WO2013032191A9 - 버퍼층을 포함하는 비휘발성 고분자 기억 소자 및 그의 제조 방법 - Google Patents

버퍼층을 포함하는 비휘발성 고분자 기억 소자 및 그의 제조 방법 Download PDF

Info

Publication number
WO2013032191A9
WO2013032191A9 PCT/KR2012/006806 KR2012006806W WO2013032191A9 WO 2013032191 A9 WO2013032191 A9 WO 2013032191A9 KR 2012006806 W KR2012006806 W KR 2012006806W WO 2013032191 A9 WO2013032191 A9 WO 2013032191A9
Authority
WO
WIPO (PCT)
Prior art keywords
pedot
pss
memory device
thin film
buffer layer
Prior art date
Application number
PCT/KR2012/006806
Other languages
English (en)
French (fr)
Other versions
WO2013032191A3 (ko
WO2013032191A2 (ko
Inventor
김태환
손정민
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2013032191A2 publication Critical patent/WO2013032191A2/ko
Publication of WO2013032191A3 publication Critical patent/WO2013032191A3/ko
Publication of WO2013032191A9 publication Critical patent/WO2013032191A9/ko

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • G11C13/0016RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material comprising polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/50Bistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/15Current-voltage curve
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/50Resistive cell structure aspects
    • G11C2213/51Structure including a barrier layer preventing or limiting migration, diffusion of ions or charges or formation of electrolytes near an electrode

Definitions

  • the present invention relates to a nonvolatile polymer memory device and a method of manufacturing the same, and more particularly to a nonvolatile polymer memory device including a buffer layer and a method of manufacturing the same.
  • a polymer memory device is a memory device that stores information by applying a variable rectifying characteristic of a polymer.
  • the nonvolatile polymer memory device has a simple sandwich structure in which a polymer is inserted into a region where an upper electrode and a lower electrode are orthogonal to each other.
  • the nonvolatile polymer memory device stores binary information by using an electric conductivity switching phenomenon of a polymer in which a charge transfer state is changed by 100 times or more according to the magnitudes of voltages applied to upper and lower electrodes.
  • PEDOT: PSS As shown in FIG. 2 showing the chemical structure of PEDOT: PSS, PEDOT: PSS composed of an electrically insulator PSS chain and a PEDOT chain exhibiting conductivity have excellent electro-optic properties due to high electrochemical stability, and thus, solar cells and organic light emitting diodes. It is a material widely used in the device field.
  • S. Moller Group proposed a memory device using the excellent bistable stability of PEDOT: PSS, and the research has been actively conducted in the fields related to memory devices and sensors other than the solar cell or organic light emitting device.
  • the bistable stability shown in a polymer memory device using PEDOT: PSS (hereinafter, referred to as 'PEDOT: PSS memory device') can be explained by the redox reaction of PEDOT: PSS.
  • the ON state is maintained by a current flowing through a current path generated by the PEDOT + chain by an externally applied voltage.
  • the PEDOT + chain is reduced to an electrically neutral PEDOT 0 chain, and the current path begins to break down.
  • the neutral PEDOT 0 chain is surrounded by PSS and is isolated and prevented from being oxidized back to the PEDOT + chain, so that the PEDOT 0 chain is not changed to the ON state again.
  • PEDOT: PSS can be utilized in the memory device due to the property that the electrical conductivity is changed by the redox reaction.
  • PEDOT PSS memory devices are fabricated by spin-coating PEDOT: PSS on a lower electrode and then removing the solvent in PEDOT: PSS by heat treatment.
  • the surface roughness of the PEDOT: PSS layer varies depending on the temperature during the heat treatment process. In order to obtain a uniform roughness surface, the heat treatment process is performed at a temperature of 120 ° C. or higher and 140 ° C. or lower.
  • the conventional PEDOT: PSS memory device manufactured through the above process has a problem that it is difficult to maintain the reliability of the memory due to the oxide layer formed between the lower electrode and the PEDOT: PSS layer.
  • An object of the present invention is to provide a PEDOT: PSS memory device and a method of manufacturing the same, wherein the formation of an oxide film between the lower substrate and the PEDOT: PSS layer is prevented and the PEDOT: PSS layer has an even roughness while using a flexible substrate. .
  • an aspect of the present invention provides a substrate, a lower electrode formed on the substrate, a buffer layer formed on the lower electrode, a PEDOT: PSS thin film layer formed on the buffer layer, and the PEDOT: PSS thin film layer.
  • a nonvolatile memory device including the formed upper electrode is provided.
  • another aspect of the present invention provides a method of forming a buffer layer on a lower electrode, forming a PEDOT: PSS thin film layer on the buffer layer, and applying heat to the PEDOT: PSS thin film layer. It provides a manufacturing method.
  • the nonvolatile memory device of the present invention has an effect of preventing the formation of an oxide film between the lower electrode and the PEDOT: PSS thin film layer by inserting a buffer layer between the lower electrode and the PEDOT: PSS thin film layer, and (2) using a flexible substrate.
  • manufactured by the PEDOT: PSS thin film layer has an effect that the top surface is formed with an even roughness. Therefore, there is an effect that the memory margin of the PEDOT: PSS memory element can be kept high while being flexible.
  • 1 is a schematic view showing the structure of a conventional nonvolatile polymer memory device.
  • Fig. 2 shows the chemical structure of PEDOT: PSS.
  • FIG. 3 is a schematic diagram illustrating a structure of a nonvolatile memory device according to an embodiment of the present invention.
  • PMMA poly (methylmethacrylate)
  • 5 is a view for explaining the principle that the PMMA facilitates the separation of the PEDOT and PSS as a buffer layer.
  • FIG. 6 is a flowchart sequentially illustrating a method of manufacturing a nonvolatile memory device of the present invention.
  • FIG. 7 is a schematic diagram showing the structure of a nonvolatile memory device that does not include a buffer layer.
  • FIG. 8 is a current-voltage measurement result of a nonvolatile memory device according to an embodiment of the present invention.
  • FIG. 9 shows current-voltage measurement results of a nonvolatile memory device, which does not include a buffer layer, manufactured in the experimental example of the present invention.
  • FIG. 3 is a schematic diagram illustrating a structure of a nonvolatile memory device according to an embodiment of the present invention.
  • the nonvolatile memory device of the present invention includes a substrate 10, a lower electrode 20, a buffer layer 30, a PEDOT: PSS thin film layer 40, and an upper electrode 50.
  • a lower electrode 20, a buffer layer 30, a PEDOT: PSS thin film layer 40, and an upper electrode 50 are sequentially formed on the substrate 10. It is laminated and formed.
  • the PEDOT: PSS in the PEDOT: PSS thin film layer 40 is oxidized or reduced, so that the electrical conductivity of the PEDOT: PSS material changes, and thus the electrical conductivity changes.
  • Binary information is generated.
  • the substrate 10 serves as a support for the memory device, and both a flexible material and a hard material may be used.
  • the substrate 10 may be made of a flexible material.
  • the flexible material may be polyethylene terephthalate (PET), polystyrene (PS), polyimide (PI), polyvinyl chloride (PVC), or polyethylene (PE).
  • PET polyethylene terephthalate
  • PS polystyrene
  • PI polyimide
  • PVC polyvinyl chloride
  • PE polyethylene
  • the material of the substrate 10 having flexible properties may be PET.
  • the lower electrode 20 and the upper electrode 50 are electrodes in which holes or electrons are injected by applying a voltage, and electrodes in which electrons and holes are injected according to the direction of the applied voltage may vary.
  • the lower electrode 20 and the upper electrode 50 are made of a conductive material.
  • the material constituting the lower electrode 20 may be a metal or a metal oxide.
  • the metal or metal oxide constituting the lower electrode 20 is Al, Au, Cu, Pt, Ag, W, Ni, Zn, Ti, Zr, Hf, Cd, Pd, Indium Tin Oxide (ITO), FTO Fluorine Tin Oxide, Al-doped ZnO, Ga-doped ZnO, In and Ga-doped ZnO, F-doped ZnO, Al-doped ZnO / Ag / Al-doped ZnO, Ga-doped ZnO / Ag / Ga-doped ZnO, In-doped ZnO / Ag / In-doped ZnO, In and Ga-doped ZnO / Ag / In or Ga-doped ZnO, and the like.
  • the lower electrode 20 may be made of ITO.
  • the upper electrode 50 may be formed of a metal or a metal oxide like the lower electrode 20, but the material constituting the upper electrode 50 may be Al, Au, Cu, Pt, Ag, W, Ni, or Zn. It is preferable that it is a metal, such as Ti, Zr, Hf, Cd, or Pd.
  • the upper electrode 50 may be made of Al.
  • the PEDOT: PSS thin film layer 40 is subjected to the oxidation or reduction of PEDOT: PSS by electrons or holes injected from the lower electrode 20 and the upper electrode 50, and the oxidation or reduction of PEDOT: PSS is performed by electricity. It is a layer whose conductivity changes.
  • binary information may be generated by bi-stability of PEDOT: PSS indicating two stable electrical states according to a change in electrical conductivity.
  • PEDOT PSS constituting the PEDOT: PSS thin film layer 40 is a positive charge inside the thiophene ring of PEDOT (ploy (3,4-ethylene-dioxythiophene)) as shown in FIG. And the negative charge of the sulfonate group of benzene sulfonate bonded to the side chain of poly (styrenesulfonate) (PSS) is electrostatically coupled to each other.
  • PEDOT and PSS are separated from each other by heat applied in the manufacturing process of the device, and the PEDOT is disposed under the PEDOT: PSS thin film layer 40.
  • PSS is disposed on the PEDOT: PSS thin film layer 40.
  • the roughness of the top surface of the PEDOT: PSS thin film layer 40 is determined by the PSS aligned on the PEDOT in the PEDOT: PSS thin film layer 40, and the PSS is separated from the PEDOT at a temperature of more than 120 ° C and 150 ° C or less. When aligned, the most uniform surface roughness is formed.
  • applying heat of more than 120 ° C. to 150 ° C. to make the surface roughness of the PEDOT: PSS thin film layer 40 uniform may be a solid substrate. It is limited in case.
  • the PEDOT: PSS thin film layer 40 When heat of 120 ° C or more and 150 ° C or less is applied in order to make the surface roughness uniform, the surface roughness of the PEDOT: PSS thin film layer 40 becomes uniform, while the surface of the substrate becomes rough, resulting in a drastic drop in the efficiency of the device. Because it happens.
  • PET polyethylene terephthalate
  • PS polystyrene
  • PI polyimide
  • PVC polyvinyl chloride
  • PE polyethylene
  • the nonvolatile memory device of the present invention introduces a 'buffer layer 30' as described below.
  • the buffer layer 30 is formed between the lower electrode 20 and the PEDOT: PSS thin film layer 40, and serves to prevent the formation of an oxide layer on the lower electrode 20, and at the same time, the PEDOT: PSS thin film layer. It is a layer which makes the surface roughness of 40 uniform.
  • the buffer layer 30 may be a single or mixed polymer material, more preferably any one or two selected from the group consisting of poly (methylmethacrylate) (hereinafter referred to as PMMA), PI, PVP, PS, and PE. It may be a mixture of the above. In particular, the buffer layer 30 may be PMMA.
  • FIG. 4 is a chemical structure of PMMA, which is an example of a buffer layer constituent material, and a resonance structure of monomers constituting PMMA
  • FIG. 5 is a view for explaining a principle that PMMA facilitates separation of PEDOT and PSS as a buffer layer.
  • the PMMA has an ester group bonded to a side chain, and the ester group has a partial negative charge of oxygen atoms of a carbony group due to a resonance structure.
  • the partial negative charge of the ester group bonded to the side chain of PMMA and the positive charge inside the thiophene ring of PEDOT a temporary bond is generated, so that the bond between PEDOT and PSS can be broken even by heat up to 120 ° C.
  • PMMA lowers the bond dissociation energy (BED) between the PEDOT and the PSS by providing a partial negatively charged side chain ester to the PEDOT.
  • BED bond dissociation energy
  • the material constituting the buffer layer is PMMA, and any material capable of facilitating separation between the PEDOT and the PSS may be used as the material of the buffer layer 30 according to the same principle as described above.
  • PMMA PVP (polyvinylpyrrolidone), PI (polyimide), PS (polystyrene) and PE (polyethylene) also facilitate the separation between PEDOT and PSS on the same principle as PMMA, so that the surface roughness of PEDOT: PSS thin film layer 40 is uniform. Can be formed.
  • FIG. 6 is a flowchart sequentially illustrating a method of manufacturing a nonvolatile memory device of the present invention.
  • the forming of the buffer layer 30 on the lower electrode 20 may be performed by dissolving a material constituting the buffer layer 30 in a solvent and then spin coating the lower electrode 20. After spin coating as described above, the solvent may be removed by applying heat.
  • the lower electrode 20 may be formed on the substrate 10, and the substrate 10 may be made of both a flexible material and a hard material, but is preferably made of a flexible material.
  • the flexible material may be PET, PS, PI, PVC, or PE.
  • the material of the substrate 10 having flexible properties may be PET.
  • the material constituting the buffer layer 30 may be a single or mixed polymer material, more preferably any one or a mixture of two or more selected from the group consisting of polymethylmethacrylate (PMMA), PI, PVP, PS and PE. have.
  • PMMA polymethylmethacrylate
  • PI polymethylmethacrylate
  • PS and PE PE.
  • the material constituting the buffer layer 30 may be PMMA.
  • the solvent may be appropriately selected by those skilled in the art according to a material constituting the buffer layer 30.
  • the solvent may be tetrahydrofuran (THF).
  • the rotation speed and time of the spin coating may be appropriately selected by those skilled in the art according to the chemical properties such as the concentration and viscosity of the solution to be coated.
  • the solvent was applied by heating at 120 °C for 20 minutes
  • the buffer layer 30 was formed by drying (THF).
  • Forming the PEDOT: PSS thin film layer 40 on the buffer layer 30 may be performed by dissolving PEDOT: PSS in a solvent and then spin coating on the buffer layer 30.
  • the solvent may be any material capable of dissolving PEDOT: PSS, and may be appropriately selected by those skilled in the art according to the thickness of the PEDOT: PSS thin film layer 40 or the buffer layer 30, the material constituting the buffer layer 30, and the like. Can be.
  • the solvent may be water.
  • the rotation speed and time of the spin coating may be appropriately selected by those skilled in the art according to the chemical properties such as the concentration and viscosity of the solution to be coated.
  • spin coating was performed at 3500 rpm for 30 seconds to form the PEDOT: PSS thin film layer 40.
  • the step of applying heat to the PEDOT: PSS thin film layer 40 is a step for removing the solvent present in the PEDOT: PSS thin film layer 40.
  • the PEDOT and PSS in the PEDOT: PSS thin film layer 40 are separated from each other, and the PSS is aligned on the PEDOT: PSS thin film layer 40.
  • the roughness of the upper surface of the PEDOT: PSS thin film layer 40 is determined according to the temperature of the applied heat. If the temperature is less than 70 ° C, the separation of PEDOT and PSS does not occur well, and the temperature of the applied heat exceeds 120 ° C. The problem arises that the surface roughness of the flexible substrate becomes rough.
  • the said heating temperature is 70 degreeC-120 degreeC, and it is more preferable that it is the range of 80 degreeC-100 degreeC.
  • the surface roughness becomes the most uniform when PEDOT: PSS is dried by applying heat of more than 120 ° C to 140 ° C or less, but 70 ° C to 120 ° C due to the buffer layer 30 formed on the lower surface of the PEDOT: PSS thin film layer 40. Even if only the heat of temperature is applied, separation of the PEDOT and the PSS is performed well, and the surface of the PEDOT: PSS thin film layer 40 can be uniformly formed.
  • the method of manufacturing the nonvolatile memory device may further include forming an upper electrode 50 on the PEDOT: PSS thin film layer 40.
  • the ITO layer 20 was deposited on the PET 10, and impurities were removed with a methanol solution and washed with deionized water.
  • PMMA was dissolved in THF at 3 wt%, spin-coated on the ITO 20 at 3500 rpm for 30 seconds, and then heated at 120 ° C. for 20 minutes to remove THF, thereby forming a buffer layer 30.
  • PEDOT: PSS dissolved in water was spin-coated on the buffer layer at 3500 rpm for 30 seconds, and then heated to 120 ° C. for 20 minutes to remove water to form a PEDOT: PSS thin film layer 40.
  • Al (50) on the PEDOT: PSS thin film layer by thermal evaporation, a nonvolatile memory device having a structure as shown in FIG. 3 was manufactured.
  • ⁇ 1-1-2> A nonvolatile memory device manufactured at a temperature of 70 ° C.
  • the ITO layer 20 was deposited on the PET 10, and impurities were removed with a methanol solution and washed with deionized water.
  • PMMA was dissolved in THF at 3 wt%, spin-coated on the ITO 20 at 3500 rpm for 30 seconds, and then heated to 70 ° C. for 40 minutes to remove THF, thereby forming a buffer layer 30.
  • PEDOT: PSS dissolved in water was spin-coated on the buffer layer at 3500 rpm for 30 seconds, and then heated to 70 ° C. for 40 minutes to remove water to form the PEDOT: PSS thin film layer 40.
  • Al (50) on the PEDOT: PSS thin film layer by thermal evaporation, a nonvolatile memory device having a structure as shown in FIG. 3 was manufactured.
  • the ITO layer 20 was deposited on the PET 10, and impurities were removed with a methanol solution and washed with deionized water. After PEDOT: PSS dissolved in water was spin-coated on the ITO 20 for 30 seconds at 3500 rpm, water was removed by applying 120 ° C. to form a PEDOT: PSS thin film layer 40. By depositing Al (50) on the PEDOT: PSS thin film layer by thermal evaporation, a nonvolatile memory device having a structure as shown in FIG. 7 was manufactured.
  • a current of 10 ⁇ 10 to 10 ⁇ 11 A flows in an initial state of the device, and a case where such a low current flows is defined as an off state. If the voltage in the negative direction is continuously increased in the off state, the magnitude of the current suddenly increases to 10 ⁇ 7 A near 3 V as shown in FIG. 8. In this way, the electrical conductivity of the PEDOT is increased to define a case where a high current flows.
  • the device turned on maintains high electrical conductivity until an erase voltage of 4 V is applied, and when the erase voltage of 4 V is applied, the device is switched from an on state to an off state.
  • the on / off current ratio of the memory element (the element of Experimental Example ⁇ 1-1-1>) in which the PMMA buffer layer is inserted is a memory element manufactured without the PMMA buffer layer (Experimental Example ⁇ 1). -2> element). Therefore, it can be seen that the state memory of the memory device proposed in the present invention increases the memory margin of the memory device by forming a PEDOT: PSS thin film on the PMMA thin film.
  • the memory device manufactured in Experimental Example ⁇ 1-1-2> is also the same as the memory device manufactured in Experimental Example ⁇ 1-1-1>, Experimental Example ⁇ 1-2>
  • the memory margin is much improved compared to the memory device manufactured by.
  • the top surface roughness of the PEDOT: PSS thin film layers of the two nonvolatile memory devices manufactured in Experimental Examples ⁇ 1-1-1> and ⁇ 1-2> were measured.
  • the top surface roughness was measured using AFM, and the results are shown in FIGS. 10 (device of Experimental Example ⁇ 1-1-1>) and 11 (device of Experimental Example ⁇ 1-2>), respectively.
  • the device of ⁇ 1-1-1> including the PMMA buffer layer has a more uniform surface of the PEDOT: PSS thin film layer than the device of ⁇ 1-2> without the PMMA buffer layer.
  • the upper surface of the PEDOT: PSS thin film layer can have a more uniform roughness.
  • the memory device manufactured in Experimental Example ⁇ 1-1-2> is also the same as the memory device manufactured in Experimental Example ⁇ 1-1-1>, Experimental Example ⁇ 1-2>
  • the surface roughness was much more uniform than that of the memory device fabricated in.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

본 발명은 비휘발성 고분자 기억 소자 및 그의 제조 방법에 관한 것으로, 보다 구체적으로는 기판, 상기 기판 상에 형성된 하부전극, 상기 하부전극 상에 형성된 버퍼층, 상기 버퍼층 상에 형성된 PEDOT:PSS 박막층, 및 상기 PEDOT:PSS 박막층 상에 형성된 상부전극을 포함하는 비휘발성 기억 소자 및 그의 제조 방법에 관한 것이다. 본 발명의 비휘발성 기억 소자는 하부전극과 PEDOT:PSS 박막층 사이에 버퍼층을 삽입함으로써, 하부전극과 PEDOT:PSS 박막층 사이에 산화막 형성이 방지되는 효과가 있고, 유연성 기판을 이용하여 제작됨에도 불구하고 PEDOT:PSS 박막층의 상부면이 고른 거칠기로 형성되는 효과가 있다. 따라서, 유연하면서도 PEDOT:PSS 기억 소자의 메모리 마진을 높게 유지할 수 있는 효과가 있다.

Description

버퍼층을 포함하는 비휘발성 고분자 기억 소자 및 그의 제조 방법
본 발명은 비휘발성 고분자 기억 소자 및 그의 제조 방법에 관한 것으로, 보다 구체적으로는 버퍼층을 포함하는 비휘발성 고분자 기억 소자 및 이를 제조하는 방법에 관한 것이다.
고분자 기억 소자는 고분자의 가변 정류 특성을 응용하여 정보를 저장하는 기억 소자이다. 이러한 비휘발성 고분자 기억 소자의 구조를 나타내는 도 1을 참조하면, 비휘발성 고분자 기억 소자는 상부전극과 하부전극이 직교하는 영역에 고분자가 삽입된 단순한 샌드위치 구조로 구성된다. 이러한 비휘발성 고분자 기억 소자는 상부전극 및 하부전극에 인가된 전압의 크기에 따라 전하의 전달 상태가 100배 이상 변하는 폴리머의 전기전도도 스위칭 현상을 이용하여 이진 정보를 저장한다. 즉, 전기적인 쌍안정성을 가지는 고분자가 인가되는 전압에 따라 높은 전도도를 가지는 상태(high-conductance state, ON state)와 낮은 전도도를 가지는 상태(low-conductance state, OFF state)의 두 가지 전기적인 상태를 가진다는 특성을 이용하여 이진 정보를 저장하는 것이다. 따라서, 이러한 비휘발성 고분자 기억 소자에 관한 많은 연구들이 전기적으로 안정된 두 가지 상태를 갖는 고분자 물질, 즉 쌍안정성을 갖는 고분자 물질을 찾는 방향으로 진행되고 있고, 2003년 S. Moller 그룹에서는 상기와 같은 쌍안정성을 갖는 고분자 물질로서 ploy(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (이하, PEDOT:PSS라 한다.)을 제시하였다.
PEDOT:PSS의 화학 구조를 나타내는 도 2와 같이, 전기적으로 절연체인 PSS 사슬과 전도성을 나타내는 PEDOT 사슬로 구성되는 PEDOT:PSS는 높은 전기화학적 안정성으로 인하여 전기광학적 특성이 우수하여, 태양전지 및 유기발광소자 분야에서 많이 활용되고 있는 물질이다. 2003년 S. Moller 그룹에 의하여, PEDOT:PSS의 우수한 쌍안정성을 이용한 기억 소자가 제시되면서, 상기 태양전지나 유기발광소자 분야 외의 기억 소자 및 센서와 관련된 분야에서도 그 연구가 활발히 진행되고 있다.
PEDOT:PSS를 이용한 고분자 기억 소자(이하, 'PEDOT:PSS 기억 소자'라 한다.)에서 나타나는 쌍안정성은 PEDOT:PSS의 산화환원 반응으로 설명될 수 있다. 먼저, 외부에서 인가된 전압에 의하여 PEDOT+ 사슬에 의하여 생성된 전류 통로를 통해 흐르는 전류에 의하여 ON 상태가 유지된다. 그러나, 전압을 계속 가해주게 되면, PEDOT+ 사슬이 환원되어 전기적으로 중성 상태인 PEDOT0 사슬로 바뀌게 되고, 전류 통로는 파괴되기 시작한다. 그리고, 중성 상태인 PEDOT0 사슬은 PSS에 의하여 둘러싸여 고립되게 되고, 다시 PEDOT+ 사슬로 산화되는 것을 방지하기 때문에 다시 ON 상태로 바뀌지 않게 된다. 상기와 같이, PEDOT:PSS는 산화환원 반응에 의하여 전기전도도가 변화하는 특성으로 인해 기억 소자에 활용될 수 있는 것이다.
종래 PEDOT:PSS 기억 소자는 하부전극 상에 PEDOT:PSS를 스핀코팅한 후, 열을 처리함으로써 PEDOT:PSS 내의 용매를 제거하는 과정을 통해 제작된다. 이러한 열처리를 하는 과정에서의 온도에 따라 PEDOT:PSS 층의 표면 거칠기가 달라지는데, 균일한 거칠기의 표면을 얻기 위하여 상기 열처리 과정은 120℃ 초과 140℃ 이하의 온도에서 진행된다. 상기와 같은 공정을 통하여 제작되는, 종래의 PEDOT:PSS 기억 소자는 하부전극과 PEDOT:PSS층 사이에 형성되는 산화막층에 의해 메모리의 신뢰성을 유지하기 어려운 문제가 발생하였다. 또한, Si나 유리와 같은 솔리드 기판이 아닌 유연성 기판을 이용하고자 하는 경우에, 상기와 같은 높은 온도(120℃ 초과 140℃ 이하의 범위)의 열을 처리할 수 없게 되어, PEDOT:PSS 층의 상부 표면이 거칠어지게 되는 문제점 또한 메모리의 성능을 저감시키는 문제가 발생하였다.
최근, 고분자 기억 소자를 제작함에 유연성 기판을 이용하는 개발동향에 비추어, 상기와 같은 PEDOT:PSS 기억 소자의 신뢰성 유지 문제 및 표면 거칠기 문제는 반드시 해결되어야 하는 문제이나, 이를 위한 뚜렷한 해결책이 제시되지 못하고 있는 실정이다.
본 발명의 일 목적은 유연성 기판을 이용하면서도, 하부기판과 PEDOT:PSS 층 사이의 산화막 형성이 방지되고, 고른 거칠기의 PEDOT:PSS 층을 갖는, PEDOT:PSS 기억 소자 및 그의 제조 방법을 제공하는 것이다.
상기의 목적을 달성하기 위하여, 본 발명의 일 측면은 기판, 상기 기판 상에 형성된 하부전극, 상기 하부전극 상에 형성된 버퍼층, 상기 버퍼층 상에 형성된 PEDOT:PSS 박막층, 및 상기 PEDOT:PSS 박막층 상에 형성된 상부전극을 포함하는 비휘발성 기억 소자를 제공한다.
또한, 본 발명의 다른 측면은 하부전극 상에 버퍼층을 형성하는 단계, 상기 버퍼층 상에 PEDOT:PSS 박막층을 형성하는 단계, 및 상기 PEDOT:PSS 박막층에 열을 가하는 단계를 포함하는 비휘발성 기억 소자의 제조 방법을 제공한다.
본 발명의 비휘발성 기억 소자는 하부전극과 PEDOT:PSS 박막층 사이에 버퍼층을 삽입함으로써, (1)하부전극과 PEDOT:PSS 박막층 사이에 산화막 형성이 방지되는 효과가 있고, (2)유연성 기판을 이용하여 제작됨에도 불구하고 PEDOT:PSS 박막층의 상부면이 고른 거칠기로 형성되는 효과가 있다. 따라서, 유연하면서도 PEDOT:PSS 기억 소자의 메모리 마진을 높게 유지할 수 있는 효과가 있다.
다만, 본 발명의 효과들은 상기에서 언급한 효과로 제한되지 아니하며, 언급되지 아니한 또 다른 효과들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래 비휘발성 고분자 기억 소자의 구조를 나타낸 개략도이다.
도 2는 PEDOT:PSS의 화학 구조를 나타내는 도면이다.
도 3은 본 발명의 일 실시예에 따른 비휘발성 기억 소자의 구조를 도시한 개략도이다.
도 4는 버퍼층 구성 물질의 한 예인 PMMA(poly(methylmethacrylate))의 화학 구조 및 PMMA를 구성하는 단량체의 공명구조이다.
도 5는 상기 PMMA가 버퍼층으로서 PEDOT과 PSS의 분리를 용이하게 하는 원리를 설명하기 위한 도면이다.
도 6은 본 발명의 비휘발성 기억 소자의 제조 방법을 순차적으로 표현한 순서도이다.
도 7은 버퍼층을 포함하지 않는 비휘발성 기억 소자의 구조를 도시한 개략도이다.
도 8은 본 발명의 일 실시예에 따른 비휘발성 기억 소자의 전류-전압 측정 결과이다.
도 9는 본 발명의 실험예에서 제조된, 버퍼층을 포함하지 않는 비휘발성 기억 소자의 전류-전압 측정 결과이다.
도 10은 본 발명의 일 실시예에 따른 비휘발성 기억 소자의 PEDOT:PSS 박막층의 상부면 거칠기를 측정한 결과이다.
도 11은 본 발명의 실험예에서 제조된, 버퍼층을 포함하지 않는 비휘발성 기억 소자의 PEDOT:PSS 박막층의 상부면 거칠기를 측정한 결과이다.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 그러나, 본 발명은 본 명세서에서 설명되는 실시예들에 한정되지 아니하고, 다른 균등물 또는 대체물을 포함할 수 있다. 도면들에 있어서, 층 및 영역들의 두께는 명확성을 기하기 위하여 과장된 것이다. 명세서 전체에 걸쳐서 동일한 도면부호들은 동일한 구성요소들을 나타내며, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
도 3은 본 발명의 일 실시예에 따른 비휘발성 기억 소자의 구조를 도시한 개략도이다.
도 3을 참조하면, 본 발명의 비휘발성 기억 소자는 기판(10), 하부전극(20), 버퍼층(30), PEDOT:PSS 박막층(40) 및 상부전극(50)을 포함한다. 도 3에 도시된 바와 같이, 본 발명의 비휘성 기억 소자는 상기 기판(10) 상에 하부전극(20), 버퍼층(30), PEDOT:PSS 박막층(40) 및 상부전극(50)이 순차적으로 적층되어 형성된다. 상기 하부전극(20) 및 상부전극(30)에 전압을 인가하면, PEDOT:PSS 박막층(40) 내의 PEDOT:PSS가 산화 또는 환원되면서 PEDOT:PSS 물질의 전기전도도가 변화하고, 전기전도도의 변화에 의해 이진 정보가 생성된다.
상기 기판(10)은 기억 소자의 지지체가 되는 것으로, 유연한 성질의 소재와 경질의 소재가 모두 이용될 수 있으나, 유연한 성질의 소재로 구성되는 것이 더욱 바람직하다. 상기 유연한 성질의 소재는 PET(polyethylene terephthalate), PS(polystyrene), PI(polyimide), PVC(polyvinyl chloride) 또는 PE(polyethylene) 등 일 수 있다. 특히, 유연한 성질을 가진 상기 기판(10)의 소재는 PET일 수 있다.
상기 하부전극(20) 및 상부전극(50)은 전압이 인가되어 정공 또는 전자가 주입되는 전극으로서, 인가되는 전압의 방향에 따라 전자와 정공이 주입되는 전극이 달라질 수 있다. 상기 하부전극(20) 및 상부전극(50)은 전도성 있는 성질의 소재로 구성된다. 상기 하부전극(20)을 구성하는 소재는 금속 또는 금속산화물일 수 있다.
예컨대, 상기 하부전극(20)을 구성하는 금속 또는 금속산화물은 Al, Au, Cu, Pt, Ag, W, Ni, Zn, Ti, Zr, Hf, Cd, Pd, ITO(Indium Tin Oxide), FTO(Fluorine Tin Oxide), Al-도핑된 ZnO, Ga-도핑된 ZnO, In과 Ga-도핑된 ZnO, F-도핑된 ZnO, Al-도핑된 ZnO/Ag/Al-도핑된 ZnO, Ga-도핑된 ZnO/Ag/Ga-도핑된 ZnO, In-도핑된 ZnO/Ag/In-도핑된 ZnO, In과 Ga-도핑된 ZnO/Ag/In 또는 Ga-도핑된 ZnO 등일 수 있다.
특히, 상기 하부전극(20)은 ITO로 구성될 수 있다. 상기 상부전극(50)은 하부전극(20)과 같이 금속 또는 금속산화물로 구성될 수 있으나, 상기 상부전극(50)을 구성하는 소재는 Al, Au, Cu, Pt, Ag, W, Ni, Zn, Ti, Zr, Hf, Cd 또는 Pd 등의 금속인 것이 바람직하다. 특히, 상기 상부전극(50)은 Al로 구성될 수 있다.
상기 PEDOT:PSS 박막층(40)은 하부전극(20) 및 상부전극(50)에서 주입된 전자 또는 정공에 의하여 PEDOT:PSS의 산화 또는 환원반응이 일어나고, 이러한 PEDOT:PSS의 산화 또는 환원에 의하여 전기전도도가 변화하는 층이다. 상기 PEDOT:PSS 박막층(40)에서는, 전기전도도의 변화에 따라 안정적인 두 개의 전기적인 상태를 나타내는 PEDOT:PSS의 쌍안정성에 의하여 이진 정보를 생성할 수 있다.
상기 PEDOT:PSS 박막층(40)을 구성하는 PEDOT:PSS는 원래 도 2에 도시된 바와 같이 PEDOT(ploy(3,4-ethylene-dioxythiophene))의 티오펜(thiophene) 고리 내부의 양전하(positive charge)와 PSS(poly(styrenesulfonate))의 측쇄에 결합되어 있는 벤젠설포네이트(benzene sulfonate)의 설포네이트기(sulfonate group)의 음전하(negative charge)가 서로 정전기적으로 결합되어 있는 형태로 구성되어 있다.
그러나, 상기 소자를 구성하는 PEDOT:PSS 박막층(40) 내부에서는, 소자의 제조 과정에서 가하여진 열에 의하여 PEDOT과 PSS가 서로 분리되어 존재하고, 상기 PEDOT은 상기 PEDOT:PSS 박막층(40)의 하부에, PSS는 상기 PEDOT:PSS 박막층(40)의 상부에 배치된다. 상기 PEDOT:PSS 박막층(40) 내에서 PEDOT 상에 정렬되는 PSS에 의하여 상기 PEDOT:PSS 박막층(40)의 상부면 거칠기가 결정되는데, 상기 PSS가 120℃ 초과 150℃ 이하의 온도에서 PEDOT와 분리되어 정렬될 때, 가장 균일한 표면 거칠기가 형성된다.
상기 '배경기술' 항목에서도 언급한 바와 같이, PEDOT:PSS 박막층(40)의 표면 거칠기를 균일하게 만들기 위하여 120℃ 초과 150℃ 이하의 열을 가하는 것은 소자에 이용되는 기판(10)이 솔리드 기판일 경우에 한정된다.
PET(polyethylene terephthalate), PS(polystyrene), PI(polyimide), PVC(polyvinyl chloride) 또는 PE(polyethylene) 등과 같이 유연한 성질의 소재를 기판(10)으로 이용하는 경우에, PEDOT:PSS 박막층(40)의 표면 거칠기를 균일하게 하기 위하여 120℃ 초과 150℃ 이하 온도의 열을 가하게 되면, PEDOT:PSS 박막층(40)의 표면 거칠기는 균일해지는 반면, 기판의 표면이 거칠어지게 되어 소자의 효율이 급격하게 떨어지는 문제가 발생하기 때문이다.
이렇듯 온도에 민감한 유연한 성질의 소재를 기판으로 이용하는 경우에는, 120℃ 이하 범위의 열을 가하여 PEDOT:PSS 박막층(40)의 표면을 균일하게 해야 하는 기술적 문제가 있다. 본 발명의 비휘발성 기억 소자는 상기와 같은 기술적 문제를 해결하기 위하여, 하기에서 상술하는 바와 같이 '버퍼층(30)'을 도입하였다.
상기 버퍼층(30)은 하부전극(20)과 PEDOT:PSS 박막층(40) 사이에 형성되는 것으로서, 하부전극(20)상에 산화막층이 형성되는 것을 방지하는 역할을 함과 동시에, PEDOT:PSS 박막층(40)의 표면 거칠기를 균일하게 하는 층이다.
즉, PEDOT:PSS 박막층(40)을 구성하는 PEDOT:PSS가 120℃ 이하 범위의 열에 의해서도 잘 분리될 수 있도록 하는 역할을 함으로써, 고온의 열에 민감한 유연성 소재를 기판(10)으로 이용하는 경우에도 PEDOT:PSS 박막층(40)의 표면 거칠기를 균일하게 형성할 수 있는 것이다. 상기 버퍼층(30)은 단일 또는 혼합 고분자 물질일 수 있고, 더욱 바람직하게는 poly(methylmethacrylate)(이하, PMMA라 한다.), PI, PVP, PS 및 PE로 구성되는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다. 특히, 상기 버퍼층(30)은 PMMA일 수 있다.
도 4는 버퍼층 구성 물질의 한 예인 PMMA의 화학 구조 및 PMMA를 구성하는 단량체의 공명구조이고, 도 5는 상기 PMMA가 버퍼층으로서 PEDOT과 PSS의 분리를 용이하게 하는 원리를 설명하기 위한 도면이다.
도 4를 참조하면, PMMA는 측쇄에 에스터기(ester group)가 결합되어 있고, 이러한 에스터기는 공명 구조에 의하여 카보닐기(carbony group)의 산소 원자가 부분 음전하(partail negative charge)를 띤다. PMMA가 기억 소자 내에서 버퍼층(30)으로 이용되는 경우, PMMA의 측쇄에 결합되어 있는 에스터기(ester group)의 부분 음전하(partial negative charge)와 PEDOT의 티오펜(thiophene) 고리 내부의 양전하(positive charge) 사이에 일시적인 결합이 생성되어, 120℃ 이하 온도의 열에 의해서도 PEDOT과 PSS의 결합이 끊어질 수 있게 된다. 결국, PMMA는 부분 음전하를 띠는 측쇄의 에스터기를 PEDOT에 제공함으로써, PEDOT와 PSS 간의 결합해리 에너지(bond dissociation energy, BED)를 낮추어 주는 것이다.
상기 도 5는 버퍼층을 구성하는 물질이 PMMA인 경우의 원리를 설명한 것일 뿐이고, 상기와 동일한 원리에 의하여 PEDOT와 PSS 간의 분리를 용이하게 할 수 있는 모든 물질이 버퍼층(30)의 소재로 이용될 수 있다. PMMA 이외에도 PVP (polyvinylpyrrolidone), PI(polyimide), PS(polystyrene) 및 PE(polyethylene) 또한 상기 PMMA와 동일한 원리로 PEDOT와 PSS 간의 분리를 용이하게 하여 PEDOT:PSS 박막층(40)의 표면 거칠기를 균일하게 형성할 수 있다.
도 6은 본 발명의 비휘발성 기억 소자의 제조 방법을 순차적으로 표현한 순서도이다.
도 6을 참조하면, 본 발명의 비휘발성 기억 소자의 제조 방법은 하부전극(20) 상에 버퍼층(30)을 형성하는 단계, 상기 버퍼층(30) 상에 PEDOT:PSS 박막층(40)을 형성하는 단계, 및 상기 PEDOT:PSS 박막층(40)에 50℃ 내지 120℃의 열을 가하는 단계를 포함한다.
상기 하부전극(20) 상에 버퍼층(30)을 형성하는 단계는 상기 버퍼층(30)을 구성하는 물질을 용매에 녹인 후, 상기 하부전극(20) 상에 스핀코팅함으로써 수행될 수 있다. 상기와 같이 스핀코팅한 후, 열을 가하여 용매를 제거할 수 있다.
상기 하부전극(20)은 기판(10) 상에 형성된 것일 수 있고, 상기 기판(10)은 유연한 성질의 소재와 경질의 소재가 모두 이용될 수 있으나, 유연한 성질의 소재로 구성되는 것이 더욱 바람직하다. 상기 유연한 성질의 소재는 PET, PS, PI, PVC 또는 PE 등일 수 있다. 특히, 유연한 성질을 가진 상기 기판(10)의 소재는 PET일 수 있다. 상기 버퍼층(30)을 구성하는 물질은 단일 또는 혼합 고분자 물질일 수 있고, 더욱 바람직하게는 PMMA(polymethylmethacrylate), PI, PVP, PS 및 PE로 구성되는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다. 특히, 상기 버퍼층(30)을 구성하는 물질은 PMMA일 수 있다.
상기 용매는 상기 버퍼층(30)을 구성하는 물질에 따라 당업자에 의하여 적절히 선택될 수 있다. 특히, 상기 버퍼층(30)을 구성하는 물질이 PMMA인 경우, 상기 용매는 THF(tetrahydrofuran)일 수 있다.
상기 스핀코팅의 회전수 및 시간은 코팅하고자 하는 용액의 농도, 점도 등의 화학적 성질에 따라 당업자에 의하여 적절히 선택될 수 있다. 본 발명의 바람직한 일 실시예에서는 ITO로 구성된 하부전극(20) 상에 3 wt%의 THF(tetrahydrofuran)에 녹인 PMMA를 3500rpm에서 30초 동안 스핀코팅한 뒤, 20분 동안 120℃의 열을 가하여 용매(THF)를 건조시킴으로써 버퍼층(30)을 형성하였다.
상기 버퍼층(30) 상에 PEDOT:PSS 박막층(40)을 형성하는 단계는 PEDOT:PSS를 용매에 녹인 후, 상기 버퍼층(30) 상에 스핀코팅함으로써 수행될 수 있다. 상기 용매는 PEDOT:PSS를 녹일 수 있는 모든 물질일 수 있고, 형성하고자 하는 PEDOT:PSS 박막층(40) 또는 버퍼층(30)의 두께, 버퍼층(30)을 구성하는 물질 등에 따라 당업자에 의하여 적절히 선택될 수 있다. 특히, 상기 용매는 물일 수 있다.
상기 스핀코팅의 회전수 및 시간은 코팅하고자 하는 용액의 농도, 점도 등의 화학적 성질에 따라 당업자에 의하여 적절히 선택될 수 있다. 본 발명의 바람직한 일 실시예에서는 PEDOT:PSS를 물에 녹인 후, 3500rpm에서 30초 동안 스핀코팅하여 PEDOT:PSS 박막층(40)을 형성하였다.
상기 PEDOT:PSS 박막층(40)에 열을 가하는 단계는 PEDOT:PSS 박막층(40) 내에 존재하는 용매를 제거하기 위한 단계이다. 상기 가열 과정을 통하여 PEDOT:PSS 박막층(40) 내의 PEDOT과 PSS가 서로 분리되고 PSS가 PEDOT:PSS 박막층(40)의 상부에 정렬되게 된다. 이때 가하는 열의 온도에 따라 PEDOT:PSS 박막층(40)의 상부면 거칠기가 결정되는데, 온도가 70℃ 미만이면 PEDOT과 PSS의 분리가 잘 이루어지지 않는 문제가 발생하고, 가하는 열의 온도가 120℃를 초과하면, 유연성 기판의 표면 거칠기가 거칠어지는 문제가 발생한다.
따라서, 상기 가열 온도는 70℃ 내지 120℃인 것이 바람직하고, 80℃ 내지 100℃의 범위인 것이 더욱 바람직하다. 원래 PEDOT:PSS는 120℃ 초과 140℃ 이하의 열을 가하여 건조시키는 경우에 표면 거칠기가 가장 균일해지나, PEDOT:PSS 박막층(40)의 하부면에 형성된 버퍼층(30)으로 인하여 70℃ 내지 120℃ 온도의 열만을 가하여도 PEDOT과 PSS의 분리가 잘 이루어지고, 상기 PEDOT:PSS 박막층(40)의 표면을 균일하게 형성할 수 있다.
상기 비휘발성 기억 소자의 제조 방법은 상기 PEDOT:PSS 박막층(40) 상에 상부전극(50)을 형성하는 단계를 추가적으로 포함할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실험예를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의하여 한정되는 것은 아니다.
<실험예 1> 버퍼층 삽입의 효과 확인
<1-1> 버퍼층을 포함하는 비휘발성 기억 소자의 제조
<1-1-1> 120℃의 온도에서 제조된 비휘발성 기억 소자
PET(10) 상에 ITO층(20)을 증착하여, 메탄올 용액으로 불순물을 제거하고 탈이온수로 세정하였다. THF에 PMMA를 3 wt%로 용해시켜, 3500rpm으로 30초 동안 상기 ITO(20) 상에 스핀코팅한 후, 20분 동안 120℃의 열을 가하여 THF를 제거함으로써 버퍼층(30)을 형성하였다. 그런 다음, 물에 녹인 PEDOT:PSS를 3500rpm으로 30초 동안 상기 버퍼층 상에 스핀코팅한 후, 20분 동안 120℃의 열을 가하여 물을 제거함으로써 PEDOT:PSS 박막층(40)을 형성하였다. 상기 PEDOT:PSS 박막층 상에 열증착법을 이용하여 Al(50)을 증착함으로써, 도 3에 도시된 바와 같은 구조의 비휘발성 기억 소자를 제조하였다.
<1-1-2> 70℃의 온도에서 제조된 비휘발성 기억 소자
PET(10) 상에 ITO층(20)을 증착하여, 메탄올 용액으로 불순물을 제거하고 탈이온수로 세정하였다. THF에 PMMA를 3 wt%로 용해시켜, 3500rpm으로 30초 동안 상기 ITO(20) 상에 스핀코팅한 후, 40분 동안 70℃의 열을 가하여 THF를 제거함으로써 버퍼층(30)을 형성하였다. 그런 다음, 물에 녹인 PEDOT:PSS를 3500rpm으로 30초 동안 상기 버퍼층 상에 스핀코팅한 후, 40분 동안 70℃의 열을 가하여 물을 제거함으로써 PEDOT:PSS 박막층(40)을 형성하였다. 상기 PEDOT:PSS 박막층 상에 열증착법을 이용하여 Al(50)을 증착함으로써, 도 3에 도시된 바와 같은 구조의 비휘발성 기억 소자를 제조하였다.
<1-2> 버퍼층을 포함하지 않는 비휘발성 기억 소자의 제조
PET(10) 상에 ITO층(20)을 증착하여, 메탄올 용액으로 불순물을 제거하고 탈이온수로 세정하였다. 물에 녹인 PEDOT:PSS를 3500rpm으로 30초 동안 상기 ITO(20) 상에 스핀코팅한 후, 120℃의 열을 가하여 물을 제거함으로써 PEDOT:PSS 박막층(40)을 형성하였다. 상기 PEDOT:PSS 박막층 상에 열증착법을 이용하여 Al(50)을 증착함으로써, 도 7에 도시된 바와 같은 구조의 비휘발성 기억 소자를 제조하였다.
<1-3> 메모리 마진 비교
상기 실험예 <1-1-1> 및 <1-2>에서 제조된 두 비휘발성 기억 소자에 전압을 인가하여, 전류-전압을 측정하였다. 그 결과는 각각 도 8(실험예 <1-1-1>의 소자) 및 도 9(실험예 <1-2>의 소자)와 같다.
도 8을 참조하면, 소자의 초기 상태에서는 10-10 ~ 10-11 A의 전류가 흐르며 이러한 낮은 전류가 흐르는 경우를 off 상태로 정의한다. off 상태에서 (-) 방향의 전압의 크기를 지속적으로 증가시키면, 도 8에서와 같이 3 V 부근에서 전류의 크기는 10-7 A로 갑자기 증가하게 된다. 이와 같이 PEDOT의 전기전도도가 높아져 높은 전류가 흐르게 되는 경우를 on 상태로 정의한다. on 상태로 전환된 소자는 4 V의 소거 전압을 인가할 때까지 높은 전기전도도 계속 유지하게 되고, 4 V의 소거 전압을 인가하게 되면 소자는 on 상태에서 off 상태로 전환된다.
도 8 및 도 9에서 보는 바와 같이, PMMA 버퍼층이 삽입된 기억 소자(실험예 <1-1-1>의 소자)의 on/off 전류 비율이, PMMA 버퍼층 없이 제조된 기억 소자(실험예 <1-2>의 소자)보다 크다는 것을 알 수 있다. 따라서 본 발명에서 제시하는 기억 소자의 상태 기억은 PMMA 박막위에 PEDOT:PSS 박막을 형성함으로서 기억소자의 메모리 마진이 커지는 것을 알 수 있다.
또한, 본 명세서에 구체적으로 기재하지는 않았지만, 실험예 <1-1-2>에서 제조된 기억 소자 역시 실험예 <1-1-1>에서 제조된 기억 소자와 같이, 실험예 <1-2>에서 제조된 기억 소자에 비하여 훨씬 향상된 메모리 마진을 보였다.
<1-4> PEDOT:PSS 박막층의 상부표면 거칠기 비교
상기 실험예 <1-1-1> 및 <1-2>에서 제조된 두 비휘발성 기억 소자의 PEDOT:PSS 박막층의 상부면 거칠기를 측정하였다. 상기 상부면 거칠기는 AFM을 이용하여 측정하였고, 그 결과는 각각 도 10(실험예 <1-1-1>의 소자) 및 도 11(실험예 <1-2>의 소자)과 같다. 도 10 및 도 11에서 보는 바와 같이, PMMA 버퍼층을 포함한 <1-1-1>의 소자가, PMMA 버퍼층을 포함하지 않은 <1-2>의 소자보다 PEDOT:PSS 박막층의 표면이 더욱 균일함을 알 수 있다. 즉, PMMA 버퍼층을 하부전극과 PEDOT:PSS 박막층 사이에 삽입시킴으로써, PEDOT:PSS 박막층의 상부면이 더욱 균일한 거칠기를 가질 수 있게 된다.
또한, 본 명세서에 구체적으로 기재하지는 않았지만, 실험예 <1-1-2>에서 제조된 기억 소자 역시 실험예 <1-1-1>에서 제조된 기억 소자와 같이, 실험예 <1-2>에서 제조된 기억 소자에 비하여 훨씬 균일한 상부 표면 거칠기를 보였다.
상기에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 상기와 같은 특정 실시예에만 한정되지 아니하며, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 특허청구범위에 기재된 범주 내에서 적절하게 변경이 가능할 것이다.

Claims (11)

  1. 기판;
    상기 기판 상에 형성된 하부전극;
    상기 하부전극 상에 형성된 버퍼층;
    상기 버퍼층 상에 형성된 PEDOT:PSS 박막층; 및
    상기 PEDOT:PSS 박막층 상에 형성된 상부전극을 포함하는 비휘발성 기억 소자.
  2. 제1항에 있어서, 상기 버퍼층은 PMMA, PI, PVP, PS 및 PE로 구성되는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물로 구성되는 것을 특징으로 하는 비휘발성 기억 소자.
  3. 제1항에 있어서, 상기 버퍼층은 PMMA로 구성되는 것을 특징으로 하는 비휘발성 기억 소자.
  4. 제1항에 있어서, 상기 기판은 유연성 기판인 것을 특징으로 하는 비휘발성 기억 소자.
  5. 제1항에 있어서, 상기 하부전극은 Al, Au, Cu, Pt, Ag, W, Ni, Zn, Ti, Zr, Hf, Cd, Pd, ITO, FTO, Al-도핑된 ZnO, Ga-도핑된 ZnO, In과 Ga-도핑된 ZnO, F-도핑된 ZnO, Al-도핑된 ZnO/Ag/Al-도핑된 ZnO, Ga-도핑된 ZnO/Ag/Ga-도핑된 ZnO, In-도핑된 ZnO/Ag/In-도핑된 ZnO, In과 Ga-도핑된 ZnO/Ag/In, 및 Ga-도핑된 ZnO로 구성된 군에서 선택되는 어느 하나인 것을 특징으로 하는 비휘발성 기억 소자.
  6. 제1항에 있어서, 상기 PEDOT:PSS 박막층은 PSS가 PEDOT의 상부에 정렬된 것을 특징으로 하는 비휘발성 기억 소자.
  7. 제1항에 있어서, 상기 상부전극은 Al, Au, Cu, Pt, Ag, W, Ni, Zn, Ti, Zr, Hf, Cd 및 Pd로 구성된 군에서 선택되는 어느 하나 또는 둘 이상의 합금인 것을 특징으로 하는 비휘발성 기억 소자.
  8. 하부전극 상에 버퍼층을 형성하는 단계;
    상기 버퍼층 상에 PEDOT:PSS 박막층을 형성하는 단계; 및
    상기 PEDOT:PSS 박막층에 열을 가하는 단계를 포함하는 비휘발성 기억 소자의 제조 방법.
  9. 제8항에 있어서, 상기 하부전극은 유연성 기판 상에 형성된 것을 특징으로 하는 비휘발성 기억 소자의 제조 방법.
  10. 제8항에 있어서, 상기 버퍼층은 PMMA, PI, PVP, PS 및 PE로 구성되는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물로 구성되는 것을 특징으로 하는 비휘발성 기억 소자의 제조 방법.
  11. 제8항에 있어서, 상기 열은 70℃ 내지 120℃의 온도로 가해지는 것을 특징으로 하는 비휘발성 기억 소자의 제조 방법.
PCT/KR2012/006806 2011-08-26 2012-08-27 버퍼층을 포함하는 비휘발성 고분자 기억 소자 및 그의 제조 방법 WO2013032191A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110085758A KR20130022819A (ko) 2011-08-26 2011-08-26 버퍼층을 포함하는 비휘발성 고분자 기억 소자 및 그의 제조 방법
KR10-2011-0085758 2011-08-26

Publications (3)

Publication Number Publication Date
WO2013032191A2 WO2013032191A2 (ko) 2013-03-07
WO2013032191A3 WO2013032191A3 (ko) 2013-04-25
WO2013032191A9 true WO2013032191A9 (ko) 2013-06-13

Family

ID=47757033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006806 WO2013032191A2 (ko) 2011-08-26 2012-08-27 버퍼층을 포함하는 비휘발성 고분자 기억 소자 및 그의 제조 방법

Country Status (2)

Country Link
KR (1) KR20130022819A (ko)
WO (1) WO2013032191A2 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11167532B2 (en) 2015-05-19 2021-11-09 Corning Incorporated Articles and methods for bonding sheets with carriers
KR102195263B1 (ko) * 2019-08-13 2020-12-24 연세대학교 산학협력단 신체 부착형 전자소자 및 이의 방수형 비휘발성 메모리 구조
WO2021173372A1 (en) * 2020-02-26 2021-09-02 Corning Incorporated Temporary bonding of substrates with large roughness using multilayers of polyelectrolytes
CN112331773B (zh) * 2020-10-26 2023-02-07 复旦大学 一种全透明的防水柔性有机忆阻器及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60130586T2 (de) * 2001-08-13 2008-06-19 Advanced Micro Devices, Inc., Sunnyvale Speicherzelle
US7274035B2 (en) * 2003-09-03 2007-09-25 The Regents Of The University Of California Memory devices based on electric field programmable films
JP2007531287A (ja) * 2004-03-25 2007-11-01 ジ・オハイオ・ステート・ユニバーシティ 多機能ドープ導電性ポリマー系電界効果デバイス
US8044389B2 (en) * 2007-07-27 2011-10-25 The Regents Of The University Of California Polymer electronic devices by all-solution process

Also Published As

Publication number Publication date
WO2013032191A3 (ko) 2013-04-25
WO2013032191A2 (ko) 2013-03-07
KR20130022819A (ko) 2013-03-07

Similar Documents

Publication Publication Date Title
Zhang et al. Tuning the electromechanical properties of PEDOT: PSS films for stretchable transistors and pressure sensors
WO2011025216A2 (ko) 그래핀 박막과 나노 입자를 이용한 광검출기 및 그 제조 방법
Han et al. Improved performance of polymer solar cells featuring one-dimensional PEDOT nanorods in a modified buffer layer
US8508834B2 (en) Printable photovoltaic electrochromic device and module
WO2013032191A9 (ko) 버퍼층을 포함하는 비휘발성 고분자 기억 소자 및 그의 제조 방법
CN101343351A (zh) 含有硒的导电性聚合物以及制备导电性聚合物的方法
TW200946617A (en) Method and composition for screen printing of conductive features
Khasim et al. Post treated PEDOT-PSS films with excellent conductivity and optical properties as multifunctional flexible electrodes for possible optoelectronic and energy storage applications
JP2006310729A (ja) 有機薄膜太陽電池
Kong et al. Underwater organic solar cells via selective removal of electron acceptors near the top electrode
WO2012002723A2 (ko) 투명 전도성막, 이의 제조 방법, 및 이를 이용한 투명전극 및 소자
US20110048508A1 (en) Doping of Carbon Nanotube Films for the Fabrication of Transparent Electrodes
CN109196677A (zh) 有机电子元件及用于制造其的方法
WO2010107261A2 (ko) 태양 전지 및 그 제조 방법
US9905332B2 (en) Transparent conductive electrode and associated production method
WO2017119549A1 (ko) 전기화학공정을 이용한 유기-무기 복합 반도체 소자 및 이의 제조방법
Sun et al. Energy harvesting and storage devices fused into various patterns
WO2010110590A2 (ko) 태양 전지 및 그 제조 방법
EP2279536A2 (en) Photovoltaic device
CN105789441B (zh) 一种有机双功能器件及其制备方法
WO2011078537A2 (ko) 유기태양전지의 p형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막, 이의 제조방법 및 이를 이용한 광전변환효율이 향상된 유기태양전지
WO2004019666A1 (en) Process for preparing a substantially transparent conductive layer configuration
JP2006278582A (ja) 有機薄膜太陽電池
US10403838B2 (en) Photoelectric conversion device
EP1532640A1 (en) Process for preparing a substantially transparent conductive layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828453

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828453

Country of ref document: EP

Kind code of ref document: A2