WO2019103374A1 - 마찰전기 발전 소자 및 그 제조방법 - Google Patents

마찰전기 발전 소자 및 그 제조방법 Download PDF

Info

Publication number
WO2019103374A1
WO2019103374A1 PCT/KR2018/013687 KR2018013687W WO2019103374A1 WO 2019103374 A1 WO2019103374 A1 WO 2019103374A1 KR 2018013687 W KR2018013687 W KR 2018013687W WO 2019103374 A1 WO2019103374 A1 WO 2019103374A1
Authority
WO
WIPO (PCT)
Prior art keywords
triboelectric
layer
electrode
coating layer
polymer
Prior art date
Application number
PCT/KR2018/013687
Other languages
English (en)
French (fr)
Inventor
송찰스기석
Original Assignee
송찰스기석
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 송찰스기석 filed Critical 송찰스기석
Priority to SG11202004436WA priority Critical patent/SG11202004436WA/en
Priority to EP18880677.2A priority patent/EP3716465A4/en
Priority to JP2020546251A priority patent/JP7254092B2/ja
Priority to RU2020120437A priority patent/RU2745850C1/ru
Priority to US16/764,903 priority patent/US11545914B2/en
Priority to CN201880080776.5A priority patent/CN111480289A/zh
Publication of WO2019103374A1 publication Critical patent/WO2019103374A1/ko
Priority to US18/071,265 priority patent/US20230123778A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/22Methods relating to manufacturing, e.g. assembling, calibration
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment

Definitions

  • the present invention relates to a triboelectricity generating device, and more particularly, to a triboelectricity generating device that does not require a physical space for generating a friction movement, unlike a conventional piezoelectric device, And more particularly, to a triboelectricity generating device capable of maximizing the surface area, improving the durability of a power plant, and enabling efficient production of electricity, and a method of manufacturing the same.
  • an organic type piezoelectric material such as PVDF having excellent flexibility is difficult to produce a competitive product due to environmental hazard and high material cost.
  • inorganic type piezoelectric materials having poor flexibility have a problem of durability such as breakage of material due to continuous external pressure.
  • a physical space for generating a friction movement between friction materials is required, the structure of the device is complicated, and it is difficult to mass-produce, and the degree of wear of the material due to friction is large, There is a problem of low reliability.
  • conventional triboelectric materials have disadvantages such as difficulties in bonding between electrodes and friction materials, and difficulty in mass production due to differences in the process of applying friction materials to devices. Therefore, development of a triboelectricity electric power generation device which is complemented with such disadvantages is required.
  • the triboelectric device to be described in the present invention excludes unnecessary structures between physically triboelectric materials, and the contact between the triboelectric material domains in nano-units or max micron-
  • the power is produced by using the phenomenon of falling and sticking due to the bending of the wire. This is an aspect developed from the viewpoint of controlling the surface shape of the existing studies and securing legitimacy by succeeding in studying various methods of utilizing kinetic energy.
  • the present invention provides a triboelectric generation layer 300 including a friction portion of a junction structure, which is located at a central portion and is made of two or more different polymers; A first electrode (100) positioned opposite to one surface of the triboelectric generation layer (300); And a second electrode (200) facing the other surface of the triboelectric generation layer (300).
  • the present invention also provides a method for producing a polymer electrolyte membrane, comprising the steps of: a) dissolving and dispersing two or more polymers having different dielectric properties in a solvent, respectively, or dissolving and dispersing; b) masking a part of the surface of each of the first electrode and the second electrode having different materials; c) supplying a mixed or unmixed polymer solution to any one of the masked first and second electrodes on the unmasked exposed surface in step a), and then drying or curing the polymer solution to form an electrode Forming a triboelectric generating layer on the substrate; And d) laminating the remaining electrodes on which the triboelectric generation layer is not formed, on the triboelectric generation layer, and then pressing the triboelectricity generation layer.
  • the triboelectric generating element and the method of manufacturing the same according to the present invention do not require a physical space for generating a friction movement unlike a conventional piezoelectric element, and have a surface area by a bonding friction portion of a friction material composite which is inexpensive and mass- It has the advantage that the durability of the power plant is improved and the efficient production of electricity is possible.
  • FIG. 1 is a side sectional view schematically illustrating a triboelectricity generating device according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of an electrode masked according to the present invention.
  • FIG. 3 is a side sectional schematic view of a triboelectricity generating device according to another embodiment of the present invention.
  • FIGS. 4 and 5 are schematic side cross-sectional views of a triboelectric generator according to another embodiment of the present invention.
  • FIG. 6 is a graph illustrating voltage and current according to an impact applied to a triboelectric generating element according to an embodiment of the present invention.
  • FIGS. 7 to 9 are graphs illustrating voltage and current according to impacts applied to a triboelectric generating element according to a comparative example of the present invention.
  • 10 to 12 are graphs showing voltage and current according to impacts applied to the triboelectric generating element according to another embodiment of the present invention.
  • the triboelectric generator according to the present invention includes a triboelectric generation layer 300 including a friction portion of a junction structure, which is located at a central portion and is formed of two or more different polymers, A first electrode 100 positioned opposite to one surface of the generation layer 300 and a second electrode 200 disposed opposite to the other surface of the triboelectricity generation layer 300.
  • the triboelectric generating device is a device capable of converting all physical kinetic energy applied from the outside into electric energy and can be utilized for wind power generation, tidal power generation, and wave power generation.
  • a module in which elements are repeatedly arranged and a generator in which a plurality of the modules are repeatedly arranged In order to realize each power generation mode, A module in which elements are repeatedly arranged and a generator in which a plurality of the modules are repeatedly arranged.
  • the triboelectric generation device can be used as a sensor because it can sense physical movement, detect texture, hardness, or force applied thereto.
  • the triboelectric generation layer 300 is a triboelectric composite material in the form of a film including a friction portion generating electricity.
  • the friction portion is randomly formed in a nanometer (nm) to a micrometer (m)
  • the junction may have a bulk-heterojunction structure in which two or more different materials are unevenly in contact with each other, or may have a multi-junction structure. And can have a structure similar to the active layer of, for example, bulk-heterojunction organic photovoltaics (see website).
  • the structure of the multiple junction is basically similar to that of the bulk heterojunction, but may be a structure in which two or more substances are in contact with each other in a more regular shape (see website). Therefore, although the moving distance of each of the polarity-sensitive triboelectric materials is extremely short, the surface area is maximized, thereby improving the reliability of the material durability and enabling efficient production of electricity.
  • the thickness of the triboelectric generation layer 300 is 1 nm to 10,000 m, preferably 100 nm to 5,000 m, more preferably 1 to 1,000 m, If it is more than 10,000 ⁇ ⁇ , the electric field formed due to the separation of electric charges generated at the joint portion does not affect the current collector electrode, so that voltage and current may not be generated. On the other hand, The distance may be too close to cause a short circuit due to tunneling phenomenon.
  • the triboelectric generation layer (or the friction portion) is made of two or more polymers having different dielectric properties, preferably two different polymers.
  • the polymer is a material having a low production cost and easy mass production, that is, for example, it is possible to use polyamide (polyamide), polyvinyl alcohol (PVA), polymethylmethacrylate (PMMA), polyester, polyurethane, polyvinyl butyral Polyvinyl butyral (PVB), polyacrylonitrile, natural rubber, polystyrene (PS), polyvinylidene chloride, polyethylene (PE), polypropylene Polyvinylchloride (PVC) and Polydimethylsiloxane (PDMS).
  • polyamide polyamide
  • PVA polyvinyl alcohol
  • PMMA polymethylmethacrylate
  • PVB polyurethane
  • PS polyvinyl butyral Polyvinyl butyral
  • PS polyacrylonitrile
  • PS polystyrene
  • PE polyethylene
  • PVC
  • the weight ratio of the polymer of the present invention is preferably 20:80 to 80:20, more preferably 40:60 to 60:40.
  • each of the above polymers preferably has a weight average molecular weight (Mw) of 10,000 to 5,000,000.
  • the friction part is composed of polymers having different dielectric properties
  • the bonds between the backbone and the functional groups between the polymers having different dielectric properties are broken to form radicals. This is because charge transfer between the two materials is caused by electrons or radicals Which can occur due to material transfer.
  • the ionic monomers inside the polymer already exist or are formed due to friction, they may also migrate between different polymers and cause charge transfer. For this reason, triboelectricity is generated by the separation of charge between the two materials.
  • a general purpose solvent such as acetone, tetrahydrofuran (THF), toluene, dichloromethane, chloroform, toluene, hexane, cyclohexane, dimethyl sulfoxide, NMP and water may be used. That is, dissolve and mix the above-mentioned different polymers in such a solvent, melt the polymers, mix the polymers, or disperse the different polymers in water and non-aqueous solvents (water-borne or solvent-borne dispersion ), followeded by mixing (that is, emulsion polymerization), a composite material such as a composite film or a composite particle can be formed.
  • THF tetrahydrofuran
  • the triboelectric generating element according to the present invention can be applied to both of the conductive electrodes (the first electrode 100 and the second electrode 200) (Or insertion) of the coating layer 400 and coating layer 500, which functions as a waterproof / moisture-proof layer and a support layer, Structure, and has a structure similar to that of a commercially available piezoelectric device, so that the mass productivity and reliability are high.
  • the first electrode 100 and the second electrode 200 are made of a conductive material that allows electricity to flow through a charging phenomenon, and any conductive material that satisfies the requirements may be used without any particular limitation.
  • the conductive material include copper, aluminum, gold, silver, carbon felt, carbon paper, and carbon nanotube (CNT) -based composite.
  • the electrode may be formed of a porous foam There are no particular restrictions on the form, such as shape.
  • the first electrode 100 and the second electrode 200 may be formed of different materials.
  • the thickness of the first electrode 100 and the second electrode 200 is 20 nm to 5 mm, preferably 50 nm to 1 mm, and more preferably 100 nm to 100 ⁇ m. If the thickness of the second electrode 100 and the second electrode 200 exceeds 5 mm, the flexibility corresponding to the wind of the device may be deteriorated. If the thickness is less than 20 nm, the performance of the device may be deteriorated have.
  • the first electrode 100 and the second electrode 200 may be formed such that one end of each electrode protrudes from the triboelectric generation layer 300 in order to connect (ground) the electric wires 2).
  • the first electrode 100 and the second electrode 200 prevent a short phenomenon between both electrodes, and the area of the triboelectric generation layer 300 is the same
  • the exposed surface except for the portion facing the triboelectric generation layer 300 may be masked by a tape coated with an adhesive component or an insulator material such as PP or PE.
  • FIG. 2 is a schematic view of an electrode masked according to the present invention. The masking process of the electrode may be performed on both sides (a and b in FIG. 2-A) as shown in FIG.
  • Fig. 2A It may be possible to target only one side as shown in Fig. 2B, or the like, and it may vary depending on the performance of the objective electrode.
  • the content of the electrode used in a conventional triboelectric element can be used in common with respect to the basic role of the electrode and the like not described above.
  • 3 is a side sectional schematic view of a triboelectricity generating device according to another embodiment of the present invention.
  • the triboelectric generating element may be disposed on the outer circumferential surface of each of the first and second electrodes 100 and 200 to function as a waterproof
  • the first coating layer 400 may further include at least one pair of the first coating layer 400 and at least one pair of second coating layers 500 positioned on the outer circumferential surface of each of the first coating layers 400 .
  • the first coating layer 400 is a layer for improving the waterproofness, moisture-proofness, oxygen barrier properties, weather resistance, durability, and the like of the triboelectric element according to the present invention and shielding the inside of the element from outside,
  • the waterproof, moisture proof, oxygen barrier If the material having one or more properties of weather resistance and durability can be used without limitation.
  • the second coating layer 500 has a function of supporting the triboelectric generating element and has the function of the first coating layer 400, more precisely, a layer that imparts elasticity to the element.
  • the second coating layer 500 may be formed of a material selected from the group consisting of polyimide, polyether ether ketone, a mixture thereof, and a mixture of at least one of them and a compound constituting the first coating layer 400 And the like, and any material can be used without limitation as long as it is a flexible and tough material capable of supporting a triboelectric generating element.
  • the thickness of the first coating layer 400 is 100 nm to 10 mm, preferably 1 ⁇ m to 1 mm, and more preferably 10 to 100 ⁇ m. When the thickness of the first coating layer 400 is out of the range , The flexibility of the device may deteriorate or the function of waterproof / moisture-proof may not be sufficiently performed. 3, both ends of the first coating layer 400 are electrically connected to the first and second electrodes 100 and 200, respectively, in order to protect the entire device including the current collecting electrode from water, moisture, 200, respectively.
  • the thickness of the second coating layer 500 is in the range of 1 to 10 mm, preferably 5 to 5 mm, more preferably 10 to 1 mm, The flexibility of the device may be deteriorated or the function of supporting the device may not be sufficiently performed. 3, the lengths of the first coating layer 400 and the second coating layer 500 are the same. However, the lengths of the first coating layer 400 and the second coating layer 500 are not limited to one example, May protrude from the first coating layer (400). With such a protruding configuration, the coating layer is once more completely coated (wrapped) by the outer support layer, so that the blocking effect from the outside can be improved.
  • FIGS. 4 and 5 are schematic side cross-sectional views of a triboelectric generator according to another embodiment of the present invention.
  • the triboelectric generating element according to the present invention may be disposed between the triboelectric generating layer 300 and the first electrode 100 and between the triboelectric generating layer
  • Polyvinyl alcohol (PVA), polymethylmethacrylate (PMMA), polyester (Polyester), and poly (vinylidene fluoride) are respectively disposed between the first electrode 300 and the second electrode 200, Polyurethane, polyvinyl butyral (PVB), polyacrylonitrile, natural rubber, polystyrene (PS), polyvinylidene chloride, polyethylene
  • PE polyethylene
  • PP polypropylene
  • PVC polyimide
  • PVC poly
  • the first and second interface layers 600 and 700 may be formed of a plurality of layers, as shown in FIG. 5, in order to improve the performance of the device.
  • the triboelectric generation layer 300 may be cross-deposited. The order of the triboelectricity generation layer 300 is not limited to that shown in FIG. 5, and various combinations may be made in consideration of device performance.
  • the first interface layer 600 and the second interface layer 700 can prevent interaction with the triboelectric generation layer 300 and the reverse flow of charges in the triboelectricity generation layer 300,
  • the first interface layer 600 and the second interface layer 700 have different triboelectric polarities.
  • the second interface layer 700 may be a PVC.
  • the other interface layer may be made of PVC, PDMS, Polypropylene, polyethylene, and polyvinylidine chloride.
  • the thicknesses of the first interface layer 600 and the second interface layer 700 are 1 nm to 1 mm, preferably 50 nm to 500 ⁇ m, and more preferably 100 nm to 100 ⁇ m, If the thickness of the interface layer 600 and the second interface layer 700 is out of the above range, the flexibility of the device may deteriorate, the power generation performance of the device may deteriorate, or the charge It may not be able to properly perform the function of blocking the data.
  • the first electrode 100, the second electrode 200, the first coating layer 400, the second coating layer 500, the first interface layer 600, 2 interface layer 700 is not particularly limited and may vary depending on the size and characteristics of the intended triboelectric generating element.
  • the method for producing the triboelectric generating element comprises the steps of: a) dissolving and dispersing two or more polymers having different dielectric properties in a solvent, respectively, or dissolving and dispersing them, and mixing or melting and mixing; b) Masking the surface of each of the first electrode and the second electrode, c) performing a masking process on any one of the first and second electrodes (the second electrode in the figure, 200) Forming a triboelectric generating layer (or a polymer composite film) 300 on the electrode by supplying a polymer solution mixed or not mixed in the step a) and drying or curing the polymer solution, and d) 300), the remaining electrode (the first electrode 100 in the figure) on which the tritium generating layer 300 is not formed is laminated and then pressed.
  • a process of annealing the triboelectric generation layer 300 may be performed, and the method of manufacturing the triboelectricity generation device may include the steps of: (E) forming a first coating layer 400 on the outer circumferential surfaces of the first electrode 100 and the second electrode 200, and f) forming a second coating layer 400 on each outer circumferential surface of the first coating layer 400, (500). ≪ / RTI >
  • two or more polymers having different dielectric properties are first dissolved and dispersed in a solvent, respectively, or dissolved and dispersed and then mixed, or two or more polymers having different dielectric properties are melted (In case of emulsion polymerization, water-borne solution and solvent-borne solution are mixed, step a).
  • the polymer (material) constitutes a friction portion for generating electricity in the triboelectric generating element, and a detailed description thereof is applied to the polymer described in the triboelectric generating element.
  • each polymer solution is sequentially supplied onto the electrode, so that a stacked triboelectric generating element can be manufactured.
  • Solvent / dispersion of the polymer in a solvent is a process inherent to the present invention for further improving the mass productivity of the polymer.
  • a linear or cyclic alkane compound an aromatic compound
  • Organic solvents such as ketone compounds, linear and cyclic ether compounds, amine compounds, sulfide compounds and halogen compounds can be exemplified. Specific examples thereof include general solvents such as hexane, cyclohexane, toluene, acetone, diethyl ether, tetrahydrofuran (THF), N-methyl-2-pyrrolidone, dimethyl sulfoxide, dichloromethane and chloroform.
  • THF tetrahydrofuran
  • the concentration at which the polymer is dissolved in a solvent is 0.1 to 10,000 g / kg, preferably 1 to 5,000 g / kg, more preferably 10 to 1,000 g / kg.
  • the effect obtained by dissolving the polymer in a solvent may be insignificant or the mixing process may be difficult.
  • the temperature at which the polymer is dissolved in the solvent is 0 to 70 ° C, preferably 10 to 50 ° C, more preferably 25 to 40 ° C. When the temperature at which the polymer is dissolved in the solvent is out of the above range, There is a possibility that a problem of decomposition or an increase in the risk of explosion may occur.
  • the mixing ratio of each polymer solution may be in a weight ratio of 0.1: 99.9 to 99.9: 0.1, preferably 20:80 to 80:20, and more preferably 40:60 to 60:40.
  • an additive such as a plasticizer and an impact modifier may be further added, if necessary, in order to reinforce the flexibility and impact strength of each polymer material.
  • first electrode and second electrode electrodes having different materials
  • the first electrode and the second electrode must be made of different materials to enable the generation of triboelectricity.
  • the reason why such portions of the surface of the first and second electrodes are masked with tape is to prevent a short phenomenon between both electrodes and to keep the area of the triboelectric generation layer uniform for each element , A portion not to be coated (or supplied) with the polymer mixed solution is regarded as a masking application portion.
  • the electrode and the masking are described in detail in the electrode and masking described in the above triboelectric generating element.
  • the polymer solution mixed or not mixed in step a) is supplied (applied) and dried or cured to form a triboelectric generating layer (or a polymer composite film) 300 on one electrode (step c).
  • the method of supplying the polymer mixed solution onto the electrode may include drop casting, screen printing, spin coating, rotogravure printing, spray coating, and inkjet printing ink-jet printing).
  • the thickness of the triboelectric generation layer 300 may be in the range of 1 nm to 10,000 ⁇ m, preferably 100 nm to 5,000 ⁇ m, more preferably 1 to 1,000 ⁇ m, If it is more than 10,000 ⁇ ⁇ , the electric field formed due to the separation of electric charges generated at the joint portion does not affect the current collector electrode, so that voltage and current may not be generated. On the other hand, The distance may be too close to cause a short circuit due to tunneling phenomenon.
  • the method for producing a triboelectric generating element according to the present invention may further comprise the step of mixing the polymer mixture liquid used in the step c) at least one time on the surface of the polymer composite film (triboelectric generating layer) formed in the step c) Preferably 1 to 100 times, more preferably 5 to 20 times, and then drying it.
  • This is a process for controlling the thickness of the polymer composite film.
  • the polymer concentration in the step a) is lower, the number of times of supply of the polymer can be increased. Therefore, when the polymer concentration is high, The process may not be performed.
  • the remaining electrode (the first electrode 100 in the drawing) on which the triboelectric generating layer 300 is not formed is formed on the annealed triboelectric generating layer 300, (Step d).
  • the pressing can be carried out by a conventional pressing method such as a roll press method and a hot press method at a temperature of 40 to 250 DEG C and a pressure of 1 gF to 100 kgF.
  • a process of annealing the triboelectric generation layer 300 is performed.
  • the triboelectric generating layer 300 is heated to a predetermined temperature, maintained at a predetermined temperature for a predetermined time, and then cooled to room temperature.
  • the temperature, the time and the number of times of the annealing process may be arbitrarily changed in consideration of the physical properties of the intended power generating element.
  • the annealing may be performed at a temperature of 30 to 250 ° C, preferably 50 to 150 ° C for 1 to 3,600 seconds, Preferably 1 to 24 times, preferably 1 to 10 times, for 10 to 180 seconds.
  • the gap between the triboelectric generation layer 300 and the first electrode 100, and between the triboelectricity generation layer 300 and the second electrode 100, (In FIG. 4, the first interface layer 600 and the second interface layer 700) may be formed in each of the trenches 200 (or on both surfaces of the triboelectric generation layer 300) have.
  • the first interface layer 600 and the second interface layer 700 are formed on the surface of the triboelectric generating layer 300.
  • the first interface layer 600 and the second interface layer 700 are formed on the surface of the triboelectric layer 300, Triboelectric polarities can be induced to form with mutually opposing polymers.
  • the interface layer may be intentionally formed at a point of time before forming the triboelectric generation layer (or the polymer composite film 300) on the electrode, in addition to the method of being formed by the annealing process.
  • the first interfacial layer 600 and the second interfacial layer 700 may be formed of a plurality of layers and cross-laminated with the triboelectric generation layer 300, The present invention is not limited to FIG. 5, and various combinations can be made in consideration of device performance.
  • the triboelectric element is constructed as shown in Fig. 5, the performance of the element can be further improved.
  • an annealing step may be further performed, if necessary.
  • the material and thickness of the first coating layer 400 and the second coating layer 500 are the same as those described in the above triboelectric generating element.
  • PMMA was dissolved in tetrahydrofuran (THF) at a concentration of 0.1 g / mL at room temperature.
  • PVC was also dissolved in THF at a concentration of 0.1 g / mL at room temperature.
  • the PMMA solution and PVC solution were mixed at a ratio of 1: 1 By weight to prepare a polymer mixture.
  • a PMMA-PVC polymer solution was bar coated on the exposed surface of the electrode film (unmasked) and dried to form a triboelectricity generating layer, and then the upper surface of the triboelectric generating layer ) was further coated with the PMMA-PVC polymer solution five times and dried.
  • a masked electrode film was laminated on the electrode surface coated with the PMMA-PVC polymer solution, and the triboelectric generating layer was exposed to light for about 5 seconds at 70 to 90 ° C using a laminator (Kolami-320S, And pressed at a pressure of about 1 kgF to produce a triboelectric generator.
  • a triboelectricity electric element was produced in the same manner as in Example 1 except that the PVC and the PMMA solution were not mixed with each other and the PVC and PMMA layers were sequentially coated and laminated.
  • a triboelectricity electric element was manufactured in the same manner as in Example 2 except that the PVC and PMMA layers were alternately laminated by coating three times at intersections.
  • a triboelectricity electric element was produced in the same manner as in Example 2 except that the PVC and PMMA layers were alternately laminated by coating five times at an intersection.
  • a triboelectricity electric element was produced in the same manner as in Example 1 except that the polymer mixture was not used and the drop casting, drying and annealing steps were omitted.
  • the triboelectric generating element was manufactured in the same manner as in Example 1 except that the PMMA-PVC polymer solution was used instead of the PMMA-PVC polymer solution except for the PVC solution (that is, the triboelectric generating layer was made of PMMA polymer Configuration).
  • the triboelectric generating element was manufactured in the same manner as in Example 1 except that a PMMA-PVC polymer solution was used instead of the PMMA-PVC polymer mixture solution (that is, the triboelectric generating layer was made of a PVC polymer only Configuration).
  • FIG. 6 is a graph showing a voltage and current according to an impact applied to a triboelectric generating element according to an embodiment of the present invention.
  • FIGS. 7 to 9 are graphs showing the impact FIG. 6 corresponds to Example 1, and FIGS. 7 to 9 correspond to Comparative Examples 1 to 3, respectively.
  • electricity was immediately generated according to the impact / change applied to the device .
  • the voltage change due to the impact applied to the element was measured Respectively. That is, the device was bent up and down three times per second for 20 seconds after the first 10 seconds of pause, followed by a pause of 10 to 20 seconds, and then the remaining steps except the first pause were added twice And repeated.
  • FIGS. 10 to 12 are graphs of voltage and current according to impacts applied to the triboelectric generator according to another embodiment of the present invention, and FIGS. 10 to 12 correspond to the second to fourth embodiments, respectively. It can be confirmed that electricity is instantaneously generated according to the impact / change applied to the device as in the case of the first embodiment of the triboelectric type electric power generation device which is not of the stacked type 10 to 12). It was also confirmed that as the number of stacked layers increases, the generated electric voltage and the total amount of current increase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

기존 압전소자와는 달리 마찰 운동을 발생시키기 위한 물리적 공간이 요구되지 않으며, 저렴하고 양산이 용이한 마찰소재 복합체의 접합 마찰부에 의해 표면적이 극대화되어, 발전소자의 내구성이 개선되고 전기의 효율적인 생산이 가능한, 마찰전기 발전 소자 및 그 제조방법이 개시된다. 상기 마찰전기 발전 소자는, 중심부에 위치하며 서로 다른 둘 이상의 고분자로 이루어진 접합(junction) 구조의 마찰부를 포함하는 마찰전기 발생층(300); 상기 마찰전기 발생층(300)의 어느 일면에 대향되어 위치하는 제1 전극(100); 및 상기 마찰전기 발생층(300)의 다른 일면에 대향되어 위치하는 제2 전극(200);을 포함한다.

Description

마찰전기 발전 소자 및 그 제조방법
본 출원은 2017년 11월 22일자 한국 특허 출원 제10-2017-0156387호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 마찰전기 발전 소자에 관한 것으로서, 더욱 상세하게는, 기존 압전소자와는 달리 마찰 운동을 발생시키기 위한 물리적 공간이 요구되지 않으며, 저렴하고 양산이 용이한 마찰소재 복합체의 접합 마찰부에 의해 표면적이 극대화되어, 발전소자의 내구성이 개선되고 전기의 효율적인 생산이 가능한, 마찰전기 발전 소자 및 그 제조방법에 관한 것이다.
통상적인 압전소자(Piezoelectric device)에 있어서, 유연성이 뛰어난 PVDF 등의 유기 계열 압전소재는 환경적 유해성 및 높은 소재 원가로 인하여 경쟁력 있는 제품의 제작에 어려움이 있다. 또한, 유연성이 좋지 못한 무기 계열의 압전소재는, 지속되는 외부 압력에 의해 소재가 파열되는 등 내구성에 문제가 발생하는 문제가 있다. 마찰전기 소자(triboelectric device)의 경우, 마찰소재 간의 마찰 운동을 발생시키기 위한 물리적인 공간이 필요할 뿐만 아니라, 소자의 구조가 복잡하고 양산에도 어려움이 있으며, 마찰에 의한 소재 마모의 정도가 커서 내구성에 대한 신뢰도가 낮은 문제가 발생한다. 또한, 기존 마찰전기 소재는 전극과 마찰소재 간의 접합에 대한 어려움, 그리고 마찰소재들을 소자에 적용하는 공정방법의 상이함으로 인해 양산이 어렵다는 단점을 가지고 있다. 따라서, 이와 같은 단점들이 보완된 마찰전기 발전 소자의 개발이 요구되고 있는 실정이다.
여기서, 지금까지 진행되었던 통상적인 마찰전기 소자의 발전 연혁에 대하여 설명하면, 2012년에 이종의 마찰전기 소재를 2겹으로 배열(bilayer)한 후 외부에 전극을 대어, 마찰전기 소재 간 수직 및 수평 움직임을 통해 전기 생산이 가능하다는 것을 확인하였고, 2013년에는 이종의 마찰전기 소재를 교차로 회전시키는 방식으로도 전기 생산이 가능함을 나타내었으며, 개별 마찰전기 소자들을 다층(병렬 구조)으로 구성하여 발전 효율을 개선하기도 하였다. 2014년에는 3차원 구조의 마찰전기 소자를 통해 발생 전류의 양을 크게 개선하였고, 자전거 바퀴 형상을 가지는 원반 전극과 마찰전기 소재들을 가운데 중심 축을 두고 회전 시킴으로써 효율적인 마찰전기 생산이 가능하다는 것을 확인하였으며, 박막의 마찰전기 소재에 마이크론 단위로 grating을 하고 전극과 겹친 후 수평이동을 함으로써 효율적인 전기 생산이 가능함을 보여주었고, grating된 마찰전기 소재와 전극에 용수철을 달아 소재와 전극 간의 수평이동 및 용수철을 통한 에너지 보존을 통하여 높은 효율의(~85%) 물리 에너지를 전기 에너지로 전환 가능함을 확인하였다.
2015년에는 마찰소재 사이에 강철 봉을 베어링의 용도로 삽입함으로써 적은 에너지를 가해도 마찰소재가 부드럽게 움직일 수 있게 구조를 개선하였고, 그럼에도 마찰전기 생산 효율이 크게 떨어지지 않음을 보여주었다. 또한, 하이브리드 방식으로써 전자기발전기(AC)와 마찰전기소자(AC)를 직렬 또는 병렬로 연결함으로써 전압이나 전류의 양을 더 안정적으로 공급할 수 있음을 발견하였으며, 추가로 태양전지(DC)와 마찰전기 소자(AC)도 연결함으로써 빛과 운동 에너지로부터 동시에 전력을 생산할 수 있음을 확인하였다. 이후, 마찰전기 소재 간의 마이크로 또는 나노 단위의 패터닝을 통해 전력생산 효율을 개선하는 연구들이 진행되고 있으며, 소재를 변경하거나, 운동 에너지를 받아들이는 형태(수직, 수평, 회전, 구부러짐 등)를 바꿔가면서 효율을 보다 개선시켰다. 가장 최근의 주목할만한 연구결과로는, 마찰전기 소자의 한쪽 면은 기판에 고정하고, 다른 한 면은 바람에 흔들리게 둠으로써 풍력 발전기로써 활용 가능성을 보여주었다.
상기 소개된 모든 마찰전기 소자와는 다르게, 본 발명에서 설명하고자 하는 마찰전기 소자는, 물리적으로 마찰전기 소재 간에 불필요한 구조를 배제하고, 나노 단위 또는 최대 마이크론 단위의 마찰전기 소재 domain 간의 접촉이, 필름의 구부러짐에 의해 떨어지고 붙는 현상을 이용하여 전력을 생산하는 것이다. 이는, 기존 연구들의 소재 표면 형상을 조절한다는 면에서 발전된 모습이며, 여러 방식의 운동 에너지를 활용하는 방안을 연구하는 것을 계승함으로써 정통성도 확보하였다.
따라서, 본 발명의 목적은, 기존 압전소자와는 달리 마찰 운동을 발생시키기 위한 물리적 공간이 요구되지 않으며, 저렴하고 양산이 용이한 마찰소재 복합체의 접합 마찰부에 의해 표면적이 극대화되어, 발전소자의 내구성이 개선되고 전기의 효율적인 생산이 가능한, 마찰전기 발전 소자 및 그 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은, 중심부에 위치하며 서로 다른 둘 이상의 고분자로 이루어진 접합(junction) 구조의 마찰부를 포함하는 마찰전기 발생층(300); 상기 마찰전기 발생층(300)의 어느 일면에 대향되어 위치하는 제1 전극(100); 및 상기 마찰전기 발생층(300)의 다른 일면에 대향되어 위치하는 제2 전극(200);을 포함하는 마찰전기 발전 소자를 제공한다.
또한, 본 발명은, a) 유전 성질이 상이한 둘 이상의 고분자를 각각 용매에 용해 및 분산시키거나, 용해 및 분산시킨 후 혼합하거나, 용융시켜 혼합하는 단계; b) 소재가 상이한 제1 전극 및 제2 전극 각각의 표면 일부를 마스킹 처리하는 단계; c) 상기 마스킹 처리된 제1 및 제2 전극 중 어느 하나의 전극에 있어서, 마스킹 처리되지 않은 노출 면에 상기 a) 단계에서 혼합되었거나 혼합되지 않은 고분자 용액을 공급한 후 건조 또는 경화시켜, 전극 상에 마찰전기 발생층을 형성하는 단계; 및 d) 상기 마찰전기 발생층의 상부에, 상기 마찰전기 발생층이 형성되지 않은 나머지 전극을 적층시킨 후 압착하는 단계;를 포함하는 마찰전기 발전 소자의 제조방법을 제공한다.
본 발명에 따른 마찰전기 발전 소자 및 그 제조방법은, 기존 압전소자와는 달리 마찰 운동을 발생시키기 위한 물리적 공간이 요구되지 않으며, 저렴하고 양산이 용이한 마찰소재 복합체의 접합 마찰부에 의해 표면적이 극대화되어, 발전소자의 내구성이 개선되고 전기의 효율적인 생산이 가능하다는 장점을 가지고 있다.
도 1은 본 발명의 일 실시예에 따른 마찰전기 발전 소자의 측단면 모식도이다.
도 2는 본 발명에 따라 마스킹 처리된 전극의 모식도이다.
도 3은 본 발명의 다른 실시예에 따른 마찰전기 발전 소자의 측단면 모식도이다.
도 4 및 5는 본 발명의 또 다른 실시예에 따른 마찰전기 발전 소자의 측단면 모식도이다.
도 6은 본 발명의 일 실시예에 따라 마찰전기 발전 소자에 가해지는 충격에 따른 전압 및 전류를 측정한 그래프이다.
도 7 내지 9는 본 발명의 비교예에 따라 마찰전기 발전 소자에 가해지는 충격에 따른 전압 및 전류를 측정한 그래프이다.
도 10 내지 12는 본 발명의 다른 실시예에 따라 마찰전기 발전 소자에 가해지는 충격에 따른 전압 및 전류를 측정한 그래프이다.
이하, 첨부된 도면을 참조하여, 본 발명을 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 마찰전기 발전 소자의 측단면 모식도이다. 도 1에 도시된 바와 같이, 본 발명에 따른 마찰전기 발전 소자는, 중심부에 위치하며 서로 다른 둘 이상의 고분자로 이루어진 접합(junction) 구조의 마찰부를 포함하는 마찰전기 발생층(300), 상기 마찰전기 발생층(300)의 어느 일면에 대향되어 위치하는 제1 전극(100) 및 상기 마찰전기 발생층(300)의 다른 일면에 대향되어 위치하는 제2 전극(200)을 포함한다.
본 발명에 따른 마찰전기 발전 소자는, 외부로부터 가해지는 모든 물리적 운동 에너지를 전기 에너지로 전환 가능한 소자로서, 풍력 발전, 조력 발전 및 파력 발전 등에 활용 가능하며, 각 발전 방식을 구현하기 위하여, 다수의 소자가 반복 배치되는 모듈 및 그 모듈 다수가 반복 배치되는 발전기로 구성될 수 있다. 뿐만 아니라, 본 발명에 따른 마찰전기 발전 소자는, 물리적인 움직임을 감지하거나 촉감(texture), 경도(hardness) 또는 가해지는 힘(force)을 감지하는 것도 가능하여 센서(sensor)로도 활용 가능하다.
상기 마찰전기 발생층(300)은 전기를 발생시키는 마찰부를 포함하는 필름 형태의 마찰소재 복합체(triboelectric composite material)로서, 상기 마찰부는 나노미터(㎚) 내지 마이크로미터(㎛) 단위의 랜덤(random)한 접합부(junction)들로 이루어져 있으며, 상기 접합부는 서로 다른 2종 이상의 소재가 불균일하게 맞닿아 있는 벌크 이종 접합(bulk-heterojunction)의 구조를 가지거나, 다중 접합(multi-junction)의 구조를 가질 수 있고, 예를 들어, 벌크 이종 접합 유기 태양전지(bulk-heterojunction organic photovoltaics, 웹사이트 참조)의 활성층(Active Layer)과 유사한 구조를 가질 수 있다. 한편, 상기 다중 접합의 구조는 기본적으로 상기 벌크 이종 접합의 구조와 유사하나, 보다 규칙적인 형상으로 둘 이상의 물질이 서로 맞닿아 있는 구조일 수 있다(웹사이트 참조). 따라서, 극성을 띠는 각 마찰전기 소재들의 이동 거리가 극히 짧음에도 불구하고, 표면적이 극대화되어 소재 내구성에 대한 신뢰 개선과 효율적인 전기의 생산이 가능해진다.
한편, 상기 마찰전기 발생층(300)의 두께는, 1 ㎚ 내지 10,000 ㎛, 바람직하게는 100 ㎚ 내지 5,000 ㎛, 더욱 바람직하게는 1 내지 1,000 ㎛로서, 상기 마찰전기 발생층(300)의 두께가 10,000 ㎛를 초과할 경우에는, 접합부에서 발생한 전하의 분리로 인해 형성되는 전기장이 집전극까지 영향을 미치지 못하여, 전압 및 전류가 생성되지 못하는 문제가 발생할 우려가 있고, 1 ㎚ 미만일 경우에는 집전극간의 거리가 너무 가까워 터널링(tunneling) 현상으로 인한 소자 쇼트(short) 현상이 발생할 수 있다.
상기 마찰전기 발생층(또는, 마찰부)은 유전 성질이 서로 다른 둘 이상의 고분자, 바람직하게는 서로 다른 2종의 고분자로 이루어지는 것으로서, 상기 고분자는 제조 단가가 저렴하며 양산이 용이한 소재, 즉, 예를 들어, 폴리아미드(Polyamide), 폴리비닐알코올(Polyvinyl alcohol(PVA)), 폴리메틸메타크릴레이트(Polymethylmethacrylate(PMMA)), 폴리에스테르(Polyester), 폴리우레탄(Polyurethane), 폴리비닐부티랄(Polyvinyl butyral(PVB)), 폴리아크릴로니트릴(Polyacrylonitrile), 천연고무(natural rubber), 폴리스티렌(Polystyrene(PS)), 폴리염화비닐리덴(Polyvinylidene chloride), 폴리에틸렌(Polyethylene(PE)), 폴리프로필렌(Polypropylene(PP)), 폴리이미드(Polyimide), 폴리염화비닐(Polyvinylchloride(PVC)) 및 폴리디메틸실록산(Polydimethylsiloxane(PDMS))이 될 수 있으며, PVC와 PMMA의 혼용, PVC와 PVA의 혼용, PVC와 PVB의 혼용, PP와 PMMA의 혼용 및 PE와 PMMA의 혼용이 바람직하다. 상기 고분자가 2종 혼합 사용될 경우(즉, 상기 마찰전기 발생층이 서로 다른 두 고분자를 포함할 경우)의 그 포함되는(혼합되는) 비율은 0.1 : 99.9 내지 99.9 : 0.1의 중량비로서, 상기 두 고분자 중 어느 하나가 미량으로 포함되더라도 본 발명에 따른 효과가 발생하며, 바람직하게는 20 : 80 내지 80 : 20의 중량비, 더욱 바람직하게는 40 : 60 내지 60 : 40의 중량비일 수 있다. 그밖에, 상기 각 고분자는 10,000 내지 5,000,000의 중량평균분자량(Mw)을 가지는 것이 바람직하다.
상기와 같이 마찰부를 유전 성질이 상이한 고분자들로 구성하게 되면, 유전 성질이 다른 고분자 간 백본(backbone) 및 관능기의 결합이 깨져 라디칼을 형성하게 되고, 이는 두 물질 간의 전하 이동이 전자 또는 라디칼로 인해 형성된 물질 이동(material transfer)으로 인해 생길 수 있음을 의미한다. 추가로, 고분자 내부의 이온 단분자가 이미 존재하거나 마찰로 인해 형성될 시, 이들 또한 이종의 고분자 간에 이동하게 되어 전하 이동의 원인이 될 수 있다. 이러한 이유로 인해, 두 물질간에 전하가 분리됨으로써 마찰전기가 발생된다.
한편, 상기 고분자 소재의 양산성을 보다 높이기 위하여, Acetone, Tetrahydrofuran(THF), Toluene, Dichloromethane, Chloroform, Toluene, Hexane, Cyclohexane, dimethyl sulfoxide, NMP 및 물 등의 범용 용매를 이용할 수 있다. 즉, 이와 같은 용매에 상기 서로 다른 고분자를 용해(dissolve)한 후 혼합하거나, 상기 고분자를 용융하여 혼합하거나, 상기 서로 다른 고분자를 각각 수계 및 비수계 용매에 분산(water-borne 또는 solvent-borne dispersion)시킨 후 혼합하는 방식(즉, 에멀젼 중합)을 통해, 복합 필름 또는 복합 입자 등의 복합체(composite material)를 형성할 수 있다.
따라서, 본 발명에 따른 마찰전기 발전 소자는, 이와 같이 양산이 용이한 마찰전기 발생층(또는 마찰소재 복합체, 300)을 전도성의 양 전극(제1 전극(100), 제2 전극(200)) 사이에 위치(또는, 삽입)시킨 후, 방수/방습의 역할을 하는 코팅층(400)과 지지의 역할을 하는 코팅층(500)을 코팅시키는 간단한 구조를 가짐으로써, 기존의 마찰전기 소자에 비하여 매우 단순한 구조를 가지되, 기 상용화된 압전소자와는 유사한 구조를 가지기 때문에, 양산성 및 신뢰성이 높다.
다음으로, 상기 제1 전극(100) 및 제2 전극(200)은 대전 현상에 의해 전기를 통하게 하는 전도성 물질로 이루어진 것으로서, 이를 만족하는 전도성 물질이라면 특별한 제한 없이 적용될 수 있다. 이와 같은 전도성 물질로는 구리, 알루미늄, 금, 은, carbon felt, carbon paper 및 탄소나노튜브(CNT)가 첨가된 복합체 등을 예시할 수 있으며, 상기 전극은 통상적인 필름 형태 이외에 다공성의 폼(foam) 형태 등 그 형태에 있어서는 특별한 제한이 없다.
다만, 상기 제1 전극(100)과 제2 전극(200)은 서로 다른 소재로 각각 구성될 수도 있다. 또한, 상기 제1 전극(100) 및 제2 전극(200)의 두께는 20 nm 내지 5 mm, 바람직하게는 50 nm 내지 1 mm, 더욱 바람직하게는 100 nm 내지 100 um로서, 상기 제1 전극(100) 및 제2 전극(200)의 두께가 5 mm를 초과할 경우에는, 소자의 바람에 대응하는 유연성이 저하될 우려가 있고, 20 nm 미만일 경우에는 저항 증가로 인하여 소자의 성능이 저하될 수 있다.
한편, 상기 제1 전극(100) 및 제2 전극(200)은, 전선을 결합(접지)시키기 위하여, 각 전극 어느 한 쪽 끝단을 마찰전기 발생층(300) 대비 돌출되게 구성할 수 있다(도 2 참조). 또한, 본 발명에서 있어서, 상기 제1 전극(100) 및 제2 전극(200)은, 양 전극 간 쇼트(short) 현상을 방지하고, 또한, 마찰전기 발생층(300)의 면적을 소자마다 동일하게 유지하기 위하여, 상기 마찰전기 발생층(300)과 대면되는 부분을 제외한 나머지 외부 노출 면이, 접착 성분이 도포된 테이프나 PP 또는 PE 등의 절연체 물질에 의해 마스킹(Masking) 처리될 수 있다. 도 2는 본 발명에 따라 마스킹 처리된 전극의 모식도로서, 상기 전극의 마스킹 처리는, 도 2의 A에 도시된 바와 같이, 양쪽 면(도 2-A의 a 및 b)을 대상으로 할 수도 있고, 도 2의 B에 도시된 바와 같이, 어느 한 쪽 면만을 대상으로 할 수도 있는 등, 목적으로 하는 전극의 성능 등에 따라 달라질 수 있다. 그밖에, 이상에서 설명되지 않은 전극의 기본적인 역할 등에 대한 내용은, 통상의 마찰전기 소자에 사용되는 전극의 내용을 준용할 수 있다.
도 3은 본 발명의 다른 실시예에 따른 마찰전기 발전 소자의 측단면 모식도이다. 한편, 상기 마찰전기 발전 소자는, 필요에 따라, 도 3에 도시된 바와 같이, 상기 제1 및 제2 전극(100, 200) 각각의 외주면에 위치하여 방수, 방습 및 산소 차단 등의 역할을 하는 한 쌍 이상의 제1 코팅층(400)을 더 포함할 수 있고, 추가적으로, 상기 제1 코팅층(400) 각각의 외주면에 위치하여 지지 등의 역할을 하는 한 쌍 이상의 제2 코팅층(500)을 더 포함할 수 있다.
구체적으로, 상기 제1 코팅층(400)은, 본 발명에 따른 마찰전기 발전 소자의 방수성, 방습성, 산소 차단성, 내후성 및 내구성 등을 향상시키고, 소자 내부를 외부로부터 차단하기 위한 층으로서, 그 소재로는 에폭시(Epoxy), 폴리에스터(Polyester), 폴리우레탄(Polyurethane), 파라핀 왁스(paraffin wax)와 폴리올레핀(polyolefin)의 혼합물, 폴리에틸렌 테레프탈레이트(PET, Polyethylene terephthalate), 폴리프로필렌(PP, Polypropylene), 폴리에틸렌(PE, Polyethylene), 폴리스티렌(PS, Polystyrene), 폴리염화비닐(PVC, Polyvinyl chloride), 폴리에틸렌 나프탈레이트(PEN, Polyethylene naphthalate), 폴리아미드(PA, Polyamide), 폴리비닐알코올(PVAL, Polyvinyl alcohol), 에틸렌비닐알코올(EVOH, ethylene vinyl alcohol), 폴리염화비닐리덴(PVDC, Polyvinylidene chloride) 및 이들의 혼합물 등을 예시할 수 있으며, 방수성, 방습성, 산소 차단성, 내후성 및 내구성 중 어느 하나 이상의 성질을 가지는 소재라면 특별한 제한 없이 사용될 수 있다.
또한, 상기 제2 코팅층(500)은 마찰전기 발전 소자의 지지 기능을 기본으로 가지고 있고, 상기 제1 코팅층(400)의 기능까지 가질 수 있는 것으로서, 보다 정확하게는 소자에 탄성을 부여하는 층이다. 상기 제2 코팅층(500)의 소재로는 폴리이미드(Polyimide), 폴리에테르에테르키톤(Polyether ether ketone), 이들의 혼합물 및 이들 중 어느 하나 이상과 상기 제1 코팅층(400)을 구성하는 화합물의 혼합물 등을 예시할 수 있으며, 유연하고 질긴 등 마찰전기 발전 소자가 지지 기능을 가질 수 있도록 하는 소재라면 특별한 제한 없이 사용될 수 있다.
상기 제1 코팅층(400)의 두께는 100 nm 내지 10 mm, 바람직하게는 1 um 내지 1 mm, 더욱 바람직하게는 10 내지 100 um로서, 상기 제1 코팅층(400)의 두께가 상기 범위를 벗어날 경우에는, 소자의 유연성이 저하되거나 방수/방습 등의 기능을 충분히 수행하지 못하는 문제가 발생할 수 있다. 한편, 상기 제1 코팅층(400)의 양 끝단은, 집전극을 포함하는 소자 전체를 물, 습기 및 산소로부터 보호하기 위하여, 도 3에 도시된 바와 같이, 상기 제1 및 제2 전극(100, 200)의 양 끝단 대비 돌출되도록 구성할 수 있다.
또한, 상기 제2 코팅층(500)의 두께는 1 um 내지 10 mm, 바람직하게는 5 um 내지 5 mm, 더욱 바람직하게는 10 um 내지 1 mm로서, 상기 제2 코팅층(500)의 두께가 상기 범위를 벗어날 경우에는, 소자의 유연성이 저하되거나 소자 지지의 기능을 충분히 수행하지 못하는 문제가 발생할 수 있다. 한편, 도 3에는 상기 제1 코팅층(400)과 제2 코팅층(500)의 길이를 동일하게 표현하였으나, 이는 일 예에 불과한 것으로서, 상기 제2 코팅층(500)의 어느 한 쪽 끝단 또는 양 쪽 끝단이 상기 제1 코팅층(400) 대비 돌출되도록 구성할 수도 있다. 이와 같은 돌출 구성을 하게 되면, 코팅층이 외부 지지층에 의해 한번 더 완전히 코팅되어(감싸져), 외부로부터의 차단 효과가 향상될 수 있다.
도 4 및 5는 본 발명의 또 다른 실시예에 따른 마찰전기 발전 소자의 측단면 모식도이다. 한편, 본 발명에 따른 마찰전기 발전 소자는, 필요에 따라, 도 4에 도시된 바와 같이, 상기 마찰전기 발생층(300)과 제1 전극(100)의 사이, 그리고, 상기 마찰전기 발생층(300)과 제2 전극(200)의 사이 각각에, 폴리아미드(Polyamide), 폴리비닐알코올(Polyvinyl alcohol(PVA)), 폴리메틸메타크릴레이트(Polymethylmethacrylate(PMMA)), 폴리에스테르(Polyester), 폴리우레탄(Polyurethane), 폴리비닐부티랄(Polyvinyl butyral(PVB)), 폴리아크릴로니트릴(Polyacrylonitrile), 천연고무(natural rubber), 폴리스티렌(Polystyrene(PS)), 폴리염화비닐리덴(Polyvinylidene chloride), 폴리에틸렌(Polyethylene(PE)), 폴리프로필렌(Polypropylene(PP)), 폴리이미드(Polyimide), 폴리염화비닐(Polyvinylchloride(PVC)) 및 폴리디메틸실록산(Polydimethylsiloxane(PDMS))으로 이루어진 군으로부터 선택되는 소재를 포함하는 제1 계면층(600) 및 제2 계면층(700)을 더 포함할 수 있다. 또한, 본 발명에 따른 마찰전기 발전 소자는, 소자의 성능 향상을 위하여, 필요에 따라, 도 5에 도시된 바와 같이, 상기 제1 계면층(600) 및 제2 계면층(700)을 복수층으로 구성하여, 마찰전기 발생층(300)과 교차 적층시킬 수도 있으며, 그 순서는 도 5에 제한되지 않고, 소자 성능을 고려하여 다양한 조합으로 이루어질 수 있다.
상기 제1 계면층(600) 및 제2 계면층(700)은, 상기 마찰전기 발생층(300)과의 상호작용 및 마찰전기 발생층(300)에서 전하가 역방향으로 흐르는 것을 방지하여 마찰전기의 발전 정도를 보다 향상시키기 위한 것으로서, 상기 제1 계면층(600)과 제2 계면층(700)은 마찰전기(Triboelectric) 극성이 서로 다르며, 예를 들어, 상기 제1 계면층(600)이 PMMA일 경우, 상기 제2 계면층(700)은 PVC일 수 있다. 구체적으로, 상기 제1 계면층(600)과 제2 계면층(700) 중 어느 하나가 PMMA, Polyamide, Polyvinyl Alcohol, Polybutyral 및 Polystyrene으로 이루어진 군으로부터 선택되면, 나머지 하나의 계면층은 PVC, PDMS, Polypropylene, Polyethylene 및 Polyvinylidine Chloride로 이루어진 군으로부터 선택될 수 있다.
그밖에, 상기 제1 계면층(600) 및 제2 계면층(700)의 두께는 1 nm 내지 1 mm, 바람직하게는 50 nm 내지 500 um, 더욱 바람직하게는 100 nm 내지 100 um로서, 상기 제1 계면층(600) 및 제2 계면층(700)의 두께가 상기 범위를 벗어날 경우에는, 소자의 유연성이 저하되거나, 소자의 발전 성능이 저하되거나, 마찰전기 발생층(300)에서 역방향으로 움직이는 전하들을 차단하는 역할을 제대로 수행하지 못하는 문제가 발생할 수 있다.
한편, 지금까지 설명한 마찰전기 발생층(300), 제1 전극(100), 제2 전극(200), 제1 코팅층(400), 제2 코팅층(500), 제1 계면층(600) 및 제2 계면층(700)의 너비(가로 × 세로, 위에서 내려다 본 모습 기준)는 특별한 제한이 없으며, 목적으로 하는 마찰전기 발전 소자의 크기 및 특성 등에 따라 가변될 수 있다.
다음으로, 도 1 및 3을 참조하여, 본 발명에 따른 마찰전기 발전 소자의 제조방법에 대하여 설명한다. 상기 마찰전기 발전 소자의 제조방법은, a) 유전 성질이 상이한 둘 이상의 고분자를 각각 용매에 용해 및 분산시키거나, 용해 및 분산시킨 후 혼합하거나, 용융시켜 혼합하는 단계, b) 소재가 상이한 제1 전극 및 제2 전극 각각의 표면 일부를 마스킹 처리하는 단계, c) 상기 마스킹 처리된 제1 및 제2 전극 중 어느 하나의 전극(도면상 제2 전극, 200)에 있어서, 마스킹 처리되지 않은 노출 면에 상기 a) 단계에서 혼합되었거나 혼합되지 않은 고분자 용액을 공급한 후 건조 또는 경화시켜, 전극 상에 마찰전기 발생층(또는 고분자 복합 필름, 300)을 형성하는 단계 및 d) 상기 마찰전기 발생층(300)의 상부에, 상기 마찰전기 발생층(300)이 형성되지 않은 나머지 전극(도면상 제1 전극, 100)을 적층시킨 후 압착하는 단계를 포함한다.
한편, 상기 c) 단계 및 d) 단계 중 어느 하나 이상의 단계가 수행된 이후에는, 상기 마찰전기 발생층(300)을 어닐링시키는 공정이 수행될 수 있고, 상기 마찰전기 발전 소자의 제조방법은, 필요에 따라, e) 상기 제1 전극(100) 및 제2 전극(200)의 각 외주면에 제1 코팅층(400)을 형성하는 단계 및 f) 상기 제1 코팅층(400)의 각 외주면에 제2 코팅층(500)을 형성하는 단계를 더 포함한다.
본 발명에 따라, 마찰전기 발전 소자를 제조하기 위해서는, 먼저, 유전 성질이 상이한 둘 이상의 고분자를 각각 용매에 용해 및 분산시키거나, 용해 및 분산시킨 후 혼합하거나, 유전 성질이 상이한 둘 이상의 고분자를 용융시켜 혼합하여야 한다(에멀젼 중합의 경우, water-borne 용액 및 solvent-borne 용액을 혼합, a 단계). 상기 고분자(소재)는 마찰전기 발전 소자 내에서 전기를 발생시키는 마찰부를 구성하는 것으로서, 이에 대한 구체적인 설명은 상기 마찰전기 발전 소자에서 기술한 고분자에 관한 내용을 준용한다. 한편, 고분자를 각각 용매에 용해 및 분산시킨 후 혼합하지 않는 경우에는, 전극 상에 각 고분자 용액을 순차 공급함으로써 적층형의 마찰전기 발전 소자가 제조될 수 있다.
상기 고분자를 용매에 용해/분산시키는 것은, 상기 고분자의 양산성을 보다향상시키기 위한 본 발명 고유의 공정으로서, 사용 가능한 용매로는 선형 및 환형의 지방족(alkane)계 화합물, 방향족(aromatic)계 화합물, 키톤계(ketone) 화합물, 선형 및 환형의 에테르(ether)계 화합물, 아민(amine)계 화합물, 황화물(sulfide)계 화합물 및 할로겐(halogen)계 화합물 등의 유기 용제를 예로 들 수 있고, 보다 구체적으로는, Hexane, Cyclohexane, Toluene, Acetone, Diethyl ether, Tetrahydrofuran(THF), N-Methyl-2-pyrrolidone, Dimethyl sulfoxide, Dichloromethane 및 Chloroform 등의 범용 용매를 예시할 수 있다.
상기 고분자를 용매에 용해시키는 농도는 0.1 내지 10,000 g/kg, 바람직하게는 1 내지 5,000 g/kg, 더욱 바람직하게는 10 내지 1,000 g/kg으로서, 상기 고분자를 용매에 용해시키는 농도가 상기 범위를 벗어날 경우에는, 상기 고분자를 용매에 용해시킴으로써 얻을 수 있는 효과가 미미하거나 혼합 공정이 어려울 수 있다. 또한, 상기 고분자를 용매에 용해시키는 온도는 0 내지 70 ℃, 바람직하게는 10 내지 50 ℃, 더욱 바람직하게는 25 내지 40 ℃로서, 상기 고분자를 용매에 용해시키는 온도가 상기 범위를 벗어날 경우, 용해가 되지 않거나 분해가 되거나 또는 폭발의 위험성이 증가하는 문제가 발생할 우려가 있다.
이때, 각 고분자 용액의 혼합비는 0.1 : 99.9 내지 99.9 : 0.1의 중량비, 바람직하게는 20 : 80 내지 80 : 20의 중량비, 더욱 바람직하게는 40 : 60 내지 60 : 40의 중량비일 수 있다. 한편, 서로 다른 고분자 용액을 혼합하는 a) 단계의 수행 시에는, 각 고분자 소재의 유연성 및 충격 강도를 보강하기 위하여, 필요에 따라, 가소제 및 충격 보강재 등의 첨가제를 추가로 첨가할 수 있다.
다음으로, 소재가 상이한 전극(제1 전극 및 제2 전극)을 준비한 후, 각 표면의 일부를 마스킹 처리한다(b 단계). 상기 제1 전극 및 제2 전극은 마찰전기의 발전이 가능하도록 서로 다른 소재로 구성되어야 한다. 이와 같은, 제1 및 제2 전극의 표면 일부를 테이프로 마스킹 처리하는 이유는, 양 전극 간 쇼트(short) 현상을 방지하고, 또한, 마찰전기 발생층의 면적을 소자마다 동일하게 유지하기 위함으로써, 상기 고분자 혼합액을 도포(또는, 공급)하고자 하지 않는 부분을 마스킹 적용 부위로 한다. 그밖에, 전극 및 마스킹에 대한 구체적인 설명은, 상기 마찰전기 발전 소자에서 기술한 전극 및 마스킹의 내용을 준용한다.
상기 각 전극의 표면을 마스킹 처리한 후에는, 상기 제1 및 제2 전극 중 어느 하나의 전극(도면상 제2 전극, 200)상에(정확하게는, 전극의 마스킹 처리되지 않은 노출 면에), 상기 a) 단계에서 혼합되었거나 혼합되지 않은 고분자 용액을 공급(도포)한 후 건조 또는 경화시켜, 하나의 전극 상에 마찰전기 발생층(또는 고분자 복합 필름, 300)을 형성시킨다(c 단계). 상기 고분자 혼합액을 전극상에 공급하는 방식에는 드롭 캐스팅(drop casting), 스크린 프린팅(screen printing), 스핀 코팅(spin coating), 로토그라비어 프린팅(rotogravure printing), 스프레이 코팅(spray coating) 및 잉크젯 프린팅(ink-jet printing) 등이 있다. 그밖에, 상기 마찰전기 발생층(300)의 두께는, 1 ㎚ 내지 10,000 ㎛, 바람직하게는 100 ㎚ 내지 5,000 ㎛, 더욱 바람직하게는 1 내지 1,000 ㎛로서, 상기 마찰전기 발생층(300)의 두께가 10,000 ㎛를 초과할 경우에는, 접합부에서 발생한 전하의 분리로 인해 형성되는 전기장이 집전극까지 영향을 미치지 못하여, 전압 및 전류가 생성되지 못하는 문제가 발생할 우려가 있고, 1 ㎚ 미만일 경우에는 집전극간의 거리가 너무 가까워 터널링(tunneling) 현상으로 인한 소자 쇼트(short) 현상이 발생할 수 있다.
한편, 상기 마찰전기 발전 소자의 제조방법은, 필요에 따라, 상기 c) 단계에서 형성된 고분자 복합 필름(마찰전기 발생층)의 표면 상에, 상기 c) 단계에서 사용된 고분자 혼합액을 1 회 이상, 바람직하게는 1 내지 100 회, 더욱 바람직하게는 5 내지 20 회 재공급한 후 건조시키는 단계를 더 포함한다. 이는, 상기 고분자 복합 필름의 두께를 조절하기 위한 과정으로서, 상기 a) 단계의 고분자 농도가 낮을수록 재공급 횟수는 많아질 수 있으며, 따라서, 고분자 농도가 높을 경우에는, 이와 같은 고분자 혼합액의 재공급 과정이 수행되지 않을 수 있다.
그밖에, 본 명세서에 있어서, 고분자 용액 및 혼합액을 먼저 제조하고, 이후 전극의 표면을 마스킹 처리하는 것으로 기재하고 있으나, 이는 어디까지나 설명의 편의를 위한 것일 뿐, 그 순서가 바뀌거나 동시에 진행될 수 있다.
상기와 같이 전극 상에 마찰전기 발생층이 형성되면, 어닐링된 마찰전기 발생층(300)의 상부에, 상기 마찰전기 발생층(300)이 형성되지 않은 나머지 전극(도면상 제1 전극, 100)을 적층시킨 후 압착한다(d 단계). 상기 압착은 롤 프레스 방식 및 핫 프레스 방식 등 통상적인 압착 방식에 의해, 40 내지 250 ℃의 온도 및 1 gF 내지 100 kgF의 압력 하에서 수행될 수 있다.
한편, 상기 c) 단계 및 d) 단계 중 어느 하나 이상의 단계가 수행된 이후에는, 상기 마찰전기 발생층(300)을 어닐링시키는 공정이 수행된다. 상기 어닐링 공정은 마찰전기 발생층(300)을 일정 온도로 만든 후, 해당 온도에서 일정 시간 동안 유지시키고, 이어서 실온으로 냉각시키는 과정으로서, 상기 마찰전기 발생층(300) 내부의 고분자들의 결집도 조절을 통한 총 접합면적 조절에 따라 발전 효율을 최적화 하는 용도로 사용된다. 이와 같은 어닐링 공정의 온도, 소요 시간 및 횟수는, 목적으로 하는 발전 소자의 물성 등을 고려하여 임의 변경 가능하나, 30 내지 250 ℃, 바람직하게는 50 내지 150 ℃의 온도 하에서, 1 내지 3,600 초, 바람직하게는 10 내지 180 초 동안 1 내지 24 회, 바람직하게는 1 내지 10 회 수행될 수 있다.
한편, 상기 어닐링 공정이 수행되는 경우, 도 4에 도시된 바와 같이, 상기 마찰전기 발생층(300)과 제1 전극(100)의 사이, 그리고, 상기 마찰전기 발생층(300)과 제2 전극(200)의 사이 각각에(또는, 마찰전기 발생층(300)의 양면에), 계면층(도 4에 있어서, 제1 계면층(600) 및 제2 계면층(700))이 형성될 수 있다. 이는, 어닐링 공정 시 가열에 의해 마찰전기 발생층(300)의 고분자가 상하부로 새어 나오는 현상으로서 밀도 차이에 의한 것이며, 상기 제1 계면층(600) 및 제2 계면층(700)은 마찰전기(Triboelectric) 극성이 상호 반대인 고분자로 형성되도록 유도 가능하다.
한편, 상기 계면층은, 어닐링 공정에 의해 형성되는 방법 이외에, 전극 상에 마찰전기 발생층(또는 고분자 복합 필름, 300)을 형성시키기 전 등의 시점에 의도적으로 형성될 수 있다. 따라서, 도 5에 도시된 바와 같이, 상기 제1 계면층(600) 및 제2 계면층(700)을 복수층으로 구성하여, 마찰전기 발생층(300)과 교차 적층시킬 수도 있으며, 그 순서는 도 5에 제한되지 않고, 소자 성능을 고려하여 다양한 조합으로 이루어질 수 있다. 여기서, 마찰전기 소자가 도 5와 같은 구성으로 이루어지면, 소자의 성능이 보다 향상될 수 있다.
한편, 상기 e) 단계의 제1 코팅층(400)을 형성한 후, 또는 상기 f) 단계의 제2 코팅층(500)을 형성한 후에도, 필요에 따라, 어닐링 공정이 추가로 수행될 수 있으며, 그밖에, 상기 제1 코팅층(400) 및 제2 코팅층(500)의 소재 및 두께 등에 관한 설명은, 상기 마찰전기 발전 소자에서 기술한 내용을 준용한다.
이하, 구체적인 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것으로서, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[실시예 1] 마찰전기 발전 소자의 제조
먼저, PMMA를 Tetrahydrofuran(THF)에 0.1 g/mL의 농도로 상온에서 용해시키고, PVC 또한 THF에 0.1 g/mL의 농도로 동일하게 상온에서 용해시킨 후, PMMA 용액과 PVC 용액을 1 : 1의 중량비로 혼합하여 고분자 혼합액을 제조하였다.
다음으로, 아크릴 접착제가 도포된 PET 코팅 용지 표면상에 4.3 cm × 9 cm × 10 μm의 크기를 가지는 알루미늄 전극을 접착하고 전극의 표면을 아세톤으로 세척한 후, 도 2에 도시된 바와 같은 형태로 4.3 cm × 8 cm의 면적(Exposed Electrode)을 제외한 나머지 부분을 스카치 테이프로 마스킹 처리한 전극 필름을 2장 준비하였다.
이어서, 노출된(마스킹 처리되지 않은) 전극 필름 1장의 표면에, PMMA-PVC 고분자 혼합액을 바 코팅(bar coating)하고 건조시켜 마찰전기 발생층을 형성한 후, 마찰전기 발생층의 상부면(표면)에 상기 PMMA-PVC 고분자 혼합액을 추가로 5회 바 코팅 및 건조시켰다.
이후, 마스킹 처리된 전극 필름 1장을 PMMA-PVC 고분자 혼합액으로 코팅된 전극 표면에 겹친 후 라미네이터(Kolami-320S, 코라미, 대한민국)를 이용하여 마찰전기 발생층을 70 내지 90 ℃에서 약 5초 간 어닐링시키며 약 1 kgF의 압력으로 압착하여, 마찰전기 발전 소자를 제조하였다.
[실시예 2] 적층형 마찰전기 발전 소자의 제조
PVC와 PMMA 용액을 혼합하지 않고 PVC와 PMMA층을 1회 순차 코팅하여 적층한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여, 마찰전기 발전 소자를 제조하였다.
[실시예 3] 적층형 마찰전기 발전 소자의 제조
PVC와 PMMA층을 번갈아 교차로 3회씩 코팅하여 적층한 것을 제외하고는, 상기 실시예 2와 동일하게 수행하여, 마찰전기 발전 소자를 제조하였다.
[실시예 4] 적층형 마찰전기 발전 소자의 제조
PVC와 PMMA층을 번갈아 교차로 5회씩 코팅하여 적층한 것을 제외하고는, 상기 실시예 2와 동일하게 수행하여, 마찰전기 발전 소자를 제조하였다.
[비교예 1] 마찰전기 발전 소자의 제조
고분자 혼합액을 사용하지 않아, 드롭 캐스팅, 건조 및 어닐링 공정이 배제된 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여, 마찰전기 발전 소자를 제조하였다.
[비교예 2] 마찰전기 발전 소자의 제조
PVC 용액을 제외하여, PMMA-PVC 고분자 혼합액 대신 PMMA 고분자 용액을 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여, 마찰전기 발전 소자를 제조하였다(즉, 마찰전기 발생층은 PMMA 고분자로만 구성).
[비교예 3] 마찰전기 발전 소자의 제조
PMMA 용액을 제외하여, PMMA-PVC 고분자 혼합액 대신 PVC 고분자 용액을 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여, 마찰전기 발전 소자를 제조하였다(즉, 마찰전기 발생층은 PVC 고분자로만 구성).
[실시예 1, 비교예 1~3] 마찰전기 발생량 평가
상기 실시예 1 및 비교예 1 내지 3에서 제조된 마찰전기 발전 소자의 양 전극과 멀티미터(multimeter, UT61E, UNI-T사, 중국)를 전선으로 연결한 후, 소자에 가해지는 충격에 따른 전압 변화를 측정하였다. 즉, 최초 10초의 휴지기(休止期) 이후에 20초 동안 초당 3 번씩(3 Hz) 소자를 상하로 구부러뜨렸고, 이어서, 10 내지 20초의 휴지기를 가졌으며, 이후, 최초 휴지기를 제외한 나머지 과정을 2회 추가로 반복하였다.
도 6은 본 발명의 일 실시예에 따라 마찰전기 발전 소자에 가해지는 충격에 따른 전압 및 전류를 측정한 그래프이고, 도 7 내지 9는 본 발명의 비교예에 따라 마찰전기 발전 소자에 가해지는 충격에 따른 전압 및 전류를 측정한 그래프로서, 도 6은 상기 실시예 1에 해당하고, 도 7 내지 9는 각각 상기 비교예 1 내지 3에 해당한다. 먼저, 상기 실시예 1에서 제조된 (고분자 복합 필름을 사용한) 마찰전기 발전 소자의 경우, 도 6에 도시된 바와 같이, 소자에 가해지는 충격/변화에 따라 전기가 즉각적으로 발생하는 것을 확인할 수 있었다.
반면, 비교예 1에서 제조된 (고분자 복합 필름을 사용하지 않은) 소자의 경우에는, 도 7에 도시된 바와 같이, 마찰전기가 전혀 발생하지 않았고, 비교예 2에서 제조된 (PMMA 고분자만을 사용한) 소자의 경우, 도 8에 도시된 바와 같이, 전기는 발생하였지만 실시예 1 대비 크게 적은 것을 알 수 있으며, 비교예 3에서 제조된 (PVC 고분자만을 사용한) 소자의 경우에는, 도 9에 도시된 바와 같이, 극소량의 전기만 발생하는 것을 확인할 수 있었다.
[실시예 2~4] 마찰전기 발생량 평가
상기 실시예 2 내지 4에서 제조된 적층형 마찰전기 발전 소자의 양 전극과 멀티미터(multimeter, UT61E, UNI-T사, 중국)를 전선으로 연결한 후, 소자에 가해지는 충격에 따른 전압 변화를 측정하였다. 즉, 최초 10초의 휴지기(休止期) 이후에 20초 동안 초당 3 번씩 소자를 상하로 구부러뜨렸고, 이어서, 10 내지 20초의 휴지기를 가졌으며, 이후, 최초 휴지기를 제외한 나머지 과정을 2회 추가로 반복하였다.
도 10 내지 12는 본 발명의 다른 실시예에 따라 마찰전기 발전 소자에 가해지는 충격에 따른 전압 및 전류를 측정한 그래프로서, 도 10 내지 12는 각각 상기 실시예 2 내지 4에 해당한다. 상기 실시예 2 내지 4에서 제조된 적층형 마찰전기 발전 소자는, 적층형이 아닌 마찰전기 발전 소자에 관한 실시예 1과 마찬가지로 소자에 가해지는 충격/변화에 따라 전기가 즉각적으로 발생하는 것을 확인할 수 있었다(도 10 내지 12 참조). 또한, 적층 수가 증가할수록, 발생하는 전기의 전압 및 전체적인 전류량이 증가하는 것도 확인할 수 있었다.

Claims (20)

  1. 중심부에 위치하며 서로 다른 둘 이상의 고분자로 이루어진 접합(junction) 구조의 마찰부를 포함하는 마찰전기 발생층(300);
    상기 마찰전기 발생층(300)의 어느 일면에 대향되어 위치하는 제1 전극(100); 및
    상기 마찰전기 발생층(300)의 다른 일면에 대향되어 위치하는 제2 전극(200);을 포함하는 마찰전기 발전 소자.
  2. 청구항 1에 있어서, 상기 고분자는 폴리아미드, 폴리비닐알코올, 폴리메틸메타크릴레이트, 폴리에스테르, 폴리우레탄, 폴리비닐부티랄, 폴리아크릴로니트릴, 천연고무, 폴리스티렌, 폴리염화비닐리덴, 폴리에틸렌, 폴리프로필렌, 폴리이미드, 폴리염화비닐 및 폴리디메틸실록산으로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 마찰전기 발전 소자.
  3. 청구항 1에 있어서, 상기 마찰전기 발생층에는 서로 다른 두 고분자가 0.1 : 99.9 내지 99.9 : 0.1의 중량비로 포함되는 것을 특징으로 하는, 마찰전기 발전 소자.
  4. 청구항 1에 있어서, 상기 제1 및 제2 전극은 구리, 알루미늄, 금, 은, carbon felt, carbon paper 및 탄소나노튜브(CNT)가 첨가된 복합체로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 마찰전기 발전 소자.
  5. 청구항 1에 있어서, 상기 제1 및 제2 전극은, 상기 마찰전기 발생층과 대면되는 부분을 제외한 나머지 외부 노출 면이, 접착 성분이 도포된 테이프 또는 절연체 물질에 의해 마스킹(Masking) 처리되는 것을 특징으로 하는, 마찰전기 발전 소자.
  6. 청구항 1에 있어서, 상기 마찰전기 발전 소자는,
    상기 제1 및 제2 전극(100, 200) 각각의 외주면에 위치하는 한 쌍 이상의 제1 코팅층(400); 및
    상기 제1 코팅층(400) 각각의 외주면에 위치하는 한 쌍 이상의 제2 코팅층(500);을 더 포함하는 것을 특징으로 하는, 마찰전기 발전 소자.
  7. 청구항 6에 있어서, 상기 제1 코팅층은 에폭시, 폴리에스터, 폴리우레탄, 파라핀 왁스와 폴리올레핀의 혼합물, 폴리에틸렌 테레프탈레이트, 폴리프로필렌, 폴리에틸렌, 폴리스티렌, 폴리염화비닐, 폴리에틸렌 나프탈레이트, 폴리아미드, 폴리비닐알코올, 에틸렌비닐알코올, 폴리염화비닐리덴 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 마찰전기 발전 소자.
  8. 청구항 6에 있어서, 상기 제2 코팅층(500)은 폴리이미드, 폴리에테르에테르키톤, 이들의 혼합물 및 이들 중 어느 하나 이상과 상기 제1 코팅층(400)을 구성하는 화합물의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 마찰전기 발전 소자.
  9. 청구항 1에 있어서, 상기 마찰전기 발생층의 두께는 1 ㎚ 내지 10,000 ㎛인 것을 특징으로 하는, 마찰전기 발전 소자.
  10. 청구항 1에 있어서, 상기 제1 및 제2 전극의 두께는 20 nm 내지 5 mm인 것을 특징으로 하는, 마찰전기 발전 소자.
  11. 청구항 6에 있어서, 상기 제1 코팅층의 두께는 100 nm 내지 10 mm이고, 상기 제2 코팅층의 두께는 1 um 내지 10 mm인 것을 특징으로 하는, 마찰전기 발전 소자.
  12. 청구항 1에 있어서, 상기 마찰전기 발전 소자는,
    상기 마찰전기 발생층과 제1 전극의 사이 및 마찰전기 발생층과 제2 전극의 사이 각각에, 폴리아미드, 폴리비닐알코올, 폴리메틸메타크릴레이트, 폴리에스테르, 폴리우레탄, 폴리비닐부티랄, 폴리아크릴로니트릴, 천연고무, 폴리스티렌, 폴리염화비닐리덴, 폴리에틸렌, 폴리프로필렌, 폴리이미드, 폴리염화비닐 및 폴리디메틸실록산으로 이루어진 군으로부터 선택되는 소재를 포함하는 제1 계면층(600); 및 제2 계면층(700);을 더 포함하며,
    상기 제1 계면층 및 제2 계면층은 마찰전기(Triboelectric) 극성이 서로 다른 것을 특징으로 하는, 마찰전기 발전 소자.
  13. a) 유전 성질이 상이한 둘 이상의 고분자를 각각 용매에 용해 및 분산시키거나, 용해 및 분산시킨 후 혼합하거나, 용융시켜 혼합하는 단계;
    b) 소재가 상이한 제1 전극 및 제2 전극 각각의 표면 일부를 마스킹 처리하는 단계;
    c) 상기 마스킹 처리된 제1 및 제2 전극 중 어느 하나의 전극에 있어서, 마스킹 처리되지 않은 노출 면에 상기 a) 단계에서 혼합되었거나 혼합되지 않은 고분자 용액을 공급한 후 건조 또는 경화시켜, 전극 상에 마찰전기 발생층을 형성하는 단계; 및
    d) 상기 마찰전기 발생층의 상부에, 상기 마찰전기 발생층이 형성되지 않은 나머지 전극을 적층시킨 후 압착하는 단계;를 포함하는 마찰전기 발전 소자의 제조방법.
  14. 청구항 13에 있어서, 상기 c) 단계 및 d) 단계 중 어느 하나 이상의 단계가 수행된 이후에는, 상기 마찰전기 발생층을 어닐링시키는 공정이 수행되는 것을 특징으로 하는, 마찰전기 발전 소자의 제조방법.
  15. 청구항 13에 있어서, 상기 용매는 선형 및 환형의 지방족(alkane)계 화합물, 방향족(aromatic)계 화합물, 키톤계(ketone) 화합물, 선형 및 환형의 에테르(ether)계 화합물, 아민(amine)계 화합물, 황화물(sulfide)계 화합물 및 할로겐(halogen)계 화합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 마찰전기 발전 소자의 제조방법.
  16. 청구항 13에 있어서, 상기 각 고분자 용액의 혼합비는 중량비로 0.1 : 99.9 내지 99.9 : 0.1인 것을 특징으로 하는, 마찰전기 발전 소자의 제조방법.
  17. 청구항 13에 있어서, 상기 마찰전기 발전 소자의 제조방법은,
    e) 상기 제1 전극 및 제2 전극의 각 외주면에 제1 코팅층을 형성하는 단계; 및
    f) 상기 제1 코팅층의 각 외주면에 제2 코팅층을 형성하는 단계;를 더 포함하는 것을 특징으로 하는, 마찰전기 발전 소자의 제조방법.
  18. 청구항 17에 있어서, 상기 제1 코팅층은 에폭시, 폴리에스터, 폴리우레탄, 파라핀 왁스와 폴리올레핀의 혼합물, 폴리에틸렌 테레프탈레이트, 폴리프로필렌, 폴리에틸렌, 폴리스티렌, 폴리염화비닐, 폴리에틸렌 나프탈레이트, 폴리아미드, 폴리비닐알코올, 에틸렌비닐알코올, 폴리염화비닐리덴 및 이들의 혼합물로 이루어진 군으로부터 선택되고, 상기 제2 코팅층은 폴리이미드, 폴리에테르에테르키톤, 이들의 혼합물 및 이들 중 어느 하나 이상과 상기 제1 코팅층을 구성하는 화합물의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 마찰전기 발전 소자의 제조방법.
  19. 청구항 13에 있어서, 상기 마찰전기 발전 소자의 제조방법은,
    상기 c) 단계에서 형성된 마찰전기 발생층의 표면 상에, 상기 c) 단계에서 사용된 고분자 혼합액을 1 회 이상 재공급한 후 건조시키는 단계;를 더 포함하는 것을 특징으로 하는, 마찰전기 발전 소자의 제조방법.
  20. 청구항 13에 있어서, 상기 고분자를 각각 용매에 용해 및 분산시킨 후 혼합하지 않고, 전극 상에 각 고분자 용액을 순차 공급하여, 적층형의 마찰전기 발전 소자가 제조되는 것을 특징으로 하는, 마찰전기 발전 소자의 제조방법.
PCT/KR2018/013687 2017-11-22 2018-11-12 마찰전기 발전 소자 및 그 제조방법 WO2019103374A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG11202004436WA SG11202004436WA (en) 2017-11-22 2018-11-12 Triboelectric generating device and manufacturing method thereof
EP18880677.2A EP3716465A4 (en) 2017-11-22 2018-11-12 TRIBOELECTRIC GENERATING DEVICE AND THEIR MANUFACTURING METHOD
JP2020546251A JP7254092B2 (ja) 2017-11-22 2018-11-12 摩擦電気発電素子及びその製造方法
RU2020120437A RU2745850C1 (ru) 2017-11-22 2018-11-12 Трибоэлектрическое генерирующее устройство и способ его изготовления
US16/764,903 US11545914B2 (en) 2017-11-22 2018-11-12 Triboelectric generating device and manufacturing method thereof
CN201880080776.5A CN111480289A (zh) 2017-11-22 2018-11-12 摩擦发电装置及其制造方法
US18/071,265 US20230123778A1 (en) 2017-11-22 2022-11-29 Triboelectric generating device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0156387 2017-11-22
KR1020170156387A KR102213229B1 (ko) 2017-11-22 2017-11-22 마찰전기 발전 소자 및 그 제조방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/764,903 A-371-Of-International US11545914B2 (en) 2017-11-22 2018-11-12 Triboelectric generating device and manufacturing method thereof
US18/071,265 Division US20230123778A1 (en) 2017-11-22 2022-11-29 Triboelectric generating device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2019103374A1 true WO2019103374A1 (ko) 2019-05-31

Family

ID=66631093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013687 WO2019103374A1 (ko) 2017-11-22 2018-11-12 마찰전기 발전 소자 및 그 제조방법

Country Status (8)

Country Link
US (2) US11545914B2 (ko)
EP (1) EP3716465A4 (ko)
JP (1) JP7254092B2 (ko)
KR (1) KR102213229B1 (ko)
CN (1) CN111480289A (ko)
RU (1) RU2745850C1 (ko)
SG (1) SG11202004436WA (ko)
WO (1) WO2019103374A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102213229B1 (ko) * 2017-11-22 2021-02-04 송찰스기석 마찰전기 발전 소자 및 그 제조방법
CN111295125B (zh) * 2017-12-29 2022-09-06 金昌潽 内窥镜用手术器械
KR102381422B1 (ko) * 2019-09-25 2022-03-30 경상국립대학교산학협력단 다공성 탄성 센서를 이용한 폴리머 비계 표면패턴을 이용한 연성 압력센서
KR20210077157A (ko) * 2019-12-17 2021-06-25 송찰스기석 분리막이 적용된 마찰전기 발전 소자 및 그 제조방법
KR102437360B1 (ko) * 2020-08-19 2022-08-26 인하대학교 산학협력단 불소계 고분자 및 황 고분자를 포함하는 대면적 대전체 복합필름, 그의 제조방법 및 그를 이용한 마찰전기 발전소자
KR102623192B1 (ko) * 2021-12-23 2024-01-11 연세대학교 산학협력단 고민감성 돌기형 압력 센서를 위한 전극 구조체 및 그 제조 방법
KR20230166734A (ko) 2022-05-31 2023-12-07 숙명여자대학교산학협력단 굴곡진 형태의 마찰전기 발전 소자 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011015503A (ja) * 2009-06-30 2011-01-20 Toyota Boshoku Corp 発電マット
KR20160066938A (ko) * 2014-12-03 2016-06-13 삼성전자주식회사 마찰대전 발전소자
US20160218640A1 (en) * 2015-01-26 2016-07-28 Georgia Tech Research Corporation Triboelectric nanogenerator for harvesting energy from water
KR20160125276A (ko) * 2015-04-21 2016-10-31 삼성전자주식회사 마찰전기 발전기
KR20170002424A (ko) * 2014-04-09 2017-01-06 베이징 인스티튜트 오브 나노에너지 앤드 나노시스템즈 액체의 역학 에너지를 수집하는 마찰식 나노발전기 및 발전 방법

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2142678C1 (ru) * 1996-03-15 1999-12-10 Черкашин Павел Васильевич Протонный генератор - черкашина п.в.
EP2400573A1 (de) 2010-06-23 2011-12-28 Bayer MaterialScience AG Elektromechanischer Wandler, Verfahren zu dessen Herstellung und Verwendung desselben
JP2014087149A (ja) 2012-10-23 2014-05-12 Nippon Shokubai Co Ltd 振動発電装置用帯電樹脂基材
KR101358291B1 (ko) * 2012-10-31 2014-02-12 서울대학교산학협력단 액체의 접촉각 및 접촉면적의 변화를 이용한 에너지 전환 장치
JP2014207391A (ja) 2013-04-15 2014-10-30 住友電気工業株式会社 発電素子、発電デバイス、発電ユニット及び発電素子の設置方法
KR101476742B1 (ko) * 2013-11-14 2014-12-29 포항공과대학교 산학협력단 나노발전기의 제조방법
KR101529814B1 (ko) 2014-01-09 2015-06-17 성균관대학교산학협력단 하이브리드 발전소자
KR101538082B1 (ko) 2014-01-24 2015-07-22 국립대학법인 울산과학기술대학교 산학협력단 압전 및 마찰전기를 이용한 스펀지 구조의 소형 발전기 및 그 제조방법
FR3024303B1 (fr) * 2014-07-24 2016-08-26 Commissariat Energie Atomique Procede ameliore de realisation d'un generateur tribo-electrique a polymere dielectrique rugueux
US10333430B2 (en) * 2014-11-25 2019-06-25 Georgia Tech Research Corporation Robust triboelectric nanogenerator based on rolling electrification
JP6699119B2 (ja) 2015-01-22 2020-05-27 株式会社リコー 素子及び発電装置
US10199958B2 (en) * 2015-04-21 2019-02-05 Samsung Electronics Co., Ltd. Triboelectric generator
KR101645134B1 (ko) 2015-05-08 2016-08-03 성균관대학교산학협력단 형상기억 폴리머 지지체를 이용한 정전기 에너지 발전소자
US10305020B2 (en) 2015-05-15 2019-05-28 Ricoh Company, Ltd. Element and electric generator
KR101694003B1 (ko) 2015-06-05 2017-01-06 성균관대학교산학협력단 하이브리드 형태의 전해질을 이용한 마찰전기 에너지 발전 소자
KR101971076B1 (ko) 2015-07-29 2019-04-22 주식회사 엘지화학 마찰 전기를 이용한 발전기
FR3043864A1 (fr) * 2015-11-13 2017-05-19 Patrice Cocheteux Dispositif de detection d'impact par triboelectrification
KR20170087122A (ko) 2016-01-19 2017-07-28 한국기계연구원 마찰전기 발전기 및 그 제조방법
US10629800B2 (en) * 2016-08-05 2020-04-21 Wisconsin Alumni Research Foundation Flexible compact nanogenerators based on mechanoradical-forming porous polymer films
KR101720913B1 (ko) * 2016-12-28 2017-03-29 전남대학교산학협력단 마찰전기 발생장치
KR102213229B1 (ko) * 2017-11-22 2021-02-04 송찰스기석 마찰전기 발전 소자 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011015503A (ja) * 2009-06-30 2011-01-20 Toyota Boshoku Corp 発電マット
KR20170002424A (ko) * 2014-04-09 2017-01-06 베이징 인스티튜트 오브 나노에너지 앤드 나노시스템즈 액체의 역학 에너지를 수집하는 마찰식 나노발전기 및 발전 방법
KR20160066938A (ko) * 2014-12-03 2016-06-13 삼성전자주식회사 마찰대전 발전소자
US20160218640A1 (en) * 2015-01-26 2016-07-28 Georgia Tech Research Corporation Triboelectric nanogenerator for harvesting energy from water
KR20160125276A (ko) * 2015-04-21 2016-10-31 삼성전자주식회사 마찰전기 발전기

Also Published As

Publication number Publication date
RU2745850C1 (ru) 2021-04-02
US20200343829A1 (en) 2020-10-29
US11545914B2 (en) 2023-01-03
SG11202004436WA (en) 2020-06-29
EP3716465A1 (en) 2020-09-30
US20230123778A1 (en) 2023-04-20
EP3716465A4 (en) 2021-07-21
KR20190058941A (ko) 2019-05-30
KR102213229B1 (ko) 2021-02-04
JP2021513320A (ja) 2021-05-20
JP7254092B2 (ja) 2023-04-07
CN111480289A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2019103374A1 (ko) 마찰전기 발전 소자 및 그 제조방법
Mi et al. Triboelectric nanogenerators made of porous polyamide nanofiber mats and polyimide aerogel film: output optimization and performance in circuits
Wang et al. Polymer nanogenerators: opportunities and challenges for large‐scale applications
Huang et al. Tracing evolutions in electro-activated shape memory polymer composites with 4D printing strategies: a systematic review
KR101580409B1 (ko) 투명하고, 유연한 에너지 수확 소자 및 이의 제조방법
Yan et al. Flexible triboelectric nanogenerator based on cost-effective thermoplastic polymeric nanofiber membranes for body-motion energy harvesting with high humidity-resistance
Qian et al. Triboelectric nanogenerators made of polybenzazole aerogels as fire-resistant negative tribo-materials
WO2015152499A1 (ko) 유연한 리튬 이차전지 및 제조방법
WO2012099321A1 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
Singh et al. 2-D self-healable polyaniline-polypyrrole nanoflakes based triboelectric nanogenerator for self-powered solar light photo detector with DFT study
Lee et al. One-dimensional conjugated polymer nanomaterials for flexible and stretchable electronics
CN102794960A (zh) 一种防静电离型膜、其制备方法与设备
Zhou et al. Integrated dielectric-electrode layer for triboelectric nanogenerator based on Cu nanowire-Mesh hybrid electrode
WO2019093701A1 (ko) 친수성 섬유 멤브레인 기반 전기 에너지 생성 장치
CN102582200B (zh) 一种锂电池隔膜预干燥薄膜转移涂布的装置和方法
WO2014193182A1 (ko) 마찰전기 발생장치
WO2017074073A1 (ko) 마찰 대전을 이용한 에너지 수확장치
Bui et al. High-temperature operatable triboelectric nanogenerator using microdome-patterned polyimide for self-powered sensors
WO2011118984A2 (ko) 전기화학소자용 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
Xie et al. A fluorescent triboelectric nanogenerator manufactured with a flexible janus nanobelt array concurrently acting as a charge-generating layer and charge-trapping layer
WO2021125584A2 (ko) 분리막이 적용된 마찰전기 발전 소자 및 그 제조방법
Cheedarala et al. Moderately transparent chitosan-PVA blended membrane for strong mechanical stiffness and as a robust bio-material energy harvester through contact-separation mode TENG
Wang et al. Deep trap boosted ultrahigh triboelectric charge density in nanofibrous cellulose-based triboelectric nanogenerators
WO2023234656A1 (ko) 굴곡진 형태의 마찰전기 발전 소자 및 그 제조방법
Gong et al. Contact electrification spectrum for performance enhancement mechanism investigation of triboelectric nanogenerators based on silicone elastomers with different surface microstructures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880677

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018880677

Country of ref document: EP

Effective date: 20200622