WO2019103179A1 - 질량 태그를 이용한 질병의 진단을 위한 어세이 및 진단적 활용 - Google Patents

질량 태그를 이용한 질병의 진단을 위한 어세이 및 진단적 활용 Download PDF

Info

Publication number
WO2019103179A1
WO2019103179A1 PCT/KR2017/013393 KR2017013393W WO2019103179A1 WO 2019103179 A1 WO2019103179 A1 WO 2019103179A1 KR 2017013393 W KR2017013393 W KR 2017013393W WO 2019103179 A1 WO2019103179 A1 WO 2019103179A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
mass tag
lung cancer
antibody
tag
Prior art date
Application number
PCT/KR2017/013393
Other languages
English (en)
French (fr)
Inventor
백제현
황동휘
김효선
박계신
방주용
문봉진
오한빈
강나나
이계영
김희정
Original Assignee
다이아텍코리아 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다이아텍코리아 주식회사 filed Critical 다이아텍코리아 주식회사
Priority to PCT/KR2017/013393 priority Critical patent/WO2019103179A1/ko
Publication of WO2019103179A1 publication Critical patent/WO2019103179A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances

Definitions

  • the present invention relates to an assay for detecting and quantifying a plurality of target biomarkers at once or at a time from a biological sample containing a biomarker, and a method for providing information necessary for diagnosis of lung cancer using the assay.
  • ELA enzyme-linked immunosorbent assay
  • This Ellais assay does not require the use of radioactive materials, such as high sensitivity, simplicity of operation, and radioimmunoassay.
  • radioactive materials such as high sensitivity, simplicity of operation, and radioimmunoassay.
  • an enzyme-labeled detection antibody is used using Ella's assay, the enzymatic reaction substrate in the sample is added, and then the change in color is quantitatively measured by an absorber , But it is possible to analyze only one labeling substance at a time using individual antibodies and it is impossible to detect each antigen for several antigen mixtures.
  • Mass spectrometry is an accurate analysis of the protein type and quantity by measuring the mass of the peptide, a component of the protein or protein. It enables accurate analysis of specific proteins in a complex biological sample. By taking advantage of these technological superiorities, various disease markers can be simultaneously measured and used for diagnosis.
  • the MALDI-TOF (Matrix-Assisted Laser Desorption Ionization-Time-of-Flight) method is the most suitable mass spectrometry for high-speed diagnosis because it can measure a large number of samples quickly.
  • direct measurement of the marker protein by the MALDI-TOF method is limited in its ability to measure a limited amount of biomarkers due to its low sensitivity.
  • the presently known MALDI-TOF method is inadequate, and therefore, it is absolutely necessary to develop a MALDI-TOF high sensitivity measurement and assay method.
  • the LC / MS / MS method used for protein analysis is highly accurate and easy to automate because it measures one sample, and is suitable for analyzing mixed complex protein bodies.
  • concentration of a specific protein there is a need to increase the sensitivity.
  • mass analyzers currently in use are expensive and can only be owned and operated by specific institutions that can purchase and maintain large hospitals or large equipment. In addition, it requires a skilled technician to operate the equipment, and it is expensive to maintain and operate the equipment because it must be managed continuously. Therefore, in order to easily use mass spectrometry for diagnosis, there is a need to develop a simple device which can lower the price of the device and can be easily accessed by anyone.
  • TAMSIM TArSed multiplex MS Imaging
  • the Szczepinov Group has a mass-tag technology based on trityl (triarylmethyl), and based on this technology, a spin-off company called Tridend Technologies was established in Oxford, England.
  • Trityl-based mass tag developed by TRADED Technology has basically a trityl core which can have a stable cation, a reactive group which can bind to the antibody, and a mass transducer (mass-modifying group).
  • Patent Document 1 The invention disclosed in Laid-Open Patent Application No. 2013-0054311 discloses the identification of IGF-1 and RANTES as biomarkers for a complex biomarker for lung cancer diagnosis, but it is limited to statistical analysis, 0002322 discloses a method for assaying saliva biomarkers for lung cancer such as CCNI, EGFR and FGF9, but does not mention precise detection and quantification of biomarkers for the diagnosis of lung cancer.
  • Open Patent Publication No. 2014-0024907 discloses a method for measuring the prognosis of early lung cancer by expression of a number of biomarkers.
  • Patent Publication No. 2015-0041148 a method of using ELISA to determine the possibility of cancer by the target genes PAX1, ZNF582, SOX1, etc. has been proposed.
  • the present invention provides an assay for replacing a conventional enzyme-linked immunosorbent assay (ELISA) in the detection and quantification of biomarkers, and also provides a multiple detection method for detecting and quantifying various biomarker targets and / To provide multiple assays.
  • ELISA enzyme-linked immunosorbent assay
  • the present invention provides a composition comprising a mass tag and a detection antibody, a biomarker obtained from a biological sample, preferably a biomarker selected from the group consisting of CEA, CD276, and Cyfra 21-1 , And capture antibodies.
  • a capturing antibody immobilized on a plate surface captures an antigen protein, i.e., a biomarker, and then a detection antibody to which a photodegradable mass tag is bound is applied so that the detection antibody that is on the opposite side to the capturing antibody detects the biomarker
  • the target biomarker is detected and quantified by the presence and amount of the mass tag in such a way that it is sandwiched and held.
  • a mass tag can be detected and quantified using mass spectrometry to simultaneously detect and quantify a plurality of markers that are markers for various diseases. Accordingly, multiple detection and quantification methods, It is advantageous in that it can be applied to the method. In other words, mass spectrometry can be applied instead of absorbance measurement in the previously-used Elaborate detection method, which can be an effective alternative thereto.
  • the MALDI-TOF method and the ESI-TOF method are the most suitable mass spectrometry methods for high-speed analysis where a large number of samples must be measured quickly.
  • Direct measurement of the labeling protein by the MALDI-TOF method is limited in measuring a small amount of biomarkers because of its low sensitivity.
  • the signal intensity of the mass tag obtained by the MALDI-TOF method is proportional to the amount of antigen and detection antibody or biomarker (target substance).
  • the mass tag of the present invention is a 2-alkylthio-2H-thiocromene derivative represented by the following formula (1).
  • R 1 is an N-hydroxysuccinimide ester group, N-hydroxysulfosuccinimide ester group, pentafluorophenyl ester group, 4-sulfo-2,3,5,6 -Tetrafluorophenyl ester group, a nitrophenyl ester group, a 2,4,5-trichlorophenyl ester group, a phthalimidoester group, N-hydroxy-5-norbornene-endo-2,3- polyimide ester group, a maleimide group or a C 1- 12 alkyl which has any one of the reactor, C 6- 60 aryl, or N, C2-60 heteroaryl group having one or more heteroatoms selected from S and O, and , R2 and R3 are, independently, hydrogen, C 1- 12 alkyl, C 6- 60 aryl, C 1- 12 alkoxy, C 1- 12 alkyl, amino, C 1- 12 alkyl thio or a fused ring, the fused
  • the mass tag represented by the above formula (1) is a photodegradable mass label substance and is composed of a mass-changing unit, a light absorbing unit, and a biochemical activating unit.
  • the mass tag is a light cutter when exposed to light (for example, The alkyl thio group at position 2 is hetero-cleaved to easily form a thiochromenylium cation, which is easily detected in a mass spectrometer.
  • the thiocromeminium cation contains a mass-changing unit, which is easy to analyze and quantify, and it is possible to perform multiple analysis and quantification.
  • FIG. 1 (a) an exemplary compound of formula (1) is shown in Figure 1 (a).
  • the compound of FIG. 1 (a) is a 2-alkylthio-2H-thiocromethane derivative wherein R 1 is an N-hydroxysuccinimide ester group, R 2 is hydrogen and R 3 is methyl, to be.
  • R 1 is an N-hydroxysuccinimide ester group
  • R 2 is hydrogen
  • R 3 is methyl
  • a detection antibody (secondary antibody) is bound to a photodegradable mass tag, and a capture antibody or a primary antibody is loaded on a MALDI plate and analyzed by MALDI-MS.
  • the photodegradable mass tag is decomposed by laser light irradiation to generate cations, and by detecting these cations, the presence and amount of the antigen can be quantified.
  • the ESI-TOF method may be followed.
  • a plurality of biomarkers can be detected and quantified using the same kind of thiouromomen derivative compounds of the formula (1) wherein R < 3 > is different.
  • R 3 is a Cy oak different homogeneous compound is chromene derivative, R 1, R 2 are identical, R 3, for example, refers to a group of compounds having the carbon number of different alkyl groups.
  • a homogeneous thiouromethane compound may be a group of compounds in which some of the elements constituting the compound are replaced with isotopes such as 13C, 15N, 2H, and the like.
  • these groups of mass tags refer to mass tags 1, 2 and 3 in which R1 and R2 are the same and the number of carbon atoms of R3, which is an alkyl group, is different. Detection and quantitation are possible for the antigens 1, 2 and 3 by binding the detection antibodies 1, 2 and 3 having the mass tags 1, 2 and 3, respectively, and capturing them by the capture antibodies 1, 2 and 3. Therefore, the present invention provides a multiple assay method for detecting and quantifying multiple antigens at one time with high accuracy. As such, different markers can be simultaneously detected by one mass analysis using different antibodies combining different mass tags.
  • the mass tag according to the present invention is illustrated in Table 1 below.
  • the following mass-tagged compounds are merely illustrative, and the compounds having the above-described photodegradation properties as the compound represented by the formula (1) are included in the present invention without limitation.
  • Preferred capture antibodies and detection antibodies according to the present invention are shown in Table 2 below.
  • the capture antibody and the detection antibody in the following table are for illustrative purposes only and are not restricted to the present invention as long as they cause a specific reaction as an antigen and an antibody.
  • a biomarker applicable to the assay according to the present invention will be described as an example of a lung cancer biomarker.
  • the present invention can not be used only for the detection and quantification of lung cancer biomarkers, and the assay of the present invention can be applied to various biomarkers by combining appropriate antigens and antibodies according to need, It can be applied to diagnosis.
  • the present invention preferably provides an assay and multiplexing assay useful for lung cancer diagnosis.
  • Biomarkers known to be useful for the diagnosis of lung cancer in the past include PD1, PD-L1, Cyfra21-1, GM2a and CEA.
  • the biomarkers according to the present invention are obtained from biological samples such as blood, pleural fluid, etc.
  • the biomarkers useful for the diagnosis of lung cancer according to the present invention are CD276, CEA and cyfra21-1.
  • CD276 is a gene known as B7H3, B7-H3, B7RP-2, 4Ig-B7-H3 and 2Ig-B7-H3.
  • the protein encoded by this protein belongs to the immunoglobulin phase and participates in T-cell mediated immune response .
  • the transcription of this gene is expressed in both normal and solid tumors, but it is known that this protein is preferentially expressed only in tumor tissues. See Chen Z et al., Allergy Asthma Proc. 2015 Jul-Aug; 36 (4): 37-43.], CD276 is a useful clinical biomarker for evaluating asthma exacerbations because of its potential role in acute exacerbation of asthma.
  • Carcinoembryonic Antigen is a glycoprotein present in normal mucosal cells, but an increase in the amount of CEA is associated with adenocarcinoma, especially colon cancer. Thus, CEA can serve as a tumor marker. However, sensitivity and specificity are low and are more useful for monitoring patient status than testing or diagnosis. CEA values are considered with other factors and are useful in assessing the prognosis of colon cancer and in the recurrence of colorectal cancer and in the course of treatment of colon cancer patients, but also in a variety of malignant (benign) diseases.
  • a malignant disease such as colon cancer, breast cancer, lung cancer, stomach, esophagus, and pancreatic tumor, mesothelioma, large mediastinal metastatic cancer, bone metastasis, liver cancer, chronic active hepatitis, viral hepatitis, - Non-malignant diseases including malignant liver disease, chronic kidney disease, pancreatitis, inflammatory bowel disease, irritable bowel syndrome, diverticulitis, and respiratory diseases such as pleuritis and pneumonia.
  • a malignant disease such as colon cancer, breast cancer, lung cancer, stomach, esophagus, and pancreatic tumor
  • mesothelioma large mediastinal metastatic cancer
  • bone metastasis liver cancer
  • chronic active hepatitis such as a malignant diseases
  • viral hepatitis hepatitis
  • Cytokeratin is a structural protein that forms a subunit of epithelial intermediary filaments. Cyfra 21-1, a fragment of cytokeratin-19, is frequently released in the blood of cancer patients, Because of its high specificity for benign lung disease, it is particularly suitable for pathologically phenotypic marker applications for tumors such as lung cancer.
  • Cyfra 21-1 is a tumor marker useful for the diagnosis and progression of squamous cell carcinoma and adenocarcinoma of the lungs, and it has been reported in the Journal of Medicine, 62, 4, Startpage 415, Endpage 421, Totalpage 7], it has been reported that it has the highest positive rate compared to the conventional tumor marker in lung cancer, and it is known that it can be used more advantageously when used in combination with a conventional tumor marker in screening for non-cell cancer .
  • Figure 1 is a schematic representation of a technique for applying and detecting multiple proteins (e. G., Antibodies) bound to a mass tag.
  • proteins e. G., Antibodies
  • Fig. 2 shows the results of PCA and ANOVA test for identifying candidate biomarkers.
  • Figure 3 is CD276 concentration determined from pleural fluid and blood samples from lung cancer patients
  • Figure 4 shows the correlation of CD276 levels detected in pleural fluid and blood samples from patients with lung cancer.
  • 5 is an ROC graph of CD276.
  • Figure 6 shows the CED concentration of each of the normal and lung cancer samples.
  • Figure 7 shows the Cyfra 21-1 concentration in each of the normal and lung cancer samples.
  • 9 is a graph for confirming the linearity of a protein to which a mass tag is bound.
  • Figure 10 shows the MLISA and ELISA correlations of CD276.
  • Figure 11 shows four mass tag-antibody spectra.
  • Figure 12 is a MLISA quantitative standard curve for CEA.
  • Figure 13 is a MLISA quantitative standard curve for the CD276 antigen.
  • Figure 15 is a multiple MLISA for a three-species biomarker.
  • 16 is a simultaneous mass spectrometry spectrum after performing multiple MLISA.
  • pleural fluid has plasma-like protein composition
  • isolation and analysis of exosomes are very useful for biomarker discovery.
  • cancer cells secrete a larger amount of exosome than normal cells. Therefore, we attempted to isolate exosomes by ultracentrifugation and PEG in pleural fluid from lung cancer patients and identified cancer marker candidates by identification / quantitative analysis.
  • SWATH-MS method one of the newly emerging DIA methods (Data Independent Acquisition), quantitative values of each protein identified in patients with lung cancer and in the control group were obtained.
  • the quantitative results were analyzed by PCA (Principle Component Analysis) and ANOVA test, and the quantitative patterns were analyzed based on the results of p-value calculation. Marker candidates were excavated. (See Fig. 2)
  • the ANOVA test significantly altered the protein among the three groups and found 201 proteins with a p-value of 0.05 or less.
  • PCA patterns of 201 proteins were analyzed to select proteins that specifically elevated in each group (region (2) 3 in FIG. 2). Representative of these are CD276, DPP4 and ITGB2 candidate proteins.
  • the lung cancer marker candidate protein CD276 was analyzed by R & D Systems' ELISA Kit (DB7H30) according to the manufacturer's recommended method. In PCA pattern analysis, it is a protein simultaneously increased in lung cancer adenoma and squamous cell lung cancer, and in volcano plot, it is protein which is concurrently increased protein in lung cancer adenoma and squamous cell lung cancer. ELISA of patient pleural effusion and plasma showed that both protein concentrations were elevated dramatically in both lung cancer groups. In two repeated experiments, all group samples were reproducibly reproduced with a variation coefficient (CV) within 5%. The concentrations of CD276 observed in pleural fluid and blood are shown in the table below. As shown in FIG.
  • the concentration of CD276 between tuberculosis (TB) and lung cancer adenoma (Ad) and squamous cell lung cancer (SQCC) was 22-24 as shown in Table 3 (average value of CD276 of each group and patient sample) At the level of 25ng / mL, it was confirmed that there was a significant difference between normal and lung cancer samples.
  • CD276 increased in the lung cancer group, which is an immune response-regulating protein, abnormally increased in the blood of tumor tissues and cancer patients.
  • CD276 was decreased in both tuberculosis control group and tuberculosis control group in both pleural fluid and blood, but it was increased in lung cancer group.
  • the concentration of each CD276 in pleural fluid and blood samples obtained from the same patient was confirmed to be 66% identical.
  • the CD276 levels in control subjects and lung cancer patients were increased in all but 18 patients with lung cancer group, except one, based on 25 ng / mL. All of the patients with tuberculosis except 6 were decreased. Especially in the blood of normal persons, and showed a marked difference from the control group, tuberculosis patients.
  • ROC Receiveiver Operating Characteristic Curve
  • Candidate CEA for lung cancer markers was analyzed by R & D Systems' ELISA Kit (DY4128) according to the manufacturer's recommended method. The samples were all blood samples and were tested against 6 samples of tuberculosis and 15 samples of lung cancer adenomas. These samples were also derived from the same patient as the blood of CD276 (except for lung cancer adenoma sample, 200-fold diluted sample Respectively. As shown in FIG. 6, it was confirmed that the concentration of CEA in the lung cancer adenoma was relatively higher than that in the control group.
  • the lung cancer marker candidate protein Cyfra21-1 was analyzed by the manufacturer's recommendation with the Abnova ELISA Kit (# KA4024). All of the samples were blood samples and were tested for six samples of tuberculosis and 15 samples of lung cancer adenoma. These samples were also derived from the same patient as the blood of CD276. Cyfra21-1 also showed a higher level of Cyfra21-1 in lung cancer adenomas than in the control group.
  • the lung cancer marker candidate protein DPP4 may be used as an ELISA kit (DY1180) from R & D Systems, ITGB2 using an ELISA kit (EKU05042) from Cloud-clone corp., PD-1 using ELISA Kit (DY1086) L1 was quantitatively analyzed with an ELISA kit (DY156) from R & D Systems, and GM2a with an ELISA kit (abx151696) from ABBEXA.
  • a mass tag storage solution at a final concentration of 10 ⁇ g / ⁇ L by dissolving an appropriate amount of mass tag in a solvent capable of solubilizing the mass tag (eg, DMSO).
  • a solvent capable of solubilizing the mass tag eg, DMSO.
  • Pre-treatment of the antibody to be bound is carried out as follows. Each protein sample is buffer-exchanged with a buffer containing no reactive amine to remove any residual amines that are reactive with the mass tag in the sample.
  • the binding reaction between the mass tag and the antibody (or protein) was carried out in a basic solution (pH 8) at room temperature for about 2 hours while maintaining the concentration of the mass tag at 20 times higher than the protein concentration.
  • An amine-reactive substance such as ethanolamine is added to terminate the binding reaction.
  • Antigen / antibody response (sandwich or indirect antigen / antibody response)
  • the capture antibody (or two or more mixed antibodies or antigens corresponding to the target antigen) to be used is diluted with a buffer (for example, phosphate buffered saline (PBS) Place a 100 ⁇ L aliquot in each well of the well plate and fix it. (For NC or PVDF membranes, dispense several tens of ⁇ L in dot blot). After immobilization, discard the remaining solution from the 96-well plate immobilized with the capture antibody or antigen and wash with buffer solution (repeat 2 times). Blocking is performed so that no further antibodies or proteins are fixed using bovine serum albumin solution. Discard remaining solution in each well and wash with wash buffer (repeat 3 times).
  • a buffer for example, phosphate buffered saline (PBS) Place a 100 ⁇ L aliquot in each well of the well plate and fix it.
  • PBS phosphate buffered saline
  • a standard substance a purified antigen or a clinical sample whose concentration is known
  • a standard solution can be diluted in a suitable concentration range and used as a standard solution.
  • a detection antibody or a different mass tag-bound detection antibody solution mixed with a mass tag is diluted in a blocking solution at an appropriate concentration.
  • the mass tag may be directly bound to the detection antibody, or may be reacted using a detection antibody bound to biotin instead of the mass tag (in this case, the mass tagged Streptavidin protein is further reacted ). Discard remaining solution in each well and wash with wash buffer (repeat 3 times).
  • mass spectrometry can be performed by mixing the eluate from the same sample, spotting the sample on a plate for MALDI-TOF, and drying the sample. If two or more antigens are simultaneously processed, the sample is spotted on a plate for MALDI-TOF immediately without mixing and dried. If MALDI-TOF analysis is not the case for other reasons or because the concentration in the sample of the target antigen is low, the signal of the mass tag can be increased by using the ⁇ -Cyano-4-hydroxycinnamic acid (CHCA) matrix. In this case, elute the CHCA solution at a concentration of 50 ⁇ g / mL into the elution solution or add CHCA solution to the sample and dry it.
  • CHCA ⁇ -Cyano-4-hydroxycinnamic acid
  • Condition name Contents Remarks Laser intensity 3000 ⁇ 3500 The peak intensity of the mass tag at the maximum concentration of the antigen should satisfy the condition of 1,000 to 100,000.
  • Low mass linear or reflector positive Select an acquisition mode suitable for low mass based on the positive mode Conditions to consider when acquiring data 500 ⁇ 1,000 shots accumulation
  • matrix Not required by default Matrix is not necessary basically, so the sensitivity of signal to noise is very good. However, if signal amplification is required, a low concentration of CHCA is recommended (50 ug / mL).
  • Condition name Contents Spectrum Scan Range 200 to 300 m / z Range including internal standard mass Data analysis mode MRM mode or target mass analysis mode Multiple Reaction Mode (Q1 / Q3), Targeted MS analysis Ion analysis mode Positive mode Scan and filter the low mass area based on the positive mode. Filtering or scanning conditions Q1 / Q3 or Survey MS / MS2 scan Example of Q1 / Q3: 250.1 / 250.1m / z, 264.1 / 264.1m / z 278.1 / 278.1m / z or 292.1 / 292.1m / z, Is advantageous for detection)
  • ESI-TOF may be used.
  • the intrinsic constant for each antigen is determined by the ratio of the relative signal intensity to the internal reference material obtained at the reference concentration of each antigen through separate experiments.
  • a standard calibration curve can be obtained to determine the concentration of the antigen in the sample with respect to the actual unknown sample. Alternatively, it can be judged whether or not the disease is caused by a relative comparison with a mass analysis result of a reference substance corresponding to a reference concentration of an antigen capable of distinguishing disease.
  • the disease can be judged easily through the following Scoring equation.
  • the concentration value determined for each antigen can be entered into the above function and the risk of lung cancer can be determined with the obtained result. Scoring function to judge the risk of lung cancer (If the value for specific antigen can not be obtained, the item is excluded from the score and the total weight of the remaining items is 1).
  • the mass tag can be coupled to a protein that recognizes the antibody or antibody and the mass tag can be used for direct qualification / quantitation.
  • the present invention provides an assay for mass spectrometry after antigen-antibody reaction using one kind of mass tag for one antigen (biomarker).
  • ELISA In the case of ELISA, an additional reaction time is required for about 20 to 30 minutes until color development of a substrate such as TMB is advanced. However, since the elution is completed within 5 minutes by using the mass tag of the present invention, time can be saved. In addition, the ELISA has a disadvantage in that when the discoloration of the substrate is very late or rapidly proceeding, the reaction must be terminated at a suitable time in order to obtain an appropriate signal intensity. In addition, it is possible to calibrate the signal intensity by analyzing the internal reference material at the same time, and thus accurate qualification / quantification is possible.
  • the present invention provides MLISA capable of quantitatively analyzing several samples or several antibodies at the same time.
  • a method of applying i) a detection antibody bound to a direct antibody by a different mass tag to each sample (ii)
  • (i) has a disadvantage in that the activity of the antibody is partially reduced, but it is advantageous that a plurality of antibodies can be mixed at one time.
  • the reduction of the activity is relatively insufficient and the effect of amplifying the signal is obtained.
  • the case (iii) is advantageous in that the noise is reduced, but it may be limited to be mixed at once.
  • the present invention provides multiple MLISAs in which each antigenic antibody reaction is performed on each biomarker (antigen), and then each elution solution is mixed to perform mass analysis at once. Because it performs mass analysis at the same time, it is recommended to use a standard sample (reference material equivalent to the disease standard) concentration solution, or a relative quantitative value using a clinical sample close to the reference value (appropriately combining clinical samples known to meet the reference value) .
  • MALDI-MS analysis is more effective in quantitative analysis because it can greatly improve the quantitative performance of relative comparisons within a single spot, rather than comparing signal intensities between multiple spots. If it is higher than the standard, it is close to the disease state. If it is lower, it can be judged that it is close to the health condition.
  • the present invention provides for simultaneous antigen / antibody responses to multiple biomarkers (antigens) in a single well with mixed antibodies (or other mediators) with different mass tags, Followed by multiple assays that simultaneously detect mass spectrometry.
  • multiple assays that simultaneously detect mass spectrometry.
  • the mass tagged protein (or antibody) was diluted by concentration and analyzed by MALDI.
  • the internal standard material included in the sample was used to correct the phenomenon that the signal appears uneven in the dried sample-specific portion when irradiated with MALDI laser. From the LDI conditions of MALDI, it was confirmed from FIG. 8 that the peak of the internal standard material was 242.0 m / z and the peak of mass tag-streptavidin was 292.0 m / z.
  • the internal standard used may be a specific compound that is ionized under LDI conditions or a photodegradable mass tag having a different molecular weight may be used.
  • photodegradable mass tags are capable of MALDI analysis in the absence of a matrix, but can be analyzed using CHCA matrices if the signal is inadequate through an immune response to a particular antigen. In this case, the signal amplification effect at least 10 times higher than the LDI condition can be obtained.
  • due to the non-uniformity due to the crystallization of the matrix it is difficult to quantitatively analyze with the signal of the mass tag alone. Therefore, it is necessary to calibrate the signal of the mass tag using the internal reference material as follows.
  • the graph on the left shows the mass tag signal before calibration with the internal reference material
  • the graph on the right shows the mass tag signal calibrated to the internal standard signal.
  • Mass-tagged streptavidin was sequentially diluted 2-fold and mass spectrometry was performed.
  • the signal intensity of the mass tag was highly correlated with the dilution factor of 292-mass tagged streptavidin.
  • Fig. 9 shows the results obtained by correcting errors that may occur during ionization using the signal intensity of the internal standard material.
  • FIG. 9 (a) is the intensity of a signal according to the dilution factor of 292-mass tagged streptavidin
  • FIG. 9 (B) is the signal intensity of a 250-mass tagged monoclonal antibody.
  • the R2 value was 0.9996, confirming quantitativeity, and thus MLISA can sufficiently replace the ELISA method used in conventional diagnostic methods.
  • Each of the four mass tags 250, 264, 278, and 292 of 100 ng was matched with the detection antibody and the capture antibody in the LDI condition without matrix, and then subjected to mass analysis (Laser 5200) using MALDI-TOF MS. Mass tag - antibody samples were mixed in the same amount of 100ng each and mass analysis was performed. The results are shown in Fig. 11 (a), 11 (b), 11 (c) and 11 (d) are mass analysis results using the mass tags 250, 264, 278 and 292 in order.
  • FIG. 11 (e) shows the result of mass spectrometry by mixing four eluate solutions after antigen-antibody reaction to four mass tags. The photodegradable mass tags were confirmed to be qualitative or quantitative when they were analyzed by MALDI or mixed, respectively, without interfering with liver ionization.
  • a control (TB) sample for lung cancer pleural fluid samples a STD (standard concentration) sample as a standard protein sample for CD276, a kind of lung cancer (SQCC) and lung cancer adenocarcinoma samples were prepared.
  • Mass-tagged -250 binds to an antibody that detects CD276 in the TB sample
  • mass tag -264 binds to CD276 of STD
  • mass tag -278 binds to CD276 of SQCC
  • mass tag -292 binds to antibody that detects CD276 in adenocarcinoma .
  • the LDI spectrum of the CD276 protein of each lung disease was obtained from the pleural fluid sample shown in Fig.
  • the CD276 concentration was higher than the STD standard (264) (278, 292), since SQCC and adenocarcinoma samples were lung cancer samples, while the TB control group (250 normal) was lower than the STD reference value (264).
  • a single MALDI-TOF analysis on four samples allowed the relative quantification of each mass tag signal under matrix-free conditions.
  • CEA Part #: 843130, R & D Systems, Tokyo, Japan
  • TB control specimen
  • lung cancer adenoma pleural fluid 282-mass tagged CEA antibody
  • 278 SEQ ID NO: -
  • the mass tagged CD276 (HO-02-3-6E) mixed antibody was prepared in a buffer solution composed of 10 mM phosphate buffer / 0.1% Tween 20, eluted with 50 uL of 1% TFA solution and 50 ug / mL CHCA, An internal reference material (231.4 m / z) was used and assayed and analyzed in linear ion mode.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

질량 태그와 검출 항체를 포함하는 조성물, 타겟 바이오마커; 및 포획 항체를 포함하는 각종 질병의 진단을 위한 어세이를 제공한다. 질량 태그는 광분해 특성을 가지며 질량 변화기의 종류를 변화시킬 수 있는 구조를 가지기 때문에 다중 분석에 유용하다. 또한 분석 및 다중 분석에 있어서 높은 정확도를 제공하여 종래의 ELISA법을 충분히 대체할 수 있다.

Description

질량 태그를 이용한 질병의 진단을 위한 어세이 및 진단적 활용
본 발명은 바이오마커를 포함하는 생체 시료로부터, 한번에 한 개 또는 한번에 여러 개의 타겟 바이오마커를 검출 및 정량하는 어세이 및 이를 이용하여 폐암 진단에 필요한 정보를 제공하는 방법에 관한 것이다.
제한되어 있는 양의 바이오마커를 포함하는 시료로부터 타겟 바이오마커에 대한 정밀한 분석 결과를 얻는 것은 정확한 진단을 위한 필수 조건이다.
바이오마커 검출 및 질량 분석법으로, 효소결합면역흡착제 검정법(enzyme-linked immunosorbent assay, ELISA, 이하, "엘라이사")이 있다. 항원(또는 항체)에 알칼리성 포스파테이스 또는 페르옥시데이스 등의 산소를 결합시켜 두고 그 산소의 활성을 지표로 삼아 항원항체반응의 정도를 안 다음, 여기에서 페르옥시 데이스, 알칼리 포스퍼테이스, β-갈락토시 데이스 등의 효소를 화학적으로 항원(또는 항체)와 결합시켜 효소 염색을 시행하고 변색을 측정함으로써 항원(또는 항체)의 양을 구하는 것이다. 이 엘라이사 분석법의 장점은, 고감도, 조작의 간단함, 그리고 방사면역측정법(radioimmunoassay)처럼 방사성물질을 사용하지 않아도 된다는 점이 있다. (간호학대사전, 1996. 3. 1., 한국사전연구사) 그러나 엘라이사 분석법을 이용하여 효소가 부착된 검출 항체를 사용할 경우, 시료 내 효소 반응 기질을 넣어 주고 이어서 색의 변화를 흡광기를 통하여 정량할 수 있지만, 개별 항체를 이용하여 한번에 한가지 표지 물질만 분석할 수 있고, 여러 개의 항원 혼합물에 대하여 각 항원을 검출하는 것이 불가능하다.
질량분석법은 단백질이나 단백질의 구성요소인 펩티드의 질량을 측정하여 단백질의 종류와 양을 정확하게 분석하는 것으로, 복잡하게 구성되어 있는 생체 시료 중에서도 특정 단백질들을 정확하게 분석할 수 있다. 이러한 기술상의 우수성을 이용하여 다양한 질환 표지 물질을 동시에 정확하게 측정하여 진단에 이용할 수 있다. 특히, MALDI-TOF (Matrix-Assisted Laser Desorption Ionization-Time-of-Flight)방법은 많은 수의 시료를 빠르게 측정할 수 있어 가장 적합한 초고속 진단용 질량분석법이다. 하지만 MALDI-TO F방법으로 표지 단백질을 직접 측정하는 것은 민감도가 떨어져 제한적인 양의 바이오마커를 측정하는 데에 한계가 있다. 더욱이 바이오마커의 존재 유무만이 아니라 정량적인 정보까지 얻기 위해서는 현재 알려진 MALDI-TOF 방법으로는 역부족이며, 따라서, MALDI-TOF 고감도측정 및 정량법의 개발이 절대적으로 필요하다.
단백질 분석에 사용되고 있는 LC/MS/MS 방법은 하나의 샘플을 측정하기 때문에 정밀성이 높고 자동화가 용이하며, 혼합되어 있는 복잡한 단백질체를 분석하기에는 적당하다. 그러나 특정 단백질의 농도를 정확하게 분석하기 위해서는 민감도를 높일 필요성이 있고, 대량의 시료를 분석하기 위해서는 하나의 샘플을 측정하기 위해 소요되는 시간을 줄일 필요가 있다.
진단을 위한 비용적 측면을 고려할 때 현재 사용되고 있는 질량분석기는 고가의 장비로 대형 병원이나 거대 장비를 구매, 유지할 수 있는 특정 기관에서만 보유하고 운영할 수 있는 실정이다. 또한 기기를 운영하기 위해서는 숙련된 기술자가 필요하고, 장비를 지속적으로 관리하고 해야 하기 때문에 유지 보수 및 운영에 많은 비용이 든다. 따라서 질량분석법을 진단을 위해서 보편적으로 쉽게 사용하기 위해서는 기기 가격을 낮추고 누구나 쉽게 접근할 수 있는 간편한 기기로 개발되어야 할 필요성이 있다.
최근에 질량표지물질(Masstag, 이하, 질량 태그)을 결합시킨 항체를 사용하여 MALDI 질량분석을 통해 생체 조직에 존재하는 바이오마커를 검출 및 정량하는 새로운 방법이 속속 개발되고 있다. 예를 들어, TAMSIM (TArgeted multiplex MS Imaging)이라고함. (Thiery, G.; Shchepinov, M. S.; Southern, E. M.; Audebourg, A. et al, "Multiplex target protein imaging in tissue sections by mass spectrometry-TAMSIM", Rapid Commun. Mass Spectrom. 2007, 21, 823-829)은, 형광물질 또는 금속 화합물로 표지된 항체를 사용하여 형광 현미경 또는 전자 현미경을 통해 검출하던 전통적인 방법에 비해 더 많은 바이오마커를 동시에 검출할 수 있다는 장점이 있다. 현재 이 분야를 선도하고 있는 그룹은 프랑스 국립유전자센터 (Centre National de Genotypage)의 거트(Gut) 그룹과 영국 옥스퍼드에 기반을 둔 벤처회사인 트라이덴드 테크놀로지(Tridend Technologies)의 슈체피노프(Shchepinov) 그룹이다. 슈체피노프 그룹에서는 트리틸기(trityl: triarylmethyl)를 기반으로 한 질량 태그 기술을 보유하고 있으며, 이 기술을 바탕으로 영국 옥스퍼드에 Tridend Technologies라는 spin-off company가 설립되었다. 트라이덴드 테크놀로지에서 개발된 트리틸기 기반의 질량 태그는 기본적으로 안정한 양이온을 가질 수 있는 트리틸기 코어(trityl core)에 항체와 결합시킬 수 있는 반응기(reactive group)와 질량을 변화시킬 수 있는 질량 변형기 (mass-modifying group)을 포함하는 구조이다.
(특허문헌 1) 공개특허 제2013-0054311호에 기재된 발명은 폐암 진단용 복합 바이오마커에 대한 것으로, 바이오마커로서 IGF-1 및 RANTES의 동정을 개시하고 있으나 통계적 분석법에 그치고 있고, 공개특허 제2013-0002322호는 폐암 검출용 타액 바이오마커로서 CCNI, EGFR, FGF9등의 검정 방법을 개시하고 있으나, 폐암 진단을 위한 바이오 마커의 정확한 검출 및 정량에 대해서는 전혀 언급하고 있지 않다. 공개특허 제2014-0024907호는 다수의 바이오마커의 발현에 의하여 초기 폐암의 예후를 측정하는 방법을 개시하고 있다. 공개특허 제2015-0041148호에서는 표적 유전자 PAX1, ZNF582, SOX1 등에 의하여 암의 발생 가능성을 판단하기 위하여 ELISA를 이용하는 방법이 제안되었다.
본 발명은 바이오마커의 검출 및 정량에 있어서 종래의 효소결합 면역흡착 분석법(ELISA)을 대체하기 위한 분석법을 제공하기 위한 것이며, 아울러 한번에 여러 가지 바이오마커 타겟을 검출 및 정량하기 위한 다중검출법 및/또는 다중분석법을 제공하기 위한 것이다.
상기 문제를 해결하기 위하여 본 발명은, 질량 태그와 검출 항체(Detection antibody)를 포함하는 조성물, 생체 시료로부터 얻어지는 바이오마커, 바람직하게는CEA, CD276, 및 Cyfra21-1로 이루어지는 군에서 선택되는 바이오마커, 그리고 포획 항체(Capture antibody)를 포함하는 폐암 진단용 어세이를 제공한다. 구체적으로, 플레이트 표면에 고정된 포획 항체가 항원 단백질, 즉 바이오마커를 붙잡도록 한 후, 광분해성 질량 태그가 결합된 검출 항체를 적용하여, 포획 항체에 대하여 반대편에 있게 되는 검출 항체가 바이오마커를 샌드위치하여 붙잡도록하는 방식으로, 타겟 바이오마커를 질량 태그의 존재 및 양에 의하여 검출 및 정량한다.
바람직한 양태로서 본 발명은, 질량분석법을 이용하여 질량 태그를 검출 및 정량하여, 다양한 질환의 표지물질인 복수개의 마커를 동시에 검출 및 정량할 수 있고, 이에 따라 다중 검출 및 정량법, 그리고 관련 질병의 진단 방법에 활용할 수 있다는 점에서 유리하다. 즉, 기존에 사용되던 엘라이사 검출법에서의 흡광도 측정 대신 질량분석법을 적용하여 이에 대한 효과적인 대안이 될 수 있다.
다양한 질량분석법 중에서도 MALDI-TOF 방법이나 ESI-TOF 법은 많은 수의 시료를 빠르게 측정하여야 하는 고속 분석을 위해 가장 적합한 질량분석법이다. MALDI-TOF 방법으로 표지 단백질을 직접 측정하는 것은 민감도가 떨어져 적은 양의 바이오 마커를 측정할 때에 한계가 있다. 그러나 본 발명에 따라 질량 태그로 증폭된 신호를 측정함으로써, 극미량 존재하는 바이오마커라도 충분히 정밀하게 검출 및 정량할 수 있다. MALDI-TOF 방법으로 얻어지는 질량 태그의 신호세기는 항원과 검출항체 혹은 바이오마커(목적 물질)의 양에 비례한다. 즉, 여러 개의 질량 태그가 바이오마커/항체에 결합한 형태로 존재하기 때문에 신호가 증폭되어 정밀한 검출 및 정량이 가능한 것이다. 나아가, 상이한 종류의 질량 태그를 사용하더라도, MALDI-TOF 에 의하여 각 질량 태그를 구별하여 확인할 수 있으므로, 다중 어세이에 효과적이다.
하나의 양태에 있어서 본 발명의 질량 태그는, 하기 식(1)로 표시되는 2-알킬싸이오-2H-싸이오크로멘 유도체 화합물이다.
Figure PCTKR2017013393-appb-I000001
.... 식(1)
(식 (1)에서, R1은 말단에 N-하이드록시숙신이미드 에스터기, N-하이드록시 설포숙신이미드 에스터기, 펜타플루오로페닐 에스터기, 4-설포-2,3,5,6-테트라플루오로페닐 에스터기, 나이트로페닐 에스터기, 2,4,5-트리클로로페닐 에스터기, 프탈이미도 에스터기, N-하이드록시-5-노보넨-엔도-2,3-다이카보이마이드 에스터기, 또는 말레이미드기의 어느 하나를 반응기로 가지고 있는 C1- 12알킬, C6- 60아릴, 또는 N, S 및 O에서 선택되는 하나 이상의 헤테로 원자를 가지는 C2-60 헤테로아릴기이고, R2와 R3는 독립적으로, 수소, C1- 12알킬, C6- 60아릴, C1- 12알콕시, C1- 12알킬아미노, C1- 12알킬티오 또는 축합고리이고, 상기 축합고리는 피롤, 싸이오펜, 인돌, 퓨란, 이미다졸, 트라이아졸, 다이아졸, 또는 피리미딘에서 선택되는 어느 하나이고, Ar은 벤젠, 또는 피롤, 싸이오펜, 인돌, 퓨란, 이미다졸, 트라이아졸, 다이아졸, 또는 피리미딘에서 선택되는 헤테로방향족고리이다.)
상기 식(1)로 표시되는 질량 태그는 광분해성 질량 표지 물질이며, 질량 변화기, 광흡수 부분, 생화학적 활성기로 이루어지며, 광(예를 들면, 레이저, UV) 노출 시에 광 절단기, 즉, 2번 위치의 알킬 싸이오기가 이종성 절단되어 싸이오크로메닐륨 (thiochromenylium) 양이온을 쉽게 형성함으로써 질량분석기에서 쉽게 검출된다. 싸이오크로메닐륨 양이온은 질량 변화기를 포함하고 있어 분석 및 정량이 용이하며, 다중 분석 및 정량이 가능하다.
본 발명에 따른 질량 태그의 광분해를 더 자세히 설명하기 위하여, 식(1)의 예시적인 화합물을 도 1(a)에 나타내었다. 도 1(a)의 화합물은, 식(1)에서 R1은 N-하이드록시숙신이미드 에스터기이고, R2는 수소, R3가 메틸인 2-알킬싸이오-2H-싸이오크로멘 유도체 이다. 이 화합물에 레이저를 노출하면 2번 위치의 알킬 싸이오기가 분리되어 양이온을 형성한다. 양이온은 질량분석기에서 높은 감도로 검출되며 정확하게 정량될 수 있다.
도 1(b)를 참조하여 본 발명에 따른 질량 태그를 이용한 면역학적 분석법 및 다중분석법을 더 상세히 설명한다. 먼저 검출항체(detection antibody 또는 2차 항체)를 광분해성 질량 태그와 결합시키고, MALDI 플레이트에 포획 항체(capture antibody 또는 1차 항체)를 베딩한 후 MALDI-MS로 분석한다. 이 때 레이저 광조사에 의해 광분해성 질량 태그가 분해되면서 양이온을 생성하고, 이 양이온들이 검출됨으로써 항원의 존재 및 그 양을 정량할 수 있다. 선택적으로 ESI-TOF 법을 후속하여도 좋다.
식(1)에서 R3가 상이한 동종의 싸이오크로멘 유도체 화합물을 이용하여 복수의 바이오마커를 검출 및 정량할 수 있다. R3가 상이한 동종의 싸이오크로멘 유도체 화합물이란, R1, R2는 동일하고, R3는 예를 들어 탄소수가 다른 알킬기인 화합물의 군을 말한다.
다른 바람직한 예로서, 동종의 싸이오크로멘 화합물은 해당 화합물을 구성하는 원소의 일부를 13C, 15N, 2H 등의 동위원소 대체한 일 군의 화합물일 수 있다.
이러한 질량 태그의 군은, 다시 말해 도 1(b)에 나타낸 것처럼, R1, R2는 동일하고 알킬기인 R3의 탄소수만 상이한 질량 태그 1, 2, 3을 말한다. 항원 1, 2, 3에 대하여, 질량 태그 1, 2, 3을 각기 가지는 검출항체 1, 2, 3을 각각 결합시키고, 포획 항체 1, 2, 3에 의해 포획함으로써 검출 및 정량이 가능하다. 따라서 본 발명은 높은 정확도로 여러 가지 항원을 한꺼번에 다중 검출, 정량하는 다중 분석법을 제공한다. 이와 같이 서로 다른 질량 태그를 결합시킨 각기 다른 항체를 이용하여, 한 번의 질량분석에 의해 여러 가지 마커를 동시에 검출할 수 있다.
본 발명에 따른 질량 태그를 하기 표 1에 예시하였다. 하기의 질량 태그 화합물은 예시에 불과하며, 식(1)로 표시되는 화합물로서 상술한 광분해 특성을 가지는 화합물은 제한 없이 본 발명에 포함된다.
번호 질량태그 화학식 Exact Mass 질량태그 Mass 구조
1 250 C23H20N2O4S2 452.09 250.07
Figure PCTKR2017013393-appb-I000002
2 264 C24H22N2O4S2 466.10 264.08
Figure PCTKR2017013393-appb-I000003
3 278 C25H24N2O4S2 480.12 278.10
Figure PCTKR2017013393-appb-I000004
4 292 C26H26N2O4S2 494.13 292.12
Figure PCTKR2017013393-appb-I000005
본 발명에 따른 바람직한 포획 항체와 검출 항체를 하기 표 2에 나타내었다. 하기 표의 포획 항체와 검출 항체는 예시에 불과하며, 항원, 항체로서 특이적 반응을 일으키는 것이라면 제한 없이 본 발명에 편입된다.
No. 항원 질량 태그 제조/보유회사 항체 기능
1 CD276 250 다이아텍코리아㈜ HO-02-3-6E 포획/검출 항체
2 CD276 250 다이아텍코리아㈜ HO-02-3-6EH 포획/검출 항체
3 CD276 250 다이아텍코리아㈜ HO-02-H12-4B 포획/검출 항체
4 CD276 250 다이아텍코리아㈜ HO-02-3-11F 포획/검출 항체
5 CD276 250 다이아텍코리아㈜ HO-02-3-5D 포획/검출 항체
6 CD276 250 R&D Systems 894021 포획 항체
7 CD276 250 R&D Systems 894022 검출 항체
8 Cyfra21-1 264 (주)디에이치랩 HO-02-CPA6 포획/검출 항체
9 Cyfra21-1 264 (주)디에이치랩 HO-02-CPA6H 포획/검출 항체
10 Cyfra21-1 264 (주)디에이치랩 HO-02-12 포획/검출 항체
11 Cyfra21-1 264 (주)디에이치랩 HO-02-21 포획/검출 항체
12 Cyfra21-1 264 (주)디에이치랩 HO-02-21H 포획/검출 항체
13 SP10 278 (주)디에이치랩 HO-02-1C 포획/검출 항체
14 SP10 278 (주)디에이치랩 HO-02-9E-11F 포획/검출 항체
15 SP10 278 (주)디에이치랩 HO-02-1CH 포획/검출 항체
16 CEA 292 R&D Systems ab4451 포획/검출 항체
17 CEA 292 R&D Systems 843130 포획 항체
18 CEA 292 R&D Systems 843131 검출 항체
19 CEA 292 R&D Systems ab35657 포획/검출 항체
20 CEA 292 다이아텍코리아㈜ A4 포획/검출 항체
21 CEA 292 다이아텍코리아㈜ A9 포획/검출 항체
22 CEA 292 다이아텍코리아㈜ C6 포획/검출 항체
23 CEA 292 다이아텍코리아㈜ G1 포획/검출 항체
이하에서는 본 발명에 따른 어세이에 적용 가능한 바이오마커로서, 폐암 바이오마커를 예로 들어 설명한다. 그러나 본 발명은 폐암 바이오마커의 검출이나 정량에만 사용될 수 있는 것이 아니라는 것은 자명하며, 본 발명의 어세이는 필요에 따라 적절한 항원과 항체를 조합함으로써, 다양한 바이오 마커에 적용할 수 있고 따라서 다양한 질병의 진단에 응용할 수 있다.
본 발명은 바람직하게 폐암 진단에 유용한 어세이 및 멀티플렉싱 어세이를 제공한다. 종래에 폐암의 진단에 유용한 것으로 알려진 바이오마커는 PD1, PD-L1, Cyfra21-1, GM2a, CEA 등이 있다. 본 발명에 따른 바이오마커는 혈액, 흉수 등의 생물학적 시료로부터 얻어지며, 바람직하게, 본 발명에 따라 폐암의 진단에 유용한 바이오마커는 CD276, CEA, cyfra21-1이다.
CD276은 B7H3, B7-H3, B7RP-2, 4Ig-B7-H3, 2Ig-B7-H3등으로 알려진 유전자로, 이에 의해 코딩되는 단백질은 면역글로불린상과에 속하며 T-세포 매개된 면역반응에 참여하는 것으로 여겨진다. 이 유전자의 전사는 정상 조직와 고형 종양의 어디에서나 발현되지만, 이 단백질은 우선적으로 종양 조직에서만 발현한다는 연구가 알려져 있다. 또한 문헌 [Chen Z et at., Allergy Asthma Proc. 2015 Jul-Aug;36(4):37-43.]에 따르면, CD276은 천식의 급성 악화에 중요한 역할을 할 가능성이 있어 천식 악화를 평가하는 유용한 임상적 바이오마커이다.
암태아성 항원(Carcinoembryonic Antigen, CEA)는 정상 점막 세포에 존재하는 당단백질이지만, CEA 양의 증가는 선암, 특히, 결장암과 관련성이 있다. 따라서 CEA는 종양 마커로서의 역할을 할 수 있다. 그러나 민감도나 특이성이 낮아 검사나 진단보다는 환자 상태를 모니터링하는데에 더 유용하다. CEA 값은 다른 요소들과 함께 고려되어 결장암의 예후를 평가하는데 유용하고, 결장암의 재발이나 결장암 환자의 치료 경과 모니터링에도 유용하지만, 다양한 가수의 악성(양성) 질환에서 또한 높아진다. 예를 들어, 결장암, 유방암, 그리고 폐암, 위, 식도, 및 췌장의 종양, 중피종, 거대종격동전이암, 골전이 등의 악성 질환이나, 간경변, 만성활성간염, 바이러스성간염, 폐색성황달 같은 비-악성 간 질환, 만성 신장질환, 췌장염, 염증성 장질환, 과민성 대장 증후군, 게실염, 그리고 늑막염과 폐렴 등의 호흡계 질환을 포함하는 비-악성 질환을 포함한다. 문헌 [Primrose JN, Perera R, Gray A, et al; Effect of 3 to 5 years of scheduled CEA and CT follow-up to detect recurrence of colorectal cancer: the FACS randomized clinical trial. JAMA. 2014 Jan 15;311(3):263-70.], 문헌 [Tumour marker requesting. Guidance for non-specialists; Pathology Harmony, June 2012], 문헌 [Tsukushi S, Katagiri H, Kataoka T, et al; Serum tumor markers in skeletal metastasis. Jpn J Clin Oncol. 2006 Jul;36(7):439-44. Epub 2006 Jun 30.]
시토케라틴(cytokeratin)은 상피중간필라멘트(epithelial intermediary filaments)의 서브 유닛을 형성하는 구조 단백질인데, 시토케라틴-19(cytokeratin-19)의 단편인 Cyfra 21-1은 암 환자의 혈중에 흔히 방출되며, 양성 폐질환에 대하여 특이성이 높기 때문에, 특히 폐암 같은 종양의 병리학적으로 표현형 마커 용도에 적합하다. 즉, Cyfra 21-1은 폐의 편평 상피암 및 선암의 진단, 경과 관찰에 유용한 종양 표지자로, 문헌[박현덕 외, Korean Journal of Medicine(구 대한내과학회지), 62 권, 4 호, Startpage 415, Endpage 421, Totalpage 7] 등에 의하여, 폐암에서 기존의 종양표지자와 비교해 볼 때 상대적으로 가장 높은 양성율을 보이며 특히 비세포암에서 선별검사시 기존의 종양표지자와 함께 사용하면 더욱 유용하게 사용할 수 있는 것으로 알려져 있다.
도 1은 질량 태그가 결합된 단백질(예: 항체)을 적용하고 다중검출하는 기술을 도식화한 것이다.
도 2는 바이오 마커 후보군 발굴을 위한 PCA 및 ANOVA 시험 결과이다.
도 3은 폐암 환자의 흉수와 혈액 시료로부터 확인한 CD276 농도이다
도 4는 대조군(결핵), 폐암 환자의 흉수와 혈액 시료에서 검출된 CD276 농도의 상관관계를 나타낸다.
도 5는 CD276의 ROC 그래프이다.
도 6은 정상군과 폐암 환자의 시료 각각의 CED 농도를 나타낸다.
도 7은 정상군과 폐암 환자의 시료 각각의 Cyfra21-1 농도를 나타낸다.
도 8은 내부 표준물질을 이용하여 보정된 질량 태그 292-항체의 스펙트럼이다.
도 9는 질량 태그가 결합된 단백질의 직선성을 확인할 수 있는 그래프이다.
도 10은 CD276의 MLISA와 ELISA 상관관계를 나타낸다.
도 11은 4종의 질량태그-항체 스펙트럼이다.
도 12는 CEA에 대한 MLISA 정량 표준 곡선이다.
도 13은 CD276항원에 대한 MLISA 정량 표준 곡선이다.
도 14는 3종 시료에 함유된 1종의 바이오마커 에 대한 MLISA이다.
도 15는 3종 바이오마커에대한 다중 MLISA이다.
도 16은 다중 MLISA 수행 후 동시 질량분석 스펙트럼이다.
A. 바이오마커의 발굴
흉수는 플라즈마와 유사한 단백질 구성을 가지고 있기 때문에 엑소좀의 분리와 분석이 바이오마커 발굴에 매우 유용하다. 또한 암세포의 경우 일반적인 세포에 비해 더 많은 양의 엑소좀을 분비한다고 알려져 있어 폐암환자의 흉수에서 초 원심분리 및 PEG를 이용한 엑소좀의 분리를 시도하고 동정/정량 분석하여 암표지자 후보를 선정하였다. 질량분석법 중에 새롭게 부각되고 있는 DIA법 (Data Independent Acquisition 법) 중의 하나인 SWATH-MS 방법을 이용하여 폐암환자와 대조군에서 동정 되는 각 단백질의 정량값을 얻었다. 이때 얻어진 정량 결과를 가지고, 그룹 별로 PCA(Principle Component Analysis)와 ANOVA test를 진행한 후 p-value를 계산한 결과를 토대로 정량 패턴을 분석하여 세 그룹에서 눈에 띄게 차이 나는 단백질들을 확인하고 새로운 바이오마커 후보군을 발굴하였다. (도 2 참조)
정량 분석한 235개의 단백질 중에서 ANOVA test에서 세 그룹 사이에 단백질이 유의미하게 변화되어 p-value가 0.05이하인 단백질은 201개였다. 201개의 단백질의 PCA 패턴 분석을 통하여 각 그룹에서 특이적으로 상승하는 단백질을 선별하였다 (도 2의 ②번 ③번 영역). 이 중 대표적인 것이 CD276, DPP4, ITGB2 후보 단백질이다.
B. ELISA를 통한 바이오마커의 검증
앞에서 선별한 폐암 표지자 후보 단백질을 ELISA를 통하여 폐암선종, 편평 상피세포성 폐암, 그리고 대조군인 결핵 환자의 흉수와 플라즈마로 검증하고자 하였다.
1) CD276
폐암 표지자 후보 단백질 CD276은 R&D Systems사의 ELISA Kit(DB7H30)으로 제조사의 권장 방법대로 분석하였다. PCA 패턴 분석 시, 폐암선종과 편평 상피세포성 폐암에서 동시에 증가된 단백질이고, volcano plot에서도 폐암선종과 편평 상피세포성 폐암에서 동시에 증가된 단백질로 판명된 단백질이다. 환자 흉수와 플라즈마의 ELISA 결과, 둘 다 매우 극적으로 두 폐암 그룹에서 단백질의 농도가 상승되어 있는 것을 관찰하였다. 두 번 반복 실험에서 모든 그룹의 시료가 변동계수(CV) 5% 이내로 재현성 있게 실험이 진행되었다. 흉수, 혈액에서 관측된 CD276의 농도는 아래의 표와 같다. 하기 표 3(각 그룹과 환자 시료의 CD276 평균 값)과 도 3에 나타난 바, 대조군인 결핵(TB)과 폐암선종(Ad), 편평 상피세포성 폐암(SQCC) 사이에 CD276의 농도가 22~25ng/mL의 수준에서 정상 시료와 폐암 시료 간에 확연히 차이가 나는 것을 확인하였다.
그룹 CD276 (ng/mL)
PE 평균 Plasma 평균
정상(n=3) - 15.4
TB(n=6) 22.5 22.8
SQCC(n=3) 27.2 26.3
Ad(n=15) 39.4 33.5
흉수의 엑소좀 SWATH-MS와 흉수와 혈액의 ELISA 결과에서 폐암 그룹에서 증가한 CD276은 면역 반응을 조절하는 단백질로, 종양 조직이나 암 환자의 혈액에서 비정상적으로 증가하였다. 도 3에 나타낸 것처럼, CD276은 흉수와 혈액 두 시료 모두에서 대조군인 결핵 환자에서는 감소하였으나, 폐암 환자 그룹에서는 증가한 것을 확인하였다.
도 4에 나타낸 것처럼, 동일한 환자로부터 얻은 흉수와 혈액시료에서의 각 CD276의 농도를 확인한 결과, 66% 일치하는 것으로 확인되었다. 흉수와 혈액에서 대조군인 결핵 환자와 폐암환자의 CD276 농도가 25ng/mL을 기준으로 18명의 폐암환자 그룹에서 한 사람을 제외하고 모두 증가하는 양상을 보였다. 6명의 결핵환자에서도 한 사람을 제외하고는 모두 감소하는 양상을 보였다. 특히 정상인의 혈액에서는 매우 낮은 수준으로 존재하고 있어서 대조군인 결핵 환자와 뚜렷한 차이를 보였다.
편평 상피세포성 폐암 환자 중 CD276의 혈중 농도가 25ng/mL을 넘지 못한 환자(도 5 참조)의 병력을 찾아보았지만 특이 사항은 찾을 수가 없었다. 폐암선종 환자 중 CD276의 농도가 25ng/mL을 넘지 못했던 환자(도 5 참조)는 병력 추적 결과 EGFR inhibitor로 항암제인 IRESSA 저항이 있는 환자로 밝혀졌다. 결핵 환자 중 CD276의 농도가 25ng/mL을 넘었던 환자(도 5)는 후에 뇌종양 진단을 받은 것으로 확인되었다. CD276의 농도가 흉수나 혈액에서 크게 차이 없이 상호연관성이 있는 것으로 보아 CD276은 흉수나 혈액 두 종류의 시료 모두에서 폐암 표지자로서 가능성이 있다고 본다. 또한 CD276의 ELISA 결과로 ROC(Receiver Operating Characteristic Curve)를 도출해 보았다 (도 5) ROC는 진단 테스트의 민감도와 특이도를 동시에 나타내는 그래프로서 ROC 곡선의 면적(AUC, Area Under the Curve)이 1에 가까울수록 분류성능이 우수하다고 간주한다. CD276의 경우, 혈액에서는 민감도가 86.7%, 특이도가 100%, 흉수에서는 민감도와 특이도가 각각 100%로 진단의 민감도와 특이도가 매우 높은 것을 확인하였다.
2) CEA
폐암 표지자 후보 CEA는 R&D Systems사의 ELISA Kit(DY4128)으로 제조사의 권장 방법대로 분석하였다. 시료는 모두 혈액 시료이며 결핵시료 6개와 폐암선종 15개시료에 대하여 검증하였으며 이 시료들 또한 CD276 혈액과 동일한 환자로부터 유래한 시료 이었다 (단, 폐암선종 시료의 경우. 200배 희석한 시료를 대상으로 하였음). 도 6과 같이 대조군에 비해 폐암선종에서 CEA의 농도가 비교적 높은 것을 확인하였다.
3) Cyfra21-1
폐암 표지자 후보 단백질 Cyfra21-1는 Abnova사의 ELISA Kit (#KA4024)으로 제조사의 권장 방법대로 분석하였다. 시료는 모두 혈액 시료이며 결핵시료 6개와 폐암선종 15개시료에 대하여 검증하였으며 이 시료들 또한 CD276 혈액과 동일한 환자로부터 유래한 시료 이었다. Cyfra21-1도 아래와 같이 대조군에 비해 폐암선종에서 Cyfra21-1의 농도가 비교적 높은 것을 확인하였다.
4) 다른 바이오마커 후보 (DPP4, ITGB2, PD1, PD-L1, GM2a)
다른 바이오마커 후보들도 검증을 진행하였다. 예를 들어 폐암표지자 후보 단백질 DPP4는 R&D Systems사의 ELISA Kit (DY1180)로, ITGB2는 Cloud-clone corp.사의 ELISA Kit (EKU05042)로, PD-1은 R&D Systems사의 ELISA Kit (DY1086)로, PD-L1은 R&D Systems사의 ELISA Kit (DY156)로, GM2a는 ABBEXA사의 ELISA Kit (abx151696)로 정량 분석하였다.
이와 같이 확인된 바이오마커를 비제한적인 예로 하여, 이를 검출 및 정량하는 구체적인 방법을 이하에 설명한다.
1. 질량 태그와 검출 항체 혹은 단백질을 결합하는 일반적인 방법
질량 태그를 용해 가능한 용매(예: DMSO)에 적당량의 질량 태그를 녹여 최종농도 10μg/μL 농도로 질량 태그 저장용액을 준비한다. 결합할 항체의 전처리는 다음과 같은 과정으로 실시한다. 시료 내 질량 태그와 반응성이 있는 잔여 아민류 물질을 제거하기 위해 각 단백질 시료를 반응성 아민이 포함되지 않은 버퍼를 이용하여 버퍼 교환한다. 질량 태그와 항체(또는 단백질)의 결합 반응은 단백질 농도대비 질량 태그의 농도를 20배이상 높은 농도를 유지하고, 상온에서 약 2시간 동안 염기성 용액(~pH8)에서 반응을 시키고 결합 반응의 종결은 에탄올아민과 같은 아민 반응성이 큰 물질을 가해 결합 반응을 종결시킨다.
2. 질량 태그와 검출 항체의 결합체 혼합물로부터 여분의 질량 태그의 제거
여분 태그의 분리: 결합된 항체 용액에 물을 첨가하여 10배 이상 희석한 후, 반응하지 않고 남아 있는 질량 태그가 용해도 문제로 석출되어 상분리가 진행되도록 유도한다. 이 용액을 원심분리 후 상층액을 취해 새로운 용기에 옮겨 담는다. 컬럼이나 필터 등을 이용하여 탈염 혹은 잔여의 질량 태그를 제거한다. 이때 얻은 분획에 대하여 질량 태그와 결합한 결합체와 결합하지 않은 질량 태그 물질을 흡광도를 통해 확인한다. 소량의 시료이기 때문에 보통 나노분광광도계(Nano-drop)를 이용하여 각 분획을 249, 323, 280nm에서 측정하였다. 이와 같이 질량 태그 결합 후 항체 결합체의 탈염과정 분획에서 결합유무를 확한 결과를 하기 표 4에 나타내었다.
Conjugated Ab 분획 흡광도 (249nm) 흡광도 (323nm) 흡광도 (280nm) 비율 (249/280nm)
질량 태그와 3-6EH항체의 결합체 P1 0.026 0.018 0.027 0.96
P2-1 0.467 0.475 0.397 1.18
P2-2 0.556 0.544 0.492 1.13
P2-3 0.427 0.462 0.379 1.13
P3 0.041 0.012 0.045 0.91
이때 P2 분획에서 1차적으로 249nm와 280nm의 흡광도가 같은 분획에서 1.13배 정도의 비율로 나오는 지 확인하였다 (1.2보다 높거나 1.0보다 낮은 분획은 사용하지 않는다). 같은 비율로 나오는 분획은 질량 태그와 단백질이 함께 결합된 분획이다. 반면, P3이후 분획의 경우는 280nm 영역에서 흡광도가 거의 없는 반면 249nm에서는 높게 나오는 경우 반응하지 않은 질량 태그가 분리되어 나온 분획이라고 할 수 있다.
3. 질량 태그와 검출 항체의 결합 확인
알고 있는 단백질의 농도가 37.9μM라 할 때, 질량 태그 결합 단백질 323nm에서의 흡광도가 0.987이라면, Masstag의 농도 (c)는 210μM가 됨 (=0.556/2,654). 그러므로, 콘쥬게이션 (%)는 2,100%(=210μM/10μM*10)으로 대략 평균적으로 하나의 단백질 분자당 21개의 질량 태그가 결합된 것으로 추정할 수 있다 (참조: 질량 태그의 Molar Extinction Coefficient, 1,287.3 L/mol-1mm-1 @323nm, 2,653.6 L/mol-1mm-1 @249nm).
4. 항원/항체 반응 (샌드위치 혹은 간접적인 항원/항체 반응)
(1) 포획항체 및 항원의 고정: 사용하고자 하는 포획항체 (또는 목적항원에 해당하는 2종 이상의 혼합항체 혹은 항원)를 적정농도로 버퍼(예, phosphate buffered saline(이하 PBS))에 희석하여 96-well plate에 각 well 당 100μL정도씩 분주하고 고정시킨다 (NC나 PVDF membrane의 경우는 수십 μL정도를 dot blot형태로 분주). 고정화 후, 포획항체나 항원이 고정된 96-well plate의 남아있는 용액을 버리고 버퍼용액으로 세척한다 (2회 반복). 소 혈청 알부민 용액을 이용하여 추가로 다른 항체나 단백질이 고정되지 않도록 Blocking과정을 수행한다. 각 well에 남아있는 용액을 버리고 세척 버퍼로 세척한다 (3회 반복).
(2) 항원(혹은 임상시료)의 반응: 표준물질(정제된 항원 혹은 농도를 알고 있는 임상시료)을 적정 농도 범위로 blocking용액에 희석하여 표준용액으로 사용할 수 있다. 실제 시료인 흉수(pleural effusion) 또는 혈장(plasma)의 경우에는 사전에 확인된 항원의 농도 범위에 따라 원액을 사용하거나 필요한 경우 blocking용액에 적정농도로 일정하게 희석하여 준비하고 각 well당 적정량을 분주하여 반응시킨다. 반응 후 각 well에 남아있는 용액을 버리고 세척 버퍼로 세척한다 (3회 반복).
(3) 검출항체의 반응: 질량 태그가 결합된 검출 항체 혹은 각기 다른 질량 태그가 결합된 검출항체 혼합 용액을 적정농도로 blocking 용액에 희석하여 반응 시킨다. 이 때 질량 태그가 직접 검출항체에 결합된 형태로 사용할 수도 있고, 질량 태그 대신 biotin과 결합시킨 검출항체를 이용하여 반응 시킬 수 있다 (단, 이 경우는 질량 태그가 결합된 Streptavidin단백질을 추가로 반응시키는 과정이 필요함). 각 well에 남아있는 용액을 버리고 세척 버퍼로 세척한다 (3회 반복).
(4) 질량 태그 결합체의 용출: 세척용액에 포함되어 있는 염이나 기타 계면활성제는 질량분석에 간섭/방해 요인으로 이 물질 들을 제거하기 위해 우선적으로 각 well에 증류수를 가하고 세척한 다음, 용출 용액으로 용출 한다. 용출 용액은 1% 암모니아 (혹은 1% trifluoroacetic acid) 용액을 사용하며 필요에 따라 acetonitrile 유기용매를 1:1로 섞어 용출에 사용할 수도 있다. 또한, 이때 내부표준물질을 포함한 용출 버퍼를 활용하여 용출할 수 있으며, 스펏팅 과정에서 내부 표준물질을 추가로 가하여 함께 건조 시켜 분석할 수도 있다. 이때 사용되는 내부표준물질은 사용하지 않는 질량 태그 중 하나를 사용하거나 매트릭스 없이 이온화가 가능한 물질을 활용할 수도 있다.
다른 항원을 대상으로 하는 경우, 같은 시료로부터 유래한 용출액을 혼합하여 MALDI-TOF용 플레이트(plate)에 시료를 스펏팅(spotting)하고 건조 시켜 질량 분석을 진행할 수 있다. 만약, 2개 이상의 항원을 대상으로 동시에 진행한 경우라면, 혼합의 과정이 없이 바로 MALDI-TOF용 플레이트(plate)에 시료를 스펏팅(spotting) 하고 건조 시킨다. 만약, 기타의 이유나 목적 항원의 시료내 농도가 낮아 MALDI-TOF 분석으로 경향성이 없는 경우 α-Cyano-4-hydroxycinnamic acid(이하 CHCA) matrix를 사용하여 질량 태그의 신호를 높일 수 있다. 이러한 경우에는 용출용액에 50?g/mL의 농도의 CHCA 용액을 포함하여 용출하거나 스펏팅 시료 위에 CHCA용액을 가하고 건조하여 분석한다.
5. 질량분석
1) 시료를 건조한 플레이트 (시료와 내부표준물질이 포함되었거나 시료만 있는 경우 모두)를 MALDI-TOF 질량분석기에 삽입하고 질량분석을 실시한다. 혹은 시료를 건조하지 않고 용출된 용액을 ESI-MS를 이용하여 질량분석을 실시할 수도 있다. 이때, 표준물질의 알고 있는 질량을 이용하여 내부 calibration을 실시할 수 있으며, 질량분석 상태를 검증하거나 적정한 레이저 세기를 조정하여 정량성을 높일 수 있다.
2) 질량분석을 위한 MALDI-TOF의 분석 조건은 다음 표 5와 같다.
조건명 내용 비고
레이저 세기 3000~3500 항원의 최대농도에서 질량 tag의 peak의 intensity 1,000이상 100,000이하의 조건을 만족할 것
스펙트럼 스캔 범위 200~300 m/z 내부표준물질 질량을 포함한 범위
데이터 분석 모드 Low mass linear 또는 reflector positive Positive mode를 기본으로 low mass에 적합한 acquisition mode를 선택할 것
데이터 획득시 고려할 조건 500~1,000 shots accumulation 한Laser 조사 지점에서 5 shots이상 조사되지 않도록 하며 100 position이상에서 acquisition 할 것.
매트릭스 기본적으로 필요 없음 기본적으로 매트릭스가 필요 없어 노이즈대비 신호의 감도가 매우 좋음. 하지만, 신호 증폭이 필요한 경우 낮은 농도의 CHCA 사용을 권장함 (50ug/mL).
3) 질량분석을 위한 ESI-MS 방식의 질량분석기의 일반적인 분석 조건은 다음 표 6과 같다.
조건명 내용 비고
스펙트럼 스캔 범위 200~300 m/z 내부표준물질 질량을 포함한 범위
데이터 분석 모드 MRM mode 혹은 타겟질량분석 mode Multiple Reaction Mode (Q1/Q3), Targeted MS analysis
이온분석 모드 Positive mode Positive mode를 기본으로 low mass 영역을 스캔/필터링하여 분석한다.
필터링 혹은 스캔조건 Q1/Q3 혹은 Survey MS/MS2 scan Q1/Q3의 예: 250.1/250.1m/z, 264.1/264.1m/z 278.1/278.1m/z 혹은 292.1/292.1m/z, (Q1과정 이전에 In-source decay방식으로 질량 태그가 유리되어 나오도록 하는 방식이 검출에 유리함)
4) 공지의 방법에 따라, ESI-TOF를 이용하여도 좋다.
6. 질량분석 후 얻은 질량 태그의 신호 세기 데이터를 정량에 활용
(1) 측정하여 얻어진 결과는 'Peak Catcher'와 같은 소프트웨어를 이용하여 1Da의 질량범위에서 각 질량 태그의 정량값을 추출하였다. 각 항원과 질량 태그에 대한 추출 m/z값은 아래 표 7과 같다.
질량 태그 m/z
SP-10 250
Cyfra21-1 264
CD276 278
CEA 292
내부 표준 242
(2) 하나의 시료에서 나온 내부표준물질과 질량 태그의 신호세기 비율을 통하여 질량분석시 각 조건에 따른 질량분석 간섭물질의 차이와 (laser가 조사된 위치에 따른 혹은 분무 및 액체크로마토그래피 등의 이유로부터 기인한) 이온화 경향의 차이를 최소화할 수 있다.
Figure PCTKR2017013393-appb-I000006
* 각 항원의 기준치 농도: CEA(5ng/mL), CD276(22ng/mL), Cyfra21-1(4ng/mL)
* 각 항원에 대한 고유상수는 별도의 실험을 통해 각 항원의 기준치 농도에서 얻어진 내부표준물질과의 상대신호세기의 비율로 결정된다.
(3) 정량값을 알고 있는 표준물질 (혹은 임상시료)를 희석하여 표준 검량 곡선을 얻어 실제 미지의 시료에 대하여 시료내 항원 농도를 결정할 수 있다. 또는, 질병을 구분할 수 있는 항원의 기준농도에 해당하는 표준물질의 질량분석 결과와 상대적인 비교를 통하여 질병 여부를 판단할 수도 있다.
(4) 보다 바람직하게 하기의 Scoring 식을 통하여 보다 쉽게 질병여부를 판단할 수 있다.
Figure PCTKR2017013393-appb-I000007
각각의 항원에 대하여 결정된 농도값을 위의 함수에 입력하고 얻어진 결과 수치를 가지고 폐암 위험도를 판단할 수 있다. 폐암 위험도 판단을 위한 Scoring 함수 (특정 항원에 대한 값을 얻을 수 없는 경우 해당 항목을 score에서 제외시키고 나머지 항목의 총 가중치 합이 1이되도록 한다).
6. MLISA (Masstag-Linked ImmunoSorbent Assay)
ELISA에서처럼 항체에 결합한 효소에 의해 변형된 기질의 발색 반응으로 정량 하는 대신, 항체나 항체를 인식하는 단백질에 질량 태그를 결합시키고 이 질량 태그를 직접 정성/정량에 사용할 수 있다. 하나의 양태로서, 본 발명은 1종의 항원(바이오마커)에 대하여 1종의 질량 태그를 이용하여 항원 항체 반응후 질량 분석을 수행하는 어세이를 제공한다.
ELISA의 경우 TMB와 같은 기질의 발색이 진행될 때까지 약 20~30분간 추가의 반응시간을 필요로 하지만, 본 발명의 질량 태그를 이용하면 5분이내에 용출이 마무리 되기 때문에 시간을 절약할 수 있다. 또한, ELISA는 기질의 변색이 매우 늦거나 급속히 빠르게 진행되는 경우에는 적절한 신호세기를 얻기 위해 적당한 시간에 맞춰 반응을 종결해야 하는 단점이 있으나 질량 태그를 이용하면 이러한 문제가 없다. 또한 내부표준물질을 동시에 분석하여 신호세기의 보정이 가능하며, 따라서 정확한 정성/정량이 가능하다.
또한 질량분석을 이용하기 때문에 여러 질량 태그를 한번에 여러 개의 질량 값과 해당 질량 값 별로 신호세기를 얻을 수 있다는 점에서 확장성에 큰 장점이 있다. 즉, 하나의 양태로서 본 발명은 동시에 여러 시료 혹은 여러 항체를 정량 분석할 수 있는 MLISA를 제공한다. 동시에 여러 시료를 질량 태그를 이용하여 분석하고자 하는 경우, 검출항체의 활용 방법에 따라서, (i) 각기 다른 질량 태그가 직접 항체에 결합된 검출항체를 각 시료에 적용하는 방법 (ii) 검출항체는 아무런 처리를 하지 않고 각기 다른 질량 태그를 결합시킨2차항체를 적용하는 방법 (iii) 검출항체는 바이오틴으로 결합시키고 각기 다른 질량 태그가 결합된 스트렙타비딘을 사용하여 적용하는 방법이다. (i)의 경우는 항체의 역가가 일부 감소하는 단점이 있으나, 한번에 여러 항체를 혼합하여 사용할 수 있는 장점이 있다. (ii), (iii)의 경우는 상대적으로 역가의 감소가 미비하며, 신호를 증폭시키는 효과가 있다. 특히, (iii)의 경우는 노이즈가 감소된다는 점에서 유리하지만, 한번에 혼합해서 사용하는 데에는 제한적일 수 있다.
하나의 바람직한 다중 분석 방법으로서, 본 발명은 각 바이오마커(항원)을 대상으로 별도로 항원 항체 반응을 수행한 뒤, 각 용출 용액을 하나로 혼합하여 한번에 질량분석을 수행하는 다중 MLISA를 제공한다. 이는 동시에 질량분석을 수행하기 때문에 표준시료(질병기준치에 해당하는 표준물질) 농도 용액을 사용하거나, 또는 기준치 농도에 가까운 임상시료(기준치에 맞게 알고 있는 임상시료를 적절히 배합)를 사용하여 상대 정량 값을 알아 낼 수 있다. MALDI-MS분석시 여러 spot간의 신호세기를 비교하는 것보다, 하나의 spot안에서 상대 비교할 시 정량성이 매우 향상되므로, 정량 분석에 효과적이다. 기준에 비교하여 높으면 질병 상태에 가깝고 낮으면 건강 상태에 가깝다고 판단할 수 있다.
또 다른 바람직한 다중 분석 방법으로, 본 발명은 각기 다른 질량 태그가 결합된 (혹은 다른 매개체를 통한) 혼합 항체로 여러 바이오마커(항원)에 대하여 하나의 웰에서 동시에 항원/항체반응을 각기 수행하고, 이어서 질량분석도 동시에 검출하는 다중 분석법을 제공한다. 각 항원/항체 반응에 맞는 최적의 조건을 조합하고, 각 항원/항체 반응의 정량 곡선 구간을 적절히 선택, 조합하여, 간단한 방법으로 여러가지 항원에 대하여 각기 상이한 질량 태그를 결합시켜 정확한 검출 및 정량이 가능하다.
[실시예 1]
매트릭스 없는 LDI분석조건에서 내부 표준물질을 이용하여 질량 태그의 신호를 보정한 결과를 도 8에 나타내었다.
질량 태그와 단백질 또는 항체의 결합 후 이를 확인하기 위하여 질량 태그가 결합된 단백질(또는 항체)을 농도별로 희석 하여 MALDI 분석을 하였다. 이때 시료가 각 MALDI 플레이트에서 건조되면서 균일하게 도포되지 못하였을 경우 MALDI 레이저 조사시 건조된 시료 특정 부분에서 신호가 불균일하게 나타나는 현상을 보정하기 위하여 시료에 포함 되어 있는 내부표준 물질을 이용하고자 하였다. MALDI의 LDI 조건에서, 도 8로부터 내부 표준물질의 피크는 242.0m/z, 질량 태그-스트렙타비딘의 피크는 292.0m/z에 나타난 것을 확인하였다.
이때 사용되는 내부표준물질은 LDI 조건에서 이온화되는 특정 화합물을 사용할 수 있으며 또는 다른 분자량을 가지는 광분해성 질량 태그를 사용할 수도 있다. 일반적으로 광분해성 질량 태그는 매트릭스가 없는 조건에서 MALDI 분석이 가능하지만 특정 항원에 대한 면역반응을 통해 그 신호가 불충분 할 경우에는 CHCA 매트릭스를 이용하여 분석 가능하다. 이 경우에는 LDI조건 보다 최소 10배 이상의 신호 증폭 효과를 얻을 수 있다. 하지만 매트릭스의 결정화에 따른 불균일성 때문에 질량 태그의 신호만으로는 정량적인 분석이 어렵다. 따라서 내부표준물질을 이용하여 아래와 같이 질량 태그의 신호를 보정 할 필요가 있다. 왼쪽의 그래프는 내부표준물질로 보정하기 전의 질량 태그 신호이며 오른쪽 그래프는 내부표준물질의 신호로 보정된 질량 태그의 신호이다. 매트릭스를 사용하여 분석할 경우 내부표준물질로 보정된 신호가 그래프의 직진성에 효과적인 것을 확인할 수 있다.
[실시예 2] MLISA와 ELISA의 상관관계
질량 태그가 결합된 스트렙타비딘의 정량
질량 태그가 결합된 스트렙타비딘(streptavidin)을 순차적으로 2배 희석하여 질량 분석을 실시하였다. 292-질량 태그가 결합된 Streptavidin의 희석 배수에 따라 질량 태그의 신호 세기가 높은 상관관계를 가지며 변화하는 것을 확인할 수 있었다. 내부표준물질의 신호세기를 이용하여 이온화시 생길 수 있는 오차를 보정한 결과를 도 9에 나타냈다. 도 9(a)는 292-질량 태그 결합된 스트렙타비딘의 희석배수에 따른 신호의 세기이고, 도9(B)는 250-질량 태그 결합된 단일클론항체의 신호 세기 이다. 도 9에 나타난 것처럼 R2값은 0.9996이며, 정량성을 확인할 수 있었고, 따라서 MLISA는 기존 진단법으로 사용되고 있는 ELISA법을 충분히 대체할 수 있다.
CEA에 대한 MLISA와 ELISA
CEA에 대하여, 각각 ELISA와 MLISA의 표준물질 정량 곡선의 데이터를 동일 농도구간에 따른 상관관계를 그래프로 확인하였다. 도 10에 나타난 것처럼, CEA 항원의 농도가 증가함에 따라 MLISA의 신호세기(y축: 흡광도)도 일정하게 증가하는 것을 알 수 있고, 또한 표준물질 정량 곡선에서 직선성(94% 상관관계)을 가지는 것을 확인하였다.
[실시예 3]
매트릭스가 없는 LDI조건에서 각각의 100ng의 네 가지 질량 태그 250, 264, 278, 292에 대하여 각기 검출 항체와 포획 항체를 매칭한 후, MALDI-TOF MS로 질량분석을 실시(Laser 5200)하였다. 질량 태그-항체 시료를 100ng씩 동량으로 혼합한 후 질량분석을 실시하였다. 그 결과를 도 11에 나타내었다. 도 11(a), (b), (c), (d)는 순서대로 질량 태그 250, 264, 278, 292를 이용한 질량 분석 결과이다. 도 11(e)는 네 가지 질량 태그에 각기 항원 항체 반응 후의 네 가지 용출 용액을 혼합하여 질량분석한 결과이다. 광분해성 질량 태그는 각각 MALDI 분석 하거나 혼합하여 분석하였을 때에도 서로간 이온화에 방해되지 않고 정성적 또는 정량적 분석이 가능하다는 것을 확인하였다.
[실시예 4] CEA 의 MLISA
표준물질로 0~1000pg/mL의 CEA 표준물질을 2배씩 희석하여 (Part #: 843132, R&D Systems), 4ug/mL의 포획항체(Part #: 843130 R&D Systems), 200ng/mL의 바이오틴이 결합된 검출항체 (Part #: 843131, R&D Systems), 그리고 292-질량 태그가 결합된 Streptavidin 단백질 (50ng/mL)를 이용하여, 50uL의 1% TFA 용액으로 용출하였다. CEA의 MLISA 결과(n=2)를 도 12에 나타내었다.
[실시예 5] CD276의 대한 MLISA
0~50ng/mL의 CD276 표준물질을 2배씩 희석하여 (Part #: 894023, R&D Systems), 4ug/mL의 포획항체 (HO-02-H12-4B), 4ug/mL의 278-질량 태그가 결합된 검출항체를 항원 항체 반응 후, 50uL의 1% TFA 용액에서 용출하여 질량 분석하였다. CD276에 대한 MLISA (n=2) 결과를 도 13에 나타내었다
[실시예 6]
하나의 항원에 대하여 여러 시료의 동시 다중 분석의 정확성을 확인하기 위하여, 결핵 흉수 시료로서 폐암 흉수시료에 대한 대조군(TB) 시료, CD276의 표준 단백질시료로서 STD(기준농도) 시료, 폐암의 일종인 편평상피세포성폐암(SQCC) 시료, 폐암선종(Adenocarcinoma) 시료를 준비하였다. 질량 태그-250은 TB시료내의 CD276을 검출하는 검출 항체에, 질량 태그-264는 STD의 CD276에, 질량 태그-278은 SQCC의 CD276에, 질량 태그-292는 Adenocarcinoma 내의 CD276을 검출하는 항체에 결합시켰다. 그 결과, 도 14에 나타난 흉수 시료에서 각 폐질환별 CD276단백질에 대한 LDI 스펙트럼을 얻었다.
TB 대조군(정상군)은 STD기준치(264)보다 낮게 나오는 반면(250), SQCC와 Adenocarcinoma시료들은 폐암 시료이기 때문에 CD276농도가 STD기준치(264)보다 높게 나왔다(278, 292). 네가지 시료에 대하여 한번의 MALDI-TOF 분석으로 매트릭스가 없는 조건에서 각각의 질량 태그 신호를 상대적으로 정량할 수 있었다.
[실시예 7]
여러가지 바이오마커에 대한 동시 MLISA의 정확성을 확인하기 위하여, 대조군 흉수(TB1, TB2)와 폐암선종 흉수(Ad1, Ad2)의 임상 시료 각 100uL에 대하여, 10ug/mL 농도로 3종의 포집 항체 (CEA: Part #: 843130 R&D Systems, CD276: HO-02-H12-4B, Cyfra21-1: HO-02-CPA6)의 혼합물을 사용하였고, 20ug/mL 농도로 혼합된 3종의 검출 항체 에 대하여 각기 질량 태그를 결합하였다 (292-질량 태그가 결합된CEA항체: Part #: 843131, R&D Systems, 278-질량 태그가 결합된 CD276: HO-02-3-6E, 264-질량 태그가 결합된Cyfra21-1: HO-02-21). 이 혼합 항체는 10mM 인산버퍼/0.1% Tween 20으로 구성된 버퍼용액을 사용하였고, 용출 조건은 1% TFA 용액 50uL를 사용하여 용출하였다. MLISA결과를 도 15에 나타내었다.
[실시예 8] 질량분석
대조군 흉수(TB)와 폐암선종 흉수(Ad) 임상 시료 각 100uL을 Blocking 버퍼에 희석해서 준비하였고, 10ug/mL CD276, 4ug/mL CEA의 2종의 포획 항체 혼합액(CEA: Part #: 843130 R&D Systems, CD276: HO-02-H12-4B)에 대하여, 각20ug/mL 농도로 혼합된 2종의 검출 항체, 즉, 292-질량 태그가 결합된CEA항체(Part #: 843131, R&D Systems)와 278-질량 태그가 결합된 CD276(HO-02-3-6E) 혼합항체를 10mM 인산버퍼/0.1% Tween 20으로 구성된 버퍼용액에 준비하였고, 50uL의 1% TFA 용액과 50ug/mL CHCA로 용출하여, 내부표준물질(231.4m/z)을 사용하여 검정하고 정량하여 선형 이온모드에서 분석하였다. 이와 같은 다중 MLISA 및 동시 질량분석 결과, 대조군 시료의 CD276 CEA에 대하여 도 16(a), 폐암선종 시료의 CD276 CEA에 대하여 도 16(b)와 같은 스펙트럼을 얻었다.

Claims (6)

  1. 질량 태그와 검출 항체를 포함하는 조성물;
    CEA, CD276, 및 Cyfra21-1로 이루어지는 군에서 선택되는 하나 이상의 바이오마커; 및
    포획 항체를 포함하고,
    상기 질량 태그는 하기 식(1)로 표시되는 화합물인, 폐암 진단용 어세이:
    Figure PCTKR2017013393-appb-I000008
    식(1)
    (식 (1)에서, R1은 말단에 N-하이드록시숙신이미드 에스터기, N-하이드록시 설포숙신이미드 에스터기, 펜타플루오로페닐 에스터기, 4-설포-2,3,5,6-테트라플루오로페닐 에스터기, 나이트로페닐 에스터기, 2,4,5-트리클로로페닐 에스터기, 프탈이미도 에스터기, N-하이드록시-5-노보넨-엔도-2,3-다이카보이마이드 에스터기, 또는 말레이미드기의 어느 하나를 반응기로 가지고 있는 C1-12알킬, C6-60아릴, 또는 N, S 및 O에서 선택되는 하나 이상의 헤테로 원자를 가지는 C2-60 헤테로아릴기이고,
    R2와 R3는 독립적으로, 수소, C1-12알킬, C6-60아릴, C1-12알콕시, C1-12알킬아미노, C1-12알킬티오 또는 축합고리이고,
    상기 축합고리는 피롤, 싸이오펜, 인돌, 퓨란, 이미다졸, 트라이아졸, 다이아졸, 또는 피리미딘에서 선택되는 어느 하나이고,
    Ar은 벤젠, 또는 피롤, 싸이오펜, 인돌, 퓨란, 이미다졸, 트라이아졸, 다이아졸, 또는 피리미딘에서 선택되는 헤테로방향족고리이다)
  2. 제1항에 있어서, 상기 바이오마커에 대하여 상이한 질량 태그가 결합되는 것을 특징으로 하는 폐암 진단용 어세이.
  3. 제2항에 있어서, 상기 질량 태그의 R3는 서로 다른 것을 특징으로 하는 폐암 진단용 어세이.
  4. 제1항 내지 제3 항 중 어느 한 항에 있어서, 상기 질량 태그는 하기 화합물로부터 선택되는 것을 특징으로 하는 폐암 진단용 어세이.
    Figure PCTKR2017013393-appb-I000009
  5. 제1항 내지 제3항 중 어느 한 항에 있어서, MALDI-TOF 질량분석 또는 ESI- TOF에 의하여 상기 질량 태그를 측정 및 정량하는 것을 특징으로 하는 폐암 진단용 어세이.
  6. 폐암 진단에 필요한 정보로 제공하는 방법으로서,
    상기 바이오마커는 혈액 혹은 흉수를 포함하는 생물학적 시료로부터 얻어지며,
    상기 정보는 제1항 내지 제3항 중 어느 한 항에 따른 정량값인 방법.
PCT/KR2017/013393 2017-11-23 2017-11-23 질량 태그를 이용한 질병의 진단을 위한 어세이 및 진단적 활용 WO2019103179A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/013393 WO2019103179A1 (ko) 2017-11-23 2017-11-23 질량 태그를 이용한 질병의 진단을 위한 어세이 및 진단적 활용

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/013393 WO2019103179A1 (ko) 2017-11-23 2017-11-23 질량 태그를 이용한 질병의 진단을 위한 어세이 및 진단적 활용

Publications (1)

Publication Number Publication Date
WO2019103179A1 true WO2019103179A1 (ko) 2019-05-31

Family

ID=66631500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013393 WO2019103179A1 (ko) 2017-11-23 2017-11-23 질량 태그를 이용한 질병의 진단을 위한 어세이 및 진단적 활용

Country Status (1)

Country Link
WO (1) WO2019103179A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070178504A1 (en) * 2005-12-22 2007-08-02 Tracey Colpitts Methods and marker combinations for screening for predisposition to lung cancer
KR20120077570A (ko) * 2010-12-30 2012-07-10 주식회사 바이오인프라 폐암 진단 예측을 위한 복합 바이오마커, 구성 방법, 복합 바이오마커를 사용하는 폐암 진단 예측 방법 및 폐암 진단 예측 시스템
KR20150124279A (ko) * 2014-04-28 2015-11-05 다이아텍코리아 주식회사 광분해성 질량 표지 물질 및 그 용도
KR101627841B1 (ko) * 2015-05-27 2016-06-07 다이아텍코리아 주식회사 싸이오크로멘 타입 화합물 및 그 용도
KR20170135580A (ko) * 2016-05-31 2017-12-08 다이아텍코리아 주식회사 질량 태그를 이용한 질병의 진단을 위한 어세이 및 진단적 활용

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070178504A1 (en) * 2005-12-22 2007-08-02 Tracey Colpitts Methods and marker combinations for screening for predisposition to lung cancer
KR20120077570A (ko) * 2010-12-30 2012-07-10 주식회사 바이오인프라 폐암 진단 예측을 위한 복합 바이오마커, 구성 방법, 복합 바이오마커를 사용하는 폐암 진단 예측 방법 및 폐암 진단 예측 시스템
KR20150124279A (ko) * 2014-04-28 2015-11-05 다이아텍코리아 주식회사 광분해성 질량 표지 물질 및 그 용도
KR101627841B1 (ko) * 2015-05-27 2016-06-07 다이아텍코리아 주식회사 싸이오크로멘 타입 화합물 및 그 용도
KR20170135580A (ko) * 2016-05-31 2017-12-08 다이아텍코리아 주식회사 질량 태그를 이용한 질병의 진단을 위한 어세이 및 진단적 활용

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KANG, N. ET AL.: "Design and Synthesis of New Mass Tags for Matrix-free Laser Desorption Ionization Mass Spectrometry (LDI-MS) Based on 6,1! -dihydrothiochromeno 14,3-b]indole", TETRAHEDRON, vol. 72, no. 36, 20 July 2016 (2016-07-20), pages 5612 - 5619, XP029682864, DOI: doi:10.1016/j.tet.2016.07.052 *

Similar Documents

Publication Publication Date Title
US8685659B2 (en) Method for diagnosis and prognosis of epithelial cancers
WO2021154002A1 (ko) 파킨슨병 진단용 바이오마커 및 이를 이용한 파킨슨병 진단 방법
WO2020045984A1 (ko) 타겟 물질 검출을 위한 방법 및 키트
Popp et al. Immuno-matrix-assisted laser desorption/ionization assays for quantifying AKT1 and AKT2 in breast and colorectal cancer cell lines and tumors
US20150072355A1 (en) Flap endonuclease-1 as a marker for cancer
US20240077494A1 (en) Novel Photocleavable Mass-Tags for Multiplexed Mass Spectrometric Imaging of Tissues Using Biomolecular Probes
US20130231265A1 (en) Tyrosine kinase biosensors and methods of use
Liu et al. A photocleavable peptide-tagged mass probe for chemical mapping of epidermal growth factor receptor 2 (HER2) in human cancer cells
KR101940622B1 (ko) 질량 태그를 이용한 질병의 진단을 위한 어세이 및 진단적 활용
WO2019103179A1 (ko) 질량 태그를 이용한 질병의 진단을 위한 어세이 및 진단적 활용
WO2015174585A1 (ko) 보체인자 b 단백질에 특이적으로 결합하는 항체 및 카보하이드레이트 안티젠 19-9 단백질에 특이적으로 결합하는 항체를 포함하는 췌장암 진단용 키트
WO2020111887A1 (ko) 뇌 유래 소포체 특이적 마커 및 이를 이용한 뇌 질병 진단 방법
WO2011081369A2 (ko) 단백질의 비정상적인 당쇄화를 이용하는 암진단 마커
WO2022265392A1 (ko) 난소암 진단용 다중 바이오 마커 및 이의 용도
Giera et al. Structural elucidation of biologically active neomycin N‐octyl derivatives in a regioisomeric mixture by means of liquid chromatography/ion trap time‐of‐flight mass spectrometry
WO2021210826A1 (ko) Gcc2 단백질을 과발현하는 엑소좀 기반 암 진단 또는 예후 예측용 마커 조성물
WO2011081310A2 (ko) 암 진단용 펩티드 마커 및 이를 이용한 암 진단방법
Dowling et al. Purification and identification of a 7.6-kDa protein in media conditioned by superinvasive cancer cells
WO2023191586A1 (ko) 위양성 신호가 제거된 항체 어레이 키트 및 이를 이용한 항원 검출방법
WO2023191543A1 (ko) 암의 진단용 조성물
WO2023101447A1 (ko) 반려견의 췌장염 진단용 바이오마커
WO2024005592A1 (ko) 알츠하이머성 치매 관련 단백질 유래 인산화 펩타이드를 이용한 알츠하이머병 조기 진단, 단계 구분 및 뇌의 아밀로이드 베타 축적 판별 방법
WO2024228553A1 (ko) 갑상선암의 진단을 위한 신규한 바이오 마커
WO2024219798A1 (ko) 암의 진단용 조성물
WO2021172926A1 (ko) 암의 진단용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932893

Country of ref document: EP

Kind code of ref document: A1