WO2019105717A1 - Kraftfahrzeug mit einem fahrzeugführungssystem, verfahren zum betrieb eines fahrzeugführungssystems und computerprogramm - Google Patents

Kraftfahrzeug mit einem fahrzeugführungssystem, verfahren zum betrieb eines fahrzeugführungssystems und computerprogramm Download PDF

Info

Publication number
WO2019105717A1
WO2019105717A1 PCT/EP2018/080742 EP2018080742W WO2019105717A1 WO 2019105717 A1 WO2019105717 A1 WO 2019105717A1 EP 2018080742 W EP2018080742 W EP 2018080742W WO 2019105717 A1 WO2019105717 A1 WO 2019105717A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor vehicle
data
traffic
vehicle
rules
Prior art date
Application number
PCT/EP2018/080742
Other languages
English (en)
French (fr)
Inventor
Christian WRIEDT
Original Assignee
Audi Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi Ag filed Critical Audi Ag
Priority to US16/755,997 priority Critical patent/US20200255025A1/en
Priority to CN201880063091.XA priority patent/CN111149137A/zh
Publication of WO2019105717A1 publication Critical patent/WO2019105717A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0116Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/09623Systems involving the acquisition of information from passive traffic signs by means mounted on the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/09626Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages where the origin of the information is within the own vehicle, e.g. a local storage device, digital map
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096783Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096791Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is another vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/60Traffic rules, e.g. speed limits or right of way

Definitions

  • the invention relates to a motor vehicle having a vehicle guidance system designed for the at least partially automatic guidance of the motor vehicle, wherein the vehicle guidance system transmits at least one actuator that implements the at least partially automatic operation of the motor vehicle from input data comprising sensor data of at least one sensor of the motor vehicle comprising starting data determining controller.
  • the invention relates to a method for operating a vehicle guidance system and a computer program.
  • a current field of research relates to the at least partially automatic guidance of motor vehicles, in particular the completely automatic guidance of motor vehicles, and consequently the autonomous operation.
  • vehicle guidance systems have become known, which can determine and execute longitudinal and / or transverse guidance actions of the motor vehicle by accessing an environment detection, in particular by sensors, detection of the condition and by activation of corresponding actuators.
  • Corresponding output data corresponding to control commands for at least one actuator of the motor vehicle are ultimately generated in the course of a comprehensive situation analysis, which is made the basis of a further driving strategy implemented by the initial data.
  • this situation analysis or the determination of a driving strategy are essential, algorithmically in ECUs sometimes difficult to implement questions.
  • an at least partially automatically operated motor vehicle must comply with statutory provisions, ie traffic regulations, for example in Germany the provisions of the Highway Code.
  • statutory provisions ie traffic regulations, for example in Germany the provisions of the Highway Code.
  • attributes for example conflict zones and / or lane priorities, are extracted by means of procedural or object-oriented algorithms from an environment map enriched with current environmental data, in particular sensor data, and lane-accurate environmental map.
  • Similar problems may also arise with regard to the prediction of the behavior of other road users, for example with regard to rules of experience describing typical behavior of such other road users.
  • result data from predictions can also be taken into account in the context of the assessment of traffic regulations to be taken into account due to statutory regulations.
  • a problem of the existing handling of traffic rules is that the reliability of data sources, for example of sensor data and / or predictive units, in the Processing can not be considered automatically. For example, typical measurement errors with respect to the sensor data are not reflected in the final results, unless complex error propagation is implemented within the algorithms.
  • Another problem of the current implementation is the large number of traffic rules that apply in a traffic situation, which have to be taken into account so that algorithms with a complexity that is difficult to manage arise.
  • the control unit has an inference unit with at least one probabilistic traffic rules model, comprising facts and inference rules, which, when supplied, are derived from the input data traffic-law-related evidence data, with each evidence date being assigned reliability, and request data for outputting traffic rule information relating to at least one traffic rule to be taken into account, which is taken into account in the determination of the output data.
  • a further advantage of the use of the inferring unit provided according to the invention is the further traceability provided by the use of clear facts and inference rules, both can be lost when using more complex algorithms and, for example, when using artificial intelligence, so that uncertainties can arise.
  • software components of the vehicle guidance function that are implemented in the control unit can transmit request data to the inferential unit, which determines the traffic control information using the current evidence data.
  • traffic rules can, on the one hand, reproduce legal regulations, it also being conceivable in the context of the present invention to implement rules of experience as traffic rules, for example for implementing a prediction by means of the inferential unit.
  • the evidence data may include sensor data of at least one sensor, wherein the associated reliability describes a measurement and / or evaluation error of the sensor data, and / or result data of a prediction unit of the control device, the associated reliability describing an algorithmic reliability of the prediction.
  • sensor data of the vehicle's own sensor technology these are usually already pre-evaluated in order to obtain a corresponding evidence fact, which describes the current traffic situation with a certain degree of reliability.
  • a fusion of sensor data from several sensors may have already taken place.
  • the entrainment and evolution of typical Measurement errors is already known in principle and can be implemented / carried along accordingly in the evaluation.
  • query (turnsAb (traffic participant)).
  • the inference unit supplies the corresponding probabilities as traffic control information, namely for the road user 1, that the Probability for a turn is 0.4, for road user 2 that the probability for turning is 0.72.
  • a traffic sign is relevant for the recognition of a right of way. If, for example, with a probability of 0.86 a road sign indicating a priority road has been determined at a certain position for a certain lane, corresponding evidence data can be formulated therefrom.
  • a rule of the probabilistic model could indicate here with a probability of 1.0 (since this is always the case according to the statutory provision) that the own motor vehicle has priority when the own position is in front of the position of the traffic sign and the appropriate lane is used.
  • the inference unit may comprise an interpreter for a probabilistic programming language in which the model is described.
  • a probabilistic programming language (often a probabilistic logic programming language) that can be used is known, for example, under the name "ProbLog2".
  • the interpreter can already contain the inferencing algorithms, thus acting as an execution unit for queries.
  • a selection unit is provided which is designed to select a probabilistic model to be used from probabilistic models assigned to a geographic position determined by a position determination unit.
  • the corresponding traffic regulations can be considered probabilistic Model within the motor vehicle are kept, and depending on a particular geographical position, such as a GPS position, the appropriate probabilistic model can be selected and used in the infinity unit.
  • the correct legal regulations are always taken into account by the at least partially automated vehicle management function.
  • At least some of the traffic rules can also comprise rules of experience, in which case at least one traffic rule information is preferably a prediction information describing the future behavior of a road user.
  • at least one traffic rule information is preferably a prediction information describing the future behavior of a road user.
  • hypotheses which may for example be present within an environment perception unit within an environment map with different probabilities, but relate to the same circumstance.
  • the evidence data comprise different hypotheses for a circumstance described by them, each with assigned reliability.
  • another road user with a probability of 70% may be assumed to be on the middle lane, with a 20% chance that he is on the right lane and with a 10% chance that he will be on the left lane.
  • probabilistic logic programming it is easily possible to incorporate several such hypotheses into the evidence data as discrete probability distributions and nevertheless to correctly take them into account. In this way, it is therefore no longer necessary to decide on one of the hypotheses regarding the circumstance, but it can take the complete evaluation result into account and integrate it into the inference algorithmics to provide more reliable, more accurate information.
  • the present invention also relates to a method for operating a vehicle guidance system of the motor vehicle, in particular of a motor vehicle according to the invention, designed for the at least partially automatic guidance of a motor vehicle, as described, wherein the vehicle guidance system comprises an input data, comprising sensor data of at least one sensor of the motor vehicle, for controlling at least one at least partially automatic operation of the motor vehicle realizing actuator to be used output data determining control unit, which is characterized in that the control unit comprises an inferenzillon with at least one probabilistic, traffic rules mapping model Facts and inference rules, which, when supplied with derived from the input data, traffic-rule-related evidence data, each reliability date is assigned a reliability, and request data e at least one traffic rule information relating to a traffic rule to be taken into account, which is taken into account in the determination of the output data. All statements relating to the motor vehicle according to the invention can be analogously transferred to the inventive method, with which therefore also the already mentioned advantages can be obtained.
  • the method according to the invention can be realized as a computer program which carries out the steps of the method according to the invention when it is executed on a control device of a vehicle guidance system of a motor vehicle. Also with respect to the computer program, the previous versions apply accordingly. Further advantages and details of the present invention will become apparent from the embodiments described below and with reference to the drawing. Showing: 1 is a schematic diagram of a motor vehicle according to the invention, and
  • Fig. 2 is a functional sketch of an Inferenzappel.
  • the motor vehicle 1 shows a schematic diagram of a motor vehicle 1 according to the invention.
  • the motor vehicle 1 has a vehicle guidance system 2 designed for at least partially automatic guidance, in this case completely automatic guidance, of the motor vehicle 1, whose vehicle guidance function is realized by means of a control device 3.
  • the control unit 3 is also provided with a multiplicity of input data, environmental sensors 4, for example radar sensors and / or a camera, and operating conditions of the motor vehicle 1, for example an inertial platform, being shown by way of example as sensors of the motor vehicle 1.
  • Further input data is also provided by a position determination unit 6 for determining a geographical, in particular geodetic, position of the motor vehicle 1, for example a GPS sensor.
  • Further sources for relevant input data may include, for example, a navigation system which supplies digital map data and / or a communication device for obtaining information from other motor vehicles and / or infrastructure devices.
  • the control unit 3 initially comprises an environment perception unit 7 in which the information obtained is expanded to form an environment map that preferably complements a digital map with additional attributes describing the current traffic situation by a fusion of incoming information, in particular sensor data several sensors. Even an environment map determined in this way ultimately forms input data for the vehicle management function.
  • this vehicle guidance function is implemented by a main unit 8 of the control device 3 which comprises in particular various software components. From the input data, the vehicle guidance function determines output data for the actuation of various actuators 9 which carry out the at least partially automated operation. implement table operation of the motor vehicle 1.
  • the actuators 9 may be at example brake actuators, motors, steering actuators and the like.
  • the control unit 3 now also comprises an inferential unit, to which software components of the vehicle guidance function can make inquiries relating to traffic rules, including legal regulations and experience rules, wherein, for example, traffic rule information about traffic rules to be maintained can be obtained just as prediction information, what the behavior of other road users.
  • the inference unit 10 is implemented in probabilistic logic programming, with its functional structure being explained in greater detail by FIG.
  • At least one probabilistic model 11, in which the traffic rules are described, is initially stored in the inference unit, for example, that whenever a preceding priority traffic sign has been detected which relates to the correct traffic lane, the motor vehicle 1 proceeds has to give a simplified example.
  • the inferential unit 10 receives as input data the already mentioned evidence data 12, which describe the current traffic situation and also respectively assign the individual "facts" to reliability of these facts, for sensor data, for example a corresponding measurement and evaluation error related to the already performed preliminary evaluation the sensor data.
  • evidence data relating to a detected further road user may describe that he is with a first probability on the right lane, a second likelihood on the middle lane and a third likelihood on the right lane, so that the Evi - Denz flowers 12 can also cover several hypotheses. It should be noted that the evidence data 12 can also contain results of prediction units to which a reliability value determined in the corresponding prediction algorithm can then be assigned as reliability.
  • the inference unit 10 also receives request data 13 which describes which traffic control information is desired as a result. After the Inference unit 10 now further comprises an interpreter 14, which realizes the corresponding inference algorithms that are needed, the desired traffic control information 15 can be generated using the probabilistic model 11 and the evidence data 12.
  • This traffic regulation information is then correspondingly taken into account in the further determination of the output data, for example the planning of the next driving maneuvers.
  • the probabilistic model describes legal regulations as traffic rules that can be valid in different geographic areas, for example in different states, different probabilistic models are stored in the control unit 3 for these different scopes, one being a probabilistic model can be determined based on a geographical position of the position determination unit 6.

Abstract

Kraftfahrzeug (1) mit einem zur wenigstens teilweise automatischen Führung des Kraftfahrzeugs (1) ausgebildeten Fahrzeugführungssystem (2), wobei das Fahrzeugführungssystem (2) ein aus Eingangsdaten, umfassend Sensordaten wenigstens eines Sensors des Kraftfahrzeugs (1), zur Ansteuerung wenigstens eines den wenigstens teilweise automatischen Betrieb des Kraftfahrzeugs (1) realisierenden Aktors (10) zu verwendende Ausgangsdaten ermittelndes Steuergerät (3) aufweist, wobei das Steuergerät (3) eine Inferenzeinheit (10) mit wenigstens einem probabilistischen, Verkehrsregeln abbildenden Modell (11), umfassend Fakten und Inferenzregeln, aufweist, welches bei Versorgung mit aus den Eingangsdaten abgeleiteten, verkehrsregelbezogenen Evidenzdaten (12), wobei jedem Evidenzdatum eine Verlässlichkeit zugeordnet ist, und Anfragedaten (13) zur Ausgabe einer wenigstens eine zu berücksichtigende Verkehrsregel betreffenden Verkehrsregel Information (15), die bei der Ermittlung der Ausgangsdaten berücksichtigt wird, ausgebildet ist.

Description

Kraftfahrzeug mit einem Fahrzeugführungssystem, Verfahren zum Betrieb eines Fahrzeugführungssystems und Computerprogramm
BESCHREIBUNG:
Die Erfindung betrifft ein Kraftfahrzeug mit einem zur wenigstens teilweise automatischen Führung des Kraftfahrzeugs ausgebildeten Fahrzeugfüh- rungssystem, wobei das Fahrzeugführungssystem ein aus Eingangsdaten, umfassend Sensordaten wenigstens eines Sensors des Kraftfahrzeugs, zur Ansteuerung wenigstens eines den wenigstens teilweise automatischen Be- trieb des Kraftfahrzeugs realisierenden Aktors zu verwendende Ausgangsda- ten ermittelndes Steuergerät aufweist. Daneben betrifft die Erfindung ein Ver- fahren zum Betrieb eines Fahrzeugführungssystems und ein Computerpro- gramm.
Ein aktuelles Forschungsgebiet betrifft die wenigstens teilweise automatische Führung von Kraftfahrzeugen, insbesondere die vollständig automatische Führung von Kraftfahrzeugen, mithin den autonomen Betrieb. Hierfür sind Fahrzeugführungssysteme bekannt geworden, die mittels Zugriff auf eine Umfelderfassung, insbesondere durch Sensoren, eine Erfassung des Eigen- zustandes und durch Ansteuerung entsprechender Aktoren Längs- und/oder Querführungsaktionen des Kraftfahrzeugs bestimmen und ausführen kön- nen. Entsprechende Ausgangsdaten, die Steuerbefehlen für wenigstens ei- nen Aktor des Kraftfahrzeugs entsprechen, werden dabei letztlich im Rah- men einer umfassenden Situationsanalyse erzeugt, die zur Grundlage einer weiteren, durch die Ausgangsdaten umgesetzten Fahrstrategie gemacht wird. Im Rahmen dieser Situationsanalyse beziehungsweise der Ermittlung einer Fahrstrategie stellen sich wesentliche, algorithmisch in Steuergeräten teils schwer umzusetzende Fragen. Zum einen muss ein wenigstens teilweise automatisch betriebenes Kraftfahrzeug gesetzlich festgelegten Vorschriften, also Verkehrsregeln, folgen, beispielsweise in Deutschland den Bestimmun- gen der Straßenverkehrsordnung. Dies wird zur Zeit in entsprechenden Fahrzeugführungsfunktionen derart umgesetzt, dass mit prozeduralen oder objektorientierten Algorithmen aus einer mit aktuellen Umgebungsdaten, ins- besondere Sensordaten, angereicherten, fahrspurgenauen Umgebungskarte Attribute, beispielsweise Konfliktzonen und/oder Fahrspurprioritäten, extra- hiert werden. Ähnliche Probleme können sich auch im Hinblick auf die Prä- diktion des Verhaltens anderer Verkehrsteilnehmer ergeben, beispielsweise hinsichtlich von Erfahrungsregeln, die typisches Verhalten solcher anderer Verkehrsteilnehmer beschreiben. Ergebnisdaten von Prädiktionen können im Übrigen auch im Rahmen der Beurteilung zu berücksichtigender Verkehrsre- geln aufgrund gesetzlicher Vorschriften berücksichtigt werden.
Ein Problem der existierenden Bearbeitung von Verkehrsregeln, sei es be- züglich gesetzlicher Vorschriften und/oder der erfahrungsbasierten Abschät- zung des Verhaltens weiterer Verkehrsteilnehmer, ist, dass die Verlässlich- keit von Datenquellen, beispielsweise von Sensordaten und/oder Prädikti- onseinheiten, bei der Verarbeitung nicht automatisiert berücksichtigt werden können. Beispielsweise spiegeln sich typische Messfehler bezüglich der Sensordaten nicht in den schließlich erhaltenen Ergebnissen wieder, falls nicht eine komplexe Fehlerfortpflanzung innerhalb der Algorithmen imple- mentiert wird. Ein weiteres Problem der aktuellen Umsetzung ist die große Vielzahl von in einer Verkehrssituation geltenden Verkehrsregeln, die be- rücksichtigt werden müssen, so dass Algorithmen mit schwer beherrschbarer Komplexität entstehen.
Der Erfindung liegt daher die Aufgabe zugrunde, eine vereinfachte, Unsi- cherheiten von Sensoren und/oder Prädiktionseinheiten berücksichtigende Umsetzung der Verkehrsregelanalyse bei wenigstens teilweise automatisier- ten Fahrzeugführungsfunktionen anzugeben. Zur Lösung dieser Aufgabe ist bei einem Kraftfahrzeug der eingangs ge- nannten Art erfindungsgemäß vorgesehen, dass das Steuergerät eine Infer- enzeinheit mit wenigstens einem probabilistischen, Verkehrsregeln abbilden- den Modell, umfassend Fakten und Inferenzregeln, aufweist, welches bei Versorgung mit aus den Eingangsdaten abgeleiteten, verkehrsregelnbezo- genen Evidenzdaten, wobei jedem Evidenzdatum eine Verlässlichkeit zuge- ordnet ist, und Anfragedaten zur Ausgabe einer wenigstens eine zu berück- sichtigende Verkehrsregel betreffenden Verkehrsregelinformation, die bei der Ermittlung der Ausgangsdaten berücksichtigt wird, ausgebildet ist.
Im Rahmen der Erfindung wurde erkannt, dass durch den Einsatz einer auf probabilistisch-logischer Programmierung basierenden Einheit zur Inferenz von Verkehrsregeln zur Laufzeit einer automatisierten Fahrfunktion eine di- rekte Transformation von Verkehrsregeln, insbesondere aus Gesetzen, in von dem Steuergerät beziehungsweise den die Fahrzeugführungsfunktion realisierenden Algorithmen verarbeitende Fakten und Regeln möglich ist. Die zur Laufzeit der Fahrzeugführungsfunktion beispielsweise von Sensoren und/oder Prädiktionseinheiten ermittelten Evidenzdaten können in Form evi- denzieller Fakten mit assoziierten Existenzwahrscheinlichkeiten, also Ver- lässlichkeiten, und gegebenenfalls Verteilungen an die Inferenzeinheit über- mittelt werden, wo diese Evidenzdaten bei der Inferenz konsistent berück- sichtigt werden und der Quantifizierung der Sicherheit der abgeleiteten Aus- sage über die in der aktuellen Verkehrssituation zu berücksichtigenden Best- immungen bedienen. Die Nutzung eines probabilistischen Modells mit zuge- hörigen Inferenzalgorithmen ermöglicht also zunächst die automatische Be- rücksichtigung von Unsicherheiten bei Sensoren und Prädiktionseinheiten, ohne dass hierfür spezielle Algorithmen entwickelt werden müssen. Auf die Entwicklung von komplexen Algorithmen zur Umsetzung solcher Informati- onsgewinnung kann vollständig verzichtet werden, da sich das probabilis- tisch-logische Programm auf eine Ansammlung formalisierter Fakten und Regeln beschränkt. Ein weiterer Vorteil der erfindungsgemäß vorgesehenen Verwendung der Inferenzeinheit ist die weiterhin aufgrund der Verwendung klarer Fakten und Inferenzregeln gegebenen Nachvollziehbarkeit, die sowohl bei Verwendung komplexerer Algorithmen als auch beispielsweise bei Ein- satz künstlicher Intelligenz verlorengehen kann, so dass Unsicherheiten ent- stehen können.
In der konkreten Umsetzung können beispielsweise Softwarekomponenten der Fahrzeugführungsfunktion, die in dem Steuergerät realisiert sind, Anfra- gedaten an die Inferenzeinheit übermitteln, welche unter Nutzung der aktuel- len Evidenzdaten die Verkehrsregelinformation ermittelt. Dabei können Ver- kehrsregeln zum einen gesetzliche Vorschriften wiedergeben, wobei es im Rahmen der vorliegenden Erfindung auch denkbar ist, als Verkehrsregeln Erfahrungsregeln umzusetzen, beispielsweise zur Umsetzung einer Prädikti- on mittels der Inferenzeinheit.
Die Fakten und Regeln in der probabilistisch-logischen Programmierung bil den kleine modulare Einheiten von Wissen, die beliebig kombinierbar sind. Die vorliegende Erfindung profitiert mithin von der Deklarativität dieser Art der Programmierung und die Lösungssuche geschieht durch die Inferenzein- heit, nicht durch einen expliziten Algorithmus, der aufwendig entwickelt wer- den muss. Inferenzeinheiten der probabilistischen Programmierung sind zu- dem neben ihrer klaren Verständlichkeit und Nachvollziehbarkeit äußerst robust, so dass eine verlässliche Ermittlung der Verkehrsregelinformation erfolgen kann.
Die Evidenzdaten können Sensordaten wenigstens eines Sensors, wobei die zugeordnete Verlässlichkeit einen Mess- und/oder Auswertungsfehler der Sensordaten beschreibt, und/oder Ergebnisdaten einer Prädiktionseinheit des Steuergeräts, wobei die zugeordnete Verlässlichkeit eine algorithmische Verlässlichkeit der Prädiktion beschreibt, umfassen. Was Sensordaten der kraftfahrzeugeigenen Sensorik angeht, sind diese meist bereits vorausge- wertet, um ein entsprechendes Evidenz-Faktum, das die aktuelle Verkehrssi- tuation mit einer gewissen Verlässlichkeit beschreibt, zu erhalten. Insbeson- dere kann auch bereits eine Fusion von Sensordaten mehrerer Sensoren stattgefunden haben. Die Mitführung und Weiterentwicklung von typischen Messfehlern ist dabei bereits grundsätzlich bekannt und kann entsprechend bei der Auswertung umgesetzt/mitgeführt werden.
Dies sei anhand eines zur Demonstration einfach gehaltenen Beispiels nochmals konkreter erläutert. Es sei angenommen, von einer Umfeldwar- nehmungseinheit des Steuergeräts, welche insbesondere die Sensordaten einer Vielzahl von Umfeldsensoren fusioniert, wurden zwei weitere Verkehrs- teilnehmer erkannt, wobei die Sicherheit, dass Fahrtrichtungsanzeiger der beiden weiteren Verkehrsteilnehmer aktiviert sind, 0,5 beziehungsweise 0,9 betragen sollen. In einem Beispiel probabilistisch-logischer Programmierung, für das hier die Syntax der probabilistisch-logischen Programmiersprache ProbLog2 verwendet wird, die auf der Prädikatenlogik erster Stufe basiert, bedeutet dies für die entsprechenden Evidenzdaten:
0.5::blinkt (Verkehrsteilnehmer 1 ).
0.9::blinkt (Verkehrsteilnehmer 2).
Aus Erfahrung, beispielsweise aus Messungen, statistischen Erhebungen und/oder maschinellem Lernen kann bekannt sein und als Regel im probabi- listischen Modell hinterlegt sein, dass ein Verkehrsteilnehmer, dessen Fahrt- richtungsanzeiger betätigt ist, mit einer Wahrscheinlichkeit von 80% tatsäch- lich abbiegt. In der beispielhaften obigen Syntax bedeutet dies als Regel des probabilistischen Modells:
0.8::biegtAb(X) :- blinkt(X).
Soll nun ermittelt werden, welche Verkehrsteilnehmer in der aktuellen Ver- kehrssituation abbiegen werden, kann in diesem stark vereinfachten Beispiel als Anfragedaten folgende Anfrage an die Inferenzeinheit gestellt werden: query(biegtAb(Verkehrsteilnehmer)).
Hieraus liefert die Inferenzeinheit die entsprechenden Wahrscheinlichkeiten als Verkehrsregelinformation, nämlich für den Verkehrsteilnehmer 1 , dass die Wahrscheinlichkeit für ein Abbiegen 0,4 beträgt, für den Verkehrsteilnehmer 2, dass die Wahrscheinlichkeit für ein Abbiegen 0,72 beträgt.
Andere Aspekte der Inferenz-Situationsinterpretation können auch Verkehrs- schilder betreffen. Für die Erkennung einer Vorfahrt ist beispielsweise ein Verkehrsschild relevant. Ist beispielsweise mit einer Wahrscheinlichkeit von 0.86 ein eine Vorfahrtstraße anzeigendes Verkehrsschild an einer bestimm- ten Position für eine bestimmte Fahrspur festgestellt worden, können hieraus entsprechende Evidenzdaten formuliert werden. Eine Regel des probabilisti- schen Modells könnte hier mit einer Wahrscheinlichkeit von 1.0 angeben (da dies nach gesetzlicher Vorschrift immer gilt), dass das eigene Kraftfahrzeug Vorfahrt hat, wenn die eigene Position vor der Position des Verkehrsschilds liegt und die passende Fahrspur verwendet wird.
An diesen einfachen Beispielen wird bereits ersichtlich, dass sich insbeson- dere kombinierbare Zusammenhänge leicht zu entsprechenden Regeln und Fakten in einem probabilistischen Modell abbilden lassen, was komplexe, weniger effiziente, robuste und nachvollziehbare Algorithmik vermeidet. Vor- zugsweise kann die Inferenzeinheit einen Interpreter für eine probabilistische Programmiersprache in der das Modell beschrieben ist, aufweisen. Eine pro- babilistische Programmiersprache (oft auch probabilistisch-logische Pro- grammiersprache), die eingesetzt werden kann, ist beispielsweise unter dem Namen„ProbLog2“ bekannt. Der Interpreter kann dabei bereits die Inferen- zalgorithmen enthalten, mithin als Ausführungseinheit bei Anfragen wirken.
Wie bereits erwähnt wurde, kann wenigstens ein Teil der Verkehrsregeln ge- setzlich festgelegte Vorschriften umfassen. In diesem Zusammenhang sieht eine bevorzugte Weiterbildung der Erfindung vor, dass eine Auswahleinheit vorgesehen ist, die zur Auswahl eines zu verwendenden probabilistischen Modells aus mehreren, geographischen Geltungsbereichen zugeordnete probabilistischen Modellen in Abhängigkeit einer von einer Positionsbestim- mungseinheit bestimmten geographischen Position ausgebildet ist. Bei- spielsweise können für unterschiedliche Staaten die entsprechenden, ge- setzlichen Vorschriften entsprechenden Verkehrsregeln als probabilistisches Modell innerhalb des Kraftfahrzeugs vorgehalten werden, wobei abhängig von einer bestimmten geographischen Position, beispielsweise einer GPS- Position, das passende probabilistische Modell ausgewählt und in der Infer- enzeinheit eingesetzt werden kann. So werden immer die korrekten gesetzli- chen Vorschriften durch die wenigstens teilweise automatisierte Fahrzeug- führungsfunktion berücksichtigt.
Wie bereits erwähnt, kann auch wenigstens ein Teil der Verkehrsregeln Er- fahrungsregeln umfassen, wobei dann bevorzugt wenigstens eine Verkehrs- regel Information eine das zukünftige Verhalten eines Verkehrsteilnehmers beschreibende Prädiktionsinformation ist. Auf diese Weise können bei- spielsweise Prädiktionseinheiten, die bislang vorgesehen waren, durch An- fragen an das probabilistische Modell ersetzt werden, welche diese Prädikti- onen aufgrund der Erfahrungsregeln selbst auf einfach implementierte Weise ermitteln und liefern können.
Im Rahmen der vorliegenden Erfindung können auch unterschiedliche Hypo- thesen, die beispielsweise innerhalb einer Umfeldwahrnehmungseinheit in- nerhalb einer Umgebungskarte mit unterschiedlichen Wahrscheinlichkeiten vorliegen können, sich aber auf denselben Umstand beziehen, berücksichtigt werden. So kann vorgesehen sein, dass wenigstens ein Teil der Evidenzda- ten verschiedene Hypothesen für einen durch sie beschriebenen Umstand mit jeweils zugeordneten Verlässlichkeiten umfasst. Beispielsweise kann für einen anderen Verkehrsteilnehmer mit einer Wahrscheinlichkeit von 70 % angenommen werden, dass er sich auf der mittleren Spur befindet, mit einer Wahrscheinlichkeit von 20 %, dass er sich auf der rechten Spur befindet und mit einer Wahrscheinlichkeit von 10 %, dass er sich auf der linken Spur be- findet. Mittels probabilistisch-logischer Programmierung ist es problemlos möglich, mehrere solcher Hypothesen als diskrete Wahrscheinlichkeitsvertei- lung in die Evidenzdaten einzubringen und diese dennoch korrekt zu berück- sichtigen. Auf diese Weise ist es mithin nicht mehr notwendig, sich für eine der Hypothesen bezüglich des Umstands zu entscheiden, sondern es kann das komplette Auswertungsergebnis berücksichtigt und in die Inferenz- algorithmik eingebracht werden, um somit verlässlichere, genauere Informa- tionen zu liefern.
Neben dem Kraftfahrzeug betrifft die vorliegende Erfindung auch ein Verfah- ren zum Betrieb eines zur wenigstens teilweise automatischen Führung ei- nes Kraftfahrzeugs ausgebildeten Fahrzeugführungssystems des Kraftfahr- zeugs, insbesondere eines erfindungsgemäßen Kraftfahrzeugs, wie be- schrieben, wobei das Fahrzeugführungssystem ein aus Eingangsdaten, um- fassend Sensordaten wenigstens eines Sensors des Kraftfahrzeugs, zur An- Steuerung wenigstens eines den wenigstens teilweise automatischen Betrieb des Kraftfahrzeugs realisierenden Aktors zu verwendende Ausgangsdaten ermittelndes Steuergerät aufweist, welches sich dadurch auszeichnet, dass das Steuergerät eine Inferenzeinheit mit wenigstens einem probabilistischen, Verkehrsregeln abbildenden Modell, umfassend Fakten und Inferenzregeln, aufweist, welche bei Versorgung mit aus den Eingangsdaten abgeleiteten, verkehrsregelbezogenen Evidenzdaten, wobei jedem Evidenzdatum eine Verlässlichkeit zugeordnet ist, und Anfragendaten eine wenigstens eine zu berücksichtigende Verkehrsregel betreffende Verkehrsregelinformation ermit- telt, die bei der Ermittlung der Ausgangsdaten berücksichtigt wird. Sämtliche Ausführungen bezüglich des erfindungsgemäßen Kraftfahrzeugs lassen sich analog auf das erfindungsgemäße Verfahren übertragen, mit welchem mithin ebenso die bereits genannten Vorteile erhalten werden können.
Das erfindungsgemäße Verfahren kann als Computerprogramm realisiert werden, welches die Schritte des erfindungsgemäßen Verfahrens ausführt, wenn es auf einem Steuergerät eines Fahrzeugführungssystems eines Kraft- fahrzeugs ausgeführt wird. Auch bezüglich des Computerprogramms gelten die bisherigen Ausführungen entsprechend fort. Weitere Vorteile und Einzelheiten der vorliegenden Erfindung ergeben sich aus den im Folgenden beschriebenen Ausführungsbeispielen sowie anhand der Zeichnung. Dabei zeigen: Fig. 1 eine Prinzipskizze eines erfindungsgemäßen Kraftfahrzeugs, und
Fig. 2 eine funktionale Skizze einer Inferenzeinheit.
Fig. 1 zeigt eine Prinzipskizze eines erfindungsgemäßen Kraftfahrzeugs 1. Das Kraftfahrzeug 1 weist ein zur wenigstens teilweise automatischen Füh- rung, hier vollständig automatischen Führung, des Kraftfahrzeugs 1 ausge- bildetes Fahrzeugführungssystem 2 auf, dessen Fahrzeugführungsfunktion mittels eines Steuergeräts 3 realisiert wird. Flierzu erhält das Steuergerät 3 eine Vielzahl von Eingangsdaten, wobei beispielhaft als Sensoren des Kraft- fahrzeugs 1 Umfeldsensoren 4, beispielsweise Radarsensoren und/oder eine Kamera, und den Betriebszustand des Kraftfahrzeugs 1 selbst wahrnehmen- de Betriebssensoren 5, beispielsweise eine Inertialplattform, gezeigt sind. Weitere Eingangsdaten liefert auch eine Positionsbestimmungseinheit 6 zur Bestimmung einer geographischen, insbesondere geodätischen, Position des Kraftfahrzeugs 1 , beispielsweise ein GPS-Sensor.
Weitere Quellen für relevante Eingangsdaten können beispielsweise ein Na- vigationssystem, welches digitale Kartendaten liefert, und/oder eine Kommu- nikationseinrichtung, um von anderen Kraftfahrzeugen und/oder Infrastruk- tureinrichtungen Informationen zu erhalten, umfassen.
Das Steuergerät 3 umfasst vorliegend zunächst eine Umfeldwahrnehmungs- einheit 7, in der die erhaltenen Informationen zu einer Umfeldkarte erweitert werden, die bevorzugt eine digitale Karte mit zusätzlichen, die aktuelle Ver- kehrssituation beschreibenden Attributen ergänzt, indem eine Fusion von eingehenden Informationen, insbesondere von Sensordaten mehrerer Sen- soren, stattfindet. Auch eine so ermittelte Umfeldkarte bildet letztlich Ein- gangsdaten für die Fahrzeugführungsfunktion. Diese Fahrzeugführungsfunk- tion wird vorliegend durch eine insbesondere verschiedene Softwarekompo- nenten umfassende Haupteinheit 8 des Steuergeräts 3 realisiert. Die Fahr- zeugführungsfunktion ermittelt aus den Eingangsdaten Ausgangsdaten zur Ansteuerung verschiedener Aktoren 9, die den wenigstens teilweise automa- tischen Betrieb des Kraftfahrzeugs 1 umsetzen. Die Aktoren 9 können bei spielsweise Bremsaktoren, Motoren, Lenkaktoren und dergleichen sein.
Das Steuergerät 3 umfasst nun ferner eine Inferenzeinheit, an die Software- komponenten der Fahrzeugführungsfunktion Anfragen stellen können, die sich auf Verkehrsregeln, umfassend gesetzliche Vorschriften und Erfah- rungsregeln, beziehen, wobei beispielsweise Verkehrsregelinformationen über einzuhaltende Verkehrsregeln genauso erhalten können wie Prädikti- onsinformationen, was das Verhalten anderer Verkehrsteilnehmer angeht.
Die Inferenzeinheit 10 ist in probabilistisch-logischer Programmierung umge- setzt, wobei ihre funktionale Struktur durch Fig. 2 näher erläutert wird. In der Inferenzeinheit ist zunächst wenigstens ein probabilistisches Modell 11 abge- legt, in welchem die Verkehrsregeln beschrieben sind, beispielsweise, dass immer dann, wenn ein vorausliegendes Vorfahrts-Verkehrsschild detektiert wurde, das sich auf die korrekte Fahrspur bezieht, das Kraftfahrzeug 1 Vor- fahrt hat, um ein vereinfachtes Beispiel darzulegen. Die Inferenzeinheit 10 erhält als Eingangsdaten die bereits erwähnten Evidenzdaten 12, die die ak- tuelle Verkehrssituation beschreiben und auch jeweils den einzelnen„Fak- ten“ Verlässlichkeiten dieser Fakten zuordnen, bei Sensordaten beispiels weise einen entsprechenden Mess- und Auswertungsfehler bezogen auf die bereits erfolgte Vorauswertung der Sensordaten. Beispielsweise können Evi- denzdaten bezüglich eines detektierten weiteren Verkehrsteilnehmers be- schreiben, dass er sich mit einer ersten Wahrscheinlichkeit auf der rechten Spur, einer zweiten Wahrscheinlichkeit auf der mittleren Spur und einer drit- ten Wahrscheinlichkeit auf der rechten Spur befindet, so dass mithin die Evi- denzdaten 12 auch mehrere Hypothesen abdecken können. Es sei ange- merkt, dass die Evidenzdaten 12 auch Ergebnisse von Prädiktionseinheiten enthalten können, denen dann als Verlässlichkeit ein im entsprechenden Prädiktionsalgorithmus mitermittelter Verlässlichkeitswert zugeordnet sein kann.
Die Inferenzeinheit 10 erhält ferner Anfragedaten 13, die beschreiben, wel- che Verkehrsregelinformation als Ergebnis gewünscht wird. Nachdem die Inferenzeinheit 10 nun ferner einen Interpreter 14 aufweist, der die entspre- chenden Inferenzalgorithmen, die benötigt werden, realisiert, kann unter Nut- zung des probabilistischen Modells 11 und der Evidenzdaten 12 die ge- wünschte Verkehrsregelinformation 15 generiert werden.
Diese Verkehrsregelinformation wird dann entsprechend bei der weiteren Ermittlung der Ausgangsdaten, beispielsweise der Planung der nächsten Fahrmanöver, entsprechend berücksichtigt. Nachdem das probabilistische Modell gesetzliche Vorschriften als Verkehrs- regeln beschreibt, die in unterschiedlichen geographischen Bereichen gültig sein können, beispielsweise in unterschiedlichen Staaten, sind für diese un- terschiedlichen Gültigkeitsbereiche unterschiedliche probabilistische Modelle in dem Steuergerät 3 gespeichert, wobei ein zu verwendendes probabilisti- sches Modell anhand einer geographischen Position der Positionsbestim- mungseinheit 6 ermittelt werden kann.

Claims

PATENTANSPRÜCHE:
Kraftfahrzeug (1 ) mit einem zur wenigstens teilweise automatischen Führung des Kraftfahrzeugs (1 ) ausgebildeten Fahrzeugführungssys- tem (2), wobei das Fahrzeugführungssystem (2) ein aus Eingangsda- ten, umfassend Sensordaten wenigstens eines Sensors des Kraftfahr- zeugs (1 ), zur Ansteuerung wenigstens eines den wenigstens teilweise automatischen Betrieb des Kraftfahrzeugs (1 ) realisierenden Aktors (10) zu verwendende Ausgangsdaten ermittelndes Steuergerät (3) aufweist, dadurch gekennzeichnet,
dass das Steuergerät (3) eine Inferenzeinheit (10) mit wenigstens ei- nem probabilistischen, Verkehrsregeln abbildenden Modell (11 ), umfas- send Fakten und Inferenzregeln, aufweist, welches bei Versorgung mit aus den Eingangsdaten abgeleiteten, verkehrsregelbezogenen Evi- denzdaten (12), wobei jedem Evidenzdatum eine Verlässlichkeit zuge- ordnet ist, und Anfragedaten (13) zur Ausgabe einer wenigstens eine zu berücksichtigende Verkehrsregel betreffenden Verkehrsregelinformati- on (15), die bei der Ermittlung der Ausgangsdaten berücksichtigt wird, ausgebildet ist.
Kraftfahrzeug (1 ) nach Anspruch 1 ,
dadurch gekennzeichnet,
dass die Evidenzdaten (12) Sensordaten wenigstens einen Sensors, wobei die zugeordnete Verlässlichkeit einen Mess- und/oder Auswer- tungsfehler der Sensordaten beschreibt, und/oder Ergebnisdaten einer Prädiktionseinheit des Steuergeräts (3), wobei die zugeordnete Verläss- lichkeit eine algorithmische Verlässlichkeit der Prädiktion beschreibt, umfassen.
Kraftfahrzeug (1 ) nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass die Inferenzeinheit (10) einen Interpreter für eine probabilistische Programmiersprache, in der das Modell (11 ) beschrieben ist, aufweist. Kraftfahrzeug (1 ) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet,
dass wenigstens ein Teil der Verkehrsregeln gesetzlich festgelegte Vorschriften umfassen.
Kraftfahrzeug (1 ) nach Anspruch 4,
dadurch gekennzeichnet,
dass eine Auswahleinheit vorgesehen ist, die zur Auswahl eines zu verwendenden probabilistischen Modells (11 ) aus mehreren, geogra- phischen Geltungsbereichen zugeordneten probabilistischen Modellen (11 ) in Abhängigkeit einer von einer Positionsbestimmungseinheit (6) bestimmten geographischen Position ausgebildet ist.
Kraftfahrzeug (1 ) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet,
dass wenigstens ein Teil der Verkehrsregeln Erfahrungsregeln umfas- sen und/oder dass wenigstens eine Verkehrsregelinformation (15) eine das zukünftige Verhalten eines Verkehrsteilnehmers beschreibende Prädiktionsinformation ist.
Kraftfahrzeug (1 ) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet,
dass wenigstens ein Teil der Evidenzdaten (12) verschiedene Hypothe- sen für einen durch sie beschriebenen Umstand mit jeweils zugeordne- ten Verlässlichkeiten umfasst.
Verfahren zum Betrieb eines zur wenigstens teilweise automatischen Führung eines Kraftfahrzeugs (1 ) ausgebildeten Fahrzeugführungssys- tems (2) des Kraftfahrzeugs (1 ), insbesondere eines Kraftfahrzeugs (1 ) nach einem der vorangehenden Ansprüche, wobei das Fahrzeugfüh- rungssystem (2) ein aus Eingangsdaten, umfassend Sensordaten we- nigstens eines Sensors des Kraftfahrzeugs (1 ), zur Ansteuerung we- nigstens eines den wenigstens teilweise automatischen Betrieb des Kraftfahrzeugs (1 ) realisierenden Aktors (10) zu verwendende Aus- gangsdaten ermittelndes Steuergerät (3) aufweist,
dadurch gekennzeichnet,
dass das Steuergerät (3) eine Inferenzeinheit (10) mit wenigstens ei- nem probabilistischen, Verkehrsregeln abbildenden Modell (1 1 ), umfas- send Fakten und Inferenzregeln, aufweist, welches bei Versorgung mit aus den Eingangsdaten abgeleiteten, verkehrsregelbezogenen Evi- denzdaten (12), wobei jedem Evidenzdatum eine Verlässlichkeit zuge- ordnet ist, und Anfragedaten (13) eine wenigstens eine zu berücksichti- gende Verkehrsregel betreffende Verkehrsregelinformation (15) ermit- telt, die bei der Ermittlung der Ausgangsdaten berücksichtigt wird.
9. Computerprogramm, welches die Schritte eines Verfahrens nach An- spruch 8 ausführt, wenn es auf einem Steuergerät (3) ausgeführt wird.
PCT/EP2018/080742 2017-12-01 2018-11-09 Kraftfahrzeug mit einem fahrzeugführungssystem, verfahren zum betrieb eines fahrzeugführungssystems und computerprogramm WO2019105717A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/755,997 US20200255025A1 (en) 2017-12-01 2018-11-09 Motor vehicle with a vehicle guidance system, method for operating a vehicle guidance system, and computer program
CN201880063091.XA CN111149137A (zh) 2017-12-01 2018-11-09 具有车辆引导系统的机动车、用于运行车辆引导系统的方法和计算机程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017221634.4A DE102017221634B4 (de) 2017-12-01 2017-12-01 Kraftfahrzeug mit einem Fahrzeugführungssystem, Verfahren zum Betrieb eines Fahrzeugführungssystems und Computerprogramm
DE102017221634.4 2017-12-01

Publications (1)

Publication Number Publication Date
WO2019105717A1 true WO2019105717A1 (de) 2019-06-06

Family

ID=64308737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/080742 WO2019105717A1 (de) 2017-12-01 2018-11-09 Kraftfahrzeug mit einem fahrzeugführungssystem, verfahren zum betrieb eines fahrzeugführungssystems und computerprogramm

Country Status (4)

Country Link
US (1) US20200255025A1 (de)
CN (1) CN111149137A (de)
DE (1) DE102017221634B4 (de)
WO (1) WO2019105717A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111038501B (zh) * 2019-12-31 2021-04-27 北京三快在线科技有限公司 无人驾驶设备的控制方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015012648A1 (de) * 2015-09-30 2017-03-30 Audi Ag Verfahren zum Betrieb wenigstens eines Fahrzeugsystems eines Kraftfahrzeugs und Kraftfahrzeug
DE102016201249A1 (de) * 2016-01-28 2017-08-03 Conti Temic Microelectronic Gmbh Vorrichtung und verfahren zur ermittlung eines fahrbahnmodells

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9195914B2 (en) * 2012-09-05 2015-11-24 Google Inc. Construction zone sign detection
DE102013005362A1 (de) * 2013-03-28 2013-10-10 Daimler Ag Verfahren zur Analyse einer Verkehrssituation
DE102013209729A1 (de) * 2013-05-24 2014-11-27 Robert Bosch Gmbh Fahrerassistenzsystem mit zusätzlichen Informationen zu einer Straßenkarte
DE102014111023A1 (de) * 2014-08-04 2016-02-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Steuern eines automatisierten Fahrzeuges
DE102014218198A1 (de) * 2014-09-11 2016-03-17 Robert Bosch Gmbh Abstandsregelsystem für Kraftfahrzeuge
US20160132728A1 (en) * 2014-11-12 2016-05-12 Nec Laboratories America, Inc. Near Online Multi-Target Tracking with Aggregated Local Flow Descriptor (ALFD)
US9934688B2 (en) * 2015-07-31 2018-04-03 Ford Global Technologies, Llc Vehicle trajectory determination
US10229363B2 (en) * 2015-10-19 2019-03-12 Ford Global Technologies, Llc Probabilistic inference using weighted-integrals-and-sums-by-hashing for object tracking
WO2017110002A1 (ja) * 2015-12-25 2017-06-29 パイオニア株式会社 予測装置、予測システム、予測方法および予測プログラム
CN107310550B (zh) * 2016-04-27 2019-09-17 腾讯科技(深圳)有限公司 道路交通工具行驶控制方法和装置
WO2018147872A1 (en) * 2017-02-10 2018-08-16 Nissan North America, Inc. Autonomous vehicle operational management control
WO2018237018A1 (en) * 2017-06-20 2018-12-27 nuTonomy Inc. RISK TREATMENT FOR VEHICLES HAVING AUTONOMOUS DRIVING CAPABILITIES

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015012648A1 (de) * 2015-09-30 2017-03-30 Audi Ag Verfahren zum Betrieb wenigstens eines Fahrzeugsystems eines Kraftfahrzeugs und Kraftfahrzeug
DE102016201249A1 (de) * 2016-01-28 2017-08-03 Conti Temic Microelectronic Gmbh Vorrichtung und verfahren zur ermittlung eines fahrbahnmodells

Also Published As

Publication number Publication date
DE102017221634A1 (de) 2019-06-06
DE102017221634B4 (de) 2019-09-05
US20200255025A1 (en) 2020-08-13
CN111149137A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
EP3365741B1 (de) Verfahren zur vollautomatischen führung eines fahrzeugsystems und kraftfahrzeug
AT518489B1 (de) Fahrerassistenzsystem zum Unterstützen eines Fahrers beim Führen eines Fahrzeugs
DE102013019424B4 (de) Verfahren zum Betrieb eines Fahrzeugsystems zur Überwachung eines Fahrers und Kraftfahrzeug
DE112018001596T5 (de) Elektronische fahrzeugsteuerung
EP3695244B1 (de) Verfahren und vorrichtung zum erzeugen eines inversen sensormodells und verfahren zum erkennen von hindernissen
DE102019002790B4 (de) Verfahren zur Prädiktion einer Verkehrssituation für ein Fahrzeug
DE102018222601A1 (de) Verfahren und Fahrerassistenzsystem zum Unterstützen eines Fahrers eines Fahrzeugs beim Führen des Fahrzeugs
DE102013205840A1 (de) Automatisches Befahren einer Strecke
DE102014205180A1 (de) Verfahren und Vorrichtung zum Betreiben eines Fahrzeugs
EP3526546B1 (de) Verfahren und system zur lokalisierung eines fahrzeugs
WO2020002479A1 (de) Fahrerassistenzsystem, fahrzeug, verfahren zum betreiben des fahrerassistenzsystems, computerprogramm und computerlesbares speichermedium
DE102018133670B4 (de) Verfahren und Vorrichtung zum Erzeugen von Steuersignalen zum Unterstützen von Insassen eines Fahrzeugs
AT521724A1 (de) Verfahren und Vorrichtung zur Analyse eines Sensordatenstroms sowie Verfahren zum Führen eines Fahrzeugs
DE102018219290B4 (de) Verfahren zum Anlernen einer personalisierten Scheinwerfereinrichtung eines Kraftfahrzeugs
EP4288954A1 (de) Verfahren zum infrastrukturgestützten assistieren eines kraftfahrzeugs
DE102017221634B4 (de) Kraftfahrzeug mit einem Fahrzeugführungssystem, Verfahren zum Betrieb eines Fahrzeugführungssystems und Computerprogramm
EP4149813A1 (de) Verfahren und system zur vollständig automatischen führung eines kraftfahrzeugs und kraftfahrzeug
DE102019129904A1 (de) Automatische Fahrkompetenzanalyse
DE102020213831B4 (de) Verfahren zum Ermitteln einer Existenzwahrscheinlichkeit eines möglichen Elements in einer Umgebung eines Kraftfahrzeugs, Fahrerassistenzsystem und Kraftfahrzeug
EP3674147B1 (de) Verfahren und vorrichtung zum erzeugen von steuersignalen zum unterstützen von insassen eines fahrzeugs
DE102018133675B4 (de) Verfahren und Vorrichtung zum Erzeugen von Steuersignalen zum Unterstützen von Insassen eines Fahrzeugs
DE102022205331B4 (de) Verfahren und System zum Bereitstellen einer zumindest assistierten Parkfunktion für ein Kraftfahrzeug
DE102016215830A1 (de) Verfahren zur Optimierung einer Routenführung durch ein Navigationssystem
DE102018133674A1 (de) Verfahren und Vorrichtung zum Erzeugen von Steuersignalen zum Unterstützen von Insassen eines Fahrzeugs
DE102020206502A1 (de) Verfahren, und System zur Überwachung einer Robustheit einer Vielzahl von autonom fahrenden Einzelfahrzeugen sowie Einzelfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18803378

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18803378

Country of ref document: EP

Kind code of ref document: A1