WO2019105338A1 - 数据发送电路、数据接收电路以及装置 - Google Patents

数据发送电路、数据接收电路以及装置 Download PDF

Info

Publication number
WO2019105338A1
WO2019105338A1 PCT/CN2018/117673 CN2018117673W WO2019105338A1 WO 2019105338 A1 WO2019105338 A1 WO 2019105338A1 CN 2018117673 W CN2018117673 W CN 2018117673W WO 2019105338 A1 WO2019105338 A1 WO 2019105338A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
data
interface
capacitor
transformer
Prior art date
Application number
PCT/CN2018/117673
Other languages
English (en)
French (fr)
Inventor
李东声
Original Assignee
天地融科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711251098.8A external-priority patent/CN107979381B/zh
Priority claimed from CN201711249309.4A external-priority patent/CN107968665B/zh
Application filed by 天地融科技股份有限公司 filed Critical 天地融科技股份有限公司
Priority to JP2020523734A priority Critical patent/JP7117375B2/ja
Priority to CA3079768A priority patent/CA3079768C/en
Priority to US16/762,815 priority patent/US11043982B1/en
Publication of WO2019105338A1 publication Critical patent/WO2019105338A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/266Arrangements to supply power to external peripherals either directly from the computer or under computer control, e.g. supply of power through the communication port, computer controlled power-strips
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a data transmitting circuit, a data receiving circuit, and a device.
  • the position of the data transmitting device and the position of the data receiving device are usually separated by a certain distance, and whether the data transmitting circuit and the data receiving circuit are properly designed will affect the stability of the signal transmission. And quality.
  • the invention aims to provide a novel data transmitting circuit and data receiving circuit, which can ensure the stability and quality of signal transmission.
  • the main object of the present invention is to provide a data transmitting circuit.
  • Another object of the present invention is to provide a data receiving circuit.
  • Another object of the present invention is to provide a data transmitting apparatus.
  • Another object of the present invention is to provide a data receiving apparatus.
  • Another object of the present invention is to provide a data transmission device.
  • the present invention provides the following technical solutions:
  • a first aspect of the present invention provides a data transmission circuit, including: a first power supply interface for providing a first DC voltage, a second power supply interface for providing a second DC voltage, a transmission interface, a main control chip, a transformer, and a limit a flow module, a first capacitor and a switch module; a first end of the primary coil of the transformer is connected to the first power supply interface, and a second end of the primary coil of the transformer is respectively connected to the first of the current limiting module And a first end of the first capacitor, a first end of the secondary winding of the transformer is connected to the second power supply interface, and a second end of the secondary coil of the transformer is connected to the transmitting interface; The second end of the current limiting module and the second end of the first capacitor are both connected to an input end of the switch module; or the first end of the primary coil of the transformer is respectively connected to the current limiting module a first end and a first end of the first capacitor, a second end of the current limiting module and a second end of the first
  • the current limiting module includes a first resistor
  • the switch module includes a MOS transistor or a triode.
  • a second aspect of the present invention provides a data receiving circuit, including: a receiving interface, a first voltage dividing module, a buck module, a second voltage dividing module, a second capacitor, a filtering module, a comparator, and a main control chip; a first end of a voltage dividing module and a first end of the second capacitor are both connected to the receiving interface; a second end of the first voltage dividing module and a second end of the second capacitor are both connected to a first common connection end, the first common connection end is connected to an input end of the filter module, an output end of the filter module is connected to a negative input end of the comparator, and a ground end of the filter module is grounded;
  • the first common connection end is further connected to an input end of the buck module; the output end of the buck module is connected to a second common connection end, and the second common connection end is connected to the positive of the comparator An input end; the second common connection end is further connected to the first end of the second voltage dividing module; the second end of
  • the first voltage dividing module includes a second resistor
  • the buck module includes a diode
  • the second voltage dividing module includes a third resistor
  • the filtering module includes: a fourth resistor and a third capacitor; a first end of the fourth resistor is connected to an input end of the filtering module, and a second end of the fourth resistor Connected to an output end of the filter module; a first end of the third capacitor is connected to an output end of the filter module, and a second end of the third capacitor is connected to a ground end of the filter module.
  • a third aspect of the present invention provides a data transmitting apparatus comprising the data transmitting circuit provided by the above first aspect.
  • a fourth aspect of the present invention provides a data receiving apparatus comprising the data receiving circuit provided by the second aspect.
  • a fifth aspect of the present invention provides a data transmission apparatus comprising the data transmission circuit of the first aspect and the data reception circuit of the second aspect.
  • the sending interface and the receiving interface are the same interface.
  • the sending interface and the receiving interface are different interfaces.
  • the novel data transmitting circuit and the receiving circuit provided by the invention can ensure the stability and quality during signal transmission.
  • FIG. 1 is a schematic diagram of a data sending circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of another data sending circuit according to an embodiment of the present invention.
  • FIG. 3 is another schematic diagram of the data sending circuit shown in FIG. 1 according to an embodiment of the present invention.
  • FIG. 4 is another schematic diagram of the data sending circuit shown in FIG. 2 according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a data receiving circuit according to an embodiment of the present disclosure.
  • FIG. 6 is another schematic diagram of a data receiving circuit according to an embodiment of the present invention.
  • This embodiment provides a data sending circuit, as shown in FIG. 1 , including:
  • a first power supply interface for providing a first DC voltage
  • a second power supply interface for providing a second DC voltage
  • a transmission interface a main control chip
  • a transformer T1 a current limiting module
  • a first capacitor C1 a first capacitor C1
  • a switch module a switch module
  • a first end of the primary winding of the transformer T1 (one leg of T1) is connected to the first power supply interface, and a second end of the primary coil of the transformer T1 (two legs of T1) is respectively connected to the current limiting a first end of the module and a first end of the first capacitor C1, a first end of the secondary coil of the transformer T1 (3 feet of T1) is connected to the second power supply interface, the second of the transformer T1 a second end of the stage coil (four feet of T1) is connected to the transmitting interface;
  • the second end of the current limiting module and the second end of the first capacitor C1 are both connected to an input end of the switch module;
  • the output end of the switch module is connected to the GND, and the control end of the switch module is connected to the main control chip;
  • the main control chip is configured to send a control signal to a control end of the switch module when the data sending circuit sends a data signal to the sending interface;
  • the switch module is configured to turn on or off a circuit path between an input end and an output end of the switch module when receiving a control signal sent by the main control chip.
  • This embodiment provides another data sending circuit, as shown in FIG. 2, including:
  • a first power supply interface for providing a first DC voltage
  • a second power supply interface for providing a second DC voltage
  • a transmission interface a main control chip
  • a transformer T1 a current limiting module
  • a first capacitor C1 a first capacitor C1
  • a switch module a switch module
  • a first end of the primary winding of the transformer T1 (one leg of the T1) is respectively connected to the first end of the current limiting module and the first end of the first capacitor C1, and the second end of the current limiting module
  • a second end of the first capacitor C1 is connected to the first power supply interface
  • a second end of the primary coil of the transformer T1 (2 feet of T1) is connected to an input end of the switch module
  • a first end of the secondary winding of the transformer T1 (the 3 pin of the T1) is connected to the second power supply interface
  • a second end of the secondary winding of the transformer T1 (the 4 pin of the T1) is connected to the transmitting interface
  • the output end of the switch module is connected to the GND, and the control end of the switch module is connected to the main control chip;
  • the main control chip is configured to send a control signal to a control end of the switch module when the data sending circuit sends a data signal to the sending interface;
  • the switch module is configured to turn on or off a circuit path between an input end and an output end of the switch module when receiving a control signal sent by the main control chip.
  • the switch module when the switch module disconnects the circuit path between the input end and the output end of the switch module, no current flows through the primary coil of the transformer, and the signal sent by the transmitting interface is first.
  • a signal corresponding to the DC voltage when the switch module turns on the circuit path between the input end and the output end of the switch module, a circuit path is formed between the primary coil of the transformer and the ground level, and a current is generated in the primary coil of the transformer, and further A current is also generated in the secondary coil of the transformer.
  • the signal generated by the secondary coil of the transformer will be coupled with the signal generated by the second DC voltage to form a signal different from the first DC voltage (which is different from the first DC voltage).
  • the main control chip sends a corresponding control signal according to the sent data, controls the opening or closing of the switch module, and then alternately sends a signal corresponding to the first DC voltage at the transmitting interface and is different from the first DC voltage.
  • the signal that is, when the data is transmitted, the transmitting interface transmits the data by using an alternating current signal, for example, Transmitting the data current voltage corresponding to 1, the data signal is transmitted using a first DC voltage different from 0; or transmit data using a first direct current voltage signal corresponding to 0, using transmission data different from the first signal a DC voltage.
  • the novel data transmitting circuit provided by this embodiment can ensure the stability and quality of signal transmission.
  • the voltage corresponding to the first direct current voltage and the voltage different from the first direct current voltage are non-zero, that is, the voltage value of the data signal sent by the transmitting interface is non-zero, and
  • the efficiency of data transmission can be improved. Reduce the time it takes to send data.
  • a second power supply interface is connected to the data sending pin, and the second power supply interface may be VCC, that is, the data sending pin is implemented. It is connected to the power line, so that the power supply to the data transmitting device is realized on one line and the data is transmitted.
  • the signal generated by the secondary coil of the transformer will be coupled with the signal generated by the second DC voltage to form a signal different from the first DC voltage, which may be formed above the first DC voltage.
  • the signal may also be a signal lower than the first DC voltage, and may be set according to different requirements of the application, and is not limited herein.
  • the main control chip sends a control signal to a control end of the switch module; for example, in a default state, a high level and a low power are maintained at a control end of the switch module.
  • a signal in the middle to keep the switch module in the open state.
  • the circuit path is disconnected.
  • the transmitted control signal is another signal of high level and low level. Specifically, whether the high-level closed switch or the low-level closed switch can be used is determined according to the type of components used when the switch module is implemented, and is not limited herein.
  • the foregoing data sending circuit can be applied to medium-distance transmission, for example, an exemplary application scenario: an electronic device with a wireless card reader, the electronic device having the above The data transmitting circuit is a scene for reading card information at a certain distance; of course, it can also be applied to short-distance transmission, for example, the electronic device is provided with the above-mentioned data transmitting circuit and has a two-wire communication interface, and two electronic devices of this type The scenario of data transmission between the two-wire communication interface. There are no restrictions here.
  • the first power supply interface for providing the first DC voltage may specifically be a first power supply interface connected to the DC power supply VCC;
  • the second power supply interface of the DC voltage may specifically be a second power supply interface connected to the chip operating voltage VDD.
  • the voltage at the first power supply interface may be greater than the voltage at the second power supply interface, and the transmitted signal may be amplified to implement transmission of the medium and long distance signals.
  • the voltage at the first power supply interface is 12v
  • the voltage at the second power supply interface is 5v.
  • the voltage at the first power supply interface may also be equal to or less than the voltage at the second power supply interface.
  • FIG. 3 corresponds to the data transmitting circuit shown in FIG. 1.
  • the data transmitting circuit shown in FIG. 4 corresponds to the data transmitting circuit shown in FIG. 2.
  • the current limiting module includes a first resistor. R1 is used to limit current protection when the circuit forms a path to avoid short circuit.
  • the first resistor may include one resistor or a plurality of parallel resistors or a plurality of series resistors, which is not limited herein.
  • the switch module includes a MOS transistor Q1 or a triode.
  • the switch module uses an NMOS transistor, the drain D pole of the NMOS transistor serves as an input terminal of the switch module, and the source S pole of the NMOS transistor serves as an output terminal of the switch module, and the gate G of the NMOS transistor
  • the pole is used as the control end of the switch module; for example, when the switch module uses a PMOS transistor, the source S pole of the PMOS transistor serves as an input end of the switch module, and the drain D pole of the NMOS transistor serves as the switch module
  • the output terminal of the NMOS transistor serves as the control terminal of the switch module.
  • the switch module can also use other components that can realize the switching function, such as a three-stage tube, which is not limited herein.
  • a burr filter module such as a diode, is also coupled between the first end and the second end of the primary coil of the transformer for filtering glitch signals generated in the circuit.
  • the glitch filter module may not be provided when the current signal is stable in the circuit.
  • a filter module such as an inductor, a resistor, a diode, or an inductor, a resistor, and a diode, is connected between the first end and the second end of the secondary coil of the transformer. Three components are connected in parallel. Used to filter the glitch generated in the circuit. Of course, the glitch filter module may not be provided when the current signal is stable in the circuit.
  • the embodiment further provides a data receiving circuit, as shown in FIG. 3, comprising: a receiving interface, a first voltage dividing module, a buck module, a second voltage dividing module, a second capacitor C2, a filtering module, a comparator A1, and Master chip;
  • the first end of the first voltage dividing module and the first end of the second capacitor C2 are both connected to the receiving interface;
  • the second end of the first voltage dividing module and the second end of the second capacitor C2 are both connected to a first common connection end, and the first common connection end is connected to an input end of the filtering module,
  • the output end of the filter module is connected to the negative input terminal of the comparator A1, and the ground terminal of the filter module is grounded to GND;
  • the first common connection end is further connected to an input end of the buck module
  • the output end of the buck module is connected to the second common connection end, and the second common connection end is connected to the positive input end of the comparator A1;
  • the second common connection end is further connected to the first end of the second voltage dividing module
  • the second end of the second voltage dividing module is grounded to GND;
  • the comparator A1 is configured to compare the voltage of the positive input terminal with the voltage of the negative input terminal when the data receiving circuit receives the data signal through the receiving interface, and pass the comparator A1 The output terminal outputs a comparison result signal to the main control chip;
  • the main control chip is connected to an output end of the comparator A1 for receiving a comparison result signal outputted by the output end of the comparator A1.
  • the positive input end of the comparator receives the alternating current signal
  • the negative input end of the comparator is provided with the filtering module.
  • the AC signal is filtered to obtain a DC signal, and thus the comparator's negative input will receive a DC signal.
  • the comparison result signal output by the comparator is a high level, when the positive input terminal of the comparator receives When the voltage of the AC signal is less than the voltage of the DC signal received by the negative input terminal of the comparator, the comparison result signal output by the comparator is low level, thereby realizing the reception of the data signal.
  • the novel data receiving circuit provided by this embodiment can ensure the stability and quality of signal reception.
  • the first voltage dividing module includes a second resistor R2
  • the buck module includes a diode Q2
  • the second voltage dividing module includes a third Resistor R3.
  • the data receiving circuit provided in this embodiment can reduce the voltage of the received signal to the voltage range supported by the comparator through the first voltage dividing module, the buck module, and the second voltage dividing module when the receiving interface receives the signal.
  • the comparator can be compared normally to output a comparison result signal.
  • the filtering module includes: a fourth resistor R4 and a third capacitor C3; and the first end of the fourth resistor R4 is connected to the filtering module The second end of the fourth resistor R4 is connected to the output end of the filter module; the first end of the third capacitor C3 is connected to the output end of the filter module, and the third capacitor C3 The second end is connected to the ground of the filter module.
  • the filtering module can rectify and filter the AC signal to obtain a relatively smooth DC signal.
  • an anti-shake module is further connected to the positive input end and the output end of the comparator A1, and the anti-shake module includes a resistor R6 for preventing the circuit.
  • the anti-shake module can be set without the smooth circuit.
  • the embodiment further provides a data transmitting apparatus including the data transmitting circuit shown in FIG. 1 or FIG. 2 described above.
  • the data transmitting device may be an information reading device such as a card reader or an electronic device (such as a PC, a mobile phone, etc.) that needs to read information from an electronic signature tool.
  • the embodiment further provides a data receiving apparatus comprising the data receiving circuit shown in FIG. 3 or 4 above.
  • the data receiving device may be an electronic device carrying information, such as a smart card, an electronic signature tool, or the like.
  • the embodiment further provides a data transmission device comprising the data transmission circuit shown in FIG. 1 or FIG. 2 and the data reception circuit shown in FIG. 3 or 4 above.
  • the data transmission device may be, for example, a card reader and a smart card that cooperate with each other, and may be a host computer (e.g., a PC, a mobile phone, etc.) and an electronic signature tool.
  • the sending interface and the receiving interface are the same interface.
  • the data transmission device supports a two-wire communication interface, and one pin of the two-wire communication interface can serve as a sending interface or a receiving interface.
  • the interface, the other pin of the two-wire communication interface is grounded, so that data can be transmitted and received on the same communication interface.
  • the pin for implementing data transmission and reception is connected to the second power supply interface, and the second power supply interface may be VCC, that is, for data transmission and reception.
  • the pins are connected to the power line, so that both the power supply and the transmission and reception of data are realized on one line.
  • the sending interface and the receiving interface may also be different interfaces, and are specifically set according to application requirements.

Abstract

本发明提供一种数据发送电路、数据接收电路以及装置,在该数据发送电路的其中一种实现中,变压器的初级线圈的第一端连接至第一供电接口,变压器的初级线圈的第二端分别连接至限流模块的第一端和第一电容的第一端,变压器的次级线圈的第一端连接至第二供电接口,变压器的次级线圈的第二端连接至发送接口;限流模块的第二端和第一电容的第二端均连接至开关模块的输入端;开关模块的输出端接地,开关模块的控制端连接至主控芯片;主控芯片,用于在数据发送电路向发送接口发送数据信号时,向开关模块的控制端发送控制信号;开关模块,用于在接收到主控芯片发送的控制信号时,接通或断开开关模块的输入端和输出端之间的电路通路。

Description

数据发送电路、数据接收电路以及装置
相关申请的交叉引用
本申请要求天地融科技股份有限公司于2017年12月1日提交中国专利局、申请号为201711249309.4、发明名称为“数据发送电路、数据接收电路以及装置”的中国专利申请的优先权,以及天地融科技股份有限公司于2017年12月1日提交中国专利局、申请号为201711251098.8、发明名称为“数据发送电路以及装置”的中国专利申请的优先权。
技术领域
本发明涉及一种电子技术领域,尤其涉及一种数据发送电路、数据接收电路以及装置。
背景技术
目前,在实现中距离信号传输时,数据发送装置所处位置和数据接收装置所处位置之间通常相隔一定距离,数据发送电路和数据接收电路设计的是否合适,将会影响信号传输的稳定性以及质量。
发明内容
本发明旨在提供一种新型的数据发送电路和数据接收电路,可以保证信号传输的稳定性和质量。
本发明的主要目的在于提供一种数据发送电路。
本发明的另一目的在于提供一种数据接收电路。
本发明的另一目的在于提供一种数据发送装置。
本发明的另一目的在于提供一种数据接收装置。
本发明的另一目的在于提供一种数据传输装置。
为达到上述目的,本发明提供了以下技术方案:
本发明第一方面提供一种数据发送电路,包括:用于提供第一直流电压的第一供电接口、用于提供第二直流电压的第二供电接口、发送接口、主控芯片、变压器、限流模块、第一电容和开关模块;所述变压器的初级线圈的第一端连接至所述第一供电接口,所述变压器的初级线圈的第二端分别连接至所述限流模块的第一端和所述第一电容的第一端,所述变压器的次级线圈的第一端连接至所述第二供电接口,所述变压器的次级线圈的第二端连接至所述发送接口;所述限流模块的第二端和所述第一电容的第二端均连接至所述开关模块的输入端;或,所述变压器的初级线圈的第一端分别连接至所述限流模块的第一端和所述第一电容的第一端,所述限流模块的第二端和所述第一电容的第二端均连接至所述第一供电接口,所述变压器的初级线圈的第二端连接至所述开关模块的输入端,所述变压器的次级线圈的第一端连接至所述第二供电接口,所述变压器的次级线圈的第二端连接至所述发送接口;所述开关模块的输出端接地,所述开关模块的控制端连接至所述主控芯片;所述主控芯片,用于在所述数据发送电路向所述发送接口发送数据信号时,向所述开关模块的控制端发送控制信号;所述开关模块,用于在接收到所述主控芯片发送的所述控制信号时,接通或断开所述开关模块的输入端和输出端之间的电路通路。
在一个可选实施方式中,所述限流模块包括第一电阻,所述开关模块包括MOS管或三极管。
本发明第二方面提供一种数据接收电路,包括:接收接口、第一分压模块、降压模块、第二分压模块、第二电容、滤波模块、比较器和主控芯片;所述第一分压模块的第一端和所述第二电容的第一端均连接至所述接收接口;所述第一分压模块的第二端和所述第二电容的第二端均连接至第一共同连接端,所述第一共同连接端连接至所述滤波模块的输入端,所述滤波模块的输出端连接至所述比较器的负输入端,所述滤波模块的接地端接地;所述第一共同连接端还连接至所述降压模块的输入端;所述降压模块的输出端连接至第二共同连接端,所述第二共同连接端连接至所述比较器的正输入端;所述第二共同连接端还连接至所述第二分压模块的第一端;所述第二分压模块的第二端接地;所述比较器,用于在所述数据接收电路通过所述接收接口接收到数据信号时,比较所述正输入端的电压与所述负输入端的电压的大小,以及通过所述比较器的输出端输出比较结果信号至所述主控芯片;所述主控芯片连接至所述比较 器的输出端,用于接收所述比较器的输出端输出的比较结果信号。
在一个可选实施方式中,所述第一分压模块包括第二电阻,所述降压模块包括二极管,所述第二分压模块包括第三电阻。
在一个可选实施方式中,所述滤波模块包括:第四电阻和第三电容;所述第四电阻的第一端连接至所述滤波模块的输入端,所述第四电阻的第二端连接至所述滤波模块的输出端;所述第三电容的第一端连接至所述滤波模块的输出端,所述第三电容的第二端连接至所述滤波模块的接地端。
本发明第三方面提供一种数据发送装置,包括上述第一方面提供的的数据发送电路。
本发明第四方面提供一种数据接收装置,包括上述第二方面提供的所述的数据接收电路。
本发明第五方面提供一种数据传输装置,包括上述第一方面提供的所述的数据发送电路和上述第二方面提供的所述的数据接收电路。
在一个可选实施方式中,所述发送接口和所述接收接口为同一接口。
在一个可选实施方式中,所述发送接口和所述接收接口为不同接口。
通过上述技术方案,采用本发明提供的新型数据发送电路和接收电路,可以保证信号传输时的稳定性和质量。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的一种数据发送电路的一种示意图;
图2为本发明实施例提供的另一种数据发送电路的一种示意图;
图3为本发明实施例提供的图1示出的数据发送电路的另一种示意图;
图4为本发明实施例提供的图2示出的数据发送电路的另一种示意图;
图5为本发明实施例提供的一种数据接收电路的一种示意图;
图6为本发明实施例提供的一种数据接收电路的另一种示意图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
下面将结合附图对本发明实施例作进一步地详细描述。
本实施例提供一种数据发送电路,如图1所示,包括:
用于提供第一直流电压的第一供电接口、用于提供第二直流电压的第二供电接口、发送接口、主控芯片、变压器T1、限流模块、第一电容C1和开关模块;
所述变压器T1的初级线圈的第一端(T1的1脚)连接至所述第一供电接口,所述变压器T1的初级线圈的第二端(T1的2脚)分别连接至所述限流模块的第一端和所述第一电容C1的第一端,所述变压器T1的次级线圈的第一端(T1的3脚)连接至所述第二供电接口,所述变压器T1的次级线圈的第二端(T1的4脚)连接至所述发送接口;
所述限流模块的第二端和所述第一电容C1的第二端均连接至所述开关模块的输入端;
所述开关模块的输出端接地GND,所述开关模块的控制端连接至所述主控芯片;
所述主控芯片,用于在所述数据发送电路向所述发送接口发送数据信号时,向所述开关模块的控制端发送控制信号;
所述开关模块,用于在接收到所述主控芯片发送的控制信号时,接通或断开所述开关模块的输入端和输出端之间的电路通路。
本实施例提供另一种数据发送电路,如图2所示,包括:
用于提供第一直流电压的第一供电接口、用于提供第二直流电压的第二供电接口、发送接口、主控芯片、变压器T1、限流模块、第一电容C1和开关模块;
所述变压器T1的初级线圈的第一端(T1的1脚)分别连接至所述限流模块的第一端和所述第一电容C1的第一端,所述限流模块的第二端和所述第一电容C1的第二端均连接至所述第一供电接口,所 述变压器T1的初级线圈的第二端(T1的2脚)连接至所述开关模块的输入端,所述变压器T1的次级线圈的第一端(T1的3脚)连接至所述第二供电接口,所述变压器T1的次级线圈的第二端(T1的4脚)连接至所述发送接口;
所述开关模块的输出端接地GND,所述开关模块的控制端连接至所述主控芯片;
所述主控芯片,用于在所述数据发送电路向所述发送接口发送数据信号时,向所述开关模块的控制端发送控制信号;
所述开关模块,用于在接收到所述主控芯片发送的控制信号时,接通或断开所述开关模块的输入端和输出端之间的电路通路。
本实施例提供的数据发送电路中,当开关模块断开所述开关模块的输入端和输出端之间的电路通路时,变压器的初级线圈无电流通过,此时发送接口发出的信号为第一直流电压对应的信号,当开关模块接通所述开关模块的输入端和输出端之间的电路通路时,变压器的初级线圈至地级之间形成电路通路,变压器的初级线圈中产生电流,进而变压器的次级线圈中也产生电流,此时,变压器的次级线圈产生的信号将与第二直流电压产生的信号耦合,形成不同于第一直流电压的信号(该不同于第一直流电压的信号的电压值非零),主控芯片根据所发送的数据发送相应的控制信号,控制开关模块的开启或闭合,进而在发送接口交替发出第一直流电压对应的信号和不同于第一直流电压的信号,也就是在数据发送时,发送接口采用交流电信号发送数据,例如,采用第一直流电压对应的信号发送数据1,采用不同于第一直流电压的信号发送数据0;或者采用第一直流电压对应的信号发送数据0,采用不同于第一直流电压的信号发送数据1。本实施例提供的新型数据发送电路,可以保证信号发送时的稳定性和质量。
本实施例中,由于发送接口交替发出的第一直流电压对应的信号和不同于第一直流电压的信号的电压值均非零,亦即发送接口发出的数据信号的电压值均非零,与现有技术中在发送数据信号时通过将电压值拉低至零相比,一方面,通过发送出去的数据信号可以实现对数据接收装置的持续供电,另一方面,可以提高数据发送的效率,降低数据发送的耗时。
另外,在采用本实施例提供的数据发送电路发送数据时,用于实现数据发送引脚连接有第二供电接口,该第二供电接口可以为VCC,也就是,用于实现数据发送引脚是连接在电源线上,从而在一根线上既实现了对数据发送装置的供电同时也实现了数据的发送。
作为本实施例的一种可选实现方式,变压器的次级线圈产生的信号将与第二直流电压产生的信号耦合,形成不同于第一直流电压的信号,可以是形成高于第一直流电压的信号,也可以是低于第一直流电压的信号,可以根据应用的不同需求进行相应设置,在此不作限制。
作为本实施例的一种可选实现方式,所述主控芯片,向所述开关模块的控制端发送控制信号;例如,默认状态下,开关模块的控制端处会保持有高电平和低电平中的一种信号,以维持开关模块处于开启状态,此时电路通路断开,当需要闭合开关以接通电路通路时,发送的控制信号为高电平和低电平中的另一种信号,具体可以采用高电平闭合开关还是低电平闭合开关,根据开关模块实现时采用的元器件类型确定,在此不作限制。
作为本实施例的一种可选实现方式,上述数据发送电路,可以应用于中距离传输,例如,示例性的一种应用场景:设有无线读卡器的电子设备,该电子设备设有上述数据发送电路,相隔一定距离读取卡片信息的场景;当然,还可以应用于近距离传输中,例如,电子设备设有上述数据发送电路并具有两线通信接口,两个这种类型的电子设备之间该过两线通信接口进行数据传输的场景。在此不作限制。
作为本实施例的一种可选实现方式,如图2所示,用于提供第一直流电压的第一供电接口具体可以是连接至直流供电电源VCC的第一供电接口;用于提供第二直流电压的第二供电接口具体可以是连接至芯片工作电压VDD的第二供电接口。
作为本实施例的一种可选实现方式,第一供电接口处电压可以大于第二供电接口处电压,可以实现将发送的信号放大,从而实现中远距离信号的传输。例如,第一供电接口处电压为12v,第二供电接口处电压为5v。当然,根据实际应用的需要,第一供电接口处电压还可以等于或者小于第二供电接口处电压。
作为本实施例的一种可选实现方式,如图3或图4示出的数据发送电路的另一种示意图。其中,图3示出的数据发送电路与图1示出的数据发送电路相对应,图4示出的数据发送电路与图2示出的数据发送电路相对应所述限流模块包括第一电阻R1,用于在电路形成通路时起到限流保护,避免短路的作用。该第一电阻实现时,可以包括一个电阻或者多个并联电阻或多个串联电阻,在此不作限制。
作为本实施例的一种可选实现方式,如图3或图4示出的数据发送电路的另一种示意图。所述开关模块包括MOS管Q1或三极管。例如,开关模块采用NMOS管时,该NMOS管的漏极D极作为所述开关模块的输入端,该NMOS管的源极S极作为所述开关模块的输出端,该NMOS管的栅极G极作为所述开关模块的控制端;又如,开关模块采用PMOS管时,该PMOS管的源极S极作为所述开关模 块的输入端,该NMOS管的漏极D极作为所述开关模块的输出端,该NMOS管的栅极G极作为所述开关模块的控制端;又如,所述开关模块还可以采用三级管等其他可以实现开关功能的元器件,在此不做限定。
作为本实施例的一种可选实现方式,在所述变压器的初级线圈的第一端和第二端之间还连接有毛刺过滤模块,例如二极管,用于过滤电路中产生的毛刺信号。当然,在电路中电流信号稳定时,也可以不设置该毛刺过滤模块。
作为本实施例的一种可选实现方式,在所述变压器的次级线圈的第一端和第二端之间连接有滤波模块,例如,电感、电阻、二极管,或者电感、电阻和二极管这三种元器件并联等。用于过滤电路中产生的毛刺信号。当然,在电路中电流信号稳定时,也可以不设置该毛刺过滤模块。
本实施例还提供一种数据接收电路,如图3所示,包括:接收接口、第一分压模块、降压模块、第二分压模块、第二电容C2、滤波模块、比较器A1和主控芯片;
所述第一分压模块的第一端和所述第二电容C2的第一端均连接至所述接收接口;
所述第一分压模块的第二端和所述第二电容C2的第二端均连接至第一共同连接端,所述第一共同连接端连接至所述滤波模块的输入端,所述滤波模块的输出端连接至所述比较器A1的负输入端,所述滤波模块的接地端接地GND;
所述第一共同连接端还连接至所述降压模块的输入端;
所述降压模块的输出端连接至第二共同连接端,所述第二共同连接端连接至所述比较器A1的正输入端;
所述第二共同连接端还连接至所述第二分压模块的第一端;
所述第二分压模块的第二端接地GND;
所述比较器A1,用于在所述数据接收电路通过所述接收接口接收到数据信号时,比较所述正输入端的电压与所述负输入端的电压的大小,以及通过所述比较器A1的输出端输出比较结果信号至所述主控芯片;
所述主控芯片连接至所述比较器A1的输出端,用于接收所述比较器A1的输出端输出的比较结果信号。
本实施例提供的数据接收电路,在接收接口接收到的信号为交流电信号时,比较器的正输入端接收的也是交流电信号,而比较器的负输入端由于设有滤波模块,会对交流电信号过滤以得到直流信号,因而,比较器的负输入端将接收到直流信号。当比较器的正输入端接收到的交流信号的电压大于比较器的负输入端接收到直流信号的电压时,比较器输出的比较结果信号为高电平,当比较器的正输入端接收到的交流信号的电压小于比较器的负输入端接收到直流信号的电压时,比较器输出的比较结果信号为低电平,从而实现数据信号的接收。本实施例提供的新型数据接收电路,可以保证信号接收时的稳定性和质量。
作为本实施例的一种可选实现方式,如图4所示,所述第一分压模块包括第二电阻R2,所述降压模块包括二极管Q2,所述第二分压模块包括第三电阻R3。本实施例提供的数据接收电路,当接收接口接收到信号时,通过第一分压模块、降压模块和第二分压模块可以将接收到的信号的电压降到比较器支持的电压范围内,进而保证比较器可以正常进行比较,以输出比较结果信号。
作为本实施例的一种可选实现方式,如图4所示,所述滤波模块包括:第四电阻R4和第三电容C3;所述第四电阻R4的第一端连接至所述滤波模块的输入端,所述第四电阻R4的第二端连接至所述滤波模块的输出端;所述第三电容C3的第一端连接至所述滤波模块的输出端,所述第三电容C3的第二端连接至所述滤波模块的接地端。本实施例中,该滤波模块可以将交流电信号整流滤波后得到较为平滑的直流电信号。
作为本实施例的一种可选实现方式,如图4所示,在所述比较器A1的正输入端和输出端还连接有防抖模块,该防抖模块包括电阻R6,用于防止电路出现抖动,当然,在电路平稳的前提下,该防抖模块也可以不用设置。
本实施例还提供一种数据发送装置,包括上述图1或图2所示的数据发送电路。该数据发送装置可以为信息读取设备,例如读卡器、需从电子签名工具中读取信息的电子设备(如PC机、手机等)。
本实施例还提供一种数据接收装置,包括上述图3或4所示的数据接收电路。该数据接收装置可以为携带有信息的电子设备,例如智能卡、电子签名工具等。
本实施例还提供一种数据传输装置,包括上述图1或图2所示的数据发送电路以及上述图3或4所示的数据接收电路。该数据传输装置,例如,可以是相互配合的读卡器和智能卡,可以是上位机(例 如PC机、手机等)和电子签名工具。
作为本实施例的一种可选实现方式,发送接口和接收接口为同一接口,例如,数据传输装置支持两线通信接口,该两线通信接口中一个引脚即可以作为发送接口也可以作为接收接口,该两线通信接口中的另一个引脚接地,从而可以在同一个通信接口实现数据的发送和接收。
同时,在采用本实施例提供的数据传输装置中,用于实现数据发送和接收的引脚连接有第二供电接口,该第二供电接口可以为VCC,也就是,用于实现数据发送和接收的引脚是连接在电源线上,从而在一根线上既实现了供电同时也实现了数据的发送和接收。
当然,所述发送接口和所述接收接口也可以为不同接口,具体根据应用需求进行设定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。本发明的范围由所附权利要求及其等同限定。

Claims (10)

  1. 一种数据发送电路,其特征在于,包括:用于提供第一直流电压的第一供电接口、用于提供第二直流电压的第二供电接口、发送接口、主控芯片、变压器、限流模块、第一电容和开关模块;
    所述变压器的初级线圈的第一端连接至所述第一供电接口,所述变压器的初级线圈的第二端分别连接至所述限流模块的第一端和所述第一电容的第一端,所述变压器的次级线圈的第一端连接至所述第二供电接口,所述变压器的次级线圈的第二端连接至所述发送接口;所述限流模块的第二端和所述第一电容的第二端均连接至所述开关模块的输入端;或,所述变压器的初级线圈的第一端分别连接至所述限流模块的第一端和所述第一电容的第一端,所述限流模块的第二端和所述第一电容的第二端均连接至所述第一供电接口,所述变压器的初级线圈的第二端连接至所述开关模块的输入端,所述变压器的次级线圈的第一端连接至所述第二供电接口,所述变压器的次级线圈的第二端连接至所述发送接口;
    所述开关模块的输出端接地,所述开关模块的控制端连接至所述主控芯片;
    所述主控芯片,用于在所述数据发送电路向所述发送接口发送数据信号时,向所述开关模块的控制端发送控制信号;
    所述开关模块,用于在接收到所述主控芯片发送的所述控制信号时,接通或断开所述开关模块的输入端和输出端之间的电路通路。
  2. 根据权利要求1所述的数据发送电路,其特征在于,所述限流模块包括第一电阻,所述开关模块包括MOS管或三极管。
  3. 一种数据接收电路,其特征在于,包括:接收接口、第一分压模块、降压模块、第二分压模块、第二电容、滤波模块、比较器和主控芯片;
    所述第一分压模块的第一端和所述第二电容的第一端均连接至所述接收接口;
    所述第一分压模块的第二端和所述第二电容的第二端均连接至第一共同连接端,所述第一共同连接端连接至所述滤波模块的输入端,所述滤波模块的输出端连接至所述比较器的负输入端,所述滤波模块的接地端接地;
    所述第一共同连接端还连接至所述降压模块的输入端;
    所述降压模块的输出端连接至第二共同连接端,所述第二共同连接端连接至所述比较器的正输入端;
    所述第二共同连接端还连接至所述第二分压模块的第一端;
    所述第二分压模块的第二端接地;
    所述比较器,用于在所述数据接收电路通过所述接收接口接收到数据信号时,比较所述正输入端的电压与所述负输入端的电压的大小,以及通过所述比较器的输出端输出比较结果信号至所述主控芯片;
    所述主控芯片连接至所述比较器的输出端,用于接收所述比较器的输出端输出的比较结果信号。
  4. 根据权利要求3所述的数据接收电路,其特征在于,所述第一分压模块包括第二电阻,所述降压模块包括二极管,所述第二分压模块包括第三电阻。
  5. 根据权利要求3所述的数据接收电路,其特征在于,所述滤波模块包括:第四电阻和第三电容;
    所述第四电阻的第一端连接至所述滤波模块的输入端,所述第四电阻的第二端连接至所述滤波模块的输出端;
    所述第三电容的第一端连接至所述滤波模块的输出端,所述第三电容的第二端连接至所述滤波模块的接地端。
  6. 一种数据发送装置,其特征在于,包括如权利要求1或2所述的数据发送电路。
  7. 一种数据接收装置,其特征在于,包括如权利要求3-5任一项所述的数据接收电路。
  8. 一种数据传输装置,其特征在于,包括如权利要求1或2所述的数据发送电路和如权利要求3-5任一项所述的数据接收电路。
  9. 根据权利要求8所述的装置,其特征在于,所述发送接口和所述接收接口为同一接口。
  10. 根据权利要求8所述的装置,其特征在于,所述发送接口和所述接收接口为不同接口。
PCT/CN2018/117673 2017-12-01 2018-11-27 数据发送电路、数据接收电路以及装置 WO2019105338A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020523734A JP7117375B2 (ja) 2017-12-01 2018-11-27 データ送信回路、データ受信回路及び装置
CA3079768A CA3079768C (en) 2017-12-01 2018-11-27 Data transmitting circuit and apparatus, and data receiving circuit and apparatus
US16/762,815 US11043982B1 (en) 2017-12-01 2018-11-27 Data transmitting circuit, data receiving circuit and data transferring apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711251098.8A CN107979381B (zh) 2017-12-01 2017-12-01 数据发送电路以及装置
CN201711251098.8 2017-12-01
CN201711249309.4A CN107968665B (zh) 2017-12-01 2017-12-01 数据发送电路、数据接收电路以及装置
CN201711249309.4 2017-12-01

Publications (1)

Publication Number Publication Date
WO2019105338A1 true WO2019105338A1 (zh) 2019-06-06

Family

ID=66665416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117673 WO2019105338A1 (zh) 2017-12-01 2018-11-27 数据发送电路、数据接收电路以及装置

Country Status (4)

Country Link
US (1) US11043982B1 (zh)
JP (1) JP7117375B2 (zh)
CA (1) CA3079768C (zh)
WO (1) WO2019105338A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7359433B1 (en) * 1999-06-08 2008-04-15 Moeller Gmbh Data transmission system
CN103683530A (zh) * 2013-11-22 2014-03-26 矽力杰半导体技术(杭州)有限公司 一种数据传输方法及应用其的无线充电设备
CN103683437A (zh) * 2013-12-31 2014-03-26 小米科技有限责任公司 一种充电器及终端设备
CN105471569A (zh) * 2014-09-12 2016-04-06 株洲南车时代电气股份有限公司 多节点电流环全双工通信电路
CN106331563A (zh) * 2016-10-19 2017-01-11 苏州市纽克斯照明有限公司 一种数据信号和直流电源共线传输系统及方法
CN107968665A (zh) * 2017-12-01 2018-04-27 天地融科技股份有限公司 数据发送电路、数据接收电路以及装置
CN107979381A (zh) * 2017-12-01 2018-05-01 天地融科技股份有限公司 数据发送电路以及装置
CN108233957A (zh) * 2017-12-01 2018-06-29 天地融科技股份有限公司 数据发送方法
CN207588847U (zh) * 2017-12-01 2018-07-06 天地融科技股份有限公司 数据发送电路、数据接收电路以及装置
CN207720118U (zh) * 2017-12-01 2018-08-10 天地融科技股份有限公司 数据发送电路以及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478929A (en) * 1977-12-07 1979-06-23 Hitachi Ltd Driving system for core memory unit
JPS5641895U (zh) * 1979-09-10 1981-04-17
JPS605654A (ja) * 1983-06-23 1985-01-12 Matsushita Electric Ind Co Ltd 送受信装置
JPS6010822A (ja) * 1983-06-29 1985-01-21 Matsushita Electric Ind Co Ltd 送受信装置
US8169185B2 (en) * 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
WO2008000644A1 (en) * 2006-06-30 2008-01-03 F. Hoffmann-La Roche Ag New ruthenium complexes as catalysts for metahesis reactions
EP2352134B1 (en) * 2008-10-02 2018-09-05 Hochiki Corporation Transmission input circuit
CN202268797U (zh) * 2011-09-16 2012-06-06 天水七四九电子有限公司 一种改善隔离驱动电路性能的电路
US20150365003A1 (en) * 2014-06-12 2015-12-17 Laurence P. Sadwick Power Conversion System
EP3243195A4 (en) * 2015-01-06 2018-08-22 Cmoo Systems Itd. A method and apparatus for power extraction in a pre-existing ac wiring infrastructure
US20170063432A1 (en) * 2015-08-24 2017-03-02 Pabellon, Inc. Wireless data transfer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7359433B1 (en) * 1999-06-08 2008-04-15 Moeller Gmbh Data transmission system
CN103683530A (zh) * 2013-11-22 2014-03-26 矽力杰半导体技术(杭州)有限公司 一种数据传输方法及应用其的无线充电设备
CN103683437A (zh) * 2013-12-31 2014-03-26 小米科技有限责任公司 一种充电器及终端设备
CN105471569A (zh) * 2014-09-12 2016-04-06 株洲南车时代电气股份有限公司 多节点电流环全双工通信电路
CN106331563A (zh) * 2016-10-19 2017-01-11 苏州市纽克斯照明有限公司 一种数据信号和直流电源共线传输系统及方法
CN107968665A (zh) * 2017-12-01 2018-04-27 天地融科技股份有限公司 数据发送电路、数据接收电路以及装置
CN107979381A (zh) * 2017-12-01 2018-05-01 天地融科技股份有限公司 数据发送电路以及装置
CN108233957A (zh) * 2017-12-01 2018-06-29 天地融科技股份有限公司 数据发送方法
CN207588847U (zh) * 2017-12-01 2018-07-06 天地融科技股份有限公司 数据发送电路、数据接收电路以及装置
CN207720118U (zh) * 2017-12-01 2018-08-10 天地融科技股份有限公司 数据发送电路以及装置

Also Published As

Publication number Publication date
JP7117375B2 (ja) 2022-08-12
JP2021500823A (ja) 2021-01-07
CA3079768C (en) 2024-03-19
US11043982B1 (en) 2021-06-22
US20210184717A1 (en) 2021-06-17
CA3079768A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
US8565675B2 (en) Near field RF communicators and near field RF communications-enabled devices
US10211994B2 (en) Power supply system, power sourcing equipment, and Ethernet Y cable
CN205283520U (zh) 可重配置发射机和双模驱动器及其系统
US8639193B2 (en) Tri-state control for a line driver
WO2008100494A2 (en) Differential receiver with common-gate input stage
US9035677B2 (en) High-speed low power stacked transceiver
TW201345193A (zh) 單對乙太網供電方法
US10396834B2 (en) Apparatus and method for adaptive common mode noise decomposition and tuning
US9680513B2 (en) Signal transceiver
CN105323009B (zh) 用于信号边沿提升的方法和装置
WO2012065494A1 (zh) 一种实现串口隔离的方法和串口隔离电路
CN206877187U (zh) 电子设备
WO2019105338A1 (zh) 数据发送电路、数据接收电路以及装置
CN108233957B (zh) 数据发送方法
CN107979381B (zh) 数据发送电路以及装置
CN107968665B (zh) 数据发送电路、数据接收电路以及装置
CN207588847U (zh) 数据发送电路、数据接收电路以及装置
US9608633B1 (en) Interface circuit with configurable variable supply voltage for transmitting signals
CN207720118U (zh) 数据发送电路以及装置
US20190173429A1 (en) Low voltage feedforward current assist ethernet line driver
KR102228329B1 (ko) 소스 종단을 갖는 송신 장치
US10333504B2 (en) Low power clamp for electrical overstress protection
US10432034B2 (en) On-off apparatus and electronic device
US20140217825A1 (en) Voltage scale-down circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3079768

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020523734

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883041

Country of ref document: EP

Kind code of ref document: A1