the negative electrode 105 are accommodated in the respective recesses 32o with the bipolar plate 31 interposed therebetween, and one surface side and the other surface side of the frame 32 of each adjacent cell frame 3 face each other and abut.
  • the positive electrode 104 and the negative electrode 105 are disposed between the bipolar plates 31 of the adjacent cell frames 3 with the diaphragm 101 interposed therebetween, and one battery cell 100 is formed. become.
  • An annular seal member 37 such as an O-ring or a flat packing is disposed between the frames 32 of the cell frames 3 in order to suppress the leakage of the electrolytic solution.
  • the bipolar plate 31 is made of, for example, plastic carbon or the like
  • the frame 32 is made of, for example, plastic such as vinyl chloride resin (PVC), polypropylene, polyethylene, fluorocarbon resin, epoxy resin or the like.
  • PVC vinyl chloride resin
  • polypropylene polypropylene
  • polyethylene polyethylene
  • fluorocarbon resin epoxy resin or the like.
  • a frame 32 is integrated around the bipolar plate 31 by injection molding or the like.
  • a liquid supply manifold provided to penetrate the frame 32 of the cell frame 3 shown in the upper view of FIG. 33, 34 and the drainage manifolds 35, 36, and the liquid supply slits 33s, 34s and the drainage slits 35s, 36s formed in the frame 32.
  • the positive electrode electrolyte is supplied from the liquid supply manifold 33 provided in the lower part of the frame 32 through the liquid supply slit 33s formed on one surface side of the frame 32. It is then supplied to the positive electrode 104 and drained to the drainage manifold 35 via a drainage slit 35s formed on the top of the frame 32.
  • the negative electrode electrolyte is supplied from the liquid supply manifold 34 provided at the lower part of the frame 32 to the negative electrode 105 through the liquid supply slit 34 s formed on the other surface side of the frame 32, and the frame 32
  • the fluid is discharged to the drainage manifold 36 through the drainage slit 36s formed in the upper part of the.
  • a flow straightening unit (not shown) may be formed along the edge.
  • the rectifying unit diffuses each electrolyte supplied from the liquid supply slits 33s, 34s along the lower edge of each electrode 104, 105, or each electrolyte discharged from the upper edge of each electrode 104, 105 Has a function of integrating the drainage slits 35s and 36s.
  • the positive electrode electrolyte tank 106 and the negative electrode electrolyte tank 107 respectively store a positive electrode electrolyte 10P and a negative electrode electrolyte 10N, as shown in FIG.
  • the shape of each tank 106, 107 is the same, and the capacity is also the same.
  • the upper side in each of the tanks 106 and 107 (above the liquid level of the electrolytes 10P and 10N) is a gas phase portion.
  • Each of the tanks 106 and 107 has outlet portions 61 and 71 and inlet portions 62 and 72 to which the forward pipes 108 and 109 and the return pipes 110 and 111 of the circulation flow paths 120 and 130 are connected.
  • the outlet portions 61 and 71 and the inlet portions 62 and 72 are located at positions higher than the liquid level of the electrolytes 10P and 10N in the respective tanks 106 and 107, specifically, in the upper portions of the respective tanks 106 and 107. It is provided. On-off valves 66 and 76 are attached to the outlet portions 61 and 71 and the inlet portions 62 and 72, respectively.
  • each tank 106, 107 has an opening 64, 74 to which the communication pipe 40 is connected at a position higher than the liquid level of the electrolyte solution 10P, 10N in each tank 106, 107.
  • openings 64 and 74 are provided above the respective tanks 106 and 107.
  • the opening and closing valves 67 and 77 are attached to the openings 64 and 74, respectively.
  • the positive electrode circulation flow passage 120 and the negative electrode circulation flow passage 130 connect the respective tanks 106 and 107 to the battery cell 100, and each of the tanks 106 and 107 to the battery cell 100.
  • the electrolytes 10P and 10N are circulated.
  • the positive electrode circulation flow passage 120 has a forward pipe 108 for sending the positive electrode electrolyte 10P from the positive electrode electrolyte tank 106 to the positive electrode cell 102, and a return pipe 110 for returning the positive electrode electrolyte 10P from the positive cell 102 to the positive electrode electrolyte tank 106.
  • the negative electrode circulation flow path 130 has a forward pipe 109 for sending the negative electrode electrolyte 10N from the negative electrode electrolyte tank 107 to the negative electrode cell 103, and a return pipe 111 for returning the negative electrolyte 10N from the negative cell 103 to the negative electrode electrolyte tank 107.
  • the forward pipes 108 and 109 of the circulation channels 120 and 130 are connected to the outlet portions 61 and 71 of the respective tanks 106 and 107, and the return pipes 110 and 111 are connected to the inlets 62 and 72 of the respective tanks 106 and 107.
  • each forward pipe 108, 109 is inserted into each tank 106, 107 from the outlet 61, 71 of each tank 106, 107, and the open end 81, 91 of the end is electrolyzed in each tank 106, 107 It is provided at a position lower than the liquid level of the liquids 10P and 10N. That is, the open ends 81 and 91 of the forward pipes 108 and 109 are immersed in the electrolytes 10P and 10N, and the electrolytes 10P and 10N are taken in from the open ends 81 and 91, respectively. In this example, the open ends 81 and 91 of the forward pipes 108 and 109 are located on the bottom side in the tanks 106 and 107, respectively.
  • the bottom side in each tank is below the liquid level of the electrolytes 10P and 10N, and is the height from the bottom of each tank 106 and 107 to the liquid level of the electrolytes 10P and 10N.
  • h is the range from the bottom of each tank 106, 107 to h / 2 or less.
  • the forward pipes 108 and 109 are provided with pumps 112 and 113 for sucking up and pumping the electrolytic solutions 10P and 10N from the tanks 106 and 107, respectively.
  • the electrolytes 10P and 10N are circulated to the battery cells 100 (the positive electrode cell 102 and the negative electrode cell 103) by the pumps 112 and 113, respectively.
  • the pumps 112 and 113 are stopped, and the electrolytes 10P and 10N are not circulated.
  • Communication pipe As shown in FIG. 1, in the communication tube 40, one open end 41 is immersed in the positive electrode electrolyte 10P, the middle portion 43 is bridged above the liquid level of both the electrolytes 10P and 10N, and the other opening
  • the end 42 is a pipe material to be immersed in the negative electrode electrolyte 10N, and the liquid phase portions in the respective tanks 106 and 107 communicate with each other.
  • the communication tube 40 is connected to the openings 64, 74 of the respective tanks 106, 107.
  • both ends of the communication tube 40 are inserted into the respective tanks 106 and 107 from the openings 64 and 74 of the respective tanks 106 and 107, and the open ends 41 and 42 of the both ends are electrolysed in the respective tanks 106 and 107. It is provided in the position lower than the liquid level of liquid 10P and 10N, respectively.
  • the middle portion 43 is attached at a position higher than the respective tanks 106 and 107.
  • the open ends 41 and 42 of the communication pipe 40 are located on the bottom side in the respective tanks 106 and 107.
  • the communication pipe 40 is in a siphon state by filling the communication pipe 40 with the electrolytic solution.
  • the liquid levels of both the electrolytes 10P and 10N are adjusted to be at the same height according to the principle of siphon.
  • the tube forming the communicating pipe 40 (in particular, the intermediate portion 43) is formed of a transparent material, it can be visually recognized from the outside that the communicating pipe 40 is filled with the electrolytic solution.
  • a window may be provided at the top (the highest position) of the middle portion 43, and the window may be formed of a transparent material.
  • transparent resin and glass such as a vinyl chloride resin, are mentioned, for example.
  • the communication pipe 40 may be appropriately designed so that the principle of the siphon holds. In the following, the dimensions of the communicating pipe will be described mainly with reference to FIG.
  • the maximum height H max at which the principle of siphon holds is the pressure P 0 (N / m 2 ) in the tank, the density ⁇ (kg / m 3 ) of the electrolyte, and the gravitational acceleration g (m / s 2 ), It is obtained by the following equation.
  • H max P0 / ⁇ ⁇ g
  • the attachment height (corresponding to the height H) of the intermediate portion 43 may be less than 7.38 m from the liquid level of the electrolytes 10P and 10N in the respective tanks 106 and 107.
  • the length L of the communication tube 40 when the length L of the communication tube 40 is increased, the frictional resistance in the communication tube 40 is increased, the loss head is increased, and the flow velocity of the electrolyte flowing through the communication tube 40 is decreased. It takes time to make adjustments. It is desirable that the adjustment of the liquid level of the electrolytic solution be completed, for example, within 10 minutes (600 seconds). Therefore, it is desirable to set the length L of the communication pipe 40 so that the flow velocity of the electrolytic solution flowing through the communication pipe 40 is maintained at a certain level or more, and for example, 15 m, and further 10 m or less.
  • the inner diameter d of the communication pipe 40 may be set appropriately, and may be, for example, 10 mm or more and 150 mm or less, and further 20 mm or more and 100 mm or less.
  • the size of the loss head also changes depending on the inner diameter d of the communication pipe 40, and the smaller the inner diameter d, the larger the loss head. Therefore, it is desirable to appropriately set the length L of the communication pipe 40 in accordance with the inner diameter d. Specifically, when there is a difference in the amount of electrolytic solution 10P, 10N in each tank 106, 107, it takes 10 minutes for the liquid level of both electrolytic solutions 10P, 10N to become the same height It is desirable to set within 600 seconds).
  • the length L of the communication pipe 40 may be 100 times or less of the inner diameter d (L ⁇ 100 d). Specifically, when the inner diameter d is 100 mm, the length L is 10 m or less, d is For 50 mm, L is 4.5 m or less, and for d 20 mm, L is 1.7 m or less.
  • the RF battery 1 illustrated in FIG. 1 includes an introduction pipe 50 connecting the positive electrode circulation flow path 120 and the communication pipe 40, and an open / close valve 51 opening / closing the introduction pipe 50.
  • one end of the introduction pipe 50 is connected so as to branch from the forward piping 108 of the positive electrode circulation flow path 120, and the other end of the introduction pipe 50 is connected to the intermediate portion 43 of the communication pipe 40.
  • the on-off valve 69 is provided on the downstream side (battery cell 100 side) of the forward pipe 108 at the connection point with the introduction pipe 50.
  • the inlet tube 50 and the on-off valve 51 are used to fill the communication tube 40 with an electrolyte at the start of the RF battery 1 to form a siphon state.
  • the on-off valve 51 is opened and the pump 112 is started in a state in which the forward pipe 108 and the communication pipe 40 communicate with each other via the introduction pipe 50.
  • the electrolytic solution 10P can be introduced into the communication pipe 40, and the electrolytic liquid can be filled in the communication pipe 40.
  • the introduction pipe 50 is closed by the on-off valve 51 to shut off between the forward pipe 108 and the communication pipe 40 to make the inside of the communication pipe 40 liquid tight.
  • the siphon state is formed.
  • the open / close valve 51 is normally closed during operation.
  • the pump 112 is stopped and the on-off valve 51 is opened.
  • the siphon state is released, and the electrolytic solution in the communication tube 40 is returned to the inside of each of the tanks 106 and 107, which facilitates maintenance work.
  • air can be prevented from entering the tanks 106 and 107 from the openings 64 and 74 by closing the on-off valves 67 and 77 after the communication pipe 40 is removed from the tanks 106 and 107. Therefore, oxidation of the electrolytes 10P and 10N can be suppressed during maintenance.
  • the introduction pipe 50 is connected and attached to the positive electrode circulation flow path 120 (outgoing pipe 108) has been described as an example, but the introduction pipe 50 is attached to the negative electrode circulation flow path 130 (outgoing pipe 109) It is also possible to attach to both circulation channels 120, 130.
  • the RF battery 1 illustrated in FIG. 1 is provided with a gas phase communicating pipe 45 for communicating the gas phase portions in the respective tanks 106 and 107 with each other.
  • the pressure in the two tanks 106 and 107 can be made the same by the gas phase communicating pipe 45.
  • the vapor communication pipe 45 is arranged to be bridged above the respective tanks 106 and 107.
  • the vapor communication pipe is provided at the openings 65 and 75 provided at the upper part of the respective tanks 106 and 107. 45 are connected.
  • the opening and closing valves 68 and 78 are attached to the openings 65 and 75, respectively.
  • the RF battery 1 according to the above-described embodiment has the following effects.
  • both electrolysis can be performed according to the principle of siphon via the communication tube 40. It can adjust automatically so that the liquid level of liquid 10P and 10N becomes the same. Further, since the middle portion 43 of the communication tube 40 is disposed above the liquid level of both electrolytes 10P and 10N, even if it is broken, the electrolyte in the communication tube 40 is broken by breaking the siphon state. It is returned into the tanks 106, 107. Therefore, even if the communication pipe 40 is broken, the electrolytic solution can be prevented from flowing out of the tanks 106 and 107 from the communication pipe 40.
  • the openings 64 and 74 to which the communication pipe 40 is connected are provided at a position higher than the liquid level of both the electrolytes 10P and 10N. There is no leakage of 10P and 10N. Therefore, it is possible to effectively adjust that the electrolytes 10P and 10N flow out of the tanks 106 and 107 while automatically adjusting the amounts of the electrolytes 10P and 10N in the positive electrode electrolyte tank 106 and the negative electrode electrolyte tank 107. It can be suppressed.
  • the communication pipe 40 can be filled with the electrolytic solution at the start of the RF battery 1 to form a siphon state.
  • the open ends 41 and 42 of the communication pipe 40 are located on the bottom side in the respective tanks 106 and 107, air bubbles are not easily taken in from the open ends 41 and 42, and the siphon state of the communication pipe 40 is easily maintained.
  • Modification 1 The RF battery 1 of Modification 1 shown in FIG. 5 is different from the embodiment shown in FIG. 1 described above in that the communication pipe 40 is provided with the flow rate adjustment valve 44, and the other configuration is the same.
  • the flow rate adjustment valve 44 is provided in the middle of the communication pipe 40 and controls the flow rate of the electrolyte flowing in the communication pipe 40.
  • the flow rate adjustment valve 44 is provided in the middle portion 43 of the communication pipe 40.
  • the flow rate adjustment valve 44 is a motor operated valve.
  • Modification 2 The RF battery 1 of the modification 2 shown in FIG. 6 is different from the embodiment shown in FIG. 1 described above in that a gas vent pipe 55 for extracting air bubbles from the inside of the communication pipe 40 is different from the embodiment shown in FIG. It is.
  • the degassing pipe 55 is used to discharge the air bubbles accidentally taken into the communicating pipe 40 from the communicating pipe 40.
  • One end of the gas vent pipe 55 is connected to the communication pipe 40, and the other end is connected to at least one of the positive electrode circulation flow channel 120 and the negative electrode circulation flow channel 130.
  • one end of the degassing pipe 55 is connected to the intermediate portion 43 so as to branch from the communication pipe 40, and the other end of the degassing pipe 55 is the outgoing pipe 109 of the negative electrode circulation flow path 130. It is connected to join. More specifically, one end of the degassing pipe 55 is connected to the top of the intermediate portion 43, and the other end of the degassing pipe 55 is connected to the upstream side (the tank 107 side) than the pump 113 of the forward pipe 109.
  • the degassing pipe 55 is provided with a check valve 56.
  • the check valve 56 is provided in the middle of the degassing pipe 55, and blocks the flow from the negative electrode circulation flow path 130 (outgoing pipe 109) to the communication pipe 40.
  • an on-off valve 57 is provided on the downstream side of the check valve 56 (the forward pipe 109 side). The on-off valve 57 is open when removing air bubbles from the inside of the communication tube 40, and is closed when it is not necessary to remove air bubbles from the inside of the communication tube 40.
  • the opening degree of the on-off valve 57 it is possible to control the flow rate of the electrolyte flowing in the gas vent pipe 55, and to prevent the electrolyte from inadvertently flowing out from the communication pipe 40 to the forward pipe 109.
  • the electrolytic solution is sent little by little from the communication pipe 40 to the forward pipe 109 through the gas vent pipe 55 by suction of the pump 113, and the air bubbles stagnating in the communication pipe 40 are efficiently removed.
  • air can be prevented from entering the forward pipe 109 by closing the on-off valve 57.
  • the redox flow battery according to the embodiment is used for load leveling applications, applications such as voltage sag compensation and emergency power supplies, and output smoothing applications for natural energy such as photovoltaic power generation and wind power generation that are being introduced in large quantities. it can.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

電池セルと、正極電解液及び負極電解液をそれぞれ貯留する正極電解液タンク及び負極電解液タンクと、前記各タンクと前記電池セルとの間で前記各電解液を循環させる正極循環流路及び負極循環流路と、一方の開口端が前記正極電解液に浸漬され、中間部が前記両電解液の液面よりも上方に架け渡され、他方の開口端が前記負極電解液に浸漬される管材を有する連通管と、を備えるレドックスフロー電池。

Description

レドックスフロー電池
 本発明は、レドックスフロー電池に関する。
 大容量の蓄電池の一つとして、電池セルに正負の各電解液を循環流通させて充放電を行うレドックスフロー電池(以下、「RF電池」と呼ぶ場合がある)が知られている(例えば、特許文献1、2を参照)。RF電池は、電池セルと、正極電解液及び負極電解液をそれぞれ貯留する正極電解液タンク及び負極電解液タンクと、各タンクと電池セルとの間で各電解液を循環させる正極循環流路及び負極循環流路とを備える。特許文献1、2には、正極電解液タンクと負極電解液タンクとを連通する連通管を備えるRF電池が記載されている。
特開2013-25964号公報 特開2013-37814号公報
 本開示のレドックスフロー電池は、
 電池セルと、
 正極電解液及び負極電解液をそれぞれ貯留する正極電解液タンク及び負極電解液タンクと、
 前記各タンクと前記電池セルとの間で前記各電解液を循環させる正極循環流路及び負極循環流路と、
 一方の開口端が前記正極電解液に浸漬され、中間部が前記両電解液の液面よりも上方に架け渡され、他方の開口端が前記負極電解液に浸漬される管材を有する連通管と、を備える。
実施形態に係るレドックスフロー電池の概略構成図である。 セルスタックの概略構成図である。 実施形態に係るレドックスフロー電池に備える連通管の寸法を説明する図である。 実施形態に係るレドックスフロー電池に備える連通管の開口端の別の一例を示す図である。 変形例1に係るレドックスフロー電池の概略構成図である。 変形例2に係るレドックスフロー電池の概略構成図である。
 [本開示が解決しようとする課題]
 レドックスフロー電池(RF電池)では、運転中、充放電の繰返しに伴い、電池セル内において正極電極と負極電極との間に介在される隔膜を通って正負の電解液が一方から他方へ移動する現象(「液移り」と呼ばれる)が生じることがある。これにより、正極電解液タンク及び負極電解液タンク内の電解液の液量に差が生じ、電池容量(放電容量)が低下する場合がある。
 このような液移りによる不具合を解消するため、特許文献1、2では、正極電解液タンクと負極電解液タンクとを連通管で接続し、各タンク内の電解液の液量に差が生じたときに、連通管を介して各タンク内の電解液の液面が同じ高さになるように調整している。しかしながら、特許文献1、2では、連通管が各タンク内の電解液の液面と略同じ位置、或いはそれより低い位置に接続されて配置されている。そのため、各タンクの連通管の接続部から電解液が漏出したり、連通管が破損した場合には連通管から電解液が流出する虞がある。
 そこで、本開示は、正極電解液タンク及び負極電解液タンク内の電解液の液量を調整できながら、電解液がタンク外に流出することを抑制できるレドックスフロー電池を提供することを目的とする。
 [本開示の効果]
 本開示によれば、正極電解液タンク及び負極電解液タンク内の電解液の液量を調整できながら、電解液がタンク外に流出することを抑制できるレドックスフロー電池を提供できる。
 [本願発明の実施形態の説明]
 最初に本願発明の実施態様を列記して説明する。
 (1)本願発明の一態様に係るレドックスフロー電池は、
 電池セルと、
 正極電解液及び負極電解液をそれぞれ貯留する正極電解液タンク及び負極電解液タンクと、
 前記各タンクと前記電池セルとの間で前記各電解液を循環させる正極循環流路及び負極循環流路と、
 一方の開口端が前記正極電解液に浸漬され、中間部が前記両電解液の液面よりも上方に架け渡され、他方の開口端が前記負極電解液に浸漬される管材を有する連通管と、を備える。
 上記レドックスフロー電池によれば、連通管の一方及び他方の開口端がそれぞれ正極電解液及び負極電解液に浸漬され、連通管の中間部が両電解液の液面よりも上方に架け渡されている。連通管内に電解液が満たされることによって連通管がサイフォン状態になり、連通管は、各タンク内の電解液の液量に差が生じたときに、サイフォンの原理により両電解液の液面が同じになるように調整する。よって、各タンク内の電解液の液面が維持されるように、電解液の液量を自動的に調整できる。連通管が破損した場合、連通管内に空気が入り込み、サイフォン状態が破られる。連通管の中間部が両電解液の液面よりも上方に配置されているため、破損したとしても、サイフォン状態が破られることによって連通管内の電解液が各タンク内に戻される。よって、連通管が破損したとしても、連通管から電解液がタンク外に流出することを抑制できる。したがって、上記レドックスフロー電池は、正極電解液タンク及び負極電解液タンク内の電解液の液量を調整できながら、電解液がタンク外に流出することを抑制できる。
 (2)上記レドックスフロー電池の一形態として、
 前記正極循環流路及び前記負極循環流路の少なくとも一方の循環流路と前記連通管とを接続する導入管と、
 前記導入管を開閉する開閉弁と、を備えることが挙げられる。
 連通管をサイフォン状態にするためには、連通管内に電解液を満たしておく必要がある。上記形態によれば、導入管を備えることで、レドックスフロー電池の始動時に導入管を利用して連通管に電解液を導入することができ、連通管内に電解液を満たすことができる。また、開閉弁を備えており、連通管内に電解液が満たされた状態で開閉弁により導入管を閉じて循環流路と連通管との間を遮断することで、サイフォン状態を形成することができる。
 (3)上記レドックスフロー電池の一形態として、
 前記連通管の開口端が前記各タンク内の底部側に位置することが挙げられる。
 連通管内に気体が入ると、サイフォン状態が破られる虞がある。各タンク内の電解液の液面近傍では気泡が発生することがあるため、各タンク内の液面に近い位置に連通管の開口端が位置する場合、開口端から気泡が取り込まれ易い。上記形態によれば、連通管の開口端が各タンク内の底部側に位置することで、開口端から気泡が取り込まれ難く、連通管のサイフォン状態が維持され易い。
 (4)上記レドックスフロー電池の一形態として、
 前記連通管の開口端が上に向くように形成されていることが挙げられる。
 上記形態によれば、連通管の開口端が上に向くように形成されていることで、開口端から気泡が取り込まれ難く、連通管のサイフォン状態が維持され易い。
 (5)上記レドックスフロー電池の一形態として、
 前記連通管に流量調整弁を備えることが挙げられる。
 上記形態によれば、連通管に流量調整弁を備えることで、連通管を介してサイフォンの原理により両タンク内の電解液の液量を調整する際に、連通管に流れる電解液の流量(移動量)を流量調整弁によって制御することが可能である。
 (6)上記レドックスフロー電池の一形態として、
 前記連通管内から気泡を抜くためのガス抜き配管を備え、
 前記ガス抜き配管は、前記連通管に一端が接続され、前記正極循環流路及び前記負極循環流路の少なくとも一方の循環流路に他端が接続されていることが挙げられる。
 上記形態によれば、ガス抜き配管を備えることで、連通管内に滞留する気泡をガス抜き配管を通して循環流路に排出することができ、連通管のサイフォン状態を維持することが可能である。
 [本願発明の実施形態の詳細]
 本願発明の実施形態に係るレドックスフロー電池(RF電池)の具体例を、以下に図面を参照しつつ説明する。図中の同一符号は同一又は相当部分を示す。なお、本願発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 《RF電池》
 実施形態に係るRF電池は、代表的には、交流/直流変換器を介して電力系統に接続され、充電と放電とを行う。充放電は、酸化還元により価数が変化する金属イオンを活物質として含有する正極電解液及び負極電解液を使用し、正極電解液に含まれるイオンの酸化還元電位と、負極電解液に含まれるイオンの酸化還元電位との差を利用して行う。
 図1~図2を参照して、実施形態に係るRF電池1の一例を説明する。実施形態のRF電池1は、図1に示すように、電池セル100と、正極電解液タンク106及び負極電解液タンク107と、正極循環流路120及び負極循環流路130とを備える。RF電池1の特徴の1つは、サイフォンの原理により正極電解液タンク106及び負極電解液タンク107内の両電解液10P、10Nの液面が同じになるように調整する連通管40を備える点にある。以下、RF電池1の構成について詳しく説明する。
 (電池セル)
 電池セル100は、図1に示すように、正極電極104と、負極電極105と、両電極104、105間に介在される隔膜101とを有し、隔膜101を挟んで正極セル102と負極セル103とが形成されている。隔膜101は、例えば水素イオンを透過するイオン交換膜である。電池セル100(正極セル102及び負極セル103)には、正極循環流路120及び負極循環流路130が接続され、正極電解液10P及び負極電解液10Nが循環する。電解液10P、10Nは、活物質として同種の金属イオンを含有するものが挙げられる。電解液10P、10Nとしては、例えば、バナジウムイオンを含有する電解液、マンガンイオン又はチタンイオン、或いはマンガンイオン及びチタンイオンの双方を含有する電解液などが挙げられる。
 電池セル100は、単数の電池セル100を備える単セルで構成されていてもよいし、複数の電池セル100を備える多セルで構成されていてもよい。多セルの場合、図2に示すような、電池セル100を複数積層してなるセルスタック2と呼ばれる形態が利用される。セルスタック2は、サブスタック200をその両側から2枚のエンドプレート220で挟み込み、両側のエンドプレート220を締付機構230で締め付けることで構成されている(図2の下図参照)。図2では、複数のサブスタック200を備える形態を例示している。サブスタック200は、セルフレーム3、正極電極104、隔膜101、及び負極電極105を順に複数積層してなり(図2の上図参照)、その積層体の両端に給排板210が配置された構成である。セルスタック2における電池セル100の積層数は適宜選択できる。
 セルフレーム3は、図2の上図に示すように、正極電極104と負極電極105との間に配置される双極板31と、双極板31の周囲に設けられる枠体32とを有する。双極板31の一面側には、正極電極104が配置され、双極板31の他面側には、負極電極105が配置される。枠体32の内側には、双極板31が設けられ、双極板31と枠体32により凹部32oが形成される。凹部32oは、双極板31の両側にそれぞれ形成されている。各凹部32oに正極電極104及び負極電極105が双極板31を挟んで収納され、隣接する各セルフレーム3の枠体32の一面側と他面側とが互いに対向して突き合わされる。サブスタック200(セルスタック2)では、隣接する各セルフレーム3の双極板31の間に、隔膜101を挟んで正極電極104及び負極電極105が配置され、1つの電池セル100が形成されることになる。各セルフレーム3の枠体32の間には、電解液の漏洩を抑制するため、Oリングや平パッキンなどの環状のシール部材37が配置されている。
 双極板31は、例えば、プラスチックカーボンなどで形成され、枠体32は、例えば、塩化ビニル樹脂(PVC)、ポリプロピレン、ポリエチレン、フッ素樹脂、エポキシ樹脂などのプラスチックで形成されている。この例では、セルフレーム3は、双極板31の周囲に枠体32が射出成型などにより一体化されている。
 電池セル100への電解液の流通は、給排板210(図2の下図参照)を介して、図2の上図に示すセルフレーム3の枠体32に貫通して設けられた給液マニホールド33、34及び排液マニホールド35、36と、枠体32に形成された給液スリット33s、34s及び排液スリット35s、36sにより行われる。この例に示すセルフレーム3(枠体32)の場合、正極電解液は、枠体32の下部に設けられた給液マニホールド33から枠体32の一面側に形成された給液スリット33sを介して正極電極104に供給され、枠体32の上部に形成された排液スリット35sを介して排液マニホールド35に排出される。同様に、負極電解液は、枠体32の下部に設けられた給液マニホールド34から枠体32の他面側に形成された給液スリット34sを介して負極電極105に供給され、枠体32の上部に形成された排液スリット36sを介して排液マニホールド36に排出される。双極板31が設けられる枠体32の内側の下縁部及び上縁部には、縁部に沿って整流部(図示せず)が形成されていてもよい。整流部は、給液スリット33s、34sから供給される各電解液を各電極104、105の下縁部に沿って拡散させたり、各電極104、105の上縁部から排出される各電解液を排液スリット35s、36sへ集約する機能を有する。
 (正極電解液タンク及び負極電解液タンク)
 正極電解液タンク106及び負極電解液タンク107は、図1に示すように、正極電解液10P及び負極電解液10Nをそれぞれ貯留する。各タンク106、107の形状は同じで、容量も同じである。各タンク106、107内の上部側(電解液10P、10Nの液面よりも上側)は気相部になっている。各タンク106、107は、各循環流路120、130の往路配管108、109及び復路配管110、111が接続される出口部61、71及び入口部62、72を有する。この例では、出口部61、71及び入口部62、72は、各タンク106、107内の電解液10P、10Nの液面よりも高い位置、具体的には、各タンク106、107の上部に設けられている。出口部61、71及び入口部62、72にはそれぞれ、開閉弁66、76が取り付けられている。
 また、各タンク106、107は、各タンク106、107内の電解液10P、10Nの液面よりも高い位置に連通管40が接続される開口部64、74を有する。この例では、各タンク106、107の上部に開口部64、74が設けられている。開口部64、74には、開閉弁67、77が取り付けられている。
 (正極循環流路及び負極循環流路)
 正極循環流路120及び負極循環流路130は、図1に示すように、各タンク106、107と電池セル100との間を接続し、各タンク106、107と電池セル100との間で各電解液10P、10Nを循環させる。正極循環流路120は、正極電解液タンク106から正極セル102へ正極電解液10Pを送る往路配管108と、正極セル102から正極電解液タンク106へ正極電解液10Pを戻す復路配管110とを有する。負極循環流路130は、負極電解液タンク107から負極セル103へ負極電解液10Nを送る往路配管109と、負極セル103から負極電解液タンク107へ負極電解液10Nを戻す復路配管111とを有する。各循環流路120、130の往路配管108、109は各タンク106、107の出口部61、71に接続され、復路配管110、111は各タンク106、107の入口部62、72に接続される。
 各往路配管108、109の端部は、各タンク106、107の出口部61、71から各タンク106、107内に挿入され、端部の開口端81、91が各タンク106、107内の電解液10P、10Nの液面よりも低い位置に設けられている。つまり、各往路配管108、109の開口端81、91が各電解液10P、10Nに浸漬されており、それぞれの開口端81、91から各電解液10P、10Nが取り込まれる。この例では、各往路配管108、109の開口端81、91が各タンク106、107内の底部側に位置する。ここでいう「各タンク内の底部側」とは、電解液10P、10Nの液面よりも下側であって、各タンク106、107の底面から電解液10P、10Nの液面までの高さをhとするとき、各タンク106、107の底面からh/2以下の範囲をいう。
 各往路配管108、109には、各タンク106、107から各電解液10P、10Nを吸い上げて圧送するポンプ112、113が設けられている。充放電を行う運転時、各ポンプ112、113により、各電解液10P、10Nが電池セル100(正極セル102及び負極セル103)に循環される。充放電を行わない待機時には、各ポンプ112、113が停止され、各電解液10P、10Nが循環されない。
 (連通管)
 連通管40は、図1に示すように、一方の開口端41が正極電解液10Pに浸漬され、中間部43が両電解液10P、10Nの液面よりも上方に架け渡され、他方の開口端42が負極電解液10Nに浸漬される管材であり、各タンク106、107内の液相部同士を連通する。連通管40は、各タンク106、107の開口部64、74に接続される。この例では、連通管40の両端部が各タンク106、107の開口部64、74から各タンク106、107内に挿入され、両端部の開口端41、42が各タンク106、107内の電解液10P、10Nの液面よりも低い位置にそれぞれ設けられている。中間部43は、各タンク106、107よりも高い位置に取り付けられている。また、この例では、連通管40の開口端41、42が各タンク106、107内の底部側に位置する。
 連通管40は、連通管40内に電解液が満たされることによりサイフォン状態になる。これにより、各タンク106、107内の電解液10P、10Nの液量に差が生じたときに、サイフォンの原理により両電解液10P、10Nの液面が同じ高さになるように調整する。連通管40(特に、中間部43)を構成する管材が透明材料で形成されている場合、連通管40内に電解液が満たされていることを外から視認できる。中間部43における頂部(最も高い位置となる部分)に窓部を設け、この窓部を透明材料で形成してもよい。透明材料としては、例えば、塩化ビニル樹脂などの透明樹脂やガラスが挙げられる。
 連通管40は、サイフォンの原理が成立するように適宜設計すればよい。以下では、図3を主に参照して、連通管の寸法について説明する。
 各タンク106、107内の電解液10P、10Nの液面から連通管40の頂部までの高さHを高くし過ぎると、サイフォンの原理による電解液の移送が不可能になる。サイフォンの原理が成立する最大高さHmaxは、タンク内の圧力P0(N/m)、電解液の密度ρ(kg/m)、重力加速度g(m/s)とするとき、次式により求まる。
  Hmax=P0/ρ・g
 ここで、圧力P0が大気圧(1.013×10N/m)と等しく、電解液の密度ρが1400kg/mである場合、Hmaxは7.38mになる。よって、中間部43の取付高さ(高さHに相当)は、各タンク106、107内の電解液10P、10Nの液面から7.38m未満とすることが挙げられる。
 また、連通管40の長さLが長くなると、連通管40内の摩擦抵抗が増加して損失ヘッドが大きくなり、連通管40に流れる電解液の流速が低下するため、電解液の液面の調整に時間がかかる。電解液の液面の調整は、例えば10分(600秒)以内に完了することが望ましい。よって、連通管40の長さLは、連通管40に流れる電解液の流速が一定以上確保されるように設定することが望ましく、例えば15m、更に10m以下とすることが挙げられる。
 連通管40の内径dも適宜設定すればよく、例えば10mm以上150mm以下、更に20mm以上100mm以下とすることが挙げられる。なお、連通管40の内径dによっても損失ヘッドの大きさが変わり、内径dが小さいほど、損失ヘッドが大きくなる。よって、連通管40の長さLは内径dに応じて適宜設定することが望ましい。具体的には、各タンク106、107内の電解液10P、10Nの液量に差が生じたときに、両電解液10P、10Nの液面が同じ高さになるまでの時間が10分(600秒)以内となるように設定することが望ましい。この場合、例えば、連通管40の長さLは内径dの100倍以下とする(L≦100d)ことが挙げられ、具体的には、内径dが100mmでは長さLは10m以下、dが50mmではLは4.5m以下、dが20mmではLは1.7m以下とすることが挙げられる。
 (導入管)
 図1に例示するRF電池1は、正極循環流路120と連通管40とを接続する導入管50と、導入管50を開閉する開閉弁51とを備える。この例では、導入管50は、正極循環流路120の往路配管108から分岐するように一端が接続され、導入管50の他端が連通管40の中間部43に接続されている。また、この例では、往路配管108における導入管50との接続箇所より下流側(電池セル100側)に開閉弁69が設けられている。
 導入管50及び開閉弁51は、RF電池1の始動時に連通管40内に電解液を満たしてサイフォン状態を形成するために使用される。具体的には、RF電池1の始動時、開閉弁51を開いて往路配管108と連通管40とが導入管50を介して連通した状態でポンプ112を起動し、連通管40に電解液10Pを流通させる。これにより、連通管40に電解液10Pを導入して、連通管40内に電解液を満たすことができる。そして、連通管40内に電解液が満たされた状態で開閉弁51により導入管50を閉じて往路配管108と連通管40との間を遮断し、連通管40内を液密状態とすることで、サイフォン状態が形成される。RF電池1の始動後、運転中は開閉弁51が常時閉状態となる。
 ここで、RF電池1のメンテナンス時など、例えば連通管40をタンク106、107から取り外すときは、ポンプ112を停止し、開閉弁51を開状態とする。これにより、サイフォン状態が解除され、連通管40内の電解液が各タンク106、107内に戻されるため、メンテナンス作業が容易になる。また、連通管40をタンク106、107から取り外した後、開閉弁67、77を閉じることで、開口部64、74からタンク106、107内に空気が入り込むことを防止できる。よって、メンテナンス中、電解液10P、10Nの酸化を抑制できる。
 この例では、導入管50を正極循環流路120(往路配管108)に接続して取り付ける場合を例に挙げて説明したが、導入管50は負極循環流路130(往路配管109)に取り付けてよいし、両方の循環流路120、130に取り付けることも可能である。
 (気相連通管)
 図1に例示するRF電池1は、各タンク106、107内の気相部同士を連通する気相連通管45を備える。この気相連通管45により、両タンク106、107内の圧力を同じにすることができる。気相連通管45は、各タンク106、107の上方に架け渡されるように配置されており、この例では、各タンク106、107の上部に設けられた開口部65、75に気相連通管45が接続されている。開口部65、75には、開閉弁68、78が取り付けられている。
 {実施形態の効果}
 上述した実施形態に係るRF電池1は、次の作用効果を奏する。
 連通管40を備えることで、RF電池1の運転中、各タンク106、107内の電解液10P、10Nの液量に差が生じたときは、連通管40を介してサイフォンの原理により両電解液10P、10Nの液面が同じになるように自動的に調整できる。また、連通管40の中間部43が両電解液10P、10Nの液面よりも上方に配置されているため、破損したとしても、サイフォン状態が破られることによって連通管40内の電解液が各タンク106、107内に戻される。よって、連通管40が破損したとしても、連通管40から電解液がタンク106、107外に流出することを抑制できる。更に、各タンク106、107において、両電解液10P、10Nの液面よりも高い位置に連通管40が接続される開口部64、74が設けられているため、開口部64、74から電解液10P、10Nが漏出することがない。よって、正極電解液タンク106及び負極電解液タンク107内の電解液10P、10Nの液量を自動的に調整できながら、電解液10P、10Nがタンク106、107外に流出することを効果的に抑制できる。
 導入管50及び開閉弁51を備えることで、RF電池1の始動時に連通管40内に電解液を満たしてサイフォン状態を形成することができる。
 連通管40の開口端41、42が各タンク106、107内の底部側に位置するため、開口端41、42から気泡が取り込まれ難く、連通管40のサイフォン状態が維持され易い。
 更に、図4に示すように、連通管40の両端部の先端がJ字状に屈曲して、開口端41、42が上に向くように形成されていると、開口端41、42から気泡が取り込まれ難く、サイフォン状態がより維持され易い。
 図5、図6を参照して、実施形態に係るRF電池1の変形例を説明する。
 [変形例1]
 図5に示す変形例1のRF電池1は、連通管40に流量調整弁44を備える点が上述した図1に示す実施形態と相違しており、その他の構成は同様である。
 (流量調整弁)
 流量調整弁44は、連通管40の途中に設けられており、連通管40に流れる電解液の流量を制御する。この例では、図5に示すように、流量調整弁44が連通管40の中間部43に設けられている。変形例1のRF電池1では、連通管40を介して両タンク106、107内の電解液10P、10Nの液量を調整する際に、電解液の流量(移動量)を流量調整弁44によって制御することが可能である。また、場合によっては、流量調整弁44を閉じて、電解液の移送を停止することも可能である。この例では、流量調整弁44が電動弁である。
 [変形例2]
 図6に示す変形例2のRF電池1は、連通管40内から気泡を抜くためのガス抜き配管55を備える点が上述した図1に示す実施形態と相違しており、その他の構成は同様である。
 (ガス抜き配管)
 ガス抜き配管55は、連通管40内に誤って取り込まれた気泡を連通管40内から排出するために使用される。ガス抜き配管55は、連通管40に一端が接続され、正極循環流路120及び負極循環流路130の少なくとも一方の循環流路に他端が接続されている。この例では、図6に示すように、ガス抜き配管55の一端が連通管40から分岐するように中間部43に接続され、ガス抜き配管55の他端が負極循環流路130の往路配管109に合流するように接続されている。より具体的には、ガス抜き配管55の一端が中間部43における頂部に接続され、ガス抜き配管55の他端が往路配管109のポンプ113より上流側(タンク107側)に接続されている。
 ガス抜き配管55には、逆止弁56を備える。逆止弁56は、ガス抜き配管55の途中に設けられ、負極循環流路130(往路配管109)から連通管40への流通を阻止する。更に、この例では、逆止弁56より下流側(往路配管109側)に開閉弁57が設けられている。開閉弁57は、連通管40内から気泡を抜くときは開状態とし、連通管40内から気泡を抜く必要がないときは閉状態とする。
 変形例2のRF電池1では、連通管40内に誤って気泡が取り込まれた場合に、ポンプ113の吸引を利用して、連通管40内に滞留する気泡をガス抜き配管55を通して負極循環流路130(往路配管109)に排出することができる。よって、連通管40のサイフォン状態を維持することが可能である。また、ガス抜き配管55に逆止弁56が設けられているので、ポンプ113が停止して往路配管109が空の状態になっても、往路配管109から連通管40への気体の侵入を阻止できる。そのため、ポンプ113が停止しても、連通管40のサイフォン状態が維持されることになり、連通管40内の電解液が各タンク106、107内に戻されることもない。
 更に、開閉弁57の開度を調整することで、ガス抜き配管55に流れる電解液の流量を制御し、連通管40から往路配管109へ電解液が不用意に流出することを抑制できる。具体的には、ポンプ113の吸引でガス抜き配管55を通して連通管40から往路配管109へ電解液を少量ずつ送り、連通管40内に滞留する気泡を効率的に取り除く。また、RF電池1のメンテナンス時など、連通管40を取り外すときは、開閉弁57を閉じることで、往路配管109内に空気が入り込むことを防止できる。
 {実施形態の用途}
 実施形態に係るレドックスフロー電池は、負荷平準化用途、瞬低補償や非常用電源などの用途、大量導入が進められている太陽光発電や風力発電などの自然エネルギーの出力平滑化用途などに利用できる。
 1 レドックスフロー電池(RF電池)
 2 セルスタック
 3 セルフレーム
 31 双極板
 32 枠体
 32o 凹部
 33、34 給液マニホールド
 35、36 排液マニホールド
 33s、34s 給液スリット
 35s、36s 排液スリット
 37 シール部材
 40 連通管
 41、42 開口端
 43 中間部
 44 流量調整弁
 45 気相連通管
 50 導入管
 51 開閉弁
 55 ガス抜き配管
 56 逆止弁
 57 開閉弁
 61、71 出口部
 62、72 入口部
 64、74 開口部
 65、75 開口部
 66、67、68、69、76、77、78 開閉弁
 81、91 開口端
 100 電池セル
 101 隔膜
 102 正極セル
 103 負極セル
 104 正極電極
 105 負極電極
 106 正極電解液タンク
 107 負極電解液タンク
 108、109 往路配管
 110、111 復路配管
 112、113 ポンプ
 120 正極循環流路
 130 負極循環流路
 10P 正極電解液
 10N 負極電解液
 200 サブスタック
 210 給排板
 220 エンドプレート
 230 締付機構

Claims (6)

  1.  電池セルと、
     正極電解液及び負極電解液をそれぞれ貯留する正極電解液タンク及び負極電解液タンクと、
     前記各タンクと前記電池セルとの間で前記各電解液を循環させる正極循環流路及び負極循環流路と、
     一方の開口端が前記正極電解液に浸漬され、中間部が前記両電解液の液面よりも上方に架け渡され、他方の開口端が前記負極電解液に浸漬される管材を有する連通管と、を備えるレドックスフロー電池。
  2.  前記正極循環流路及び前記負極循環流路の少なくとも一方の循環流路と前記連通管とを接続する導入管と、
     前記導入管を開閉する開閉弁と、を備える請求項1に記載のレドックスフロー電池。
  3.  前記連通管の開口端が前記各タンク内の底部側に位置する請求項1又は請求項2に記載のレドックスフロー電池。
  4.  前記連通管の開口端が上に向くように形成されている請求項1から請求項3のいずれか1項に記載のレドックスフロー電池。
  5.  前記連通管に流量調整弁を備える請求項1から請求項4のいずれか1項に記載のレドックスフロー電池。
  6.  前記連通管内から気泡を抜くためのガス抜き配管を備え、
     前記ガス抜き配管は、前記連通管に一端が接続され、前記正極循環流路及び前記負極循環流路の少なくとも一方の循環流路に他端が接続されている請求項1から請求項5のいずれか1項に記載のレドックスフロー電池。
PCT/JP2017/042652 2017-11-28 2017-11-28 レドックスフロー電池 WO2019106723A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201780004505.7A CN110100342A (zh) 2017-11-28 2017-11-28 氧化还原液流电池
AU2017366666A AU2017366666B2 (en) 2017-11-28 Redox flow battery
KR1020187016570A KR102381015B1 (ko) 2017-11-28 2017-11-28 레독스 플로우 전지
EP17875070.9A EP3719905A4 (en) 2017-11-28 2017-11-28 REDOX FLOW BATTERY
PCT/JP2017/042652 WO2019106723A1 (ja) 2017-11-28 2017-11-28 レドックスフロー電池
JP2018521444A JP6931467B2 (ja) 2017-11-28 2017-11-28 レドックスフロー電池
US16/060,286 US11081708B2 (en) 2017-11-28 2017-11-28 Redox flow battery
TW107135247A TWI788429B (zh) 2017-11-28 2018-10-05 氧化還原液流電池
US17/362,490 US20210328242A1 (en) 2017-11-28 2021-06-29 Redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042652 WO2019106723A1 (ja) 2017-11-28 2017-11-28 レドックスフロー電池

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/060,286 A-371-Of-International US11081708B2 (en) 2017-11-28 2017-11-28 Redox flow battery
US17/362,490 Continuation US20210328242A1 (en) 2017-11-28 2021-06-29 Redox flow battery

Publications (1)

Publication Number Publication Date
WO2019106723A1 true WO2019106723A1 (ja) 2019-06-06

Family

ID=66665439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042652 WO2019106723A1 (ja) 2017-11-28 2017-11-28 レドックスフロー電池

Country Status (7)

Country Link
US (2) US11081708B2 (ja)
EP (1) EP3719905A4 (ja)
JP (1) JP6931467B2 (ja)
KR (1) KR102381015B1 (ja)
CN (1) CN110100342A (ja)
TW (1) TWI788429B (ja)
WO (1) WO2019106723A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012787A (ja) * 2019-07-04 2021-02-04 株式会社岐阜多田精機 レドックスフロー電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3933989A4 (en) * 2019-02-27 2022-05-04 Sumitomo Electric Industries, Ltd. ORP FLOW BATTERY
US11539061B2 (en) * 2019-04-12 2022-12-27 Raytheon Technologies Corporation Cell for electrochemically determining active species concentrations in redox flow batteries
KR20240034449A (ko) * 2022-09-07 2024-03-14 서울과학기술대학교 산학협력단 레독스 흐름전지 시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124754U (ja) * 1991-04-26 1992-11-13 住友電気工業株式会社 電解液流通型電池
JP2003257467A (ja) * 2002-02-27 2003-09-12 Sumitomo Electric Ind Ltd レドックスフロー電池の運転方法
JP2003303611A (ja) * 2002-04-10 2003-10-24 Sumitomo Electric Ind Ltd レドックスフロー電池の運転方法
JP2006147375A (ja) * 2004-11-19 2006-06-08 Kansai Electric Power Co Inc:The レドックスフロー電池およびその運転方法
JP2013008642A (ja) * 2011-06-27 2013-01-10 Sumitomo Electric Ind Ltd レドックスフロー電池
JP2013025964A (ja) 2011-07-19 2013-02-04 Sumitomo Electric Ind Ltd 電解液流通型電池
JP2013037814A (ja) 2011-08-04 2013-02-21 Sumitomo Electric Ind Ltd 電解液流通型電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124754A (ja) * 1990-09-14 1992-04-24 Nec Corp 通信用メッセージバッファ管理装置
US7517608B2 (en) * 2007-03-09 2009-04-14 Vrb Power Systems Inc. Inherently safe redox flow battery storage system
CN101463841A (zh) * 2008-03-17 2009-06-24 肖光正 开放容器负压虹吸器
CN102055000B (zh) * 2009-10-29 2015-04-22 北京普能世纪科技有限公司 氧化还原液流电池和使电池长时间持续运行的方法
JP5007849B1 (ja) * 2011-03-25 2012-08-22 住友電気工業株式会社 レドックスフロー電池、及びその運転方法
CN202284572U (zh) * 2011-05-05 2012-06-27 肖光正 抽水、虹吸两用泵管
CN103620845B (zh) * 2011-06-27 2016-10-05 住友电气工业株式会社 氧化还原液流电池
KR101491300B1 (ko) * 2012-08-21 2015-02-10 현대중공업 주식회사 이차 전지
EP2899789B1 (en) * 2012-09-18 2017-04-19 Sumitomo Electric Industries, Ltd. Redox flow battery
CN103779588B (zh) * 2012-10-19 2017-05-03 住友电气工业株式会社 氧化还原液流电池
CN104143650A (zh) * 2013-05-09 2014-11-12 中国科学院大连化学物理研究所 一种氧化还原液流电池及其应用
CN204011566U (zh) * 2014-06-18 2014-12-10 广东威亚邦新能源科技有限公司 一种用于全钒液流电池电解液的储液罐
US20160006054A1 (en) * 2014-07-07 2016-01-07 Unienergy Technologies, Llc Single capacity balancing in a redox flow battery
EP3176862B1 (en) * 2014-08-01 2019-03-20 Sumitomo Electric Industries, Ltd. Electrolyte for redox flow battery and redox flow battery system
JP6414463B2 (ja) * 2014-12-22 2018-10-31 住友電気工業株式会社 レドックスフロー電池の運転方法、及びレドックスフロー電池システム
KR101791311B1 (ko) * 2015-10-15 2017-10-27 오씨아이 주식회사 레독스 흐름 전지의 스택 손상 방지 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124754U (ja) * 1991-04-26 1992-11-13 住友電気工業株式会社 電解液流通型電池
JP2003257467A (ja) * 2002-02-27 2003-09-12 Sumitomo Electric Ind Ltd レドックスフロー電池の運転方法
JP2003303611A (ja) * 2002-04-10 2003-10-24 Sumitomo Electric Ind Ltd レドックスフロー電池の運転方法
JP2006147375A (ja) * 2004-11-19 2006-06-08 Kansai Electric Power Co Inc:The レドックスフロー電池およびその運転方法
JP2013008642A (ja) * 2011-06-27 2013-01-10 Sumitomo Electric Ind Ltd レドックスフロー電池
JP2013025964A (ja) 2011-07-19 2013-02-04 Sumitomo Electric Ind Ltd 電解液流通型電池
JP2013037814A (ja) 2011-08-04 2013-02-21 Sumitomo Electric Ind Ltd 電解液流通型電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3719905A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012787A (ja) * 2019-07-04 2021-02-04 株式会社岐阜多田精機 レドックスフロー電池
JP7017251B2 (ja) 2019-07-04 2022-02-08 株式会社岐阜多田精機 レドックスフロー電池

Also Published As

Publication number Publication date
JP6931467B2 (ja) 2021-09-08
TWI788429B (zh) 2023-01-01
EP3719905A1 (en) 2020-10-07
US20210328242A1 (en) 2021-10-21
EP3719905A4 (en) 2020-12-23
US11081708B2 (en) 2021-08-03
US20190237780A1 (en) 2019-08-01
KR20200086757A (ko) 2020-07-20
AU2017366666A1 (en) 2019-06-13
TW201931655A (zh) 2019-08-01
JPWO2019106723A1 (ja) 2020-10-08
CN110100342A (zh) 2019-08-06
KR102381015B1 (ko) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2019106723A1 (ja) レドックスフロー電池
TWI642227B (zh) 氧化還原液流電池
KR101357822B1 (ko) 분로전류를 방지한 레독스 흐름전지
WO2019106721A1 (ja) レドックスフロー電池
JP2021507498A (ja) 流動バッテリシステム
TW201603384A (zh) 氧化還原液流電池
TWI754101B (zh) 氧化還原液流電池
WO2016117265A1 (ja) レドックスフロー電池の運転方法、およびレドックスフロー電池
KR102007776B1 (ko) 레독스 흐름 전지
WO2016117263A1 (ja) レドックスフロー電池の運転方法、およびレドックスフロー電池
CN111448694B (zh) 氧化还原液流电池
WO2024029322A1 (ja) レドックスフロー電池
JP3922905B2 (ja) レドックスフロー電池
JP2003129266A (ja) ガス発生装置
JP2021034358A (ja) レドックスフロー電池システム
JP2006348328A (ja) 電解セルおよびガス発生貯蔵装置
WO2024208810A1 (en) Method to operate a redox flow battery and redox flow battery with immiscible electrolytes

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018521444

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017875070

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017875070

Country of ref document: EP

Effective date: 20180522

ENP Entry into the national phase

Ref document number: 2017366666

Country of ref document: AU

Date of ref document: 20171128

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017875070

Country of ref document: EP

Effective date: 20200629