WO2019102565A1 - 直流給電システム - Google Patents

直流給電システム Download PDF

Info

Publication number
WO2019102565A1
WO2019102565A1 PCT/JP2017/042124 JP2017042124W WO2019102565A1 WO 2019102565 A1 WO2019102565 A1 WO 2019102565A1 JP 2017042124 W JP2017042124 W JP 2017042124W WO 2019102565 A1 WO2019102565 A1 WO 2019102565A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
bus
voltage
storage battery
power supply
Prior art date
Application number
PCT/JP2017/042124
Other languages
English (en)
French (fr)
Inventor
琢真 光永
克夫 直井
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to PCT/JP2017/042124 priority Critical patent/WO2019102565A1/ja
Publication of WO2019102565A1 publication Critical patent/WO2019102565A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering

Definitions

  • the present invention relates to a stand-alone DC power supply system not connected with a commercial power supply.
  • the DC power supply system includes a distributed power supply (for example, a device such as a solar power generator, a wind power generator, and a fuel cell), a DC bus connecting the distributed power supply to a load, and a plurality of DC power supplies (including storage batteries). And a converter (for example, a bidirectional DC / DC converter) for connecting a plurality of DC power devices to a DC bus, and a controller for controlling the plurality of converters.
  • a distributed power supply for example, a device such as a solar power generator, a wind power generator, and a fuel cell
  • a DC bus connecting the distributed power supply to a load
  • a plurality of DC power supplies including storage batteries
  • a converter for example, a bidirectional DC / DC converter
  • the controller supplies power from one DC power supply device to the DC bus by at least one converter when the voltage supplied from the distributed power supply device to the DC bus differs from a predetermined value. At least one converter is controlled to supply DC power from the DC bus to the other DC power supply device so as to keep the voltage of the DC bus at a predetermined value.
  • the load (DC voltage) connected to the DC bus can be stabilized because the DC bus voltage (DC voltage) can be stabilized even if the DC voltage output from the distributed power supply to the DC bus is large. It is possible to supply a stable output voltage (DC voltage) to
  • This invention is made in view of the said subject, and it aims at providing the direct current
  • the DC power feeding system is a stand-alone DC power feeding system not connected to a commercial power source, and is a DC bus serving as a bus for DC power feeding, a power generation device, and power generation of the power generation device.
  • the first storage battery corresponding to the common current value based on the differential power of the DC bus and the DC voltage of the DC bus is supplied with the DC constant current to charge the first storage battery, and the generated power falls below the load power At the same time, the DC
  • each first storage battery since the plurality of first storage batteries for supplying electric power to the DC bus are charged and discharged with the DC constant current of the common current value, each first storage battery has a uniform SOC (remaining battery capacity) Since it is possible to charge and discharge, even when charge and discharge with respect to each first storage battery are repeated, it is possible to avoid the occurrence of a situation where a difference occurs in the number of charge and discharge cycles due to a difference in SOC. As a result, the occurrence of variations in the battery life of each first storage battery can be significantly reduced.
  • SOC main battery capacity
  • the second storage battery is connected between a second storage battery, the second storage battery and the DC bus, and bi-directionally converts the DC voltage supplied to the DC bus and the DC voltage of the second storage battery.
  • the DC voltage supplied to the DC bus falls below a preset voltage
  • the DC voltage supplied from the second storage battery to the DC bus and to the DC bus is a voltage set in advance.
  • the second bi-directional converter of the constant voltage system for supplying the second storage battery from the DC bus is a voltage set in advance.
  • the second bi-directional converter performs charging of the second storage battery or discharge from the second storage battery in a constant voltage mode in a state in which discharge of the second bus is possible to reduce rapid fluctuations of the DC voltage of the DC bus. it can.
  • a capacitor connected to the DC bus and charged by the DC voltage of the DC bus is provided.
  • the capacitor connected to the DC bus may be used even if the DC voltage of the DC bus has a rapid fluctuation (a fluctuation that can not be reduced by control of the first bidirectional converter of the constant current system). Abrupt fluctuations can be reduced.
  • the present invention it is possible to significantly reduce the occurrence of variations in the battery life of the plurality of first storage batteries that supply power to the DC bus.
  • direct current feed system is not limited to the following embodiments.
  • components described below include those which can be easily conceived by those skilled in the art, and substantially the same components, and the components can be appropriately combined.
  • the DC power feeding system 1A includes a DC bus 2, one or more power generating devices 3 (two power generating devices 3a and 3b as an example in this example.
  • power generating device 3 when not distinguished from each other, also referred to as "power generating device 3"
  • first converter 4 two power conditioners 4a and 4b described later as an example in this example
  • load devices 71 connected to DC power supply system 1A two load devices as an example in this example
  • 71a, 71b hereinafter also referred to as "load device 71" when not distinguished
  • the second converters 5 in this example, two second converters 5a, 5b described later as an example
  • second converter 5" a plurality of direct-current power supply 6 (DC power supply device 6 1, 6 2, ⁇ ⁇ ⁇ , 6 n), the third converter 7, and power management
  • DC power supply device 6 1, 6 2, ⁇ ⁇ ⁇ , 6 n DC power supply device 6 1, 6 2, ⁇ ⁇ ⁇ , 6 n
  • the third converter 7 and power management
  • a stand-alone DC power supply system (commercial power supply (commercial AC power supply) capable of generating a DC voltage based on the electric power generated by the power generation device 3 and supplying the one or more load devices 71 with It is configured as a DC power supply system not connected.
  • the DC bus 2 is laid over the installation place of the power generation device 3, the installation place of each DC power supply 6, and the installation place of the load device 71, and functions as a bus bar of DC power supply. Further, DC bus 2 has a predetermined voltage range including a nominal bus voltage by controlling the charge / discharge operation of a bidirectional DC / DC converter 14 described later in multiple DC power supply devices 6 by power management device 9.
  • the bus voltage Vbs is defined (for example, in a voltage range of DC 350 V or more and DC 400 V or less including DC 370 V as a nominal bus voltage).
  • the power generation device 3 is configured of a distributed power supply device.
  • the distributed power supply device can be configured as a power generation device using natural renewable energy such as a solar power generation device or a wind power generation device, or an engine type power generation device using fossil energy such as light oil and gasoline It is.
  • it is configured by one engine type power generation device 3a and one power generation device 3b using natural regenerated energy.
  • the power generation device 3a is started and stopped by an operation (manually) by the operator, and generates and outputs an AC voltage V1 of a predetermined voltage value in an operation state.
  • the power management apparatus 9 can also control start / stop.
  • the power generation device 3a is included in the plurality of DC power supply devices 6, such as at the time of the first startup of the DC power supply system 1A, and at the time of restart after the DC power supply system 1A stops for a long period. It is started when a large amount of charging power is temporarily required to charge the storage battery 11. Therefore, as an example in this example, the power generation device 3a is configured to be able to generate power sufficient to charge the storage battery 11 while supplying load power to the load device 71.
  • the power generation device 3b is configured of, for example, one or more solar power generation devices, and automatically generates power during the daytime to generate and output a DC voltage V2.
  • the first converter 4 is composed of two power conditioners 4a and 4b arranged corresponding to the two power generation devices 3a and 3b in this example.
  • power conditioner 4a is configured to include an AC / DC converter, and is disposed corresponding to power generation device 3a.
  • the power conditioner 4a operates with the DC voltage internally generated based on the AC voltage V1, and is controlled by the power management device 9 to generate the AC voltage V1 as the generated power output from the power generation device 3a as a bus.
  • Converted to voltage Vbs for example, a voltage below the upper limit voltage value of the predetermined voltage range and above the nominal bus voltage in the first converter 4; a voltage value near the upper limit voltage value
  • the power conditioner 4a measures the generated power W1 supplied from the power generation device 3a to the DC bus 2 (measured at a predetermined cycle T (for example, every few seconds)) and outputs it to the power management unit 9 It has a measurement function.
  • Power conditioner 4b includes a DC / DC converter as an example, and is disposed corresponding to power generation device 3b.
  • the power conditioner 4b operates with the DC voltage internally generated based on the DC voltage V2, and is controlled by the power management device 9 to control the power generation operation of the corresponding power generation device 3b to generate generated power. While being configured to be controllable, the DC voltage V2 as the generated power output from the power generation device 3b is converted to the bus voltage Vbs and supplied to the DC bus 2. Further, the power conditioner 4b has a power measurement function of measuring the generated power W2 supplied from the power generation device 3b to the DC bus 2 (for example, by measuring in a cycle T) and outputting it to the power management device 9. There is.
  • the second converter 5 is configured of, for example, a DC / DC converter that operates with a DC voltage generated internally based on the bus voltage Vbs.
  • the load devices 71 DC loads
  • the second converter 5 is a load device 71a.
  • a second converter 5b also referred to as a DC / DC converter 5b
  • the DC / DC converter 5a is controlled by the power management device 9 to convert the bus voltage Vbs into a load voltage VLa which is a DC voltage used by the load device 71a (DC voltage conversion).
  • the DC / DC converter 5a also has a current limiting function of limiting the load current supplied from the DC bus 2 to the load device 71a with the upper limit current value set from the power management unit 9. Further, the DC / DC converter 5a measures the load power WLa supplied from the DC bus 2 to the load device 71a based on the load voltage VLa and the load current (for example, by measuring in a cycle T). It has the power measurement function to output to 9.
  • the DC / DC converter 5b is controlled by the power management device 9 to convert the bus voltage Vbs into a load voltage VLb which is a DC voltage used by the load device 71b (DC voltage conversion), and supplies the load voltage 71b to the load device 71b. . Further, the DC / DC converter 5 b has a current limiting function of limiting the load current supplied from the DC bus 2 to the load device 71 b with the upper limit current value set from the power management device 9. Further, the DC / DC converter 5b measures the load power WLb supplied from the DC bus 2 to the load device 71b based on the load voltage VLb and the load current (for example, by measuring in a cycle T). It has the power measurement function to output to 9.
  • the load devices 71a and 71b are DC loads that operate by receiving the load voltages VLa and VLb (hereinafter, referred to as load voltage VL unless otherwise specified), which are DC voltages, and are, for example, DC voltages. It consists of lighting devices that operate, household appliances such as televisions and refrigerators that operate with DC voltage, and information devices such as personal computers and mobile terminals that operate with DC voltage.
  • DC power supply device 6 includes a DC power supply device 6 1, 6 2, ⁇ ⁇ ⁇ , n-number of 6 n (n is an integer of 2 or more. Or less, particularly when no distinction is also referred to as a DC power supply device 6) is disposed There is.
  • Each DC power supply device 6 is configured to include a storage battery 11, a battery management unit (BMU (Battery Management Unit)) 12, a contactor 13 and a bidirectional DC / DC converter 14, respectively.
  • Storage batteries 11 1 , 11 2 ,..., 11 n (hereinafter, also referred to as storage battery 11 when not distinguished in particular) each have a prescribed power capacity (nominal capacity) and a predetermined working voltage including a nominal voltage Within the range, charge operation and discharge operation are configured to be possible.
  • the storage batteries 11 storage battery 11 1 as a second storage battery
  • the storage battery 11 1 is different from the other battery 11 2 ⁇ 11 n, is charged and discharged by the bidirectional DC / DC converter 14 1 CV operates as described below. Therefore, the storage battery 11 1 from becoming many commonly charge and discharge times compared to the other battery 11 2 ⁇ 11 n, deterioration even when the charging and discharging times becomes greater little (impact on life It is composed of a small number of expensive storage batteries (eg, lithium ion batteries, NAS batteries (sodium sulfur batteries), etc.).
  • the expensive second battery is a minimum number (one of the storage battery 11 1 only) as in this example, is allowed The number can also be increased within the scope of
  • the storage battery 11 2 ⁇ 11 n as a first battery other than the storage battery 11 1 is used mainly for power supply to the DC bus 2, the number is large. Therefore, the storage batteries 11 2 to 11 n are generally storage batteries such as lead storage batteries and nickel hydrogen batteries which are large in capacity and inexpensive, and are constituted by storage batteries of the same type and the same capacity. .
  • each storage battery 11 1, 11 2 corresponding, ..., are respectively disposed 11 n, later Operate with the operating voltage Vop.
  • each BMU 12 measures the charge voltage Vba of the storage battery 11 as an example, and calculates the SOC (State of charge) by measuring the current value of the charge / discharge current of the storage battery 11 in the operating state. And a function of outputting information including the measured charging voltage Vba, the current value of the charging / discharging current, and the calculated SOC to the power management apparatus 9 at a predetermined cycle T as battery information.
  • the BMU 12 executes the control contents indicated by the contactor control information to the contactor 13 (when the control content is a cutoff instruction, the contactor 13 shifts to the cutoff state).
  • the control content is a connection instruction
  • the contactor 13 is also brought into a connected state.
  • Contactor 13 1, 13 2, ..., 13 n (hereinafter, when not particularly distinguished, also referred to as contactor 13), the corresponding storage battery 11 1, 11 2, ..., and positive and negative 11 n, corresponding .., 14 n are disposed between the storage batteries 11 1 , 11 2 ,..., 11 n on the side of the storage batteries 11 1 , 14 2 ,. Operate with the operating voltage Vop.
  • Each contactor 13 is controlled by the corresponding BMU 12 to shift to any one of the blocking state and the coupling state, and in the blocking state, the positive electrode and the negative electrode, and the pair of input / output terminals Are cut off (disconnected), and in the connected state, the positive electrode and the negative electrode are connected to the pair of input / output terminals.
  • the bi-directional DC / DC converters 14 1 , 14 2 ,..., 14 n are a pair of input / output of the storage battery 11 side as described above.
  • the terminals (one pair of input / output terminals) are connected to the storage battery 11 via the contactor 13 and the other pair of input / output terminals are connected to the DC bus 2 so that the storage battery 11 and the DC bus 2 It is connected (arranged) between.
  • the bi-directional DC / DC converter 14 can be configured by, for example, a known bi-directional DC / DC converter disclosed in JP-A-2016-152641.
  • bidirectional DC / DC converter 14 1 of the second bidirectional converter CV operating in DC voltage generated internally on the basis of the bus voltage Vbs while (charging and discharging operation of the constant voltage method) power management
  • the operation is controlled by the device 9.
  • Another bidirectional DC / DC converter 14 2 of the first bi-directional converter, ⁇ ⁇ ⁇ , 14 n (hereinafter, when not particularly distinguished, also referred to as "bidirectional DC / DC converter 14 2, etc.") are The CC operation (charging / discharging operation in a constant current system) is performed by the DC voltage generated internally based on the bus voltage Vbs, and the operation is controlled by the power management device 9.
  • the bidirectional DC / DC converter 14 when the control information received from the power management apparatus 9 is the charging indication is raised or lowered (voltage converting the bus voltage Vbs input from the other of the pair of output terminals And charging the storage battery 11 (performing a charging operation) by outputting the storage battery 11 from one of the pair of input / output terminals. Thereby, the bus voltage Vbs of the DC bus 2 is lowered.
  • the bidirectional DC / DC converter 14 when the received control information of the discharge instruction, the charging voltage Vba of the battery 11 inputted from one of the pair of output terminals, for example, a predetermined voltage for bus voltage Vbs
  • the storage battery 11 is discharged (a discharge operation is performed) by boosting or dropping (voltage conversion) to a voltage value in the vicinity of the upper limit voltage value of the range and outputting the same from the other pair of input / output terminals to the DC bus 2.
  • the bus voltage Vbs of the DC bus 2 is raised.
  • the bidirectional DC / DC converter 14 2, etc. when the control information received from the power management device 9 of the charging instructions, the bus voltage Vbs input from the other of the pair of input and output terminals and raised or lowered (voltage conversion) The charging current is supplied to the storage battery 11 with the designated current value included in the control information by outputting to the storage battery 11 from one pair of input / output terminals, and the storage battery 11 is charged (charging operation with constant current Run). Thereby, the bus voltage Vbs of the DC bus 2 is lowered.
  • the bidirectional DC / DC converter 14 2, etc. when the received control information of the discharge instruction, the charging voltage Vba of the battery 11 inputted from one of the pair of input and output terminals by boosting or reducing (voltage conversion) other
  • the discharge current is output from the storage battery 11 at a designated current value included in the control information by outputting to the DC bus 2 from the pair of input / output terminals of (allowing the storage battery 11 to discharge (perform discharge operation with constant current) )).
  • the bus voltage Vbs of the DC bus 2 is raised.
  • the bidirectional DC / DC converter 14 shifts to a sleep state in which its operation is stopped to reduce power consumption.
  • the bi-directional DC / DC converter 14 receives a charge instruction or a discharge instruction as control information in the sleep state, the bi-directional DC / DC converter 14 leaves the sleep state and executes the charge operation or the discharge operation.
  • the bidirectional DC / DC converter 14 sets each current value of the charging current supplied to the storage battery 11 and the discharge current discharged from the storage battery 11 to the maximum current value of the storage battery 11 (in this example, 45 A as an example ) Has a current limiting function limited to the following.
  • the third converter 7 is configured of a DC / DC converter (hereinafter, also referred to as a DC / DC converter 7). Further, DC / DC converter 7, the positive electrode and the negative electrode thereof a pair of input terminals of the storage battery 11 1 of the DC power supply device 61, and is connected without passing through the contactor 13 1, the charging voltage Vba of the battery 11 1 Operate. In addition, DC / DC converter 7 boosts or lowers (converts voltage) the charging voltage Vba of storage battery 11 in the operating state, so that BMU 12 and contactor 13 of each DC power supply device 6 and power management device 9 The operation voltage Vop to be used is generated and output.
  • a DC / DC converter hereinafter, also referred to as a DC / DC converter 7
  • DC / DC converter 7 boosts or lowers (converts voltage) the charging voltage Vba of storage battery 11 in the operating state, so that BMU 12 and contactor 13 of each DC power supply device 6 and power management device 9
  • the power management device 9 is configured by a computer operating at the operation voltage Vop and functions as a control unit.
  • the power management device 9 performs charge / discharge control processing for each DC power supply device 6, and power generation control for the power generation device 3 (other power generation devices 3 other than the power generation device 3a manually operated and controlled.
  • the power generation device 3b Processing and power control processing for the second converter 5 are executed.
  • the power management device 9 also executes a voltage measurement process of measuring the bus voltage Vbs. In this case, the power management apparatus 9 can adopt a configuration in which the bus voltage Vbs is directly measured.
  • the first converter 4 (at least one of the power conditioners 4a and 4b)
  • a configuration in which the power management apparatus 9 indirectly measures the bus voltage Vbs via the first converter 4 may be employed so that the bus voltage Vbs is measured and output to the power management apparatus 9.
  • the operation of the DC power feeding system 1A shown in FIG. 1 will be described.
  • the storage battery 11 1 since those used to power components, such as power management device 9, the charging voltage Vba is lower than the upper limit of the voltage range, and more voltage threshold It shall be charged beforehand so that it may become. Further, for easy understanding, it is assumed that the SOCs of the other storage batteries 11 2 to 11 n are equal. Also, each contactor 13 is initially in the disconnected state.
  • the DC power supply system 1A for example, initial startup or the DC power supply system 1A, the DC power supply system 1A, such as reboot after prolonged stoppage of the other battery 11 2 to 11 except for the storage battery 11 1 n
  • the power generation device 3a is operated for a certain period to output the AC voltage V1.
  • the power conditioner 4a operates by receiving the supply of the AC voltage V1, converts the AC voltage V1 into the bus voltage Vbs, and supplies the bus voltage Vbs to the DC bus 2.
  • the bus voltage Vbs of the DC bus 2 rises within a predetermined voltage range (voltage range of DC 350 V or more and DC 400 V or less).
  • a predetermined voltage range voltage range of DC 350 V or more and DC 400 V or less.
  • the power conditioner 4a outputs the bus voltage Vbs at a voltage near the upper limit value of the voltage range, the bus voltage Vbs of the DC bus 2 rises to a voltage near the upper limit value.
  • the power conditioner 4 a measures the generated power W 1 supplied from the power generation device 3 a to the DC bus 2 and outputs the generated power W 1 to the power management device 9.
  • the power generation device 3b automatically generates power and outputs the DC voltage V2.
  • the power conditioner 4b operates by receiving the supply of the DC voltage V2, converts the DC voltage V2 into the bus voltage Vbs, and supplies the bus voltage Vbs to the DC bus 2. Therefore, the bus voltage Vbs of the DC bus 2 rises to the above-described predetermined voltage range in a shorter time than when only the power generation device 3a operates. Further, the power conditioner 4 b measures the generated power W 2 supplied from the power generation device 3 b to the DC bus 2 and outputs it to the power management device 9.
  • DC / DC converter 7 from the storage battery 11 1 and is supplied with a charging voltage Vba is operated, the BMU12 and contactor 13 of each DC power supply device 6, to the power management apparatus 9
  • the operation voltage Vop is output (supplied). Therefore, the BMU 12 and the contactor 13 of each DC power supply 6 and the power management unit 9 are in operation.
  • BMUs 12 1 to 12 n of each of DC power supply devices 6 1 to 6 n measure the charging voltage Vba or the like for corresponding storage batteries 11 1 to 11 n at period T, and each time they are measured, as battery information It is output to the power management unit 9.
  • the power management apparatus 9 executes the voltage measurement process to measure the bus voltage Vbs, and performs the charge / discharge control process.
  • the power management device 9 acquires new generated power W1 from the power conditioner 4a on the power generation device 3a side (when the power generation device 3b is generating power) Every time when new generated power W2 is acquired from the power conditioner 4b on the power generation device 3b side, the total generated power (W1 + W2) is calculated.
  • the power management device 9 determines that the power can be supplied to the load device 71, and transmits power to the DC / DC converters 5a and 5b. Then, control is performed to convert and output the bus voltage Vbs so as to obtain the load voltages VLa and VLb used by the corresponding load devices 71a and 71b.
  • the power generation device 3a is configured to be able to generate power that can simultaneously execute the supply of power to the load device 71 and the charging of the storage battery 11, the total generated power (W1 + W2) Is above the reference power.
  • the power management apparatus 9 converts the bus voltage Vbs to the load voltages VLa and VLb used by the corresponding load devices 71a and 71b and outputs the bus voltages Vbs to the DC / DC converters 5a and 5b. Execute control. Thereby, the DC / DC converters 5a and 5b execute the supply of load power to the corresponding load devices 71a and 71b. Further, each DC / DC converter 5 a, 5 b measures the load power WLa, WLb supplied to the corresponding load device 71 a, 71 b and outputs it to the power management unit 9. The power management apparatus 9 calculates the total load power (WLa + WLb) each time it obtains new load powers WLa and WLb.
  • the power management apparatus 9 compares the calculated total generated power (W1 + W2) with the total load power (WLa + WLb), and when the total generated power (W1 + W2) exceeds the total load power (WLa + WLb), It is determined that the storage battery 11 can be charged. Since the power generation device 3a of this example is configured to be able to generate power that can simultaneously execute the power supply to the load device 71 and the charging of the storage battery 11, the total generated power (W1 + W2) is the total load power (WLa + WLb) From the above, the power management device 9 determines that the storage battery 11 of each DC power supply device 6 can be charged.
  • power management device 9 can charge rechargeable storage battery 11 based on the battery information acquired from BMU 12 of each DC power supply device 6 (charging voltage Vba has not reached the upper limit value of the working voltage range, in other words, SOC While specifying the DC power supply 6 having the storage battery 11) which has not reached the nominal capacity, the contact control information indicating connection instruction is output to the BMU 12 of the specified DC power supply 6, and both DC power supply 6 Control information indicating a charging instruction is output to the directional DC / DC converter 14 (charging operation is performed).
  • the power management apparatus 9 outputs a contact control information showing the connection instruction to the BMU12 1 ⁇ 12 n for all of the DC power supply device 6 1 ⁇ 6 n, and all of the DC power supply device 6 1 ⁇ 6 n Control information indicating a charging instruction to the bi-directional DC / DC converters 14 1 to 14 n .
  • the power management device 9 applies the storage batteries 11 2 to 11 n to the bi-directional DC / DC converters 14 2 to 14 n that perform CC operation of the DC power supply devices 6 2 to 6 n during the charging operation.
  • a common designated current value (common current value) of the charging current to be supplied is included in the control information and output.
  • the point of the bidirectional DC / DC converter 14 for charging instructions the number n of the bidirectional DC / DC converter 14 1 ⁇ 14 n) the total number of the storage battery 11 to charge the surplus current
  • a designated current value to be included in the control information to the (n-1) bidirectional DC / DC converters 14 2 to 14 n operating in CC is calculated.
  • the current value obtained by dividing the surplus current in the entire DC power supply system 1A by the number n of bidirectional DC / DC converters 14 1 to 14 n is CC operated (n ⁇ 1) bidirectional DC Since it is a common designated current value included in the control information to DC / DC converters 14 2 to 14 n , one bi-directional DC / DC converter 14 performs CV operation of power corresponding to bus voltage Vbs ⁇ excess current / n Assigned to 1 .
  • the power management apparatus 9 determines whether or not the charging voltage Vba included in the battery information output in a cycle T from the BMU 12 of each DC power supply device 6 has reached the upper limit value of the working voltage range (or Whether or not the included SOC has reached the nominal capacity, that is, whether or not the storage battery 11 is fully charged is determined, and when it is determined that the fully charged state is reached, the DC power supply 6 including the storage battery 11
  • the storage battery 11 is disconnected from the bi-directional DC / DC converter 14 by outputting contact control information indicating a cutoff instruction to the BMU 12 of FIG. Thereby, overcharging of the storage battery 11 is prevented.
  • the surplus current is stored in each storage battery 11 1.
  • a current value smaller than the average current value is designated as a common designated current to the bidirectional DC / DC converters 14 2 to 14 n when the current value obtained by dividing by the number n of 11 to 11 n is the average current value. Determined as a value.
  • the storage battery 11 1 preferentially being charged with more power than the other battery 11 2 ⁇ 11 n
  • the charging voltage Vba is always charged so as to be in the vicinity of the upper limit value of the working voltage range.
  • the CC operation is performed by dividing the surplus current in the entire DC power supply system 1A by the number (n-1) of the bi-directional DC / DC converters 14 2 to 14 n in charging of 1 to 11 n (n-1)
  • a designated current value to be included in control information to each of the bidirectional DC / DC converters 14 2 to 14 n is calculated, and charge / discharge control processing is continued to continue charging of each of the storage batteries 11 2 to 11 n .
  • the power management apparatus 9 measures the voltage for the designated current value to the bidirectional DC / DC converters 14 2 to 14 n performing the CC operation calculated as described above. A correction is added based on the bus voltage Vbs measured in the processing to obtain a final designated current value (actually designated current value to be included in control information to the bi-directional DC / DC converters 14 2 to 14 n ), That is, the bus voltage Vbs is maintained within a predetermined voltage range by controlling the designated current values to the bidirectional DC / DC converters 14 2 to 14 n .
  • the power management apparatus 9 designates the calculated bi-directional DC / DC converters 14 2 to 14 n for CC operation.
  • the current value corrected to increase the current value is set as the final designated current value to the bidirectional DC / DC converters 14 2 to 14 n .
  • the power supplied from the DC bus 2 to the bidirectional DC / DC converters 14 2 to 14 n operating in CC increases, so that the rise of the bus voltage Vbs is suppressed.
  • the power management apparatus 9 designates the calculated bi-directional DC / DC converters 14 2 to 14 n for CC operation.
  • the current value corrected to reduce the current value is taken as the final designated current value to the bi-directional DC / DC converters 14 2 to 14 n .
  • the power supplied from the DC bus 2 to the bidirectional DC / DC converters 14 2 to 14 n operating in CC decreases, so that the reduction of the bus voltage Vbs is suppressed.
  • the bus voltage Vbs is maintained within a predetermined voltage range.
  • the power generation device 3a is operated for a certain period of time and the generated power W1 is supplied to the DC bus 2 at the time of the first start or restart after a long stop. Therefore, while the load voltages VLa and VLb are supplied from the DC bus 2 to the respective load devices 71a and 71b in this fixed period, the storage batteries 11 included in the respective DC power supply devices 6 are sufficiently supplied. It is possible to charge (charge to a state in which the charge voltage Vba is at the upper limit value of the working voltage range (full charge state)).
  • the power management device 9 controls the bi-directional DC / DC converters 14 2 to 14 n performing CC operation so that the charging operation is always performed with the common designated current value, the storage batteries 11 2 to 11 n , Fully charged, with the SOC aligned.
  • the power management device 9 performs the above-described power control process By executing the converter 5, the total load power (WLa + WLb) may be further increased, and the power allocated for charging the storage battery 11 may be diverted to the load device 71, or A display or the like may be provided to notify the operator at the installation place of the power generation device 3a that all the storage batteries 11 have been sufficiently charged, to urge stop of the power generation device 3a.
  • the power generation device 3a When the fixed period ends, the power generation device 3a is stopped. As a result, after the end of the fixed period, the DC power supply system 1A shifts to the normal operation state in which only the power generation device 3b automatically operates and generates power according to the natural state.
  • the power management device 9 executes the following charge / discharge control process while continuing the execution of the voltage measurement process (measurement of the bus voltage Vbs).
  • the power management device 9 First, in the charge / discharge control process when the power generation device 3b is in a power generation state (in this example, since the power generation device 3b is a solar power generation device in the daytime), the power management device 9 First, new power generation W2 is obtained from power conditioner 4b of power generation device 3b, and new load power WLa, WLb is obtained from DC / DC converters 5a, 5b of load devices 71a, 71b. Each time, the total generated power (in this case, only the generated power W2) and the total load power (WLa + WLb) are calculated.
  • the power management apparatus 9 compares the calculated total generated power (W2) with the total load power (WLa + WLb), and when the total generated power (W2) exceeds the total load power (WLa + WLb) (for example, the amount of sunshine)
  • the power management device 9 executes the charge / discharge control process with the same content as the charge / discharge control process at the time of the operation of the power generation device 3a described above.
  • the power management device 9, CV so as to charge the storage battery 11 1 preferentially to each bidirectional DC / DC converter 14 1 to operate, and CC operation to the bidirectional DC / DC converter 14 2-14 always controlled so as to charge the corresponding storage battery 11 2 ⁇ 11 n by the common specified current value for n.
  • the storage batteries 11 2 to 11 n are charged in a state in which the SOCs are uniform.
  • the power management apparatus 9 performs voltage measurement processing on the designated current value to the bidirectional DC / DC converters 14 2 to 14 n that perform CC operation calculated in the cycle T.
  • the bus voltage Vbs is maintained within a predetermined voltage range by adding a correction based on the measured bus voltage Vbs to a final designated current value.
  • power management device 9 determines whether or not charging voltage Vba included in the battery information output in a cycle T from BMU 12 of DC power supply device 6 in charge operation has reached the upper limit value of the working voltage range (or If it is determined that the SOC included in the information has reached the nominal capacity (that is, whether the storage battery 11 is fully charged) and it is determined that the storage battery 11 is fully charged, the DC power supply including the storage battery 11
  • the contact control information indicating a shutoff instruction is output to the BMU 12 of the device 6, and the storage battery 11 is separated from the bidirectional DC / DC converter 14 by shifting the contactor 13 to the shutoff state. Thereby, overcharging of the storage battery 11 is prevented.
  • the power management device 9 identifies the DC power supply device 6 having the dischargeable storage battery 11 based on the battery information acquired from the BMU 12 of each DC power supply device 6 and applies to the BMU 12 of the identified DC power supply device 6. It outputs contact control information indicating a connection instruction, and outputs control information indicating a discharge instruction to the bidirectional DC / DC converter 14 of the DC power supply 6 (performs a discharge operation).
  • the DC power supply system 1A the above-mentioned manner battery 11 1 is always its charging voltage Vba, due to the configuration that is charged to be the upper limit voltage near the voltage range, the power management device 9, always identify DC power supply device 61 as a DC power supply device 6 having a dischargeable storage battery 11. Further, when the DC power supply device 6 of any one of the DC power supply devices 6 2 to 6 n corresponds to the DC power supply device 6 having the rechargeable battery 11, the power management device 9 is used as the DC power supply device 6. It identifies as the DC power supply 6 which has the storage battery 11 which can be discharged.
  • the power management device 9 since each of the storage batteries 11 2 to 11 n is charged in a state where the SOCs are uniform, the power management device 9 includes all of the DC power supply devices 6 2 to 6 n having the respective storage batteries 11 2 to 11 n. Is identified as a DC power supply 6 having a rechargeable storage battery 11.
  • the DC power supply devices 6 2 to 6 n are included in the specified DC power supply device 6 will be described.
  • the power management device 9 instructs the connection of each BMU 12 2 to 12 n of the DC power devices 6 2 to 6 n to cause the DC power devices 6 2 to 6 n to perform the discharging operation. And control information indicating a discharge instruction to each of the bidirectional DC / DC converters 14 2 to 14 n .
  • the power management device 9 causes the storage batteries 11 2 to 11 n to discharge current from the storage batteries 11 2 to 11 n during the discharging operation for the bidirectional DC / DC converters 14 2 to 14 n of the DC power supply devices 6 2 to 6 n.
  • a common designated current value for (discharge current) is included in control information and output.
  • each DC / DC converter 5a, 5b can continuously supply the load power WLa, WLb to the corresponding load device 71a, 71b.
  • Power management device 9 continues the above discharging operation in DC power supply devices 6 2 to 6 n , and as a result, the charge voltage Vba of storage batteries 11 2 to 11 n reaches the lower limit value of the working voltage range. and upon detecting, based on the acquired battery information from the BMU12 2 ⁇ 12 n outputs a contact control information indicating shutoff instruction to BMU12 2 ⁇ 12 n of the DC power supply device 6 2 ⁇ 6 n.
  • the power management apparatus 9 controls the bi-directional DC / DC converters 14 2 to 14 n that perform CC operation to perform discharge operation at the same specified current value at all times, each storage battery 11 2 to 11 n Is discharged in a state in which the SOC is uniform.
  • the power management apparatus 9 for BMU12 2 ⁇ 12 n of the DC power supply device 6 2 ⁇ 6 n The contact control information indicating the shutoff instruction is output at the same timing.
  • the BMUs 12 2 to 12 n cause the contactors 13 2 to 13 n to shift to the disconnection state at the same timing, whereby the storage batteries 11 2 to 11 n are bi-directional DC / DC.
  • the DC converters 14 2 to 14 n are disconnected at the same timing (the discharge operation is stopped at the same timing). Therefore, overdischarge of storage batteries 11 2 to 11 n is prevented.
  • the power management unit 9 when the discharge operation is stopped against DC power supply device 6 2 ⁇ 6 n is then to perform the discharging operation to the DC power supply 61.
  • the power management apparatus 9 outputs a contact control information showing the connection instruction to BMU12 1 of the DC power supply device 61, and the control information indicating the discharge instruction to the bidirectional DC / DC converter 14 1 Output.
  • BMU12 1 is, by shifting the contactor 13 1 to the connection state based on the contact control information showing the connection instruction acquired from the power management device 9, the bidirectional DC / DC converter storage battery 11 1 14 Connect to 1 Furthermore, the bidirectional DC / DC converter 14 1 that the discharging operation based on control information indicating the discharge instruction acquired from the power management device 9 is raised or lowered the charged voltage Vba of the battery 11 1 (voltage conversion) to and outputs to the DC bus 2 (discharging the storage battery 11 1).
  • the power management apparatus 9 so that bus voltage Vbs which are measured is maintained within a predetermined voltage range as described above, by controlling the time for executing the discharging operation with respect to the DC power supply device 61, The discharge power supplied from the DC power supply device 6 to the DC bus 2 is controlled.
  • the power management unit 9 includes a DC power supply device 61 results above discharge operation is executed continuously in, it reaches the voltage threshold to which the storage battery 11 1 of the charging voltage Vba is defined within the operating voltage range decreases things, upon detection based on the acquired battery information from BMU12 1 outputs a contact control information indicating shutoff instruction to BMU12 1 of the DC power supply device 61.
  • the DC power supply device 61 by the contactor 13 1 is caused to transition to the cutoff state by the BMU12 1, the storage battery 11 1 is disconnected from the bidirectional DC / DC converter 14 (discharging operation is stopped).
  • DC / DC converter 7 is based on the storage battery 11 1 of the charging voltage Vba, operating voltage over a sufficiently long period It is possible to generate and output Vop.
  • DC power feeding system 1A when DC / DC converters 5a and 5b continue the above operation in a state where total generated power (W2) is lower than total load power (WLa + WLb), bus voltage Vbs decreases and predetermined There is a possibility of falling below the lower limit voltage value (DC 350 V) of the voltage range (in this example, the range of DC 350 V or more and DC 400 V or less). For this reason, the power management apparatus 9 uses the second converter 5 (in this example, DC) so that the measured bus voltage Vbs is maintained within the above-described predetermined voltage range (voltage range of DC 350 V or more and DC 400 V or less). Power control process of reducing the total load power (WLa + WLb) by increasing the upper limit current value set for at least one of / DC converters 5a and 5b) (increasing when generated power W2 increases) .
  • the power management apparatus 9 performs the same operation as when the total generated power (W2) described above falls below the total load power (WLa + WLb). Do. Therefore, when the power management device 9 first detects whether or not the DC power supply device 6 having the rechargeable storage battery 11 exists based on the battery information acquired from the BMU 12 of each DC power supply device 6, By specifying and discharging the DC power supply 6, the DC / DC converters 5a and 5b can generate load voltages VLa and VLb for the corresponding load devices 71a and 71b.
  • the DC power supply 6 2 ⁇ 6 n when the charging voltage Vba of the battery 11 2 ⁇ 11 n has reached the lower limit of the working voltage range and DC power supply units 61 are of the storage battery 11 1
  • the discharge operation is stopped by shifting the contactors 13 to the disconnection state based on the contact control information indicating the disconnection instruction from the power management device 9.
  • the power management apparatus 9 sends control information indicating a stop instruction to the bidirectional DC / DC converters 14 of all the DC power supply devices 6.
  • the DC power supply system 1A is put to a sleep state by stopping the operation of the bidirectional DC / DC converter 14 (a state where the consumption of the power charged in each storage battery 11 in the DC power supply system 1A is minimized).
  • the contactor 13 is disposed between the storage battery 11 and the bi-directional DC / DC converter 14 in all the DC power supply devices 6 to connect to the DC bus 2 as described above.
  • a configuration is adopted in which all the contactors 13 are switched to the disconnection state to disconnect (separate) the storage battery 11 and the bidirectional DC / DC converter 14. Therefore, in the DC power supply system 1A of this embodiment, the above-mentioned sleep state is substantially achieved when all the contactors 13 are shifted to the shut-off state without stopping the operation of the bidirectional DC / DC converter 14 further.
  • a direct current power supply device without the contactor 13 (a direct current power supply device with a configuration in which the storage battery 11 and the bidirectional DC / DC converter 14 are directly coupled) may be considered.
  • the operation of the bidirectional DC / DC converter 14 is stopped to shift to the sleep state.
  • the storage battery 11 1 and bidirectional DC / DC converter 14 1 is in the blocked (disconnected) state contactor 13 1, also in the DC power supply system provided with a DC power supply device of the structure without the contactor 13 as described above, since the two-way DC / DC converter 14 1 connected to the battery 11 1 is stopped, the storage battery 11 1 of the charging power Is configured to be supplied only to the DC / DC converter 7 which generates and outputs the operation voltage Vop.
  • the conversion efficiency from charging voltage Vba in DC / DC converter 7 to operation voltage Vop is good, and when the power consumption in BMU12 and contactor 13 and the power management unit 9, of the direct-current power supply 6 to maintain the operating state by being supplied with operating voltage Vop is small both the charging power of the storage battery 11 1 is consumed As a result, the time until the charge voltage Vba decreases from the voltage threshold to the lower limit of the working voltage range (that is, the operation time of the BMU 12, the contactor 13 and the power management apparatus 9) can be sufficiently extended.
  • each DC power supply device 6 and power management device 9 can be maintained in an operating state until power generation device 3b resumes power generation. Therefore, at the time of resumption of power generation by the power generation device 3b, the power management device 9 operates as described above to charge the storage batteries 11 and supply the load voltages VLa and VLb to the load devices 71a and 71b. Operation is possible.
  • the power management apparatus 9 compares the total generated power (W2) with the total load power (WLa + WLb), and when the total generated power (W2) matches the total load power (WLa + WLb), each DC power supply device 6 It is determined that charging of the storage batteries 11 is not possible, and that discharging of the DC power supply devices 6 from the storage batteries 11 is also unnecessary, and charging / discharging of the storage batteries 11 of each DC power supply device 6 is not performed.
  • CC operation is performed as a bidirectional DC / DC converter for charging and discharging the storage batteries 11 2 to 11 n that mainly functions as the storage battery 11 that supplies power to the DC bus 2 (fixed comprising a) two-way DC / DC converter 14 2 - 14 n of the current system, power management apparatus 9, the corresponding storage battery 11 2 to a common specified current values for the bidirectional DC / DC converter 14 2 ⁇ 14 n 11 n is charged and discharged.
  • each of the storage batteries 11 2 to 11 n can be charged and discharged in a state where the SOC (the remaining amount of battery) is uniform, charging and discharging of each storage battery 11 2 to 11 n are repeated. Even when the battery is charged, it is possible to avoid the occurrence of a difference in the number of charge / discharge cycles due to a difference in SOC, and as a result, the battery life of each of the storage batteries 11 2 to 11 n varies. Can be significantly reduced.
  • the storage battery 11 1 is connected between the battery 11 1 and DC bus 2 and CV operate the storage battery 11 1 as a bidirectional DC / DC converter for charging and discharging (a constant voltage scheme) and a bidirectional DC / DC converter 14 1.
  • a sudden fluctuation (a fluctuation that can not be reduced by control of the bidirectional DC / DC converters 14 2 to 14 n operating in CC) occurs in the bus voltage Vbs of the DC bus 2 even, in the ready discharge of the charge and the storage battery 11 1 relative to the storage battery 11 1, executes the discharge from the charging or accumulator 11 1 for storage batteries 11 1 bidirectional DC / DC converter 14 1 CV method
  • rapid fluctuations in the bus voltage Vbs can be reduced.
  • the DC power supply devices 6 2 to 6 n in the above are configured to include the bidirectional DC / DC converters 14 2 to 14 n that perform CC operation
  • the present invention is not limited to this configuration.
  • all of the plurality of DC power supply devices 6 are configured to include the bidirectional DC / DC converter 14 performing CC operation, and abrupt changes occur in the bus voltage Vbs.
  • a configuration in which the capacitor 21 is connected to the DC bus 2 can be adopted as a means for reducing such fluctuation.
  • the DC power supply system 1B will be described.
  • the same components as those of the DC power feeding system 1A will be assigned the same reference numerals and redundant explanations will be omitted, and different components will be mainly described.
  • the DC power supply system 1B the DC power supply system by omitting 1A a DC power supply device 61 that is included in, provided by all of the DC power supply device 6 (DC power supply device 6 2 - A configuration is adopted in which the bidirectional DC / DC converter 14 performs CC operation 6 n ).
  • the DC power feeding system 1B is disposed corresponding to the DC bus 2, one or more power generating devices 3 (two power generating devices 3a and 3b as an example in this example), and the power generating device 3.
  • the DC power supply devices 6 are arranged in the (n-1) DC power supply devices 6 2 , 6 3 ,..., 6 n .
  • the DC power supply devices 6 2 to 6 n are configured to include storage batteries 11 2 to 11 n , BMUs 12 2 to 12 n , contactors 13 2 to 13 n, and bidirectional DC / DC converters 14 2 to 14 n , respectively. .
  • the DC power supply 6 2 is configured the same structure as the DC power supply device 61 in the DC power supply system 1A as described above, the battery 11 2 is connected to the third converter 7.
  • the one battery 11 2 although also used for the supply of power to the DC bus 2, and BMU12 and contactor 13 of each DC power supply device 6 2 ⁇ 6 n, the power management apparatus 9 It mainly functions as a storage battery that supplies power for operation (operation voltage Vop).
  • the storage battery 11 2 sleep, and in other operating states, except the two states of the state where the contactor 13 2 shifts to the disconnected state corresponding to the storage battery 11 2, the charging voltage Vba is the voltage range
  • the charge and discharge control is performed by the power management device 9 so as to be equal to or higher than a predetermined voltage threshold which is lower than the upper limit value and higher than the lower limit value.
  • a predetermined voltage threshold which is lower than the upper limit value and higher than the lower limit value.
  • the storage battery 11 2 from becoming many commonly charge and discharge times compared to other battery 11 3 ⁇ 11 n, deterioration even when the charging and discharging times becomes greater little (impact on life It is composed of a small number of expensive storage batteries (eg, lithium ion batteries, NAS batteries (sodium sulfur batteries), etc.).
  • the DC power supply system 1B is preferably set to the expensive batteries minimum number as in this example (one of the storage battery 11 2 only), acceptable range Within, you can also increase the number.
  • the storage battery 11 3 ⁇ 11 n other than the storage battery 11 2 is used mainly for power supply to the DC bus 2, the number is large.
  • the storage batteries 11 3 to 11 n are generally storage batteries such as lead storage batteries and nickel hydrogen batteries which are large in capacity and inexpensive, and are composed of storage batteries of the same type and the same capacity. .
  • Bidirectional DC / DC converters 14 2 to 14 n boost or step down (convert voltage) bus voltage Vbs input from the other pair of input / output terminals when the control information received from power management device 9 indicates a charge instruction.
  • the charging current is supplied to the storage battery 11 with the designated current value included in the control information by outputting to the storage battery 11 from one pair of input / output terminals, and the storage battery 11 is charged (charging operation with constant current Run).
  • Bidirectional DC / DC converters 14 2 to 14 n boost or step down (convert) the charging voltage Vba of storage battery 11 input from one of the pair of input / output terminals when the received control information is a discharge instruction.
  • the discharge current is output from the storage battery 11 at a designated current value included in the control information by outputting to the DC bus 2 from the other pair of input / output terminals (allowing the storage battery 11 to be discharged (a discharge operation with a constant current Run)).
  • the capacitor 21 is directly connected to the DC bus 2. With this configuration, the capacitor 21 is constantly charged to the bus voltage Vbs.
  • the power management device 9 corresponds to each DC / DC converter 5a, 5b. Control is performed to convert and output the bus voltage Vbs so that the load voltages VLa and VLb used by the load devices 71a and 71b are obtained. Thereby, the load devices 71a and 71b operate.
  • the storage battery 11 of the device 6 is charged.
  • the power management device 9 supplies the storage batteries 11 2 to 11 n to the bi-directional DC / DC converters 14 2 to 14 n that perform CC operation of the DC power supply devices 6 2 to 6 n in the charging operation.
  • the control information includes the common designated current value (common current value) of the charging current to be output.
  • the power management apparatus 9 calculates this designated current value as follows. First, the surplus current is divided by the number (n-1) of the bidirectional DC / DC converters 14 2 to 14 n to calculate an average current value. Next, to determine a larger current value than the average current value, as specified current value to the bidirectional DC / DC converter 14 2 corresponding to the storage battery 11 2 to be charged with priority. Then, the remaining excess current obtained by subtracting the specified current value from the excess current to bidirectional DC / DC converter 14 2, the rest of the bidirectional DC / DC converter 14 3 ⁇ 14 n number of (n-2) It divides and determines as a designated current value to bidirectional DC / DC converters 14 3 to 14 n corresponding to storage batteries 11 3 to 11 n . Thus, the storage battery 11 2 is charged with priority over other battery 11 3 ⁇ 11 n.
  • the power management apparatus 9 determines whether or not the charging voltage Vba included in the battery information output in a cycle T from the BMU 12 of each DC power supply device 6 has reached the upper limit value of the working voltage range (or Whether or not the included SOC has reached the nominal capacity, that is, whether or not the storage battery 11 is fully charged is determined, and when it is determined that the fully charged state is reached, the DC power supply 6 including the storage battery 11
  • the storage battery 11 is disconnected from the bi-directional DC / DC converter 14 by outputting contact control information indicating a cutoff instruction to the BMU 12 of FIG. Thereby, overcharging of the storage battery 11 is prevented.
  • Battery 11 2 is charged with priority as described above will initially fully charged (charging is completed).
  • the power management device 9 upon charging of each battery 11 3 ⁇ 11 n in each period T after the charging of the storage battery 11 2 is completed, the bidirectional excess current in the entire DC power supply system 1B DC / by dividing the DC converter 14 3 ⁇ 14 n number of (n-2), calculates the specified current value to be included in the control information in both directions DC / DC converter 14 3 ⁇ 14 n, each of the storage battery 11 3 - 11n Execute charge / discharge control processing to continue charging for n .
  • the power management apparatus 9 measures the specified current value to the bidirectional DC / DC converters 14 2 to 14 n calculated as described above by the voltage measurement process. Based on the bus voltage Vbs, the final designated current value (actually, the designated current value to be included in the control information to the bidirectional DC / DC converters 14 2 to 14 n . Bidirectional DC / DC converters 14 3 to The bus voltage Vbs is maintained within a predetermined voltage range by setting the designated current value to 14 n to a common current value).
  • storage batteries 11 3 to 11 n are charged with the common designated current value by corresponding bi-directional DC / DC converters 14 3 to 14 n , they are charged to the fully charged state in a state where the SOCs are uniform.
  • each of the storage batteries 11 3 to 11 n is charged in a state in which the SOCs are uniform.
  • the power management apparatus 9 measures the bus measured in the voltage measurement process with respect to the specified current value to the calculated bi-directional DC / DC converters 14 2 to 14 n performing the CC operation during the execution of the charge / discharge control process.
  • the bus voltage Vbs is maintained within a predetermined voltage range by making a correction based on the voltage Vbs to obtain a final designated current value.
  • the power management device 9 discharges the storage battery 11 of each DC power supply device 6 Run.
  • the power management device 9 identifies the DC power supply device 6 having the dischargeable storage battery 11 based on the battery information acquired from the BMU 12 of each DC power supply device 6 and applies to the BMU 12 of the identified DC power supply device 6. It outputs contact control information indicating a connection instruction, and outputs control information indicating a discharge instruction to the bidirectional DC / DC converter 14 of the DC power supply 6 (performs a discharge operation).
  • the DC power supply system 1B, the above-mentioned manner battery 11 2 is always its charging voltage Vba, due to the configuration that is charged to be the upper limit voltage near the voltage range, the power management device 9, always identify a DC power supply device 6 2 as a DC power supply device 6 having a dischargeable storage battery 11. Further, in this embodiment, since the structure each storage battery 11 3 ⁇ 11 n is to be charged in a state where the SOC is aligned, the power management apparatus 9 includes a DC power supply device 6 2 ⁇ 6 n having respective storage batteries 11 2 ⁇ 11 n Are identified as the DC power supply 6 having the rechargeable storage battery 11.
  • the power management device 9 instructs the connection of each BMU 12 3 to 12 n of the DC power devices 6 3 to 6 n to cause the DC power devices 6 3 to 6 n to perform the discharging operation. And control information indicating a discharge instruction to each of the bidirectional DC / DC converters 14 3 to 14 n .
  • the power management apparatus 9 outputs a common designated current value for the discharge current in the control information to the bidirectional DC / DC converters 14 3 to 14 n .
  • power corresponding to the above-mentioned insufficient power is supplied from the DC power supply devices 6 3 to 6 n to the DC bus 2. Therefore, each DC / DC converter 5a, 5b can continuously supply the load power WLa, WLb to the corresponding load device 71a, 71b.
  • Power management device 9 continues the above discharging operation in DC power supply devices 6 3 to 6 n , and as a result, the charge voltage Vba of storage batteries 11 3 to 11 n reaches the lower limit value of the working voltage range. and upon detecting, based on the acquired battery information from the BMU12 3 ⁇ 12 n outputs a contact control information indicating shutoff instruction to BMU12 3 ⁇ 12 n of the DC power supply 6 3 ⁇ 6 n. Thereby, overdischarge of storage batteries 11 3 -11 n is prevented.
  • each storage battery 11 3 to 11 n Is maintained in the same state of SOC.
  • the power management unit 9 when the discharge operation is stopped against the DC power supply 6 3 ⁇ 6 n is then to perform the discharging operation to the DC power supply 6 2.
  • the power management apparatus 9 includes a DC power supply device 6 2 results discharging operation is executed continuously in, reaches a voltage threshold charging voltage Vba of the battery 11 2 is defined within the voltage range decreases that was, when detected based on the acquired battery information from BMU12 2 is to shift the contactor 13 2 to the cutoff state, the storage battery 11 2 by separating from the bidirectional DC / DC converter 14 2, the battery 11 2 The charging voltage Vba is prevented from falling below the voltage threshold.
  • the power management apparatus 9 measures the voltage for the designated current value to the bidirectional DC / DC converters 14 2 to 14 n performing the CC operation calculated as described above. A correction is added based on the bus voltage Vbs measured in the processing to obtain a final designated current value (actually designated current value to be included in control information to the bi-directional DC / DC converters 14 2 to 14 n ), That is, the bus voltage Vbs is maintained within a predetermined voltage range by controlling the designated current values to the bidirectional DC / DC converters 14 2 to 14 n .
  • the power management apparatus 9 performs the same operation as when the total generated power (W2) described above falls below the total load power (WLa + WLb). Then, the specified DC power supply 6 is discharged to set the load voltages VLa and VLb for the corresponding load devices 71a and 71b in the DC / DC converters 5a and 5b.
  • the DC power supply 6 3 ⁇ 6 n when the charging voltage Vba of the battery 11 3 ⁇ 11 n has reached the lower limit of the working voltage range and DC power supply device 6 2, charging of the battery 11 2
  • the discharge operation is stopped by shifting each of the contactors 13 to the cutoff state based on the contact control information indicating the cutoff instruction from the power management device 9.
  • the power management apparatus 9 shifts the DC power supply system 1B to the sleep state in the same manner as the operation of the DC power supply system 1A.
  • the bidirectional DC / DC converter 14 performs CC operation as a bidirectional DC / DC converter for charging / discharging the storage batteries 11 3 to 11 n mainly functioning as the storage battery 11 for supplying power to the DC bus 2 comprising a 3 ⁇ 14 n, the power management apparatus 9, the corresponding storage battery 11 3 ⁇ 11 n is charged and discharged at a common specified current values for the bidirectional DC / DC converter 14 3 ⁇ 14 n.
  • the storage batteries 11 3 to 11 n can be charged and discharged in a state where the SOC (the remaining amount of the battery) is equalized also by the DC power feeding system 1B, charging and discharging of the storage batteries 11 3 to 11 n are repeated. was time to be, due to a difference in SOC occurs can be avoided occurrence of a situation in which a difference in the number of charge and discharge cycles occurs, variation in the battery life of the storage battery 11 3 ⁇ 11 n as a result Can be greatly reduced.
  • the capacitor 21 since the capacitor 21 is connected to the DC bus 2, the bus voltage Vbs of the DC bus 2 undergoes rapid fluctuation (bidirectional DC / DC converters 14 2 to 14 n performing CC operation) Even in the case where fluctuation that can not be reduced by the control with respect to the above occurs, the electric power stored in the capacitor 21 is discharged to the DC bus 2, so that the rapid fluctuation of the bus voltage Vbs can be reduced.
  • storage batteries of the same type and capacity used mainly for supplying power to the DC bus 2 (storage batteries 11 2 to 11 n in the DC feeding system 1A and DC feeding system 1B)
  • the storage batteries 11 3 to 11 n have been described by way of an example in which charging and discharging are performed from the state in which the respective SOCs are uniform, but even in the case where charging and discharging are performed from the state in which the respective SOCs are not uniform
  • the battery life of these storage batteries is sufficiently variable. Can be reduced to
  • direct-current power supply system 1A, 1B operates on the basis of the charging power of the storage battery 11 1 and the storage battery 11 2, BMU12, DC / DC converter for supplying an operating voltage Vop to the contactor 13 and the power management apparatus 9
  • the structure provided with 7 is employ
  • the BMU 12 and the contactor 13 control the charging voltage Vba of the corresponding storage battery 11.
  • the power management device 9 can also omit the disposition of the DC / DC converter 7 as a configuration operating at the charging voltage Vba of at least one of the storage batteries 11.
  • the present invention since it is possible to slow the progress of the deterioration of the storage battery caused by the occurrence of a situation where a difference occurs in the number of charge and discharge cycles of the storage battery, the present invention is a stand-alone DC power supply system Can be widely applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

複数の蓄電池についての寿命のばらつきを低減する。 発電装置3bの発電電力W2を直流バス2に供給するパワーコンディショナ4bと、バス電圧Vbsを電圧変換して負荷機器71a,71bに負荷電力(WLa+WLb)を供給するDC/DCコンバータ5a,5bと、直流バス2から蓄電池112~11nへ、または蓄電池112~11nから直流バス2へ直流定電流を供給する双方向DC/DCコンバータ142~14nと、電力管理装置9とを備え、電力管理装置9は、発電電力W2が負荷電力(WLa+WLb)を上回るときには、コンバータ142~14nに対して蓄電池112~11nに直流定電流を共通電流値で供給させて充電させ、発電電力W2が負荷電力(WLa+WLb)を下回るときには、コンバータ142~14nに対して蓄電池112~11nから直流バス2に直流定電流を共通電流値で供給させて放電させる。

Description

直流給電システム
 本発明は、商用電源と接続されない独立型の直流給電システムに関するものである。
 この種の直流給電システムとして、下記の特許文献1に開示された直流給電システムが知られている。この直流給電システムは、分散電源装置(例えば、太陽光発電装置、風力発電装置および燃料電池などの装置)と、分散電源装置を負荷に接続する直流バスと、複数の直流電源装置(蓄電池を含み、充放電可能な電源装置)と、直流バスに複数の直流電源装置をそれぞれ接続するコンバータ(例えば双方向DC/DCコンバータ)と、これらの複数のコンバータを制御する制御器とを備えている。また、この直流給電システムでは、エアコン、テレビおよび照明装置などの家電機器や、パソコンなどの情報機器が負荷として直流バスに接続されて、直流バスから直流電力(直流電圧)の供給を受けて動作する。また、この直流給電システムでは、制御器は、分散電源装置より直流バスに供給される電圧が所定値と異なるとき、少なくとも1つのコンバータによって1つの直流電源装置から直流バスへ電力供給し、他の少なくとも1つのコンバータによって、直流バスの電圧を所定値に保つように直流バスから他の直流電源装置へ直流電力を供給するように制御する。
 この直流給電システムによれば、分散電源装置から直流バスに出力される直流電圧の変動が大きくても、直流バスの電圧(直流電圧)を安定させることができることから、直流バスに接続された負荷に対して安定な出力電圧(直流電圧)を供給することが可能となっている。
国際公開第2012/057032号(第3-4頁、第1図)
 しかしながら、上記した従来の直流給電システムを含む公知の直流給電システムでは、複数の直流電源装置としての蓄電池と直流バスとの間に接続されるコンバータ(双方向DC/DCコンバータ)はすべてCV型(定電圧(constant voltage)充電型)であることから、各蓄電池として同じ仕様のものを使用し、かつ各コンバータとして同じ仕様のものを使用したとしても、各蓄電池および各コンバータには製造誤差が存在し、また蓄電池とコンバータとを接続する配線や、コンバータと直流バスとを接続する配線についても全く同じ長さにすることは困難なため(つまり、配線抵抗にばらつきが生じるため)、各蓄電池の充放電電流の電流値は同じ値とはならない。このため、各蓄電池に対する充放電が繰り返された際には、蓄電池毎に電池残量に差が生じ、これに起因して蓄電池毎に充放電サイクル数にも差が生じるようになることから、各蓄電池の電池寿命にばらつきが生じるという改善すべき課題が存在している。
 本発明は、上記課題に鑑みてなされたものであり、直流バスに接続される複数の蓄電池についての電池寿命のばらつきを大幅に低減し得る直流給電システムを提供することを目的とする。
 上記目的を達成すべく、本発明に係る直流給電システムでは、商用電源に接続されない独立型の直流給電システムであって、直流給電の母線となる直流バスと、発電装置と、前記発電装置の発電電力を前記直流バスに供給する第1コンバータと、前記直流バスに供給されている直流電圧を電圧変換して負荷機器に供給する第2コンバータと、複数の第1蓄電池と、前記複数の第1蓄電池の各々と前記直流バスとの間に接続されて、当該直流バスに供給されている直流電圧と当該第1蓄電池の直流電圧とを双方向に電圧変換して、当該直流バスから当該第1蓄電池へ、または当該第1蓄電池から当該直流バスへ直流定電流を供給する定電流方式の複数の第1双方向コンバータと、制御部とを備え、前記制御部は、前記発電装置での前記発電電力と前記第2コンバータから前記負荷機器に供給されている負荷電力とを比較して、当該発電電力が当該負荷電力を上回るときには、前記各第1双方向コンバータに対して当該発電電力および当該負荷電力の差分電力と前記直流バスの前記直流電圧とに基づく共通電流値で対応する前記第1蓄電池に前記直流定電流を供給させて当該第1蓄電池を充電させ、当該発電電力が当該負荷電力を下回るときには、前記各第1双方向コンバータに対して前記差分電力と前記直流バスの前記直流電圧とに基づく共通電流値で前記対応する第1蓄電池から前記直流バスに前記直流定電流を供給させて当該第1蓄電池を放電させる。
 本発明によれば、直流バスに電力を供給する複数の第1蓄電池を共通電流値の直流定電流で充放電させる構成のため、各第1蓄電池をSOC(電池残量)の揃った状態で充放電させることができることから、各第1蓄電池に対する充放電が繰り返された際にも、SOCに差が生じることに起因して充放電サイクル数に差が生じる事態の発生を回避することができ、その結果として、各第1蓄電池の電池寿命にばらつきが生じることを大幅に低減することができる。
 好ましくは、第2蓄電池と、前記第2蓄電池および前記直流バスの間に接続されて、当該直流バスに供給されている前記直流電圧と当該第2蓄電池の直流電圧とを双方向に電圧変換して、当該直流バスに供給されている当該直流電圧が予め設定された電圧を下回るときには当該第2蓄電池から当該直流バスへ、また当該直流バスに供給されている当該直流電圧が予め設定された電圧を上回るときには当該直流バスから当該第2蓄電池へ供給する定電圧方式の第2双方向コンバータとを備えているとよい。この場合、直流バスの直流電圧に急激な変動(定電流方式の第1双方向コンバータに対する制御では低減し切れない変動)が生じた場合であっても、第2蓄電池に対する充電および第2蓄電池からの放電が可能な状態においては、第2双方向コンバータが定電圧方式で第2蓄電池に対する充電または第2蓄電池からの放電を実行して、直流バスの直流電圧の急激な変動を低減することができる。
 また、好ましくは、前記直流バスに接続されて当該直流バスの前記直流電圧で充電されるコンデンサを備えている。この場合、直流バスの直流電圧に急激な変動(定電流方式の第1双方向コンバータに対する制御では低減し切れない変動)が生じた場合であっても、直流バスに接続されているコンデンサがこの急激な変動を低減することができる。
 本発明によれば、直流バスに電力を供給する複数の第1蓄電池の電池寿命にばらつきが生じることを大幅に低減することができる。
直流給電システム1Aの構成図である。 直流給電システム1Bの構成図である。
 以下、直流給電システムの実施の形態について、添付図面を参照して説明する。なお、直流給電システムは以下の実施形態に限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれると共に、その構成要素は、適宜組み合わせることが可能である。
 最初に、直流給電システムとしての直流給電システム1Aの構成について説明する。
 直流給電システム1Aは、直流バス2、1または2以上の発電装置3(本例では一例として2つの発電装置3a,3b。以下、区別しないときには「発電装置3」ともいう)、発電装置3に対応して配設された第1コンバータ4(本例では一例として後述する2つのパワーコンディショナ4a,4b)、直流給電システム1Aに接続される負荷機器71(本例では一例として2つの負荷機器71a,71b。以下、区別しないときには「負荷機器71」ともいう)に対応して配設された第2コンバータ5(本例では一例として後述する2つの第2コンバータ5a,5b。以下、区別しないときには「第2コンバータ5」ともいう)、複数の直流電源装置6(直流電源装置6,6,・・・,6)、第3コンバータ7、および電力管理装置9を備え、発電装置3で発電された電力に基づいて直流電圧を生成して、1または2以上の負荷機器71に供給可能な独立型の直流給電システム(商用電源(商用交流電源)に接続されない直流給電システム)として構成されている。
 直流バス2は、発電装置3の設置場所、各直流電源装置6の設置場所および負荷機器71の設置場所に亘って敷設されて、直流給電の母線として機能する。また、直流バス2は、複数の直流電源装置6内の後述する双方向DC/DCコンバータ14の充放電動作が電力管理装置9によって制御されることにより、公称バス電圧を含む所定の電圧範囲内(例えば、公称バス電圧としてのDC370Vを含むDC350V以上DC400V以下の電圧範囲内)にバス電圧Vbsが規定される。
 発電装置3は、分散型電源装置で構成されている。この場合、分散型電源装置は、太陽光発電装置および風力発電装置などの自然再生エネルギーを利用した発電装置や、軽油およびガソリンなどの化石エネルギーを利用したエンジン方式の発電装置で構成することが可能である。本例では、理解の容易のため、一例として、エンジン方式の1つの発電装置3aと、自然再生エネルギーを利用した1つの発電装置3bとで構成されている。発電装置3aは、オペレータによる操作(手動)によって起動・停止が行われて、動作状態において、所定の電圧値の交流電圧V1を生成して出力する。また、電力管理装置9により起動・停止を制御することもできる。また、発電装置3aは、直流給電システム1Aの最初の起動時や、直流給電システム1Aの長期停止後の再起動時などのときのように、複数の直流電源装置6に含まれている後述の蓄電池11に対する充電のために多くの充電電力が一時的に必要なときに起動される。このため、本例では一例として、発電装置3aは、負荷機器71に対して負荷電力を供給しつつ、蓄電池11を十分に充電可能な電力を発電可能に構成されているものとする。また、発電装置3bは、一例として1または2以上の太陽光発電装置で構成されて、昼間には自動的に発電して、直流電圧V2を生成して出力する。
 第1コンバータ4は、本例では2つの発電装置3a,3bに対応して配設された2つのパワーコンディショナ4a,4bで構成されている。本例では一例として、パワーコンディショナ4aは、AC/DCコンバータを含んで構成されて、発電装置3aに対応して配設されている。また、パワーコンディショナ4aは、交流電圧V1に基づいて内部で生成した直流電圧で動作すると共に、電力管理装置9によって制御されて、発電装置3aから出力される発電電力としての交流電圧V1をバス電圧Vbs(例えば、第1コンバータ4では、所定の電圧範囲の上限電圧値を下回り、かつ公称バス電圧を上回る電圧。この上限電圧値近傍の電圧値)に変換して、直流バス2に供給する。また、パワーコンディショナ4aは、発電装置3aから直流バス2に供給している発電電力W1を計測して(所定の周期T(例えば数秒間隔)で計測して)電力管理装置9に出力する電力計測機能を有している。
 パワーコンディショナ4bは、一例としてDC/DCコンバータを含んで構成されて、発電装置3bに対応して配設されている。また、パワーコンディショナ4bは、直流電圧V2に基づいて内部で生成した直流電圧で動作すると共に、電力管理装置9によって制御されて、対応する発電装置3bの発電動作を制御することで発電電力を制御可能に構成されると共に、発電装置3bから出力される発電電力としての直流電圧V2をバス電圧Vbsに変換して、直流バス2に供給する。また、パワーコンディショナ4bは、発電装置3bから直流バス2に供給されている発電電力W2を計測して(例えば周期Tで計測して)電力管理装置9に出力する電力計測機能を有している。
 第2コンバータ5は、例えば、バス電圧Vbsに基づいて内部で生成した直流電圧で動作するDC/DCコンバータで構成されている。本例では、理解の容易のため、一例として、直流給電システム1Aに接続される負荷機器71(直流負荷)は負荷機器71a,71bの2つであるとして、第2コンバータ5は、負荷機器71aに対応する第2コンバータ5a(DC/DCコンバータ5aともいう)と、負荷機器71bに対応する第2コンバータ5b(DC/DCコンバータ5bともいう)の2つで構成されているものとする。この場合、DC/DCコンバータ5aは、電力管理装置9によって制御されて、バス電圧Vbsを負荷機器71aで使用される直流電圧である負荷電圧VLaに変換(直流電圧変換)して、負荷機器71aに供給する。また、DC/DCコンバータ5aは、直流バス2から負荷機器71aに供給される負荷電流について、電力管理装置9から設定された上限電流値で制限する電流制限機能を有している。また、DC/DCコンバータ5aは、この負荷電圧VLaおよび負荷電流に基づき、直流バス2から負荷機器71aに供給されている負荷電力WLaを計測して(例えば周期Tで計測して)電力管理装置9に出力する電力計測機能を有している。
 DC/DCコンバータ5bは、電力管理装置9によって制御されて、バス電圧Vbsを負荷機器71bで使用される直流電圧である負荷電圧VLbに変換(直流電圧変換)して、負荷機器71bに供給する。また、DC/DCコンバータ5bは、直流バス2から負荷機器71bに供給される負荷電流について、電力管理装置9から設定された上限電流値で制限する電流制限機能を有している。また、DC/DCコンバータ5bは、この負荷電圧VLbおよび負荷電流に基づき、直流バス2から負荷機器71bに供給されている負荷電力WLbを計測して(例えば周期Tで計測して)電力管理装置9に出力する電力計測機能を有している。
 なお、負荷機器71a,71bは、直流電圧である負荷電圧VLa,VLb(以下、特に区別しないときには、負荷電圧VLともいう)の供給を受けて動作する直流負荷であって、例えば、直流電圧で動作する照明機器、直流電圧で動作するテレビおよび冷蔵庫などの家電製品、並びに直流電圧で動作するパソコンや携帯端末などの情報機器などで構成される。
 直流電源装置6は、直流電源装置6,6,・・・,6のn個(nは2以上の整数。以下、特に区別しないときには、直流電源装置6ともいう)配設されている。各直流電源装置6は、蓄電池11、電池管理装置(BMU(Battery Management Unit ))12、コンタクタ13および双方向DC/DCコンバータ14をそれぞれ備えて構成されている。蓄電池11,11,・・・,11(以下、特に区別しないときには、蓄電池11ともいう)は、規定の電力容量(公称容量)をそれぞれ有して、公称電圧を含む所定の使用電圧範囲内で、充電動作および放電動作が可能に構成されている。
 また、蓄電池11のうちの1つ(第2蓄電池としての蓄電池11)は、直流バス2への電力の供給のためにも使用されるものの、各直流電源装置6~6のBMU12およびコンタクタ13と、電力管理装置9との動作のための電力(動作用電圧Vop)の供給を行う蓄電池として主として機能する。このため、この蓄電池11は、後述するスリープ状態、および蓄電池11に対応するコンタクタ13が遮断状態に移行した状態の2つの状態を除く他の動作状態において、後述するように、その充電電圧Vbaがその使用電圧範囲の上限値を下回り、かつ下限値を上回る予め規定された電圧閾値以上となるように、電力管理装置9によって充放電制御される。また、蓄電池11は、他の蓄電池11~11とは異なり、後述するようにCV動作する双方向DC/DCコンバータ14によって充放電される。このため、蓄電池11は、他の蓄電池11~11と比較して一般的に充放電回数が多くなることから、充放電回数が多くなった場合でも劣化の少ない(寿命に与える影響の少ない)高価な蓄電池(例えば、リチウムイオン電池やNAS電池(ナトリウム硫黄電池)など)で構成されている。なお、直流給電システム1Aの装置コストの上昇を抑えるためには、この高価な第2蓄電池は本例のように最小限の数(1つの蓄電池11だけ)であるのが好ましいが、許容される範囲内で、個数を増やすこともできる。
 一方、蓄電池11以外の第1蓄電池としての蓄電池11~11は、主として直流バス2への電力の供給のために使用され、個数も多い。このため、蓄電池11~11は、一般的に、大容量であって、かつ安価な鉛蓄電池やニッケル水素電池などの蓄電池であって、同種で、かつ同容量の蓄電池で構成されている。
 BMU12,12,・・・,12(以下、特に区別しないときには、BMU12ともいう)は、対応する各蓄電池11,11,・・・,11にそれぞれ配設されて、後述する動作用電圧Vopで動作する。また、各BMU12は、動作状態において、一例として蓄電池11の充電電圧Vbaを計測する機能と、蓄電池11の充放電電流の電流値を計測してSOC(State of charge:残容量 )を演算する機能と、計測した充電電圧Vbaや充放電電流の電流値や算出したSOCを含む情報を電池情報として所定の周期Tで電力管理装置9に出力する機能とを有している。また、BMU12は、電力管理装置9からコンタクタ制御情報を入力したときには、このコンタクタ制御情報で示される制御内容をコンタクタ13に対して実行する(制御内容が遮断指示のときにはコンタクタ13を遮断状態に移行させ、制御内容が連結指示のときにはコンタクタ13を連結状態に移行させる)機能も有している。
 コンタクタ13,13,・・・,13(以下、特に区別しないときには、コンタクタ13ともいう)は、対応する蓄電池11,11,・・・,11の正極および負極と、対応する双方向DC/DCコンバータ14,14,・・・,14における蓄電池11,11,・・・,11側の一対の入出力端子との間に配設されて、後述する動作用電圧Vopで動作する。また、各コンタクタ13は、対応するBMU12によって制御されて、遮断状態および連結状態のうちの任意の一方の状態に移行し、遮断状態のときには、この正極および負極と、この一対の入出力端子とを遮断し(切り離し)、連結状態のときには、この正極および負極と、この一対の入出力端子とを連結する。
 双方向DC/DCコンバータ14,14,・・・,14(以下、特に区別しないときには、双方向DC/DCコンバータ14ともいう)は、上記したように蓄電池11側の一対の入出力端子(一方の一対の入出力端子)がコンタクタ13を介して蓄電池11に接続されると共に、他方の一対の入出力端子が直流バス2に接続されることで、蓄電池11と直流バス2との間に接続(配設)されている。双方向DC/DCコンバータ14については、例えば特開2016-152641号公報に開示の公知の双方向DC/DCコンバータで構成することができる。
 また、第2双方向コンバータとしての双方向DC/DCコンバータ14は、バス電圧Vbsに基づいて内部で生成した直流電圧でCV動作(定電圧方式での充電・放電動作)すると共に、電力管理装置9によって動作制御される。また、第1双方向コンバータとしての他の双方向DC/DCコンバータ14,・・・,14(以下、特に区別しないときには、「双方向DC/DCコンバータ14等」ともいう)は、バス電圧Vbsに基づいて内部で生成した直流電圧でCC動作(定電流方式での充電・放電動作)すると共に、電力管理装置9によって動作制御される。
 具体的には、双方向DC/DCコンバータ14は、電力管理装置9から受信した制御情報が充電指示のときには、他方の一対の入出力端子から入力したバス電圧Vbsを昇圧または降圧(電圧変換)して一方の一対の入出力端子から蓄電池11に出力することにより、蓄電池11を充電する(充電動作を実行する)。これにより、直流バス2のバス電圧Vbsが低下させられる。一方、双方向DC/DCコンバータ14は、受信した制御情報が放電指示のときには、一方の一対の入出力端子から入力した蓄電池11の充電電圧Vbaを、例えば、バス電圧Vbsについての所定の電圧範囲の上限電圧値近傍の電圧値に昇圧または降圧(電圧変換)して他方の一対の入出力端子から直流バス2に出力することにより、蓄電池11を放電させる(放電動作を実行する)。これにより、直流バス2のバス電圧Vbsが上昇させられる。
 また、双方向DC/DCコンバータ14等は、電力管理装置9から受信した制御情報が充電指示のときには、他方の一対の入出力端子から入力したバス電圧Vbsを昇圧または降圧(電圧変換)して一方の一対の入出力端子から蓄電池11に出力することにより、この制御情報に含まれる指定電流値で充電電流を蓄電池11に供給して、蓄電池11を充電する(定電流での充電動作を実行する)。これにより、直流バス2のバス電圧Vbsが低下させられる。一方、双方向DC/DCコンバータ14等は、受信した制御情報が放電指示のときには、一方の一対の入出力端子から入力した蓄電池11の充電電圧Vbaを昇圧または降圧(電圧変換)して他方の一対の入出力端子から直流バス2に出力することにより、この制御情報に含まれる指定電流値で放電電流を蓄電池11から出力させる(蓄電池11を放電させる(定電流での放電動作を実行する))。これにより、直流バス2のバス電圧Vbsが上昇させられる。
 また、双方向DC/DCコンバータ14は、制御情報が停止指示のときには、自身の動作を停止させて消費電力を低減させるスリープ状態に移行する。また、双方向DC/DCコンバータ14は、スリープ状態において制御情報として充電指示または放電指示を受信したときには、スリープ状態から脱して、充電動作または放電動作を実行する。また、双方向DC/DCコンバータ14は、蓄電池11に供給する充電電流および蓄電池11から放電する放電電流の各電流値を蓄電池11の最大電流値(本例では、後述するように、一例として45A)以下に制限する電流制限機能を有している。
 第3コンバータ7は、DC/DCコンバータで構成されている(以下、DC/DCコンバータ7ともいう)。また、DC/DCコンバータ7は、その一対の入力端子が直流電源装置6の蓄電池11における正極および負極に、コンタクタ13を介することなく接続されて、この蓄電池11の充電電圧Vbaで動作する。また、DC/DCコンバータ7は、動作状態において、この蓄電池11の充電電圧Vbaを昇圧または降圧(電圧変換)することにより、各直流電源装置6のBMU12およびコンタクタ13と、電力管理装置9とで使用される動作用電圧Vopを生成して出力する。
 電力管理装置9は、動作用電圧Vopで動作するコンピュータで構成されて、制御部として機能する。この電力管理装置9は、各直流電源装置6に対する充放電制御処理、発電装置3(手動で動作制御される発電装置3aを除く他の発電装置3。本例では、発電装置3b)に対する発電制御処理、および第2コンバータ5に対する電力制御処理を実行する。また、電力管理装置9は、バス電圧Vbsを計測する電圧計測処理を実行する。この場合、電力管理装置9は、バス電圧Vbsを直接的に計測する構成を採用することもできるし、例えば、第1コンバータ4(パワーコンディショナ4a,4bのうちの少なくとも一方)が発電電力と共にバス電圧Vbsを計測して電力管理装置9に出力する機能を有するようにして、電力管理装置9が第1コンバータ4を介してバス電圧Vbsを間接的に計測する構成を採用することもできる。
 次に、図1に示した直流給電システム1Aの動作について説明する。なお、蓄電池11については、上記したように、電力管理装置9等の構成要素への電力供給に用いられるものであるため、充電電圧Vbaが使用電圧範囲の上限値を下回り、かつ電圧閾値以上となるように予め充電されているものとする。また、理解の容易のため、他の蓄電池11~11については、それぞれのSOCが揃えられているものとする。また、各コンタクタ13は、当初、遮断状態にあるものとする。
 この直流給電システム1Aでは、例えば、直流給電システム1Aの最初の起動時や、直流給電システム1Aの長期停止後の再起動時などのように、蓄電池11を除く他の蓄電池11~11が過放電状態(充電電圧Vbaが使用電圧範囲の下限値を下回る状態)であると想定されるときには、まず、発電装置3aを一定期間だけ動作させて、交流電圧V1を出力させる。これにより、パワーコンディショナ4aが、交流電圧V1の供給を受けて動作して、この交流電圧V1をバス電圧Vbsに変換して直流バス2に供給する。したがって、直流バス2のバス電圧Vbsが所定の電圧範囲(DC350V以上DC400V以下の電圧範囲)内に上昇する。本例では、パワーコンディショナ4aがこの電圧範囲の上限値近傍の電圧でバス電圧Vbsを出力するため、直流バス2のバス電圧Vbsはこの上限値近傍の電圧に上昇する。また、パワーコンディショナ4aは、発電装置3aから直流バス2に供給されている発電電力W1を計測して電力管理装置9に出力する。
 また、昼間であれば、発電装置3bが自動的に発電して、直流電圧V2を出力している。これにより、パワーコンディショナ4bが、直流電圧V2の供給を受けて動作して、この直流電圧V2をバス電圧Vbsに変換して直流バス2に供給する。したがって、発電装置3aだけが動作する場合と比べて、直流バス2のバス電圧Vbsはより短時間に上記した所定の電圧範囲内に上昇する。また、パワーコンディショナ4bは、発電装置3bから直流バス2に供給されている発電電力W2を計測して電力管理装置9に出力する。
 また、この直流給電システム1Aでは、蓄電池11から充電電圧Vbaの供給を受けているDC/DCコンバータ7が動作して、各直流電源装置6のBMU12およびコンタクタ13と、電力管理装置9とに動作用電圧Vopを出力(供給)している。このため、各直流電源装置6のBMU12およびコンタクタ13と、電力管理装置9はそれぞれ動作状態にある。
 したがって、各直流電源装置6~6のBMU12~12は、対応する蓄電池11~11についての充電電圧Vba等を周期Tで計測すると共に、これらを計測する都度、電池情報として電力管理装置9に出力している。
 また、電力管理装置9は、電圧計測処理を実行してバス電圧Vbsを計測しつつ、充放電制御処理を実行している。
 この発電装置3aの動作時の充放電制御処理では、電力管理装置9は、発電装置3a側のパワーコンディショナ4aから新たな発電電力W1を取得する都度(発電装置3bが発電しているときには、発電装置3b側のパワーコンディショナ4bから新たな発電電力W2を取得する都度)、総発電電力(W1+W2)を算出する。
 また、電力管理装置9は、この総発電電力(W1+W2)が予め規定された基準電力以上のときには、負荷機器71への電力供給が可能と判別して、各DC/DCコンバータ5a,5bに対して、対応する負荷機器71a,71bで使用される負荷電圧VLa,VLbとなるようにバス電圧Vbsを変換して出力させる制御を実行する。本例では発電装置3aは、上記したように、負荷機器71への電力供給と、蓄電池11に対する充電とを同時に実行し得る電力を発電可能に構成されていることから、総発電電力(W1+W2)は基準電力以上となっている。このため、電力管理装置9は、各DC/DCコンバータ5a,5bに対して、対応する負荷機器71a,71bで使用される負荷電圧VLa,VLbとなるようにバス電圧Vbsを変換して出力させる制御を実行する。これにより、DC/DCコンバータ5a,5bは、対応する負荷機器71a,71bに対して負荷電力の供給を実行する。また、各DC/DCコンバータ5a,5bは、対応する負荷機器71a,71bに供給されている負荷電力WLa,WLbを計測して電力管理装置9に出力する。電力管理装置9は、新たな負荷電力WLa,WLbを取得する都度、総負荷電力(WLa+WLb)を算出する。
 電力管理装置9は、算出した総発電電力(W1+W2)と総負荷電力(WLa+WLb)とを比較して、総発電電力(W1+W2)が総負荷電力(WLa+WLb)を上回るときには、各直流電源装置6の蓄電池11への充電が可能な状態にあると判別する。本例の発電装置3aは、負荷機器71への電力供給と、蓄電池11に対する充電とを同時に実行可能な電力を発電可能な構成のため、総発電電力(W1+W2)は総負荷電力(WLa+WLb)を上回ることから、電力管理装置9は、各直流電源装置6の蓄電池11への充電が可能な状態にあると判別する。
 この場合、電力管理装置9は、各直流電源装置6のBMU12から取得した電池情報に基づいて充電可能な蓄電池11(充電電圧Vbaが使用電圧範囲の上限値に達していない、言い換えれば、SOCが公称容量に達していない蓄電池11)を有する直流電源装置6を特定すると共に、特定した直流電源装置6のBMU12に対して連結指示を示すコンタクト制御情報を出力し、かつこの直流電源装置6の双方向DC/DCコンバータ14に対して充電指示を示す制御情報を出力する(充電動作を実行する)。
 本例において、この時点では、蓄電池11を除く他の蓄電池11~11が過放電状態であり、また蓄電池11についてもその充電電圧Vbaが使用電圧範囲の上限値を下回ることから、電力管理装置9は、電池情報に含まれる各蓄電池11の充電電圧Vba(電池情報に含まれる各蓄電池11のSOCであってもよい)に基づいてすべての蓄電池11が満充電ではない(つまり、充電が可能な状態)ことを検出する。
 このため、電力管理装置9は、すべての直流電源装置6~6のBMU12~12に対して連結指示を示すコンタクト制御情報を出力し、かつすべての直流電源装置6~6の双方向DC/DCコンバータ14~14に対して充電指示を示す制御情報を出力する。この場合、電力管理装置9は、直流電源装置6~6のCC動作する双方向DC/DCコンバータ14~14に対しては、充電動作の際に各蓄電池11~11に供給する充電電流の共通の指定電流値(共通電流値)を制御情報に含めて出力する。
 電力管理装置9は、この指定電流値を次のようにして算出する。まず、総発電電力(W1+W2)についての余剰電力(=総発電電力(W1+W2)-総負荷電力(WLa+WLb)。つまり、差分電力)を算出し、この算出した余剰電力を計測されたバス電圧Vbsで除算することにより、直流給電システム1A全体での余剰電流(=余剰電力/バス電圧Vbs)を算出する。次に、一例として、充電する蓄電池11の総数(充電指示する双方向DC/DCコンバータ14の総数。この時点では、双方向DC/DCコンバータ14~14の個数n)でこの余剰電流を除算することにより、CC動作する(n-1)個の双方向DC/DCコンバータ14~14への制御情報に含める指定電流値を算出する。
 また、直流給電システム1A全体での余剰電流を双方向DC/DCコンバータ14~14の個数nで除算して得られた電流値を、CC動作する(n-1)個の双方向DC/DCコンバータ14~14への制御情報に含める共通の指定電流値としたことから、バス電圧Vbs×余剰電流/nに相当する電力がCV動作する1個の双方向DC/DCコンバータ14に割り当てられる。
 これにより、各直流電源装置6では、各コンタクタ13が連結状態に移行することから、蓄電池11が、充電動作するCV型の双方向DC/DCコンバータ14に連結状態のコンタクタ13を介して接続され、この結果、蓄電池11に対する定電圧充電が実行され、また蓄電池11~11が、充電動作するCC型の双方向DC/DCコンバータ14~14に連結状態のコンタクタ13~13を介して接続され、この結果、蓄電池11~11に対する同じ指定電流値での定電流充電が実行される。
 この場合、電力管理装置9は、各直流電源装置6のBMU12から周期Tで出力される電池情報に含まれる充電電圧Vbaが使用電圧範囲の上限値に達したか否か(または、電池情報に含まれるSOCが公称容量に達しか否か。つまり、蓄電池11が満充電状態になったか否か)を検出しつつ、満充電状態になったと判別したときには、その蓄電池11を含む直流電源装置6のBMU12に対して遮断指示を示すコンタクト制御情報を出力して、コンタクタ13を遮断状態に移行させることでこの蓄電池11を双方向DC/DCコンバータ14から切り離す。これにより、蓄電池11に対する過充電が防止される。
 また、電力管理装置9は、各蓄電池11~11に対する充電に際して、動作用電圧Vopの生成に用いられる充電電圧Vbaを出力する蓄電池11に対する充電を、他の蓄電池11~11に対する充電よりも優先的に実行する。この場合、直流給電システム1A全体での余剰電流に基づいてCC動作する双方向DC/DCコンバータ14~14への指定電流値を算出する際に、例えば、この余剰電流を各蓄電池11~11の個数nで除算して得られる電流値を平均電流値としたときに、この平均電流値よりも小さい電流値を双方向DC/DCコンバータ14~14への共通の指定電流値として決定する。これにより、CV動作する双方向DC/DCコンバータ14に割り当てられる電力を増加させることができるため、蓄電池11は、他の蓄電池11~11よりも多い電力で優先的に充電されて、その充電電圧Vbaが使用電圧範囲の上限値近傍になるように常時充電される。
 また、電力管理装置9は、このようにして優先的に充電していた蓄電池11の充電が完了した(蓄電池11が満充電状態になった)後の各周期Tでの各蓄電池11~11に対する充電に際しては、直流給電システム1A全体での余剰電流を双方向DC/DCコンバータ14~14の個数(n-1)で除算することにより、CC動作する(n-1)個の双方向DC/DCコンバータ14~14への制御情報に含める指定電流値を算出して、各蓄電池11~11に対する充電を継続する充放電制御処理を実行する。
 また、電力管理装置9は、この充放電制御処理の実行中において、上記したようにして算出したCC動作する双方向DC/DCコンバータ14~14への指定電流値に対して、電圧計測処理で計測したバス電圧Vbsに基づいて修正を加えて、最終的な指定電流値(実際に双方向DC/DCコンバータ14~14への制御情報に含める指定電流値)とすることにより、つまり、双方向DC/DCコンバータ14~14への指定電流値を制御することにより、バス電圧Vbsを所定の電圧範囲内に維持する。
 例えば、電力管理装置9は、計測しているバス電圧Vbsが上昇して所定の電圧範囲の中間値を上回ったときには、算出したCC動作する双方向DC/DCコンバータ14~14への指定電流値を増加させる修正を加えた電流値を、双方向DC/DCコンバータ14~14への最終的な指定電流値とする。これにより、直流バス2からCC動作する双方向DC/DCコンバータ14~14に供給される電力が増加することから、バス電圧Vbsの上昇が抑制される。一方、電力管理装置9は、計測しているバス電圧Vbsが低下して所定の電圧範囲の中間値を下回ったときには、算出したCC動作する双方向DC/DCコンバータ14~14への指定電流値を減少させる修正を加えた電流値を、双方向DC/DCコンバータ14~14への最終的な指定電流値とする。これにより、直流バス2からCC動作する双方向DC/DCコンバータ14~14に供給される電力が減少することから、バス電圧Vbsの低下が抑制される。このようにして、バス電圧Vbsは、所定の電圧範囲内に維持される。
 また、直流給電システム1Aでは、直流バス2のバス電圧Vbsに急激な変動(CC動作する双方向DC/DCコンバータ14~14への指定電流値に対する制御では低減し切れない電圧変動)が生じた場合であっても、蓄電池111に対する充電および蓄電池111からの放電が可能な状態においては、双方向DC/DCコンバータ14がCV方式で蓄電池111に対する充電または蓄電池111からの放電を実行して、バス電圧Vbsの急激な変動を低減する。
 上記したようにして、この直流給電システム1Aでは、最初の起動時や長期停止後の再起動時などにおいて、発電装置3aを一定期間だけ動作させてその発電電力W1を直流バス2に供給する構成のため、この一定期間において、直流バス2から各負荷機器71a,71bに対して十分な電力で負荷電圧VLa,VLbを供給しつつ、各直流電源装置6に含まれている蓄電池11を十分に充電(充電電圧Vbaが使用電圧範囲の上限値となる状態(満充電状態)に充電)することが可能となっている。この場合、電力管理装置9はCC動作する各双方向DC/DCコンバータ14~14に対して常に共通の指定電流値で充電動作させるように制御するため、各蓄電池11~11は、SOCが揃った状態で、満充電状態まで充電される。
 なお、発電装置3aを動作させているこの一定期間が終了する前に、各直流電源装置6の蓄電池11がすべて十分に充電されたときには、電力管理装置9は、上記の電力制御処理を第2コンバータ5に対して実行することで、総負荷電力(WLa+WLb)をより増加させ得る状態にして、蓄電池11の充電に割り当てられていた電力を負荷機器71に振り向けるようにしてもよいし、またすべての蓄電池11が十分に充電されたことを発電装置3aの設置場所に居るオペレータに報知する表示器などを設けて発電装置3aの停止を促すようにしてもよい。
 一定期間が終了した時点で、発電装置3aは停止される。これにより、この一定期間の終了後は、直流給電システム1Aは、発電装置3bだけが自然状態に応じて自動的に動作して発電する通常動作状態に移行する。
 この通常動作状態において直流給電システム1Aでは、電力管理装置9は、電圧計測処理の実行(バス電圧Vbsの計測)を継続しつつ、次のような充放電制御処理を実行している。
 まず、発電装置3bが発電状態となる自然状態のとき(本例では、発電装置3bが太陽光発電装置で構成されているため、昼間のとき)の充放電制御処理では、電力管理装置9は、まず、発電装置3bのパワーコンディショナ4bから新たな発電電力W2を取得したり、また負荷機器71a,71bの各DC/DCコンバータ5a,5bから新たな負荷電力WLa,WLbを取得したりする都度、総発電電力(この場合、発電電力W2のみである)および総負荷電力(WLa+WLb)を算出する。
 次いで、電力管理装置9は、算出した総発電電力(W2)と総負荷電力(WLa+WLb)とを比較して、総発電電力(W2)が総負荷電力(WLa+WLb)を上回るとき(例えば、日照量が多いため、発電装置3bの発電電力W2が大きいとき)には、余剰電力が生じるため(差分電力(=総発電電力(W2)-総負荷電力(WLa+WLb))が正となるため)、各直流電源装置6の蓄電池11への充電が可能な状態にあると判別する。
 この場合、電力管理装置9は、上記した発電装置3aの動作時での充放電制御処理と同じ内容で充放電制御処理を実行する。つまり、電力管理装置9は、CV動作する各双方向DC/DCコンバータ14に対して蓄電池11を優先的に充電するようにし、かつCC動作する各双方向DC/DCコンバータ14~14に対して常に共通の指定電流値で対応する蓄電池11~11を充電するように制御する。これにより、各蓄電池11~11は、SOCが揃った状態で充電される。また、電力管理装置9は、この充放電制御処理の実行中において、周期Tで算出したCC動作する双方向DC/DCコンバータ14~14への指定電流値に対して、電圧計測処理で計測したバス電圧Vbsに基づく修正を加えて、最終的な指定電流値とすることにより、バス電圧Vbsを所定の電圧範囲内に維持する。
 また、電力管理装置9は、充電動作中の直流電源装置6のBMU12から周期Tで出力される電池情報に含まれる充電電圧Vbaが使用電圧範囲の上限値に達したか否か(または、電池情報に含まれるSOCが公称容量に達しか否か。つまり、蓄電池11が満充電状態になったか否か)を検出しつつ、満充電状態になったと判別したときには、その蓄電池11を含む直流電源装置6のBMU12に対して遮断指示を示すコンタクト制御情報を出力して、コンタクタ13を遮断状態に移行させることでこの蓄電池11を双方向DC/DCコンバータ14から切り離す。これにより、蓄電池11に対する過充電が防止される。
 一方、電力管理装置9は、総発電電力(W2)と総負荷電力(WLa+WLb)との比較の結果、総発電電力(W2)が総負荷電力(WLa+WLb)を下回るとき(例えば、日照量が少ないため、発電装置3bの発電電力W2が小さいとき)には、総負荷電力(WLa+WLb)に関して不足電力が生じるため(差分電力(=総発電電力(W2)-総負荷電力(WLa+WLb))が負となるため))、各直流電源装置6の蓄電池11からの放電が必要な状態にあると判別する。この場合、電力管理装置9は、各直流電源装置6のBMU12から取得した電池情報に基づいて放電可能な蓄電池11を有する直流電源装置6を特定すると共に、特定した直流電源装置6のBMU12に対して連結指示を示すコンタクト制御情報を出力し、かつこの直流電源装置6の双方向DC/DCコンバータ14に対して放電指示を示す制御情報を出力する(放電動作を実行させる)。
 この場合、直流給電システム1Aでは、上記したように蓄電池11はその充電電圧Vbaが常時、使用電圧範囲の上限値近傍の電圧となるように充電される構成のため、電力管理装置9は、放電可能な蓄電池11を有する直流電源装置6として直流電源装置6を常に特定する。また、電力管理装置9は、放電可能な蓄電池11を有する直流電源装置6として、直流電源装置6~6のうちのいずれかの直流電源装置6が該当するときには、この直流電源装置6を放電可能な蓄電池11を有する直流電源装置6として特定する。本例では、各蓄電池11~11はSOCが揃った状態で充電される構成のため、電力管理装置9は、各蓄電池11~11を有する直流電源装置6~6のすべてを、放電可能な蓄電池11を有する直流電源装置6として特定する。また、電力管理装置9は、特定した直流電源装置6の中に直流電源装置6~6が含まれているときには、直流電源装置6に対して直流電源装置6~6を優先的に放電動作させる。以下、特定した直流電源装置6の中に直流電源装置6~6が含まれている例を挙げて説明する。
 この例では、電力管理装置9は、まず、直流電源装置6~6に放電動作を実行させるために、この直流電源装置6~6の各BMU12~12に対して連結指示を示すコンタクト制御情報を出力し、かつ各双方向DC/DCコンバータ14~14に対して放電指示を示す制御情報を出力する。この場合、電力管理装置9は、直流電源装置6~6の双方向DC/DCコンバータ14~14に対しては、放電動作の際に各蓄電池11~11から放電させる電流(放電電流)についての共通の指定電流値を制御情報に含めて出力する。これにより、直流電源装置6~6から直流バス2に上記の不足電力に相当する電力が供給されてる。したがって、各DC/DCコンバータ5a,5bは、対応する負荷機器71a,71bに対して、負荷電力WLa,WLbを継続して供給することが可能となる。
 電力管理装置9は、この指定電流値を次のようにして算出する。まず、総発電電力(W2)についての不足電力(=総負荷電力(WLa+WLb)-総発電電力(W2)。つまり、差分電力)を算出し、この算出した不足電力を計測されたバス電圧Vbsで除算することにより、直流給電システム1A全体での不足電流(=不足電力/バス電圧Vbs)を算出する。次に、この不足電流を双方向DC/DCコンバータ14~14の個数(n-1)で除算することにより、CC動作する(n-1)個の双方向DC/DCコンバータ14~14への制御情報に含める指定電流値を算出する。
 電力管理装置9は、直流電源装置6~6において上記の放電動作が継続して実行された結果、その蓄電池11~11の充電電圧Vbaが使用電圧範囲の下限値に達したことを、そのBMU12~12から取得した電池情報に基づいて検出したときには、この直流電源装置6~6のBMU12~12に対して遮断指示を示すコンタクト制御情報を出力する。この場合、電力管理装置9は、CC動作する各双方向DC/DCコンバータ14~14に対して常に共通の指定電流値で放電動作させるように制御するため、各蓄電池11~11は、SOCが揃った状態で放電される。したがって、蓄電池11~11の充電電圧Vbaはほぼ同じタイミングで使用電圧範囲の下限値に達することから、電力管理装置9は直流電源装置6~6のBMU12~12に対して遮断指示を示すコンタクト制御情報を同じタイミングで出力する。これにより、この直流電源装置6~6では、BMU12~12によってコンタクタ13~13が遮断状態に同じタイミングで移行させられることで、蓄電池11~11が双方向DC/DCコンバータ14~14から同じタイミングで切り離される(放電動作が同じタイミングで停止させられる)。このため、蓄電池11~11に対する過放電が防止される。
 電力管理装置9は、直流電源装置6~6に対して放電動作を停止させたときには、次に、直流電源装置6に放電動作を実行させる。この場合、電力管理装置9は、直流電源装置6のBMU12に対して連結指示を示すコンタクト制御情報を出力し、かつ双方向DC/DCコンバータ14に対して放電指示を示す制御情報を出力する。直流電源装置6では、BMU12が、電力管理装置9から取得した連結指示を示すコンタクト制御情報に基づいてコンタクタ13を連結状態に移行させることで、蓄電池11を双方向DC/DCコンバータ14に接続させる。また、電力管理装置9から取得した放電指示を示す制御情報に基づいて放電動作している双方向DC/DCコンバータ14は、蓄電池11の充電電圧Vbaを昇圧または降圧(電圧変換)して直流バス2に出力する(蓄電池11を放電する)。
 この場合、電力管理装置9は、計測しているバス電圧Vbsが上記した所定の電圧範囲内に維持されるように、直流電源装置6に対して放電動作を実行させる時間を制御して、直流電源装置6から直流バス2に供給される放電電力を制御する。
 電力管理装置9は、直流電源装置6において上記の放電動作が継続して実行された結果、その蓄電池11の充電電圧Vbaが低下して使用電圧範囲内に規定された電圧閾値に達したことを、BMU12から取得した電池情報に基づいて検出したときには、直流電源装置6のBMU12に対して遮断指示を示すコンタクト制御情報を出力する。これにより、直流電源装置6では、BMU12によってコンタクタ13が遮断状態に移行させられることで、蓄電池11が双方向DC/DCコンバータ14から切り離される(放電動作が停止させられる)。このため、蓄電池11の充電電圧Vbaが電圧閾値を下回る事態が防止されて、DC/DCコンバータ7が、この蓄電池11の充電電圧Vbaに基づいて、十分に長い期間に亘って動作用電圧Vopを生成して出力することが可能となっている。
 これにより、直流電源装置6から直流バス2への電力供給がすべて停止される。直流給電システム1Aでは、総発電電力(W2)が総負荷電力(WLa+WLb)を下回る状態で、DC/DCコンバータ5a,5bが上記動作をそのまま継続したときには、バス電圧Vbsが低下して、所定の電圧範囲(本例ではDC350V以上DC400V以下の範囲)の下限電圧値(DC350V)を下回る恐れがある。このため、電力管理装置9は、計測しているバス電圧Vbsが上記した所定の電圧範囲(DC350V以上DC400V以下の電圧範囲)内に維持されるように、第2コンバータ5(本例では、DC/DCコンバータ5a,5bの少なくとも一方)に対して設定する上限電流値を変更して、総負荷電力(WLa+WLb)を減少させる(発電電力W2が増加したときには、増加させる)電力制御処理を実行する。
 次に、発電装置3bが非発電状態(発電停止状態)となる自然状態のとき(本例では、発電装置3bが太陽光発電装置で構成されているため、夜間のとき)の充放電制御処理について説明する。
 この充放電制御処理では、総発電電力(W2)はほぼゼロであることから、電力管理装置9は、上記した総発電電力(W2)が総負荷電力(WLa+WLb)を下回るときと同じ動作を実行する。したがって、電力管理装置9は、まず、各直流電源装置6のBMU12から取得した電池情報に基づいて放電可能な蓄電池11を有する直流電源装置6が存在するか否かを検出して、存在するときには、この直流電源装置6を特定して放電動作させることにより、DC/DCコンバータ5a,5bにおいて対応する負荷機器71a,71bへの負荷電圧VLa,VLbを生成可能な状態とする。
 その後、直流電源装置6~6は、その蓄電池11~11の充電電圧Vbaが使用電圧範囲の下限値に達したときに、また、直流電源装置6は、その蓄電池11の充電電圧Vbaが電圧閾値に達したときに、電力管理装置9からの遮断指示を示すコンタクト制御情報に基づいてそれぞれのコンタクタ13を遮断状態に移行させることで、放電動作を停止する。この場合、直流バス2への電力の供給源が存在しない状態になるため、電力管理装置9は、すべての直流電源装置6の双方向DC/DCコンバータ14に対して停止指示を示す制御情報を出力して、双方向DC/DCコンバータ14の動作を停止させることで、直流給電システム1Aをスリープ状態(各蓄電池11に充電されている電力の直流給電システム1A内での消費が最も少ない状態)に移行させる。
 なお、本例の直流給電システム1Aでは、すべての直流電源装置6において、蓄電池11と双方向DC/DCコンバータ14との間にコンタクタ13が配設されて、上記のような直流バス2への電力の供給源が存在しない状態になったときには、すべてのコンタクタ13を遮断状態に移行させて、蓄電池11と双方向DC/DCコンバータ14とを遮断する(切り離す)構成が採用されている。このため、本例の直流給電システム1Aでは、さらに双方向DC/DCコンバータ14の動作を停止させるまでもなく、すべてのコンタクタ13を遮断状態に移行させた時点で、実質的に上記のスリープ状態に移行する。ただし、コンタクタ13の無い構成の直流電源装置(蓄電池11と双方向DC/DCコンバータ14とが直結された構成の直流電源装置)も考えられ、この構成の直流電源装置を備えた直流給電システムでは、双方向DC/DCコンバータ14の動作を停止させることで、スリープ状態に移行させる。
 このスリープ状態への移行後において、この直流給電システム1Aでは、蓄電池11と双方向DC/DCコンバータ14とがコンタクタ13で遮断された(切り離された)状態となっているため、また、上記したコンタクタ13の無い構成の直流電源装置を備えた直流給電システムでは、蓄電池11に接続されている双方向DC/DCコンバータ14が停止させられているため、蓄電池11の充電電力は、動作用電圧Vopを生成して出力しているDC/DCコンバータ7だけに供給される構成となっている。
 したがって、このようにしてスリープ状態への移行が可能な直流給電システム(直流給電システム1Aを含む)では、DC/DCコンバータ7での充電電圧Vbaから動作用電圧Vopへの変換効率が良好で、かつ動作用電圧Vopの供給を受けて動作状態を維持する各直流電源装置6のBMU12およびコンタクタ13、並びに電力管理装置9での消費電力がいずれも小さいときには、蓄電池11の充電電力が消費されることによって充電電圧Vbaが電圧閾値から使用電圧範囲の下限値まで低下するまでの時間(つまり、BMU12、コンタクタ13、および電力管理装置9の動作時間)を十分に長くすることができる。これにより、この直流給電システム(直流給電システム1Aを含む)では、発電装置3bが発電を再開するまで、各直流電源装置6のBMU12およびコンタクタ13、並びに電力管理装置9を動作状態に維持し得ることから、発電装置3bによる発電の再開時において、上記したように電力管理装置9などが動作して、各蓄電池11への充電動作および各負荷機器71a,71bへの負荷電圧VLa,VLbの供給動作が可能となっている。
 また、電力管理装置9は、総発電電力(W2)と総負荷電力(WLa+WLb)とを比較して、総発電電力(W2)が総負荷電力(WLa+WLb)と一致するときには、各直流電源装置6の蓄電池11への充電は不可であり、また各直流電源装置6の蓄電池11からの放電も不要であると判別して、各直流電源装置6の蓄電池11に対する充放電は実行しない。
 このように、この直流給電システム1Aでは、主として直流バス2に電力を供給する蓄電池11として機能する蓄電池11~11を充放電させるための双方向DC/DCコンバータとして、CC動作する(定電流方式の)双方向DC/DCコンバータ14~14を備え、電力管理装置9は、双方向DC/DCコンバータ14~14に対して共通の指定電流値で対応する蓄電池11~11を充放電させる。
 したがって、この直流給電システム1Aによれば、各蓄電池11~11をSOC(電池残量)の揃った状態で充放電させることができることから、各蓄電池11~11に対する充放電が繰り返された際にも、SOCに差が生じることに起因して充放電サイクル数に差が生じる事態の発生を回避することができ、その結果として、各蓄電池11~11の電池寿命にばらつきが生じることを大幅に低減することができる。
 また、この直流給電システム1Aでは、蓄電池111と、蓄電池111および直流バス2の間に接続されて、蓄電池11を充放電させるための双方向DC/DCコンバータとしてCV動作する(定電圧方式の)双方向DC/DCコンバータ14とを備えている。したがって、この直流給電システム1Aによれば、直流バス2のバス電圧Vbsに急激な変動(CC動作する双方向DC/DCコンバータ14~14に対する制御では低減し切れない変動)が生じた場合であっても、蓄電池111に対する充電および蓄電池111からの放電が可能な状態においては、双方向DC/DCコンバータ14がCV方式で蓄電池111に対する充電または蓄電池111からの放電を実行して、バス電圧Vbsの急激な変動を低減することができる。
 なお、上記した直流給電システム1Aでは、複数の直流電源装置6~6のうちの1つの直流電源装置6を、CV動作する双方向DC/DCコンバータ14を備えた構成とし、残りの直流電源装置6~6を、CC動作する双方向DC/DCコンバータ14~14を備えた構成としたが、この構成に限定されるものではない。例えば、図2に示す構成の直流給電システム1Bのように、複数の直流電源装置6のすべてを、CC動作する双方向DC/DCコンバータ14を備えた構成とし、かつバス電圧Vbsに生じた急激な変動を低減するための手段として直流バス2にコンデンサ21を接続する構成を採用することもできる。
 以下、直流給電システム1Bについて説明する。なお、直流給電システム1Aと同一の構成については同一の符号を付して重複する説明を省略し、相違する構成を主に説明する。また、理解の容易のため、直流給電システム1Bでは、直流給電システム1Aに含まれている直流電源装置6を省くことで、配設されたすべての直流電源装置6(直流電源装置6~6)をCC動作する双方向DC/DCコンバータ14とする構成を採用している。
 最初に、直流給電システムとしての直流給電システム1Bの構成について説明する。
 直流給電システム1Bは、図2に示すように、直流バス2、1または2以上の発電装置3(本例では一例として2つの発電装置3a,3b)、発電装置3に対応して配設された第1コンバータ4としての2つのパワーコンディショナ4a,4b、直流給電システム1Bに接続される負荷機器71(本例では一例として2つの負荷機器71a,71b)に対応して配設された第2コンバータ5としての2つの第2コンバータ5a,5b、複数の直流電源装置6(直流電源装置6,6,・・・,6)、第3コンバータ7、電力管理装置9およびコンデンサ21を備え、発電装置3で発電された電力に基づいて直流電圧を生成して、負荷機器71a,71bに供給可能な独立型の直流給電システムとして構成されている。
 直流電源装置6は、直流電源装置6,6,・・・,6の(n-1)個配設されている。各直流電源装置6~6は、蓄電池11~11、BMU12~12、コンタクタ13~13および双方向DC/DCコンバータ14~14をそれぞれ備えて構成されている。
 また、直流電源装置6は、上記した直流給電システム1Aにおける直流電源装置6と同様の構成に構成されて、その蓄電池11が第3コンバータ7に接続されている。これにより、この1つの蓄電池11は、直流バス2への電力の供給のためにも使用されるものの、各直流電源装置6~6のBMU12およびコンタクタ13と、電力管理装置9との動作のための電力(動作用電圧Vop)の供給を行う蓄電池として主として機能する。このため、蓄電池11は、スリープ状態、および蓄電池11に対応するコンタクタ13が遮断状態に移行した状態の2つの状態を除く他の動作状態において、その充電電圧Vbaがその使用電圧範囲の上限値を下回り、かつ下限値を上回る予め規定された電圧閾値以上となるように、電力管理装置9によって充放電制御される。これにより、蓄電池11は、他の蓄電池11~11と比較して一般的に充放電回数が多くなることから、充放電回数が多くなった場合でも劣化の少ない(寿命に与える影響の少ない)高価な蓄電池(例えば、リチウムイオン電池やNAS電池(ナトリウム硫黄電池)など)で構成されている。なお、直流給電システム1Bの装置コストの上昇を抑えるためには、この高価な蓄電池は本例のように最小限の数(1つの蓄電池11だけ)とするのが好ましいが、許容される範囲内で、個数を増やすこともできる。
 一方、蓄電池11以外の蓄電池11~11は、主として直流バス2への電力の供給のために使用され、個数も多い。このため、蓄電池11~11は、一般的に、大容量であって、かつ安価な鉛蓄電池やニッケル水素電池などの蓄電池であって、同種で、かつ同容量の蓄電池で構成されている。
 双方向DC/DCコンバータ14~14は、電力管理装置9から受信した制御情報が充電指示のときには、他方の一対の入出力端子から入力したバス電圧Vbsを昇圧または降圧(電圧変換)して一方の一対の入出力端子から蓄電池11に出力することにより、この制御情報に含まれる指定電流値で充電電流を蓄電池11に供給して、蓄電池11を充電する(定電流での充電動作を実行する)。また、双方向DC/DCコンバータ14~14は、受信した制御情報が放電指示のときには、一方の一対の入出力端子から入力した蓄電池11の充電電圧Vbaを昇圧または降圧(電圧変換)して他方の一対の入出力端子から直流バス2に出力することにより、この制御情報に含まれる指定電流値で放電電流を蓄電池11から出力させる(蓄電池11を放電させる(定電流での放電動作を実行する))。
 コンデンサ21は、直流バス2に直接接続されている。この構成により、コンデンサ21は、バス電圧Vbsに常時充電されている。
 次に、図2に示した直流給電システム1Bの動作について説明する。なお、直流給電システム1Aの動作と同じ動作については説明を省略し、異なる動作、つまり、直流電源装置6の動作、およびコンデンサ21の動作について主として説明する。また、理解の容易のため、同種で、かつ同容量の蓄電池で構成される蓄電池11~11については、それぞれのSOCが揃えられているものとする。
 まず、発電装置3aが動作する一定期間の各構成要素の動作について説明する。
 この発電装置3aの動作時の充放電制御処理では、総発電電力(W1+W2)は基準電力以上となっているため、電力管理装置9は、各DC/DCコンバータ5a,5bに対して、対応する負荷機器71a,71bで使用される負荷電圧VLa,VLbとなるようにバス電圧Vbsを変換して出力させる制御を実行する。これにより、負荷機器71a,71bは動作する。
 また、総発電電力(W1+W2)は総負荷電力(WLa+WLb)を上回るため、電力管理装置9は、余剰電力(差分電力=総発電電力(W1+W2)-総負荷電力(WLa+WLb))で、各直流電源装置6の蓄電池11への充電を実行する。この場合、電力管理装置9は、直流電源装置6~6のCC動作する双方向DC/DCコンバータ14~14に対して、充電動作の際に各蓄電池11~11に供給する充電電流の共通の指定電流値(共通電流値)を制御情報に含めて出力する。
 電力管理装置9は、この指定電流値を次のようにして算出する。まず、この余剰電流を双方向DC/DCコンバータ14~14の個数(n-1)で除算して平均電流値を算出する。次に、この平均電流値よりも大きな電流値を、優先的に充電する蓄電池11に対応する双方向DC/DCコンバータ14への指定電流値として決定する。続いて、余剰電流からこの双方向DC/DCコンバータ14への指定電流値を減算した残りの余剰電流を、残りの双方向DC/DCコンバータ14~14の個数(n-2)で除算して、蓄電池11~11に対応する双方向DC/DCコンバータ14~14への指定電流値として決定する。これにより、蓄電池11は、他の蓄電池11~11よりも優先的に充電される。
 この場合、電力管理装置9は、各直流電源装置6のBMU12から周期Tで出力される電池情報に含まれる充電電圧Vbaが使用電圧範囲の上限値に達したか否か(または、電池情報に含まれるSOCが公称容量に達しか否か。つまり、蓄電池11が満充電状態になったか否か)を検出しつつ、満充電状態になったと判別したときには、その蓄電池11を含む直流電源装置6のBMU12に対して遮断指示を示すコンタクト制御情報を出力して、コンタクタ13を遮断状態に移行させることでこの蓄電池11を双方向DC/DCコンバータ14から切り離す。これにより、蓄電池11に対する過充電が防止される。
 上記のようにして優先的に充電された蓄電池11は、最初に満充電状態になる(充電が完了する)。この場合、電力管理装置9は、蓄電池11の充電が完了した後の各周期Tでの各蓄電池11~11に対する充電に際しては、直流給電システム1B全体での余剰電流を双方向DC/DCコンバータ14~14の個数(n-2)で除算することにより、双方向DC/DCコンバータ14~14への制御情報に含める指定電流値を算出して、各蓄電池11~11に対する充電を継続する充放電制御処理を実行する。
 また、電力管理装置9は、充放電制御処理の実行中において、上記したようにして算出した双方向DC/DCコンバータ14~14への指定電流値に対して、電圧計測処理で計測したバス電圧Vbsに基づいて修正を加えて、最終的な指定電流値(実際に双方向DC/DCコンバータ14~14への制御情報に含める指定電流値。双方向DC/DCコンバータ14~14への指定電流値については共通の電流値)とすることにより、バス電圧Vbsを所定の電圧範囲内に維持する。
 蓄電池11~11は、対応する双方向DC/DCコンバータ14~14によって共通の指定電流値で充電されるため、SOCが揃った状態で、満充電状態まで充電される。
 次いで、発電装置3aが停止し、かつ発電装置3bが発電状態となるとき(昼間のとき)の動作について説明する。
 このときの充放電制御処理では、電力管理装置9は、総発電電力(W2)が総負荷電力(WLa+WLb)を上回るときには、各直流電源装置6の蓄電池11への充電が可能な状態にあると判別して、上記した発電装置3aの動作時での充放電制御処理と同じ内容で充放電制御処理を実行する。
 これにより、各蓄電池11~11は、SOCが揃った状態で充電される。また、電力管理装置9は、この充放電制御処理の実行中において、算出したCC動作する双方向DC/DCコンバータ14~14への指定電流値に対して、電圧計測処理で計測したバス電圧Vbsに基づいて修正を加えて、最終的な指定電流値とすることにより、バス電圧Vbsを所定の電圧範囲内に維持する。
 一方、電力管理装置9は、総発電電力(W2)が総負荷電力(WLa+WLb)を下回り、総負荷電力(WLa+WLb)に関して不足電力が生じる場合には、各直流電源装置6の蓄電池11からの放電を実行する。この場合、電力管理装置9は、各直流電源装置6のBMU12から取得した電池情報に基づいて放電可能な蓄電池11を有する直流電源装置6を特定すると共に、特定した直流電源装置6のBMU12に対して連結指示を示すコンタクト制御情報を出力し、かつこの直流電源装置6の双方向DC/DCコンバータ14に対して放電指示を示す制御情報を出力する(放電動作を実行させる)。
 この場合、直流給電システム1Bでは、上記したように蓄電池11はその充電電圧Vbaが常時、使用電圧範囲の上限値近傍の電圧となるように充電される構成のため、電力管理装置9は、放電可能な蓄電池11を有する直流電源装置6として直流電源装置6を常に特定する。また、本例では、各蓄電池11~11はSOCが揃った状態で充電される構成のため、電力管理装置9は、各蓄電池11~11を有する直流電源装置6~6のすべてを、放電可能な蓄電池11を有する直流電源装置6として特定する。
 この例では、電力管理装置9は、まず、直流電源装置6~6に放電動作を実行させるために、この直流電源装置6~6の各BMU12~12に対して連結指示を示すコンタクト制御情報を出力し、かつ各双方向DC/DCコンバータ14~14に対して放電指示を示す制御情報を出力する。この場合、電力管理装置9は、双方向DC/DCコンバータ14~14に対しては、放電電流についての共通の指定電流値を制御情報に含めて出力する。これにより、直流電源装置6~6から直流バス2に上記の不足電力に相当する電力が供給される。したがって、各DC/DCコンバータ5a,5bは、対応する負荷機器71a,71bに対して、負荷電力WLa,WLbを継続して供給することが可能となる。
 電力管理装置9は、この指定電流値を次のようにして算出する。まず、不足電力(=総負荷電力(WLa+WLb)-総発電電力(W2)。つまり、差分電力)を算出し、この不足電力をバス電圧Vbsで除算することにより、直流給電システム1B全体での不足電流(=不足電力/バス電圧Vbs)を算出する。次に、この不足電流を双方向DC/DCコンバータ14~14の個数(n-2)で除算することにより、(n-2)個の双方向DC/DCコンバータ14~14への制御情報に含める指定電流値を算出する。
 電力管理装置9は、直流電源装置6~6において上記の放電動作が継続して実行された結果、その蓄電池11~11の充電電圧Vbaが使用電圧範囲の下限値に達したことを、そのBMU12~12から取得した電池情報に基づいて検出したときには、この直流電源装置6~6のBMU12~12に対して遮断指示を示すコンタクト制御情報を出力する。これにより、蓄電池11~11に対する過放電が防止される。この場合、電力管理装置9は、CC動作する各双方向DC/DCコンバータ14~14に対して常に共通の指定電流値で放電動作させるように制御するため、各蓄電池11~11は、SOCが揃った状態に維持される。
 電力管理装置9は、直流電源装置6~6に対して放電動作を停止させたときには、次に、直流電源装置6に放電動作を実行させる。この場合、電力管理装置9は、直流電源装置6において放電動作が継続して実行された結果、その蓄電池11の充電電圧Vbaが低下して使用電圧範囲内に規定された電圧閾値に達したことを、BMU12から取得した電池情報に基づいて検出したときには、コンタクタ13を遮断状態に移行させて、蓄電池11が双方向DC/DCコンバータ14から切り離すことで、蓄電池11の充電電圧Vbaが電圧閾値を下回る事態を防止する。
 また、電力管理装置9は、この充放電制御処理の実行中において、上記したようにして算出したCC動作する双方向DC/DCコンバータ14~14への指定電流値に対して、電圧計測処理で計測したバス電圧Vbsに基づいて修正を加えて、最終的な指定電流値(実際に双方向DC/DCコンバータ14~14への制御情報に含める指定電流値)とすることにより、つまり、双方向DC/DCコンバータ14~14への指定電流値を制御することにより、バス電圧Vbsを所定の電圧範囲内に維持する。
 また、直流給電システム1Bでは、直流バス2のバス電圧Vbsに急激な変動(CC動作する双方向DC/DCコンバータ14~14への指定電流値に対する制御では低減し切れない電圧変動)が生じた場合であっても、直流バス2に接続されているコンデンサ21がこの急激な変動を低減する。
 続いて、発電装置3bが非発電状態(発電停止状態)となる自然状態のとき(本例では、発電装置3bが太陽光発電装置で構成されているため、夜間のとき)の充放電制御処理について説明する。
 この充放電制御処理では、総発電電力(W2)はほぼゼロであることから、電力管理装置9は、上記した総発電電力(W2)が総負荷電力(WLa+WLb)を下回るときと同じ動作を実行して、特定した直流電源装置6を放電動作させることにより、DC/DCコンバータ5a,5bにおいて対応する負荷機器71a,71bへの負荷電圧VLa,VLbを生成可能な状態とする。
 その後、直流電源装置6~6は、その蓄電池11~11の充電電圧Vbaが使用電圧範囲の下限値に達したときに、また直流電源装置6は、その蓄電池11の充電電圧Vbaが電圧閾値に達したときに、電力管理装置9からの遮断指示を示すコンタクト制御情報に基づいてそれぞれのコンタクタ13を遮断状態に移行させることで、放電動作を停止する。この場合、直流バス2への電力の供給源が存在しない状態になるため、電力管理装置9は、直流給電システム1Aでの動作と同様にして、直流給電システム1Bをスリープ状態に移行させる。
 この直流給電システム1Bでも、主として直流バス2に電力を供給する蓄電池11として機能する蓄電池11~11を充放電させるための双方向DC/DCコンバータとしてCC動作する双方向DC/DCコンバータ14~14を備え、電力管理装置9は、双方向DC/DCコンバータ14~14に対して共通の指定電流値で対応する蓄電池11~11を充放電させる。
 したがって、この直流給電システム1Bによっても、各蓄電池11~11をSOC(電池残量)の揃った状態で充放電させることができることから、各蓄電池11~11に対する充放電が繰り返された際にも、SOCに差が生じることに起因して充放電サイクル数に差が生じる事態の発生を回避することができ、その結果として各蓄電池11~11の電池寿命にばらつきが生じることを大幅に低減することができる。
 また、この直流給電システム1Bによれば、直流バス2にコンデンサ21が接続されているため、直流バス2のバス電圧Vbsに急激な変動(CC動作する双方向DC/DCコンバータ14~14に対する制御では低減し切れない変動)が生じた場合であっても、コンデンサ21が蓄電している電力を直流バス2に放電するので、バス電圧Vbsの急激な変動を低減することができる。
 また、理解の容易のため、主として直流バス2への電力の供給のために使用される同種で、かつ同容量の蓄電池(直流給電システム1Aでは蓄電池11~11、また直流給電システム1Bでは蓄電池11~11)については、それぞれのSOCが揃った状態から充放電される例を挙げて説明したが、それぞれのSOCが揃っていない状態から充放電される場合であっても、共通の指定電流値で充放電されるため、これらの蓄電池(直流給電システム1Aでは蓄電池11~11、また直流給電システム1Bでは蓄電池11~11)の電池寿命にばらつきが生じることを十分に低減することができる。
 また、上記の直流給電システム1A,1Bでは、蓄電池11や蓄電池11の充電電力に基づいて動作して、BMU12、コンタクタ13および電力管理装置9へ動作用電圧Vopを供給するDC/DCコンバータ7を備える構成を採用しているが、これに限定されるものではない。例えば、発電装置3bが発電を停止してから発電を再開するまでの間に、直流電源装置6によって直流バス2のバス電圧Vbsを所定の電圧範囲内に十分に維持し得る構成のとき(具体的には、各蓄電池11の容量が十分に大きく、充電電圧Vbaが使用電圧範囲の下限値を上回ることのない構成のとき)には、BMU12およびコンタクタ13は、対応する蓄電池11の充電電圧Vbaで動作し、また電力管理装置9は、各蓄電池11のうちの少なくとも1つの蓄電池11の充電電圧Vbaで動作する構成として、DC/DCコンバータ7の配設を省略することもできる。
 本願発明によれば、蓄電池の充放電サイクル数に差が生じる事態の発生に起因する蓄電池の劣化の進行を遅くすることができるため、本発明は、蓄電池を必須とする独立型の直流給電システムに広く適用することができる。
   1A,1B  直流給電システム
    2 直流バス
   3a,3b 発電装置
   4a,4b 第1コンバータ
   5a,5b 第2コンバータ
    9 電力管理装置
  11~11 蓄電池
  14~14 双方向DC/DCコンバータ
  71,71 負荷機器
   W1,W2 発電電力
  Wla,Wlb 負荷電力

Claims (3)

  1.  商用電源に接続されない独立型の直流給電システムであって、
     直流給電の母線となる直流バスと、
     発電装置と、
     前記発電装置の発電電力を前記直流バスに供給する第1コンバータと、
     前記直流バスに供給されている直流電圧を電圧変換して負荷機器に供給する第2コンバータと、
     複数の第1蓄電池と、
     前記複数の第1蓄電池の各々と前記直流バスとの間に接続されて、当該直流バスに供給されている直流電圧と当該第1蓄電池の直流電圧とを双方向に電圧変換して、当該直流バスから当該第1蓄電池へ、または当該第1蓄電池から当該直流バスへ直流定電流を供給する定電流方式の複数の第1双方向コンバータと、
     制御部とを備え、
     前記制御部は、前記発電装置での前記発電電力と前記第2コンバータから前記負荷機器に供給されている負荷電力とを比較して、
     当該発電電力が当該負荷電力を上回るときには、前記各第1双方向コンバータに対して当該発電電力および当該負荷電力の差分電力と前記直流バスの前記直流電圧とに基づく共通電流値で対応する前記第1蓄電池に前記直流定電流を供給させて当該第1蓄電池を充電させ、
     当該発電電力が当該負荷電力を下回るときには、前記各第1双方向コンバータに対して前記差分電力と前記直流バスの前記直流電圧とに基づく共通電流値で前記対応する第1蓄電池から前記直流バスに前記直流定電流を供給させて当該第1蓄電池を放電させる直流給電システム。
  2.  第2蓄電池と、
     前記第2蓄電池および前記直流バスの間に接続されて、当該直流バスに供給されている前記直流電圧と当該第2蓄電池の直流電圧とを双方向に電圧変換して、当該直流バスに供給されている当該直流電圧が予め設定された電圧を下回るときには当該第2蓄電池から当該直流バスへ、また当該直流バスに供給されている当該直流電圧が予め設定された電圧を上回るときには当該直流バスから当該第2蓄電池へ供給する定電圧方式の第2双方向コンバータとを備えている請求項1記載の直流給電システム。
  3.  前記直流バスに接続されて当該直流バスの前記直流電圧で充電されるコンデンサを備えている請求項1記載の直流給電システム。
PCT/JP2017/042124 2017-11-24 2017-11-24 直流給電システム WO2019102565A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042124 WO2019102565A1 (ja) 2017-11-24 2017-11-24 直流給電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042124 WO2019102565A1 (ja) 2017-11-24 2017-11-24 直流給電システム

Publications (1)

Publication Number Publication Date
WO2019102565A1 true WO2019102565A1 (ja) 2019-05-31

Family

ID=66630946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042124 WO2019102565A1 (ja) 2017-11-24 2017-11-24 直流給電システム

Country Status (1)

Country Link
WO (1) WO2019102565A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113424388A (zh) * 2020-06-17 2021-09-21 华为技术有限公司 电力储能系统以及储能供电系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330554A (ja) * 2001-04-27 2002-11-15 Kobelco Contstruction Machinery Ltd ハイブリッド車両の電力制御装置および当該電力制御装置を備えたハイブリッド建設機械
WO2012032776A1 (ja) * 2010-09-10 2012-03-15 パナソニック株式会社 電力制御装置、電力制御方法、及び電力供給システム
JP2012205488A (ja) * 2011-03-28 2012-10-22 Mitsubishi Heavy Ind Ltd 電力貯蔵システム
JP2013208001A (ja) * 2012-03-29 2013-10-07 Honda Motor Co Ltd 燃料電池車両
JP2014207790A (ja) * 2013-04-12 2014-10-30 パナソニック株式会社 蓄電池の管理システム及び蓄電池の管理方法
JP2017189005A (ja) * 2016-04-05 2017-10-12 オムロン株式会社 蓄電装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330554A (ja) * 2001-04-27 2002-11-15 Kobelco Contstruction Machinery Ltd ハイブリッド車両の電力制御装置および当該電力制御装置を備えたハイブリッド建設機械
WO2012032776A1 (ja) * 2010-09-10 2012-03-15 パナソニック株式会社 電力制御装置、電力制御方法、及び電力供給システム
JP2012205488A (ja) * 2011-03-28 2012-10-22 Mitsubishi Heavy Ind Ltd 電力貯蔵システム
JP2013208001A (ja) * 2012-03-29 2013-10-07 Honda Motor Co Ltd 燃料電池車両
JP2014207790A (ja) * 2013-04-12 2014-10-30 パナソニック株式会社 蓄電池の管理システム及び蓄電池の管理方法
JP2017189005A (ja) * 2016-04-05 2017-10-12 オムロン株式会社 蓄電装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113424388A (zh) * 2020-06-17 2021-09-21 华为技术有限公司 电力储能系统以及储能供电系统
US11749995B2 (en) 2020-06-17 2023-09-05 Huawei Digital Power Technologies Co., Ltd. Electrical energy storage system and energy storage system

Similar Documents

Publication Publication Date Title
US10464441B2 (en) Charging facility and energy management method for charging facility
WO2019145997A1 (ja) 直流給電システム
EP2587623B1 (en) Dc power distribution system
WO2019145999A1 (ja) 直流給電システム
US20130187466A1 (en) Power management system
WO2019155507A1 (ja) 直流給電システム
US9203247B2 (en) Power storage unit, correction method for capacity values of storage batteries, and power storage system
US9641005B2 (en) Electric power supply system
US20140021925A1 (en) Battery power supply apparatus and battery power supply system
JP7168438B2 (ja) 電力供給システムおよび電力供給方法
JP2015195674A (ja) 蓄電池集合体制御システム
JP2013176282A (ja) 発電設備及び電力貯蔵装置を備えた発電システム及びその制御方法並びにプログラム
KR20180014957A (ko) 배터리 팩 및 이를 포함하는 에너지 저장 시스템
KR101380530B1 (ko) 계통 연계형 에너지 저장 시스템
WO2013105561A1 (ja) 充放電制御装置、蓄電システム、電力供給システム、および、充放電制御方法
JP2021093788A (ja) 充電装置及び充電方法
WO2019163008A1 (ja) 直流給電システム
WO2019102565A1 (ja) 直流給電システム
JP6795082B2 (ja) 直流給電システム
JP6677186B2 (ja) 直流給電システム
WO2019077644A1 (ja) 直流給電システム
JP2008301648A (ja) 電源システム
WO2019073508A1 (ja) 直流給電システム
JP2010252552A (ja) 放電器、放電方法および直流電源システム
JP5237161B2 (ja) 直流電源システムおよびその放電制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP