WO2019105272A1 - 无线通信系统中的电子设备、方法和计算机可读存储介质 - Google Patents

无线通信系统中的电子设备、方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2019105272A1
WO2019105272A1 PCT/CN2018/116903 CN2018116903W WO2019105272A1 WO 2019105272 A1 WO2019105272 A1 WO 2019105272A1 CN 2018116903 W CN2018116903 W CN 2018116903W WO 2019105272 A1 WO2019105272 A1 WO 2019105272A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
information
transmitting device
transmitting
wireless communication
Prior art date
Application number
PCT/CN2018/116903
Other languages
English (en)
French (fr)
Inventor
盛彬
徐平平
呂本舜
张文博
Original Assignee
索尼公司
盛彬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 盛彬 filed Critical 索尼公司
Priority to CN201880048591.6A priority Critical patent/CN111095813B/zh
Priority to EP18883896.5A priority patent/EP3709530A4/en
Priority to US16/638,753 priority patent/US10911117B2/en
Priority to KR1020207011344A priority patent/KR20200092313A/ko
Priority to JP2020511207A priority patent/JP7230905B2/ja
Publication of WO2019105272A1 publication Critical patent/WO2019105272A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0623Auxiliary parameters, e.g. power control [PCB] or not acknowledged commands [NACK], used as feedback information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]

Definitions

  • Embodiments of the present invention generally relate to the field of wireless communications, and in particular, to an electronic device as a primary transmitting device and an electronic device as a secondary transmitting device in a wireless communication system, performed by an electronic device as a primary transmitting device in a wireless communication system A wireless communication method and a wireless communication method performed by an electronic device as a secondary transmitting device in a wireless communication system, and a computer readable storage medium.
  • Beamforming is a signal preprocessing technique based on an antenna array. Beamforming produces a directional beam by adjusting the weighting coefficients of each element in the antenna array, so that a significant array gain can be obtained. Therefore, beamforming technology has great advantages in terms of expanding coverage, improving edge throughput, and suppressing interference. In future communication systems, beamforming is an important technique that increases the utilization of spectrum and power.
  • a wireless communication system using beamforming there is a scenario in which multiple transmitting devices are required to simultaneously transmit beam signals to the receiving device. That is, different transmitting devices need to simultaneously transmit beam signals to the region where the receiving device is located, that is, between the beams. Synchronization.
  • Conventional synchronization in wireless communication systems involves only synchronization of the different transmitting devices in terms of time and frequency, and does not involve synchronization in terms of beams.
  • An object of the present disclosure is to provide an electronic device in a wireless communication system, a wireless communication method performed by an electronic device in a wireless communication system, and a computer readable storage medium, so that different transmitting devices simultaneously transmit to an area where the receiving device is located Beam signal.
  • an electronic device for use as a primary transmitting device in a wireless communication system, including processing circuitry configured to: determine a region for beamforming during a particular time; The area associated information is sent to one or more secondary transmitting devices in the wireless communication system for the one or more secondary transmitting devices to generate a beam signal during the particular time and to transmit to the area Generating a beam signal; and simultaneously generating a beam signal with the one or more secondary transmitting devices during the particular time and transmitting the beam signal to the region.
  • an electronic device for use as a secondary transmitting device in a wireless communication system including processing circuitry configured to receive from a primary transmitting device in the wireless communication system for use with a specific Information associated with a beamformed region during time; and generating a beam signal during the particular time and transmitting the beam signal to the region, wherein the primary transmitting device and the The electronic device simultaneously generates a beam signal and transmits the beam signal to the area.
  • a wireless communication method performed by an electronic device as a primary transmitting device in a wireless communication system, comprising: determining a region for beamforming during a specific time; The area associated information is sent to one or more secondary transmitting devices in the wireless communication system for the one or more secondary transmitting devices to generate a beam signal during the particular time and to transmit to the area Generating a beam signal; and simultaneously generating a beam signal with the one or more secondary transmitting devices during the particular time and transmitting the beam signal to the region.
  • a wireless communication method performed by an electronic device as a secondary transmitting device in a wireless communication system, comprising: receiving from a primary transmitting device in the wireless communication system for a specific time Information associated with the beamformed region during the period; and generating a beam signal during the particular time and transmitting the beam signal to the region, wherein the primary transmitting device and the electronic during the particular time The device simultaneously generates a beam signal and transmits the beam signal to the region.
  • a computer readable storage medium comprising executable computer instructions that, when executed by a computer, cause the computer to perform a wireless communication method in accordance with the present disclosure.
  • the primary transmitting device can determine an area for beamforming and will be associated with the area
  • the associated information is sent to the secondary transmitting device, so that the primary transmitting device and the secondary transmitting device simultaneously transmit beam signals to the region to achieve synchronization between the beams.
  • FIG. 1 is a schematic diagram showing a scenario according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing a structure of an electronic device serving as a main transmitting device, according to an embodiment of the present disclosure
  • FIG. 3 is a schematic view showing a scan area according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing simultaneous scanning of a scan area by a primary transmitting device and a secondary transmitting device, according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram illustrating determining power information of a beam scan, according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram illustrating determining direction information of a beam scan, according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram showing direction information of an antenna array according to an embodiment of the present disclosure.
  • FIG. 8 is a perspective schematic view showing an antenna array according to an embodiment of the present disclosure.
  • FIG. 9 is a signaling flowchart illustrating determining a primary transmitting device and a secondary transmitting device according to an embodiment of the present disclosure
  • FIG. 10(a) is a signaling flowchart illustrating determining a primary transmitting device and a secondary transmitting device according to another embodiment of the present disclosure
  • FIG. 10(b) is a signaling flowchart illustrating determining a primary transmitting device and a secondary transmitting device according to still another embodiment of the present disclosure
  • 11(a) is a signaling flow diagram illustrating positioning of a user equipment in accordance with an embodiment of the present disclosure
  • 11(b) is a signaling flow diagram showing positioning of a user equipment according to another embodiment of the present disclosure.
  • FIG. 12(a) is a schematic diagram showing positioning of a user equipment according to an embodiment of the present disclosure
  • FIG. 12(b) is a sequence diagram showing positioning of a user equipment according to an embodiment of the present disclosure.
  • FIG. 13 is a block diagram showing a structure of an electronic device serving as a secondary transmitting device according to an embodiment of the present disclosure
  • FIG. 14 is a block diagram showing a structure of an electronic device serving as a user device according to an embodiment of the present disclosure
  • 15 is a flowchart illustrating a wireless communication method performed by an electronic device serving as a primary transmitting device in a wireless communication system, according to an embodiment of the present disclosure
  • 16 is a flowchart illustrating a method of locating a user equipment in accordance with an embodiment of the present disclosure
  • FIG. 17 is a flowchart illustrating a method for handover of a user equipment, according to an embodiment of the present disclosure
  • FIG. 18 is a flowchart illustrating a method for Coordinated Multiple Points (CoMP) transmission according to an embodiment of the present disclosure
  • FIG. 19 is a flowchart illustrating a wireless communication method performed by an electronic device serving as a secondary transmitting device in a wireless communication system, according to an embodiment of the present disclosure
  • FIG. 20 is a block diagram showing a first example of a schematic configuration of an evolved Node B (eNB);
  • eNB evolved Node B
  • 21 is a block diagram showing a second example of a schematic configuration of an eNB
  • 22 is a block diagram showing an example of a schematic configuration of a smartphone
  • 23 is a block diagram showing an example of a schematic configuration of a car navigation device.
  • Example embodiments are provided so that this disclosure will be thorough, and the scope will be fully conveyed by those skilled in the art. Numerous specific details, such as specific components, devices, and methods, are set forth to provide a thorough understanding of the embodiments of the present disclosure. It will be apparent to those skilled in the art that ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; In some example embodiments, well-known processes, well-known structures, and well-known techniques are not described in detail.
  • FIG. 1 is a schematic diagram showing a scene according to an embodiment of the present disclosure.
  • the wireless communication system includes one primary transmitting device and two secondary transmitting devices and one user device.
  • both the primary transmitting device and the secondary transmitting device can provide services for the user equipment, and both the primary transmitting device and the secondary transmitting device can utilize beamforming technology, that is, form a beam with direction and transmit signals by using a beam, which is also referred to as hereinafter.
  • beamforming technology that is, form a beam with direction and transmit signals by using a beam, which is also referred to as hereinafter.
  • Such a process shapes the beam.
  • the primary transmitting device and the two secondary transmitting devices need to simultaneously transmit information to the user device, where the location of the user device may or may not be known to the transmitting device.
  • the wireless communication system may further include one or more than two secondary transmitting devices. That is to say, the wireless communication system includes one primary transmitting device and one or more secondary transmitting devices, that is, the wireless communication system includes a plurality of transmitting devices. Further, the wireless communication system can also include a plurality of user devices.
  • FIG. 1 only shows the case where the user equipment is a drone, and the user equipment may also be other types of user side equipment. That is, the present disclosure is applicable to a scenario in which a plurality of transmitting devices are required to simultaneously perform beam scanning to an area in which the user equipment is located.
  • embodiments of the present disclosure are preferably usable in high frequency scenes, such as NR (New Radio) systems.
  • the present disclosure proposes an electronic device in a wireless communication system, a wireless communication method performed by an electronic device in a wireless communication system, and a computer readable storage medium for implementing a scenario in which different transmitting devices are simultaneously provided to the receiving device.
  • the area transmits a beam signal.
  • the primary transmitting device and the secondary transmitting device may be any type of TRP (Transmit and Receive Port).
  • the TRP may have a transmitting and receiving function, for example, may receive information from the user equipment and the base station device, or may transmit information to the user equipment and the base station device.
  • the TRP can provide services to the user equipment and be controlled by the base station equipment. That is, the base station device provides a service to the user equipment through the TRP.
  • the transmitting device can also be any type of base station device.
  • the user equipment may be a mobile terminal such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device, or an in-vehicle terminal such as a car navigation device. ).
  • the user equipment may also be a terminal device having a flight function, such as a drone.
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • the wireless communication system can include a primary transmitting device and one or more secondary transmitting devices. Further, the wireless communication system can also include one or more user devices, each of which is serviced by one or more transmitting devices. As shown in FIG. 2, the electronic device 200 may include a determining unit 210, a communication unit 220, and a beamforming unit 230.
  • each unit of the electronic device 200 may be included in a processing circuit. It should be noted that the electronic device 200 may include one processing circuit or multiple processing circuits. Further, the processing circuitry can include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the determining unit 210 may determine an area for beamforming during a specific time.
  • the specific time period may indicate a period of time agreed by the primary transmitting device and the secondary transmitting device in advance.
  • the communication unit 220 may transmit information associated with the area determined by the determining unit 210 to one or more secondary transmitting devices in the wireless communication system for one or more secondary transmitting devices to be specific A beam signal is generated during the time and a beam signal is sent to the area.
  • the information associated with the area sent by the communication unit 220 to each of the one or more secondary transmitting devices may be the same or may not be the same.
  • the secondary transmitting device When the secondary transmitting device receives the information associated with the region, it may generate a beam signal and transmit a beam signal to the region during a specific time agreed with the primary transmitting device.
  • the beamforming unit 230 may simultaneously generate a beam signal and transmit a beam signal to the area with one or more secondary transmitting devices during a specific time. That is, during a certain time period, the primary transmitting device and one or more secondary transmitting devices both transmit beam signals to the same scanning region.
  • the electronic device 200 can determine an area for beamforming during a specific time, and can transmit information associated with the area to the secondary transmitting device, whereby the primary transmitting device And the secondary transmitting device can simultaneously send a beam signal to the scanning area. In this way, different transmitting devices can simultaneously transmit beam signals to one scanning area to achieve synchronization between the beams.
  • FIG. 3 is a schematic diagram showing a scan area according to an embodiment of the present disclosure.
  • A, B, and C represent three transmitting devices, one of which is a primary transmitting device and the other two are secondary transmitting devices. Since each of A, B, and C can be beamformed, that is, an antenna array is used to form a beam. Thus each of A, B, and C can include an antenna array.
  • each transmitting device is represented by a top view of the antenna array.
  • the gray area indicates the area determined by the primary transmitting device for beamforming
  • the letter O indicates the center of the area, which is located by each of the adjacent transmitting devices of the connections A, B, and C.
  • the interior of the triangle consisting of lines.
  • FIG. 3 shows a case where the area for beamforming is circular
  • the area may be a two-dimensional plane area of other shapes.
  • the area can also be a three-dimensional space area.
  • the area may be a three-dimensional space area.
  • the size of the area is determined by the primary transmitting device based on parameters such as the width of the beam, the location of the area, and the sensitivity of the transmitting device.
  • each of the transmitting devices A, B, and C simultaneously generates a beam signal and transmits a beam signal to an area for beamforming.
  • both the primary transmitting device and the secondary transmitting device start transmitting beam signals to the same scanning region at the beginning of a certain time period.
  • the specific time period may include one or more OFDM (Orthogonal Frequency Division Multiplexing) symbols, and in each OFDM symbol during a specific time, both the primary transmitting device and the secondary transmitting device are scanned in the same scan.
  • the area transmits a beam signal.
  • a particular time period may represent a time at which the scan parameters remain unchanged.
  • the primary transmitting device and the secondary transmitting device can perform beamforming synchronously, that is, "simultaneously" transmit a beam signal to one scanning region.
  • the behavior of the primary transmitting device and the secondary transmitting device to perform beamforming may be periodic. That is to say, in one beamforming period, the parameters of the beamforming of the primary transmitting device and the secondary transmitting device are unchanged, and the parameters for beamforming are different in different beamforming periods.
  • the period of the next beam may be shaped for a certain period of time.
  • the secondary transmitting device may send a beam signal to the region at the current beamforming period of the current time, and the primary transmitting device may also be at the current time.
  • the next beamforming cycle sends beam signals to the region for simultaneous purposes.
  • the beamforming period of the primary transmitting device and the secondary transmitting device may be slot level, that is, the beamforming period is one or more time slots; or may be symbol level, that is, beamforming The period is one or more OFDM symbols.
  • the beam signal transmitted by the primary transmitting device/secondary transmitting device may include data information or control information such as a reference signal, that is, the primary transmitting device/secondary transmitting device forms a beam pointing to the region and is The area transmits a beam signal.
  • the electronic device 200 can also include a computing unit 240 configured to calculate information associated with the region.
  • the information associated with the area may include information associated with the location of the area. That is to say, the secondary transmitting device can directly learn the location of the region by using the information, or can send the beam signal to the location where the region is located by using the information.
  • the information associated with the area includes location information of the area, and the location information is used by one or more secondary transmitting devices to determine direction information and power information of the beam.
  • the information associated with the area may include location information of the area such that each secondary transmitting device determines direction information and power information of the secondary transmitting device beam according to the location information of the area.
  • the information associated with the area sent by the primary transmitting device to each secondary transmitting device is the same, and then each secondary transmitting device determines the direction information and power information of the beam according to the information.
  • the information associated with the region includes direction information and power information for a beam of each of the one or more secondary transmitting devices.
  • the information associated with the area transmitted by the primary transmitting device to each secondary transmitting device is different. That is, the primary transmitting device may separately send direction information and power information of the beam for the secondary transmitting device to each secondary transmitting device.
  • the direction information of the beam may determine the direction of the beam, and the power information of the beam may determine the distance the beam transmits in the above direction. That is, both the direction information and the power information of the beam can determine the farthest region that the beam can reach.
  • the calculation unit 240 may calculate not only direction information and power information of a beam for each secondary transmission device, but also direction information and power information for a beam of the electronic device 200. The calculation process of the calculation unit 240 will be described in detail below.
  • the computing unit 240 may determine power information of a beam for each secondary transmitting device according to location information of each secondary transmitting device and location information of the region. Further, the computing unit 240 may determine power information for the beam of the electronic device 200 according to the location information of the electronic device 200 and the location information of the region.
  • the computing unit 240 may determine power information for a beam of the transmitting device according to a distance between the transmitting device and the region. That is, the calculation unit 240 may determine the power information of the beam for the secondary transmitting device according to the distance between the secondary transmitting device and the region, and determine the power information for the beam of the electronic device 200 according to the distance between the electronic device 200 and the region.
  • the region can be represented by the center of the region to calculate the distance from the center of the region.
  • the computing unit 240 may determine the method for the transmitting device according to any method known in the art (for example, a method of link budget).
  • the power information of the beam is not limited in this disclosure.
  • FIG. 5 is a schematic diagram illustrating determining power information of a beam, according to an embodiment of the present disclosure.
  • A is the electronic device 200 as the primary transmitting device, and B and C are secondary transmitting devices
  • A can determine the power information of the beam for the electronic device 200 according to the distance OA between the two points of O and A.
  • the power information for the beam of the secondary transmitting device B is determined according to the distance OB between the two points of O and B
  • the power information for the beam of the secondary transmitting device C is determined according to the distance OC between the two points of O and C.
  • the calculation unit 240 may determine the distance between the secondary transmitting device and the region according to the distance between the electronic device 200 and the region and the location information of the secondary transmitting device.
  • the electronic device 200 can calculate the distance between the electronic device 200 and the area.
  • the calculating unit 240 further needs to acquire the location of each secondary transmitting device, so that the distance between the electronic device 200 and each secondary transmitting device and the connection and connection between the connected electronic device 200 and the secondary transmitting device 200 can be calculated. The angle between the line and the area.
  • the computing unit 240 of the electronic device 200 may acquire the location of each secondary transmitting device by various methods, such as by way of reporting by the secondary transmitting device, or by means of notification by the base station device, etc., the present disclosure. There is no limit to this. Still taking FIG. 5 as an example, after the calculation unit 240 acquires the OA, the OB and the OC can be calculated according to the following formula:
  • the OA can be directly acquired by the primary transmitting device A, and when the primary transmitting device A acquires the location information of B and C, the values of AB and AC, and the angle values of ⁇ OAB and ⁇ OAC can be acquired.
  • the computing unit 240 may determine direction information of a beam for the transmitting device according to location information of the electronic device 200, one or more secondary transmitting devices and regions, and direction information of an antenna array of the transmitting device. That is, the calculation unit 240 may determine the direction information of the beam for the secondary transmitting device according to the location information of the electronic device 200, each secondary transmitting device and the region, and the direction information of the antenna array of the secondary transmitting device. Further, the calculating unit 240 may further determine direction information of the beam for the electronic device 200 according to the location information of the electronic device 200, each of the secondary transmitting devices and the region, and the direction information of the antenna array of the electronic device 200.
  • the computing unit 240 may determine an angle between a direction in which the connection of the transmitting device and the area is connected and a broad side direction of the antenna array of the transmitting device, which is also referred to as a transmitting device.
  • An angle of departure AoD, Angle of Departure
  • determining direction information of the beam for the transmitting device according to the angle After each transmitting device acquires the transmission angle, the direction information of the beam for the transmitting device can be determined.
  • FIG. 6 is a schematic diagram illustrating determining direction information of a beam, according to an embodiment of the present disclosure.
  • the dotted line near the antenna array of each transmitting device shows the wide side direction of the antenna array.
  • the wide side direction of the antenna array refers to a direction perpendicular to both axes of the antenna array, and the axis indicates the arrangement direction of the antenna array.
  • the angle between the wide-side direction of the primary transmitting device A and the OA is the transmitting angle of the transmitting device A
  • the angle between the wide-side direction of the secondary transmitting device B and the OB is the secondary transmitting device B.
  • the angle of incidence, the angle between the wide side direction of the secondary transmitting device C and the OC is the transmission angle of the secondary transmitting device C.
  • the computing unit 240 may determine an emission angle of each transmitting device.
  • the calculating unit 240 may calculate a beam scanning angle of each transmitting device according to location information of all transmitting devices and location information of the region, and according to a beam scanning angle of each transmitting device and an antenna of the transmitting device
  • the direction of the array determines the emission angle of the transmitting device.
  • the beam scanning angle of the transmitting device is defined as an angle between two directions: a direction connecting a connection line of the transmitting device and the area; and a direction connecting a connection line of the transmitting device and an adjacent one of the transmitting devices.
  • the angle ⁇ OAB between the direction of the OA and the direction of the AB is defined as the beam scanning angle of the transmitting device A.
  • the beam scanning angle of the ⁇ OBC is defined as the secondary transmitting device B
  • the beam scanning angle of the ⁇ OCA is defined as the secondary transmitting device C.
  • the angle value of the ⁇ OAB can be directly determined. Further, the calculation unit 240 may determine the angle values of ⁇ OBC and ⁇ OCA according to the following formula:
  • arccos represents an inverse cosine function
  • the values of BC and AC can be calculated after knowing the positions of B and C.
  • the values of OB, OC, and OA are already calculated when calculating the power information of the beam of the transmitting device.
  • the communication unit 220 may receive direction information of an antenna array of the secondary transmitting device from each of the one or more secondary transmitting devices.
  • the direction information of the antenna array may be represented by an angle between an axial direction of the antenna array of the transmitting device and a direction connecting a connection line between the transmitting device and an adjacent one of the transmitting devices.
  • FIG. 7 is a schematic diagram showing direction information of an antenna array according to an embodiment of the present disclosure. As shown in FIG. 7, the direction information of the antenna array of the primary transmitting device A is represented by the angle ? of the axis of the antenna array of the primary transmitting device A and the AB direction.
  • the direction information of the antenna array of the secondary transmitting device B can be represented by the angle ⁇ between the axis of the antenna array of the secondary transmitting device B and the BC direction, and the axis of the antenna array of the secondary transmitting device C and the AC direction are clipped.
  • the angle ⁇ represents the direction information of the antenna array of the secondary transmitting device C.
  • each of the secondary transmitting devices may report the direction information of the antenna array of the secondary transmitting device to the primary transmitting device.
  • the calculating unit 240 may determine the transmitting angle of the transmitting device according to the foregoing information.
  • FIG. 8 is a perspective schematic view showing an antenna array according to an embodiment of the present disclosure.
  • the antenna array is disposed on the antenna array board, and the antenna array has two mutually perpendicular axes, and a direction perpendicular to both of the axes is defined as a wide side direction.
  • the angle ⁇ between the axis and AB represents the direction information of the antenna array of the transmitting device A
  • the angle ⁇ OAB between OA and AB is defined as the beam scanning angle of the transmitting device A.
  • the angle between the wide side direction and the OA is defined as the transmission angle of the transmitting device A.
  • the transmission angle of the transmitting device A can be calculated according to the following formula:
  • the emission angle of A ⁇ /2 - ⁇ OAB- ⁇ .
  • computing unit 240 may also calculate the transmission angles of transmitting devices B and C as:
  • the emission angle of C ⁇ /2 - ⁇ OCA - ⁇ .
  • the calculating unit 240 may also calculate an angle between the AO, BO, and CO and the horizontal direction when calculating the direction information, so that the main transmitting device and The beam sent by the secondary transmitting device can reach the three-dimensional area.
  • the calculation unit 240 may not calculate the above-mentioned angle, and the beam shaping unit 230 may first scan a two-dimensional area on the ground and then scan a spatial area of the area when performing beamforming.
  • the calculation unit 240 may determine power information of a beam for each transmitting device according to a distance between the transmitting device and the region, and further may determine direction information of a beam for each transmitting device, for example, using each transmitting device The emission angle is used to indicate the direction information of the beam. It should be noted that the calculation of direction information and power information is described by taking two secondary transmission devices (ie, a connection between adjacent transmission devices may form a triangle) as described above, but for other numbers of secondary transmissions. In the case of a device, direction information and power information can be calculated in a similar manner. Accordingly, the communication unit 220 can transmit power information and direction information for the beam of each transmitting device to the corresponding transmitting device. Further, the calculation unit 240 may also transmit direction information and power information for the beam of the electronic device 200 to the beam shaping unit 230.
  • the beamforming unit 230 may transmit a beam signal to a region for beamforming during a specific time according to direction information and power information of the beam for the electronic device 200 calculated by the computing unit 240. That is, the beamforming unit 230 determines the direction of the transmitting beam based on the direction information of the beam, and determines the power of the transmitting beam according to the power information of the beam. Further, the beamforming unit 230 needs to transmit a beam signal according to the above parameters during a specific time agreed with the secondary transmitting device.
  • the computing unit 240 may transmit location information associated with the region to the secondary transmitting device.
  • the location information associated with the region may include location information for the region such that the secondary transmitting device may calculate direction information and power information for the beam.
  • the location information associated with the zone may also include direction information and power information for the beam of the secondary transmitting device. That is to say, the body that calculates the direction information and the power information of the beam for the secondary transmitting device may be the primary transmitting device or the secondary transmitting device. After the primary transmitting device and the secondary transmitting device acquire the direction information and the power information of the beam, the beam signals may be sent to the same region according to the respective parameters during a specific time, thereby implementing different transmitting devices to simultaneously transmit the beam signals to one region.
  • the primary transmitting device and the secondary transmitting device are for the user device. That is to say, the primary transmitting device and the secondary transmitting device of different user equipments may be different. Further, the primary transmitting device and the secondary transmitting device in the wireless communication system can be selected in a variety of ways. For example, the primary transmitting device and the secondary transmitting device of the user device are determined by a transmitting device that currently provides service to the user equipment. For example, the sending device that provides the service for the user equipment may determine that it is the primary transmitting device, and determine that one or more sending devices that are adjacent to the sending device are secondary sending devices. The specific selection principle may be determined according to actual conditions. The comparison is not limited. Of course, the primary transmitting device and the secondary transmitting device may also be determined by the interaction information by all the transmitting devices around the user equipment.
  • the electronic device 200 may further include a determining unit 250 for determining the electronic device 200 as a primary transmitting device, and may be from a plurality of transmitting devices in the wireless communication system. One or more transmitting devices are selected as secondary sending devices. Further, the communication unit 220 may send indication information to one or more secondary transmitting devices to indicate that one or more secondary transmitting devices are used as secondary transmitting devices.
  • the indication information may further include identification information of the primary transmitting device and the other secondary transmitting device, where the secondary transmitting device that receives the indication information acquires information of all the transmitting devices of the user device. Further, the indication information may further include parameters such as location information of the primary transmitting device and other secondary transmitting devices and/or direction information of the antenna array, for the secondary transmitting device to calculate direction information and power information of the beam for the secondary transmitting device.
  • the secondary transmitting device may transmit parameters such as location information of the secondary transmitting device and/or direction information of the antenna array to the electronic device 200 for calculation by the electronic device 200.
  • Direction information and power information for the beam of the secondary transmitting device may be transmitted to the electronic device 200.
  • the electronic device 200 may further transmit, to the user equipment, identification information of the electronic device 200 and one or more secondary transmitting devices, for the user device to know information of all of the transmitting devices, for example, may be used for Information from the electronic device 200 and one or more secondary transmitting devices is used for detection and the like.
  • FIG. 9 is a signaling flowchart illustrating determining a primary transmitting device and a secondary transmitting device, according to an embodiment of the present disclosure.
  • the transmitting device that provides the service for the user equipment determines that it is the primary transmitting device, and determines the secondary transmitting device.
  • the primary transmitting device determines two secondary transmitting devices: the secondary transmitting device 1 and Secondary transmission device 2.
  • the primary transmitting device transmits the indication information to the secondary transmitting device 1 and the secondary transmitting device 2, respectively, to indicate that it is used as the secondary transmitting device.
  • step S903 the secondary transmitting device 1 and the secondary transmitting device 2 respectively report parameters to the primary transmitting device, where the parameters may include, for example, location information and/or direction information of the antenna array.
  • the primary transmitting device may send the identification information of the primary transmitting device and the secondary transmitting device to the user equipment.
  • the primary transmitting device and the secondary transmitting device of the user device can be determined by a transmitting device around the user device, such as a transmitting device that currently serves the user device. Another way of determining the primary transmitting device and the secondary transmitting device will be described in detail below.
  • the primary transmitting device and the secondary transmitting device may also be determined by a base station device in the wireless communication system.
  • the base station device herein may be a base station device that currently provides services for the user equipment, such as a base station device of a cell in which the transmitting device that currently provides the user equipment is located.
  • the communication unit 220 of the electronic device 200 may receive indication information from the base station device in the wireless communication system, the indication information being used to instruct the electronic device 200 to function as a primary transmitting device. Further, the indication information may further include identification information of one or more secondary transmitting devices for the electronic device 200 to know all the secondary transmitting devices for subsequent calculation.
  • the electronic device 200 may further include an estimating unit 260 for estimating a link quality between the electronic device 200 and the user equipment.
  • the estimating unit 260 may estimate the link quality between the electronic device 200 and the user equipment in response to the reference signal information from the user equipment.
  • the user equipment may transmit a reference signal to a plurality of transmitting devices around it such that the plurality of transmitting devices each estimate the link quality between the user and the user equipment.
  • the communication unit 220 may also transmit link quality information to the base station device for the base station device to determine the primary transmitting device and the one or more secondary transmitting devices according to the link quality information.
  • all the transmitting devices around the user equipment can send link quality information to the base station device for the base station device to select the primary transmitting device and the secondary transmitting device.
  • the base station device may select the sending device with the best link quality as the primary transmitting device, and select other transmitting devices with better link quality as the secondary transmitting device.
  • the specific selection rule is not limited in this disclosure.
  • FIG. 10(a) is a signaling flowchart illustrating determining a primary transmitting device and a secondary transmitting device, according to another embodiment of the present disclosure.
  • the user equipment transmits a reference signal to all transmitting devices around it, assuming that the user equipment transmits a reference signal to the three transmitting devices.
  • the three transmitting devices measure the link quality between the transmitting device and the user equipment in response to the received reference signal.
  • the three transmitting devices respectively transmit measurement reports of link quality measurements to the base station device.
  • the base station device selects an appropriate primary transmitting device and secondary transmitting device according to the received measurement report.
  • step S1005 the base station device transmits indication information to the primary transmitting device and the secondary transmitting device to indicate which transmitting device is used as the primary transmitting device and which transmitting devices are used as the secondary transmitting device.
  • step S1006 the secondary transmitting device can report the relevant parameters to the primary transmitting device.
  • the primary transmitting device may transmit identification information of the primary transmitting device and the secondary transmitting device to the user equipment. As shown in FIG. 10(a), the base station device may determine the primary transmitting device and the secondary transmitting device according to the quality of the uplink between the user equipment and the transmitting device measured by the transmitting device.
  • FIG. 10(b) is a signaling flowchart illustrating determining a primary transmitting device and a secondary transmitting device, according to still another embodiment of the present disclosure.
  • step S1001 all transmitting devices around the user equipment transmit reference signals to the user equipment, and it is assumed here that the three transmitting devices transmit reference signals to the user equipment.
  • a beam signal cannot be transmitted to the user equipment because the transmitting device around the user equipment may not know the location of the user equipment.
  • the transmitting device can transmit a reference signal to the user equipment using a common control channel such as a broadcast channel.
  • step S1002 the user equipment measures downlink quality between the user equipment and the plurality of transmitting devices, respectively, in response to the received plurality of reference signals.
  • step S1003 the user equipment sends a measurement report of the link quality measurement to the base station device, and the measurement report may include a measurement result of the link quality for different transmitting devices.
  • step S1004 the base station device selects an appropriate primary transmitting device and secondary transmitting device according to the received measurement report.
  • step S1005 the base station device transmits indication information to the primary transmitting device and the secondary transmitting device to indicate which transmitting device is used as the primary transmitting device and which transmitting devices are used as the secondary transmitting device.
  • the secondary transmitting device can report the relevant parameters to the primary transmitting device.
  • the primary transmitting device may transmit identification information of the primary transmitting device and the secondary transmitting device to the user equipment.
  • the base station device can determine the primary transmitting device and the secondary transmitting device according to the quality of the downlink between the user equipment and the transmitting device measured by the transmitting device.
  • the primary transmitting device and the secondary transmitting device can be determined by the base station device for the user equipment.
  • the selected link quality of the primary transmitting device and the secondary transmitting device is relatively good, so that the signal quality received by the user equipment is also better, which is helpful for the subsequent beamforming process.
  • the electronic device 200 may assist in participating in various communication processes, attempting to locate a user device, handover of a user device, and CoMP transmission, etc., and the electronic device 200 for implementing these communication processes will be described in detail below. Configuration.
  • the primary transmitting device and the secondary transmitting device can simultaneously transmit beam signals to one region, positioning of the user device can be achieved.
  • the process of locating may be triggered by the user equipment or may be triggered by a base station device that provides service to the user equipment.
  • multiple secondary transmitting devices are required, that is, at least three transmitting devices are required to simultaneously transmit beam signals to one region.
  • the determining unit 210 of the electronic device 200 may determine the region for beamforming according to the probability that the user device appears at each location. And preferentially select a location where the probability of occurrence of the user equipment is higher as an area for beamforming. That is, the area used for beamforming is the location where the user equipment may appear.
  • the electronic device 200 may estimate the probability that the user equipment appears in each location according to historical information of the user equipment (for example, a location where the user frequently appears, a location when the user initially accesses the wireless communication system, etc.), and select a user equipment to appear.
  • the region with the highest probability and not yet scanned is used as the region for beamforming.
  • the beam signals can only be transmitted to the respective regions one by one until the location of the user equipment is determined, thus
  • the process can also be referred to as the "beam scan" process. That is, the determined area for beamforming may be referred to as a scanning area, and the period of beamforming may also be referred to as a scanning period.
  • the communication unit 220 of the electronic device 200 may transmit identification information of the electronic device 200 and one or more secondary transmitting devices to the user device for the user device pair from the electronic device 200 and one or more auxiliary devices.
  • the information of the sending device is detected. That is to say, regardless of which entity the primary transmitting device and the secondary transmitting device are determined by, the electronic device 200 as the primary transmitting device can transmit identification information of all transmitting devices to the user device. In this way, the user equipment can determine which of the transmitting device's signals need to be detected to achieve positioning.
  • the communication unit 220 may receive, from the user equipment, feedback information of a beam signal transmitted by the electronic device 200 and one or more secondary transmitting devices, and the feedback information may indicate whether the user equipment has received all the transmitting devices. Beam signal.
  • the user equipment may transmit the feedback information to the primary transmitting device only after receiving the beam signals from all of the transmitting devices. That is, the feedback information indicates that the user equipment has received beam signals from the electronic device 200 and all of the secondary transmitting devices.
  • the electronic device 200 can set a timer, and if the feedback information is not received before the timer expires, it can be determined that the user equipment is not located in the area of the current scan; if the electronic device 200 expires before the timer expires After receiving the feedback information, it can be determined that the user equipment is located in the area of the current scan.
  • the feedback information may include various parameters required for positioning.
  • the feedback information may include information such as the arrival time of the beam signals from the respective transmitting devices.
  • the disclosure may use any algorithm known in the art to locate the user equipment, and thus the positioning algorithm and the feedback information are not limited.
  • the user equipment may also send feedback information to the electronic device 200 during each beam scanning period, and the feedback information needs to indicate whether the user equipment has received beam signals from all transmitting devices in the last beam scanning period. For example, if the user equipment does not receive the beam signal from all the transmitting devices in the nth scanning period, the user equipment sends feedback information to the electronic device 200 in the n+1th scanning period to indicate that the user equipment does not receive the data in n scanning periods.
  • a beam signal from all the transmitting devices; the user equipment receives the beam signals from all the transmitting devices in the (n+1)th scanning period, and sends feedback information to the electronic device 200 in the n+2th scanning period, where the feedback information may include Position the various parameters required. In this way, the electronic device 200 can determine that the area scanned in the n+1th scan period is the location where the user is located, thereby achieving positioning.
  • the location of the user equipment may be calculated by the electronic device 200, and the above information may also be sent to provide services for the user equipment.
  • the base station device calculates the location of the user equipment by the base station device.
  • the electronic device 200 may further include a positioning unit 270, configured to locate the user equipment according to the feedback information from the user equipment.
  • the disclosure does not limit the positioning algorithm.
  • the determining unit 210 may also re-determine the region for beamforming during a particular time, and the communication unit 220 may also transmit information associated with the re-determined region to one or more secondary transmitting devices, and the beamforming unit 230 It is also possible to transmit a beam signal to the re-determined region during a certain time.
  • the determining unit 210 can still select the area where the user equipment has the highest probability of occurrence and has not been scanned as the area for beamforming, that is, the determining unit 210 can select the probability of occurrence of the user equipment from the areas that have not been scanned.
  • the highest area is used as the area for beamforming.
  • the electronic device 200 may repeatedly perform such a process until receiving feedback information from the user equipment indicating that the user equipment receives beam signals from all of the transmitting devices to achieve positioning.
  • FIG. 11(a) is a signaling flow diagram illustrating positioning of a user equipment in accordance with an embodiment of the present disclosure.
  • Figure 11 (a) shows the case where the wireless communication system includes one primary transmitting device and two secondary transmitting devices.
  • the user equipment may transmit the feedback information to the primary transmitting device only after receiving the beam signals from all the transmitting devices.
  • the primary transmitting device determines an area for beamforming.
  • the primary transmitting device transmits information associated with the area to the secondary transmitting device 1 and the secondary transmitting device 2.
  • step S1103 the primary transmitting device and the secondary transmitting device simultaneously transmit beam signals to the region.
  • step S1104 the primary transmitting device sets a timer and determines whether feedback information from the user equipment is received before the timer expires, and it is assumed here that the primary transmitting device does not receive the user equipment from the user equipment before the timer expires. Feedback.
  • step S1105 the primary transmitting device re-determines the area for beamforming.
  • step S1106 the primary transmitting device transmits information associated with the newly determined region to the secondary transmitting device 1 and the secondary transmitting device 2.
  • step S1107 the primary transmitting device and the secondary transmitting device simultaneously transmit beam signals to the re-determined region.
  • step S1108 it is assumed that the user equipment transmits feedback information to the primary transmitting device before the timer expires.
  • step S1109 the primary transmitting device sets a timer and determines that feedback information from the user equipment is received before the timer expires.
  • step S1110 the primary transmitting device may perform positioning calculation according to the received feedback information.
  • FIG. 11(b) is a signaling flow diagram illustrating positioning of a user equipment in accordance with another embodiment of the present disclosure.
  • Figure 11 (b) shows the case where the wireless communication system includes one primary transmitting device and two secondary transmitting devices.
  • the user equipment sends feedback information to the primary transmitting device during each beamforming period, and the feedback information needs to indicate whether the user equipment has received beam signals from all transmitting devices during the last beamforming period.
  • the primary transmitting device determines an area for beamforming.
  • step S1102 the primary transmitting device transmits information associated with the area to the secondary transmitting device 1 and the secondary transmitting device 2.
  • step S1103 the primary transmitting device and the secondary transmitting device simultaneously transmit beam signals to the region.
  • step S1104 the user equipment sends feedback information to the primary transmitting device, where the feedback information indicates that the user equipment did not receive beam signals from all transmitting devices during the last beamforming period.
  • step S1105 the primary transmitting device determines, based on the feedback information, that the user equipment has not received the beam signals from all of the transmitting devices.
  • step S1106 the primary transmitting device re-determines the area for beamforming.
  • step S1107 the primary transmitting device transmits information associated with the newly determined region to the secondary transmitting device 1 and the secondary transmitting device 2.
  • step S1108 the primary transmitting device and the secondary transmitting device simultaneously transmit beam signals to the re-determined region.
  • the user equipment sends feedback information to the primary transmitting device, where the feedback information indicates that the user equipment received beam signals from all transmitting devices during the last beamforming period.
  • step S1110 the primary transmitting device determines that the user equipment has received beam signals from all of the transmitting devices.
  • step S1111 the primary transmitting device may perform positioning calculation based on the received feedback information.
  • FIG. 12(a) is a schematic diagram showing positioning of a user equipment according to an embodiment of the present disclosure.
  • the primary transmitting device may prioritize multiple regions according to historical information of the user equipment, and sequentially set multiple regions to be used for beamforming according to the order of priority from high to low. Area.
  • the setting of the priority may be based on, for example, the probability of occurrence of the user equipment, the higher the probability of occurrence of the user equipment, the higher the priority of the area, and the like. It is assumed here that the priorities of the four areas O1, O2, O3, and O4 are sequentially lowered, and the user equipment that needs to be located is located in O2.
  • FIG. 12(b) is a sequence diagram showing positioning of a user equipment according to an embodiment of the present disclosure for the situation shown in FIG. 12(a).
  • the manner in which the user equipment reports feedback information in each beamforming period is employed.
  • the primary transmitting device determines O1 as the region for beamforming, and calculates related parameters of the region O1 (eg, location information of the region O1, for the primary transmitting device, and The direction information and power information of the beam of the secondary transmitting device, etc.). Further, in the nth cycle, the primary transmitting device transmits information associated with O1 to the secondary transmitting device.
  • the primary transmitting device and the secondary transmitting device can simultaneously generate beams to transmit beam signals to O1. Meanwhile, in the (n+1)th cycle, the primary transmitting device also needs to use the region O2 as the region for beamforming, and calculate the parameters associated with O2 and transmit to the secondary transmitting device.
  • the primary transmitting device and the secondary transmitting device can simultaneously generate beams to transmit beam signals to O2.
  • the user equipment may send feedback information to the primary transmitting device to indicate whether the user equipment receives the beam signals from all the transmitting devices in the (n+1)th cycle, where the feedback of the user equipment is assumed.
  • the information indicates that no beam signals from all transmitting devices were received in the n+1th cycle. That is, the user equipment is not located in O1.
  • the primary transmitting device also needs to use the region O3 as the region for beamforming, and calculate the parameters associated with O3 and transmit to the secondary transmitting device.
  • the primary transmitting device and the secondary transmitting device can simultaneously generate beams to transmit beam signals to O3.
  • the user equipment may send feedback information to the primary transmitting device to indicate whether the user equipment receives the beam signals from all the transmitting devices in the n+2th cycle, where the feedback of the user equipment is assumed here.
  • the information indicates that beam signals from all transmitting devices were received during the n+2th cycle. That is, the user equipment is located in O2.
  • the primary transmitting device is using the region O4 as the region for beamforming, and calculates the parameters associated with O4 and transmits to the secondary transmitting device. Since the primary transmitting device needs to receive the feedback information for a certain period of time, it may have been calculated. A part of the parameters associated with O4.
  • the primary computing device stops the calculation of the parameters and locates the user equipment according to the feedback parameters.
  • the electronic device 200 may sequentially determine different regions as regions for beamforming, and scan each region simultaneously with the secondary transmitting device until the location of the user device is determined.
  • the user equipment may be mobile, multiple transmitting devices simultaneously transmitting beams can achieve a more accurate positioning effect.
  • Switching is required when the user equipment moves from the coverage of one transmitting device (eg, TRP or base station, etc.) to the coverage of another transmitting device.
  • a "soft handover" method is usually adopted, that is, first connecting with a plurality of transmitting devices and then disconnecting from the transmitting device that originally provided the service.
  • the user In order to achieve "soft handover", the user needs to receive signals from multiple transmitting devices at the same time.
  • the user equipment needs to establish three sets of active set, adjacent set and candidate set, and maintain connections with the transmitting devices in these sets.
  • the effective set refers to a set formed by the transmitting device that is connected to the softswitch of the user equipment; the candidate set indicates that the current transmitting device is not in the active set and does not participate in the soft handover, but sufficient pilot strength indicates that the The transmitting device can be added to the active set; the neighbor set (monitor set) refers to the set of transmitting devices that are not currently in the candidate set, but are considered to be able to enter the candidate set very quickly according to some algorithm.
  • the mobile station continuously searches and measures the cells listed in the adjacent set, but during the measurement time, the pilot strength is not strong enough to be added to the candidate set.
  • signals are transmitted by analog/digital precoding to form a beam.
  • beam synchronization from a plurality of transmitting devices is required to be irradiated to the user equipment, and thus the electronic device 200 according to an embodiment of the present disclosure can be used for such a process.
  • the determination unit 210 may determine an area for beamforming during a particular time based on the location information of the user equipment. That is, the user equipment is located in the determined area.
  • the electronic device 200 or the base station device that provides the service for the user equipment may also determine that the transmitting device with the strongest received signal power (or the maximum signal-to-noise ratio) is effectively used as the primary transmitting device, and other transmitting devices that are effectively concentrated. And the candidate set and the sending device in the adjacent set are used as the secondary sending device.
  • the electronic device 200 when the electronic device 200 belongs to an active set, it transmits a control signal and a data signal to the area by using a beam; when the electronic device 200 belongs to a candidate set or a neighbor set, it transmits a control to the area by using a beam signal.
  • the secondary transmitting device when the secondary transmitting device belongs to the active set, it uses the beam to send a control signal and a data signal to the area; when the secondary transmitting device belongs to the candidate set or the adjacent set, it uses the beam to send a control signal to the area.
  • the user equipment may determine the active set, the candidate set, and the transmitting device in the adjacent set according to the received beam signals from all the transmitting devices. For example, if the control signal transmitted by the transmitting device in the candidate set is strong enough and the active set is not full, the transmitting device is moved into the active set; if the transmitting signal transmitted by the transmitting device in the adjacent set is sufficiently strong by using the beam, and the candidate set is If not, the transmitting device is moved into the candidate set; if the strength of the control signal transmitted by the transmitting device in the active set is weakened by the beam, and the candidate set is not full, the transmitting device is moved into the candidate set; if the transmitting device in the candidate set uses the beam The strength of the transmitted control signal becomes weak, and the adjacent set is not full, and the transmitting device is moved into the adjacent set.
  • the electronic device 200 may track the location of the user device, and when the electronic device 200 determines that the user device is moving, the above process may be re-executed according to the moved location. That is, the determining unit 210 may re-determine the area for beamforming during a specific time according to the position information of the moved user equipment, and the communication unit 220 may transmit information associated with the re-determined area to one or more auxiliary The transmitting device is configured to transmit, by the one or more secondary transmitting devices, a beam signal to the re-determined region during a particular time, and the beamforming unit 230 can transmit the beam signal to the re-determined region during the particular time. Similarly, the re-determined area of the determining unit 210 is also determined according to the moved position of the user equipment, and the subsequent process is similar to that described in the foregoing, and details are not described herein again.
  • the area for beamforming can be determined according to the position of the user, so that the electronic device 200 and the secondary transmitting device simultaneously transmit beam signals to one area to facilitate the user equipment.
  • the set related to the handover is determined more accurately, and the soft handover is implemented.
  • CoMP refers to a plurality of transmitting devices that provide services for one user device by cooperating with each other. These transmitting devices are geographically separated and wirelessly connected through associated interfaces or optical fibers. CoMP uses macro-diversity technology to improve the spectrum efficiency of the cell edge and expand the coverage of the cell.
  • the downlink CoMP can be divided into multi-point joint processing and multi-point coordinated scheduling according to different data processing methods. In the multipoint joint processing mode, multiple transmitting devices need to simultaneously transmit data to the user equipment.
  • signals are transmitted by analog/digital precoding to form a beam.
  • beam synchronization from a plurality of transmitting devices is required to be irradiated to the user equipment, and thus the electronic device 200 according to an embodiment of the present disclosure can be used for such a process.
  • the determining unit 210 may determine a scanning area for beamforming during a specific time based on the location information of the user equipment. That is, the user equipment is located in the determined area.
  • the electronic device 200 and the secondary transmitting device may transmit a data signal to the area using a beam.
  • the electronic device 200 can track the location of the user device, and when the electronic device 200 determines that the user device is moving, the above process can be re-executed according to the moved position. That is, the determining unit 210 may re-determine the area for beamforming during a specific time according to the position information of the moved user equipment, and the communication unit 220 may transmit information associated with the re-determined area to one or more auxiliary The transmitting device is configured to transmit, by the one or more secondary transmitting devices, a beam signal to the re-determined region during a particular time, and the beamforming unit 230 can transmit the beam signal to the re-determined region during the particular time. Similarly, the re-determined area of the determining unit 210 is also determined according to the moved position of the user equipment, and the subsequent process is similar to that described in the foregoing, and details are not described herein again.
  • the area for beamforming can be determined according to the location of the user, so that the electronic device 200 and the secondary transmitting device simultaneously transmit beam signals to one area, so that multiple The sending device can cooperate with one user device by cooperating with each other.
  • the primary transmitting device can determine an area for beamforming and transmit information associated with the area to the secondary transmitting device, thereby causing the primary transmitting device and the secondary transmitting device to simultaneously
  • the area transmits beam signals to achieve synchronization between beams. Further, such a process facilitates communication processes such as positioning, switching, and CoMP.
  • FIG. 13 is a block diagram showing a structure of an electronic device 1300 serving as a secondary transmitting device in a wireless communication system according to an embodiment of the present disclosure.
  • the wireless communication system can include a primary transmitting device and one or more secondary transmitting devices.
  • the electronic device 1300 can include a communication unit 1310 and a beamforming unit 1320.
  • each unit of the electronic device 1300 may be included in a processing circuit. It should be noted that the electronic device 1300 may include one processing circuit or multiple processing circuits. Further, the processing circuitry can include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • FIG. 2 and FIG. 13 respectively show a structural block diagram of the primary transmitting device and the secondary transmitting device
  • the electronic device 1300 shown in FIG. 13 and the electronic device 200 shown in FIG. 2 are both transmitting devices, and thus the structure is Consistent. That is to say, when the transmitting device is used as the primary transmitting device, it has the structure as shown in FIG. 2; when the transmitting device is used as the secondary transmitting device, it has the structure as shown in FIG. 13 (the secondary transmitting device also With deterministic unit and positioning unit, but not used).
  • the communication unit 1310 may receive information associated with a region for beamforming during a specific time from a primary transmitting device in a wireless communication system.
  • the primary transmitting device herein may be the electronic device 200 described above.
  • beamforming unit 1320 may transmit a beam signal to the region during a particular time.
  • the main transmitting device and the electronic device 1300 simultaneously transmit a beam signal to the scanning area during a specific time.
  • the information associated with the area received by the communication unit 1310 includes location information of the area.
  • the electronic device 1300 may further include a calculating unit 1330 configured to determine power information of a beam for the electronic device 1300 according to the location information of the electronic device 1300 and the location information of the region.
  • the manner in which the computing unit 1330 calculates the power information may be the same as the power information of the beam of the primary transmitting device and the secondary transmitting device calculated by the computing unit 240 of the electronic device 200, and details are not described herein again.
  • the calculating unit 1330 may further determine, according to the electronic device 200, other secondary transmitting devices in the wireless communication system, location information of the primary transmitting device and the region, and direction information of the antenna array of the electronic device 1300, for the electronic device 1300.
  • Direction information of the beam may be the same as the direction information of the beam of the primary transmission device and the secondary transmission device calculated by the calculation unit 240 of the electronic device 200, and details are not described herein again.
  • the information associated with the area received by the communication unit 1310 may further include direction information and power information for the beam of the electronic device 1300.
  • the communication unit 1310 may transmit direction information of the antenna array of the electronic device 1300 to the primary transmitting device for the primary transmitting device to calculate direction information and power information for the beam of the electronic device 1300.
  • the body that calculates the direction information and the power information for the beam of the secondary transmitting device may be the primary transmitting device or the secondary transmitting device itself.
  • the method in which the primary transmitting device and the secondary transmitting device calculate direction information and power information is the same.
  • the beamforming unit 1320 may calculate direction information and power information for the beam of the electronic device 1300 calculated according to the computing unit 1330, or according to the direction information of the beam for the electronic device 1300 received by the communication unit 1310. And power information that sends a beam signal to the area during a particular time. That is, the beamforming unit 1320 determines the direction of the transmitting beam based on the direction information of the beam, and determines the power of the transmitting beam based on the power information of the beam. Further, the beamforming unit 1320 needs to transmit a beam signal according to the above parameters during a specific time agreed with the primary transmitting device.
  • the period of the next beam may be shaped for a certain period of time.
  • the communication unit 1310 may receive indication information from the primary transmission device indicating that the electronic device 1300 functions as a secondary transmission device and includes identification information of the primary transmission device and other secondary transmission devices.
  • the primary transmitting device and the secondary transmitting device are determined by the transmitting device, which determines that it is the primary transmitting device and can select the transmitting device as the secondary transmitting device.
  • the communication unit 1310 may receive indication information from a base station device in the wireless communication system, the indication information indicating that the electronic device 1300 functions as a secondary transmission device and includes identification information of the primary transmission device and other secondary transmission devices.
  • the primary transmitting device and the secondary transmitting device are determined by the base station device.
  • the electronic device 1300 can include an estimating unit 1340 for estimating link quality between the electronic device 1300 and the user equipment. Further, the estimating unit 1340 can estimate the link quality between the electronic device 1300 and the user equipment in response to the reference signal from the user equipment. Further, the communication unit 1310 may further send the link quality information to the base station device, where the base station device determines the primary transmitting device and the one or more secondary transmitting devices according to the link quality information.
  • the electronic device 200 may serve as a primary transmitting device of a certain user device, and the electronic device 1300 may serve as a secondary transmitting device, and thus all embodiments related to the electronic device 200 described in the foregoing are applicable thereto.
  • FIG. 14 is a block diagram showing a structure of an electronic device 1400 serving as a user device in a wireless communication system according to an embodiment of the present disclosure.
  • the wireless communication system can include a primary transmitting device and one or more secondary transmitting devices.
  • the electronic device 1400 can include a communication unit 1410 and a generating unit 1420.
  • various units of the electronic device 1400 may be included in the processing circuit. It should be noted that the electronic device 1400 may include one processing circuit or multiple processing circuits. Further, the processing circuitry can include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the communication unit 1410 may receive a beam signal that is generated and transmitted simultaneously by the primary transmitting device and one or more secondary transmitting devices in the wireless communication system during a specific time.
  • the generating unit 1420 may generate feedback information for positioning the electronic device 1400 according to the received beam signal.
  • the electronic device 1400 can perform various processes after receiving the beam signal. For example, when it is required to locate the electronic device 1400, the generating unit 1420 can generate feedback information according to the received beam signal.
  • the electronic device 1400 may further include a demodulation unit 1430 and/or a switching unit 1440. When used for CoMP transmission, the demodulation unit 1430 can demodulate the received beam signal.
  • the switching unit 1440 may determine the active set, the candidate set, and the transmitting devices in the adjacent set according to the received beam signals.
  • the electronic device 200 may serve as a main transmitting device of the electronic device 1400, and the electronic device 1300 may serve as a secondary transmitting device of the electronic device 1400, thus all implementations of the electronic device 200 and the electronic device 1300 described in the foregoing The examples apply to this.
  • a wireless communication method performed by the electronic device 200 as a primary transmitting device in the wireless communication system will be described in detail next.
  • FIG. 15 is a flowchart illustrating a wireless communication method performed by the electronic device 200 as a primary transmitting device in a wireless communication system, according to an embodiment of the present disclosure.
  • step S1410 an area for beamforming during a specific time period is determined.
  • step S1420 information associated with the area is transmitted to one or more secondary transmitting devices in the wireless communication system for one or more secondary transmitting devices to generate a beam signal during a specific time and This area transmits a beam signal.
  • step S1430 a beam signal is simultaneously generated with one or more secondary transmitting devices during a specific time and a beam signal is transmitted to the region.
  • the information associated with the area includes location information of the area, and the location information is used by the one or more secondary transmitting devices to determine direction information and power information of the beam.
  • the information associated with the area includes direction information and power information for a beam of each of the one or more secondary transmission devices.
  • the method further comprises: determining power information of the beam for each secondary transmitting device according to the location information of each secondary transmitting device and the location information of the region.
  • the method further comprises: determining direction information of the beam for each secondary transmitting device according to the location information of the electronic device, the one or more secondary transmitting devices and the area, and the direction information of the antenna array of the one or more secondary transmitting devices.
  • the method further comprises: receiving, from each of the one or more secondary transmitting devices, direction information of the antenna array of the secondary transmitting device.
  • the method further comprises: determining direction information and power information for the beam of the electronic device; and generating the beam signal during the specific time based on the direction information and the power information.
  • the method further comprises: receiving, from the user equipment, feedback information of the beam signals transmitted by the electronic device and the one or more secondary transmitting devices; and locating the user equipment according to the feedback information.
  • the method further includes: setting a timer, where the feedback from the user equipment to the beam signal sent by the electronic device and the one or more secondary transmitting devices is not received, the following operation is performed: re-determining A region for beamforming during a particular time; transmitting information associated with the re-determined region to one or more secondary transmitting devices; and generating a beam signal during a particular time and transmitting the beam signal to the re-determined region.
  • the specific time period is the next beam shaping period.
  • the method further comprises: receiving indication information from the base station device in the wireless communication system, the indication information being used to indicate that the electronic device is used as the primary transmitting device and includes identification information of one or more secondary transmitting devices.
  • the method further comprises: estimating link quality between the electronic device and the user equipment; and transmitting link quality information to the base station device for determining, by the base station device, the primary transmitting device and one or more according to the link quality information Secondary sending device.
  • the method further comprises: transmitting, to the user equipment, identification information of the electronic device and the one or more secondary transmitting devices for detecting, by the user equipment, information from the electronic device and the one or more secondary transmitting devices.
  • the method further comprises determining a scan area for beamforming during a specific time based on the location information of the user equipment.
  • the method further comprises: determining that the user equipment is moving, performing the following operations: re-determining the area for beamforming during the specific time according to the position information of the moved user equipment; associating with the re-determined area Information is sent to one or more secondary transmitting devices for one or more secondary transmitting devices to generate beam signals during a particular time and to transmit beam signals to the re-determined regions; and to generate beam signals and to re-determine during certain times The area sends a beam signal.
  • the main body performing the above method may be the electronic device 200 according to an embodiment of the present disclosure, and thus all of the foregoing embodiments regarding the electronic device 200 are applicable thereto.
  • FIG. 16 is a flowchart illustrating a method of locating a user equipment in accordance with an embodiment of the present disclosure.
  • step S1510 the primary transmitting device in the wireless communication system determines an area for beamforming during a specific time period.
  • step S1520 the primary transmitting device transmits information associated with the area to one or more secondary transmitting devices.
  • the primary transmitting device and one or more secondary transmitting devices in the wireless communication system may be determined by any of the methods described in the foregoing, and the information associated with the region may also be any one described in the foregoing.
  • step S1530 the primary transmitting device and the secondary transmitting device simultaneously transmit beam signals to the region during a specific time.
  • the primary transmitting device may set a timer and determine whether or not feedback information from the user equipment is received before the timer expires in step S1540.
  • the user equipment if the user equipment is located in the area, information about the autonomous transmitting device and the secondary transmitting device is received, and the feedback information is generated according to the received information and sent to the primary transmitting device; if the user device is not located in the area, then The information of the autonomous transmitting device and the secondary transmitting device will be received, and the primary transmitting device will not receive the feedback information.
  • the primary transmitting device may locate the user equipment using the feedback information in step S1550.
  • the method of locating may include, but is not limited to, a TDOA algorithm.
  • the primary transmitting device does not receive the feedback information before the expiration of the timer in step S1540, it returns to step S1510. At this time, the primary transmitting device re-determines the scanning region for beamforming during a specific time, the re-determined region and the previously determined region are non-coincident regions, and the specific time period at this time may be assigned to the next beam. Shape cycle.
  • the primary transmitting device can change the area for beamforming (i.e., scanning area) until scanning to the user equipment.
  • the user equipment can receive the beam signals simultaneously transmitted by the primary transmitting device and the secondary transmitting device through the beam, so that various positioning methods can be used to locate the user equipment.
  • FIG. 17 is a flowchart illustrating a method for handover of a user equipment, in accordance with an embodiment of the present disclosure.
  • the primary transmitting device in the wireless communication system determines an area for beamforming during a specific time period.
  • the primary transmitting device can determine the area according to the location information of the user equipment, that is, the user equipment is located in the area for beamforming.
  • the primary transmitting device transmits information associated with the region to one or more secondary transmitting devices.
  • the primary transmitting device and one or more secondary transmitting devices in the wireless communication system may be determined by any of the methods described in the foregoing, and the information associated with the region may also be any one described in the foregoing. Kind of information.
  • step S1630 the primary transmitting device and the secondary transmitting device simultaneously transmit beam signals to the region during a specific time.
  • the user equipment since the user equipment is located in the area, the user equipment can receive beam signals from the autonomous transmitting device and the secondary transmitting device.
  • the user equipment may determine the handover related set according to the received beam signal, including but not limited to the active set, the candidate set, and the adjacent set.
  • step S1650 the user equipment can determine whether the signal power of the primary transmitting device is the strongest in the effective set.
  • step S1650 If it is determined in step S1650 that the signal power of the primary transmitting device is not the strongest in the effective set, then in step S1660, the transmitting device with the strongest active centralized power can be re-determined as the new primary transmitting device, and the other active transmitting devices are effectively concentrated. The device and the candidate set and the transmitting device in the adjacent set are determined as new secondary transmitting devices. If it is determined in step S1650 that the signal power of the primary transmitting device is still the strongest in the effective set, then in step S1670, the primary transmitting device is not changed, and the primary transmitting device tracks the location of the user device. Next, in step S1680, the primary transmitting device can determine whether the location of the user equipment has changed.
  • the primary transmitting device may re-determine the region for beamforming according to the changed position of the user device and re-execute the method according to the present disclosure from step S1610. If it is determined in step S1680 that the location of the user equipment has not changed, then returning to step S1670 to continue tracking the location of the user equipment until the location of the user equipment changes.
  • the primary transmitting device may determine an area for beamforming according to the location of the user equipment, and the primary transmitting device and the secondary transmitting device may simultaneously transmit beam signals to the user equipment by using the beam, so that the user equipment can utilize the signals. Identify the collections associated with the switch to assist in the execution of the switch process. In this way, the determined handover-related set is more accurate, so that the switching of the user equipment is more accurate and efficient.
  • FIG. 18 is a flowchart illustrating a method for CoMP transmission, in accordance with an embodiment of the present disclosure.
  • the primary transmitting device in the wireless communication system determines an area for beamforming during a specific time period.
  • the primary transmitting device can determine the area according to the location information of the user equipment, that is, the user equipment is located in the area.
  • the primary transmitting device transmits information associated with the area to one or more secondary transmitting devices.
  • the primary transmitting device and one or more secondary transmitting devices in the wireless communication system may be determined by any of the methods described in the foregoing, and the information associated with the region may also be any one described in the foregoing. Kind of information.
  • step S1730 the primary transmitting device and the secondary transmitting device simultaneously transmit beam signals to the region during a specific time.
  • the user equipment since the user equipment is located in the area, the user equipment can receive beam signals from the autonomous transmitting device and the secondary transmitting device.
  • step S1740 the user equipment demodulates the beam signals from the primary transmitting device and the secondary transmitting device, thereby implementing CoMP transmission.
  • step S1750 the primary transmitting device can track the location of the user equipment.
  • step S1760 the primary transmitting device can determine whether the location of the user equipment has changed.
  • the primary transmitting device may re-determine the region for beamforming according to the changed position of the user device and re-execute the method according to the present disclosure from step S1710. If it is determined in step S1760 that the location of the user equipment has not changed, then returning to step S1750 to continue tracking the location of the user equipment until the location of the user equipment changes.
  • the primary transmitting device may determine an area for beamforming according to the location of the user equipment, and the primary transmitting device and the secondary transmitting device may simultaneously transmit a beam signal to the user equipment by using the beam, thereby implementing CoMP transmission using the beam. .
  • the information received by the user equipment is sent by the primary sending device and the secondary sending device at the same time, and the information is not lost due to the change of the location of the user equipment.
  • 19 is a flowchart illustrating a wireless communication method performed by an electronic device 1300 as a secondary transmitting device in a wireless communication system, according to an embodiment of the present disclosure.
  • step S1810 information associated with a region for beamforming during a specific time period is received from a primary transmitting device in the wireless communication system.
  • step S1820 a beam signal is generated during a specific time and a beam signal is transmitted to the area.
  • the master transmitting device simultaneously generates a beam signal with the electronic device and transmits a beam signal to the region during a certain time.
  • the information associated with the area includes location information for the area.
  • the method further comprises: determining power information of the beam for the electronic device according to the location information of the electronic device and the location information of the region.
  • the method further comprises: determining direction information of the beam for the electronic device according to the electronic device, other secondary transmitting devices in the wireless communication system, the primary transmitting device, and location information of the area and direction information of the antenna array of the electronic device.
  • the information associated with the area includes direction information and power information for the beam of the electronic device.
  • the method further comprises: transmitting direction information of the antenna array of the electronic device to the primary transmitting device.
  • the specific time period is the next beam shaping period.
  • the method further comprises: receiving indication information from the primary transmitting device, the indication information indicating that the electronic device is used as a secondary transmitting device and includes identification information of the primary transmitting device and other secondary transmitting devices.
  • the method further comprises: receiving indication information from the base station device in the wireless communication system, the indication information indicating that the electronic device functions as a secondary transmission device and includes identification information of the primary transmission device and other secondary transmission devices.
  • the method further comprises: estimating link quality between the electronic device and the user equipment; and transmitting link quality information to the base station device for determining, by the base station device, the primary transmitting device and one or more according to the link quality information Secondary sending device.
  • the main body performing the above method may be the electronic device 1300 according to an embodiment of the present disclosure, and thus all of the foregoing embodiments regarding the electronic device 1300 are applicable thereto.
  • the primary transmitting device and the secondary transmitting device can be implemented as any type of TRP.
  • the TRP may have a transmitting and receiving function, for example, may receive information from the user equipment and the base station device, or may transmit information to the user equipment and the base station device.
  • the TRP can provide services to the user equipment and be controlled by the base station equipment.
  • the TRP may have a structure similar to that of the base station device described below, or may have only a structure related to transmitting and receiving information in the base station device.
  • the base station device can be implemented as any type of eNB, such as a macro eNB and a small eNB, and can also be implemented as any type of gNB (base station in a 5G system).
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • RRHs remote wireless headends
  • the user device can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router and a digital camera device) or an in-vehicle terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the user equipments described above.
  • the eNB 1900 includes one or more antennas 1910 and a base station device 1920.
  • the base station device 1920 and each antenna 1910 may be connected to each other via an RF cable.
  • Each of the antennas 1910 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station apparatus 1920 to transmit and receive wireless signals.
  • eNB 1900 can include multiple antennas 1910.
  • multiple antennas 1910 can be compatible with multiple frequency bands used by eNB 1900.
  • FIG. 20 illustrates an example in which the eNB 1900 includes multiple antennas 1910, the eNB 1900 may also include a single antenna 1910.
  • the base station device 1920 includes a controller 1921, a memory 1922, a network interface 1923, and a wireless communication interface 1925.
  • the controller 1921 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1920. For example, controller 1921 generates data packets based on data in signals processed by wireless communication interface 1925 and communicates the generated packets via network interface 1923. The controller 1921 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 1921 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1922 includes a RAM and a ROM, and stores programs executed by the controller 1921 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 1923 is a communication interface for connecting base station device 1920 to core network 1924. Controller 1921 can communicate with a core network node or another eNB via network interface 1923. In this case, the eNB 1900 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 1923 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 1923 is a wireless communication interface, network interface 1923 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 1925.
  • Wireless communication interface 1925 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of eNB 1900 via antenna 1910.
  • Wireless communication interface 1925 may typically include, for example, a baseband (BB) processor 1926 and RF circuitry 1927.
  • the BB processor 1926 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 1926 may have some or all of the logic functions described above.
  • the BB processor 1926 can be a memory that stores communication control programs, or a module that includes a processor and associated circuitry configured to execute the programs.
  • the update program can cause the functionality of the BB processor 1926 to change.
  • the module may be a card or blade that is inserted into a slot of the base station device 1920. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1927 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1910.
  • the wireless communication interface 1925 can include a plurality of BB processors 1926.
  • multiple BB processors 1926 can be compatible with multiple frequency bands used by eNB 1900.
  • the wireless communication interface 1925 can include a plurality of RF circuits 1927.
  • multiple RF circuits 1927 can be compatible with multiple antenna elements.
  • FIG. 20 illustrates an example in which the wireless communication interface 1925 includes a plurality of BB processors 1926 and a plurality of RF circuits 1927, the wireless communication interface 1925 may also include a single BB processor 1926 or a single RF circuit 1927.
  • the eNB 2030 includes one or more antennas 2040, a base station device 2050, and an RRH 2060.
  • the RRH 2060 and each antenna 2040 may be connected to each other via an RF cable.
  • the base station device 2050 and the RRH 2060 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 2040 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 2060 to transmit and receive wireless signals.
  • the eNB 2030 can include multiple antennas 2040.
  • multiple antennas 2040 can be compatible with multiple frequency bands used by eNB 2030.
  • FIG. 21 illustrates an example in which the eNB 2030 includes multiple antennas 2040, the eNB 2030 may also include a single antenna 2040.
  • the base station device 2050 includes a controller 2051, a memory 2052, a network interface 2053, a wireless communication interface 2055, and a connection interface 2057.
  • the controller 2051, the memory 2052, and the network interface 2053 are the same as the controller 1921, the memory 1922, and the network interface 1923 described with reference to FIG.
  • the wireless communication interface 2055 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication to terminals located in sectors corresponding to the RRH 2060 via the RRH 2060 and the antenna 2040.
  • Wireless communication interface 2055 can typically include, for example, BB processor 2056.
  • the BB processor 2056 is identical to the BB processor 1926 described with reference to FIG. 20 except that the BB processor 2056 is connected to the RF circuit 2064 of the RRH 2060 via the connection interface 2057.
  • the wireless communication interface 2055 can include a plurality of BB processors 2056.
  • multiple BB processors 2056 can be compatible with multiple frequency bands used by eNB 2030.
  • FIG. 20 illustrates an example in which the wireless communication interface 2055 includes a plurality of BB processors 2056, the wireless communication interface 2055 may also include a single BB processor 2056.
  • connection interface 2057 is an interface for connecting the base station device 2050 (wireless communication interface 2055) to the RRH 2060.
  • the connection interface 2057 may also be a communication module for connecting the base station device 2050 (wireless communication interface 2055) to the communication in the above-described high speed line of the RRH 2060.
  • the RRH 2060 includes a connection interface 2061 and a wireless communication interface 2063.
  • connection interface 2061 is an interface for connecting the RRH 2060 (wireless communication interface 2063) to the base station device 2050.
  • the connection interface 2061 can also be a communication module for communication in the above high speed line.
  • the wireless communication interface 2063 transmits and receives wireless signals via the antenna 2040.
  • Wireless communication interface 2063 may typically include, for example, RF circuitry 2064.
  • the RF circuit 2064 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2040.
  • the wireless communication interface 2063 can include a plurality of RF circuits 2064.
  • multiple RF circuits 2064 can support multiple antenna elements.
  • FIG. 21 illustrates an example in which the wireless communication interface 2063 includes a plurality of RF circuits 2064, the wireless communication interface 2063 may also include a single RF circuit 2064.
  • FIG. 22 is a block diagram showing an example of a schematic configuration of a smartphone 2200 to which the technology of the present disclosure can be applied.
  • the smart phone 2200 includes a processor 2201, a memory 2202, a storage device 2203, an external connection interface 2204, an imaging device 2206, a sensor 2207, a microphone 2208, an input device 2209, a display device 2210, a speaker 2211, a wireless communication interface 2212, and one or more An antenna switch 2215, one or more antennas 2216, a bus 2217, a battery 2218, and an auxiliary controller 2219.
  • the processor 2201 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smartphone 2200.
  • the memory 2202 includes a RAM and a ROM, and stores data and programs executed by the processor 2201.
  • the storage device 2203 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2204 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 2200.
  • USB universal serial bus
  • the imaging device 2206 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 2207 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 2208 converts the sound input to the smartphone 2200 into an audio signal.
  • the input device 2209 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 2210, and receives an operation or information input from a user.
  • the display device 2210 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2200.
  • the speaker 2211 converts the audio signal output from the smartphone 2200 into a sound.
  • the wireless communication interface 2212 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 2212 may generally include, for example, BB processor 2213 and RF circuitry 2214.
  • the BB processor 2213 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 2214 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2216.
  • the wireless communication interface 2212 can be a chip module on which the BB processor 2213 and the RF circuit 2214 are integrated. As shown in FIG.
  • the wireless communication interface 2212 can include a plurality of BB processors 2213 and a plurality of RF circuits 2214.
  • FIG. 22 illustrates an example in which the wireless communication interface 2212 includes a plurality of BB processors 2213 and a plurality of RF circuits 2214, the wireless communication interface 2212 may also include a single BB processor 2213 or a single RF circuit 2214.
  • wireless communication interface 2212 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 2212 can include a BB processor 2213 and RF circuitry 2214 for each wireless communication scheme.
  • Each of the antenna switches 2215 switches the connection destination of the antenna 2216 between a plurality of circuits included in the wireless communication interface 2212, such as circuits for different wireless communication schemes.
  • Each of the antennas 2216 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 2212 to transmit and receive wireless signals.
  • the smartphone 2200 can include a plurality of antennas 2216.
  • FIG. 22 shows an example in which the smartphone 2200 includes a plurality of antennas 2216, the smartphone 2200 may also include a single antenna 2216.
  • smart phone 2200 can include an antenna 2216 for each wireless communication scheme.
  • the antenna switch 2215 can be omitted from the configuration of the smartphone 2200.
  • the bus 2217 has a processor 2201, a memory 2202, a storage device 2203, an external connection interface 2204, an imaging device 2206, a sensor 2207, a microphone 2208, an input device 2209, a display device 2210, a speaker 2211, a wireless communication interface 2212, and an auxiliary controller 2219. connection.
  • Battery 2218 provides power to various blocks of smart phone 2200 shown in FIG. 22 via a feeder, which is partially shown as a dashed line in the figure.
  • the secondary controller 2219 operates the minimum required function of the smartphone 2200, for example, in a sleep mode.
  • the generating unit 1420, the demodulating unit 1430, and the switching unit 1440 described by using FIG. 14 can be implemented by the processor 2201 or the auxiliary controller 2219. At least a portion of the functionality can also be implemented by processor 2201 or secondary controller 2219.
  • the processor 2201 or the auxiliary controller 2219 may perform a function of generating feedback information, demodulating data, and determining a set related to handover by executing an instruction stored in the memory 2202 or the storage device 2203.
  • the car navigation device 2320 includes a processor 2321, a memory 2322, a global positioning system (GPS) module 2324, a sensor 2325, a data interface 2326, a content player 2327, a storage medium interface 2328, an input device 2329, a display device 2330, a speaker 2331, and a wireless device.
  • the processor 2321 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 2320.
  • the memory 2322 includes a RAM and a ROM, and stores data and programs executed by the processor 2321.
  • the GPS module 2324 measures the position (such as latitude, longitude, and altitude) of the car navigation device 2320 using GPS signals received from GPS satellites.
  • Sensor 2325 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 2326 is connected to, for example, the in-vehicle network 2341 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 2327 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 2328.
  • the input device 2329 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 2330, and receives an operation or information input from a user.
  • the display device 2330 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 2331 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2333 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 2333 may typically include, for example, BB processor 2334 and RF circuitry 2335.
  • the BB processor 2334 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 2335 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2337.
  • the wireless communication interface 2333 can also be a chip module on which the BB processor 2334 and the RF circuit 2335 are integrated. As shown in FIG.
  • the wireless communication interface 2333 can include a plurality of BB processors 2334 and a plurality of RF circuits 2335.
  • FIG. 23 illustrates an example in which the wireless communication interface 2333 includes a plurality of BB processors 2334 and a plurality of RF circuits 2335, the wireless communication interface 2333 may also include a single BB processor 2334 or a single RF circuit 2335.
  • the wireless communication interface 2333 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
  • the wireless communication interface 2333 may include a BB processor 2334 and an RF circuit 2335 for each wireless communication scheme.
  • Each of the antenna switches 2336 switches the connection destination of the antenna 2337 between a plurality of circuits included in the wireless communication interface 2333, such as circuits for different wireless communication schemes.
  • Each of the antennas 2337 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 2333 to transmit and receive wireless signals.
  • car navigation device 2320 can include a plurality of antennas 2337.
  • FIG. 23 shows an example in which the car navigation device 2320 includes a plurality of antennas 2337, the car navigation device 2320 may also include a single antenna 2337.
  • car navigation device 2320 can include an antenna 2537 for each wireless communication scheme.
  • the antenna switch 2336 can be omitted from the configuration of the car navigation device 2320.
  • Battery 2338 provides power to various blocks of car navigation device 2320 shown in FIG. 23 via a feeder, which is partially shown as a dashed line in the figure. Battery 2338 accumulates power supplied from the vehicle.
  • the generating unit 1420, the demodulating unit 1430, and the switching unit 1440 described by using Fig. 14 can be realized by the processor 2321. At least a portion of the functionality can also be implemented by the processor 2321.
  • the processor 2321 can perform the functions of generating feedback information, demodulating data, and determining a set associated with the handover by executing instructions stored in the memory 2322.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 2340 that includes one or more of the car navigation device 2320, the in-vehicle network 2341, and the vehicle module 2342.
  • vehicle module 2342 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 2341.
  • a plurality of functions included in one unit in the above embodiment may be implemented by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processes performed in time series in the stated order, but also processes performed in parallel or individually rather than necessarily in time series. Further, even in the step of processing in time series, it is needless to say that the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及无线通信系统中的电子设备、方法和计算机可读存储介质。根据本公开的无线通信系统中的电子设备包括处理电路,被配置为:确定用于特定时间期间的波束赋形的区域;将与所述区域相关联的信息发送至所述无线通信系统中的一个或多个辅发送设备,以用于所述一个或多个辅发送设备在所述特定时间期间生成波束信号并向所述区域发送所述波束信号;以及在所述特定时间期间与所述一个或多个辅发送设备同时生成波束信号并向所述区域发送所述波束信号。使用根据本公开的电子设备、方法和计算机可读存储介质,可以实现多个发送设备向同一个区域同时发送波束信号。

Description

无线通信系统中的电子设备、方法和计算机可读存储介质
本申请要求于2017年11月29日提交中国专利局、申请号为201711227563.4、发明名称为“无线通信系统中的电子设备、方法和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明的实施例总体上涉及无线通信领域,具体地涉及无线通信系统中的作为主发送设备的电子设备和作为辅发送设备的电子设备、由无线通信系统中的作为主发送设备的电子设备执行的无线通信方法和由无线通信系统中的作为辅发送设备的电子设备执行的无线通信方法、以及计算机可读存储介质。
背景技术
波束赋形是一种基于天线阵列的信号预处理技术,波束赋形通过调整天线阵列中每个阵元的加权系数产生具有指向性的波束,从而能够获得明显的阵列增益。因此,波束赋形技术在扩大覆盖范围、改善边缘吞吐量以及干扰抑止等方面都有很大的优势。在未来的通信系统中,波束赋形是一项能够增加频谱和功率的利用率的重要技术。
在使用波束赋形的无线通信系统中,存在需要多个发送设备同时向接收设备发送波束信号的场景,也就是说,不同的发送设备需要同时向接收设备所在的区域发送波束信号,即波束间的同步。在无线通信系统中传统的同步仅仅涉及不同的发送设备在时间方面和频率方面的同步,并未涉及在波束方面的同步。
因此,有必要提出一种方案,以实现不同的发送设备同时向接收设备所在的区域发送波束信号。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特 征的全面披露。
本公开的目的在于提供一种无线通信系统中的电子设备、由无线通信系统中的电子设备执行的无线通信方法以及计算机可读存储介质,以实现不同的发送设备同时向接收设备所在的区域发送波束信号。
根据本公开的一方面,提供了一种用作无线通信系统中的主发送设备的电子设备,包括处理电路,被配置为:确定用于特定时间期间的波束赋形的区域;将与所述区域相关联的信息发送至所述无线通信系统中的一个或多个辅发送设备,以用于所述一个或多个辅发送设备在所述特定时间期间生成波束信号并向所述区域发送所述波束信号;以及在所述特定时间期间与所述一个或多个辅发送设备同时生成波束信号并向所述区域发送所述波束信号。
根据本公开的另一方面,提供了一种用作无线通信系统中的辅发送设备的电子设备,包括处理电路,被配置为:从所述无线通信系统中的主发送设备接收与用于特定时间期间的波束赋形的区域相关联的信息;以及在所述特定时间期间生成波束信号并向所述区域发送所述波束信号,其中,在所述特定时间期间所述主发送设备与所述电子设备同时生成波束信号并向所述区域发送所述波束信号。
根据本公开的另一方面,提供了一种由无线通信系统中的作为主发送设备的电子设备执行的无线通信方法,包括:确定用于特定时间期间的波束赋形的区域;将与所述区域相关联的信息发送至所述无线通信系统中的一个或多个辅发送设备,以用于所述一个或多个辅发送设备在所述特定时间期间生成波束信号并向所述区域发送所述波束信号;以及在所述特定时间期间与所述一个或多个辅发送设备同时生成波束信号并向所述区域发送所述波束信号。
根据本公开的另一方面,提供了一种由无线通信系统中的作为辅发送设备的电子设备执行的无线通信方法,包括:从所述无线通信系统中的主发送设备接收与用于特定时间期间的波束赋形的区域相关联的信息;以及在所述特定时间期间生成波束信号并向所述区域发送所述波束信号,其中,在所述特定时间期间所述主发送设备与所述电子设备同时生成波束信号并向所述区域发送所述波束信号。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算 机执行根据本公开所述的无线通信方法。
使用根据本公开的无线通信系统中的电子设备、由无线通信系统中的电子设备执行的无线通信方法以及计算机可读存储介质,主发送设备可以确定用于波束赋形的区域并将与该区域相关联的信息发送至辅发送设备,从而使得主发送设备和辅发送设备同时向该区域发送波束信号,以实现波束间的同步。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出根据本公开的实施例的场景的示意图;
图2是示出根据本公开的实施例的用作主发送设备的电子设备的结构的框图;
图3是示出根据本公开的实施例的扫描区域的示意图;
图4是示出根据本公开的实施例的主发送设备和辅发送设备同时对扫描区域进行扫描的示意图;
图5是示出根据本公开的实施例的确定波束扫描的功率信息的示意图;
图6是示出根据本公开的实施例的确定波束扫描的方向信息的示意图;
图7是示出根据本公开的实施例的天线阵列的方向信息的示意图;
图8是示出根据本公开的实施例的天线阵列的立体示意图;
图9是示出根据本公开的实施例的确定主发送设备和辅发送设备的的信令流程图;
图10(a)是示出根据本公开的另一个实施例的确定主发送设备和辅发送设备的信令流程图;
图10(b)是示出根据本公开的又一个实施例的确定主发送设备和辅 发送设备的信令流程图;
图11(a)是示出根据本公开的实施例的对用户设备进行定位的信令流程图;
图11(b)是示出根据本公开的另一个实施例的对用户设备进行定位的信令流程图;
图12(a)是示出根据本公开的实施例的对用户设备进行定位的示意图;
图12(b)是示出根据本公开的实施例的对用户设备进行定位的时序图;
图13是示出根据本公开的实施例的用作辅发送设备的电子设备的结构的框图;
图14是示出根据本公开的实施例的用作用户设备的电子设备的结构的框图;
图15是示出根据本公开的实施例的由无线通信系统中的用作主发送设备的电子设备执行的无线通信方法的流程图;
图16是示出根据本公开的实施例的对用户设备进行定位的方法流程图;
图17是示出根据本公开的实施例的用于用户设备的切换的方法流程图;
图18是示出根据本公开的实施例的用于协作多点(CoMP,Coordinated Multiple Points)传输的方法流程图;
图19是示出根据本公开的实施例的由无线通信系统中的用作辅发送设备的电子设备执行的无线通信方法的流程图;
图20是示出演进型节点B(eNB)的示意性配置的第一示例的框图;
图21是示出eNB的示意性配置的第二示例的框图;
图22是示出智能电话的示意性配置的示例的框图;以及
图23是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地, 本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.场景的描述;
2.主发送设备的配置示例;
a)基本配置;
b)用于对用户设备进行定位的配置;
c)用于用户设备的切换的配置;
d)用于CoMP的配置;
3.辅发送设备的配置示例;
4.用户设备的配置示例;
5.方法实施例;
5.1由主发送设备执行的方法流程图;
5.2对用户设备进行定位的方法流程图;
5.3用户设备的切换的方法流程图;
5.4 CoMP传输的方法流程图;
5.5由辅发送设备执行的方法流程图;
6.应用示例。
<1.场景的描述>
图1是示出根据本公开的实施例的场景的示意图。如图1所示,无线通信系统包括一个主发送设备和两个辅发送设备以及一个用户设备。这里的主发送设备和辅发送设备都可以为该用户设备提供服务,并且主发送设备和辅发送设备都可以利用波束赋形技术,即形成具有方向的波束并利用波束发送信号,在下文中也称这样的过程为波束赋形。在一些情况下,主发送设备和两个辅发送设备需要同时向用户设备发送信息,这里,用户设备的位置对于发送设备来说可能是已知的,也可能是未知的。
值得注意的是,图1中仅示出了无线通信系统包括一个主发送设备和两个辅发送设备的场景,无线通信系统还可以包括一个或多于两个的辅发送设备。也就是说,无线通信系统中包括一个主发送设备以及一个或多个辅发送设备,即无线通信系统包括多个发送设备。进一步,无线通信系统还可以包括多个用户设备。此外,图1仅示出了用户设备是无人机的情形,用户设备还可以是其它类型的用户侧设备。也就是说,本公开适用于以下场景:需要多个发送设备同时向用户设备所在的区域执行波束扫描。此外,本公开的实施例优选地可以用于高频段的场景中,例如NR(New Radio,新无线)系统中。
本公开针对这样的场景提出了一种无线通信系统中的电子设备、由无线通信系统中的电子设备执行的无线通信方法以及计算机可读存储介质,以实现不同的发送设备同时向接收设备所在的区域发送波束信号。
根据本公开的主发送设备和辅发送设备(统称为发送设备)可以是任何类型的TRP(Transmit and Receive Port,发送和接收端口)。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。在一个示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。也就是说,基站设备通过TRP向用户设备提供服务。在另一个示例中,发送设备也可以是任何类型的基站设备。
根据本公开的用户设备可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。特别地,用 户设备还可以是具备飞行功能的终端设备,例如无人机。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<2.主发送设备的配置示例>
<2.1基本配置>
图2是示出根据本公开的实施例的无线通信系统中的用作主发送设备的电子设备200的结构的框图。该无线通信系统可以包括一个主发送设备以及一个或多个辅发送设备。进一步,该无线通信系统还可以包括一个或多个用户设备,每个用户设备由一个或多个发送设备来提供服务。如图2所示,电子设备200可以包括确定单元210、通信单元220和波束赋形单元230。
这里,电子设备200的各个单元都可以包括在处理电路中。需要说明的是,电子设备200既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,确定单元210可以确定用于特定时间期间的波束赋形的区域。这里,特定时间期间可以表示主发送设备与辅发送设备提前约定好的一段时间期间。
根据本公开的实施例,通信单元220可以将与确定单元210确定的区域相关联的信息发送至无线通信系统中的一个或多个辅发送设备,以用于一个或多个辅发送设备在特定时间期间生成波束信号并向该区域发送波束信号。这里,通信单元220向一个或多个辅发送设备中的每个辅发送设备发送的与区域相关联的信息可以是相同的,也可以是不相同的。当辅发送设备收到了与区域相关联的信息之后可以在与主发送设备约定好的特定时间期间生成波束信号并向该区域发送波束信号。
根据本公开的实施例,波束赋形单元230可以在特定时间期间与一个或多个辅发送设备同时生成波束信号并向该区域发送波束信号。也就是说,在特定时间期间,主发送设备与一个或多个辅发送设备都向同一个扫描区域发送波束信号。
由此可见,根据本公开的实施例的电子设备200,可以确定用于特定时间期间的波束赋形的区域,并可以将与该区域相关联的信息发送至辅发送设备,由此主发送设备和辅发送设备可以同时向该扫描区域发送波束信号。这样一来,可以实现不同的发送设备同时对一个扫描区域发送波束信号,以实现波束间的同步。
图3是示出根据本公开的实施例的扫描区域的示意图。如图3所示,A、B和C表示三个发送设备,其中一个是主发送设备,另外两个是辅发送设备。由于A、B和C中的每一个都可以采用波束赋形,即利用天线阵列来形成波束。因此A、B和C中的每一个都可以包括天线阵列。在图3中,用天线阵列的俯视图来表示每个发送设备。如图3所示,灰色区域表示主发送设备确定的用于波束赋形的区域,字母O表示区域的中心,该区域位于由连接A、B和C中的每两个相邻的发送设备的连线组成的三角形的内部。
值得注意的是,图3虽然示出了用于波束赋形的区域是圆形的情形,但是区域也可以是其它形状的二维平面区域。此外,区域还可以为三维空间区域。例如,当无线通信系统中包括具有高度信息的用户设备(例如无人机)时,区域可以为三维空间区域。此外,区域的尺寸是由主发送设备根据波束的宽度、区域的位置和发送设备的灵敏度等参数确定的。
图4是示出根据本公开的实施例的主发送设备和辅发送设备同时向用于波束赋形的区域发送波束信号的示意图。如图4所示,A、B和C中的每个发送设备同时生成波束信号,并向用于波束赋形的区域发送波束信号。
根据本公开的实施例,在特定时间期间开始的时候,主发送设备和辅发送设备都开始向同一个扫描区域发送波束信号。进一步,特定时间期间可以包括一个或多个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,在特定时间期间的每个OFDM符号中,主发送设备和辅发送设备都向同一个扫描区域发送波束信号。因此,在本公开的实施例中,特定时间期间可以表示扫描参数保持不变的时间。也就是说,在特定时间期间,主发送设备和辅发送设备关于波束赋形的参数保持不变,从而能够保证在整个特定时间期间都向同一个扫描区域发送波束信号。因此,在本公开的实施例中,主发送设备和辅发送设备可以同步地进行波束赋形,即“同时”向一个扫描区域发送波束信号。
根据本公开的实施例,主发送设备和辅发送设备进行波束赋形的行 为可以是周期性的。也就是说,在一个波束赋形周期中,主发送设备和辅发送设备进行波束赋形的参数不变,在不同的波束赋形周期中进行波束赋形的参数不同。根据本公开的实施例,特定时间期间可以为下一个波束赋形周期。这里约定主发送设备和辅发送设备的波束赋形周期相同并且同步。因此,当主发送设备向辅发送设备发送了与区域相关联的信息后,辅发送设备可以在当前时刻的下一个波束赋形周期向该区域发送波束信号,而主发送设备也可以在当前时刻的下一个波束赋形周期向该区域发送波束信号,以达到同时的目的。
根据本公开的实施例,主发送设备和辅发送设备的波束赋形周期可以是时隙级的,即波束赋形周期为一个或多个时隙;也可以是符号级的,即波束赋形周期为一个或多个OFDM符号。
根据本公开的实施例,主发送设备/辅发送设备发送的波束信号可以包括数据信息或例如参考信号的控制信息,即,主发送设备/辅发送设备形成波束指向该区域并通过功率控制向该区域发送波束信号。
如图2所示,电子设备200还可以包括计算单元240,被配置为计算与区域相关联的信息。根据本公开的实施例,与所述区域相关联的信息可以包括与区域的位置相关联的信息。也就是说,辅发送设备可以通过该信息直接获知区域的位置,或者可以通过该信息向区域所在的位置发送波束信号。
根据本公开的实施例,与区域相关联的信息包括区域的位置信息,位置信息用于一个或多个辅发送设备确定波束的方向信息和功率信息。这里,与区域相关联的信息可以包括区域的位置信息,以使得每个辅发送设备根据区域的位置信息来确定该辅发送设备波束的方向信息和功率信息。在这种情况下,主发送设备向每个辅发送设备发送的与区域相关联的信息是相同的,然后每个辅发送设备根据该信息确定波束的方向信息和功率信息。
根据本公开的实施例,与区域相关联的信息包括针对一个或多个辅发送设备中的每个辅发送设备的波束的方向信息和功率信息。在这种情况下,主发送设备向每个辅发送设备发送的与区域相关联的信息是不同的。也就是说,主发送设备可以分别向每个辅发送设备发送针对该辅发送设备的波束的方向信息和功率信息。
根据本公开的实施例,波束的方向信息可以确定波束的方向,而波 束的功率信息可以确定波束在上述方向上传输的距离。也就是说,由波束的方向信息和功率信息两者可以确定波束所能够到达的最远区域。
根据本公开的实施例,计算单元240不仅可以计算针对每个辅发送设备的波束的方向信息和功率信息,还可以计算针对电子设备200的波束的方向信息和功率信息。下面将详述计算单元240的计算过程。
根据本公开的实施例,计算单元240可以根据每个辅发送设备的位置信息和区域的位置信息确定针对每个辅发送设备的波束的功率信息。进一步,计算单元240可以根据电子设备200的位置信息和区域的位置信息确定针对电子设备200的波束的功率信息。
根据本公开的实施例,计算单元240可以根据发送设备与区域之间的距离确定针对该发送设备的波束的功率信息。即,计算单元240可以根据辅发送设备与区域之间的距离确定针对该辅发送设备的波束的功率信息,并根据电子设备200与区域之间的距离确定针对电子设备200的波束的功率信息。这里,在计算与区域之间的距离时,可以用区域的中心来代表区域从而计算与区域的中心之间的距离。根据本公开的实施例,计算单元240在获取了发送设备与区域之间的距离之后,可以根据本领域中公知的任意一种方法(例如,链路预算的方法)来确定针对该发送设备的波束的功率信息,本公开对此不做限定。
图5是示出根据本公开的实施例的确定波束的功率信息的示意图。如图5所示,假定A是作为主发送设备的电子设备200,B和C是辅发送设备,则A可以根据O和A两点之间的距离OA确定针对电子设备200的波束的功率信息,根据O和B两点之间的距离OB确定针对辅发送设备B的波束的功率信息,根据O和C两点之间的距离OC确定针对辅发送设备C的波束的功率信息。
根据本公开的实施例,计算单元240可以根据电子设备200与区域之间的距离以及辅发送设备的位置信息来确定辅发送设备与区域之间的距离。这里,由于区域是电子设备200确定的,因此电子设备200可以计算出电子设备200与区域之间的距离。进一步,计算单元240还需要获取每个辅发送设备的位置,从而可以计算出电子设备200与每个辅发送设备之间的距离以及连接电子设备200与辅发送设备的连线与连接电子设备200与区域的连线之间的夹角。根据本公开的实施例,电子设备200的计算单元240可以通过各种方法获取每个辅发送设备的位置,例如通过辅发送设备上报的方式,或者通过由基站设备通知的方式等等,本公开对此不 做限定。仍然以图5为例,计算单元240获取了OA后,可以根据下式来计算OB和OC:
Figure PCTCN2018116903-appb-000001
Figure PCTCN2018116903-appb-000002
这里,OA可以由主发送设备A直接获取,而当主发送设备A获取了B和C的位置信息后,可以获取AB和AC的值,以及∠OAB和∠OAC的角度值。
根据本公开的实施例,计算单元240可以根据电子设备200、一个或多个辅发送设备和区域的位置信息以及发送设备的天线阵列的方向信息确定针对该发送设备的波束的方向信息。也就是说,计算单元240可以根据电子设备200、每个辅发送设备和区域的位置信息以及辅发送设备的天线阵列的方向信息确定针对辅发送设备的波束的方向信息。进一步,计算单元240还可以根据电子设备200、每个辅发送设备和区域的位置信息以及电子设备200的天线阵列的方向信息确定针对电子设备200的波束的方向信息。
根据本公开的实施例,计算单元240可以确定连接发送设备和区域的连线的方向与发送设备的天线阵列的宽侧(Broadside)方向之间的夹角,该夹角也称为发送设备的发射角(AoD,Angle of Departure),并根据该夹角来确定针对发送设备的波束的方向信息。这里,每个发送设备获取了发射角后,就可以确定针对发送设备的波束的方向信息。
图6是示出根据本公开的实施例的确定波束的方向信息的示意图。如图6所示,每个发送设备的天线阵列附近的虚线示出了天线阵列的宽侧方向。这里,天线阵列的宽侧方向指的是与天线阵列的两个轴线均垂直的方向,而轴线表明了天线阵列的排列方向。如图6所示,主发送设备A的宽侧方向与OA之间的夹角为主发送设备A的发射角,辅发送设备B的宽侧方向与OB之间的夹角为辅发送设备B的发射角,辅发送设备C的宽侧方向与OC之间的夹角为辅发送设备C的发射角。根据本公开的实施例,计算单元240可以确定每个发送设备的发射角。
根据本公开的实施例,计算单元240可以根据所有发送设备的位置信息和区域的位置信息计算出每个发送设备的波束扫描角,并且根据每个发送设备的波束扫描角和该发送设备的天线阵列的方向来确定该发送设备的发射角。这里,定义发送设备的波束扫描角为如下两个方向的夹角: 连接该发送设备与区域的连线的方向;以及连接该发送设备与相邻的一个发送设备的连线的方向。仍然以图6为例,定义OA的方向和AB的方向之间的夹角∠OAB为主发送设备A的波束扫描角。同理,可以定义∠OBC为辅发送设备B的波束扫描角,定义∠OCA为辅发送设备C的波束扫描角。
根据本公开的实施例,作为主发送设备A的电子设备200的计算单元240在获知了辅发送设备B的位置并确定了区域的位置之后,可以直接确定∠OAB的角度值。进一步,计算单元240可以根据以下公式来确定∠OBC和∠OCA的角度值:
Figure PCTCN2018116903-appb-000003
Figure PCTCN2018116903-appb-000004
这里,arccos表示反余弦函数,并且BC和AC的值在获知了B和C的位置之后即可计算出来,OB、OC和OA的值在计算发送设备的波束的功率信息时已经计算出来。
根据本公开的实施例,通信单元220可以从一个或多个辅发送设备中的每个辅发送设备接收该辅发送设备的天线阵列的方向信息。这里,可以用发送设备的天线阵列的轴线方向与连接该发送设备与相邻的一个发送设备之间的连线的方向之间的夹角来表示天线阵列的方向信息。图7是示出根据本公开的实施例的天线阵列的方向信息的示意图。如图7所示,用主发送设备A的天线阵列的轴线与AB方向的夹角α来表示主发送设备A的天线阵列的方向信息。同理地,可以用辅发送设备B的天线阵列的轴线与BC方向的夹角β来表示辅发送设备B的天线阵列的方向信息,用辅发送设备C的天线阵列的轴线与AC方向的夹角γ来表示辅发送设备C的天线阵列的方向信息。这里,每个辅发送设备都可以向主发送设备上报该辅发送设备的天线阵列的方向信息。
根据本公开的实施例,计算单元240在获取了发送设备的天线阵列的方向信息和发送设备的波束扫描角之后,可以根据上述信息来确定该发送设备的发射角。
图8是示出根据本公开的实施例的天线阵列的立体示意图。如图8 所示,天线阵列设置在天线阵列板上,该天线阵列有两条互相垂直的轴线,与这两条轴线都垂直的方向定义为宽侧方向。进一步,轴线与AB的夹角α表示发送设备A的天线阵列的方向信息,OA和AB之间的夹角∠OAB定义为发送设备A的波束扫描角。而宽侧方向与OA之间的夹角定义为发送设备A的发射角。如图8所示,可以根据下述公式来计算发送设备A的发射角:
A的发射角=π/2-∠OAB-α。
类似地,计算单元240还可以计算发送设备B和C的发射角为:
B的发射角=∠OBC-π/2+β
C的发射角=π/2-∠OCA-γ。
根据本公开的实施例,当用于波束赋形的区域为三维空间区域时,计算单元240在计算方向信息时还可以计算AO、BO和CO与水平方向的夹角,以使得主发送设备和辅发送设备发送的波束可以到达三维的区域。此外,计算单元240也可以不计算上述夹角,波束赋形单元230在进行波束赋形时可以先扫描位于地面上的二维的区域,再扫描该区域的空间区域。
如上所述,计算单元240可以根据发送设备与区域之间的距离确定针对每个发送设备的波束的功率信息,并进一步可以确定针对每个发送设备的波束的方向信息,例如用每个发送设备的发射角来表示波束的方向信息。值得注意的是,如上以两个辅发送设备(即相邻的发送设备之间的连线可以构成一个三角形)为例对方向信息和功率信息的计算进行了描述,但是对于其它数目的辅发送设备的情形可以采用类似的方法对方向信息和功率信息进行计算。因此,通信单元220可以将针对每个发送设备的波束的功率信息和方向信息发送至相应的发送设备。进一步,计算单元240还可以将针对电子设备200的波束的方向信息和功率信息发送至波束赋形单元230。
根据本公开的实施例,波束赋形单元230可以根据计算单元240计算出的针对电子设备200的波束的方向信息和功率信息在特定时间期间向用于波束赋形的区域发送波束信号。也就是说,波束赋形单元230根据波束的方向信息确定发送波束的方向,并根据波束的功率信息确定发送波束的功率。进一步,波束赋形单元230需要在与辅发送设备约定好的特定时间期间根据上述参数发送波束信号。
根据本公开的实施例,计算单元240可以将与区域相关联的位置信息发送至辅发送设备。与区域相关联的位置信息可以包括区域的位置信息,从而使得辅发送设备可以计算波束的方向信息和功率信息。与区域相关联的位置信息也可以包括针对辅发送设备的波束的方向信息和功率信息。也就是说,计算针对辅发送设备的波束的方向信息和功率信息的主体可以为主发送设备,也可以为辅发送设备。当主发送设备和辅发送设备获取了波束的方向信息和功率信息以后,可以在特定时间期间根据各自的参数向同一个区域发送波束信号,由此实现不同的发送设备同时向一个区域发送波束信号。
根据本公开的实施例,主发送设备和辅发送设备是针对用户设备而言的。也就是说,不同的用户设备的主发送设备和辅发送设备可以是不同的。进一步,可以用多种方法来选择无线通信系统中的主发送设备和辅发送设备。例如,由当前为用户设备提供服务的发送设备来确定该用户设备的主发送设备和辅发送设备。例如,为用户设备提供服务的发送设备可以确定自己为主发送设备,确定与该发送设备相邻的一个或多个发送设备为辅发送设备,具体的选取原则可以根据实际情况而定,本公开对比不做限定。当然,也可以由用户设备周围的所有发送设备通过交互信息来确定主发送设备和辅发送设备。
也就是说,根据本公开的实施例,如图2所示,电子设备200还可以包括确定单元250,用于确定电子设备200作为主发送设备,并且可以从无线通信系统中的多个发送设备中选取一个或多个发送设备作为辅发送设备。进一步,通信单元220可以向一个或多个辅发送设备发送指示信息,以指示一个或多个辅发送设备用作辅发送设备。
根据本公开的实施例,指示信息还可以包括主发送设备和其它辅发送设备的识别信息,以用于接收指示信息的辅发送设备获取该用户设备的所有发送设备的信息。进一步,指示信息还可以包括主发送设备和其它辅发送设备的位置信息和/或天线阵列的方向信息等参数,以用于辅发送设备计算针对该辅发送设备的波束的方向信息和功率信息。
根据本公开的实施例,响应于电子设备200发送的指示信息,辅发送设备可以向电子设备200发送辅发送设备的位置信息和/或天线阵列的方向信息等参数,以用于电子设备200计算针对该辅发送设备的波束的方向信息和功率信息。
根据本公开的实施例,电子设备200还可以向用户设备发送电子设 备200和一个或多个辅发送设备的识别信息,以用于用户设备知晓其所有的发送设备的信息,例如可以用于对来自电子设备200和一个或多个辅发送设备的信息进行检测等目的。
图9是示出根据本公开的实施例的确定主发送设备和辅发送设备的的信令流程图。如图9所示,在步骤S901中,为用户设备提供服务的发送设备确定自己为主发送设备,并确定辅发送设备,这里假定主发送设备确定了两个辅发送设备:辅发送设备1和辅发送设备2。接下来,在步骤S902中,主发送设备向辅发送设备1和辅发送设备2分别发送指示信息,以指示其用作辅发送设备。接下来,在步骤S903中,辅发送设备1和辅发送设备2分别向主发送设备上报参数,这里的参数例如可以包括位置信息和/天线阵列的方向信息等。接下来,可选地,在步骤S904中,主发送设备可以向用户设备发送主发送设备和辅发送设备的识别信息。
如上所述,可以由用户设备周围的发送设备(例如当前为该用户设备提供服务的发送设备)来确定该用户设备的主发送设备和辅发送设备。下面将详细描述另一种确定主发送设备和辅发送设备的方式。
根据本公开的实施例,主发送设备和辅发送设备也可以由无线通信系统中的基站设备来确定。这里的基站设备可以是当前为用户设备提供服务的基站设备,例如当前为用户设备提供服务的发送设备所在的小区的基站设备。
根据本公开的实施例,电子设备200的通信单元220可以从无线通信系统中的基站设备接收指示信息,指示信息用于指示电子设备200用作主发送设备。进一步,指示信息还可以包括一个或多个辅发送设备的识别信息,以用于电子设备200知晓所有辅发送设备,便于后续的计算。
根据本公开的实施例,电子设备200还可以包括估计单元260,用于估计电子设备200与用户设备之间的链路质量。根据本公开的实施例,估计单元260可以响应于来自用户设备的参考信号信息来估计电子设备200与用户设备之间的链路质量。这里,用户设备可以向其周围的多个发送设备发送参考信号,以使得多个发送设备均估计其与用户设备之间的链路质量。
根据本公开的实施例,通信单元220还可以将链路质量信息发送至基站设备,以用于基站设备根据链路质量信息确定主发送设备和一个或多个辅发送设备。这里,用户设备周围的所有发送设备都可以发送链路质量 信息至基站设备,以用于基站设备选取主发送设备和辅发送设备。例如,基站设备可以选择链路质量最好的发送设备作为主发送设备,选择链路质量较好的其它发送设备作为辅发送设备,具体的选择规则本公开不做限定。
图10(a)是示出根据本公开的另一个实施例的确定主发送设备和辅发送设备的信令流程图。如图10(a)所示,在步骤S1001中,用户设备向其周围的所有发送设备发送参考信号,这里假定用户设备向三个发送设备发送了参考信号。接下来,在步骤S1002中,三个发送设备响应于接收到的参考信号对发送设备与用户设备之间的链路质量进行测量。接下来,在步骤S1003中,三个发送设备分别向基站设备发送链路质量测量的测量报告。接下来,在步骤S1004中,基站设备根据接收到的测量报告选择合适的主发送设备和辅发送设备。接下来,在步骤S1005中,基站设备向主发送设备和辅发送设备发送指示信息,以指示哪个发送设备用作主发送设备和哪些发送设备用作辅发送设备。接下来,与图9中的步骤S903类似,在步骤S1006中,辅发送设备可以向主发送设备上报相关的参数。接下里,可选地,与图9中的步骤S904类似,在步骤S1007中,主发送设备可以向用户设备发送主发送设备和辅发送设备的识别信息。如图10(a)所示,基站设备可以根据发送设备测量的用户设备与发送设备之间的上行链路的质量来确定主发送设备和辅发送设备。
图10(b)是示出根据本公开的又一个实施例的确定主发送设备和辅发送设备的信令流程图。如图10(b)所示,在步骤S1001中,用户设备周围的所有发送设备向用户设备发送参考信号,这里假定三个发送设备向用户设备发送了参考信号。根据本公开的实施例,由于用户设备周围的发送设备可能不知晓用户设备的位置所以无法向用户设备发送波束信号。在这种情况下,发送设备可以利用诸如广播信道的公共控制信道向用户设备发送参考信号。接下来,在步骤S1002中,用户设备响应于接收到的多个参考信号分别测量用户设备与多个发送设备之间的下行链路质量。接下来,在步骤S1003中,用户设备向基站设备发送链路质量测量的测量报告,测量报告可以包括针对不同的发送设备的链路质量的测量结果。接下来,在步骤S1004中,基站设备根据接收到的测量报告选择合适的主发送设备和辅发送设备。接下来,在步骤S1005中,基站设备向主发送设备和辅发送设备发送指示信息,以指示哪个发送设备用作主发送设备和哪些发送设备用作辅发送设备。接下来,与图9中的步骤S903类似,在步骤S1006中,辅发送设备可以向主发送设备上报相关的参数。接下里,可选地,与 图9中的步骤S904类似,在步骤S1007中,主发送设备可以向用户设备发送主发送设备和辅发送设备的识别信息。如图10(b)所示,基站设备可以根据发送设备测量的用户设备与发送设备之间的下行链路的质量来确定主发送设备和辅发送设备。
如上所述,可以由基站设备来为用户设备确定主发送设备和辅发送设备。这样一来,选择的主发送设备和辅发送设备的链路质量都比较好,使得用户设备接收到的信号质量也比较好,有助于后续的波束赋形过程。
根据本公开的实施例的电子设备200可以协助参与各种通信过程,力图对用户设备进行定位、用户设备的切换以及CoMP传输等,下面将详细描述为了实现这几种通信过程的电子设备200的配置。
<2.2用于对用户设备进行定位的配置>
根据本公开的实施例,由于主发送设备和辅发送设备可以同时向一个区域发送波束信号,因而可以实现对用户设备的定位。
根据本公开的实施例,定位的过程可以是由用户设备触发的,也可以是由为用户设备提供服务的基站设备触发的。此外,为了实现定位,需要有多个辅发送设备,也就是说,至少需要三个发送设备同时向一个区域发送波束信号。
根据本公开的实施例,由于电子设备200和辅发送设备并不知晓用户设备的位置,因此电子设备200的确定单元210可以根据用户设备在各个位置出现的概率来确定用于波束赋形的区域,并优先选择用户设备出现的概率较高的位置作为用于波束赋形的区域。也就是说,用于波束赋形的区域是用户设备可能出现的位置。例如,电子设备200可以根据用户设备的历史信息(例如,用户经常出现的地方、用户初始接入该无线通信系统时的位置等信息)估计用户设备在各个位置出现的概率,并选择用户设备出现概率最高并且尚未被扫描过的区域作为用于波束赋形的区域。这里,在用于对用户设备进行定位的配置中,由于主发送设备和辅发送设备并不知晓用户设备的位置,因此只能逐一向各个区域发送波束信号直到确定用户设备的位置为止,因此这样的过程也可以称为“波束扫描”的过程。也就是说,确定的用于波束赋形的区域可以称为扫描区域,并且波束赋形的周期也可以称为扫描周期。
根据本公开的实施例,电子设备200的通信单元220可以向用户设 备发送电子设备200和一个或多个辅发送设备的识别信息,以用于用户设备对来自电子设备200和一个或多个辅发送设备的信息进行检测。也就是说,无论主发送设备和辅发送设备是由哪个实体确定的,作为主发送设备的电子设备200都可以向用户设备发送所有发送设备的识别信息。这样一来,用户设备可以确定需要检测哪些发送设备的信号以实现定位。
根据本公开的实施例,通信单元220可以从用户设备接收对电子设备200和一个或多个辅发送设备发送的波束信号的反馈信息,该反馈信息可以表明用户设备是否接收到了来自全部发送设备的波束信号。
根据本公开的实施例,用户设备可以只有在接收到了来自全部发送设备的波束信号的情况下才向主发送设备发送反馈信息。也就是说,反馈信息表明用户设备接收到了来自电子设备200和所有辅发送设备的波束信号。这样一来,电子设备200可以设置定时器,在定时器期满前没有收到反馈信息的情况下了可以确定用户设备没有位于本次扫描的区域中;如果电子设备200在定时器期满前收到了反馈信息,则可以确定用户设备位于本次扫描的区域中。在这种情况下,反馈信息可以包括定位需要的各种参数,例如,当采用TDOA(Time Difference of Arrival,到达时间差)算法时,反馈信息可以包括来自各个发送设备的波束信号的到达时间等信息。本公开可以采用本领域中公知的任意一种算法对用户设备进行定位,因此对定位算法以及反馈信息不做限定。
根据本公开的实施例,用户设备也可以在每个波束扫描周期都向电子设备200发送反馈信息,该反馈信息需要表明用户设备是否在上一个波束扫描周期接收到了来自全部发送设备的波束信号。例如,用户设备在第n个扫描周期没有收到来自全部发送设备的波束信号,则在第n+1个扫描周期向电子设备200发送反馈信息,以表明用户设备在n个扫描周期没有收到来自全部发送设备的波束信号;用户设备在第n+1个扫描周期接收到了来自全部发送设备的波束信号,则在第n+2个扫描周期向电子设备200发送反馈信息,反馈信息中可以包括定位需要的各种参数。这样一来,电子设备200可以确定在第n+1个扫描周期中扫描的区域是用户所在的位置,从而实现定位。
根据本公开的实施例,当电子设备200接收到了包括定位需要的各种参数的反馈信息后,可以由电子设备200来计算用户设备的位置,也可以将上述信息发送至为用户设备提供服务的基站设备,由基站设备来计算用户设备的位置。
根据本公开的实施例,如图2所示,电子设备200还可以包括定位单元270,用于根据来自用户设备的反馈信息对用户设备进行定位。本公开对定位算法不做限定。
根据本公开的实施例,当接收到的来自用户设备的反馈信息表明用户设备没有接收到来自全部发送设备的波束信号,或者在定时器期满没有收到来自用户设备的反馈信息的情况下,确定单元210还可以重新确定用于特定时间期间的波束赋形的区域,通信单元220还可以将与重新确定的区域相关联的信息发送至一个或多个辅发送设备,并且波束赋形单元230还可以在特定时间期间向重新确定的区域发送波束信号。这里,确定单元210仍然可以选择用户设备出现概率最高并且尚未被扫描过的区域作为用于波束赋形的区域,也就是说,确定单元210可以从尚未被扫描过的区域中选择用户设备出现概率最高的区域作为用于波束赋形的区域。后续的处理流程与前述描述的过程类似,在此不再赘述。根据本公开的实施例,电子设备200可以重复执行这样的过程,直到接收到来自用户设备的表明用户设备接收到来自全部发送设备的波束信号的反馈信息从而实现定位为止。
图11(a)是示出根据本公开的实施例的对用户设备进行定位的信令流程图。图11(a)示出了无线通信系统包括一个主发送设备和两个辅发送设备的情形。在图11(a)中,用户设备可以只有在接收到了来自全部发送设备的波束信号的情况下才向主发送设备发送反馈信息。如图11(a)所示,在步骤S1101中,主发送设备确定用于波束赋形的区域。接下来,在步骤S1102中,主发送设备将与该区域相关联的信息发送至辅发送设备1和辅发送设备2。接下来,在步骤S1103中,主发送设备和辅发送设备同时向该区域发送波束信号。接下来,在步骤S1104中,主发送设备设置定时器并确定在定时器期满前是否收到了来自用户设备的反馈信息,这里假定主发送设备在定时器期满前没有收到来自用户设备的反馈信息。接下来,在步骤S1105中,主发送设备重新确定用于波束赋形的区域。接下来,在步骤S1106中,主发送设备将与重新确定的区域相关联的信息发送至辅发送设备1和辅发送设备2。接下来,在步骤S1107中,主发送设备和辅发送设备同时向重新确定的区域发送波束信号。接下来,在步骤S1108中,假定用户设备在定时器期满前向主发送设备发送了反馈信息。接下来,在步骤S1109中,主发送设备设置定时器并确定在定时器期满前收到了来自用户设备的反馈信息。接下来,在步骤S1110中,主发送设备可以根据收到的反馈信息进行定位计算。
图11(b)是示出根据本公开的另一个实施例的对用户设备进行定位的信令流程图。图11(b)示出了无线通信系统包括一个主发送设备和两个辅发送设备的情形。在图11(b)中,用户设备在每个波束赋形周期都向主发送设备发送反馈信息,该反馈信息需要表明用户设备是否在上一个波束赋形周期接收到了来自全部发送设备的波束信号。如图11(b)所示,在步骤S1101中,主发送设备确定用于波束赋形的区域。接下来,在步骤S1102中,主发送设备将与该区域相关联的信息发送至辅发送设备1和辅发送设备2。接下来,在步骤S1103中,主发送设备和辅发送设备同时向该区域发送波束信号。接下来,在步骤S1104中,用户设备向主发送设备发送反馈信息,该反馈信息表明用户设备在上一个波束赋形周期没有收到来自全部发送设备的波束信号。接下来,在步骤S1105中,主发送设备根据反馈信息确定用户设备没有收到来自全部发送设备的波束信号。接下来,在步骤S1106中,主发送设备重新确定用于波束赋形的区域。接下来,在步骤S1107中,主发送设备将与重新确定的区域相关联的信息发送至辅发送设备1和辅发送设备2。接下来,在步骤S1108中,主发送设备和辅发送设备同时向重新确定的区域发送波束信号。接下来,在步骤S1109中,用户设备向主发送设备发送反馈信息,该反馈信息表明用户设备在上一个波束赋形周期收到了来自全部发送设备的波束信号。接下来,在步骤S1110中,主发送设备确定用户设备收到了来自全部发送设备的波束信号。接下来,在步骤S1111中,主发送设备可以根据收到的反馈信息进行定位计算。
图12(a)是示出根据本公开的实施例的对用户设备进行定位的示意图。如图12(a)所示,主发送设备可以根据用户设备的历史信息对多个区域进行优先级排序,并按照优先级从高到低的顺序依次将多个区域设置为用于波束赋形的区域。这里优先级的设置可以例如根据用户设备出现的概率高低,用户设备出现的概率越高,该区域的优先级越高等。这里假定四个区域O1、O2、O3和O4的优先级依次降低,并且需要定位的用户设备位于O2中。
图12(b)是示出针对图12(a)所示的情形的根据本公开的实施例的对用户设备进行定位的时序图。在图12(b)中,采用用户设备在每个波束赋形周期都上报反馈信息的方式。如图12(b)所示,在第n个周期中,主发送设备确定O1作为用于波束赋形的区域,并计算区域O1的相关参数(例如区域O1的位置信息、针对主发送设备和辅发送设备的波束的方向信息和功率信息等)。进一步,在第n个周期中主发送设备将与O1 相关联的信息发送至辅发送设备。接下来,在第n+1个扫描周期中,主发送设备和辅发送设备可以同时生成波束从而向O1发送波束信号。同时,在第n+1个周期中,主发送设备还需要将区域O2作为用于波束赋形的区域,并计算与O2相关联的参数以及发送至辅发送设备。接下来,在第n+2个周期,主发送设备和辅发送设备可以同时生成波束从而向O2发送波束信号。同时,在第n+2个周期中,用户设备可以向主发送设备发送反馈信息,以表明用户设备是否在第n+1个周期接收到了来自所有发送设备的波束信号,这里假定用户设备的反馈信息表明没有在第n+1个周期接收到了来自所有发送设备的波束信号。也就是说,用户设备没有位于O1中。在第n+2个周期中,主发送设备还需要将区域O3作为用于波束赋形的区域,并计算与O3相关联的参数以及发送至辅发送设备。接下来,在第n+3个周期,主发送设备和辅发送设备可以同时生成波束从而向O3发送波束信号。同时,在第n+3个周期中,用户设备可以向主发送设备发送反馈信息,以表明用户设备是否在第n+2个周期接收到了来自所有发送设备的波束信号,这里假定用户设备的反馈信息表明在第n+2个周期接收到了来自所有发送设备的波束信号。也就是说,用户设备位于O2中。此时,主发送设备正在将区域O4作为用于波束赋形的区域,并计算与O4相关联的参数以及发送至辅发送设备,由于主发送设备接收反馈信息需要一定的时间,因而可能已经计算了一部分与O4相关联的参数。当主发送设备接收到表明用户设备在第n+2个周期接收到了来自所有发送设备的波束信号的反馈信息后,立即停止计算参数,并根据反馈的参数对用户设备进行定位。
如上所述,根据本公开的实施例的电子设备200可以依次将不同的区域确定为用于波束赋形的区域,并与辅发送设备同时扫描每个区域,直到确定出用户设备的位置为止。这里,由于用户设备可能是移动的,因此多个发送设备同时发送波束能够实现更精确的定位效果。
<2.3用于用户设备的切换的配置>
当用户设备从一个发送设备(例如TRP或基站等)的覆盖范围移动到另一个发送设备的覆盖范围时就需要进行切换。在切换的过程中,为了保持连接的稳定,通常采用“软切换”(Soft handover)的方式,即先与多个发送设备进行连接然后断开与原先提供服务的发送设备的连接。为了实现“软切换”,用户需同时接收多个发送设备发来的信号。在切换的过 程中,用户设备需建立有效集、相邻集和候选集三个集合,并保持与这些集合中的发送设备的连接。其中,有效集是指正在与用户设备“软切换”相连接的发送设备形成的集合;候选集指当前的发送设备不在有效集里,没有参与软切换,但是已有足够的导频强度表明该发送设备可以被加到有效集里;相邻集(监测集)是指当前不在候选集里,但根据某种算法被认为很快可以进入候选集的发送设备的集合。移动台对于列在相邻集里的小区要连续搜索和测量,但是在测量的时间里,导频强度还没有强到可以增加到候选集中。
而在采用波束赋形的无线通信系统中,信号均通过模拟/数字预编码形成波束来进行发送。在这种情况下,要实现“软切换”,需要多个发送设备发出的波束同步照射到用户设备,因此根据本公开的实施例的电子设备200可以用于这种过程。
在用于切换的实施例中,由于用户设备的位置是已知的,所以确定单元210可以根据用户设备的位置信息确定用于特定时间期间的波束赋形的区域。也就是说,用户设备位于确定的区域中。
根据本公开的实施例,电子设备200或者为用户设备提供服务的基站设备还可以确定有效集中接收信号功率最强(或者信噪比最大)的发送设备作为主发送设备,有效集中的其它发送设备以及候选集和相邻集中的发送设备作为辅发送设备。
根据本公开的实施例,当电子设备200属于有效集时,其利用波束向该区域发送控制信号和数据信号;当电子设备200属于候选集或相邻集时,其利用波束向该区域发送控制信号。同理,当辅发送设备属于有效集时,其利用波束向该区域发送控制信号和数据信号;当辅发送设备属于候选集或相邻集时,其利用波束向该区域发送控制信号。
根据本公开的实施例,用户设备可以根据接收到的来自所有发送设备的波束信号来确定有效集、候选集和相邻集中的发送设备。例如,如果候选集中的发送设备利用波束发送的控制信号足够强,且有效集未满,将该发送设备移入有效集;如果相邻集中的发送设备利用波束发送的控制信号足够强,且候选集未满,将该发送设备移入候选集;如果有效集中的发送设备利用波束发送的控制信号的强度变弱,且候选集未满,将该发送设备移入候选集;如果候选集中的发送设备利用波束发送的控制信号的强度变弱,且相邻集未满,将该发送设备移入相邻集。
根据本公开的实施例,电子设备200可以追踪用户设备的位置,并且当电子设备200确定用户设备发生移动时,可以根据移动后的位置重新执行上述过程。即,确定单元210可以根据移动后的用户设备的位置信息重新确定用于特定时间期间的波束赋形的区域,通信单元220可以将与重新确定的区域相关联的信息发送至一个或多个辅发送设备,以用于一个或多个辅发送设备在特定时间期间向重新确定的区域发送波束信号,并且波束赋形单元230可以在特定时间期间向重新确定的区域发送波束信号。同样地,确定单元210重新确定的区域也是根据用户设备的移动后的位置确定的,后续的流程与前文中所述类似,在此不再赘述。
如上所述,根据本公开的实施例的电子设备200,可以根据用户的位置确定用于波束赋形的区域,从而使得电子设备200和辅发送设备同时向一个区域发送波束信号,以便于用户设备更加精确地确定与切换有关的集合,实现软切换。
<2.4用于CoMP的配置>
CoMP指多个发送设备通过相互协作同时为一个用户设备提供服务。这些发送设备在地理上分离,通过相关的接口或光纤而无线相连。CoMP利用宏分集技术提高了小区边缘的频谱效率,扩大了小区的覆盖范围。下行CoMP按照数据处理方式不同可分为多点联合处理和多点协调调度。在多点联合处理方式中,多个发送设备需要同时向用户设备发送数据。
而在采用波束赋形的无线通信系统中,信号均通过模拟/数字预编码形成波束来进行发送。在这种情况下,要实现多点联合处理,需要多个发送设备发出的波束同步照射到用户设备,因此根据本公开的实施例的电子设备200可以用于这种过程。
在用于CoMP传输的实施例中,由于用户设备的位置是已知的,所以确定单元210可以根据用户设备的位置信息确定用于特定时间期间的波束赋形的扫描区域。也就是说,用户设备位于确定的区域中。
根据本公开的实施例,电子设备200和辅发送设备可以利用波束向该区域发送数据信号。
根据本公开的实施例,电子设备200可以追踪用户设备的位置,并且当电子设备200确定用户设备发生移动时,可以根据移动后的位置重新 执行上述过程。即,确定单元210可以根据移动后的用户设备的位置信息重新确定用于特定时间期间的波束赋形的区域,通信单元220可以将与重新确定的区域相关联的信息发送至一个或多个辅发送设备,以用于一个或多个辅发送设备在特定时间期间向重新确定的区域发送波束信号,并且波束赋形单元230可以在特定时间期间向重新确定的区域发送波束信号。同样地,确定单元210重新确定的区域也是根据用户设备的移动后的位置确定的,后续的流程与前文中所述类似,在此不再赘述。
由此可见,根据本公开的实施例的电子设备200,可以根据用户的位置确定用于波束赋形的区域,从而使得电子设备200和辅发送设备同时向一个区域发送波束信号,以使得多个发送设备可以通过相互协作同时为一个用户设备提供服务。
由此可见,根据本公开的实施例,主发送设备可以确定用于波束赋形的区域并将与该区域相关联的信息发送至辅发送设备,从而使得主发送设备和辅发送设备同时向该区域发送波束信号,以实现波束间的同步。进一步,这样的过程有助于诸如定位、切换和CoMP的通信过程。
<3.辅发送设备的配置示例>
图13是示出根据本公开的实施例的无线通信系统中的用作辅发送设备的电子设备1300的结构的框图。该无线通信系统可以包括一个主发送设备以及一个或多个辅发送设备。如图13所示,电子设备1300可以包括通信单元1310和波束赋形单元1320。
这里,电子设备1300的各个单元都可以包括在处理电路中。需要说明的是,电子设备1300既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
此外,虽然图2和图13分别示出了主发送设备和辅发送设备的结构框图,但是图13所示的电子设备1300和图2所示的电子设备200都是发送设备,因此其结构是一致的。也就是说,当发送设备用作主发送设备时,其具备如图2所示的结构;当发送设备用作辅发送设备时,其具备如图13所示的结构(此时辅发送设备也具备确定单元和定位单元,但是未使用)。
根据本公开的实施例,通信单元1310可以从无线通信系统中的主发送设备接收与用于特定时间期间的波束赋形的区域相关联的信息。这里的主发送设备可以是前文中所述的电子设备200。
根据本公开的实施例,波束赋形单元1320可以在特定时间期间向该区域发送波束信号。这里,在特定时间期间主发送设备与电子设备1300同时向该扫描区域发送波束信号。
根据本公开的实施例,通信单元1310接收到的与区域相关联的信息包括区域的位置信息。
如图13所示,电子设备1300还可以包括计算单元1330,被配置为根据电子设备1300的位置信息和区域的位置信息确定针对电子设备1300的波束的功率信息。这里,计算单元1330计算功率信息的方式可以与电子设备200的计算单元240计算针对主发送设备和辅发送设备的波束的功率信息相同,在此不再赘述。
根据本公开的实施例,计算单元1330还可以根据电子设备200、无线通信系统中的其他辅发送设备、主发送设备和区域的位置信息以及电子设备1300的天线阵列的方向信息确定针对电子设备1300的波束的方向信息。同样地,计算单元1330计算方向信息的方式可以与电子设备200的计算单元240计算针对主发送设备和辅发送设备的波束的方向信息相同,在此不再赘述。
根据本公开的实施例,通信单元1310接收到的与区域相关联的信息还可以包括针对电子设备1300的波束的方向信息和功率信息。在这种情况下,通信单元1310可以向主发送设备发送电子设备1300的天线阵列的方向信息,以用于主发送设备计算针对电子设备1300的波束的方向信息和功率信息。
也就是说,根据本公开的实施例,计算针对辅发送设备的波束的方向信息和功率信息的主体可以是主发送设备,也可以是辅发送设备本身。主发送设备和辅发送设备计算方向信息和功率信息的方法是相同的。
根据本公开的实施例,波束赋形单元1320可以根据计算单元1330计算出的针对电子设备1300的波束的方向信息和功率信息,或者根据通信单元1310接收到的针对电子设备1300的波束的方向信息和功率信息,在特定时间期间向该区域发送波束信号。也就是说,波束赋形单元1320根据波束的方向信息确定发送波束的方向,并根据波束的功率信息确定发 送波束的功率。进一步,波束赋形单元1320需要在与主发送设备约定好的特定时间期间根据上述参数发送波束信号。
根据本公开的实施例,特定时间期间可以为下一个波束赋形周期。
根据本公开的实施例,通信单元1310可以从主发送设备接收指示信息,指示信息指示电子设备1300用作辅发送设备并且包括主发送设备和其他辅发送设备的识别信息。在这种情况下,主发送设备和辅发送设备是由发送设备确定的,该发送设备确定自己为主发送设备并可以选择作为辅发送设备的发送设备。
根据本公开的实施例,通信单元1310可以从无线通信系统中的基站设备接收指示信息,指示信息指示电子设备1300用作辅发送设备并且包括主发送设备和其他辅发送设备的识别信息。在这种情况下,主发送设备和辅发送设备是由基站设备确定的。
如图13所示,电子设备1300可以包括估计单元1340,用于估计电子设备1300与用户设备之间的链路质量。进一步,估计单元1340可以响应于来自用户设备的参考信号来估计电子设备1300与用户设备之间的链路质量。进一步,通信单元1310还可以将链路质量信息发送至基站设备,以用于基站设备根据链路质量信息确定主发送设备和一个或多个辅发送设备。
根据本公开的实施例的电子设备200可以作为某个用户设备的主发送设备,电子设备1300可以作为辅发送设备,因此在前文中描述的关于电子设备200的全部实施例都适用于此。
<4.用户设备的配置示例>
图14是示出根据本公开的实施例的无线通信系统中的用作用户设备的电子设备1400的结构的框图。该无线通信系统可以包括一个主发送设备以及一个或多个辅发送设备。如图14所示,电子设备1400可以包括通信单元1410和生成单元1420。
这里,电子设备1400的各个单元都可以包括在处理电路中。需要说明的是,电子设备1400既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,通信单元1410可以接收无线通信系统中的主发送设备与一个或多个辅发送设备在特定时间期间同时生成并发送的波束信号。
根据本公开的实施例,生成单元1420可以根据接收到的波束信号生成用于对电子设备1400进行定位的反馈信息。这里,电子设备1400在接收到波束信号以后可以进行各种处理。例如,当需要对电子设备1400进行定位时,生成单元1420可以根据接收到的波束信号生成反馈信息。进一步,如图14所示,电子设备1400还可以包括解调单元1430和/或切换单元1440。当用于CoMP传输时,解调单元1430可以对接收到的波束信号进行解调。当用于电子设备1400的切换过程时,切换单元1440可以根据接收到的波束信号来确定有效集、候选集和相邻集中的发送设备。
根据本公开的实施例的电子设备200可以作为电子设备1400的主发送设备,电子设备1300可以作为电子设备1400的辅发送设备,因此在前文中描述的关于电子设备200和电子设备1300的全部实施例都适用于此。
<5.方法实施例>
<5.1由主发送设备执行的方法流程图>
接下来将详细描述根据本公开实施例的由无线通信系统中的作为主发送设备的电子设备200执行的无线通信方法。
图15是示出根据本公开的实施例的由无线通信系统中的作为主发送设备的电子设备200执行的无线通信方法的流程图。
如图15所示,在步骤S1410中,确定用于特定时间期间的波束赋形的区域。
接下来,在步骤S1420中,将与该区域相关联的信息发送至无线通信系统中的一个或多个辅发送设备,以用于一个或多个辅发送设备在特定时间期间生成波束信号并向该区域发送波束信号。
接下来,在步骤S1430中,在特定时间期间与一个或多个辅发送设备同时生成波束信号并向该区域发送波束信号。
优选地,与区域相关联的信息包括区域的位置信息,位置信息用于所述一个或多个辅发送设备确定波束的方向信息和功率信息。
优选地,与区域相关联的信息包括针对一个或多个辅发送设备中的 每个辅发送设备的波束的方向信息和功率信息。
优选地,方法还包括:根据每个辅发送设备的位置信息和区域的位置信息确定针对每个辅发送设备的波束的功率信息。
优选地,方法还包括:根据电子设备、一个或多个辅发送设备和区域的位置信息以及一个或多个辅发送设备的天线阵列的方向信息确定针对每个辅发送设备的波束的方向信息。
优选地,方法还包括:从一个或多个辅发送设备中的每个辅发送设备接收辅发送设备的天线阵列的方向信息。
优选地,方法还包括:确定针对电子设备的波束的方向信息和功率信息;以及根据方向信息和功率信息在特定时间期间生成波束信号。
优选地,方法还包括:从用户设备接收对电子设备和一个或多个辅发送设备发送的波束信号的反馈信息;以及根据反馈信息对用户设备进行定位。
优选地,方法还包括:设置定时器,在定时器期满没有收到来自用户设备对电子设备和一个或多个辅发送设备发送的波束信号的反馈信息的情况下,执行以下操作:重新确定用于特定时间期间的波束赋形的区域;将与重新确定的区域相关联的信息发送至一个或多个辅发送设备;以及在特定时间期间生成波束信号并向重新确定的区域发送波束信号。
优选地,特定时间期间为下一个波束赋形周期。
优选地,方法还包括:从无线通信系统中的基站设备接收指示信息,指示信息用于指示电子设备用作主发送设备并且包括一个或多个辅发送设备的识别信息。
优选地,方法还包括:估计电子设备与用户设备之间的链路质量;以及将链路质量信息发送至基站设备,以用于基站设备根据链路质量信息确定主发送设备和一个或多个辅发送设备。
优选地,方法还包括:向用户设备发送电子设备和一个或多个辅发送设备的识别信息,以用于用户设备对来自电子设备和一个或多个辅发送设备的信息进行检测。
优选地,方法还包括:根据用户设备的位置信息确定用于特定时间期间的波束赋形的扫描区域。
优选地,方法还包括:确定用户设备发生移动时,执行以下操作: 根据移动后的用户设备的位置信息重新确定用于特定时间期间的波束赋形的区域;将与重新确定的区域相关联的信息发送至一个或多个辅发送设备,以用于一个或多个辅发送设备在特定时间期间生成波束信号并向重新确定的区域发送波束信号;以及在特定时间期间生成波束信号并向重新确定的区域发送波束信号。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备200,因此前文中关于电子设备200的全部实施例均适用于此。
<5.2对用户设备进行定位的方法流程图>
图16是示出根据本公开的实施例的对用户设备进行定位的方法流程图。
如图16所示,在步骤S1510中,无线通信系统中的主发送设备确定用于特定时间期间的波束赋形的区域。接下来,在步骤S1520中,主发送设备将与该区域相关联的信息发送至一个或多个辅发送设备。这里,可以采用前文中所述的任意一种方法来确定无线通信系统中的主发送设备以及一个或多个辅发送设备,并且与该区域相关联的信息也可以是前文中所述的任意一种信息。接下来,在步骤S1530中,主发送设备和辅发送设备在特定时间期间同时向该区域发送波束信号。根据本公开的实施例,主发送设备可以设置定时器,并在步骤S1540中判断在定时器期满前是否收到来自用户设备的反馈信息。这里,如果用户设备位于该区域中,那么会接收到来自主发送设备和辅发送设备的信息,并根据接收到的信息生成反馈信息发送至主发送设备;如果用户设备没有位于该区域中,那么不会接收到来自主发送设备和辅发送设备的信息,那么主发送设备也就不会收到反馈信息。接下来,如果在步骤S1540中主发送设备在定时器期满前接收到了反馈信息,那么在步骤S1550中,主发送设备可以利用反馈信息对用户设备进行定位。这里,定位的方法可以包括但不限于TDOA算法。接下来,如果在步骤S1540中主发送设备在定时器期满前没有接收到反馈信息,那么返回步骤S1510。此时,主发送设备重新确定用于特定时间期间的波束赋形的扫描区域,重新确定的区域与前一次确定的区域为不重合的区域,并且此时的特定时间期间可以为下一个波束赋形周期。
如图16所示,主发送设备可以改变用于波束赋形的区域(即扫描区 域)直到扫描到用户设备为止。这样一来,用户设备可以收到主发送设备和辅发送设备通过波束同时发送的波束信号,从而可以利用各种定位方法实现对用户设备的定位。
<5.3用户设备的切换的方法流程图>
图17是示出根据本公开的实施例的用于用户设备的切换的方法流程图。
如图17所示,在步骤S1610中,无线通信系统中的主发送设备确定用于特定时间期间的波束赋形的区域。这里,由于用户设备的地理位置是已知的,所以主发送设备可以根据用户设备的位置信息来确定该区域,即,用户设备位于用于波束赋形的区域中。接下来,在步骤S1620中,主发送设备将与该区域相关联的信息发送至一个或多个辅发送设备。这里,可以采用前文中所述的任意一种方法来确定无线通信系统中的主发送设备以及一个或多个辅发送设备,并且与该区域相关联的信息也可以是前文中所述的任意一种信息。接下来,在步骤S1630中,主发送设备和辅发送设备在特定时间期间同时向该区域发送波束信号。根据本公开的实施例,由于用户设备位于该区域中,所以用户设备可以接收到来自主发送设备和辅发送设备的波束信号。接下来,在步骤S1640中,用户设备可以根据对接收到的波束信号进行测量从而确定切换相关的集合,包括但不限于有效集、候选集和相邻集。接下来,在步骤S1650中,用户设备可以判断主发送设备的信号功率是否是有效集中最强的。如果在步骤S1650中确定主发送设备的信号功率不是有效集中最强的,那么在步骤S1660中,可以将有效集中功率最强的发送设备重新确定为新的主发送设备,并将有效集中其它发送设备以及候选集和相邻集中的发送设备确定为新的辅发送设备。如果在步骤S1650中确定主发送设备的信号功率仍然是有效集中最强的,那么在步骤S1670中,不会改变主发送设备,并且主发送设备追踪用户设备的位置。接下来,在步骤S1680中,主发送设备可以判断用户设备的位置是否发生变化。如果在步骤S1680中确定用户设备的位置发生变化,则主发送设备可以根据用户设备变化后的位置重新确定用于波束赋形的区域并从步骤S1610开始重新执行根据本公开的方法。如果在步骤S1680中确定用户设备的位置没有发生变化,则返回步骤S1670继续追踪用户设备的位置,直到用户设备的位置发送变化为止。
如图17所示,主发送设备可以根据用户设备的位置确定用于波束赋 形的区域,并且主发送设备和辅发送设备可以利用波束同时向用户设备发送波束信号,从而用户设备可以利用这些信号确定与切换相关的集合,协助执行切换过程。这样一来,确定出的与切换相关的集合更加精确,从而使得用户设备的切换更加精确有效。
<5.4 CoMP传输的方法流程图>
图18是示出根据本公开的实施例的用于CoMP传输的方法流程图。
如图18所示,在步骤S1710中,无线通信系统中的主发送设备确定用于特定时间期间的波束赋形的区域。这里,由于用户设备的地理位置是已知的,所以主发送设备可以根据用户设备的位置信息来确定该区域,即,用户设备位于该区域中。接下来,在步骤S1720中,主发送设备将与该区域相关联的信息发送至一个或多个辅发送设备。这里,可以采用前文中所述的任意一种方法来确定无线通信系统中的主发送设备以及一个或多个辅发送设备,并且与该区域相关联的信息也可以是前文中所述的任意一种信息。接下来,在步骤S1730中,主发送设备和辅发送设备在特定时间期间同时向该区域发送波束信号。根据本公开的实施例,由于用户设备位于该区域中,所以用户设备可以接收到来自主发送设备和辅发送设备的波束信号。接下来,在步骤S1740中,用户设备对来自主发送设备和辅发送设备的波束信号进行解调,从而实现CoMP传输。接下来,在步骤S1750中,主发送设备可以追踪用户设备的位置。接下来,在步骤S1760中,主发送设备可以判断用户设备的位置是否发生变化。如果在步骤S1760中确定用户设备的位置发生变化,则主发送设备可以根据用户设备变化后的位置重新确定用于波束赋形的区域并从步骤S1710开始重新执行根据本公开的方法。如果在步骤S1760中确定用户设备的位置没有发生变化,则返回步骤S1750继续追踪用户设备的位置,直到用户设备的位置发送变化为止。
如图18所示,主发送设备可以根据用户设备的位置确定用于波束赋形的区域,并且主发送设备和辅发送设备可以利用波束同时向用户设备发送波束信号,从而实现利用波束的CoMP传输。这样一来,用户设备接收到的信息是主发送设备和辅发送设备同时发送的,不会因为用户设备的位置的改变而导致信息丢失。
以上详述了根据本公开的实施例的方案应用于定位、切换和CoMP 传输等应用的方法流程,但是本公开并不限于此,本公开可以应用于所有需要利用波束同时发送信息的场景。
<5.5由辅发送设备执行的方法流程图>
图19是示出根据本公开的实施例的由无线通信系统中的作为辅发送设备的电子设备1300执行的无线通信方法的流程图。
如图19所示,在步骤S1810中,从无线通信系统中的主发送设备接收与用于特定时间期间的波束赋形的区域相关联的信息。
接下来,在步骤S1820中,在特定时间期间生成波束信号并向该区域发送波束信号。
这里,在特定时间期间主发送设备与电子设备同时生成波束信号并向该区域发送波束信号。
优选地,与该区域相关联的信息包括该区域的位置信息。
优选地,方法还包括:根据电子设备的位置信息和该区域的位置信息确定针对电子设备的波束的功率信息。
优选地,方法还包括:根据电子设备、无线通信系统中的其他辅发送设备、主发送设备和该区域的位置信息以及电子设备的天线阵列的方向信息确定针对电子设备的波束的方向信息。
优选地,与该区域相关联的信息包括针对电子设备的波束的方向信息和功率信息。
优选地,方法还包括:向主发送设备发送电子设备的天线阵列的方向信息。
优选地,特定时间期间为下一个波束赋形周期。
优选地,方法还包括:从主发送设备接收指示信息,指示信息指示电子设备用作辅发送设备并且包括主发送设备和其他辅发送设备的识别信息。
优选地,方法还包括:从无线通信系统中的基站设备接收指示信息,指示信息指示电子设备用作辅发送设备并且包括主发送设备和其他辅发送设备的识别信息。
优选地,方法还包括:估计电子设备与用户设备之间的链路质量; 以及将链路质量信息发送至基站设备,以用于基站设备根据链路质量信息确定主发送设备和一个或多个辅发送设备。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备1300,因此前文中关于电子设备1300的全部实施例均适用于此。
<6.应用示例>
本公开内容的技术能够应用于各种产品。例如,主发送设备和辅发送设备可以被实现为任何类型的TRP。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。在典型的示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。进一步,TRP可以具备与如下所述的基站设备类似的结构,也可以仅具备基站设备中与发送和接收信息相关的结构。
基站设备可以被实现为任何类型的eNB,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G系统中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图20是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1900包括一个或多个天线1910以及基站设备1920。 基站设备1920和每个天线1910可以经由RF线缆彼此连接。
天线1910中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1920发送和接收无线信号。如图20所示,eNB 1900可以包括多个天线1910。例如,多个天线1910可以与eNB 1900使用的多个频带兼容。虽然图20示出其中eNB 1900包括多个天线1910的示例,但是eNB 1900也可以包括单个天线1910。
基站设备1920包括控制器1921、存储器1922、网络接口1923以及无线通信接口1925。
控制器1921可以为例如CPU或DSP,并且操作基站设备1920的较高层的各种功能。例如,控制器1921根据由无线通信接口1925处理的信号中的数据来生成数据分组,并经由网络接口1923来传递所生成的分组。控制器1921可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1921可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1922包括RAM和ROM,并且存储由控制器1921执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1923为用于将基站设备1920连接至核心网1924的通信接口。控制器1921可以经由网络接口1923而与核心网节点或另外的eNB进行通信。在此情况下,eNB1900与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1923还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1923为无线通信接口,则与由无线通信接口1925使用的频带相比,网络接口1923可以使用较高频带用于无线通信。
无线通信接口1925支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1910来提供到位于eNB 1900的小区中的终端的无线连接。无线通信接口1925通常可以包括例如基带(BB)处理器1926和RF电路1927。BB处理器1926可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1921,BB处理器1926可以具有上述逻辑功能的一部分或全部。BB处理器1926可以为存储通信控制程序的存储器,或者为 包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1926的功能改变。该模块可以为插入到基站设备1920的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1927可以包括例如混频器、滤波器和放大器,并且经由天线1910来传送和接收无线信号。
如图20所示,无线通信接口1925可以包括多个BB处理器1926。例如,多个BB处理器1926可以与eNB 1900使用的多个频带兼容。如图20所示,无线通信接口1925可以包括多个RF电路1927。例如,多个RF电路1927可以与多个天线元件兼容。虽然图20示出其中无线通信接口1925包括多个BB处理器1926和多个RF电路1927的示例,但是无线通信接口1925也可以包括单个BB处理器1926或单个RF电路1927。
(第二应用示例)
图21是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 2030包括一个或多个天线2040、基站设备2050和RRH 2060。RRH 2060和每个天线2040可以经由RF线缆而彼此连接。基站设备2050和RRH 2060可以经由诸如光纤线缆的高速线路而彼此连接。
天线2040中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 2060发送和接收无线信号。如图21所示,eNB 2030可以包括多个天线2040。例如,多个天线2040可以与eNB 2030使用的多个频带兼容。虽然图21示出其中eNB 2030包括多个天线2040的示例,但是eNB 2030也可以包括单个天线2040。
基站设备2050包括控制器2051、存储器2052、网络接口2053、无线通信接口2055以及连接接口2057。控制器2051、存储器2052和网络接口2053与参照图20描述的控制器1921、存储器1922和网络接口1923相同。
无线通信接口2055支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 2060和天线2040来提供到位于与RRH 2060对应的扇区中的终端的无线通信。无线通信接口2055通常可以包括例如BB处理器2056。除了BB处理器2056经由连接接口2057连接到RRH 2060的RF电路2064之外,BB处理器2056与参照图20描述的BB处理器1926 相同。如图21所示,无线通信接口2055可以包括多个BB处理器2056。例如,多个BB处理器2056可以与eNB 2030使用的多个频带兼容。虽然图20示出其中无线通信接口2055包括多个BB处理器2056的示例,但是无线通信接口2055也可以包括单个BB处理器2056。
连接接口2057为用于将基站设备2050(无线通信接口2055)连接至RRH 2060的接口。连接接口2057还可以为用于将基站设备2050(无线通信接口2055)连接至RRH 2060的上述高速线路中的通信的通信模块。
RRH 2060包括连接接口2061和无线通信接口2063。
连接接口2061为用于将RRH 2060(无线通信接口2063)连接至基站设备2050的接口。连接接口2061还可以为用于上述高速线路中的通信的通信模块。
无线通信接口2063经由天线2040来传送和接收无线信号。无线通信接口2063通常可以包括例如RF电路2064。RF电路2064可以包括例如混频器、滤波器和放大器,并且经由天线2040来传送和接收无线信号。如图21所示,无线通信接口2063可以包括多个RF电路2064。例如,多个RF电路2064可以支持多个天线元件。虽然图21示出其中无线通信接口2063包括多个RF电路2064的示例,但是无线通信接口2063也可以包括单个RF电路2064。
[关于终端设备的应用示例]
(第一应用示例)
图22是示出可以应用本公开内容的技术的智能电话2200的示意性配置的示例的框图。智能电话2200包括处理器2201、存储器2202、存储装置2203、外部连接接口2204、摄像装置2206、传感器2207、麦克风2208、输入装置2209、显示装置2210、扬声器2211、无线通信接口2212、一个或多个天线开关2215、一个或多个天线2216、总线2217、电池2218以及辅助控制器2219。
处理器2201可以为例如CPU或片上系统(SoC),并且控制智能电话2200的应用层和另外层的功能。存储器2202包括RAM和ROM,并且存储数据和由处理器2201执行的程序。存储装置2203可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2204为用于将外部装置(诸 如存储卡和通用串行总线(USB)装置)连接至智能电话2200的接口。
摄像装置2206包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2207可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2208将输入到智能电话2200的声音转换为音频信号。输入装置2209包括例如被配置为检测显示装置2210的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2210包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2200的输出图像。扬声器2211将从智能电话2200输出的音频信号转换为声音。
无线通信接口2212支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2212通常可以包括例如BB处理器2213和RF电路2214。BB处理器2213可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2214可以包括例如混频器、滤波器和放大器,并且经由天线2216来传送和接收无线信号。无线通信接口2212可以为其上集成有BB处理器2213和RF电路2214的一个芯片模块。如图22所示,无线通信接口2212可以包括多个BB处理器2213和多个RF电路2214。虽然图22示出其中无线通信接口2212包括多个BB处理器2213和多个RF电路2214的示例,但是无线通信接口2212也可以包括单个BB处理器2213或单个RF电路2214。
此外,除了蜂窝通信方案之外,无线通信接口2212可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2212可以包括针对每种无线通信方案的BB处理器2213和RF电路2214。
天线开关2215中的每一个在包括在无线通信接口2212中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2216的连接目的地。
天线2216中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2212传送和接收无线信号。如图22所示,智能电话2200可以包括多个天线2216。虽然图22示出其中智能电话2200包括多个天线2216的示例,但是智能电话2200也可以包括单个天线2216。
此外,智能电话2200可以包括针对每种无线通信方案的天线2216。在此情况下,天线开关2215可以从智能电话2200的配置中省略。
总线2217将处理器2201、存储器2202、存储装置2203、外部连接接口2204、摄像装置2206、传感器2207、麦克风2208、输入装置2209、显示装置2210、扬声器2211、无线通信接口2212以及辅助控制器2219彼此连接。电池2218经由馈线向图22所示的智能电话2200的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2219例如在睡眠模式下操作智能电话2200的最小必需功能。
在图22所示的智能电话2200中,通过使用图14所描述的生成单元1420、解调单元1430和切换单元1440可以由处理器2201或辅助控制器2219实现。功能的至少一部分也可以由处理器2201或辅助控制器2219实现。例如,处理器2201或辅助控制器2219可以通过执行存储器2202或存储装置2203中存储的指令而执行生成反馈信息、解调数据和确定与切换相关的集合的功能。
(第二应用示例)
图23是示出可以应用本公开内容的技术的汽车导航设备2320的示意性配置的示例的框图。汽车导航设备2320包括处理器2321、存储器2322、全球定位系统(GPS)模块2324、传感器2325、数据接口2326、内容播放器2327、存储介质接口2328、输入装置2329、显示装置2330、扬声器2331、无线通信接口2333、一个或多个天线开关2336、一个或多个天线2337以及电池2338。
处理器2321可以为例如CPU或SoC,并且控制汽车导航设备2320的导航功能和另外的功能。存储器2322包括RAM和ROM,并且存储数据和由处理器2321执行的程序。
GPS模块2324使用从GPS卫星接收的GPS信号来测量汽车导航设备2320的位置(诸如纬度、经度和高度)。传感器2325可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2326经由未示出的终端而连接到例如车载网络2341,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2327再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2328中。输入装置2329包括例如被配置为检测显示装置2330的屏幕上的触摸的触摸传感器、按钮或开关, 并且接收从用户输入的操作或信息。显示装置2330包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2331输出导航功能的声音或再现的内容。
无线通信接口2333支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2333通常可以包括例如BB处理器2334和RF电路2335。BB处理器2334可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2335可以包括例如混频器、滤波器和放大器,并且经由天线2337来传送和接收无线信号。无线通信接口2333还可以为其上集成有BB处理器2334和RF电路2335的一个芯片模块。如图23所示,无线通信接口2333可以包括多个BB处理器2334和多个RF电路2335。虽然图23示出其中无线通信接口2333包括多个BB处理器2334和多个RF电路2335的示例,但是无线通信接口2333也可以包括单个BB处理器2334或单个RF电路2335。
此外,除了蜂窝通信方案之外,无线通信接口2333可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2333可以包括BB处理器2334和RF电路2335。
天线开关2336中的每一个在包括在无线通信接口2333中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2337的连接目的地。
天线2337中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2333传送和接收无线信号。如图23所示,汽车导航设备2320可以包括多个天线2337。虽然图23示出其中汽车导航设备2320包括多个天线2337的示例,但是汽车导航设备2320也可以包括单个天线2337。
此外,汽车导航设备2320可以包括针对每种无线通信方案的天线2537。在此情况下,天线开关2336可以从汽车导航设备2320的配置中省略。
电池2338经由馈线向图23所示的汽车导航设备2320的各个块提供电力,馈线在图中被部分地示为虚线。电池2338累积从车辆提供的电力。
在图23示出的汽车导航设备2320中,通过使用图14所描述的生成 单元1420、解调单元1430和切换单元1440可以由处理器2321实现。功能的至少一部分也可以由处理器2321实现。例如,处理器2321可以通过执行存储器2322中存储的指令而执行生成反馈信息、解调数据和确定与切换相关的集合的功能。
本公开内容的技术也可以被实现为包括汽车导航设备2320、车载网络2341以及车辆模块2342中的一个或多个块的车载系统(或车辆)2340。车辆模块2342生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2341。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (29)

  1. 一种用作无线通信系统中的主发送设备的电子设备,包括处理电路,被配置为:
    确定用于特定时间期间的波束赋形的区域;
    将与所述区域相关联的信息发送至所述无线通信系统中的一个或多个辅发送设备,以用于所述一个或多个辅发送设备在所述特定时间期间生成波束信号并向所述区域发送所述波束信号;以及
    在所述特定时间期间与所述一个或多个辅发送设备同时生成波束信号并向所述区域发送所述波束信号。
  2. 根据权利要求1所述的电子设备,其中,与所述区域相关联的信息包括所述区域的位置信息,所述位置信息用于所述一个或多个辅发送设备确定波束的方向信息和功率信息。
  3. 根据权利要求1所述的电子设备,其中,与所述区域相关联的信息包括针对所述一个或多个辅发送设备中的每个辅发送设备的波束的方向信息和功率信息。
  4. 根据权利要求3所述的电子设备,其中,所述处理电路还被配置为:
    根据每个辅发送设备的位置信息和所述区域的位置信息确定针对每个辅发送设备的波束的功率信息。
  5. 根据权利要求3所述的电子设备,其中,所述处理电路还被配置为:
    根据所述电子设备、所述一个或多个辅发送设备和所述区域的位置信息以及所述一个或多个辅发送设备的天线阵列的方向信息确定针对每个辅发送设备的波束的方向信息。
  6. 根据权利要求5所述的电子设备,其中,所述处理电路还被配置为:
    从所述一个或多个辅发送设备中的每个辅发送设备接收所述辅发送设备的天线阵列的方向信息。
  7. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置 为:
    确定针对所述电子设备的波束的方向信息和功率信息;以及
    根据所述方向信息和功率信息在所述特定时间期间生成波束信号。
  8. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    从用户设备接收对所述电子设备和所述一个或多个辅发送设备发送的波束信号的反馈信息;以及
    根据所述反馈信息对所述用户设备进行定位。
  9. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    设置定时器,在所述定时器期满没有收到来自用户设备对所述电子设备和所述一个或多个辅发送设备发送的波束信号的反馈信息的情况下,执行以下操作:
    重新确定用于特定时间期间的波束赋形的区域;
    将与重新确定的区域相关联的信息发送至所述一个或多个辅发送设备;以及
    在所述特定时间期间生成波束信号并向重新确定的区域发送所述波束信号。
  10. 根据权利要求1所述的电子设备,其中,所述特定时间期间为下一个波束赋形周期。
  11. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    从所述无线通信系统中的基站设备接收指示信息,所述指示信息用于指示所述电子设备用作主发送设备并且包括所述一个或多个辅发送设备的识别信息。
  12. 根据权利要求11所述的电子设备,其中,所述处理电路还被配置为:
    估计所述电子设备与用户设备之间的链路质量;以及
    将链路质量信息发送至所述基站设备,以用于所述基站设备根据所述链路质量信息确定所述主发送设备和一个或多个辅发送设备。
  13. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    向用户设备发送所述电子设备和所述一个或多个辅发送设备的识别信息,以用于所述用户设备对来自所述电子设备和所述一个或多个辅发送设备的波束信号进行检测。
  14. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    根据用户设备的位置信息确定用于特定时间期间的波束赋形的区域。
  15. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为:
    确定所述用户设备发生移动时,执行以下操作:
    根据移动后的用户设备的位置信息重新确定用于特定时间期间的波束赋形的区域;
    将与重新确定的区域相关联的信息发送至所述一个或多个辅发送设备,以用于所述一个或多个辅发送设备在所述特定时间期间生成波束信号并向重新确定的区域发送所述波束信号;以及
    在所述特定时间期间生成波束信号并向重新确定的区域发送所述波束信号。
  16. 一种用作无线通信系统中的辅发送设备的电子设备,包括处理电路,被配置为:
    从所述无线通信系统中的主发送设备接收与用于特定时间期间的波束赋形的区域相关联的信息;以及
    在所述特定时间期间生成波束信号并向所述区域发送所述波束信号,
    其中,在所述特定时间期间所述主发送设备与所述电子设备同时生成波束信号并向所述区域发送所述波束信号。
  17. 根据权利要求16所述的电子设备,其中,与所述区域相关联的信息包括所述区域的位置信息。
  18. 根据权利要求17所述的电子设备,其中,所述处理电路还被配置为:
    根据所述电子设备的位置信息和所述区域的位置信息确定针对所述 电子设备的波束的功率信息。
  19. 根据权利要求17所述的电子设备,其中,所述处理电路还被配置为:
    根据所述电子设备、所述无线通信系统中的其他辅发送设备、所述主发送设备和所述区域的位置信息以及所述电子设备的天线阵列的方向信息确定针对所述电子设备的波束的方向信息。
  20. 根据权利要求16所述的电子设备,其中,与所述区域相关联的信息包括针对所述电子设备的波束的方向信息和功率信息。
  21. 根据权利要求20所述的电子设备,其中,所述处理电路还被配置为:
    向所述主发送设备发送所述电子设备的天线阵列的方向信息。
  22. 根据权利要求16所述的电子设备,其中,所述特定时间期间为下一个波束赋形周期。
  23. 根据权利要求16所述的电子设备,其中,所述处理电路还被配置为:
    从所述主发送设备接收指示信息,所述指示信息指示所述电子设备用作辅发送设备并且包括所述主发送设备和其他辅发送设备的识别信息。
  24. 根据权利要求16所述的电子设备,其中,所述处理电路还被配置为:
    从所述无线通信系统中的基站设备接收指示信息,所述指示信息指示所述电子设备用作辅发送设备并且包括所述主发送设备和其他辅发送设备的识别信息。
  25. 根据权利要求24所述的电子设备,其中,所述处理电路还被配置为:
    估计所述电子设备与用户设备之间的链路质量;以及
    将链路质量信息发送至所述基站设备,以用于所述基站设备根据所述链路质量信息确定所述主发送设备和一个或多个辅发送设备。
  26. 一种无线通信系统中的电子设备,包括处理电路,被配置为:
    接收所述无线通信系统中的主发送设备,以及一个或多个辅发送设备在特定时间期间同时生成并发送的波束信号;以及
    根据接收到的波束信号生成用于对所述电子设备进行定位的反馈信息。
  27. 一种由无线通信系统中的作为主发送设备的电子设备执行的无线通信方法,包括:
    确定用于特定时间期间的波束赋形的区域;
    将与所述区域相关联的信息发送至所述无线通信系统中的一个或多个辅发送设备,以用于所述一个或多个辅发送设备在所述特定时间期间生成波束信号并向所述区域发送所述波束信号;以及
    在所述特定时间期间与所述一个或多个辅发送设备同时生成波束信号并向所述区域发送所述波束信号。
  28. 一种由无线通信系统中的作为辅发送设备的电子设备执行的无线通信方法,包括:
    从所述无线通信系统中的主发送设备接收与用于特定时间期间的波束赋形的区域相关联的信息;以及
    在所述特定时间期间生成波束信号并向所述区域发送所述波束信号,
    其中,在所述特定时间期间所述主发送设备与所述电子设备同时生成波束信号并向所述区域发送所述波束信号。
  29. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求27或28所述的无线通信方法。
PCT/CN2018/116903 2017-11-29 2018-11-22 无线通信系统中的电子设备、方法和计算机可读存储介质 WO2019105272A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880048591.6A CN111095813B (zh) 2017-11-29 2018-11-22 无线通信系统中的电子设备、方法和计算机可读存储介质
EP18883896.5A EP3709530A4 (en) 2017-11-29 2018-11-22 ELECTRONIC DEVICE IN A WIRELESS COMMUNICATION SYSTEM, METHOD, AND COMPUTER READABLE INFORMATION MEDIA
US16/638,753 US10911117B2 (en) 2017-11-29 2018-11-22 Electronic device in wireless communication system, method, and computer readable storage medium
KR1020207011344A KR20200092313A (ko) 2017-11-29 2018-11-22 무선 통신 시스템에서의 전자 디바이스, 방법, 및 컴퓨터 판독가능 저장 매체
JP2020511207A JP7230905B2 (ja) 2017-11-29 2018-11-22 無線通信システムにおける電子機器、方法及びコンピューター読み取り可能な記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711227563.4 2017-11-29
CN201711227563.4A CN109842437A (zh) 2017-11-29 2017-11-29 无线通信系统中的电子设备、方法和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2019105272A1 true WO2019105272A1 (zh) 2019-06-06

Family

ID=66665401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116903 WO2019105272A1 (zh) 2017-11-29 2018-11-22 无线通信系统中的电子设备、方法和计算机可读存储介质

Country Status (6)

Country Link
US (1) US10911117B2 (zh)
EP (1) EP3709530A4 (zh)
JP (1) JP7230905B2 (zh)
KR (1) KR20200092313A (zh)
CN (2) CN109842437A (zh)
WO (1) WO2019105272A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11076324B2 (en) * 2019-07-10 2021-07-27 At&T Intellectual Property I, L.P. Network assisted beam selection for handover in 5G or other next generation wireless communication systems
CN110517470B (zh) * 2019-07-12 2020-11-17 华为技术有限公司 一种远程控制方法、设备和系统
JP2023509044A (ja) * 2019-12-31 2023-03-06 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 測位方法、装置、およびシステム
CN113346917A (zh) * 2020-02-18 2021-09-03 索尼公司 电子设备、无线通信方法和计算机可读存储介质
CN114520679B (zh) * 2020-11-20 2023-02-21 北京佰才邦技术股份有限公司 卫星波束使用方法、卫星通信设备和终端
CN114389675B (zh) * 2021-12-24 2022-09-20 军事科学院系统工程研究院网络信息研究所 一种多星多波束联合赋形覆盖区设计方法
WO2023172721A1 (en) * 2022-03-10 2023-09-14 Kyocera Corporation Beam selection based on user equipment device heading

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011054768A1 (en) * 2009-11-03 2011-05-12 Alcatel Lucent Method for improving the quality of service of a cellular telecommunication network
CN103298098A (zh) * 2012-02-24 2013-09-11 中兴通讯股份有限公司 多基站协作中调整数据同步的方法及系统
CN105493547A (zh) * 2013-08-20 2016-04-13 株式会社Ntt都科摩 同步信号发送方法以及基站装置
CN107219518A (zh) * 2017-06-19 2017-09-29 韦震 低慢小无人机航迹测量系统及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3260991B2 (ja) * 1994-12-22 2002-02-25 京セラ株式会社 セルラー電話における移動局の現在位置検出サービス方式
DE10141392A1 (de) * 2001-08-23 2003-03-06 Siemens Ag Verfahren zum Steuern der Strahlformung in einem Mobilfunk-Kommunikationssystem, Handover-Verfahren und Basisstation dafür
US9088901B2 (en) * 2010-02-11 2015-07-21 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement in a wireless communication system
KR101884332B1 (ko) * 2011-09-14 2018-08-01 삼성전자주식회사 무선통신 시스템에서 가상 셀 형성 방법 및 장치
WO2015004895A1 (ja) * 2013-07-10 2015-01-15 日本電気株式会社 無線通信システム、基地局および制御方法
JP2017118462A (ja) * 2015-12-25 2017-06-29 富士通株式会社 無線通信システムおよび基地局
US10743272B2 (en) * 2016-02-16 2020-08-11 Cable Television Laboratories, Inc. Coordinated beamforming
US10405366B1 (en) * 2016-09-28 2019-09-03 Amazon Technologies, Inc. Coordinated beamforming

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011054768A1 (en) * 2009-11-03 2011-05-12 Alcatel Lucent Method for improving the quality of service of a cellular telecommunication network
CN103298098A (zh) * 2012-02-24 2013-09-11 中兴通讯股份有限公司 多基站协作中调整数据同步的方法及系统
CN105493547A (zh) * 2013-08-20 2016-04-13 株式会社Ntt都科摩 同步信号发送方法以及基站装置
CN107219518A (zh) * 2017-06-19 2017-09-29 韦震 低慢小无人机航迹测量系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3709530A4

Also Published As

Publication number Publication date
EP3709530A1 (en) 2020-09-16
CN111095813A (zh) 2020-05-01
CN109842437A (zh) 2019-06-04
EP3709530A4 (en) 2021-01-13
US10911117B2 (en) 2021-02-02
KR20200092313A (ko) 2020-08-03
JP2021504986A (ja) 2021-02-15
US20200336184A1 (en) 2020-10-22
JP7230905B2 (ja) 2023-03-01
CN111095813B (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
WO2019105272A1 (zh) 无线通信系统中的电子设备、方法和计算机可读存储介质
US11528647B2 (en) Device and method for measuring a channel state
AU2018287868A1 (en) Electronic device and method for wireless communication system, and storage medium
WO2019237998A1 (zh) 电子设备、用户设备、无线通信方法和存储介质
US10454539B2 (en) Beamforming device for providing weight sets
RU2739588C2 (ru) Оконечное устройство, базовая станция, способ и носитель информации
US10383050B2 (en) Apparatus for selecting a cell in a directional beam network
US10897296B2 (en) Terminal apparatus, base station, method and recording medium
US11251852B2 (en) Device for calculating a received quality of reference signal
WO2019242537A1 (zh) 电子设备、用户设备、无线通信方法和存储介质
WO2018166368A1 (zh) 用于无线通信的电子设备和方法
WO2016121252A1 (ja) 装置及び方法
WO2021164675A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
JP6992743B2 (ja) 通信制御装置、端末装置、方法及びプログラム
CN111295848A (zh) 通信设备、通信方法和程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511207

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018883896

Country of ref document: EP

Effective date: 20200611