WO2019104658A1 - 头戴式电子设备 - Google Patents

头戴式电子设备 Download PDF

Info

Publication number
WO2019104658A1
WO2019104658A1 PCT/CN2017/113992 CN2017113992W WO2019104658A1 WO 2019104658 A1 WO2019104658 A1 WO 2019104658A1 CN 2017113992 W CN2017113992 W CN 2017113992W WO 2019104658 A1 WO2019104658 A1 WO 2019104658A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
eyepiece
electronic device
mounted electronic
head mounted
Prior art date
Application number
PCT/CN2017/113992
Other languages
English (en)
French (fr)
Inventor
何芳
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2017/113992 priority Critical patent/WO2019104658A1/zh
Priority to CN201780095803.1A priority patent/CN111316152A/zh
Publication of WO2019104658A1 publication Critical patent/WO2019104658A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to the field of virtual reality (VR) technology, and in particular, to a head mounted electronic device.
  • VR virtual reality
  • the field of view of the VR (Virtual Reality) lens is fixed, generally the size of the virtual screen is changed by software, but the size of the virtual screen is changed by software at the expense of the image pixel to the user.
  • the experience is insufficient, and the adjustable range that can be achieved by software changing the size of the virtual screen is small.
  • Embodiments of the present invention provide a head mounted electronic device.
  • a head mounted electronic device includes an eyepiece and a display screen, and sequentially includes a first lens, a second lens, and a third lens along a direction from the image side to the object side of the eyepiece, the first lens and the At least one of the second lens and the third lens is movable back and forth along an optical axis of the eyepiece to achieve the eyepiece zoom, and the display screen is disposed on an object side of the third lens.
  • the head-mounted electronic device of the embodiment of the present invention realizes zooming of the eyepiece by lens movement, thereby adjusting the image size displayed by the display screen, so that the purpose of adjusting the size of the virtual screen can be achieved without sacrificing the pixels of the display screen, and the user experience Ok, and the adjustment range of the virtual screen size is relatively large.
  • FIG. 1 is a schematic structural view of a head mounted electronic device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of an eyepiece of a head mounted electronic device according to an embodiment of the present invention at an angle of view of 70°;
  • FIG. 3 is a graph showing an optical transfer function of an eyepiece of a head mounted electronic device according to an embodiment of the present invention at an angle of view of 70°;
  • FIG. 4 is a field curvature diagram of an eyepiece of a head mounted electronic device according to an embodiment of the present invention at an angle of view of 70°;
  • FIG. 5 is a distortion diagram of an eyepiece of a head mounted electronic device according to an embodiment of the present invention at an angle of view of 70°;
  • FIG. 6 is a schematic structural view of an eyepiece of a head mounted electronic device according to an embodiment of the present invention at an angle of view of 80°;
  • FIG. 7 is a graph showing an optical transfer function of an eyepiece of a head mounted electronic device according to an embodiment of the present invention at an angle of view of 80°;
  • FIG. 8 is a field curvature diagram of an eyepiece of a head mounted electronic device according to an embodiment of the present invention at an angle of view of 80°;
  • FIG. 9 is a distortion diagram of an eyepiece of a head mounted electronic device according to an embodiment of the present invention at an angle of view of 80°;
  • FIG. 10 is a schematic structural view of an eyepiece of a head mounted electronic device according to an embodiment of the present invention when an angle of view is 90°;
  • FIG. 11 is a graph showing an optical transfer function of an eyepiece of a head mounted electronic device according to an embodiment of the present invention at an angle of view of 90°;
  • FIG. 12 is a field curvature diagram of an eyepiece of a head mounted electronic device according to an embodiment of the present invention at an angle of view of 90°;
  • Fig. 13 is a distortion diagram of the eyepiece of the head mounted electronic device according to the embodiment of the present invention when the angle of view is 90°.
  • Head mounted electronic device 10 eyepiece 100, display screen 200, first lens 102, second lens 104, third lens 106, optical axis 107, first motor 108, first transmission member 110, second motor 112,
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or connected in one piece. It can be a mechanical connection or an electrical connection. It can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication of two elements or the interaction of two elements. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • a head mounted electronic device 10 includes an eyepiece 100 and a display screen 200.
  • the first lens 102, the second lens 104, and the third lens 106 are sequentially included along the image side to the object side direction of the eyepiece 100. At least one of the first lens 102, the second lens 104, and the third lens 106 can be moved back and forth along the optical axis 107 of the eyepiece 100 to effect zooming of the eyepiece 100.
  • the display screen 200 is disposed on the object side of the third lens 106.
  • the head mounted electronic device 10 of the embodiment of the present invention realizes zooming of the eyepiece 100 by lens movement, thereby adjusting the image size displayed by the display screen 200, so that the size of the virtual screen can be adjusted without sacrificing the pixels of the display screen 200.
  • the on-axis spacing of the first lens 102 and the second lens 104 and the on-axis spacing of the second lens 104 and the third lens 106 are changed by moving the lens to achieve zooming of the eyepiece 100, thereby The angle of view of the eyepiece 100 is changed.
  • the size of the virtual screen is adjusted to adjust the image size displayed by the display screen 200, there is no need to sacrifice the pixels of the display screen 200.
  • the adjustment range of the virtual screen size is relatively large.
  • display screen 200 is packaged with third lens 106.
  • the display screen 200 moves in synchronization with the third lens 106.
  • eyepiece 100 includes a drive mechanism.
  • the drive mechanism connects at least one of the first lens 102, the second lens 104, and the third lens 106 and is configured to drive at least one of the first lens 102, the second lens 104, and the third lens 106 to move.
  • the driving mechanism drives at least one of the first lens 102, the second lens 104, and the third lens 106 to move to change the on-axis spacing of the first lens 102 and the second lens 104 and the second lens 104 and the third lens 106.
  • the drive mechanism can drive the second lens 104 and/or the third lens 106 to move. That is to say, the driving mechanism can drive only the movement of the second lens 104 or the movement of the third lens 106; the driving mechanism can also drive the movement of the second lens 104 and the third lens 106 at the same time.
  • the second lens 104 and the third lens 106 are simultaneously driven to move, the second lens 104 and the third lens 106 may be driven to move in synchronization, or the second lens 104 and the third lens 106 may be driven to move asynchronously.
  • the drive mechanism includes a first electric machine 108, a first transmission member 110, a second electric motor 112, and a second transmission member 114.
  • the first motor 108 connects the second lens 104 through the first transmission member 110 and drives the second lens 104. Moving along the optical axis 107 of the eyepiece 100.
  • the second motor 112 is coupled to the third lens 106 via the second transmission member 114 and drives the third lens 106 to move along the optical axis 107 of the eyepiece 100.
  • first motor 108 is coupled to the first transmission member 110
  • first transmission member 110 is coupled to the second lens 104
  • first motor 108 drives the second lens 104 to move along the optical axis 107 of the eyepiece 100 through the first transmission member 110.
  • the second motor 112 is coupled to the second transmission member 114
  • the second transmission member 114 is coupled to the third lens 106
  • the second motor 112 drives the third lens 106 to move along the optical axis 107 of the eyepiece 100 via the second transmission member 114.
  • controlling the number of turns of the first motor 108 can control the distance that the second lens 104 moves along the optical axis 107 of the eyepiece 100; controlling the number of turns of the second motor 112 can control the optical axis of the third lens 106 along the eyepiece 100. 107 distance of movement.
  • the first transmission member 110 includes a first rotor 116 and a first screw 118.
  • the second transmission member 114 includes a second rotor 120 and a second screw 122.
  • the first rotor 116 is threadedly coupled to the first screw 118 for driving the first rotor 116 to move back and forth over the first screw 118 to drive the second lens 104 to move along the optical axis 107 of the eyepiece 100.
  • the second rotor 120 is screwed to the second screw 122, and the second motor 112 is used to drive the second rotor 120 to move back and forth on the second screw 122 to drive the third lens 106 to move along the optical axis 107 of the eyepiece 100.
  • first rotor 116 is threadedly engaged with the first screw 118 to cause the first motor 108 to drive the first rotor 116 to move back and forth over the first screw 118, thereby causing the second lens 104 to move along the optical axis 107 of the eyepiece 100.
  • the second rotor 120 is threadedly engaged with the second screw 122 to cause the second motor 112 to drive the second rotor 120 to move back and forth over the second screw 122, thereby causing the third lens 106 to move along the optical axis 107 of the eyepiece 100.
  • the movement of the lens can be achieved by means of gears, belts, chains, and the like.
  • the eyepiece 100 includes a lens barrel 124 and a second lens frame 126.
  • the first lens 102, the second lens 104, the third lens 106, the second lens frame 126, the display screen 200, and the drive mechanism are located within the lens barrel 124.
  • the drive mechanism includes a first resilient member 128.
  • the second lens 104 is fixed to the second lens frame 126.
  • the outer surface of the second lens frame 126 is provided with a first bump 130.
  • the first elastic member 128 connects the second lens frame 126 and the lens barrel 124.
  • the first rotor 116 pushes the first bump 130 to move the second lens frame 126 and the second lens 104 toward the object side of the eyepiece 100 when the first screw 118 moves toward the object side of the eyepiece 100.
  • the first elastic member 128 drives the second lens frame 126 to move the second lens 104 toward the image side of the eyepiece 100.
  • the first protrusion 130 is provided with a through hole for the first screw 118 to pass through, and the inner diameter of the through hole is larger than the outer diameter of the first screw 118, so that the resistance of the second lens 104 when moving is small, and the second lens 104 is facilitated. mobile.
  • the first rotor 116 moves on the object side of the eyepiece 100 on the first screw 118, the first rotor 116 pushes the first protrusion 130 to move the second lens 104 toward the object side of the eyepiece 100.
  • the first elastic member 128 is stretched.
  • the first elastic member 128 When the first rotor 116 moves on the image side of the eyepiece 100 on the first screw 118, the first elastic member 128 is returned The contraction generates a pulling force to drive the second lens frame 126 to move the second lens 104 toward the image side of the eyepiece 100.
  • the first elastic member 128 is a spring.
  • the second lens 104 is also moved by other means of other screwing.
  • the first elastic member 128 can be omitted, and the second lens frame 126 can be directly screwed to the first screw 118 and rotated forward by the first motor 108. And inverting to drive the second lens 104 to move back and forth along the optical axis 107 of the eyepiece 100.
  • the eyepiece 100 includes a second lens fixing frame 132.
  • the first screw 118 is coupled to the second lens fixing frame 132.
  • the lens barrel 124 is formed with a first guiding groove 134, and an edge of the second lens fixing frame 132 is located in the first guiding groove 134.
  • the second lens structure is formed along the first guiding slot.
  • the 134 is integrally mounted in the lens barrel 124. Due to the guiding of the first guiding groove 134, such a mounting method is convenient and quick.
  • the two ends of the second lens 104 are respectively fixed to the two second lens frames 126, and the number of the second lens fixing frames 132 is two.
  • the first bump 130 on one of the second lens frames 126 is passed through by the first screw 118, and the first screw 118 is connected to one of the second lens fixing frames 132.
  • the first bump 130 on the other second lens frame 126 is passed through the first connecting rod 136, and the first connecting rod 136 is connected to the other second lens fixing frame 132.
  • Eyepiece 100 includes a third lens frame 138.
  • the third lens frame 138 is located within the lens barrel 124.
  • the drive mechanism includes a second elastic member 140.
  • the third lens 106 is fixed to the third lens frame 138.
  • the outer surface of the third lens frame 138 is provided with a second bump 142.
  • the second elastic member 140 connects the third lens frame 138 and the lens barrel 124.
  • the second bump 142 pushes the third lens frame 138 and the third lens 106 to move toward the image side of the eyepiece 100.
  • the second elastic member 140 drives the third lens frame 138 to move the third lens 106 toward the object side of the eyepiece 100.
  • the second protrusion 142 defines a through hole for the second screw 122 to pass through, and the inner diameter of the through hole is larger than the outer diameter of the second screw 122, so that the resistance of the third lens 106 is less when moving, facilitating the third lens 106. mobile.
  • the second rotor 120 moves on the image side of the eyepiece 100 on the second screw 122
  • the second rotor 122 pushes the second protrusion 142 to move the third lens 106 toward the image side of the eyepiece 100.
  • the second elastic member 140 was stretched.
  • the second elastic member 140 When the second rotor 120 moves on the object side of the eyepiece 100 on the second screw 122, the second elastic member 140 generates a pulling force due to the retraction, thereby driving the third lens frame 138 to move the third lens 106 toward the object side of the eyepiece 100.
  • the second elastic member 140 is a spring.
  • the third lens 106 is also moved by other means of screwing.
  • the second elastic member 140 can be omitted.
  • the third lens frame 138 can be directly screwed to the second screw 122 and rotated forward by the second motor 112. And inverting to drive the third lens 106 to move back and forth along the optical axis 107 of the eyepiece 100.
  • the eyepiece 100 includes a third lens fixing frame 144.
  • the second screw 122 is coupled to the third lens fixing frame 144.
  • the lens barrel 124 is formed with a second guiding groove 146, and an edge of the third lens fixing frame 144 is located in the second guiding groove 146.
  • the third lens 106, the third lens frame 138, the second elastic member 140, the second screw 122, and the third lens fixing frame 144 can be mounted to form a third lens structure along the second guiding slot.
  • the 146 is integrally mounted in the lens barrel 124. Due to the guiding of the second guiding groove 146, such a mounting method is convenient and quick.
  • the two ends of the third lens 106 are respectively fixed to the two third lens frames 138, and the number of the third lens fixing frames 144 is two.
  • the second protrusion 142 on one of the third lens frames 138 is passed through by the second screw 122, and the second screw 122 is connected to one of the third lens fixing frames 144.
  • the second bump 142 on the other third lens frame 138 is passed through the second connecting rod 148, and the second connecting rod 148 is connected to the other third lens fixing frame 144.
  • the first motor 108 and the second motor 112 each comprise a stepper motor.
  • the control method of the stepping motor is mature and reliable, and the control of the lens position is relatively accurate. It can be understood that the stepping motor is widely used in a zoom lens, and the technology is mature.
  • the type of motor can be selected from other types, such as a voice coil motor.
  • display 200 includes a 2.5 inch display 200.
  • the 2.5 inch display 200 is more suitable for use in the head mounted electronic device 10.
  • the first lens 102 is a convex lens and the second lens 104 and the third lens 106 are both concave lenses.
  • the aberration of the eyepiece 100 is reduced by the combination of the convex lens and the concave lens to compensate for the aberration.
  • the image side surface and the object side surface of the first lens 102, the second lens 104, and the third lens 106 are both aspherical.
  • the first lens 102, the second lens 104, and the third lens 106 are prevented from being spherical aberration, thereby improving the aberration of the eyepiece 100.
  • the field of view of the eyepiece 100 is adjusted from 70° to 90°.
  • the field of view 100 has an angle of view of at most 90 degrees and a minimum of 70 degrees. That is to say, the angle of view of the eyepiece 100 can be any value between 70°, 90° or 70° to 90°.
  • the eyepiece 100 further includes an aperture disposed on the image side of the first lens 102.
  • the surface numbers 1, 2, 3, 4, 5, 6, 7, 8 cited therein will represent the pupil, the image side surface of the first lens 102, the object side surface of the first lens 102, and the second lens 104, respectively.
  • the angle of view of the eyepiece 100 is 70°.
  • the axial distance between the first lens 102 and the second lens 104 is 3.15 mm, and the axial distance between the second lens 104 and the third lens 106 is 36.79 mm.
  • the focal length of the eyepiece 100 is 53.56 mm.
  • the imaging quality of the head mounted electronic device 10 is good when the angle of view is 70°.
  • the field of view of the eyepiece 100 is 80°.
  • the axial distance between the first lens 102 and the second lens 104 is 5.65 mm, and the axial distance between the second lens 104 and the third lens 106 is 24.30 mm.
  • the focal length of the eyepiece 100 is 47.654 mm.
  • the field of view of the eyepiece 100 is 90°.
  • the axial distance between the first lens 102 and the second lens 104 is 8.14 mm, and the axial distance between the second lens 104 and the third lens 106 is 14.54 mm.
  • the focal length of the eyepiece 100 is 42.838 mm.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature "above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种头戴式电子设备(10),包括目镜(100)和显示屏(200),沿目镜(100)的像侧至物侧的方向依次包括第一透镜(102)、第二透镜(104)和第三透镜(106)。第一透镜(102)、第二透镜(104)和第三透镜(106)中的至少一个能够沿目镜(100)的光轴(107)来回移动以实现目镜(100)变焦,显示屏(200)设置在第三透镜(106)的物侧。

Description

头戴式电子设备 技术领域
本发明涉及虚拟现实(VR,Virtual Reality)技术领域,特别涉及一种头戴式电子设备。
背景技术
在相关技术中,VR(虚拟现实,Virtual Reality)镜头的视场角是固定的,一般是通过软件改变虚拟屏幕的大小,但是通过软件改变虚拟屏幕的大小是以牺牲图像像素为代价,给用户体验带来不足,而且通过软件改变虚拟屏幕的大小能够实现的可调节范围较小。
发明内容
本发明的实施方式提供一种头戴式电子设备。
本发明实施方式的头戴式电子设备,包括目镜和显示屏,沿所述目镜的像侧至物侧的方向依次包括第一透镜、第二透镜和第三透镜,所述第一透镜、所述第二透镜和所述第三透镜中的至少一个能够沿所述目镜的光轴来回移动以实现所述目镜变焦,所述显示屏设置在所述第三透镜的物侧。
本发明实施方式的头戴式电子设备,通过透镜移动来实现目镜的变焦,进而调节显示屏所显示的图像大小,这样无需牺牲显示屏的像素也能达到调节虚拟屏幕的大小的目的,用户体验好,而且虚拟屏幕大小的调节范围也相对较大。
本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施方式的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的头戴式电子设备的结构示意图;
图2是本发明实施方式的头戴式电子设备的目镜在视场角为70°时的结构示意图;
图3是本发明实施方式的头戴式电子设备的目镜在视场角为70°时的光学传递函数曲线图;
图4是本发明实施方式的头戴式电子设备的目镜在视场角为70°时的场曲图;
图5是本发明实施方式的头戴式电子设备的目镜在视场角为70°时的畸变图;
图6是本发明实施方式的头戴式电子设备的目镜在视场角为80°时的结构示意图;
图7是本发明实施方式的头戴式电子设备的目镜在视场角为80°时的光学传递函数曲线图;
图8是本发明实施方式的头戴式电子设备的目镜在视场角为80°时的场曲图;
图9是本发明实施方式的头戴式电子设备的目镜在视场角为80°时的畸变图;
图10是本发明实施方式的头戴式电子设备的目镜在视场角为90°时的结构示意图;
图11是本发明实施方式的头戴式电子设备的目镜在视场角为90°时的光学传递函数曲线图;
图12是本发明实施方式的头戴式电子设备的目镜在视场角为90°时的场曲图;
图13是本发明实施方式的头戴式电子设备的目镜在视场角为90°时的畸变图。
主要元件符号附图说明:
头戴式电子设备10、目镜100、显示屏200、第一透镜102、第二透镜104、第三透镜106、光轴107、第一电机108、第一传动件110、第二电机112、第二传动件114、第一转子116、第一螺杆118、第二转子120、第二螺杆122、镜筒124、第二透镜框126、第一弹性件128、第一凸块130、第二透镜固定框132、第一导向槽134、第一连接杆136、第三透镜框138、第二弹性件140、第二凸块142、第三透镜固定框144、第二导向槽146、第二连接杆148。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
请参阅图1,本发明实施方式的头戴式电子设备10包括目镜100和显示屏200。沿目镜100的像侧至物侧的方向依次包括第一透镜102、第二透镜104和第三透镜106。第一透镜102、第二透镜104和第三透镜106中的至少一个能够沿目镜100的光轴107来回移动以实现目镜100变焦。显示屏200设置在第三透镜106的物侧。
本发明实施方式的头戴式电子设备10,通过透镜移动来实现目镜100的变焦,进而调节显示屏200所显示的图像大小,这样无需牺牲显示屏200的像素也能达到调节虚拟屏幕的大小的目的,用户体验好,而且虚拟屏幕大小的调节范围也相对较大。
可以理解,在本发明的实施方式中,通过移动透镜改变第一透镜102与第二透镜104的轴上间隔和第二透镜104与第三透镜106的轴上间隔实现了目镜100的变焦,从而改变目镜100的视场角。如此,调节虚拟屏幕的大小以调节显示屏200所显示的图像大小时,无需牺牲显示屏200的像素。同时,由于目镜100的视场角可改变的范围较大,虚拟屏幕大小的调节范围也相对较大。
在某些实施方式中,显示屏200与第三透镜106封装在一起。当第三透镜106沿目镜100的光轴107移动时,显示屏200与第三透镜106同步移动。
在某些实施方式中,目镜100包括驱动机构。驱动机构连接第一透镜102、第二透镜104和第三透镜106中的至少一个并用于驱动第一透镜102、第二透镜104和第三透镜106中的至少一个移动。
如此,可实现透镜移动的自动化,提升用户体验。
可以理解,驱动机构驱动第一透镜102、第二透镜104和第三透镜106中的至少一个移动以改变第一透镜102与第二透镜104的轴上间隔和第二透镜104与第三透镜106的轴上间隔。在本发明的一个实施例中,驱动机构可驱动第二透镜104和/或第三透镜106移动。也即是说,驱动机构可以只驱动第二透镜104移动或第三透镜106移动;驱动机构也可以同时驱动第二透镜104和第三透镜106移动。在同时驱动第二透镜104和第三透镜106移动时,可以是驱动第二透镜104和第三透镜106同步移动,或驱动第二透镜104和第三透镜106不同步移动。
在某些实施方式中,驱动机构包括第一电机108、第一传动件110、第二电机112和第二传动件114。第一电机108通过第一传动件110连接第二透镜104并驱动第二透镜104 沿目镜100的光轴107移动。第二电机112通过第二传动件114连接第三透镜106并驱动第三透镜106沿目镜100的光轴107移动。
可以理解,第一电机108连接第一传动件110,第一传动件110连接第二透镜104,第一电机108通过第一传动件110驱动第二透镜104沿目镜100的光轴107移动。第二电机112连接第二传动件114,第二传动件114连接第三透镜106,第二电机112通过第二传动件114驱动第三透镜106沿目镜100的光轴107移动。进一步地,控制第一电机108转的圈数可以控制第二透镜104沿目镜100的光轴107移动的距离;控制第二电机112转的圈数可以控制第三透镜106沿目镜100的光轴107移动的距离。
在某些实施方式中,第一传动件110包括第一转子116和第一螺杆118。第二传动件114包括第二转子120和第二螺杆122。第一转子116螺纹连接第一螺杆118,第一电机108用于驱动第一转子116在第一螺杆118上来回运动以带动第二透镜104沿目镜100的光轴107移动。第二转子120螺纹连接第二螺杆122,第二电机112用于驱动第二转子120在第二螺杆122上来回运动以带动第三透镜106沿目镜100的光轴107移动。
如此,通过螺纹传动的方式实现了透镜的移动。
可以理解,第一转子116与第一螺杆118螺纹配合以使第一电机108驱动第一转子116在第一螺杆118上来回运动,从而带动第二透镜104沿目镜100的光轴107移动。第二转子120与第二螺杆122螺纹配合以使第二电机112驱动第二转子120在第二螺杆122上来回运动,从而带动第三透镜106沿目镜100的光轴107移动。
在其它实施方式中,可以通过齿轮、皮带、链条等传动的方式来实现透镜的移动。
以下结合附图,以其中一种实施例来说明螺纹传动的方式。
具体地,目镜100包括镜筒124和第二透镜框126。第一透镜102、第二透镜104、第三透镜106、第二透镜框126、显示屏200和驱动机构位于镜筒124内。驱动机构包括第一弹性件128。第二透镜104固定在第二透镜框126。第二透镜框126的外侧面设置有第一凸块130。第一弹性件128连接第二透镜框126和镜筒124。第一转子116在第一螺杆118上向目镜100的物侧运动时推动第一凸块130带动第二透镜框126和第二透镜104向目镜100的物侧移动。在第一转子116在第一螺杆118上向目镜100的像侧运动时第一弹性件128驱动第二透镜框126带动第二透镜104向目镜100的像侧移动。
第一凸块130开设有通孔以供第一螺杆118穿过,通孔的内径较第一螺杆118外径大,这样第二透镜104移动时受到的阻力较小,便于第二透镜104的移动。当第一转子116在第一螺杆118上向目镜100的物侧运动时,第一转子116推动第一凸块130带动第二透镜104向目镜100的物侧移动,此时,第一弹性件128被拉长。
当第一转子116在第一螺杆118上向目镜100的像侧运动时,第一弹性件128由于回 缩产生拉力,从而驱动第二透镜框126带动第二透镜104向目镜100的像侧移动。较佳地,第一弹性件128为弹簧。
可以理解,第二透镜104也通过其它螺纹传动的其它方式来移动,例如,可以省略第一弹性件128,第二透镜框126可直接与第一螺杆118螺纹连接,通过第一电机108正转和反转来驱动第二透镜104沿目镜100的光轴107来回移动。
另外,为了驱动第二透镜104的驱动机构便于安装,目镜100包括第二透镜固定框132。第一螺杆118连接第二透镜固定框132。镜筒124形成有第一导向槽134,第二透镜固定框132的边缘位于第一导向槽134内。
如此,安装时,可将第二透镜104、第二透镜框126、第一弹性件128、第一螺杆118和第二透镜固定框132安装好后构成的第二透镜结构,沿第一导向槽134整体安装在镜筒124内。由于有第一导向槽134的导向,这样的安装方式方便快捷。
进一步地,第二透镜104两端分别固定在两个第二透镜框126,第二透镜固定框132的数量为两个。其中一个第二透镜框126上的第一凸块130供第一螺杆118穿过,第一螺杆118连接其中一个第二透镜固定框132。另一个第二透镜框126上的第一凸块130供第一连接杆136穿过,第一连接杆136连接另一个第二透镜固定框132。
目镜100包括第三透镜框138。第三透镜框138位于镜筒124内。驱动机构包括第二弹性件140。第三透镜106固定在第三透镜框138。第三透镜框138的外侧面设置有第二凸块142。第二弹性件140连接第三透镜框138和镜筒124。第二转子120在第二螺杆122上向目镜100的像侧运动时推动第二凸块142带动第三透镜框138和第三透镜106向目镜100的像侧移动。在第二转子120在第二螺杆122上向目镜100的物侧运动时第二弹性件140驱动第三透镜框138带动第三透镜106向目镜100的物侧移动。
第二凸块142开设有通孔以供第二螺杆122穿过,通孔的内径较第二螺杆122外径大,这样第三透镜106移动时受到的阻力较小,便于第三透镜106的移动。当第二转子120在第二螺杆122上向目镜100的像侧运动时,第二转子122推动第二凸块142带动第三透镜106向目镜100的像侧移动,此时,第二弹性件140被拉长。
当第二转子120在第二螺杆122上向目镜100的物侧运动时,第二弹性件140由于回缩产生拉力,从而驱动第三透镜框138带动第三透镜106向目镜100的物侧移动。较佳地,第二弹性件140为弹簧。
可以理解,第三透镜106也通过其它螺纹传动的其它方式来移动,例如,可以省略第二弹性件140,第三透镜框138可直接与第二螺杆122螺纹连接,通过第二电机112正转和反转来驱动第三透镜106沿目镜100的光轴107来回移动。
另外,为了驱动第三透镜106的驱动机构便于安装,目镜100包括第三透镜固定框144。 第二螺杆122连接第三透镜固定框144。镜筒124形成有第二导向槽146,第三透镜固定框144的边缘位于第二导向槽146内。
如此,安装时,可将第三透镜106、第三透镜框138、第二弹性件140、第二螺杆122和第三透镜固定框144安装好后构成的第三透镜结构,沿第二导向槽146整体安装在镜筒124内。由于有第二导向槽146的导向,这样的安装方式方便快捷。
进一步地,第三透镜106两端分别固定在两个第三透镜框138,第三透镜固定框144的数量为两个。其中一个第三透镜框138上的第二凸块142供第二螺杆122穿过,第二螺杆122连接其中一个第三透镜固定框144。另一个第三透镜框138上的第二凸块142供第二连接杆148穿过,第二连接杆148连接另一个第三透镜固定框144。
在某些实施方式中,第一电机108和第二电机112均包括步进电机。如此,步进电机的控制方式成熟可靠,透镜位置的控制也相对较精准。可以理解,步进电机广泛应用于变焦镜头,技术成熟。在其它实施方式中,电机的类型可选择其它类型,例如音圈马达。
在某些实施方式中,显示屏200包括2.5英寸显示屏200。
可以理解,2.5英寸显示屏200较适合应用于头戴式电子设备10。
在某些实施方式中,第一透镜102为凸透镜,第二透镜104和第三透镜106均为凹透镜。
如此,通过凸透镜与凹透镜的组合以补偿像差,从而降低目镜100的像差。
在某些实施方式中,第一透镜102、第二透镜104和第三透镜106的像侧表面和物侧表面均为非球面。
如此,以避免第一透镜102、第二透镜104和第三透镜106产生球差,从而改善目镜100的像差。
在某些实施方式中,第一透镜102、第二透镜104和第三透镜106中的至少一个沿目镜100的光轴107移动时,目镜100的视场角调节范围为70°~90°。
可以理解,在本发明的实施方式中,目镜100的视场角最大为90°,最小为70°。也即是说,目镜100的视场角可以为70°、90°或70°~90°之间的任意数值。
下面将具体结合本发明的头戴式电子设备10的不同实施例进行说明。在以下的实施例中,目镜100还包括设置在第一透镜102像侧的光阑。其中所引用的表面序号1、2、3、4、5、6、7、8将分别代表光阑、第一透镜102的像侧表面、第一透镜102的物侧表面、第二透镜104的像侧表面、第二透镜104的物侧表面、第三透镜106的像侧表面、第三透镜106的物侧表面和显示屏200的显示面。
本发明的头戴式电子设备10的第一实施例中各元件的相关参数如下表一所示。
表一
Figure PCTCN2017113992-appb-000001
在第一实施例中,请参阅图2-图5,目镜100的视场角为70°。第一透镜102与第二透镜104的轴上间隔为3.15mm,第二透镜104与第三透镜106的轴上间隔为36.79mm。目镜100的焦距为53.56mm。
从图3-图5可知,当视场角为70°时,头戴式电子设备10的成像质量较好。
本发明的头戴式电子设备10的第二实施例中各元件的相关参数如下表二所示。
表二
Figure PCTCN2017113992-appb-000002
在第二实施例中,请参阅图6-图9,目镜100的视场角为80°。第一透镜102与第二透镜104的轴上间隔为5.65mm,第二透镜104与第三透镜106的轴上间隔为24.30mm。目镜100的焦距为47.654mm。
本发明的头戴式电子设备10的第三实施例中各元件的相关参数如下表三所示。
表三
Figure PCTCN2017113992-appb-000003
在第三实施例中,请参阅图10-图13,目镜100的视场角为90°。第一透镜102与第二透镜104的轴上间隔为8.14mm,第二透镜104与第三透镜106的轴上间隔为14.54mm。目镜100的焦距为42.838mm。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在 不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (19)

  1. 一种头戴式电子设备,其特征在于,包括目镜和显示屏,沿所述目镜的像侧至物侧的方向依次包括第一透镜、第二透镜和第三透镜,所述第一透镜、所述第二透镜和所述第三透镜中的至少一个能够沿所述目镜的光轴来回移动以实现所述目镜变焦,所述显示屏设置在所述第三透镜的物侧。
  2. 如权利要求1所述的头戴式电子设备,其特征在于,所述目镜包括驱动机构,所述驱动机构连接所述第一透镜、所述第二透镜和所述第三透镜中的至少一个并用于驱动所述第一透镜、所述第二透镜和所述第三透镜中的至少一个移动。
  3. 如权利要求2所述的头戴式电子设备,其特征在于,所述驱动机构包括第一电机、第一传动件、第二电机和第二传动件,所述第一电机通过所述第一传动件连接所述第二透镜并驱动所述第二透镜沿所述目镜的光轴移动,所述第二电机通过所述第二传动件连接所述第三透镜并驱动所述第三透镜沿所述目镜的光轴移动。
  4. 如权利要求3所述的头戴式电子设备,其特征在于,所述第一传动件包括第一转子和第一螺杆,所述第二传动件包括第二转子和第二螺杆,所述第一转子螺纹连接所述第一螺杆,所述第一电机用于驱动所述第一转子在所述第一螺杆上来回运动以带动所述第二透镜沿所述目镜的光轴移动,所述第二转子螺纹连接所述第二螺杆,所述第二电机用于驱动所述第二转子在所述第二螺杆上来回运动以带动所述第三透镜沿所述目镜的光轴移动。
  5. 如权利要求4所述的头戴式电子设备,其特征在于,所述目镜包括镜筒和第二透镜框,所述第一透镜、所述第二透镜、所述第三透镜、所述第二透镜框、所述显示屏和所述驱动机构位于所述镜筒内,所述驱动机构包括第一弹性件,
    所述第二透镜固定在所述第二透镜框,所述第二透镜框的外侧面设置有第一凸块,所述第一弹性件连接所述第二透镜框和所述镜筒,所述第一转子在所述第一螺杆上向所述目镜的物侧运动时推动所述第一凸块带动所述第二透镜框和所述第二透镜向所述目镜的物侧移动,在所述第一转子在所述第一螺杆上向所述目镜的像侧运动时所述第一弹性件驱动所述第二透镜框带动所述第二透镜向所述目镜的像侧移动。
  6. 如权利要求5所述的头戴式电子设备,其特征在于,所述目镜包括第二透镜固定框,所述第一螺杆连接所述第二透镜固定框,所述镜筒形成有第一导向槽,所述第二透镜固定 框的边缘位于所述第一导向槽内。
  7. 如权利要求4所述的头戴式电子设备,其特征在于,所述目镜包括镜筒和第三透镜框,所述第一透镜、所述第二透镜、所述第三透镜、所述第三透镜框、所述显示屏和所述驱动机构位于所述镜筒内,所述驱动机构包括第二弹性件,
    所述第三透镜固定在所述第三透镜框,所述第三透镜框的外侧面设置有第二凸块,所述第二弹性件连接所述第三透镜框和所述镜筒,所述第二转子在所述第二螺杆上向所述目镜的像侧运动时推动所述第二凸块带动所述第三透镜框和所述第三透镜向所述目镜的像侧移动,在所述第二转子在所述第二螺杆上向所述目镜的物侧运动时所述第二弹性件驱动所述第三透镜框带动所述第三透镜向所述目镜的物侧移动。
  8. 如权利要求7所述的头戴式电子设备,其特征在于,所述目镜包括第三透镜固定框,所述第二螺杆连接所述第三透镜固定框,所述镜筒形成有第二导向槽,所述第三透镜固定框的边缘位于所述第二导向槽内。
  9. 如权利要求1所述的头戴式电子设备,其特征在于,所述显示屏包括2.5英寸显示屏。
  10. 如权利要求1所述的头戴式电子设备,其特征在于,所述第一透镜为凸透镜,所述第二透镜和所述第三透镜均为凹透镜。
  11. 如权利要求1所述的头戴式电子设备,其特征在于,所述第一透镜、所述第二透镜和所述第三透镜的像侧表面和物侧表面均为非球面。
  12. 如权利要求3所述的头戴式电子设备,其特征在于,所述第一电机和所述第二电机均包括步进电机。
  13. 如权利要求1所述的头戴式电子设备,其特征在于,所述第一透镜、所述第二透镜和所述第三透镜中的至少一个沿所述目镜的光轴移动时,所述目镜的视场角调节范围为70°~90°。
  14. 如权利要求13所述的头戴式电子设备,其特征在于,所述视场角为70°时,所述 第一透镜与所述第二透镜的轴上间隔为3.15mm,所述第二透镜与所述第三透镜的轴上间隔为36.79mm。
  15. 如权利要求14所述的头戴式电子设备,其特征在于,所述视场角为70°时,所述目镜的焦距为53.56mm。
  16. 如权利要求13所述的头戴式电子设备,其特征在于,所述视场角为80°时,所述第一透镜与所述第二透镜的轴上间隔为5.65mm,所述第二透镜与所述第三透镜的轴上间隔为24.30mm。
  17. 如权利要求16所述的头戴式电子设备,其特征在于,所述视场角为80°时,所述目镜的焦距为47.654mm。
  18. 如权利要求13所述的头戴式电子设备,其特征在于,所述视场角为90°时,所述第一透镜与所述第二透镜的轴上间隔为8.14mm,所述第二透镜与所述第三透镜的轴上间隔为14.54mm。
  19. 如权利要求18所述的头戴式电子设备,其特征在于,所述视场角为90°时,所述目镜的焦距为42.838mm。
PCT/CN2017/113992 2017-11-30 2017-11-30 头戴式电子设备 WO2019104658A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/113992 WO2019104658A1 (zh) 2017-11-30 2017-11-30 头戴式电子设备
CN201780095803.1A CN111316152A (zh) 2017-11-30 2017-11-30 头戴式电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/113992 WO2019104658A1 (zh) 2017-11-30 2017-11-30 头戴式电子设备

Publications (1)

Publication Number Publication Date
WO2019104658A1 true WO2019104658A1 (zh) 2019-06-06

Family

ID=66664303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113992 WO2019104658A1 (zh) 2017-11-30 2017-11-30 头戴式电子设备

Country Status (2)

Country Link
CN (1) CN111316152A (zh)
WO (1) WO2019104658A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110658622A (zh) * 2019-08-19 2020-01-07 深圳市矽赫科技有限公司 一种自动调节的微显示器光学目镜及其调整方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115291383A (zh) * 2022-09-01 2022-11-04 舜宇光学(中山)有限公司 目镜镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140153102A1 (en) * 2012-12-03 2014-06-05 Wistron Corporation Head-mounted display
CN104483755A (zh) * 2014-12-29 2015-04-01 蓝景恒 一种头戴显示器及其实现方法
CN205067869U (zh) * 2015-10-26 2016-03-02 东莞伟信电子有限公司 一种可调焦距的近眼显示光学系统
CN205562977U (zh) * 2016-03-21 2016-09-07 深圳多哚新技术有限责任公司 短距离光学放大模组、眼镜、头盔及vr系统
US20160363758A1 (en) * 2015-06-10 2016-12-15 Canon Kabushiki Kaisha Observation optical system, and image displaying apparatus having the same
CN107340599A (zh) * 2017-09-08 2017-11-10 激极光学科技(上海)有限公司 一种用于头戴式设备的连续变焦光学系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3033139B2 (ja) * 1990-06-19 2000-04-17 ミノルタ株式会社 変倍ファインダー光学系
JP3495646B2 (ja) * 1998-09-30 2004-02-09 ペンタックス株式会社 一眼レフカメラの接眼光学系
JP4967270B2 (ja) * 2005-07-28 2012-07-04 株式会社ニコン レンズ鏡筒及びカメラ
CN101661150A (zh) * 2008-08-27 2010-03-03 鸿富锦精密工业(深圳)有限公司 驱动组件及其应用的镜头模组
CN201845118U (zh) * 2010-09-22 2011-05-25 中山联合光电科技有限公司 一种实现光学变焦及自动对焦的光学调节结构
CN206115031U (zh) * 2016-08-31 2017-04-19 深圳超多维科技有限公司 一种vr显示装置及vr显示设备
CN206193364U (zh) * 2016-11-28 2017-05-24 重庆奥根科技股份有限公司 用于虚拟现实装置的双屏消色差目镜系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140153102A1 (en) * 2012-12-03 2014-06-05 Wistron Corporation Head-mounted display
CN104483755A (zh) * 2014-12-29 2015-04-01 蓝景恒 一种头戴显示器及其实现方法
US20160363758A1 (en) * 2015-06-10 2016-12-15 Canon Kabushiki Kaisha Observation optical system, and image displaying apparatus having the same
CN205067869U (zh) * 2015-10-26 2016-03-02 东莞伟信电子有限公司 一种可调焦距的近眼显示光学系统
CN205562977U (zh) * 2016-03-21 2016-09-07 深圳多哚新技术有限责任公司 短距离光学放大模组、眼镜、头盔及vr系统
CN107340599A (zh) * 2017-09-08 2017-11-10 激极光学科技(上海)有限公司 一种用于头戴式设备的连续变焦光学系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110658622A (zh) * 2019-08-19 2020-01-07 深圳市矽赫科技有限公司 一种自动调节的微显示器光学目镜及其调整方法

Also Published As

Publication number Publication date
CN111316152A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
JP6406252B2 (ja) 表示装置
JP6311714B2 (ja) 表示装置
US10527859B2 (en) Image display device and display apparatus
WO2017096981A1 (zh) 一种头戴显示器
US9635264B2 (en) Imaging apparatus
TWI519818B (zh) 光學鏡頭與虛像顯示模組
US9335560B2 (en) Imaging apparatus
TWI687713B (zh) 光學鏡頭組、取像裝置及電子裝置
US7388719B2 (en) Camera system
CN1908736A (zh) 成像透镜设备和成像装置
JP4142670B2 (ja) ズームカメラの光学装置
TWI512329B (zh) 變焦鏡頭
US20170212361A1 (en) Optimal Focusing Design for High Field of View Head Mount Displays
US10962734B2 (en) Virtual reality apparatus
CN110618524B (zh) 定焦镜头及成像系统
KR20200072256A (ko) 렌즈 어셈블리 및 이를 포함하는 카메라 모듈
WO2019104658A1 (zh) 头戴式电子设备
TW201608274A (zh) 變焦鏡頭
US20120257284A1 (en) Imaging device and display device
CN110095926A (zh) 投影镜头和使用投影镜头的投影显示装置
JP2008107380A (ja) ズームビューファインダ及び撮像装置
CN110658622A (zh) 一种自动调节的微显示器光学目镜及其调整方法
CN204287608U (zh) 一种头戴式显示器
US11237380B2 (en) Eyepiece for a personal display and personal display comprising such eyepiece
JP2005292605A (ja) ズームレンズおよび撮影システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933858

Country of ref document: EP

Kind code of ref document: A1