DE102018133675B4 - Verfahren und Vorrichtung zum Erzeugen von Steuersignalen zum Unterstützen von Insassen eines Fahrzeugs - Google Patents

Verfahren und Vorrichtung zum Erzeugen von Steuersignalen zum Unterstützen von Insassen eines Fahrzeugs Download PDF

Info

Publication number
DE102018133675B4
DE102018133675B4 DE102018133675.6A DE102018133675A DE102018133675B4 DE 102018133675 B4 DE102018133675 B4 DE 102018133675B4 DE 102018133675 A DE102018133675 A DE 102018133675A DE 102018133675 B4 DE102018133675 B4 DE 102018133675B4
Authority
DE
Germany
Prior art keywords
rule
hypothesis
user
data system
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102018133675.6A
Other languages
English (en)
Other versions
DE102018133675A1 (de
Inventor
Jens Schneider
Peter Schlicht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Priority to DE102018133675.6A priority Critical patent/DE102018133675B4/de
Publication of DE102018133675A1 publication Critical patent/DE102018133675A1/de
Application granted granted Critical
Publication of DE102018133675B4 publication Critical patent/DE102018133675B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/10Interpretation of driver requests or demands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration

Abstract

Verfahren zum Erzeugen von Steuersignalen zum Unterstützen von Insassen eines Fahrzeugs, bei demein Kontext des Fahrzeugs ermittelt wird,in Abhängigkeit von dem ermittelten Kontext und von einem regelbasierten Datensystem (8) eine Hypothese für ein Regelergebnis einer Regel des Datensystems (8) erzeugt wird,mittels einer Nutzerschnittstelle (18) die erzeugte Hypothese ausgegeben wird,eine Nutzereingabe zu der Ausgabe der Hypothese erfasst wird,mittels der erfassten Nutzereingabe die ausgegebene Hypothese bewertet wird,in Abhängigkeit von der Bewertung der Hypothese das regelbasierte Datensystem (8) automatisch adaptiert wird,in Abhängigkeit von dem ermittelten Kontext und von dem adaptierten regelbasierten Datensystem (8) ein Regelergebnis einer Regel des Datensystems (8) erzeugt wird undin Abhängigkeit von dem erzeugten Regelergebnis ein Steuersignal ausgegeben wird, dadurch gekennzeichnet, dassbei der Bewertung der ausgegebenen Hypothese ein Konfidenzwert bestimmt wird, welcher angibt, mit welcher Wahrscheinlichkeit das Regelergebnis der Präferenz des Nutzers entspricht und einer Regel des regelbasierten Datensystems (8) ein Statuswert für einen Status zugeordnet wird, wobei der Statuswert angibt, wie der Konfidenzwert dieser Regel für diese Regel zu interpretieren ist,wobei in einem im Voraus festgelegten Nutzerschnittstellenmodell (11) definiert wird, wie mit einer spezifischen Regel und/oder einer spezifischen Hypothese mit einem bestimmten Konfidenzwert bei gegebenem Statuswert verfahren wird.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zum Erzeugen von Steuersignalen zum Unterstützen von Insassen eines Fahrzeugs.
  • Um die Insassen eines Fahrzeugs, insbesondere den Fahrer des Fahrzeugs, zu unterstützen, sind verschiedene Assistenzsysteme bekannt. In Abhängigkeit vom Kontext des Fahrzeugs werden beispielsweise dem Fahrer Informationen zur Verfügung gestellt, welche es ihm erleichtern, die Fahraufgabe zu bewältigen. Zu solchen Assistenzsystemen gehören beispielsweise Navigationssysteme, Bahnführungssysteme wie eine automatische Abstandsregelung oder ein Fahrstreifenwechsel-Assistenzsystem. Außerdem sind Systeme bekannt, welche in zunehmendem Maße die Fahraufgabe teilweise oder vollständig autonom übernehmen.
  • Derartige Systeme sind z. B. adaptiv ausgebildet. Sie können insbesondere aus vorhergehenden Situationen lernen. Derzeit werden insbesondere adaptive Systeme eingesetzt, die entweder starr aus fixierten Expertenregeln bestehen oder auf Techniken der künstlichen Intelligenz bzw. des Maschinenlernens basieren. Im ersten Fall werden beim Design des Systems feste Verhaltensmuster definiert und mit Regeln beschrieben. In diesem Fall ist das System im eigentlichen Sinne nicht adaptiv. Es kann jedoch über Änderungen von Einstellungen angepasst werden. Derartige Systeme werden beispielsweise im Bereich des Infotainment und im Fahrerassistenzbereich im Automobilumfeld eingesetzt. Im zweiten Fall werden Datenmodelle auf weitestgehend historischen Daten trainiert. Auf Basis dieser Modelle wird die Anpassung des Systems abgeleitet.
  • Aus der US 2015/0294223 A1 ist beispielsweise ein System bekannt, bei dem Vorhersagealgorithmen verwendet werden, um Kontextinformationen für ein Ereignis zu erstellen. Die Ereignisaufzeichnung wird an ein Cloud-Speicher-System übertragen. In diesem System werden Rückschlüsse aus gespeicherten Ereignisprotokollen gezogen. Diese Rückschlüsse werden dann wieder anderen mobilen Endgeräten zur Verfügung gestellt.
  • Aus der WO 2017/067853 A1 ist ein Assistenzsystem für einen Fahrzeugnutzer bekannt, bei dem dem Nutzer Empfehlungen für die Nutzung des Fahrzeugs gegeben werden. Durch ein selbstlernendes System können Muster erkannt werden und auf Basis dieser Muster Empfehlungen ausgegeben werden.
  • Aus der DE 10 2007 025 352 A1 ist ein Fahrerinformationssystem für ein Kraftfahrzeug bekannt, bei dem ein personalisiertes adaptives Cockpit realisiert ist. In Abhängigkeit von einem Nutzerprofil können die dargestellten Informationen universell angepasst werden. Aus einer Vielzahl von im Betrieb des Fahrzeugs erfassten Informationen werden Kontexte ermittelt, welche Eigenschaften oder Handlungen des Fahrers oder eines Nutzers des Fahrzeugs berücksichtigen. In Abhängigkeit von diesen Kontexten wird eine Adaption des Cockpits durchgeführt.
  • Aus der US 2017/0190337 A1 ist ein Kommunikationssystem für ein Fahrzeug bekannt, welches die Ausgabe von Nachrichten an einen Fahrzeuginsassen steuert. Mittels Sensoren wird dabei der Fahrzeuginsasse überwacht. Die Ausgabe wird dann in Abhängigkeit von Parametern gesteuert, die aus dieser Überwachung des Fahrzeuginsassen gewonnen wurden.
  • Die DE 11 2016 006 670 T5 beschreibt ein Einstellassistenzsystem eines Grätschsitz-Fahrzeugs, das dazu eingerichtet ist, eine Fahrzeugkarosserieeinstellung, die sich auf eine Fahrfunktion einer Fahrzeugkarosserie bezieht, zu ändern. Dabei weist das Einstellassistenzsystem folgende Abschnitte auf: Einen Empfangsabschnitt, der eine Fahrbetriebsinformation in Bezug auf einen Fahrbetrieb empfängt, der durch einen Fahrer durchgeführt wird; einen Lernabschnitt, der einen Trend des Fahrbetriebs lernt, der durch den Fahrer durchgeführt wird, basierend auf der Fahrbetriebsinformation, die von dem Empfangsabschnitt empfangen wird; einen Erzeugungsabschnitt, der eine Einstellinformation in Bezug auf die Fahrzeugkarosserieeinstellung basierend auf einem Lerninhalt, der durch Lernen des Lernabschnitts erhalten wird, erzeugt; und einen Ausgabeabschnitt, der die Einstellinformation, die durch den Erzeugungsabschnitt erzeugt wird, ausgibt.
  • Aus der DE 10 2017 200 436 A1 ist ein Verfahren zum Betrieb eines Fahrerassistenzsystems eines Kraftfahrzeugs bekannt, welches die Schritte umfasst: Erfassen von eine Fahrsituation des Kraftfahrzeugs betreffenden Situationsdaten, automatisches Ermitteln mehrerer möglicher Fahrmanöver in Abhängigkeit der Situationsdaten, wobei eines der möglichen Fahrmanöver automatisch zum bevorzugten Fahrmanöver bestimmt wird, Ausgabe der möglichen Fahrmanöver an einen Fahrer des Kraftfahrzeugs, Durchführung eines aus den möglichen Fahrmanövern durch eine Bedieneingabe des Fahrers ausgewählten Fahrmanövers, wenn die Bedieneingabe innerhalb eines vorgegebenen Zeitintervalls erfolgt, und anderenfalls Durchführung des bevorzugten Fahrmanövers.
  • In der DE 10 2013 212 359 A1 wird ein Verfahren zum Vorhersagen von Fahrpfaden eines Fahrzeugs offenbart, umfassend die Schritte: Bereitstellen der aktuellen Position des Fahrzeugs; Bestimmen einer Gruppe von zukünftigen möglichen Fahrpfaden des Fahrzeugs anhand einer digitalen Landkarte, der aktuellen Position, und einer vorgegebenen Maximalgröße jedes Fahrpfades, einer Maximalfahrzeit für jeden Fahrpfad, oder einer Maximalanzahl von Fahrmanövern je Fahrtstrecke; Bereitstellen von Messungen von vorbestimmten Typen von fahrtrelevanten Handlungen des Fahrers des Fahrzeug; Bereitstellen, für jeden Fahrpfad der Gruppe von Fahrpfaden, von einem oder mehreren Modellen, die jeweils für einen oder mehrere Typen von Handlungen des Fahrers eine Auftrittsmaßzahl bereitstellen, wobei die Auftrittsmaßzahl eine Maßzahl für die Wahrscheinlichkeit bereit stellt, dass die Messungen der fahrtrelevanten Handlungen beim Führen des Fahrzeugs auf dem jeweiligen Fahrpfad auftreten; Bestimmen für jeden Fahrpfad und für jedes Modell der jeweiligen Auftrittsmaßzahl; Bestimmen, für jeden Fahrpfad aus der Gruppe der Fahrpfade, einer Ausführungsmaßzahl, nämlich einer Maßzahl für die Wahrscheinlichkeit, dass der entsprechende Fahrpfad befahren wird, basierend auf den für den Fahrpfad jeweils bestimmten Auftrittsmaßzahlen.
  • Die DE 10 2014 013 960 A1 offenbart ein Verfahren zum Betreiben wenigstens einer Fahrerassistenzeinrichtung eines Kraftwagens, mit den Schritten: Durchführen wenigstens eines zumindest teilautonomen Fahrmanövers des Kraftwagens mittels der Fahrerassistenzeinrichtung gemäß wenigstens einer die Durchführung des Fahrmanövers bestimmenden Kennlinie; Erfassen einer Bewertung eines Fahrers des Kraftwagens bezüglich des durchgeführten Fahrmanövers; Ermitteln anhand der erfassten Bewertung des Fahrers, ob dieser eine veränderte Durchführung des Fahrmanövers wünscht; falls anhand der erfassten Bewertung des Fahrers ermittelt wird, dass dieser eine veränderte Durchführung des Fahrmanövers wünscht: Verändern der Kennlinie korrespondierend mit der erfassten Bewertung des Fahrers.
  • Die DE 11 2017 006 530 T5 beschreibt eine Sensordaten während einer Fahrt empfangende Steuerung, wobei die Daten an ein Serversystem bereitstellt werden. Ein Insasse stellt ferner eine Rückmeldung zur Fahrt in der Form von einer Gesamtbewertung, Markierung von Fahrtanomalien und Markierung von Straßenanomalien bereit. Die Sensordaten und die Rückmeldung werden in einen Trainingsalgorithmus eingegeben, wie etwa einen bestärkenden Deep-Learning-Algorithmus, der ein Künstliche-lntelligenz(AI)-Modell aktualisiert. Das aktualisierte Modell wird an Steuerungen von einem oder mehreren autonomen Fahrzeugen verteilt, die dann autonome Navigation und Zusammenstoßvermeidung unter Verwendung des aktualisierten Al-Modells durchführen.
  • Nachteilig an bekannten Lösungen für lernende adaptive Systeme ist, dass die Präferenzen des Nutzers allenfalls anhand erfasster Daten über eine Situation oder einen Kontext und über das Verhalten des Nutzers gewonnen werden. Hieraus werden automatisiert Erkenntnisse gewonnen, mittels welcher das System angepasst wird. Diese Anpassung muss jedoch nicht den Wünschen des Nutzers entsprechen. Ist dies nicht der Fall, sinkt die Akzeptanz des Nutzers für das System.
  • Ein Nachteil herkömmlicher adaptiver Systeme besteht außerdem darin, dass nicht geprüft wird, ob das erlernte Wissen über den Nutzer tatsächlich korrekt ist. Das Verhalten des Nutzers wird jedoch häufig durch Situationsparameter oder Informationen beeinflusst, die dem System nicht zur Verfügung stehen. Das System ist somit nicht in der Lage, das vollständige Muster des Nutzerverhaltens zunächst zu erfassen und anschließend zu erlernen.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs genannten Art bereitzustellen, bei welchen die erzeugten Steuersignale die Fahrzeuginsassen besser unterstützen. Es soll insbesondere sichergestellt werden, dass automatisiert ausgeführte Vorgänge tatsächlich den Präferenzen des Nutzers entsprechen.
  • Erfindungsgemäß wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Anspruchs 1 und eine Vorrichtung mit den Merkmalen des Anspruchs 12 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen ergeben sich aus den abhängigen Ansprüchen.
  • Bei dem erfindungsgemäßen Verfahren wird ein Kontext des Fahrzeugs ermittelt. In Abhängigkeit von dem ermittelten Kontext und von einem regelbasierten Datensystem wird eine Hypothese für ein Regelergebnis einer Regel des Datensystems erzeugt. Die erzeugte Hypothese wird dann mittels einer Nutzerschnittstelle ausgegeben. Anschließend wird eine Nutzereingabe zu der Ausgabe der Hypothese erfasst. Mittels der erfassten Nutzereingabe wird die ausgegebene Hypothese bewertet. In Abhängigkeit von der Bewertung der Hypothese wird dann das regelbasierte Datensystem automatisch adaptiert. In Abhängigkeit von dem ermittelten Kontext und von dem adaptierten regelbasierten Datensystem wird ein Regelergebnis des Datensystems erzeugt und in Abhängigkeit von dem erzeugten Regelergebnis wird ein Steuersignal ausgegeben. Weiterhin wird bei der Bewertung der ausgegebenen Hypothese ein Konfidenzwert bestimmt, welcher angibt, mit welcher Wahrscheinlichkeit das Regelergebnis der Präferenz des Nutzers entspricht und einer Regel des regelbasierten Datensystems ein Statuswert für einen Status zugeordnet wird, wobei der Statuswert angibt, wie der Konfidenzwert dieser Regel für diese Regel zu interpretieren ist, wobei in einem im Voraus festgelegten Nutzerschnittstellenmodell definiert wird, wie mit einer spezifischen Regel und/oder einer spezifischen Hypothese mit einem bestimmten Konfidenzwert bei gegebenem Statuswert verfahren wird.
  • Unter dem Kontext des Fahrzeugs wird erfindungsgemäß insbesondere die Situation verstanden, in welcher sich das Fahrzeug befindet. Die Situation des Fahrzeugs kann sich aus der Umgebung des Fahrzeugs ableiten. Alternativ oder zusätzlich kann sich die Situation des Fahrzeugs aus Zuständen von Einrichtungen des Fahrzeugs ableiten. Schließlich kann der Kontext des Fahrzeugs von Daten beeinflusst werden, welche entfernt vom Fahrzeug, d. h. nicht aus der Umgebung des Fahrzeugs, gewonnen wurden und die an das Fahrzeug übertragen wurden.
  • Das erfindungsgemäße Verfahren nutzt die folgenden Konzepte, um Steuersignale zu erzeugen, welche eine verbesserte Unterstützung der Fahrzeuginsassen liefern:
    • Es wird ein regelbasiertes Datensystem verwendet, um Verhaltensmuster zu erlernen und situationsspezifische Hypothesen für das Systemverhalten abzuleiten. Des Weiteren wird eine kooperative Kopplung zwischen dem adaptiven System, d. h. insbesondere dem adaptierten regelbasierten Datensystem, und der Nutzerschnittstelle für eine nutzerzentrierte Bewertung der erzeugten Hypothesen verwendet. Schließlich wird ein Aufbau für das adaptive System gewählt, das komplexe Situationen über den Kontext erkennen kann und geeignete Hypothesen für ein Regelergebnis ableiten kann. Mittels der Lernfähigkeit, die über die Adaption des regelbasierten Datensystems bereitgestellt wird, kann das Verfahren an einen Nutzer adaptiert werden.
  • Bei dem erfindungsgemäßen Verfahren wird Gebrauch von der Nutzerschnittstelle gemacht, um Hypothesen für ein Regelergebnis durch den Nutzer zu validieren. Wird bei dem Verfahren eine wiederkehrende Hypothese zunehmend durch die erfasste Nutzereingabe bestärkt, kann die Nutzerschnittstelle erneut verwendet werden, um eine Hypothese generell von dem Nutzer bewerten zu lassen. Somit können aus hypothetischen Annahmen über mögliche Präferenzen eines Nutzers bestätigte Fakten werden, welche die Nutzerakzeptanz bezüglich des adaptiven Verfahrens erhöhen, weil das Verfahrens besser an den Nutzer angepasst wird. Vorteilhafterweise wird somit eine Kooperation von datenbasiertem Lernen bzw. datenbasiertem Ableiten von hypothetischem Wissen und einer Nutzerschnittstelle verwendet, um ein explizites Nutzerfeedback zu erhalten. Hierdurch werden die Nachteile von Verfahren, welche nur auf Maschinenlernen oder Algorithmen zur künstlichen Intelligenz basieren, vermieden.
  • Bei dem erfindungsgemäßen Verfahren ist die Wissensverwaltung über das adaptierte regelbasierte Datensystem und die Wissensanwendung über die Nutzerschnittstelle konzeptionell getrennt. Des Weiteren ermöglicht die Verwendung eines regelbasierten Datensystems vorteilhafterweise eine Zertifizierung des erfindungsgemäßen Verfahrens, da die Regeln des regelbasierten Datensystems nachvollziehbar sind. Eine solche Zertifizierbarkeit liegt beispielsweise bei Systemen mit neuronalen Netzen nicht vor, da nicht ohne Weiteres vorhersagbar ist, wie ein solches System auf bestimmte Bedingungen reagiert.
  • Durch die Ermittlung des Kontextes des Fahrzeugs kann vorteilhafterweise eine situationsgerechte Interaktion erreicht werden. Durch die Adaption des regelbasierten Datensystems ergibt sich über das Verfahren ein Lernprozess, wie und wann das Verfahren mit dem Nutzer in unterschiedlichen Kontexten interagieren bzw. kommunizieren soll. Beispielsweise kann das Verfahren das regelbasierte Datensystem so adaptieren, dass es einem Nutzer nur dringende und wichtige Informationen sehr gekürzt anbietet, wenn der Nutzer gerade auf der Autobahn fährt oder erfasst wurde, dass er sich in einer Fahrsituation befindet, die eine hohe Konzentration auf das Fahrgeschehen erfordert.
  • Weiterhin ergeben sich aus dem erfindungsgemäßen Verfahren die folgenden Vorteile:
    • Durch das Verfahren können individuelle situative Nutzerpräferenzen erlernt werden. Durch das Verfahren können verschiedenste Präferenzen eines individuellen Nutzers für unterschiedliche Situationen erlernt werden. Hierfür wird ein Hypothese erzeugt, ausgegeben und die Nutzereingabe hierzu erfasst. Aus dieser Nutzereingabe ergibt sich dann eine Adaption des regelbasierten Datensystems.
  • Bei dem Verfahren kann basierend auf einer zugrundeliegenden Regelmenge bei jeder Veränderung des aktuellen Kontextes die für diesen Kontext gültige Regel identifiziert werden. Daraus können mögliche Adaptionen des regelbasierten Datensystems abgeleitet werden, die hypothetisch den Präferenzen des Nutzers entsprechen. Auf diese Weise kann auch die Nutzerschnittstelle angepasst werden.
  • Mittels des Verfahrens kann ein dezidiertes Feedback eines Nutzers interpretiert werden, verarbeitet werden und das regelbasierte Datensystem kann dahingehend angepasst werden.
  • Gemäß einer Ausbildung des erfindungsgemäßen Verfahrens werden Messwerte von Sensoren und/oder Daten von Schnittstellen des Fahrzeugs erfasst. Der Kontext des Fahrzeugs wird in diesem Fall in Abhängigkeit von den erfassten Messwerten und/oder den erfassten Daten ermittelt. Mittels der Sensoren und/oder Schnittstellen werden insbesondere Messwerte und/oder Daten zu den aktuellen Verkehrsbedingungen, dem Verhalten des Fahrers, Interaktion des Fahrers mit einer weiteren Nutzerschnittstelle, den aktuellen Wetterbedingungen, den aktuellen Umgebungslichtverhältnissen, der aktuellen Jahreszeit und/oder der aktuellen Tageszeit erfasst. Diese Aufzählung ist nur beispielhaft; es können alle für das Fahrzeug und für die Fahrzeugführung relevanten Messwerte und Daten in geeigneter Weise erfasst und verarbeitet werden.
  • Über eine Schnittstelle des Fahrzeugs ist es gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens ferner möglich, so genanntes Flottenwissen in den Kontext des Fahrzeugs zu integrieren. Unter Flottenwissen werden Daten verstanden, die über eine Fahrzeugflotte, d. h. eine Vielzahl von Fahrzeugen, erhoben wurden und die Rückschlüsse auf den Kontext eines einzelnen Fahrzeugs zulassen. Mittels des Verfahrens kann das regelbasierte Datensystem auf Basis von Daten adaptiert werden, die von einer Vielzahl von Fahrzeugen erzeugt wurden. Auf diese Weise ist es auch möglich, das regelbasierte Datensystem nachträglich um neue Regeln zu erweitern. Vorteilhafterweise ist es hierdurch möglich, die Parametrisierung bestimmter Regeln des regelbasierten Datensystems in einer bestimmten geographischen Region oder unter bestimmten kontextuellen Einflüssen, wie Wetter, Klimaverhältnisse, Umgebungslicht oder Tageszeit, über eine Fahrzeugflotte hinweg zu überwachen, um eine neue Regel vorzuschlagen oder eine Initialparametrisierung einer Regel anzupassen.
  • Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens umfasst das regelbasierte Datensystem eine Vielzahl von Regeln, wobei jede Regel einen Bedingungsteil und einen Ergebnisteil aufweist. Dabei umfasst der Bedingungsteil Bedingungen für den Kontext des Fahrzeugs. Der Bedingungsteil beschreibt insbesondere die Situation, in der die Regel gültig ist. Der Ergebnisteil entspricht der mittels der Regel angenommenen Präferenz des Nutzers in dieser Situation bzw. in diesem Kontext. Derartige Regeln haben den Vorteil, dass sie maschineninterpretierbar sind und somit das Verhalten des Verfahrens bzw. des Systems exakt definieren. Ferner können sie jedoch auch in eine natürlichsprachliche Repräsentanz überführt werden. Diese natürlichsprachliche Repräsentanz kann genutzt werden, um dem Nutzer die Logik einer Regel zu erklären und somit das Verhalten des Verfahrens bzw. des Systems zu plausibilisieren.
  • Bei dem erfindungsgemäßen Verfahren kann durch die Adaption des regelbasierten Datensystems insbesondere für eine passende Regel ein genauer Wert des Bedingungsteils und des Ergebnisteils erlernt werden. Die Regel kann auf diese Weise parametrisiert werden, um die Nutzerpräferenz bestmöglich abzubilden. Ferner ist es möglich, datengetriebene Methoden einzusetzen, um neue Regeln zu erlernen. Die Hypothese kann somit eine Annahme für eine Präferenz des Nutzers für das Regelergebnis der Hypothese bei dem ermittelten Kontext umfassen.
  • Gemäß des erfindungsgemäßen Verfahrens wird bei der Bewertung der ausgegebenen Hypothese ein Konfidenzwert bestimmt. Dieser Konfidenzwert gibt an, mit welcher Wahrscheinlichkeit das Regelergebnis der Präferenz des Nutzers entspricht. Weiterhin wird einer Regel des regelbasierten Datensystems ein Statuswert für einen Status zugeordnet. Dabei gibt der Statuswert an, wie der Konfidenzwert dieser Regel für diese Regel zu interpretieren ist. Der Status umfasst insbesondere zumindest einen ersten, einen zweiten und einen dritten Statuswert. Bei dem ersten Statuswert wird die zugeordnete Regel automatisiert angewendet, bei dem zweiten Statuswert wird die zugeordnete Regel nicht automatisiert angewendet und bei dem dritten Statuswert wird die zugeordnete Regel in Abhängigkeit von dem Konfidenzwert der zugeordneten Regel angewendet.
  • Der Konfidenzwert einer Regel kann beispielsweise ein relativer Wert von 0 bis 1 sein. Dieser Konfidenzwert beschreibt inwieweit das Verfahren bzw. das System sich sicher ist, dass das Regelergebnis der tatsächlichen Präferenz eines Nutzers entspricht. Auf diese Weise wird die Verlässlichkeit der Regel bewertet. Der Konfidenzwert kann sich während der Ausführung des Verfahrens ändern. Er ist somit Teil der Adaption des regelbasierten Datensystems. Die Veränderung kann dabei als Folge von aktiven Interaktionen mit einem Nutzer erfolgen. Insbesondere kann sich der Konfidenzwert nach einer bestimmten Nutzereingabe verändern.
  • Bei den Regeln des Datenmodells handelt es sich um Annahmen über mögliche Präferenzen des Nutzers. Das Verfahren leitet somit basierend auf den Regeln und den Hypothesen mögliche hypothetische Präferenzen für einen Kontext ab, die mit einer bestimmten Konfidenz, d. h. mit einer gewissen Wahrscheinlichkeit, der tatsächlichen Präferenz des Nutzers entsprechen. Da der Konfidenzwert bei dem Verfahren zunächst basierend auf den zuvor erfassten Daten über den Kontext, d. h. zum Beispiel über situative Nutzerinteraktionen, berechnet wird, handelt es sich hierbei immer um hypothetisches Wissen, welches über die Nutzerpräferenzen vorliegt. Wenn nun bei dem erfindungsgemäßen Verfahren für einen Kontext eine Hypothese abgeleitet wurde, die der Nutzerpräferenz am Wahrscheinlichsten entspricht, interagiert das Verfahren durch die Nutzerschnittstelle mit dem Nutzer, um aus hypothetischen Annahmen bestätigte Fakten zu machen. Hierbei wird eine Nutzerschnittstelle genutzt, um dem Nutzer zum Beispiel eine Empfehlung zu geben, die er bestätigen kann. Ferner kann beispielsweise dem Nutzer angeboten werden, dass eine bestimmte Regel in Zukunft immer automatisiert angewendet wird. Der Nutzer kann durch eine Nutzereingabe dieser Automatisierung zustimmen. Durch die Adaption des regelbasierten Datensystems liegt dann eine Gewissheit über die Korrektheit dieser Regel vor und der Nutzer kann fortan mit der Ausführung dieser Regel unterstützt werden. Somit wird die Nutzerschnittstelle genutzt, um explizites Feedback des Nutzers für hypothetische Annahmen zu erfragen und um die Adaption des regelbasierten Datensystems so vorzunehmen, dass es zunehmend auf den Nutzer angepasst wird. Für den Fall, dass der Nutzer durch eine Nutzereingabe einer Regel widerspricht, kann das regelbasierte Datensystem so adaptiert werden, dass die Konfidenz der Regel reduziert wird, um die Regel fortan seltener anzuwenden. Hierdurch wird vorteilhafterweise die Nutzerakzeptanz erhöht, da das regelbasierte Datensystem konkrete Gewissheit über mögliche Präferenzen des Nutzers erfahren kann.
  • Die Nutzereingabe kann somit eine Bestätigung oder eine Ablehnung der Hypothese umfassen. Bei einer Ablehnung der Hypothese wird insbesondere der Konfidenzwert der zu der Hypothese gehörigen Regel verringert. Bei einer Bestätigung der Hypothese wird der Konfidenzwert der zu der Hypothese gehörigen Regel erhöht. Außerdem kann die Nutzereingabe oder es können mehrere Nutzereingabe eine Aktivierung oder Deaktivierung der zu der Hypothese gehörigen Regel induzieren.
  • Gemäß einer Weiterbildung des erfindungsgemäßen Verfahrens wird der Nutzer identifiziert. Das regelbasierte Datensystem wird dann nutzerspezifisch adaptiert. Vorteilhafterweise ist es hierdurch möglich, das Verfahren schnell an einen Erstnutzer anzupassen, ohne dass zuvor Daten über Interaktionen dieses Nutzers erfasst wurden. Das nutzerspezifisch ausgestaltete regelbasierte Datensystem kann über eine Schnittstelle des Fahrzeugs geladen werden, sobald ein Nutzer in dem Fahrzeug identifiziert worden ist. Das nutzerspezifische regelbasierte Datensystem kann für einen bestimmten Nutzer somit auch in Mietfahrzeugen, Zweitfahrzeugen oder Folgefahrzeugen genutzt werden. Außerdem lässt sich ein solches regelbasiertes Datensystem auf eingeschränktere oder potentere Fahrzeugplattformen applizieren. Im Gegensatz zu neuronalen Netzen lassen sich Regelmengen nämlich leicht auf kleinere Domänen einschränken oder in größere Domänen einbetten. Auch bei abweichender Funktionsausprägung einer nachfolgenden Fahrzeugplattform sind funktionsspezifische Transformationsmodelle auf die Parametrisierung des Regelsatzes anwendbar, die das regelbasierte Datenmodell an die neue Fahrzeugplattform adaptieren. Vorteilhafterweise ist das von dem Verfahren genutzte regelbasierte Datensystem somit besonders gut übertragbar.
  • Das Verfahren ist in diesem Fall sehr nutzerzentriert ausgelegt. Hierdurch wird die ökonomische Entwicklung und die Nachhaltigkeit des erfindungsgemäßen Verfahrens sichergestellt. Es kann dem Nutzer jahrelang über die gesamte Nutzungszeit hinweg einen Mehrwert bieten. Mittels des Verfahrens können die Präferenzen des Nutzers korrekt erlernt werden, um den Nutzer in dem richtigen Moment und in der richtigen Situation die Steuersignale für eine gewünschte Funktion oder Information auf die gewünschte Interaktionsart anzubieten. Hierdurch wird vorteilhafterweise die Akzeptanz des erfindungsgemäßen Verfahrens erhöht.
  • Gemäß einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens werden außerdem hypothesenunabhängige Nutzereingaben erfasst, die unabhängig von der Ausgabe einer Hypothese sind. Die hypothesenunabhängigen Nutzereingaben werden bewertet und in Abhängigkeit von dem Ergebnis der Bewertung wird das regelbasierte Datensystem automatisch adaptiert. Auf diese Weise ist das regelbasierte Datensystem des erfindungsgemäßen Verfahrens individualisierbar. Der Nutzer kann das Verhalten des Verfahrens ergänzend definieren. Dies ist insbesondere deswegen möglich, da eine Regel durch den Nutzer nachvollziehbar ist. Der Nutzer kann daher Regeln gezielt verändern oder mittels der Nutzerschnittstelle neue Regeln ergänzen, die das Verfahren erweitern.
  • Die erfindungsgemäße Vorrichtung zum Erzeugen von Steuersignalen zum Unterstützen von Insassen eines Fahrzeugs umfasst eine Kontext-Ermittlungseinheit zum Ermitteln des Kontextes des Fahrzeugs. Ferner umfasst sie eine Hypothesen-Erzeugungseinheit, die ausgebildet ist, in Abhängigkeit von dem ermittelten Kontext und von einem regelbasierten Datensystem eine Hypothese für ein Regelergebnis einer Regel des Datensystems zu erzeugen. Des Weiteren weist die Vorrichtung eine Nutzerschnittstelle zum Ausgeben der erzeugten Hypothese und eine Eingabeeinheit zum Erfassen einer Nutzereingabe auf. Die Vorrichtung umfasst ferner eine Bewertungseinheit, die ausgebildet ist, mittels der erfassten Nutzereingabe die ausgegebene Hypothese zu bewerten, wobei bei der Bewertung der ausgegebenen Hypothese ein Konfidenzwert bestimmt wird, welcher angibt, mit welcher Wahrscheinlichkeit das Regelergebnis der Präferenz des Nutzers entspricht und einer Regel des regelbasierten Datensystems (8) ein Statuswert für einen Status zugeordnet ist, wobei der Statuswert angibt, wie der Konfidenzwert dieser Regel für diese Regel zu interpretieren ist, einem im Voraus festgelegten Nutzerschnittstellenmodell (11), das definiert, wie mit einer spezifischen Regel und/oder einer spezifischen Hypothese mit einem bestimmten Konfidenzwert bei gegebenem Statuswert verfahren wird, eine Adaptionseinheit, die ausgebildet ist, in Abhängigkeit von der Bewertung der Hypothese das regelbasierte Datensystem automatisch zu adaptieren, eine Ergebniseinheit, die ausgebildet ist, in Abhängigkeit von dem ermittelten Kontext und von dem adaptierten regelbasierten Datensystem ein Regelergebnis des Datensystems zu erzeugen, und eine Ausgabeeinheit zum Ausgeben eines Steuersignals in Abhängigkeit von dem erzeugten Regelergebnis.
  • Die erfindungsgemäße Vorrichtung ist insbesondere ausgebildet, das erfindungsgemäße Verfahren auszuführen. Sie weist somit dieselben Vorteile wie das erfindungsgemäße Verfahren auf.
  • Ferner betrifft die Erfindung ein Computerprogrammprodukt, umfassend Befehle, die bei der Ausführung durch zumindest einen Computer diesen veranlassen, das erfindungsgemäße Verfahren auszuführen.
  • Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung sind für einen Entwickler besonders gut handhabbar. Das regelbasierte Datensystem des Verfahrens bzw. der Vorrichtung ist insbesondere dahingehend handhabbar, dass der Entwickler explizit definieren kann, wie sich das Verfahren bzw. die Vorrichtung bei definierten Ereignissen verhalten soll. Beispielsweise kann der Entwickler im Voraus definieren, dass bei einem Ereignis, bei dem der Nutzer eine Systemanpassung ablehnt, das System für einen fest definierten Zeitraum die Systemanpassung nicht mehr vornimmt.
  • Durch die Verwendung eines regelbasierten Datensystems ist das Verfahren und die Vorrichtung zertifizierbar. Diese Zertifizierbarkeit ist bereits vor Ausführung des Verfahrens bzw. vor dem Einsatz der Vorrichtung möglich. Es kann auf diese Weise sichergestellt werden, dass die Vorrichtung und das Verfahren kein Verhalten zeigt, erlernt oder annimmt, das unerwünscht ist. Dies ist insbesondere bei automatisierten Fahrfunktionen wichtig. Dies wird durch die Nutzung eines regelbasierten Datensystems gewährleistet, da die Adaption explizit in der Menge der Regeln definiert ist. Somit ist die Adaption der Regeln schon vor der Ausführung des Verfahrens bekannt und kann dahingehend zertifiziert und freigegeben werden. Das Verfahren und die Vorrichtung werden keine Adaption vornehmen, die zuvor nicht definiert wurden.
  • Außerdem kann das regelbasierte Datensystem initial definiert werden. Hierbei ist es noch nicht erforderlich, dass Daten über die Interaktion eines Nutzers erfasst worden sind. Somit können auch Erstnutzer der Vorrichtung und des Verfahrens direkt von den erzeugten Steuersignalen profitieren. Zusätzlich kann der Status und die Konfidenz einer Regel initial definiert werden, so dass das Verfahren und die Vorrichtung bei der initialen Interaktion mit dem Nutzer bereits Steuersignale erzeugen können, ohne dass der Nutzer zuvor über eine längere Zeit die Vorrichtung bzw. das Verfahren genutzt haben muss und ohne dass bereits Daten erfasst wurden. Für die initiale Implementierung des Verfahrens bzw. der Vorrichtung kann beispielsweise Expertenwissen integriert werden. Es können beispielsweise durch Experten definierte Regeln, welche die sinnvolle Nutzung von Systemen des Fahrzeugs beschreiben, initial als Regeln mit hoher Konfidenz initialisiert werden. Auch für einen unerfahrenen Nutzer können auf diese Weise hilfreiche Steuersignale auch zu Funktionen erzeugt werden, die der Nutzer zuvor noch nicht genutzt hat. Beispielsweise kann einem Nutzer die Aktivierung eines Assistenzsystems empfohlen werden, wenn sich die Nutzung dieses Systems im aktuellen Kontext empfiehlt. Derartige Empfehlungen können auch aus Flottendaten abgeleitet werden.
    • 1 zeigt den grundsätzlichen Aufbau eines Ausführungsbeispiels der erfindungsgemäßen Vorrichtung und
    • 2 zeigt den Ablauf eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens.
  • Zunächst wird mit Bezug zu 1 der Aufbau der erfindungsgemäßen Vorrichtung beschrieben:
    • Die erfindungsgemäße Vorrichtung wird allgemein von einem adaptiven System 20 und den Kopplungen dieses adaptiven Systems 20 mit weiteren Einrichtungen in einem Fahrzeug und außerhalb des Fahrzeugs bereitgestellt.
  • Das Fahrzeug umfasst eine Vielzahl von Sensoren 1 und Schnittstellen 2, mit denen Messwerte und Daten erfasst werden können. Die Sensoren 1 können beispielsweise Messwerte zu den aktuellen Wetterbedingungen, den aktuellen Umgebungslichtverhältnissen, der aktuellen Jahreszeit und der aktuellen Tageszeit umfassen. Außerdem können Sensoren 1 vorgesehen sein, welche das Verhalten des Fahrers überwachen und Interaktionen des Fahrers mit einer Nutzerschnittstelle erfassen. Des Weiteren können die Sensoren 1 Messwerte zu Fahrparametern liefern, wie beispielsweise die aktuelle Geschwindigkeit, einen etwaigen Schlupf der Räder und weitere Messwerte, die üblicherweise von an sich bekannten Fahrerassistenzsystemen ausgewertet werden. Über die Schnittstellen 2 können Daten zu den aktuellen Verkehrsbedingungen im Umfeld des Fahrzeugs oder auf der Route eines Fahrzeugs sowie regionale Wetterbedingungen empfangen werden. Die Schnittstellen 2 können auch die Übertragung von Daten über das Mobilfunknetz oder das Internet ermöglichen, um das Fahrzeug mit externen Diensten zu koppeln, welche in einer Cloud oder auf einem zentralen Server des Fahrzeugherstellers betrieben werden. Auf diese Weise können jegliche Daten an das Fahrzeug übertragen werden, welche für den Kontext des Fahrzeugs relevant sind.
  • Außerdem können die Schnittstellen 2 eine Kopplung mit mobilen Geräten innerhalb des Fahrzeugs herstellen. Des Weiteren kann über die Schnittstellen 2 eine Kommunikation mit anderen Fahrzeugen oder Infrastruktureinrichtungen, wie zum Beispiel Verkehrsleitsystemen und Ampeln, möglich sein.
  • Mittels der Sensoren 1 oder der Schnittstellen 2 kann auch ein bestimmter Nutzer 17, der Insasse des Fahrzeugs ist, identifiziert werden. Auf diese Weise können alle Adaptionen, welche im Folgenden beschrieben werden, nutzerspezifisch ausgeführt werden.
  • Die Sensoren 1 sind mit einer Extraktionseinheit 3 gekoppelt, mittels welcher die Rohdaten der Messwerte der Sensoren 1 in Daten zu höherwertigen Merkmalen konvertiert werden können. Beispielsweise kann mittels eines Sensors 1 fortwährend die aktuelle Geschwindigkeit erfasst werden. Die Extraktionseinheit 3 kann in diesem Fall diese schnell veränderlichen Daten kontinuierlich analysieren und die Information ableiten, dass der Nutzer seit einem bestimmten Zeitpunkt mit einer konstanten Geschwindigkeit fährt. Die Extraktionseinheit 3 ermöglicht es dem adaptiven System 20 neben dem Erfassen von Rohdaten komplexe Situationen in hochdynamischen heterogenen Daten über den Fahrer, das Fahrzeug und die Umwelt zu erfassen und zu erkennen. Die Extraktionseinheit 3 kann dabei Technologien der künstlichen Intelligenz (z. B. Deep Learning, Time Series Analysis) verwenden.
  • Die mittels der Extraktionseinheit 3 gewonnenen Daten werden an eine Kontextdaten-Ermittlungseinheit 4 übertragen. Gleichermaßen werden auch die über die Schnittstellen 2 empfangenen Daten an diese Kontextdaten-Ermittlungseinheit 4 übertragen. In der Kontextdaten-Ermittlungseinheit 4 werden alle verfügbaren von den Sensoren 1 und den Schnittstellen 2 übertragenen Daten analysiert und gegebenenfalls aggregiert. Die Kontextdaten-Ermittlungseinheit 4 erzeugt eine kontinuierlich angepasste Beschreibung, in welchem Kontext sich das Fahrzeug befindet. Es wird insbesondere die aktuelle Situation ermittelt, in der sich das Fahrzeug befindet. Der ermittelte Kontext des Fahrzeugs wird zum einen an ein Adaptivmodul 5 des adaptiven Systems 20 übertragen und zum anderen über eine geeignete Schnittstelle an ein externes Musterlernmodul 16.
  • Das Adaptivmodul 5 umfasst wiederum eine Hypothesen-Erzeugungseinheit 6 und eine Bewertungseinheit 7. Die Hypothesen-Erzeugungseinheit 6 ist ausgebildet, in Abhängigkeit von dem von der Kontextdaten-Ermittlungseinheit 4 ermittelten Kontext und in Abhängigkeit von einem regelbasierten Datensystem 8, mit welchem das Adaptivmodul 5 gekoppelt ist, eine Hypothese für ein Regelergebnis einer Regel des Datensystems 8 zu erzeugen.
  • Das regelbasierte Datensystem 8 ist ein Speicher, in dem eine Vielzahl von Regeln strukturiert gespeichert sind. Jede Regel weist dabei einen Bedingungsteil und einen Ergebnisteil auf, wobei der Bedingungsteil Bedingungen für den Kontext des Fahrzeugs umfasst. Das regelbasierte Datensystem 8 enthält somit die Menge der Regeln, die definieren, wie sich das adaptive System 20 in verschiedenen Situationen verhält. Weiterhin umfasst es Informationen für jede Regel bezüglich ihrer Konfidenz und ihres Status, wie es später erläutert wird. Das regelbasierte Datensystem 8 lässt sich in Subsysteme unterteilen, die sich in der Herkunft ihrer Regeln unterscheiden. Das regelbasierte Datensystem 8 ist ferner mit dem externen Musterlernmodul 16 gekoppelt. Über dieses externe Musterlernmodul 16 können neue Regeln definiert und an das regelbasierte Datensystem 8 übertragen werden.
  • Die Hypothesen-Erzeugungseinheit 6 greift auf die Regeln des regelbasierten Datensystems 8 zu. Sie kann die Regelmenge des Datensystems 6 anhand der aktuellen Situation bzw. des aktuellen Kontexts auflösen. In jeder Situation iteriert die Hypothesen-Erzeugungseinheit 6 über die Menge der Regeln des regelbasierten Datensystem 8 und identifiziert die für den Kontext passenden Regeln. Die Regelergebnisse dieser Menge identifizierter Regeln stellt eine Menge von Hypothese über die Präferenzen des Nutzers für den aktuellen Kontext bzw. die aktuelle Situation dar. Jede dieser identifizierten und für den Kontext passenden Regeln sowie deren Regelergebnisse werden in Form einer Liste von Hypothesen an eine Nutzerschnittstellensteuerung 10 übertragen.
  • Die Nutzerschnittstellensteuerung 10 umfasst eine Hypothesen-Verarbeitungseinheit 12 und eine Ergebniseinheit 13. Ferner ist die Nutzerschnittstellensteuerung 10 mit einem Nutzerschnittstellenmodell 11 gekoppelt.
  • Die von der Hypothesen-Erzeugungseinheit 6 empfangenen Hypothesen werden von der Hypothesen-Verarbeitungseinheit 12 verarbeitet. Die Hypothesen-Verarbeitungseinheit 12 bestimmt, wie sich das adaptive System 20 in Abhängigkeit von einer Hypothese verhalten soll. Hierfür entscheidet es auf Basis der Konfidenz und des Status einer jeden Regel, auf welcher die Hypothese basiert, ob die Regel eine mögliche Präferenz eines individuellen Nutzers darstellt. Ferner entscheidet die Hypothesen-Verarbeitungseinheit 12 auf dieser Basis, ob eine Regel, auf welcher die Hypothese basiert, automatisch ausgeführt wird, dem Nutzer die Anwendung der zugrundeliegenden Regel angeboten oder empfohlen wird und wie mit dem Nutzer zu interagieren ist. Dabei entscheidet die Nutzerschnittstellensteuerung 10 auch, über welche Nutzerschnittstelle mit dem Nutzer interagiert werden soll. Als Nutzerschnittstellen 18 können beispielsweise eine graphische Nutzerschnittstelle 19 und eine Sprachschnittstelle 21 vorgesehen sein.
  • Die Hypothesen-Verarbeitungseinheit 12 kann beispielsweise entscheiden, dass der Nutzer über die automatische Aktivierung der Sitzheizung über die Sprachschnittstelle 21 mittels der Ausgabe synthetisierter Sprache informiert wird. Dabei kann die Anwendung der Regel, auf welcher die Hypothese beruht, dem Nutzer plausibilisiert werden, indem der Grund angegeben wird, warum die Sitzheizung automatisch aktiviert wird. Beispielsweise kann per Sprache ausgegeben werden, dass der Nutzer die Sitzheizung in letzter Zeit häufig genutzt hat, wenn die Außentemperatur der aktuellen Temperatur entsprach. Die konkrete Entscheidungslogik hierfür und die Daten darüber, wie eine Regel in natürliche Sprache überführt wird, ist in dem Nutzerschnittstellenmodell 11 definiert und modelliert. Eine Alternative zu der sprachbasierten Informationsausgabe für den Nutzer ist zum Beispiel die Darstellung der Information mittels einer graphischen Nutzerschnittstelle 19, dass die Sitzheizung aktiviert wurde. Dabei kann auch eine Schaltfläche angezeigt werden, mittels derer die Ausführung rückgängig gemacht werden kann. Falls dem Nutzer die Ausführung einer bestimmten Regel, auf welcher die Hypothese beruht, empfohlen wird, kann die Hypothesen-Verarbeitungseinheit 12 die Sprachschnittstelle 21 nutzen, um dem Nutzer die Empfehlung aktiv anzubieten und mit dem Nutzer einen Dialog darüber zu führen. Wenn der Nutzer beispielsweise fragt, warum das adaptive System 20 gefolgert hat, dass er die Sitzheizung wohl nutzen möchte, kann die Hypothesen-Verarbeitungseinheit 12 dies mittels der Sprachschnittstelle 21 erklären. Sollte der Nutzer zwei aufeinanderfolgende Empfehlungen des adaptiven Systems 20 ignoriert haben, kann die Hypothesen-Verarbeitungseinheit 12 beispielsweise entscheiden, dass für eine definierte Zeit für diesen Nutzer keine weitere Regel ausgeführt wird.
  • Die Hypothesen-Verarbeitungseinheit 12 ist somit eingerichtet festzulegen, wann und in welchen Zyklen aus impliziten Feedbackhandlungen gelernt werden soll, ob eine bestimmte Regel zu einem aktuellen Nutzer 17 passt, welcher zuvor identifiziert wurde. Beispielsweise kann für die Funktion der Sitzheizung des Fahrzeugs definiert sein, dass nur die ersten zwei Minuten jeder Fahrt auf Basis von implizitem Wissen gelernt werden soll, ob eine Regel für die Sitzheizungsfunktion zu einem Nutzerinteraktionsmuster passt. Wenn innerhalb der ersten zwei Minuten eine bestimmte Regel in einer bestimmten Situation, welche sich aus dem Kontext ergibt, gültig ist und der Nutzer 17 die Sitzheizung selbst initiiert aktiviert, wird die Regel als passend interpretiert und eine Adaption der Regel angestoßen. Wenn für eine bestimmte Regel in der Hypothesen-Verarbeitungseinheit 12 ein zyklisches Lernen definiert ist, wird in einem zuvor definierten Zyklus die Adaption der Regel angestoßen, so lange die Bedingungen hierfür erfüllt sind.
  • Das Nutzerschnittstellenmodell 11 wird im Voraus festgelegt. Dabei wird definiert, wie mit einer spezifischen Regel bzw. einer spezifischen Hypothese einer bestimmten Funktion oder Domäne mit einer bestimmten Konfidenz bei gegebenem Status verfahren werden muss. Es ist somit festgelegt, wie die Nutzerschnittstellen 18 zwecks Kommunikation des Systemverhaltens eingesetzt werden. Weitergehend wird definiert, wie eine Regel oder eine Hypothese sinnvoll in natürliche Sprache überführt werden kann. Hierfür können in dem Nutzerschnittstellenmodell 11 diverse Textbausteine gespeichert sein oder es wird ein Generator für natürliche Sprache verwendet. Beispiele für Textbausteine sind der Name eines Sensors 1, der Bedingungswert der Regel für einen Sensor 1, der aktuelle tatsächliche Wert des Sensors 1, der Name eines Aktors und der zu setzende Wert des Aktors. Weiterhin kann in dem Nutzerschnittstellenmodell 11 definiert werden, dass das adaptive System 20 beispielsweise für eine definierte Zeit mit der Ausführung von Regeln für eine bestimmte Domäne aussetzt, wenn der Nutzer 17 mehrfach die Ausführung von Regeln dieser Domäne ignoriert hat. Die Domänen können verschiedene Bereiche zu Funktionen des Fahrzeugs voneinander abgrenzen.
  • Die Nutzerschnittstellen 18 umfassen allgemein eine Menge verfügbarer Nutzerschnittstellen, um mit dem Nutzer zu interagieren. Die Nutzerschnittstellen 18 werden dabei von der Nutzerschnittstellensteuerung 10 angesteuert. Auf diese Weise wird dem Nutzer 17 eine Regelausführung kommuniziert, angeboten oder es wird ein Feedback des Nutzers erfragt oder der Nutzer wird über eine Automatisierung informiert. Dabei werden dem Nutzer 17 geeignete Nutzereingabe angeboten, um Einfluss auf die Bewertung einer Hypothese oder die Ausführung einer Regel zu entnehmen.
  • Die Nutzerschnittstellen 18 können insbesondere, gesteuert von der Nutzerschnittstellensteuerung 10, die von der Hypothesen-Erzeugungseinheit 6 erzeugte Hypothese ausgeben. Auf eine solche Ausgabe der Hypothese kann eine Nutzereingabe mittels einer Eingabeeinheit 22 erfasst werden. Die Eingabeeinheit 22 ist auch Teil der Nutzerschnittstellen 18.
  • Die Nutzereingabe bzw. allgemein das Nutzerfeedback als Antwort auf die Ausgabe einer Hypothese kann auf verschiedene Weise erfolgen. Beispielsweise kann der Nutzer eine Empfehlung, die in der ausgegebenen Hypothese enthalten ist, ignorieren. Er kann eine solche Empfehlung auch explizit ablehnen oder hinterfragen. Insbesondere kann eine empfohlene Automatisierung hinterfragt werden. Des Weiteren kann der Nutzer eine in der Hypothese enthaltene Empfehlung akzeptieren oder eine Automatisierung ignorieren. Des Weiteren kann der Nutzer eine Automatisierung rückgängig machen. Schließlich kann der Nutzer ein dezidiertes Feedback zu einer Empfehlung oder einer Automatisierung geben, indem er zum Beispiel den Bedingungsteil oder den Ergebnisteil einer bestimmten Regel, auf welcher die Hypothese beruht, anpasst. Beispielsweise kann der Nutzer eingeben, dass die Sitzheizung statt bei 12 °C schon bei 13 °C aktiviert werden soll und statt die Stufe 2, die Stufe 3 aktiviert werden soll.
  • Das explizite Feedback des Nutzers 17 über die Nutzereingabe wird an die Hypothesen-Verarbeitungseinheit 12 der Nutzerschnittstellensteuerung 10 übertragen, welche es wiederum zurück an das Adaptivmodul 5 überträgt. In dem Adaptivmodul 5 wird dieses Nutzerfeedback der Nutzereingabe in der Bewertungseinheit 7 verarbeitet. Die Bewertungseinheit 7 ist ausgebildet, eine weitere Bewertung der zuvor ausgegebenen Hypothese vorzunehmen. Die Bewertungseinheit 7 wird dabei durch die Daten unterstützt, welche von der Hypothesen-Verarbeitungseinheit 12 übertragen wurden. Die Bewertungseinheit 7 ist insbesondere ausgebildet, mittels der erfassten Nutzereingabe die zuvor ausgegebene Hypothese zu bewerten.
  • Die Bewertungseinheit 7 ist ausgebildet, zu lernen, welche Regeln bzw. Hypothesen mit welcher Parametrisierung zu einem individuellen Nutzer 17 passen und somit seinen Präferenzen entsprechen. Die Bewertungseinheit 7 gewährleistet somit die Adaptivität des adaptiven Systems 20.
  • Die Bewertung einer Hypothese wird von der Bewertungseinheit 7 an die Adaptionseinheit 9 übertragen. In Abhängigkeit von der Bewertung einer ausgegebenen Hypothese kann die Adaptionseinheit 9 automatisch die Regeln des regelbasierten Datensystems 8 adaptieren. Mittels der Adaptionseinheit 9 kann somit eine Hypothese, welche zuvor von der Hypothesen-Erzeugungseinheit 6 erzeugt und von der Bewertungseinheit 7 validiert wurde, genutzt werden, um das regelbasierte Datensystem 8 zu adaptieren.
  • Das automatisierte Lernen und die Adaption des Systems 20 kann dabei auf der Basis von zwei Informationsklassen statt. Die Bewertungseinheit 7 kann Interaktionen eines Nutzers auswerten und darüber ein implizites Feedback erhalten. Ferner kann die Bewertungseinheit 7 wie vorstehend beschrieben ein explizites Nutzerfeedback zu ausgegebenen Hypothesen erhalten.
  • Ein implizites Feedback erhält die Bewertungseinheit 7 über Daten, die bei Interaktionen mit dem Nutzer 17 erfasst werden. Die Bewertungseinheit 7 erhält von der Kontextdaten-Ermittlungseinheit 4 bestimmte Kontextdaten, die eine Beschreibung der Situation liefern, in der sich das Fahrzeug befindet. Es kann nun erfasst werden, in welcher Situation der Nutzer eine Funktion selbst initiiert nutzt und wie er sie einstellt. Diese erfassten Informationen werden als implizites Feedback bezeichnet. Die Bewertungseinheit 7 erfasst beispielsweise, wann Nutzerinitiiert die Sitzheizung aktiviert wird und prüft, welche der Regeln des regelbasierten Datensystems 8 diesem Muster entsprechen. Sollte eine der Regeln zu diesem Muster in dem implizierten Feedback passen, kann die Bewertungseinheit 7 daraus folgern, dass diese Regel mit größerer Wahrscheinlichkeit der Präferenz des Nutzers 17 entspricht. Über die Adaptionseinheit 9 kann die Bewertungseinheit 7 in diesem Fall den Konfidenzwert der entsprechenden Regel erhöhen. So würde zum Beispiel nach mehrfacher Aktivierung der Sitzheizung durch den Nutzer 17 in der immer gleichen Situation der Konfidenzwert so angestiegen sein, dass mittels der Hypothesen-Erzeugungseinheit 6 und der Hypothesen-Verarbeitungseinheit 12 entschieden wird, eine Ausgabe zu erzeugen, die dem Nutzer empfiehlt, die entsprechende Regel auszuführen oder sie sogar für ihn zu automatisieren.
  • Unter einem expliziten Nutzerfeedback wird verstanden, dass auf die Ausgabe einer Hypothese der Nutzer 17 eine Nutzereingabe tätigt, welche angibt, wie die Hypothese zu bewerten ist. Das adaptive System 20 kann auf diese Weise lernen, inwiefern die Regel, welche zu dieser Hypothese gehört, der Nutzerpräferenz entspricht und dann mittels der Adaptionseinheit 9 das regelbasierte Datensystem 8 entsprechend anzupassen.
  • Im Folgenden werden Details erläutert, wie eine Adaption einer Regel initiiert wird und auf welche Weise eine Regel dann adaptiert wird:
    • Für die Adaption der Regel umfasst die Adaptionseinheit 9 eine Instanz, die definiert, wie basierend auf implizitem und explizitem Feedback des Nutzers 17 erlernt wird, ob eine Regel den Präferenzen dieses Nutzers 17 entspricht. Die Adaption wird angestoßen, wenn entweder das Muster der jeweiligen Regel in dem impliziten Feedback des Nutzers 17 festgestellt wurde und die Bewertungseinheit 7 den Adaptionsvorgang anstößt oder wenn der Nutzer 17 ein explizites Feedback durch eine Nutzereingabe über die Nutzerschnittstellen 18 zu einer bestimmten Regel gibt.
  • Die Regeln des regelbasierten Datensystems 8 umfassen einen Bedingungsteil und einen Ergebnisteil. Der Bedingungsteil umfasst Bedingungen für den Kontext des Fahrzeugs, bei dem die Regel ausgeführt wird. Die Wahrscheinlichkeit dafür, dass die Ausführung der Regel den Präferenzen des Nutzers 17 entspricht, wird anhand eines Konfidenzwerts der Regel angegeben. Bei der Adaption einer Regel kann dieser Konfidenzwert verändert werden. Die Adaptionseinheit 9 unterscheidet dabei zwischen den unterschiedlichen Formen eines Nutzerfeedbacks. Bei einer Adaption, die auf implizitem Wissen basiert, wird der Konfidenzwert nur leicht erhöht oder verkleinert. Bei explizitem Feedback hingegen, bei welchem eine Hypothese ausgegeben und eine Nutzereingabe hierzu erfasst worden ist, kommt es zu einer sehr viel stärkeren Veränderung des Konfidenzwerts, da eine explizite Bewertung des Nutzers 17 zu der Hypothese erfasst worden ist. Außerdem kann der Status einer Regel verändert werden. Die Regel kann aktiviert werden, deaktiviert werden oder der Status kann so gesetzt werden, dass die Anwendung der Regel in Abhängigkeit von dem Konfidenzwert erfolgt.
  • Eine Regel kann mittels der Adaptionseinheit 9 beispielsweise so adaptiert werden, dass bei einem wiederholten Zurücksetzen oder Rückgängigmachen einer Automatisierung einer Regel diese deaktiviert wird und der Konfidenzwert auf Null gesetzt wird.
  • Wenn in der Hypothese dem Nutzer 17 eine Regelausführung angeboten wurde und er diese akzeptiert hat, kann der Regel zusätzlich ein hoher Konfidenzwert zugeordnet werden. In diesem Fall kann beispielsweise die Hypothesen-Verarbeitungseinheit 12 entscheiden, dass der Nutzer im Anschluss an die Ausführung einer zugeordneten Regel, dem Nutzer direkt die Automatisierung dieser Regel angeboten wird bzw. der Status der Regel auf „aktiviert“ gesetzt werden soll. Beispielsweise kann die Sprachausgabe erfolgen: „Möchten Sie, dass ich für Sie immer die Sitzheizung aktiviere, wenn es morgens kälter als 12 °C ist?“
  • Des Weiteren ist es möglich, dass der Nutzer 17 durch die Nutzereingabe eine Regel, die zu der ausgegebenen Hypothese gehört, deaktiviert. Von der Bewertungseinheit 7 wird in diesem Fall mittels der der Adaptionseinheit 9 der Status der Regel auf „deaktiviert“ gesetzt. Wenn nun im Zeitverlauf eine deaktivierte Regel einen zunehmend ansteigenden Konfidenzwert aufweist, kann die Hypothesen-Verarbeitungseinheit 12, trotz des Regelstatus „deaktiviert“, mittels der Hypothesen-Erzeugungseinheit 6 erneut eine Hypothese erzeugen und eine Ausgabe generieren, welche dem Nutzer 17 anbietet, die Deaktivierung dieser Regel aufzuheben. Die Ausgabe über die Sprachschnittstelle 21 kann in diesem Fall beispielsweise die folgende sein: „Ich weiß, dass die Sitzheizung für Sie nicht automatisiert werden soll. Da Sie jedoch mehrfach die Sitzheizung in dieser Situation genutzt haben, könnte ich die Deaktivierung der Regel für Sie auflösen und die Regel aktivieren.“
  • Wenn über eine der Schnittstellen 2 der Nutzer identifiziert worden ist, kann das regelbasierte Datensystem 8 auch nutzerspezifisch adaptiert werden. Dabei wird durch das explizite Nutzerfeedback erfasst, ob bestimmte Regeln, zu denen Hypothesen ausgegeben wurden, zu den individuellen Präferenzen des identifizierten Nutzers 17 passen. Die Regeln können dann nutzerspezifisch adaptiert werden. Wenn beispielsweise eine Nutzereingabe erfasst worden ist, dass eine bestimmte Regel der Präferenz eines bestimmten Musters entspricht, kann aus der zuvor über den Kontext erfassten Situation abgeleitet werden, welche Sitzheizungsstufe ein bestimmter Nutzer meistens eingestellt hat. Für das Ableiten des passenden Aktorwertes können dabei verschiedene Heuristiken und Verfahren eingesetzt werden. Dieser Lernprozess für die Parametrisierung einer Regel kann analog für die Sensorwerte des Bedingungsteils angewendet werden. Wenn kein eindeutiges Muster für eine Parametrisierung abgeleitet werden kann, kann eine Hypothese erzeugt werden und dem Nutzer über eine der Nutzerschnittstellen 18 ausgegeben werden. Durch eine Nutzereingabe kann der Nutzer 17 dann ein explizites Feedback geben, welches bewertet wird, woraufhin die entsprechende Regel nutzerspezifisch adaptiert werden kann. Die Ausgabe der Hypothese kann beispielsweise wie folgt lauten: „Ich habe festgestellt, dass Sie in Situation s üblicherweise die Sitzheizung aktivieren. Möchten Sie, dass ich diese Regel für Sie automatisiere? Und wenn ja, auf welcher Stufe soll ich die Sitzheizung dann für Sie aktivieren?“
  • Des Weiteren kann die Adaptionseinheit 9 das regelbasierte Datensystem 8 auf weitere Weise verändern. Beispielsweise kann die Adaptionseinheit 9 sicherstellen, dass das regelbasierte Datensystem 8 keine widersprüchlichen Regeln oder Logiken enthält. Es kann beispielsweise eine Konsistenzprüfung durchführen. Weiterhin kann die Adaptionseinheit 9 genutzt werden, um Domänen-spezifische Anforderungen sicherzustellen, indem es Regeln identifiziert und anschließend deaktiviert, die diesen Anforderungen widersprechen. Beispielsweise könnte eine Klima-Domäne fordern, dass keine Regel die Sitzheizung aktiviert, wenn auf dem Sitz ein Kindersitz montiert ist. Eine derartige Adaption des regelbasierten Datensystems 8 mittels der Adaptionseinheit 9 führt somit auch dazu, dass das an sich lernende System zertifizierbar bleibt.
  • Neben dem adaptiven System 20 für das eigene Fahrzeug können eine Vielzahl weiterer adaptiver Systeme 30 anderer Fahrzeuge vorgesehen sein. Das weitere adaptive System 30 steht stellvertretend für eine Vielzahl adaptiver Systeme einer Flotte, die durch verschiedene Nutzer genutzt wird. Diese weiteren adaptiven Systeme 30 können auch Kontextdaten an das Musterlernmodul 16 übertragen.
  • Das Musterlernmodul 16 wird beispielsweise auf dem Server des Fahrzeugherstellers oder in einer Cloud ausgeführt. Es werden dabei sämtliche Kontextdaten aller adaptiven Systeme 20, 30 gesammelt. Da das Musterlernmodul extern, d. h. unabhängig vom Fahrzeug ausgeführt wird, kann es auf sehr viel größere Speicher- und Rechenressourcen zurückgreifen. Auf diese Weise können in dem Musterlernmodul 16 weitere Analysen der erfassten Daten durchgeführt werden. Mittels des Musterlernmoduls 16 werden die erfassten Daten, insbesondere die Kontextdaten, weitergehend analysiert, um neue Regeln zu erlernen. Hierfür können Methoden der künstlichen Intelligenz und des Maschinenlernens verwendet werden. Beispielsweise Deep Learning ist eine Technologie, die hohe Anforderungen an die Rechenleistung eines Systems stellt und für die Analyse der Daten geeignet ist. Hierbei kann das Musterlernmodul 16 sowohl basierend auf den Daten eines einzelnen individuellen Nutzers neue Regeln erlernen oder basierend auf Flottendaten. Im Fall der Flottendaten können zum Beispiel alle Situationen bzw. Kontexte untersucht werden, in denen Nutzer auf einer bestimmten Straße gefahren sind, um Regeln für einen Kontext zu dieser bestimmten Straße zu erlernen. Neu erlernte Regeln werden entweder in ein spezifisches regelbasiertes Datensystem 8 eines Nutzers aufgespielt oder an alle regelbasierte Datensysteme 8 der Flotte übertragen. Zwecks Qualitätssicherung können durch das Musterlernmodul 16 neu erlernte Regeln vor der Übertragung auf ein regelbasiertes Datensystem 8 eines adaptiven Systems 20, 30 durch Experten geprüft, zertifiziert und gegebenenfalls freigegeben oder gelöscht werden.
  • Bei einem solchen aktiven Lernprozess können bestimmte Situationen gezielt gelernt werden, um auf diese Weise im externen Musterlernmodul 16 hypothetisches Wissen zu verifizieren. Hierfür können in dem Musterlernmodul 16 Regeln mit einem geringen Konfidenzwert erzeugt werden, an adaptive Systeme 20, 30 eines Fahrzeugs übertragen werden und die Entwicklung des Konfidenzwertes dieser Regel in den einzelnen adaptiven Systemen 20, 30 beobachtet werden.
  • Nachdem das regelbasierte Datensystem 8 durch die Hypothesenausgabe und die anschließende Hypothesenbewertung mittels der Adaptionseinheit 9 adaptiert wurde, kann eine Ergebniseinheit 13 eine Regel ausführen, wenn die Nutzerschnittstellensteuerung 10 ermittelt hat, dass keine Hypothese ausgegeben werden soll. Die Ergebniseinheit 13 erzeugt in Abhängigkeit von dem ermittelten Kontext und von dem gegebenenfalls adaptierten regelbasierten Datensystem 8 ein Regelergebnis einer Regel dieses Datensystems 8. Dieses Regelergebnis wird an eine Ausgabeeinheit 14 übertragen, welche ein Steuersignal in Abhängigkeit von dem erzeugten Regelergebnis erzeugt und ausgibt. Dieses Steuersignal kann an die Nutzerschnittstellen 18 übertragen werden, um bestimmte Informationen auszugeben. Ferner kann das Steuersignal an einen Datenbus 15 übertragen werden, welcher die Steuerung der verschiedenen Einrichtungen des Fahrzeugs ermöglicht. Beispielsweise können die verschiedenen Assistenzsysteme des Fahrzeugs angesteuert werden, es kann der Medienplayer angesteuert werden, es können verschiedene Klimafunktionen ausgeführt werden, es kann eine Lichtansteuerung erfolgen oder es können Steuersignale an externe Geräte wie ein in dem Fahrzeug befindliches Smartphone übertragen werden.
  • Mit Bezug zu 2 wird ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens erläutert, welches mit der vorstehend erläuterten Vorrichtung ausgeführt werden kann:
    • Im Schritt S1 wird der Kontext des Fahrzeugs ermittelt. Hierfür wird auf die Kontextdaten-Ermittlungseinheit 4 zurückgegriffen, welche wiederum auf die Extraktionseinheit 3, die Schnittstellen 2 und die Sensoren 1 zurückgreift. Im Schritt S1 kann auch der Nutzer identifiziert werden.
  • Im Schritt S2 wird in Abhängigkeit von dem ermittelten Kontext und von dem regelbasierten Datensystem 8 eine Hypothese für ein Regelergebnis einer Regel des regelbasierten Datensystems 8 erzeugt. Hierfür wird auf die Hypothesen-Erzeugungseinheit 6 zugegriffen, welche wiederum Regeln aus dem regelbasierten Datensystem 8 lädt.
  • Im Schritt S3 wird die Hypothese ausgegeben. Hierfür werden die Nutzerschnittstellen 18 verwendet.
  • Im Schritt S4 wird zu der Ausgabe der Hypothese eine Nutzereingabe erfasst. Diese Nutzereingabe erfolgt erneut über die Eingabeeinheit 22 der Nutzerschnittstellen 18.
  • Die Nutzereingabe wird an die Bewertungseinheit 7 übertragen, welche im Schritt S5 die Hypothese bewertet.
  • In Abhängigkeit von der Bewertung der Hypothese wird im Schritt S6 dann das regelbasierte Datensystem 8 mittels der Adaptionseinheit 9 adaptiert. Wenn die Nutzerschnittstellensteuerung 10 mittels der Hypothesen-Verarbeitungseinheit 12 ermittelt hat, dass eine Validierung einer Hypothese oder ein Nutzerfeedback nicht erforderlich ist, wird im Schritt S7 in Abhängigkeit von dem ermittelten Kontext und von dem adaptierten regelbasierten Datensystem 8 ein Regelergebnis einer Regel des Datensystems erzeugt. Die Nutzerschnittstellensteuerung 10 greift hierzu auf die Ergebniseinheit 13 zu.
  • Im Schritt S8 wird in Abhängigkeit von dem erzeugten Regelergebnis ein Steuersignal erzeugt, welches mittels der Ausgabeeinheit 14 auf geeignete Weise ausgegeben wird.
  • Gemäß einer Weiterbildung des Verfahrens kann im Schritt S6 bei der Adaption des regelbasierten Datensystems auch auf Flottenwissen zugegriffen werden, welches dem regelbasierten Datensystem von dem Musterlernmodul 16 übertragen wird. Auf diese Weise können neue Regeln in das regelbasierte Datensystem 8 eingespielt werden oder es können die Regeln des regelbasierten Datensystem 8 auf Basis von Daten adaptiert werden, welche über ein weiteres adaptives System 30 gewonnen wurden.
  • Bezugszeichenliste
  • 1
    Sensoren
    2
    Schnittstellen
    3
    Extraktionseinheit
    4
    Kontextdaten-Ermittlungseinheit
    5
    Adaptivmodul
    6
    Hypothesen-Erzeugungseinheit
    7
    Bewertungseinheit
    8
    regelbasiertes Datensystem
    9
    Adaptionseinheit
    10
    Nutzerschnittstellensteuerung
    11
    Nutzerschnittstellenmodell
    12
    Hypothesen-Verarbeitungseinheit
    13
    Ergebniseinheit
    14
    Ausgabeeinheit
    15
    Datenbus
    16
    Musterlernmodul
    17
    Nutzer
    18
    Nutzerschnittstellen
    19
    graphische Nutzerschnittstelle
    20
    adaptives System
    21
    Sprachschnittstelle
    22
    Eingabeeinheit
    30
    weiteres adaptives System

Claims (13)

  1. Verfahren zum Erzeugen von Steuersignalen zum Unterstützen von Insassen eines Fahrzeugs, bei dem ein Kontext des Fahrzeugs ermittelt wird, in Abhängigkeit von dem ermittelten Kontext und von einem regelbasierten Datensystem (8) eine Hypothese für ein Regelergebnis einer Regel des Datensystems (8) erzeugt wird, mittels einer Nutzerschnittstelle (18) die erzeugte Hypothese ausgegeben wird, eine Nutzereingabe zu der Ausgabe der Hypothese erfasst wird, mittels der erfassten Nutzereingabe die ausgegebene Hypothese bewertet wird, in Abhängigkeit von der Bewertung der Hypothese das regelbasierte Datensystem (8) automatisch adaptiert wird, in Abhängigkeit von dem ermittelten Kontext und von dem adaptierten regelbasierten Datensystem (8) ein Regelergebnis einer Regel des Datensystems (8) erzeugt wird und in Abhängigkeit von dem erzeugten Regelergebnis ein Steuersignal ausgegeben wird, dadurch gekennzeichnet, dass bei der Bewertung der ausgegebenen Hypothese ein Konfidenzwert bestimmt wird, welcher angibt, mit welcher Wahrscheinlichkeit das Regelergebnis der Präferenz des Nutzers entspricht und einer Regel des regelbasierten Datensystems (8) ein Statuswert für einen Status zugeordnet wird, wobei der Statuswert angibt, wie der Konfidenzwert dieser Regel für diese Regel zu interpretieren ist, wobei in einem im Voraus festgelegten Nutzerschnittstellenmodell (11) definiert wird, wie mit einer spezifischen Regel und/oder einer spezifischen Hypothese mit einem bestimmten Konfidenzwert bei gegebenem Statuswert verfahren wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass Messwerte von Sensoren (1) und/oder Daten von Schnittstellen (2) des Fahrzeugs erfasst werden und der Kontext des Fahrzeugs in Abhängigkeit von den erfassten Messwerten und/oder erfassten Daten ermittelt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass dass mittels der Sensoren (1) und/oder Schnittstellen (2) Messwerte und/oder Daten zu den aktuellen Verkehrsbedingungen, dem Verhalten des Fahrers, Interaktionen des Fahrers mit einer weiteren Nutzerschnittstelle, den aktuellen Wetterbedingungen, den aktuellen Umgebungslichtverhältnissen, der aktuellen Jahreszeit und/oder der aktuellen Tageszeit erfasst werden.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das regelbasierte Datensystem (8) eine Vielzahl von Regeln umfasst, wobei jede Regel einen Bedingungsteil und einen Ergebnisteil aufweist, wobei der Bedingungsteil Bedingungen für den Kontext des Fahrzeugs umfasst.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Hypothese eine Annahme über eine Präferenz des Nutzers für das Regelergebnis der Hypothese bei dem ermittelten Kontext umfasst.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Status zumindest einen ersten, einen zweiten und einen dritten Statuswert umfasst, wobei bei dem ersten Statuswert die zugeordnete Regel automatisiert angewendet wird, bei dem zweiten Statuswert die zugeordnete Regel nicht automatisiert angewendet wird und bei dem dritten Statuswert die zugeordnete Regel in Abhängigkeit von dem Konfidenzwert der zugeordneten Regel angewendet wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Nutzereingabe eine Bestätigung oder eine Ablehnung der Hypothese umfasst.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass bei einer Ablehnung der Hypothese der Konfidenzwert der zu der Hypothese gehörigen Regel verringert wird und bei einer Bestätigung der Hypothese der Konfidenzwert der zu der Hypothese gehörigen Regel erhöht wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Nutzereingabe oder mehrere Nutzereingaben eine Aktivierung oder Deaktivierung der zu der Hypothese gehörigen Regel induziert.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Nutzer identifiziert wird und das regelbasierten Datensystem (8) nutzerspezifisch adaptiert wird.
  11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass hypothesenunabhängige Nutzereingaben erfasst werden, die unabhängig von der Ausgabe einer Hypothese sind, die hypothesenunabhängigen Nutzereingaben bewertet werden und in Abhängigkeit von dem Ergebnis der Bewertung das regelbasierte Datensystem (8) automatisch adaptiert wird.
  12. Vorrichtung zum Erzeugen von Steuersignalen zum Unterstützen von Insassen eines Fahrzeugs, mit einer Kontext-Ermittlungseinheit (4) zum Ermitteln des Kontextes des Fahrzeugs, einer Hypothesen-Erzeugungseinheit (6), die ausgebildet ist, in Abhängigkeit von dem ermittelten Kontext und von einem regelbasierten Datensystem (8) eine Hypothese für ein Regelergebnis einer Regel des Datensystems (8) zu erzeugen, einer Nutzerschnittstelle (18) zum Ausgeben der erzeugten Hypothese, einer Eingabeeinheit (22) zum Erfassen einer Nutzereingabe, einer Bewertungseinheit (7), die ausgebildet ist, mittels der erfassten Nutzereingabe die ausgegebene Hypothese zu bewerten, wobei bei der Bewertung der ausgegebenen Hypothese ein Konfidenzwert bestimmt wird, welcher angibt, mit welcher Wahrscheinlichkeit das Regelergebnis der Präferenz des Nutzers entspricht und einer Regel des regelbasierten Datensystems (8) ein Statuswert für einen Status zugeordnet ist, wobei der Statuswert angibt, wie der Konfidenzwert dieser Regel für diese Regel zu interpretieren ist, einem im Voraus festgelegten Nutzerschnittstellenmodell (11), das definiert, wie mit einer spezifischen Regel und/oder einer spezifischen Hypothese mit einem bestimmten Konfidenzwert bei gegebenem Statuswert verfahren wird, einer Adaptionseinheit (9), die ausgebildet ist, in Abhängigkeit von der Bewertung der Hypothese das regelbasierte Datensystem (8) automatisch zu adaptieren, einer Ergebniseinheit (13), die ausgebildet ist, in Abhängigkeit von dem ermittelten Kontext und von dem adaptierten regelbasierten Datensystem (8) ein Regelergebnis des Datensystems (8) zu erzeugen, und einer Ausgabeeinheit (14) zum Ausgeben eines Steuersignals in Abhängigkeit von dem erzeugten Regelergebnis.
  13. Computerprogrammprodukt, umfassend Befehle, die bei der Ausführung durch zumindest einen Computer diesen veranlassen, das Verfahren nach einem der Ansprüche 1 bis 11 auszuführen.
DE102018133675.6A 2018-12-28 2018-12-28 Verfahren und Vorrichtung zum Erzeugen von Steuersignalen zum Unterstützen von Insassen eines Fahrzeugs Active DE102018133675B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102018133675.6A DE102018133675B4 (de) 2018-12-28 2018-12-28 Verfahren und Vorrichtung zum Erzeugen von Steuersignalen zum Unterstützen von Insassen eines Fahrzeugs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018133675.6A DE102018133675B4 (de) 2018-12-28 2018-12-28 Verfahren und Vorrichtung zum Erzeugen von Steuersignalen zum Unterstützen von Insassen eines Fahrzeugs

Publications (2)

Publication Number Publication Date
DE102018133675A1 DE102018133675A1 (de) 2020-07-02
DE102018133675B4 true DE102018133675B4 (de) 2023-11-30

Family

ID=71079499

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018133675.6A Active DE102018133675B4 (de) 2018-12-28 2018-12-28 Verfahren und Vorrichtung zum Erzeugen von Steuersignalen zum Unterstützen von Insassen eines Fahrzeugs

Country Status (1)

Country Link
DE (1) DE102018133675B4 (de)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025352A1 (de) 2007-05-31 2008-12-11 Siemens Ag Fahrerinformationssystem in einem Verkehrsmittel, insbesondere in einem Kraftfahrzeug
DE102013212359A1 (de) 2013-06-27 2014-12-31 Bayerische Motoren Werke Aktiengesellschaft Vorhersage von Fahrpfaden eines Fahrzeugs
US20150294223A1 (en) 2014-03-20 2015-10-15 CloudMade, Inc. Systems and Methods for Providing Information for Predicting Desired Information and Taking Actions Related to User Needs in a Mobile Device
DE102014013960A1 (de) 2014-09-19 2016-03-24 Audi Ag Verfahren zum Betreiben wenigstens einer Fahrerassistenzeinrichtung eines Kraftwagens und System mit einer Fahrerassistenzeinrichtung
WO2017067853A1 (en) 2015-10-23 2017-04-27 Jaguar Land Rover Limited Vehicle user advice system
US20170190337A1 (en) 2014-05-01 2017-07-06 Jaguar Land Rover Limited Communication system and related method
DE102017200436A1 (de) 2017-01-12 2018-07-12 Audi Ag Verfahren zum Betrieb eines Fahrerassistenzsystems eines Kraftfahrzeugs
DE112016006670T5 (de) 2016-03-30 2018-12-13 Kawasaki Jukogyo Kabushiki Kaisha Einstellassistenzsystem eines Grätschsitz-Fahrzeugs
DE112017006530T5 (de) 2017-01-24 2019-09-26 Ford Global Technologies, Llc Rückmeldung für ein autonomes fahrzeug

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025352A1 (de) 2007-05-31 2008-12-11 Siemens Ag Fahrerinformationssystem in einem Verkehrsmittel, insbesondere in einem Kraftfahrzeug
DE102013212359A1 (de) 2013-06-27 2014-12-31 Bayerische Motoren Werke Aktiengesellschaft Vorhersage von Fahrpfaden eines Fahrzeugs
US20150294223A1 (en) 2014-03-20 2015-10-15 CloudMade, Inc. Systems and Methods for Providing Information for Predicting Desired Information and Taking Actions Related to User Needs in a Mobile Device
US20170190337A1 (en) 2014-05-01 2017-07-06 Jaguar Land Rover Limited Communication system and related method
DE102014013960A1 (de) 2014-09-19 2016-03-24 Audi Ag Verfahren zum Betreiben wenigstens einer Fahrerassistenzeinrichtung eines Kraftwagens und System mit einer Fahrerassistenzeinrichtung
WO2017067853A1 (en) 2015-10-23 2017-04-27 Jaguar Land Rover Limited Vehicle user advice system
DE112016006670T5 (de) 2016-03-30 2018-12-13 Kawasaki Jukogyo Kabushiki Kaisha Einstellassistenzsystem eines Grätschsitz-Fahrzeugs
DE102017200436A1 (de) 2017-01-12 2018-07-12 Audi Ag Verfahren zum Betrieb eines Fahrerassistenzsystems eines Kraftfahrzeugs
DE112017006530T5 (de) 2017-01-24 2019-09-26 Ford Global Technologies, Llc Rückmeldung für ein autonomes fahrzeug

Also Published As

Publication number Publication date
DE102018133675A1 (de) 2020-07-02

Similar Documents

Publication Publication Date Title
DE102014218050A1 (de) Übergang von autonomer Fahrzeugsteuerung zu Fahrer-Steuerung
DE102019104974A1 (de) Verfahren sowie System zum Bestimmen eines Fahrmanövers
DE102017200180A1 (de) Verfahren und Testeinheit zur Bewegungsprognose von Verkehrsteilnehmern bei einer passiv betriebenen Fahrzeugfunktion
DE102018133670B4 (de) Verfahren und Vorrichtung zum Erzeugen von Steuersignalen zum Unterstützen von Insassen eines Fahrzeugs
DE102017101238A1 (de) Spracherkennungs-systeme und verfahren zum automatisierten fahren
DE102011100106A1 (de) System zur Diagnose einer Komponente in einem Fahrzeug
DE102017216321A1 (de) Verfahren und Vorrichtung zum Ermitteln einer Fahrfunktion für hochautomatisiertes Fahren für ein Fahrzeug
EP3674147B1 (de) Verfahren und vorrichtung zum erzeugen von steuersignalen zum unterstützen von insassen eines fahrzeugs
DE102021129697A1 (de) Maschinenlernverfahren und Maschinenlernsystem
WO2019206513A1 (de) Verfahren zur fahrmanöverassistenz eines fahrzeuges, vorrichtung, computerprogramm und computerprogrammprodukt
DE102018219290A1 (de) Verfahren zum Anlernen einer personalisierten Scheinwerfereinrichtung eines Kraftfahrzeugs
DE102018133675B4 (de) Verfahren und Vorrichtung zum Erzeugen von Steuersignalen zum Unterstützen von Insassen eines Fahrzeugs
EP4212980A1 (de) Fahrassistenzeinrichtung und verfahren zum durchführen einer wenigstens teilautomatischen fahrzeugfunktion in abhängigkeit von einer zu bewertenden fahrstrecke
DE102018133674A1 (de) Verfahren und Vorrichtung zum Erzeugen von Steuersignalen zum Unterstützen von Insassen eines Fahrzeugs
DE102017221634B4 (de) Kraftfahrzeug mit einem Fahrzeugführungssystem, Verfahren zum Betrieb eines Fahrzeugführungssystems und Computerprogramm
DE102021104738A1 (de) Verfahren zum Betrieb eines Kraftfahrzeugs
DE102022206603A1 (de) Verfahren zur Handdetektion, Computerprogramm, und Vorrichtung
DE102021130164A1 (de) Bereitstellen von auf ein Fahrziel bezogenen Parkplatzdaten beim Führen eines Kraftfahrzeugs
DE102019211121A1 (de) Verfahren zum Prüfen einer zulässigen Verwendung eines Rolling Chassis
DE102022004163A1 (de) Verfahren und System zur lmplementierung adaptiver ADAS-Funktionen auf der Basis von Fahrzeugfahrdaten
DE102022001383A1 (de) Fahrzeug und Verfahren zur Ausgabe von Empfehlungen an eine fahrzeugführende Person zur Übernahme einer Fahrzeugsteuerung
DE102021209623A1 (de) Verfahren zum infrastrukturgestützten Assistieren eines Kraftfahrzeugs
DE102020213198A1 (de) System und Verfahren zum Durchführen eines automatisierten Fahrmanövers mit einem ausgewählten Fahrstil, Fahrzeug, Computerprogrammprodukt und computerlesbares Speichermedium
DE102021113767A1 (de) Überwachungseinrichtung und Verfahren zum Überwachen eines Gesamtsystems aus mehreren unterschiedlichen Teilsystemen auf Fehler und Kraftfahrzeug
EP4363981A1 (de) Verfahren und vorrichtung zum rekonfigurieren einer systemarchitektur eines automatisiert fahrenden fahrzeugs

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division