WO2019104878A1 - 一种回旋加速器中利用一次谐波调节粒子轨道对中的方法 - Google Patents

一种回旋加速器中利用一次谐波调节粒子轨道对中的方法 Download PDF

Info

Publication number
WO2019104878A1
WO2019104878A1 PCT/CN2018/076125 CN2018076125W WO2019104878A1 WO 2019104878 A1 WO2019104878 A1 WO 2019104878A1 CN 2018076125 W CN2018076125 W CN 2018076125W WO 2019104878 A1 WO2019104878 A1 WO 2019104878A1
Authority
WO
WIPO (PCT)
Prior art keywords
coils
harmonic
pair
coil
independent
Prior art date
Application number
PCT/CN2018/076125
Other languages
English (en)
French (fr)
Inventor
宋云涛
丁开忠
葛剑
周凯
陈永华
李君君
冯汉升
裴坤
周健
王重
陈馨宇
Original Assignee
合肥中科离子医学技术装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥中科离子医学技术装备有限公司 filed Critical 合肥中科离子医学技术装备有限公司
Priority to US16/207,216 priority Critical patent/US10375815B2/en
Publication of WO2019104878A1 publication Critical patent/WO2019104878A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/005Cyclotrons

Definitions

  • the invention belongs to the technical field of cyclotrons, and in particular relates to a method for adjusting particle orbital alignment, and more particularly to a method for adjusting particle orbit alignment by using a first harmonic in a cyclotron.
  • Orbital alignment is a very important indicator in the design of the accelerator center. Because the equilibrium orbit of a particle is usually symmetrical about the center of the circle, if the acceleration orbit is not well centered, the particle will deviate too far from the equilibrium orbit during acceleration, resulting in a large increase in radial amplitude. If the radial amplitude is too large and exceeds the radial acceptance of the corresponding equilibrium track, the particles may even be lost.
  • the method optimizes the particle alignment by adjusting the geometry of the DEE plate, changing the ion source position (inside the ion source), adjusting the parameters of the deflector (the external ion source), and these methods depend on the center.
  • the accuracy of the design of the district depends on the experience and level of the designer, and it cannot be adjusted in real time during the commissioning operation.
  • the adjustment method is not flexible enough.
  • an object of the present invention is to provide a method for adjusting a particle orbit alignment by using a first harmonic in a cyclotron, and setting a plurality of coils in the central region according to the characteristics of the overall displacement of the track caused by the first harmonic. Adjusting the current magnitude and direction of the coil to construct a first harmonic with a suitable amplitude and phase, so that the particle trajectory is entirely offset, thereby adjusting the trajectory alignment.
  • a method for adjusting particle orbit alignment using a first harmonic in a cyclotron includes the following steps:
  • Step 1 Place eight identical coils in the vicinity of the extreme point of the cyclotron magnetic field, and cover the coil near the extreme point;
  • Step 2 dividing the eight coils into four pairs of coils, wherein the first pair of coils includes a first coil and a second coil symmetrically disposed above and below, and the second pair of coils includes a third coil and a fourth coil symmetrically disposed above and below,
  • the three pairs of coils include a fifth coil and a sixth coil symmetrically disposed above and below, and the fourth pair of coils includes a seventh coil and an eighth coil symmetrically disposed above and below, and then the first pair of coils, the second pair of coils, and the third pair of coils
  • the fourth pair of coils are divided into two groups, the first group of coils includes a first pair of coils and a third pair of coils that are symmetrically disposed, and the second group of coils includes a second pair of coils and a fourth pair of coils that are symmetrically disposed;
  • Step 3 set the axes of the two pairs of coils of the same group at 180°;
  • Step 4 setting the axis between the first group of coils and the second group of coils at 70°-110°;
  • Step 5 Connect each coil to a DC power source external to the accelerator main unit through a current lead;
  • Step 6 The two coils in each pair of coils pass currents of the same magnitude and direction;
  • Step 7 two pairs of coils in the same group pass currents of the same size and opposite directions;
  • Step 8 After the current is applied, the four coils in the first group of coils together generate the first independent harmonic, and the four coils in the second group of coils together generate the second independent harmonic, according to the first independent harmonic and the first The vector sum of two independent harmonics, that is, the first harmonic is obtained;
  • Step 9 Using the real-time feedback of the cyclotron beam detection, according to the equilibrium eccentricity of the beam particles, real-time adjustment of the current and current direction of the DC power supply to the coil, by changing the first group of coils and the second group of coils
  • the magnitude of the incoming current changes the amplitude of the corresponding first independent harmonic and the second independent harmonic, and changes the direction of the first set of coils and the second set of coils to change the direction of the current, and changes the corresponding first independent harmonic and the first
  • the phase of the two independent harmonics is positive or negative, and thus the amplitude and phase of the first harmonic are changed, that is, the centering adjustment of the balanced orbit of the beam particles is achieved.
  • the angle between the axes of the first pair of coils and the third pair of coils is 180°
  • the angle between the axes of the second pair of coils and the fourth pair of coils is 180°
  • the angle between the axes of the adjacent pairs of coils is between 70° and 110°.
  • the first pair of coils and the third pair of coils have the same magnitude of current and opposite directions, and the currents of the second pair of coils and the fourth pair of coils are of the same magnitude and opposite directions.
  • the amplitude of the first independent harmonic is proportional to the magnitude of the current flowing in, and the phase of the first independent harmonic depends on the placement position of the first group of coils, and does not change with the magnitude of the current.
  • the amplitude of the second independent harmonic is proportional to the magnitude of the current flowing in, and the phase of the second independent harmonic depends on the placement position of the second group of coils, and does not change with the magnitude of the current.
  • the angle between the first set of coils and the second set of coils is between 70° and 110°, and the phase difference between the first independent harmonic and the second independent harmonic is 70°. 110° and does not change with current magnitude.
  • the invention has the advantages that the principle of the invention is simple and reliable, and the external DC power supply of the accelerator is combined with the real-time feedback of the beam current detection of the accelerator, which can be adjusted online during the debugging operation of the accelerator, with high feasibility and strong operability.
  • real-time adjustment can be made during the debugging operation of the accelerator, which increases the flexibility of adjustment and improves the accuracy of the adjustment.
  • Figure 1 is a schematic view showing the structure of eight coils of the present invention.
  • Figure 2 is a plan view of Figure 1.
  • FIG. 3 is a schematic diagram of synthesizing the first harmonic of the first independent harmonic and the second independent harmonic.
  • Figure 4 is a schematic diagram of the equilibrium orbital shift caused by the first harmonic.
  • the magnetic field in the cyclotron is a magnetic field distributed along the azimuthal period, and the Fourier series expansion of the periodic magnetic field can decompose the magnetic field into an average field, a first harmonic, a second harmonic and the like.
  • the first harmonic component is: B 1 (r)cos[ ⁇ - ⁇ 1 (r)], which has two characteristics: the first harmonic amplitude B 1 (r) and the first harmonic phase ⁇ 1 (r), Once the amplitude and phase have been determined, the first harmonic is uniquely determined.
  • the first harmonic mainly affects the equilibrium orbit of the ideal particle.
  • the equilibrium orbit of the ideal particle is r( ⁇ ).
  • the new equilibrium orbit is r * ( ⁇ )
  • the equilibrium orbital change ⁇ r( ⁇ ) caused by the first harmonic is:
  • r 0 is the average radius of the orbit
  • Q r is the radial oscillation frequency of the particle. It is the relative amplitude of the first harmonic
  • ⁇ 1 is the phase of the first harmonic.
  • the balance rail can be shifted to the center of the circle to achieve the purpose of adjusting the alignment.
  • a method for adjusting a particle orbit alignment using a first harmonic in a cyclotron includes the following steps:
  • the extreme point of the magnetic field for example, the peak and valley of the Bump field in the central region.
  • eight identical coils are placed in the vicinity of the extreme point of the cyclotron magnetic field, covering the coil near the extreme point;
  • Step 2 As shown in FIG. 2, the eight coils are divided into four pairs of coils, wherein the first pair of coils 9 includes a first coil 1 and a second coil 2 symmetrically disposed above and below, and the second pair of coils 10 includes upper and lower symmetrical settings.
  • the third pair of coils 11 includes a fifth coil 5 and a sixth coil 6 symmetrically disposed above and below
  • the fourth pair of coils 12 includes a seventh coil 7 and an eighth coil 8 symmetrically disposed above and below
  • the second set of coils includes a second pair of coils 10 and a fourth pair of coils 12 that are symmetrically disposed;
  • Step 3 The axes of the two pairs of coils of the same group are set at 180°, that is, the angle between the axes of the first pair of coils 9 and the third pair of coils 11 is 180°, and the second pair of coils 10 and the fourth pair of coils The angle between the axes of 12 is 180°;
  • Step 4 The axis between the first group of coils and the second group of coils is set between 70 ° and 110 °, that is, the angle between the axes of two adjacent pairs of coils is 70 ° - 110 °;
  • Step 5 Connect each coil to a DC power source external to the accelerator main unit through a current lead;
  • Step 6 The two coils in each pair of coils pass currents of the same magnitude and direction, for example, the first coil 1 and the second coil 2 in the first pair of coils 9 pass the same magnitude and direction of current, and the second pair
  • the third coil 3 and the fourth coil 4 of the coil 10 pass currents of the same size and direction, and so on;
  • Step 7 Two pairs of coils in the same group pass currents of the same magnitude and opposite directions, that is, the currents of the first pair of coils 9 and the third pair of coils 11 are of the same magnitude and opposite directions, and the second pair of coils 10 and 4
  • the currents flowing into the coil 12 are the same in magnitude and opposite in direction, as shown in FIG. 2, and the arrows indicate the direction of the current;
  • Step 8 As shown in FIG. 3, after the current is passed, the four coils in the first group of coils together generate the first independent harmonics 13, and the four coils in the second group of coils jointly generate the second independent harmonics. 14, according to the vector sum of the first independent harmonic 13 and the second independent harmonic 14, that is, obtain a first harmonic 15;
  • the amplitude of the first independent harmonic 13 is proportional to the magnitude of the current flowing in, and the phase of the first independent harmonic 13 depends on the placement position of the first group of coils, and does not change with the magnitude of the current;
  • the amplitude of the second independent harmonic 14 is proportional to the magnitude of the current flowing in, and the phase of the second independent harmonic 14 depends on the placement position of the second group of coils, and does not change with the magnitude of the current;
  • the phase difference between the first independent harmonic 13 and the second independent harmonic 14 is 70°-110°, and does not follow The current magnitude changes
  • B1 is the first independent harmonic 13
  • the length of B1 is the amplitude of the first independent harmonic 13
  • the azimuth of B1 is the phase of the first independent harmonic 13
  • B2 is the second independent harmonic.
  • the length of B2 is the amplitude of the second independent harmonic 14
  • the azimuth of B2 is the phase of the second independent harmonic 14
  • B3 is the first harmonic 15;
  • Step 9 Using the real-time feedback of the cyclotron beam detection, according to the equilibrium eccentricity of the beam particles, real-time adjustment of the current and current direction of the DC power supply to the coil, by changing the first group of coils and the second group of coils
  • the magnitude of the incoming current changes the amplitudes of the corresponding first independent harmonic 13 and the second independent harmonic 14 by changing the direction of the current flowing through the first set of coils and the second set of coils, and changing the corresponding first independent harmonic
  • the present invention only needs the first independent harmonic 13 and the second independent harmonic 14 is not parallel, and the angle between the first independent harmonic 13 and the second independent harmonic 14 is not required to be 90. °, but considering the efficiency of the adjustment, in order to achieve the expected first harmonic intensity, the closer the angle between the first independent harmonic 13 and the second independent harmonic 14 is to 90°, the smaller the current required, so the first
  • the angle between an independent harmonic 13 and the second independent harmonic 14 is preferably close to 90°, preferably not lower than 70°, that is, the angle between the first set of coils and the second set of coils is preferably not low. At 70°.
  • Figure 4 shows the effect of the balanced track 17 with a first harmonic on the balanced track 16 without a first harmonic.
  • the whole process is controlled by an external DC power supply. Combined with the real-time feedback of the accelerator beam detection, it can be adjusted online during the commissioning and running of the accelerator. It is very convenient and can achieve high alignment accuracy.
  • the description of the terms “one embodiment”, “example”, “specific example” and the like means that the specific features, structures, materials or characteristics described in connection with the embodiments or examples are included in the present invention. In one embodiment or example. In the present specification, the schematic representation of the above terms does not necessarily mean the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Particle Accelerators (AREA)

Abstract

本发明公开一种回旋加速器中利用一次谐波调节粒子轨道对中的方法,包括如下步骤:通过8个关于中平面上下对称的线圈产生矫正磁场;布局各线圈的位置和通入电流,使之能够生成幅值和相位任意可调的一次谐波;根据粒子轨道实际的偏心程度,调整线圈通电流的大小和方向,优化粒子轨迹的对中。本发明原理简单可靠,通过控制加速器外部直流电源,结合加速器束流检测的实时反馈,可以做到在加速器调试运行过程中在线调节,可行性高,可操作性强,相对于传统修改DEE板形状或修改离子源位置等方法,可以做到在加速器调试运行过程中实时调节,增加了调节的灵活性,提高了调节的准确性。

Description

一种回旋加速器中利用一次谐波调节粒子轨道对中的方法 技术领域
本发明属于回旋加速器技术领域,具体涉及到一种调节粒子轨道对中的方法,更具体的是一种回旋加速器中利用一次谐波调节粒子轨道对中的方法。
背景技术
在加速器中心区设计中,轨道对中是非常重要的一个指标。因为粒子的平衡轨道通常是关于圆心对称的,若加速轨道没有对中好,则粒子在加速过程中会偏离平衡轨道太远,造成径向振幅大大增加。如果径向振幅太大,超出了相应平衡轨道的径向接受度,粒子甚至会丢失。
通常在加速器中心区设计时,通过调整DEE板几何形状,改变离子源位置(内离子源情况),调整偏转板的参数(外部离子源的情况)等方法优化粒子对中,这些方法依赖于中心区的设计,其准确性取决于设计人员的经验和水平,而且不能在调试运行过程中实时进行调节,调节手段不够灵活。
另外,加速器每次安装拆卸过程中由于磁铁安装的误差,磁场不可能达到理想值,这都会对粒子轨迹造成或多或少的影响,因此根据加速器实际运行过程中粒子轨迹的偏心程度,进行实时调节很有必要。
发明内容
为了克服上述的技术问题,本发明的目的在于提供一种回旋加速器中利用一次谐波调节粒子轨道对中的方法,根据一次谐波造成轨道整体偏移的特性,在中心区设置若干线圈,通过调节线圈的电流大小和方向构造出具有合适幅值和相位的一次谐波,使粒子轨迹整体偏移,从而调节轨迹对中,通过这种方法可以做到在加速器运行调试过程中实时调节,增加调节的准确性,而且结构简单,易于实现。
本发明的目的可以通过以下技术方案实现:
一种回旋加速器中利用一次谐波调节粒子轨道对中的方法,包括如下步 骤:
步骤一:在回旋加速器磁场的极值点附近区域放置八个相同的线圈,将线圈覆盖住极值点附近区域;
步骤二:将八个线圈分为四对线圈,其中,第一对线圈包括上下对称设置的第一线圈和第二线圈,第二对线圈包括上下对称设置的第三线圈和第四线圈,第三对线圈包括上下对称设置的第五线圈和第六线圈,第四对线圈包括上下对称设置的第七线圈和第八线圈,再将第一对线圈、第二对线圈、第三对线圈和第四对线圈分为两组,第一组线圈包括对称设置的第一对线圈和第三对线圈,第二组线圈包括对称设置的第二对线圈和第四对线圈;
步骤三:将同一组的两对线圈的轴线呈180°设置;
步骤四:将第一组线圈和第二组线圈的轴线之间呈70°-110°设置;
步骤五:将每个线圈通过电流引线与加速器主机外部的直流电源相连;
步骤六:每对线圈内的两个线圈通入大小和方向均相同的电流;
步骤七:同一组内的两对线圈通入大小相同、方向相反的电流;
步骤八:通入电流后,第一组线圈内的四个线圈共同产生第一独立谐波,第二组线圈内的四个线圈共同产生第二独立谐波,根据第一独立谐波和第二独立谐波的矢量和,即得到一次谐波;
步骤九:利用回旋加速器束流检测的实时反馈,根据束流粒子的平衡轨道偏心程度,实时调节直流电源接入到线圈的电流大小和电流方向,通过改变第一组线圈和第二组线圈通入电流的大小,改变对应的第一独立谐波和第二独立谐波的幅值,通过改变第一组线圈和第二组线圈通入电流的方向,改变对应的第一独立谐波和第二独立谐波的相位正方向或负方向,进而改变一次谐波的幅值和相位,即实现了束流粒子的平衡轨道的对中调节。
作为本发明进一步的方案:所述第一对线圈和第三对线圈的轴线之间的夹角为180°,第二对线圈和第四对线圈的轴线之间的夹角为180°。
作为本发明进一步的方案:所述相邻两对线圈的轴线之间的夹角为70°-110°。
作为本发明进一步的方案:所述第一对线圈和第三对线圈通入的电流大小相同、方向相反,第二对线圈和第四对线圈通入的电流大小相同、方向相反。
作为本发明进一步的方案:所述第一独立谐波的幅值和通入的电流大小成正比,第一独立谐波的相位取决于第一组线圈的摆放位置,不随电流大小进行改变。
作为本发明进一步的方案:所述第二独立谐波的幅值和通入的电流大小成正比,第二独立谐波的相位取决于第二组线圈的摆放位置,不随电流大小进行改变。
作为本发明进一步的方案:所述第一组线圈和第二组线圈之间的夹角在70°-110°,第一独立谐波和第二独立谐波之间的相位差为70°-110°,且不随电流大小进行改变。
本发明的有益效果:本发明原理简单可靠,通过控制加速器外部直流电源,结合加速器束流检测的实时反馈,可以做到在加速器调试运行过程中在线调节,可行性高,可操作性强,相对于传统修改DEE板形状或修改离子源位置等方法,可以做到在加速器调试运行过程中实时调节,增加了调节的灵活性,提高了调节的准确性。
附图说明
下面结合附图对本发明作进一步的说明。
图1是本发明八个线圈的结构示意图。
图2是图1的俯视图。
图3是第一独立谐波和第二独立谐波合成一次谐波示意图。
图4是一次谐波造成平衡轨道偏移示意图。
图中标号:1-第一线圈;2-第二线圈;3-第三线圈;4-第四线圈;5-第 五线圈;6-第六线圈;7-第七线圈;8-第八线圈;9-第一对线圈;10-第二对线圈;11-第三对线圈;12-第四对线圈;13-第一独立谐波;14-第二独立谐波;15-一次谐波;16-没有一次谐波时的平衡轨道;17-有一次谐波时的平衡轨道。
本发明的较佳实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明所依据的理论基础如下:
回旋加速器中的磁场为沿方位角周期分布的磁场,对周期性磁场做傅里叶级数展开,可以将磁场分解为平均场,一次谐波,二次谐波等分量。其中一次谐波分量为:B 1(r)cos[θ-δ 1(r)],它有两个特征:一次谐波幅值B 1(r)和一次谐波相位δ 1(r),确定了幅值和相位以后,一次谐波也就唯一地确定了。
一次谐波主要影响理想粒子的平衡轨道。
假设没有一次谐波时,理想粒子的平衡轨道为r(θ),加入一次谐波以后新的平衡轨道为r *(θ),则一次谐波引起的平衡轨道改变Δr(θ)为:
Figure PCTCN2018076125-appb-000001
上式中,r 0是轨道的平均半径,Q r是粒子的径向振荡频率,
Figure PCTCN2018076125-appb-000002
是一次谐波的相对幅值,δ 1是一次谐波的相位。
从上式可以得到以下三点结论:①当Q r>1时,轨道在θ=δ 1处减少了
Figure PCTCN2018076125-appb-000003
在θ=δ 1+180°处增加了
Figure PCTCN2018076125-appb-000004
即一次谐波使平衡轨道向一次谐 波相位的相反方向整体偏移;②当Q r<1时,轨道在θ=δ 1处增加了
Figure PCTCN2018076125-appb-000005
在θ=δ 1+180°处减少了
Figure PCTCN2018076125-appb-000006
即一次谐波使平衡轨道向一次谐波相位的相同方向整体偏移;③在相同的一次谐波作用下,Q r越接近1,造成的轨道改变量Δr(θ)越大。
由于一次谐波可以使束流整体向着相位的同方向或反方向偏移,只要合理控制一次谐波的幅值和相位,就可以使平衡轨道往圆心处偏移,达到调节对中的目的。
一种回旋加速器中利用一次谐波调节粒子轨道对中的方法,包括如下步骤:
步骤一:首先对加速器磁场进行分析,找到加速器磁场Q r=1的区域,通常Q r=1的区域位于磁场的极值点附近(例如中心区Bump场的峰值和谷值处),如图1所示,在回旋加速器磁场的极值点附近区域放置八个相同的线圈,将线圈覆盖住极值点附近区域;
步骤二:如图2所示,将八个线圈分为四对线圈,其中,第一对线圈9包括上下对称设置的第一线圈1和第二线圈2,第二对线圈10包括上下对称设置的第三线圈3和第四线圈4,第三对线圈11包括上下对称设置的第五线圈5和第六线圈6,第四对线圈12包括上下对称设置的第七线圈7和第八线圈8,再将第一对线圈9、第二对线圈10、第三对线圈11和第四对线圈12分为两组,第一组线圈包括对称设置的第一对线圈9和第三对线圈11,第二组线圈包括对称设置的第二对线圈10和第四对线圈12;
步骤三:将同一组的两对线圈的轴线呈180°设置,即第一对线圈9和第三对线圈11的轴线之间的夹角为180°,第二对线圈10和第四对线圈12的轴线之间的夹角为180°;
步骤四:将第一组线圈和第二组线圈的轴线之间呈70°-110°设置,即相邻两对线圈的轴线之间的夹角为70°-110°;
步骤五:将每个线圈通过电流引线与加速器主机外部的直流电源相连;
步骤六:每对线圈内的两个线圈通入大小和方向均相同的电流,如:第一对线圈9内的第一线圈1和第二线圈2通相同大小和方向的电流,第二对线圈10的第三线圈3和第四线圈4通相同大小和方向的电流,依次类推;
步骤七:同一组内的两对线圈通入大小相同、方向相反的电流,即第一对线圈9和第三对线圈11通入的电流大小相同、方向相反,第二对线圈10和第四对线圈12通入的电流大小相同、方向相反,如图2所示,图中箭头表示电流的方向;
步骤八:如图3所示,通入上述的电流后,第一组线圈内的四个线圈共同产生第一独立谐波13,第二组线圈内的四个线圈共同产生第二独立谐波14,根据第一独立谐波13和第二独立谐波14的矢量和,即得到一次谐波15;
第一独立谐波13的幅值和通入的电流大小成正比,第一独立谐波13的相位取决于第一组线圈的摆放位置,不随电流大小进行改变;
第二独立谐波14的幅值和通入的电流大小成正比,第二独立谐波14的相位取决于第二组线圈的摆放位置,不随电流大小进行改变;
由于第一组线圈和第二组线圈之间的夹角在70°-110°,因此第一独立谐波13和第二独立谐波14之间的相位差为70°-110°,且不随电流大小进行改变;
如图3所示,B1为第一独立谐波13,B1的长度为第一独立谐波13的幅值,B1的方位角为第一独立谐波13的相位,B2为第二独立谐波14,B2的长度为第二独立谐波14的幅值,B2的方位角为第二独立谐波14的相位,B3为一次谐波15;
步骤九:利用回旋加速器束流检测的实时反馈,根据束流粒子的平衡轨 道偏心程度,实时调节直流电源接入到线圈的电流大小和电流方向,通过改变第一组线圈和第二组线圈通入电流的大小,改变对应的第一独立谐波13和第二独立谐波14的幅值,通过改变第一组线圈和第二组线圈通入电流的方向,改变对应的第一独立谐波13和第二独立谐波14的相位正方向或负方向,进而改变一次谐波15的幅值和相位,实现了束流粒子的平衡轨道的对中调节。
需要说明的是,本发明只需要第一独立谐波13、第二独立谐波14不平行即可,不需要第一独立谐波13、第二独立谐波14之间的夹角一定为90°,但是考虑到调节的效率,为了达到预期的一次谐波强度,第一独立谐波13、第二独立谐波14之间的夹角越接近90°,所需的电流越小,因此第一独立谐波13、第二独立谐波14之间的夹角接近90°为宜,最好不要低于70°,也就是第一组线圈和第二组线圈间的夹角最好不低于70°。
同时,由于同一组内相对的线圈通相反的电流,同一组线圈的平均场为0,不管加多大的电流,仅会改变一次谐波15的幅值大小,避免了对原有的平均场产生影响。
图4显示了有一次谐波时的平衡轨道17对没有一次谐波时的平衡轨道16产生的影响。
整个过程由外部直流电源控制,结合加速器束流检测的实时反馈,可以做到在加速器调试运行过程中在线调节,非常方便,而且可以达到很高的对中精度。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结 合。
以上内容仅仅是对本发明结构所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (7)

  1. 一种回旋加速器中利用一次谐波调节粒子轨道对中的方法,其特征在于,包括如下步骤:
    步骤一:在回旋加速器磁场的极值点附近区域放置八个相同的线圈,将线圈覆盖住极值点附近区域;
    步骤二:将八个线圈分为四对线圈,其中,第一对线圈(9)包括上下对称设置的第一线圈(1)和第二线圈(2),第二对线圈(10)包括上下对称设置的第三线圈(3)和第四线圈(4),第三对线圈(11)包括上下对称设置的第五线圈(5)和第六线圈(6),第四对线圈(12)包括上下对称设置的第七线圈(7)和第八线圈(8),再将第一对线圈(9)、第二对线圈(10)、第三对线圈(11)和第四对线圈(12)分为两组,第一组线圈包括对称设置的第一对线圈(9)和第三对线圈(11),第二组线圈包括对称设置的第二对线圈(10)和第四对线圈(12);
    步骤三:将同一组的两对线圈的轴线呈180°设置;
    步骤四:将第一组线圈和第二组线圈的轴线之间呈70°-110°设置;
    步骤五:将每个线圈通过电流引线与加速器主机外部的直流电源相连;
    步骤六:每对线圈内的两个线圈通入大小和方向均相同的电流;
    步骤七:同一组内的两对线圈通入大小相同、方向相反的电流;
    步骤八:通入电流后,第一组线圈内的四个线圈共同产生第一独立谐波(13),第二组线圈内的四个线圈共同产生第二独立谐波(14),根据第一独立谐波(13)和第二独立谐波(14)的矢量和,即得到一次谐波(15);
    步骤九:利用回旋加速器束流检测的实时反馈,根据束流粒子的平衡轨道偏心程度,实时调节直流电源接入到线圈的电流大小和电流方向,通过改变第一组线圈和第二组线圈通入电流的大小,改变对应的第一独立谐波(13) 和第二独立谐波(14)的幅值,通过改变第一组线圈和第二组线圈通入电流的方向,改变对应的第一独立谐波(13)和第二独立谐波(14)的相位正方向或负方向,进而改变一次谐波(15)的幅值和相位,即实现了束流粒子的平衡轨道的对中调节。
  2. 根据权利要求1所述的一种回旋加速器中利用一次谐波调节粒子轨道对中的方法,其特征在于,所述第一对线圈(9)和第三对线圈(11)的轴线之间的夹角为180°,第二对线圈(10)和第四对线圈(12)的轴线之间的夹角为180°。
  3. 根据权利要求1所述的一种回旋加速器中利用一次谐波调节粒子轨道对中的方法,其特征在于,所述相邻两对线圈的轴线之间的夹角为70°-110°。
  4. 根据权利要求1所述的一种回旋加速器中利用一次谐波调节粒子轨道对中的方法,其特征在于,所述第一对线圈(9)和第三对线圈(11)通入的电流大小相同、方向相反,第二对线圈(10)和第四对线圈(12)通入的电流大小相同、方向相反。
  5. 根据权利要求1所述的一种回旋加速器中利用一次谐波调节粒子轨道对中的方法,其特征在于,所述第一独立谐波(13)的幅值和通入的电流大小成正比,第一独立谐波(13)的相位取决于第一组线圈的摆放位置,不随电流大小进行改变。
  6. 根据权利要求1所述的一种回旋加速器中利用一次谐波调节粒子轨道对中的方法,其特征在于,所述第二独立谐波(14)的幅值和通入的电流大小成正比,第二独立谐波(14)的相位取决于第二组线圈的摆放位置,不随电流大小进行改变。
  7. 根据权利要求1所述的一种回旋加速器中利用一次谐波调节粒子轨道对中的方法,其特征在于,所述第一组线圈和第二组线圈之间的夹角在 70°-110°,第一独立谐波(13)和第二独立谐波(14)之间的相位差为70°-110°,且不随电流大小进行改变。
PCT/CN2018/076125 2017-11-30 2018-02-10 一种回旋加速器中利用一次谐波调节粒子轨道对中的方法 WO2019104878A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/207,216 US10375815B2 (en) 2017-11-30 2018-12-03 Method for adjusting particle orbit alignment by using first harmonic in cyclotron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711242936.5A CN107835556B (zh) 2017-11-30 2017-11-30 一种回旋加速器中利用一次谐波调节粒子轨道对中的方法
CN201711242936.5 2017-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/207,216 Continuation US10375815B2 (en) 2017-11-30 2018-12-03 Method for adjusting particle orbit alignment by using first harmonic in cyclotron

Publications (1)

Publication Number Publication Date
WO2019104878A1 true WO2019104878A1 (zh) 2019-06-06

Family

ID=61647355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076125 WO2019104878A1 (zh) 2017-11-30 2018-02-10 一种回旋加速器中利用一次谐波调节粒子轨道对中的方法

Country Status (2)

Country Link
CN (1) CN107835556B (zh)
WO (1) WO2019104878A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780471B (zh) * 2018-06-07 2022-09-20 新瑞阳光粒子医疗装备(无锡)有限公司 磁场中心误差的矫正方法及装置、设备及存储介质
CN109195300B (zh) * 2018-09-20 2020-01-24 中国原子能科学研究院 一种用于回旋加速器的插针式磁场同步调节装置
CN110944445B (zh) * 2019-11-28 2020-11-10 中国原子能科学研究院 一种用于中能超导回旋加速器束流对中调节方法
EP3876679B1 (en) * 2020-03-06 2022-07-20 Ion Beam Applications Synchrocyclotron for extracting beams of various energies and related method
CN115397087B (zh) * 2022-10-27 2023-03-14 合肥中科离子医学技术装备有限公司 线圈调节装置及回旋加速器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868522A (en) * 1973-06-19 1975-02-25 Ca Atomic Energy Ltd Superconducting cyclotron
JPH02195637A (ja) * 1989-01-24 1990-08-02 Fujitsu Ltd ビーム偏向器及び収束器
JPH0878200A (ja) * 1994-09-07 1996-03-22 Hitachi Ltd 渦電流の作る磁場の制御方法及び装置
CN1395459A (zh) * 2001-07-05 2003-02-05 马钟仁 利用射频加速电子的方法
CN104244562A (zh) * 2013-06-12 2014-12-24 梅维昂医疗系统股份有限公司 产生具有可变能量的带电粒子的粒子加速器
CN106163073A (zh) * 2016-07-29 2016-11-23 中国原子能科学研究院 一种中能超导质子回旋加速器的束流引出方法
CN107148140A (zh) * 2017-06-30 2017-09-08 中广核达胜加速器技术有限公司 一种加速器的束斑自动矫正器及加速器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4506247A (en) * 1984-05-23 1985-03-19 General Electric Company Axisymmetric correction coil system for NMR magnets
US4656447A (en) * 1984-06-27 1987-04-07 General Electric Company Superconducting filter coils for high homogeneity magnetic field
CN101697658A (zh) * 2009-11-06 2010-04-21 中国原子能科学研究院 中等能量回旋加速器强聚焦直边扇形磁铁
BE1019557A3 (fr) * 2010-10-27 2012-08-07 Ion Beam Applic Sa Synchrocyclotron.
CN104703378B (zh) * 2015-03-17 2017-03-29 中国原子能科学研究院 一种永磁束流均匀化六极磁铁
CN104983386B (zh) * 2015-05-21 2017-01-04 大连理工大学 空间万向旋转磁场方位误差的直线极化相位校正方法
US9986630B2 (en) * 2015-05-26 2018-05-29 Krunoslav Subotic Superconducting magnet winding structures for the generation of iron-free air core cyclotron magnetic field profiles
CN106125018A (zh) * 2016-07-29 2016-11-16 中国原子能科学研究院 一种超导线圈一次谐波的磁场测量装置及其测量方法
CN106102300B (zh) * 2016-07-29 2019-01-29 中国原子能科学研究院 增强超导回旋加速器中心区磁聚焦力的芯柱结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868522A (en) * 1973-06-19 1975-02-25 Ca Atomic Energy Ltd Superconducting cyclotron
JPH02195637A (ja) * 1989-01-24 1990-08-02 Fujitsu Ltd ビーム偏向器及び収束器
JPH0878200A (ja) * 1994-09-07 1996-03-22 Hitachi Ltd 渦電流の作る磁場の制御方法及び装置
CN1395459A (zh) * 2001-07-05 2003-02-05 马钟仁 利用射频加速电子的方法
CN104244562A (zh) * 2013-06-12 2014-12-24 梅维昂医疗系统股份有限公司 产生具有可变能量的带电粒子的粒子加速器
CN106163073A (zh) * 2016-07-29 2016-11-23 中国原子能科学研究院 一种中能超导质子回旋加速器的束流引出方法
CN107148140A (zh) * 2017-06-30 2017-09-08 中广核达胜加速器技术有限公司 一种加速器的束斑自动矫正器及加速器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHONG, JUNQING: "Magnetic Field Measurement and Shimming of 100MeV Central Region Experiment Platform", CHINESE MASTER'S THESES FULL-TEXT DATABASE (ENGINEERING SCIENCE & TECHNOLOGY II, 15 April 2008 (2008-04-15), pages 50 - 54, ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN107835556A (zh) 2018-03-23
CN107835556B (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2019104878A1 (zh) 一种回旋加速器中利用一次谐波调节粒子轨道对中的方法
CN105914778B (zh) 基于虚拟同步发电机的微网逆变器多环路控制方法
CN106298189B (zh) 一种机械式可调电感
CN108061007B (zh) 阻尼风力涡轮机的机械振荡
CN108897218B (zh) 一种基于混合奇次重复控制器的磁悬浮转子奇次谐波振动抑制方法
CN108964040B (zh) 电网不平衡下虚拟同步发电机功率-电流协调控制方法
CN109812382B (zh) 一种风电机组塔架振动控制方法及系统
CN106886152A (zh) 一种基于二阶奇次重复控制器的磁悬浮转子奇次谐波电流抑制方法
CN105159342A (zh) 一种基于并联相移滤波器的磁悬浮转子谐波电流抑制方法
CN104052320B (zh) 一种pwm调制方法及装置
Amin et al. A framework for selection of grid-inverter synchronisation unit: Harmonics, phase-angle and frequency
US10375815B2 (en) Method for adjusting particle orbit alignment by using first harmonic in cyclotron
CN105515451B (zh) 一种磁悬浮系统的滑模变结构控制方法和装置
CN101695214B (zh) 等时性回旋加速器提高轴向聚焦力的磁极非对称镶条方法
CN108988387A (zh) 基于转子电流移相平均的双馈风电机组次同步谐振抑制方法
CN104501793A (zh) 一种高动态角速率陀螺正交误差控制方法
CN206076013U (zh) 一种机械式可调电感
CN110944445B (zh) 一种用于中能超导回旋加速器束流对中调节方法
CN107968582B (zh) 维也纳整流器的控制方法和装置
CN103427697B (zh) 一种基于粒子群算法的不平衡电网下vsc的多目标控制方法
CN208764586U (zh) 一种用于安装激光跟踪仪的磁力支架
CN110308326A (zh) 一种可提高开环测相算法抗噪性能的方法
EP3054153B1 (en) Wind power generation apparatus, and method of operating the same
CN104917196B (zh) 一种大型光伏电站抑制电力系统低频振荡控制器设计方法
CN106099950B (zh) 一种减小次同步振荡负阻尼的hvdc电流控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883069

Country of ref document: EP

Kind code of ref document: A1