WO2019101211A1 - 一种通信方法、通信节点和系统 - Google Patents

一种通信方法、通信节点和系统 Download PDF

Info

Publication number
WO2019101211A1
WO2019101211A1 PCT/CN2018/117607 CN2018117607W WO2019101211A1 WO 2019101211 A1 WO2019101211 A1 WO 2019101211A1 CN 2018117607 W CN2018117607 W CN 2018117607W WO 2019101211 A1 WO2019101211 A1 WO 2019101211A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
processing
data
node
layer
Prior art date
Application number
PCT/CN2018/117607
Other languages
English (en)
French (fr)
Inventor
朱元萍
戴明增
刘菁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18881593.0A priority Critical patent/EP3706328A4/en
Publication of WO2019101211A1 publication Critical patent/WO2019101211A1/zh
Priority to US16/883,176 priority patent/US11483058B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15507Relay station based processing for cell extension or control of coverage area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/323Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the physical layer [OSI layer 1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/18Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals

Definitions

  • the invention relates to the field of communication technologies, and in particular, to a communication method, a communication node and a system.
  • a third generation partnership project (3GPP) defines a relay transmission scheme of a radio access network, which is a radio relay as shown in FIG. 1 according to the definition of Release 10 (R10) of 3GPP.
  • the communication system 100 includes: user equipment (UE), a relay node (RN), a donor base station (Donor eNodeB, DeNB), and a serving gateway (SGW)/packet data network gateway (packet data network).
  • the UE has a protocol stack including: a physical layer (PHY), a media access control layer (MAC), and a radio link control layer (RLC), Packet data convergence protocol layer (PDCP), internet protocol layer (IP), and transmission control protocol (TCP)/user datagram protocol layer , UDP) to support the data transfer required by the upper application (Application);
  • the RN is almost complete Station capability
  • the protocol stack configured on the interface between the RN and the DeNB includes: PHY, MAC, RLC, PDCP, IP, UDP, and GPRS tunneling protocol-user plane (GTP-U)
  • the protocol stack configured on the interface between the RN and the UE includes: PHY, MAC, RLC, and PDCP;
  • the DeNB is a base station that provides services for the RN, and provides an agent for the related functions on the S1 and X2 interfaces (S1) /X2proxy), the protocol stack configured by the DeNB on the interface with the
  • the UE and the RN perform communication interaction through the Uu interface
  • the RN and the DeNB perform communication interaction through the Un interface
  • the DeNB communicates with the SGW/PGW through the S1 interface.
  • the UE accesses the RN through the Uu interface
  • the UE Establishing an evolved packet system (EPS) bearer with the PGW, corresponding to the EPS bearer, establishing a GTP tunnel corresponding to the S1 interface between the DeNB and the SGW/PGW, and the Un between the RN and the DeNB
  • EPS evolved packet system
  • the interface also has a GTP tunnel.
  • the GTP tunnel established by the Un interface has a corresponding relationship with the GTP tunnel established by the S1 interface.
  • each transport segment can find the correct one by using the bearer identifier and/or the tunnel identifier of the data packet.
  • One hop node The system 100 defined by the 3GPP R10 currently supports only the scenario of the single-hop relay.
  • the protocol stack of the Un interface between the DeNB and the RN needs to be decapsulated (the protocol stack sublayer involved in the processing includes : PHY, MAC, RLC, PDCP, IP, UDP, and GTP-U), and then re-pass the Uu interface air interface protocol stack processing and encapsulation (the protocol stack sub-layers involved in processing include: PHY, MAC, RLC, and PDCP)
  • the RN sends the signal to the UE. If the relay transmission mode is applied to the multi-hop relay scenario, the end-to-end transmission delay of the data packet will be large.
  • the present application designs a new relay transmission scheme, which simplifies the processing of data packets by the RN node, reduces the processing delay of the data packets at the intermediate nodes, and provides end-to-end transmission on the access network side. Guarantee.
  • the present application provides a communication method applicable to a relay communication system.
  • the following is mainly described from the perspective of a relay node in a relay communication system, the method comprising: receiving by a first network node Data from the second network node; in the first network node, the received data is subjected to the first partial processing and the second partial processing; the first network node sends the processed data to the first a third network node; the first part is processed as at least one of: physical layer function processing, media access control layer function processing, and adaptation function processing; the second part is processed as at least one of the following: a simplified wireless chain SLM (S-RLC) function processing, adaptation function processing, media access control layer function processing, and physical layer function processing; the first network node is a relay node in the relay communication system.
  • S-RLC simplified wireless chain SLM
  • the processing of data by the relay node can be simplified, the processing time of the data at the relay node can be reduced, and the communication network including the first network node, the second network node, and the third network node can be reduced. End-to-end delay in data transmission.
  • the first optional design according to the first aspect includes: the second network node is a second relay node or a host base station, the data from the second network node is downlink data, and the third network node is a terminal device;
  • the downlink data is sequentially executed in the second network node by the first partial processing and the second partial processing;
  • the first partial processing is: physical layer function processing, media access control layer function processing, and adaptation function processing;
  • the second part The processing is: simplified radio link control layer function processing, media access control layer function processing, and physical layer function processing.
  • the processing of the downlink data at the relay node is simplified, and the processing time of the downlink transmission data at the relay node is reduced, thereby reducing the inclusion of the first network node, the second network node, and The end-to-end delay of downlink data transmission in the communication network of the third network node.
  • the downlink data received by the first network node or the downlink data sent by the first network node to the terminal device may respectively include at least one of the following information related to the adaptation function: the identifier of the terminal device Information, information identifying the QoS flow, information identifying the identity of the protocol data unit session, information identifying the identity of the relay node of the terminal device, information identifying the radio bearer of the terminal device, and the Information identifying the logical channel of the terminal device.
  • the second optional design according to the first aspect includes: the data received by the first network node is downlink data from the second network node, and the second network node is a third relay node or a donor base station, the third network The node is a fourth relay node, and the downlink data is sent to the terminal device via the third network node; at the first network node, the downlink data is sequentially processed into the first partial processing and the second partial processing; the first partial processing is: the physical layer Functional processing, media access control layer function processing, and adaptation function processing; the second part of processing is: simplified radio link control layer function processing, adaptation function processing, media access control layer function processing, and physical layer Functional processing.
  • the downlink data received by the first network node or the downlink data sent by the first network node and sent to the next node may respectively include at least one of the following information related to the adaptation function: the fourth relay node Information of the identification, information of the identity of the terminal device, information of the identity of the QoS flow, information of the identity of the protocol of the protocol data unit, information of the identity of the relay node serving the terminal device, wireless of the terminal device Information of the carried identity and information of the identity of the logical channel of the terminal device.
  • the information of the identification of the terminal device and/or the information of the identifier of the fourth relay node may be used for the downlink data transmission.
  • the routing is such that the intermediate node in the transmission path obtains the correct next hop node for the downlink data that needs to be transmitted.
  • the transmission path referred to in the embodiment of the present application can be understood as a transmission path of a data packet.
  • the transmission path may be any two of the links. The data transfer path between endpoints.
  • the information about the identification of the QoS flow in the information about the function, the information of the identifier of the protocol data unit session, and the identifier of the radio bearer of the terminal device
  • Each of the information, as well as the information identifying the logical channel of the terminal device can be used to provide the required QoS guarantee for the service to which the downlink data belongs during the transmission.
  • the logical channel of the terminal device may have a corresponding relationship with the radio bearer of the terminal device, and the radio bearer generally has a QoS guarantee of a corresponding granularity, and then the downlink data carries the information of the logical channel identifier of the terminal device or corresponds to the logical channel.
  • the information about the identity of the radio bearer also indicates the corresponding Qos requirement of the service to which the downlink data belongs; different protocol data unit sessions usually have different radio bearers and QoS flows, based on different radio bearers, similarly, different protocol data units. Sessions also have corresponding Qos requirements. Similar to the radio bearer, the QoS flow generally has the function of indicating the QoS guarantee of a certain granularity in the data transmission process. When the downlink data carries the information of the QoS flow identification, it also indicates the Qos requirement of the service to which the downlink data belongs. The transmitting node can transmit the data packet according to the Qos requirement corresponding to the QoS flow ID.
  • the third optional design according to the first aspect includes that the data received by the first network node from the second network node is uplink transmission direction data, the second network node is a terminal device, and the third network node is a fifth relay node or a host base station; the uplink data is sequentially processed by the first part processing and the second part processing at the relay node; the first part processing is: physical layer function processing and media access control layer function processing; the second Partial processing is: simplified radio link control layer function processing, adaptation function processing, media access control layer function processing, and physical layer function processing.
  • the processing of the uplink data by the relay node can be simplified, and the processing time of the uplink transmission data in the relay node can be reduced, thereby reducing the inclusion of the first network node, the second network node, and the third The end-to-end delay of uplink data transmission in the communication network of the network node.
  • the uplink data received by the first network node or the uplink data sent by the first network node may include at least one of the following information related to the adaptation function: information of the identifier of the terminal device Information of the identity of the fifth relay node, information of the identity of the host base station, information of the identity of the QoS flow, information of the identity of the protocol data unit session, information of the identity of the radio bearer of the terminal device, and the terminal Information about the identity of the logical channel of the device.
  • the fourth optional design according to the first aspect includes that the data received by the first network node from the second network node is uplink data, the second network node is a sixth relay node, and the third network node is a seventh relay node or a host base station; the uplink data is sequentially executed in the first network node by the first part processing and the second part processing; the first part processing is: physical layer function processing, media access control layer function processing, and Adaptation function processing; the second part processing is: simplified radio link control layer function processing, adaptation function processing, media access control layer function processing, and physical layer function processing, the first network node is a relay node (For convenience only, the number is "first relay node").
  • the processing of the uplink data by the relay node can be simplified, and the processing time of the uplink data at the relay node can be reduced, thereby further reducing the inclusion of the first network node, the second network node, and the third network.
  • the end-to-end delay of uplink data transmission in the node's communication network can be simplified, and the processing time of the uplink data at the relay node can be reduced, thereby further reducing the inclusion of the first network node, the second network node, and the third network.
  • the uplink data received by the first network node or the uplink data obtained by the first network processing may respectively include at least one of the following information related to the adaptation function: information of the identifier of the terminal device, the first Information of the identity of the seven relay nodes, information of the identity of the host base station, information of the identity of the QoS flow, information of the identity of the protocol data unit session, information of the identity of the radio bearer of the terminal device, and logic of the terminal device Information identifying the channel.
  • the information of the identifier of the terminal device, the information of the identifier of the fifth relay node, the identifier of the identifier of the seventh relay node, and The information of the identifier of the host base station can be used in the routing process in the uplink data transmission, so that the intermediate node in the transmission path can obtain the correct next hop node for the uplink data to be transmitted.
  • the information of the QoS flow, the information of the identifier of the protocol data unit session, the information of the identifier of the radio bearer of the terminal device, and the Each of the identified information of the logical channels of the terminal device can be used to provide the required QoS guarantee for data transmission during transmission.
  • the logical channel of the terminal device may have a corresponding relationship with the radio bearer of the terminal device, and the radio bearer generally has a corresponding granularity of QoS guarantee, and then the uplink data carries the information of the logical channel identifier of the terminal device or corresponds to the logical channel.
  • the information about the identity of the radio bearer also indicates the corresponding Qos requirement of the service to which the uplink data belongs; different protocol data unit sessions usually have different radio bearers and QoS flows, based on different radio bearers, similarly, different protocol data units. Sessions also have corresponding Qos requirements. Similar to the radio bearer, the QoS flow generally has the function of indicating the QoS guarantee of a certain granularity in the data transmission process. When the uplink data carries the information of the QoS flow identification, it also indicates the Qos requirement of the service to which the downlink data belongs. The transmitting node can transmit the data packet according to the Qos requirement corresponding to the QoS flow ID.
  • the fifth alternative design according to the first aspect comprises the simplified radio link control layer functional processing performed at the relay node, comprising: the received radio link control layer
  • the protocol data unit performs segmentation, and the obtained segment corresponds to a new radio link control layer protocol data unit.
  • the relay node has the function of segmenting the radio link control layer protocol data unit, so that the relay node can flexibly perform uplink and downlink data transmission, thereby improving the efficiency and flexibility of system transmission.
  • the sixth alternative design according to the first aspect includes the first network node being the first relay node, and the simplified radio link control layer functional processing performed at the relay node, including Performing at least one or any of the following: not performing retransmission on a radio link control layer protocol data unit that is not correctly transmitted; not receiving a reception status on a radio link control layer protocol data unit that is not correctly received; Receiving the received report about the transmission status of the radio link control layer service data unit to the data transmitting end, the relay node does not parse the content of the report of the transmission status, and the transmission status referred to herein may be one or more A certain radio link control layer service data unit (for example, a segment that may be an RLC service data unit SDU or an RLC SDU) is not correctly received, or a certain radio link control layer protocol data unit is not correctly transmitted;
  • the relay node does not need to process the function of the radio link control layer when performing data transmission with the neighboring network
  • the processing time of the node which reduces the end-to-end data transmission delay of the communication system.
  • the segments corresponding to the received RLC protocol data unit (RLC PDU) are not reorganized and/or reordered, and the pair is referred to herein.
  • Segmentation for recombination it can be understood that, when the RLC service data unit (RLC SDU) is segmented, each segment correspondingly forms a new RLC PDU, and the processing at the RLC layer of the RN does not need to be The formed multiple RLC PDUs are restored to a complete RLC SDU; the reordering referred to herein is understood to be that, at the RLC layer of the RN, the received RLC PDUs are not sorted according to the sequence number of the SDU to which they belong. After being submitted to the upper layer in order or submitted to the transmitting side in order for further processing, the received RLC PDU is forwarded to the transmitting side of the relay node for further processing, thus further simplifying the relay node. Data processing to further reduce end-to-end communication latency.
  • RLC SDU RLC service data unit
  • the seventh alternative design in the first aspect includes the data packet obtained after processing via the adaptation function, including: information about the adaptation function and the radio link control layer protocol Data unit.
  • the obtained data packet can be regarded as being based on the radio link control layer protocol data unit, and further adding information about the adaptation function, for example, may be in the header information of the RLC PDU.
  • the information related to the adaptation function is added, so that the uplink and downlink data can carry information related to the adaptation function, thereby ensuring the transmission QoS information required for routing information and/or data required for data transmission.
  • the present application provides a communication method, which is applicable to a relay communication system, which is mainly described from the perspective of a donor base station in a relay communication system, including: the host base station performs radio link control on downlink data. After the layer function processing and the adaptation function processing, the host base station sends the processed downlink data to the terminal device via the at least one relay node; the downlink data sent to the terminal device includes at least one of the following and the adaptation.
  • Function-related information information of the identity of the terminal device, information of the identity of the at least one relay node, information of the identity of the QoS flow, information of the identity of the protocol data unit session, and the identity of the radio bearer of the terminal device Information, and information of the identity of the logical channel of the terminal device.
  • the first alternative design according to the second aspect includes the radio link control layer function processing at the host base station, including: the radio link control layer protocol data unit not correctly transmitted to the terminal device, by the at least A relay node resends the RLC PDU that is not correctly sent to the terminal device to the terminal device, and the at least one relay node may not recognize the RLC SDU in the process of resending the RLC PDU to the terminal device.
  • the transmitted RLC SDU is also a retransmitted RLC SDU; and/or a report on the reception status of the radio link control layer service data unit is sent to the terminal device by the at least one relay node, for example, the host base station determines one or more If the RLC PDU from the terminal device is not received, the host base station sends a report on the unreceived data packet to the terminal device, and the at least one relay node may not parse during the process of transmitting the report of the receiving status.
  • the content of the report of the receiving status specifically, for example, the RN controls the data in the header information of the RLC PDU (data/control, D/C)
  • the domain and/or control PDU type (CPT) domain learns that the type of the RLC PDU is a control PDU, and the RN determines that the RLC PDU carries a status report, and then uses the routing information in the information related to the adaptation function to the data.
  • the transmitting end sends the control PDU, and information about the adaptation function may also be carried in the RLC PDU.
  • a data retransmission mechanism similar to the ARQ mechanism is implemented between the host base station and the terminal device, thereby ensuring end-to-end communication transmission quality guarantee in the relay communication system, and relaying between the host base station and the terminal device
  • a node does not need to perform an ARQ-like mechanism on the transmitted data in the processing of its radio link control layer function, and/or does not need to generate a radio link control layer service data unit.
  • the report of the receiving status reduces the processing time of the data at the relay node and reduces the end-to-end data transmission delay.
  • a good balance is achieved between securing the system end-to-end data transmission Qos and reducing the system end-to-end communication delay.
  • the second optional design according to the second aspect includes, at the host base station, the data message obtained after being processed by the adaptation function includes: information about the adaptation function and a radio link control layer protocol data unit.
  • the obtained data packet can be regarded as being based on the radio link control layer protocol data unit, and further adding information about the adaptation function, such as in the RLC PDU.
  • the information about the adaptation function is added to the header information, so that the downlink data sent by the host base station can carry information about the adaptation function, thereby ensuring the QoS required for providing routing information and/or data transmission required for downlink data transmission. information.
  • the present application provides a communication method, which is applicable to a relay communication system, which is mainly described from the perspective of a terminal device (such as a terminal device being a UE) in a relay communication system, including: After performing the radio link control layer function processing and the adaptation function processing on the uplink data, the terminal device sends the uplink data to the host base station via the at least one relay node; and the uplink data sent to the host base station includes at least the following A piece of information related to the adaptation function: information of the identity of the terminal device, information of the identity of the at least one relay node, information of the identity of the host base station, information of the identity of the QoS flow, and identity of the protocol data unit session Information, information of the identity of the radio bearer of the terminal device, and information of the identity of the logical channel of the terminal device.
  • the first alternative design according to the third aspect includes the radio link control layer function processing at the terminal device, including: for the radio link control layer protocol data unit not correctly transmitted to the donor base station, the terminal device passes The at least one relay node resends to the host base station; and/or the terminal device transmits a report on the reception status of the radio link control layer service data unit to the host base station through the at least one relay node, in the report During the sending process, the at least one relay node may not parse the report of the receiving status.
  • the relay node does not need to perform RLC PDUs received or transmitted in the processing of its radio link control layer function when performing data transmission with the neighboring network node.
  • ARQ or ARQ-like automatic retransmission request mechanism which reduces the processing time of data at the relay node and reduces the end-to-end data transmission delay of the communication system, but the ARQ mechanism needs to be executed between the terminal device and the host base station.
  • the retransmission mechanism ensures the end-to-end communication transmission quality of the relay communication system.
  • a second alternative design according to the third aspect includes the data packet obtained after processing via the adaptation function, including: information related to the adaptation function and a radio link control layer protocol data unit.
  • the data packet obtained by the adaptation function can be regarded as being based on the radio link control layer protocol data unit, and further adding information about the adaptation function, thereby causing the uplink data sent by the terminal device. It can carry information about the adaptation function and guarantee the routing information required for uplink data transmission and/or the QoS information required for data transmission.
  • the application provides a communication node, where the communication node includes at least one processor and a communication interface, and the communication interface is used for communication interaction between the communication node and other communication nodes, the at least one processor Executing program instructions to enable the communication node to implement the functions of any of the following devices in any of the foregoing aspects and any alternative design thereof: the first network node, the second network node, the third network Node, the terminal device, the relay node, and the donor base station.
  • the present application provides a system chip, where the system chip includes at least one processor and a communication interface, the communication interface is used for communication interaction between the system chip and an external portion, and the at least one processor is configured to perform Program instructions to enable operation of any of the following devices in any of the preceding aspects and any alternative design thereof: the first network node, the second network node, the third network node, the terminal device, Relay node and the host base station.
  • the present application provides a computer storage medium having stored therein program instructions, when the program instructions are executed, to perform any of the foregoing aspects and any alternative design thereof, such as the program When executed, the operation of any one of the foregoing aspects and any of the optional designs may be performed: the first network node, the second network node, the third network node, the terminal device, The relay node and the host base station.
  • FIG. 1 is a schematic diagram of a wireless relay communication system 100 in the prior art
  • FIG. 2 is a schematic diagram of a wireless relay communication system 200 proposed by the present application.
  • FIG. 3 is a schematic flowchart diagram of a wireless relay communication system 300 provided by the present application.
  • FIG. 4 is a schematic diagram of a wireless relay communication system 400 provided by the present application.
  • FIG. 5 is a schematic diagram of a wireless relay communication system 500 provided by the present application.
  • FIG. 6 is a schematic diagram of a wireless relay communication system 600 provided by the present application.
  • FIG. 7 is a schematic diagram of a wireless relay communication system 700 provided by the present application.
  • FIG. 8 is a schematic diagram of a wireless relay communication system 800 provided by the present application.
  • FIG. 9 is a schematic diagram of a wireless relay communication system 900 provided by the present application.
  • FIG. 10 is a schematic diagram of a wireless relay communication system 1000 provided by the present application.
  • FIG. 11 is a schematic diagram of a communication node 1100 provided by the present application.
  • the new generation communication system puts more stringent requirements on the network performance indicators.
  • the fifth generation mobile communication (5G) is taken as an example.
  • Network capacity indicators increased by 1000 times, wider coverage requirements, and ultra-high reliability and ultra-low latency requirements.
  • the network topology on the radio access network side can be regarded as a tree topology.
  • the relay node and the donor base station (donor gNodeB, DgNB) serving the relay node have an explicit hierarchical relationship, and each relay node regards the node for which the backhaul service is provided as the only parent node, such as The system 200-A shown in FIG.
  • the system comprising a UE, RN2, RN1, and DgNB, wherein the node RN 1 to which the RN 2 provides a backhaul service is regarded as its parent node, and the RN 2 serves
  • the transmission of the uplink and downlink data of the UE passes through the unique parent node RN 1 of the RN 2.
  • each relay node may sequentially deliver data to its own parent node according to the affiliation relationship, and finally the uplink data is routed to the DgNB, and then through the DgNB and the core network.
  • the data transmission tunnel is delivered to the core network; the downlink data of the UE served by the RN 2 is sequentially transmitted by the DgNB to the UE through the RN 1 and the RN 2 during transmission.
  • the network topology on the radio access network side can be regarded as a mesh topology or a directed acyclic graph (DAG), as shown in the figure.
  • DAG directed acyclic graph
  • 2 shows a system 200-B in which there are two links between RN3 and DgNB, one link is RN3-RN2-DgNB, and the other link is RN3-RN1-DgNB, and RN 3 will
  • the nodes RN 2 and RN1 respectively providing the backhaul service are regarded as parent nodes.
  • the relay node or the wireless backhaul node in the following may be a 5G network or A relay node or a wireless backhaul node in the NR system.
  • the relay node or the wireless backhaul node may be referred to as an integrated access and backhaul (IAB) node. This is not specifically limited.
  • the relay node or the wireless backhaul node in the following may be a wireless backhaul node in the EPS network.
  • a wireless backhaul node in an EPS network may be referred to as a relay node (RN).
  • RN relay node
  • a wireless backhaul node can be used to provide a wireless backhaul service for a node (eg, a terminal) that wirelessly accesses the wireless backhaul node, where the wireless backhaul service is provided over a wireless backhaul link. Return service.
  • an IAB node can provide a radio access service for a terminal and connect to a host node through a wireless backhaul link ( Donor node) Transmits the user's business data.
  • the host node can be a donor base station.
  • the host node may be referred to as an IAB donor or a DgNB (ie, donor gNodeB) in the 5G network.
  • the host node may be a complete entity, or may be a separate form of CU and DU.
  • the CU of the host node may be referred to as Donor-CU (also referred to as CU for short), and the DU of the host node may be referred to as Donor-DU ( It can also be abbreviated as DU), that is, the host node is composed of Donor-CU and Donor-DU.
  • the Donor-CU has the functions of the service data adaptation protocol (SDAP) layer and the PDCP layer on the user plane, and has the functions of radio resource control (RRC) layer and PDCP layer on the control plane;
  • the Donor-DU has the functions of a radio link control (RLC) layer, a medium access control (MAC) layer, and a physical (PHY) layer.
  • SDAP service data adaptation protocol
  • RRC radio resource control
  • PHY physical
  • the Donor-CU may also be a separate form of a User plane (UP) and a Control Plane (CP), that is, a CU-CP and a CU-UP.
  • the IAB node is connected to the core network through a wired link through the host node (for example, under the system architecture of the 5G NR independent networking, the IAB node is connected to the core network (5G core, 5GC) of the 5G network through the wired node through the host node;
  • the IAB node is connected to the evolved packet core (EPC) via an eNB (evolved NodeB) on the control plane (CP), on the user plane (user plane, UP) is connected to the EPC via the donor node and the eNB.
  • EPC evolved packet core
  • eNB evolved NodeB
  • the host base station or the relay node referred to in the present application may be a radio access network device having all or part of standard base station functions and enhanced characteristics for relay communication, and for standard base stations, in most scenarios
  • the device is deployed in a radio access network to provide a wireless communication function for a terminal device, and the implementation forms thereof include, but are not limited to, various forms of macro base stations, micro base stations (also referred to as small stations), and transmitting and receiving.
  • next generation a new generation radio access network node the next generation base station may be at least one of the following: a gNB, an NG eNB, a central unit (CU) having a separate form, and a distributed unit (DU) gNB, CU, and DU, or a baseband unit (BBU) that processes communication data, or a wireless local area network (WLAN).
  • Radio access network device into the non-3GPP system equipment.
  • the names of base stations having similar wireless communication capabilities for the terminal devices may vary.
  • the embodiment of the present application may be implemented by a terminal device further having a relay function. The specific implementation manner of the relay node is not limited in this application.
  • terminal device is a device with wireless transceiving function, which can be deployed on land, including indoor or outdoor, handheld or on-board; or can be deployed on the water surface (such as a ship, etc.); Deployed in the air (such as airplanes, balloons, satellites, etc.).
  • the terminal device may include various types of mobile phones, tablets, computers with wireless transceiver functions, customer premise equipment (CPE), residential gateway (RG) devices, and wireless devices.
  • CPE customer premise equipment
  • RG residential gateway
  • the terminal device referred to in the present application can also be set to a fixed position, and has a device similar to the wireless communication function of the foregoing terminal device. In a system using a different wireless access technology, the name of the terminal device having the similar wireless communication function may be different.
  • Terminal Equipment the devices having the wireless communication function are collectively referred to as Terminal Equipment.
  • first”, “second”, and the like in this application are used only to distinguish different objects, and “first” and “second” do not define the actual order or function of the objects to which they are modified.
  • first and “second” in “first network node” and “second network node” are only used to distinguish that the two are different network nodes, and do not limit their actual sequence or function.
  • the expressions "exemplary”, “example”, “such as”, “optional design” or “a design” appearing in the present application are merely used to denote examples, illustrations or illustrations.
  • the terms “upstream” and “downstream” appearing in this application are used to describe the direction of data/information transmission in a particular scenario.
  • the “upstream” direction generally refers to the transmission of data/information from a terminal device to a host base station.
  • the “downstream” direction generally refers to the direction in which data/information is transmitted from the donor base station to the terminal device. It can be understood that “upstream” and “downlink” are only used to describe the transmission direction of data/information, and the data/information transmission The specific starting and ending devices are not limited.
  • the term "and/or” appearing in this application is merely a description of the relationship between objects, indicating that there may be three relationships between objects, for example, A and / or B, which may represent: separate existence A, there are three cases of A and B, and B alone.
  • the character "/" in the present application generally indicates an “or” relationship between the preceding and succeeding objects unless otherwise specified.
  • the character "-" appearing in the present application is generally used to indicate that there is a logical cooperation/association/mapping relationship between objects before and after the character.
  • a node such as RN1, RN2, and DgNB forms one of the communication links
  • the link can be represented as RN1-RN2-DgNB.
  • Various objects such as various messages/information/device/network elements/systems/devices/actions/operations/processes/concepts may be named in this application. It is understandable that these specific names are not It constitutes a limitation on the related object, and the assigned name may be changed according to factors such as scene, context or usage habit.
  • the understanding of the technical meaning of the technical terminology in this application should mainly be based on the function embodied/executed in the technical solution. And technical effects to determine.
  • the above is an example of three items of A, B and C to illustrate the optional items of the item.
  • the information similar to "the identification of an item” appearing in the present application generally refers to the identifier of "an item", such as the specific name of the item, the specific serial number, or the specific identification information directly identifying the "a project”
  • the information may also be indirect information corresponding to the "information directly identifying the "item of the item”", which is not limited herein.
  • the descriptions appearing in the present application can be understood as corresponding to the basic functions of realizing the physical layer (PHY) defined in the prior art, respectively.
  • Basic functions of the Medium Access Control (MAC) layer such as the functions of the PHY and MAC layers defined in 3GPP.
  • MAC Medium Access Control
  • the description of the present application, "simplified radio link control layer function processing”, can be understood to implement a basic function different from the radio link control (RLC) layer defined in the prior art, and its specific meaning and characteristics can be It is determined in conjunction with the embodiments of the present application, and is not specifically limited herein.
  • adaptation function processing in the present application can be understood as implementing a separate adaptation function, and it can also be understood that the adaptation function is a function of a physical layer or a MAC layer function or a function of a radio link control layer.
  • the physical layer or the MAC layer or the radio link control layer has a function of an adaptation function, and thus is different from the basic functions of the physical layer defined in the prior art and the basic functions of the medium access control layer.
  • the specific meanings and characteristics may be determined by combining the embodiments of the present application, and are not specifically limited herein.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • the embodiment of the present application provides a relay communication system 300, where the system 300 includes a first network node, a second network node, and a third network node, the first network node and the second network.
  • the node performs data uplink and downlink transmission through a communication interface between the two
  • the first network node and the third network node perform data uplink and downlink transmission through a communication interface between the two.
  • the first network node is an RN
  • the second network node is a host base station or a The RN that the first network node communicates
  • the third network node is a terminal device or another RN that communicates with the first network node.
  • the third network node is a terminal device or an RN that communicates with the first network node.
  • the first network node is an RN
  • the second network node is another RN or a donor base station in communication with the first network node.
  • the relay communication system 300 shown in FIG. 3 can be further extended as needed, for example, one or more relay nodes can be set between the third network node and the first network node, and Or, one or more relay nodes may be set between the first network node and the second network node, and a single-chain multi-hop relay communication system or a multi-chain multi-hop relay may be formed on the basis of the requirement. Communication Systems.
  • the embodiment of the present application provides a communication method 300, which describes various feasible designs from the perspective of a first network node, where the method 300 includes: receiving, by the first network node, Data of the second network node; in the first network node, the received data is processed by the first partial processing and the second partial processing; the first network node is processed by the first partial processing and the second partial processing Data is sent to the third network node; the first part is processed as at least one of: physical layer function processing, media access control layer function processing, and adaptation function processing; the second part is processed as at least one of the following : simplified radio link control layer function processing, adaptation function processing, media access control layer function processing, and physical layer function processing; the communication method 300 is applicable to a relay communication system, and the first network node is a relay A relay node in a communication system.
  • the relay node in the prior art has almost complete base station capability.
  • the protocol stack configured on the interface between the DeNB and the DeNB includes: PHY layer, MAC layer, RLC layer, PDCP. Layer, IP layer, UDP layer and GTP-U, and the processing of the relay node proposed by the system and method 300 greatly simplifies the protocol stack setting and simplifies the data of the relay node compared to the prior art. Processing reduces the processing time of the data at the relay node, thereby reducing the end-to-end communication delay in the relay communication system including the first network node, the second network node, and the third network node.
  • the data from the second network node is downlink data
  • the second network node is a second relay node or a host base station
  • the third network node is a terminal device.
  • the downlink data is sequentially processed by the first part processing and the second part processing;
  • the first part processing is: physical layer function processing, media access control layer function processing, and adaptation function processing;
  • the second part processing is: simplified Radio link control layer function processing, media access control layer function processing, and physical layer function processing.
  • the downlink data received by the first network node or the downlink data obtained after being processed by the first network node may respectively include at least one of the following information related to the adaptation function: information of the identifier of the terminal device, Information identifying the QoS flow, information identifying the identity of the protocol data unit session, information identifying the radio bearer of the terminal device, and information identifying the logical channel of the terminal device.
  • the data received by the first network node from the second network node is downlink data
  • the second network node is a relay node that communicates with the first network node.
  • the third network node being a relay node (eg, a fourth relay node) in communication with the first network node, here and the previous alternative design
  • the first network node sends data to the downlink
  • the node in the downlink direction that directly communicates with the first network node is the terminal device, and in the present design
  • the first The downlink direction node directly communicating by the network node is another RN, and the downlink data sent by the first network node is sent to the terminal device via the third network node; and the first network node performs the first part in sequence on the downlink data received by the first network node.
  • the first part processing is: physical layer function processing, media access control layer function processing, and adaptation function processing
  • the second part processing Simplified radio link control layer processing function, the adaptation function processing, media access control layer processing function, and a physical layer processing function.
  • the downlink data received by the first network node or the downlink data sent by the first network node may respectively include at least one of the following information related to the adaptation function: Information for transmitting the identity of the network node involved (eg, information of the identity of the first network node, information of the identity of the fourth relay node, information identifying the identity of the relay node serving the terminal device, and At least one of the information of the identification of the terminal device, the information of the identifier of the QoS flow, the information of the identifier of the protocol data unit session, the information of the identifier of the radio bearer of the terminal device, and the identifier of the logical channel of the terminal device Information.
  • the relay node that provides the service for the terminal device in the embodiment of the present application may be the relay node to which the serving cell accessed by the terminal device belongs.
  • the information of the identifier of the terminal device, and/or the information of the identifier of the relay node involved in the transmission path can be used for routing in downlink data transmission, so that the node in the transmission path can obtain the correct downlink data to be transmitted. Next hop node to ensure efficient transmission process.
  • the information of the identifier of the QoS flow carried in the downlink data can be used to provide the required QoS guarantee for the service to which the downlink data belongs during the transmission process.
  • the radio bearer and the QoS flow can be used to reflect the basic transmission QoS requirements, and the QoS flow and the radio bearer can have a mapping relationship. Different protocol data unit sessions generally correspond to different radio bearers.
  • the protocol data unit session may carry different QoS flows, each Qos flow.
  • There may be different QoS requirements such that the protocol data unit session may also have a corresponding QoS requirement based on its corresponding radio bearer or its QoS flow; the logical channel of the terminal device and the radio bearer of the terminal device also have a corresponding relationship.
  • the downlink data carries the information of the identifier of the radio bearer of the terminal device and/or the identifier of the logical channel of the terminal device, the corresponding downlink transmission Qos requirement of the downlink data is also indicated, thereby facilitating the transmission path.
  • the node in the middle performs transmission according to the QoS requirement; of course, when the downlink data carries the information of the QoS flow identification, since the QoS flow reflects the basic transmission QoS requirement, the QoS requirement required for the downlink data transmission is also clearly indicated. .
  • the data received by the first network node from the second network node is uplink data
  • the second network node is a terminal device
  • the third network node is the first The other relay node (for example, the fifth relay node) or the host base station that the network node communicates with;
  • the first network node performs the first partial processing and the second partial processing on the received uplink data in sequence;
  • the first partial processing is: Physical layer function processing and media access control layer function processing;
  • the second part of processing is: simplified radio link control layer function processing, adaptation function processing, media access control layer function processing, and physical layer function processing.
  • the processing of the uplink transmission data by the first network node is significantly simplified, and the processing time of the uplink transmission data at the relay node is reduced, thereby reducing An end-to-end delay of uplink data transmission in a communication network including the first network node, the second network node, and the third network node.
  • the uplink data sent by the first network node or the uplink data sent by the first network node may respectively include at least one of the following information related to the adaptation function: a node involved in the uplink transmission
  • the identified information eg, information of the identity of the terminal device, information of the identity of the first network node, information of the identity of the fifth relay node, and information of the identity of the donor base station
  • Information identifying the QoS flow information identifying the identity of the protocol data unit session, information identifying the radio bearer of the terminal device, and information identifying the logical channel of the terminal device.
  • the host base station can use the uplink data of the protocol data unit session to pass the protocol data unit with the terminal device.
  • the tunnel corresponding to the session (for example, the N3 tunnel) is sent to the gateway device.
  • the gateway device is a user plane function (UPF).
  • the data received by the first network node from the second network node is uplink data
  • the second network node is another relay node that communicates with the first network node.
  • the third network node is another relay node (eg, a seventh relay node) or a host base station that communicates with the first network node;
  • the first network node receives the The uplink data sequentially performs the first partial processing and the second partial processing;
  • the first partial processing is: physical layer function processing, media access control layer function processing, and adaptation function processing;
  • the second part processing is: simplified wireless link
  • the control layer function processing, the adaptation function processing, the media access control layer function processing, and the physical layer function processing, the first network node sends the uplink data processed by the first part and the second part to the third network node.
  • the second network node that communicates with the first network node is a terminal device, and in the present design, in the uplink direction and the The second network node that the first network node communicates with is another relay node.
  • the uplink data received by the first network node or the uplink data sent by the first network node to the third network node may include at least one of the following information related to the adaptation function.
  • Information about the identity of the network node involved in the uplink transmission path eg, information of the identity of the terminal device, information of the identity of the first network node, information of the identity of the sixth relay node, and information of the seventh relay node
  • the information about the identifier of the network node involved in the uplink transmission path for example, the information of the identifier of the terminal device, the information of the identifier of the first network node, Information of the identity of the fifth relay node, information of the identity of the sixth relay node, information of the identity of the seventh relay node, information of the identity of the relay node serving the terminal device, and the host
  • At least one or any of the information of the identifier of the base station can be used for routing in the uplink data transmission, so that the intermediate node in the transmission path can obtain the correct next hop node for the uplink data to be transmitted.
  • the intermediate node of the transmission path may determine the next hop node of the uplink data according to the information of the identifier of the uplink sending end, such as the terminal device, and may determine the indirect manner by using a preset transmission path for the terminal device. Next hop routing node.
  • the information of the identifier of the terminal device may also be carried in the data packet of the uplink transmission as information related to the adaptation function.
  • the information of the identifier of the QoS flow carried in the uplink data can be used to provide the required QoS guarantee for the service to which the uplink data belongs during the transmission process.
  • the radio bearer and the QoS flow can be used to reflect the basic transmission QoS requirements, and the QoS flow and the radio bearer can have a mapping relationship. Different protocol data unit sessions generally correspond to different radio bearers.
  • an air interface can establish at least one radio bearer corresponding thereto; a protocol data unit session can also carry different QoS flows, and each Qos flow can be There are different QoS requirements, such that the protocol data unit session can have a corresponding QoS requirement based on its corresponding radio bearer or the QoS flow it carries; the logical channel of the terminal device and the radio bearer of the terminal device usually also have a corresponding relationship, then When the uplink data carries the information of the identifier of the radio bearer of the terminal device and/or the identifier of the logical channel of the terminal device, the corresponding QoS requirement of the uplink data is also indicated, thereby facilitating the node in the transmission path.
  • the transmission is performed according to the QoS requirement.
  • the uplink data carries the information of the QoS flow identification, since the QoS flow is generally used to indicate the basic transmission QoS requirement, the QoS requirement required for the uplink data in the transmission is also clearly indicated. .
  • An optional design according to the method 300 includes, for uplink data transmission or downlink data transmission, in the simplified radio link control layer function processing performed by the first network node (taking a relay node as an example), receiving The obtained radio link control layer protocol data unit performs segmentation, and the obtained segments correspond to form a new radio link control layer protocol data unit.
  • the relay node has the function of segmenting the radio link control layer protocol data unit, so that the relay node can flexibly perform uplink and downlink data transmission, thereby improving the efficiency and flexibility of system transmission.
  • An optional design according to the method 300 includes, for uplink data transmission or downlink data transmission, in the simplified radio link control layer function processing performed by the first network node (taking a relay node as an example), the first A network node performs at least one of the following on a radio link control layer protocol data unit:
  • Operation 2 for the radio link control layer protocol data unit that is not correctly received by the first network node, the first network node does not feed back the receiving status to the data sending end, for example, another relay node to the first network If the RLC PDU sent by the node fails to be sent or the first network node does not receive the packet correctly, the first network node does not feed back the RLC PDU that is not correctly received to the another relay node;
  • Operation 3 The first network node sends the received report about the receiving status of the radio link control layer service data unit to the data sending end, and the first network node does not parse the report of the receiving status, optionally, It can also be understood that the first network node only provides a transmission channel for the report of the receiving state, and does not know the content of the report of the receiving state.
  • the receiving state referred to herein may be one or more radio link control layer services.
  • the data unit (eg, may be a segment of the RLC Service Data Unit SDU or RLC SDU) that is not correctly received;
  • Operation 4 The first network node does not perform segmentation and reassembly on the received radio link control layer protocol data unit. Specifically, for example, in general, between the sender or the sender and the first network node After any node segments the RLC SDU, each segment correspondingly forms a new RLC PDU. In the processing of the RLC layer of the first network node, the RLC PDU corresponding to each segment is not reassembled, and no The plurality of RLC PDUs formed in the foregoing are spliced and restored into a complete original RLC SDU;
  • Operation 5 The first network node does not perform reordering on the received radio link control layer protocol data unit. Specifically, for example, the received RLC PDU is not sorted according to the sequence number of the SDU to which it belongs. It is delivered to the upper layer in order or sequentially to the transmitting side for further processing. Instead, the received RLC PDU is directly handed over to the transmitting side of the first network node (such as a relay node) for further processing. In the prior art, the received RLC PDU needs to be submitted in the next step, which requires more processing delay.
  • the first network node does not need to perform an automatic repeat request on the data received or transmitted in the processing of its radio link control layer function when performing data transmission with the neighboring network node (automatic repeat request) , ARQ) mechanism, or not performing an ARQ-like retransmission mechanism, and/or without performing segmentation reassembly and/or reordering on the received RLC PDU, such that at the first network node (relay node)
  • the data processing and transmission efficiency is higher, further reducing the processing time of the data at the relay node, and further reducing the end-to-end data transmission delay of the communication system.
  • An optional design according to the method 300 includes, for uplink data transmission or downlink data transmission, a data packet obtained after processing by the adaptation function at the first network node, including: information about the adaptation function and the The radio link control layer protocol data unit, as an exemplary understanding, the data packet obtained after being processed by the adaptation function is obtained by adding an adaptation function related information on the basis of the RLC PDU, for example, may be in the header of the RLC PDU.
  • the information about the adaptation function is added to the information.
  • the RLC PDU data packet may be encapsulated as a payload to form a relatively independent adaptation protocol layer data packet, and the information about the adaptation function may be included in the adaptation protocol layer. In the header of the packet.
  • the obtained data packet can be considered as being based on the radio link control layer protocol data unit, and further adding information about the adaptation function, so that the uplink and downlink data can be included.
  • the information necessary for routing and/or transmission QoS guarantee ensures reliable and efficient uplink and downlink data transmission.
  • the embodiment of the present application further provides a communication method 300-2, which is mainly described from the perspective of a donor base station in a relay communication system, including: the host base station performs a wireless link on the downlink data.
  • the host base station sends the processed downlink data to the terminal device via the at least one relay node, where the downlink data sent by the host base station to the terminal device includes at least one of the following Information related to the adaptation function: information of the identity of the network node involved in the downlink transmission path (eg, information of the identity of the terminal device, information of the identity of the at least one relay node, and service for the terminal device) At least one of information identifying the relay node, information identifying the QoS flow, information identifying the identity of the protocol data unit session, information identifying the radio bearer of the terminal device, and the identity of the logical channel of the terminal device information.
  • Information related to the adaptation function information of the identity of the network node involved in the downlink transmission path (eg, information of the identity of the terminal device, information of the identity of the at least one relay node, and service for the terminal device)
  • information identifying the relay node information identifying the QoS flow
  • information identifying the identity of the protocol data unit session e.g, information
  • An optional design according to the method 300-2 includes: performing radio link control layer function processing at the host base station, including: at least a radio link control layer protocol data unit not correctly received by the terminal device, by at least Retransmitting a relay node to the terminal device, optionally, the at least one relay node does not need to identify whether the RLC SDU transmitted by the RLC SDU is the first transmitted RLC SDU or the retransmitted RLC SDU; and/or, through the at least A relay node sends a report on the reception status of the radio link control layer service data unit to the terminal device, for example, if the donor base station determines that one or more RLC SDUs (or partial segments of the RLC SDU) are not received And the host base station sends feedback to the terminal device that the RLC SDU (or a partial segment thereof) is not correctly received, and the report of the receiving state is not parsed by the at least one relay node during the sending process.
  • the data retransmission mechanism is implemented between the host base station and the terminal device, so that the data transmission of the radio link control layer between the relay node and the adjacent network node does not have a data retransmission mechanism and or data transmission.
  • the state feedback mechanism can also better guarantee the end-to-end communication transmission quality in the relay communication system, which makes a balance between reducing the end-to-end data transmission delay and ensuring the transmission quality of the communication system.
  • An optional design according to the method 300-2 includes: a data packet obtained after processing by the adaptation function at the host base station, including: information about the adaptation function and a radio link control layer protocol data unit, as an example
  • the data packet obtained after the host base station is processed by the adaptation function may be obtained by adding the information related to the adaptation function to the header information of the RLC PDU, or by using the RLC PDU data packet as the net.
  • the piggyback encapsulation forms a relatively independent adaptation protocol layer data packet, and the adaptation function related information may be included in the header information of the adaptation protocol layer data packet.
  • information related to the adaptation function is further added on the basis of the radio link control layer protocol data unit, so that the downlink data can include information necessary for routing and/or transmission QoS guarantee, and guarantee downlink data transmission. Reliable and efficient.
  • the embodiment of the present application further provides a communication method 300-3, which is mainly described from the perspective of a terminal device (such as a UE), including: performing a wireless link on data in the terminal device.
  • the control layer function processing and the adaptation function processing the terminal device sends the processed data to the host base station via the at least one relay node; and the uplink data sent to the host base station includes at least one of the following related to the adaptation function.
  • an identifier of a network node involved in the uplink transmission path eg, information of the identity of the terminal device, information of the identity of the at least one relay node, information of the identity of the relay node serving the terminal device, and At least one of the information of the identity of the host base station, information of the identity of the QoS flow, information of the identity of the protocol data unit session, information of the identity of the radio bearer of the terminal device, and the identity of the logical channel of the terminal device information.
  • An optional design according to the method 300-3 includes: performing radio link control layer function processing on the terminal device, including: transmitting, by the at least one relay, a radio link control layer service data unit that is not correctly received by the host base station The node retransmits the RLC SDU that is not correctly transmitted to the donor base station, and the at least one relay node may not identify whether the RLC SDU whose transmission is the first transmitted RLC SDU or the retransmitted RLC SDU; and/or the terminal device Sending, by the at least one relay node, a report on the reception status of the radio link control layer service data unit to the host base station, for example, the terminal device determines that one or more RLC SDUs (or partial segments of the RLC SDU are not received) When the terminal device feeds back to the host base station a report on the unreceived status of the RLC SDUs (or a partial segment thereof), in the process of transmitting the status report to the host base station by the at least one relay node, the at least A relay
  • the data retransmission mechanism is implemented between the terminal device and the host base station, so that even if the data transmission of the radio link control layer between the relay node and the neighboring network node does not have the data retransmission mechanism and the transmission status
  • the feedback mechanism, the end-to-end communication transmission quality in the relay communication system can also be well protected, which makes a balance between reducing the end-to-end data transmission delay and ensuring the transmission quality of the relay communication system. .
  • An optional design according to the method 300-3 includes: at the terminal device, the data packet obtained after being processed by the adaptation function, including: information about the adaptation function and a radio link control layer protocol data unit,
  • the data packet obtained after the terminal device is processed by the adaptation function may be obtained by adding the information related to the adaptation function in the header information of the RLC PDU, or may be obtained by using the RLC PDU packet.
  • the adaptation function related information may be included in the header information of the adaptation protocol layer data packet.
  • information about the adaptation function can be further added on the basis of the RLC PDU, so that the uplink data can include information necessary for routing and/or transmission QoS guarantee, and the uplink data transmission is guaranteed to be reliable and efficient.
  • An optional design according to the method 300 or 300-2 or 300-3 includes, at the data receiving end of the relay communication system, such as at the RLC layer of the donor base station or the terminal device, the received data packet can be heavily weighted. Sort, and submit to the upper layer processing in order.
  • any of the communication method 300, the communication methods 300-2, and the 300-3 provided by the foregoing embodiments may be combined with other optional designs, for example, any one may be selected.
  • Other designs or a variety of other designs are combined to implement different technical issues.
  • the optional designs appearing in the subsequent embodiments of the present application may be applied in combination with the same principles and other optional designs, and the manner of combination is not limited herein.
  • FIG. 4 shows a wireless relay communication system 400, which is described from the perspective of downlink transmission of data and user plane protocol stack.
  • the system 400 includes: a user plane function (UPF) network element, a DgNB, an RN 1, and a UE, wherein the UE and the RN1 perform communication interaction through an interface between the two (the interface may be a Uu interface, or NR interface, where the interface name is not limited.
  • RN1 and DgNB communicate through the interface between the two (the interface can be the Un interface, the name is not limited here), and the DgNB and the UPF pass the two.
  • UPF user plane function
  • Inter-interface communication interaction (the interface can be an N3 interface, the name is not limited here); the UE and the DgNB can logically communicate through the peer communication protocol stack function, for example, by the pair respectively
  • the RLC layer protocol stack, the PDCP layer protocol stack, and the service data adaptation protocol (SDAP) layer protocol stack are used for communication interaction; the UE and the UPF logic can also have peer IPs respectively.
  • the layer protocol stack performs communication interaction.
  • the system 400 can be applied to a wireless single-hop relay scenario. In a typical wireless single-hop relay scenario, the relay communication system has three network nodes: UE, RN, and DgNB, and can perform uplink-downlink communication interaction from the user plane.
  • the protocol stack configured by the UE includes: a PHY layer, a MAC layer, an RLC layer, a PDCP layer, a SDAP layer, and an IP layer; and the protocol stack configured on the downlink transmitting side of the RN1 includes at least the following A PHY layer, a MAC layer, and an S-RLC; the protocol stack configured on the downlink receiving side of the RN1 includes at least one of the following: a PHY layer, a MAC layer, and the RN1 further has an adaptation function, the adaptation The function may exist independently, for example, as an independent adaptation layer or a relatively independent adaptation function entity in RN1, as part of the downlink receiving side MAC layer of RN1, or as a downlink transmitting side S-RLC layer of RN1.
  • a protocol stack configured on the transmitting side of the DgNB includes at least one of the following: a PHY layer, a MAC layer, an adaptation function, an RLC layer, a PDCP layer, and an SDAP layer, wherein the adaptation function may exist independently in the DgNB, such as As independent
  • the adaptation layer of the adaptation layer or the relatively independent adaptation function entity in the RN1 may also be used as part of the MAC layer function of the downlink transmission side of the DgNB, and may also be used as part of the downlink transmission side RLC layer of the DgNB; configured on the downlink receiving side of the DgNB.
  • the protocol stack includes: layer 1 (L1) and layer 2 (L2) protocol stacks, IP layer, UDP layer, and GTP layer; correspondingly, the protocol stack configured on the UPF side includes: L1 and L2 protocol stacks, IP layer, UDP layer, GTP layer, and IP layer.
  • L1 and L2 configured by DgNB and UPF usually refer to the protocol layer of wired communication, depending on the connection technology specifically used between DgNB and UPF.
  • L1 can be a physical layer
  • L2 can be a data link layer
  • the method further includes at least one of a MAC layer, a logical link control layer (LLC), a point-to-point protocol (PPP), and a link layer of an Ethernet technology.
  • LLC logical link control layer
  • PPP point-to-point protocol
  • Ethernet technology a link layer of an Ethernet technology.
  • FIG. 5 shows a relay communication system 500 provided by an embodiment of the present application.
  • the system 500 is schematically illustrated by using a control plane protocol stack as an example. It can be understood that the system The control plane protocol stack shown in FIG. 500 is only used as an exemplary content, and the protocol stack design of the specific control plane is not limited herein.
  • the system 500 includes: an access and mobility management function (AMF) entity, a DgNB, an RN 1 and a UE.
  • AMF access and mobility management function
  • the UE and the RN1 communicate and interact through the interface between the two (the interface can be a Uu interface, where the name of the interface is not limited), and the RN1 and the DgNB perform communication interaction through the interface between the two (the interface) It can be a Un interface, where the name of the interface is not limited.
  • DgNB and AMF communicate through the interface between the two (the interface can be an N2 interface, the name of the specific interface is not limited here); UE and DgNB It is also logically possible to perform communication interactions through their respective peer-to-peer protocol stacks, such as the peer-to-peer RLC layer protocol, the PDCP layer protocol, and the radio resource control (RRC) layer.
  • RRC radio resource control
  • the protocol performs control plane communication interaction; the UE and the AMF can also logically communicate and interact through the peer NAS layer protocols respectively provided by the UE.
  • the protocol stack configured in the UE includes: a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an RRC layer, and a non-access stratum (NAS); a protocol stack configured on a downlink transmitting side of the RN1.
  • At least one of the following: a PHY layer, a MAC layer, and an S-RLC layer; a protocol stack configured on a downlink receiving side of the RN1 is at least one of the following: a PHY layer, a MAC layer, and the RN1 further has an adaptation function,
  • the adaptation function can exist independently in RN1, for example, as a separate adaptation layer on the downlink receiving side of RN1 or as a relatively independent adaptation function entity in RN1, or as an S-RLC layer on the downstream transmission side of RN1.
  • a part of the function may also be part of the MAC layer of the downlink receiving side of the RN1;
  • the protocol stack configured on the downlink transmitting side of the DgNB includes at least one of the following: a PHY layer, a MAC layer, an adaptation (adapatiion) function, and an RLC layer.
  • the PDCP layer, and the RRC layer, wherein the adaptation function may exist independently in the DgNB, for example, as an independent adaptation layer protocol in the downlink transmitting side of the DgNB or a relatively independent adaptation function entity in the DgNB, or as a DgNB downlink sender side MAC
  • a part of the layer function may also be part of the RLC layer of the downlink transmitting side of the DgNB;
  • the protocol stack configured on the downlink receiving side of the DgNB includes: L1 and L2, an IP layer, and a stream control transmission protocol (SCTP) And an NG application protocol (NG-AP) layer, where NG is an interface between the 5G system RAN and the core network, and can be similar in function to the S1 interface in LTE.
  • SCTP stream control transmission protocol
  • NG-AP NG application protocol
  • the protocol stack configured in the AMF includes: L1 and L2, IP layer, SCTP layer, NG-AP layer, and NAS layer.
  • L1 and L2 are generally referred to as protocol layers of wired communication.
  • L1 may be a physical layer
  • L2 may be a data link layer
  • L2 may further include: a MAC layer, a logical link control layer. , LLC), at least one of a point to point protocol (PPP), a link layer of Ethernet technology.
  • PPP point to point protocol
  • the specific protocol layers included in L1 and L2 are not limited in the embodiment of the present application.
  • FIG. 6 shows a wireless relay communication system 600 provided by an embodiment of the present application, with downlink transmission of data and
  • the system 600 is described from the perspective of a user plane protocol stack.
  • the system 600 includes: UPF, DgNB, RN 2, RN1, and UE.
  • the UE and the RN1 perform communication interaction through the interface between the two (the interface may be a Uu interface or an NR interface, where the interface name is not limited), and the RN1 and the RN2 pass the RN-RN interface between the two.
  • RN-RN interface means that the communication interface is an interface between two relay nodes, the specific name is not limited), and RN2 and DgNB perform communication interaction through the interface between the two (the The interface can be a Un interface, where the interface name is not limited.
  • the DgNB and the UPF communicate through the interface between the two (for example, the interface can be an N3 interface); the logical relationship between the UE and the DgNB can also be separated.
  • the peer-to-peer protocol stack has communication interaction, for example, through the peer RLC layer protocol, the PDCP layer protocol, and the SDAP layer protocol, respectively, for communication interaction; the UE and the UPF can also logically have the two Peer-to-peer IP layer protocol for communication interaction.
  • the protocol stack configured in the UE includes: a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an SDAP layer, and an IP layer; and a protocol stack configured on the downlink transmitting side of the relay node RN1 is as follows At least one of: a PHY layer, a MAC layer, and an S-RLC layer; a protocol stack configured on a downlink receiving side of the relay node RN1 is at least one of a PHY layer and a MAC layer, and the RN1 further has an adaptation (adaptation) Function, the adaptation function can exist independently in RN1, for example, as the independent adaptation layer protocol in the downlink receiving side part of RN1 or as a relatively independent adaptation function entity in RN1, or as the downlink transmitting side of RN1.
  • a part of the S-RLC layer function may also be part of the MAC layer of the downlink receiving side of the RN1;
  • the protocol stack configured on the downlink transmitting side of the relay node RN2 is at least one of the following: PHY layer, MAC layer, adaptation (adaptation) function, and the S-RLC layer, where the adaptation function can be used as part of the S-RLC layer function of the downlink transmitting side of the RN2, or as part of the MAC layer of the downlink transmitting side of the RN1;
  • Downstream receiving side of RN2 The protocol is processed as at least one of the following: a PHY layer, a MAC layer, and an adaptation function, which may serve as a separate protocol layer of the receiving side portion of the RN2, or as part of the MAC layer of the receiving side of the RN2.
  • the protocol stack configured on the downlink transmitting side of the DgNB includes at least one of the following: a PHY layer, a MAC layer, an adaptation function, an RLC layer, a PDCP layer, and a SDAP.
  • Layer where the adaptation function can be used as a separate protocol layer, or as part of the function of the MAC or RLC layer in the DgNB;
  • the protocol stack configured on the downlink receiving side of the DgNB includes: L1 and L2, IP layer, UDP layer,
  • the GTP layer, corresponding to the UPF configured protocol stack includes: L1 and L2, IP layer, UDP layer, GTP and IP layer.
  • L1 and L2 are generally referred to as protocol layers of wired communication.
  • L1 may be a physical layer
  • L2 may be a data link layer
  • L2 may further include: a MAC layer, a logical link control layer. , LLC), at least one of a point to point protocol (PPP), a link layer of Ethernet technology.
  • PPP point to point protocol
  • the specific protocol layers included in L1 and L2 are not limited in the embodiment of the present application.
  • the protocol stack configuration is at least one of the following on the downlink transmitting side.
  • the PHY layer, the MAC layer, and the S-RLC layer are at least one of the following: the PHY layer, the MAC layer, and the adaptation function on the downlink receiving side of the RN1. Therefore, the RN1 can be considered to have all or part of the layer 2.
  • the protocol stack configuration is at least one of the following: the PHY layer, the MAC layer, the adaptation function, and the S-RLC layer.
  • the protocol stack on the downlink receiving side is configured as at least one of the following: a PHY layer, a MAC layer, and an adaptation function layer. Therefore, RN2 can be considered to have all or part of the functions of layer 2. It can be seen that, compared with the prior art, the protocol stack setting and data processing of RN1 and RN2 in the embodiment of the present application are simplified, so that the processing time of the downlink data in the relay node is reduced, thereby reducing the middle end of the communication system. The delay of the data transmission to the end.
  • the description of the processing function configuration of the RN is described by the “sending side” and the “receiving side” respectively, but it can be understood that the S-RLC and the configuration configured on the RN node in the embodiment of the present application are applicable.
  • a wireless relay communication system 700 is provided in the embodiment of the present application, as shown in FIG.
  • the transmitting end, the relay node, and the terminal device may be the host base station DgNB
  • the relay node may be the RN
  • the terminal device may be the UE, where the DgNB and the RN pass between the two
  • the interface communicates with each other (for example, the interface can be an Un port, and the specific name is not limited herein).
  • the RN and the UE communicate with each other through an interface between the two.
  • the interface can be a Uu interface or an NR interface. The specific name is not limited. ).
  • the configuration and operation of the system 700 will be described below from the functions of the nodes involved in the relay communication system and the processing flow of the downlink data.
  • the system 700 can operate in accordance with the mechanisms of the following examples:
  • the processing of the user plane data packet from the core network includes at least one of the following operations:
  • Operation 1a Processing of the SDAP layer function performed at the DgNB.
  • the processing herein may include at least one of the following:
  • the downlink data packet is marked with the information of the QoS flow identifier.
  • the QoS flow referred to herein has a function of indicating a certain granularity of QoS guarantee.
  • the transmission node can know the QoS requirement corresponding to the data packet, so that the transmission node can follow the The Qos corresponding to the Qos flow ID requires this packet to be transmitted.
  • Operation 1b Processing of the PDCP layer function performed at the DgNB.
  • the processing herein may include at least one of the following:
  • each PDCP PDU carries its own serial number of the PDCP layer.
  • (2) Perform a header compression operation.
  • (3) Perform an integrity protection operation.
  • (4) Perform security-related ciphering operations.
  • (5) Perform packet routing or duplication (packet routing or duplication) operations.
  • (6) Perform retransmission of the PDCP SDU. (7) Perform user data transmission.
  • Operation 1c Processing of the RLC layer function performed at the DgNB.
  • the processing here includes at least one of the following:
  • the first packet segmentation (1 st segmentation) is performed on the RLC layer on the DgNB side or the re-segmentation is performed on the retransmitted RLC SDU.
  • an RLC SDU can be divided into at least two segments, and each obtained segment can correspond to a new RLC PDU.
  • Each RLC PDU obtained after segmentation has a sequence number and a segmented original RLC SDU.
  • the serial number of each RLC PDU obtained by the same sequence number or the segmentation has a corresponding relationship with the sequence number of the original RLC SDU that is segmented.
  • the RLC SDU may not be segmented, and the downlink data packet is an RLC SDU. Whether or not to implement the segmentation depends on the actual situation and is not limited here.
  • the retransmission here may be based on an automatic repeat request mechanism, and the retransmitted data packet may be a segment of an RLC SDU or an RLC SDU.
  • the retransmitted data packet may be a segment of an RLC SDU or an RLC SDU.
  • the RLC SDU is not segmented, and the downlink data packet is the RLC SDU, and the retransmitted data packet is also the corresponding RLC SDU, and for example, when If the MAC layer resources are small, the RLC SDUs that need to be retransmitted may be segmented and then retransmitted, or when some RLC status reports reported by the receiving end are not correctly received.
  • the segment that was not correctly received may be retransmitted.
  • the specific retransmitted data packet is an RLC SDU or an RLC PDU obtained after the RLC SDU is segmented, and is determined according to actual conditions, and is not limited herein.
  • the RLC layer data retransmission mechanism performed between the donor base station and the terminal device includes: if the DgNB receives the RLC status report from the UE (such as the UE reports on the RLC SDU reception status), the DgNB will not The RLC SDU (which may also be a segment of the RLC SDU) that is correctly sent to the UE, is retransmitted to the UE by the at least one RN, and the DgNB may not identify the RLC SDU in the process of resending the RLC SDU to the UE.
  • the RLC SDU (which may also be a segment of the RLC SDU) that is correctly sent to the UE, is retransmitted to the UE by the at least one RN, and the DgNB may not identify the RLC SDU in the process of resending the RLC SDU to the UE.
  • the DgNB sends a report on the reception status of the RLC SDU to the UE through at least one relay node, for example, if the DgNB determines one or more from the UE The RLC SDU is not received or received correctly, and the DgNB sends a report on the reception status of the unreceived data packet to the UE.
  • the RN may not parse the The content of the status report, the RN may learn that the type of the RLC PDU is a control PDU by using the D/C field and/or the CPT field in the header information of the RLC PDU, and the RN determines that the RLC PDU is an RLC status report, and then according to the adaptation function.
  • the routing control information transmitted RLC PDU to the transmitting-side data, information related to the adaptation function can also be carried in the RLC PDU.
  • the RLC PDU obtained after the RLC layer function of the donor base station satisfies the "message structure one" as shown below:
  • the "Message Structure 1" includes at least one of the following: a D/C domain, a P domain, an SI domain, an R domain, an SN domain, an SO domain, and a Data domain. among them:
  • D/C is used to indicate a data/control (data/control) field
  • information carried in the D/C domain is used to indicate that the RLC PDU is a data PDU of an RLC layer, that is, the RLC PDU can be understood as being carried. It is user data, or the information carried in the D/C domain indicates that the RLC PDU is a control PDU of the RLC layer, that is, the RLC PDU can be understood as carrying control information.
  • the packet structure may further include a control PDU type (CPT) field, and the value in the CPT domain may indicate that the control information carried by the RLC control PDU may be related to the RLC SDU.
  • CPT control PDU type
  • the function of the D/C domain can be applied to an RLC PDU transmission mechanism with an acknowledged mode (AM) mode.
  • AM acknowledged mode
  • P is used to indicate a polling field.
  • the field may include a polling bit for requesting the RLC SDU receiving status from the AM RLC functional entity of the transmitting peer. report.
  • the AM RLC functional entity may be part of the RLC layer functionality.
  • This polling bit can be applied to the RLC PDU transmission mechanism with AM mode.
  • the SI is used to indicate a segmentation infomation field, and the information carried by the domain is used to indicate that the RLC PDU contains a complete RLC SDU, or the information carried by the domain is used to indicate that the RLC PDU is corresponding.
  • a segment of an RLC SDU such as the segment being the first segment of the RLC SDU, or the segment being an intermediate segment of the RLC SDU, or the segment being the RLC SDU The last segment.
  • the SN is used to indicate a sequence number field, and the SN field is used to indicate the sequence number of the RLC SDU corresponding to the RLC PDU.
  • the RLC PDUs corresponding to different segments of the same RLC SDU have the same SN; in the acknowledged mode (UM) mode, when the data in the RLC PDU is a segment of the RLC SDU The RLC PDU has an SN domain.
  • R is used to indicate reserved bits: this field is optional. For example, if the SN field in the RLC PDU has a specific length, the reserved bit is set, or, in order to save system overhead, the RLC PDU may not set a reserved bit.
  • the reserved bit may also be used to indicate information about the adaptation function referred to in the embodiment of the present application.
  • the adaptation function may be used as part of the RLC layer function, and the information related to the adaptation function, such as routing and QoS related. The information is included in the RLC PDU message.
  • the SO is used for a segment offset segment offset field, which is used to indicate the relative position of the RLC SDU segment corresponding to the RLC PDU in the original RLC SDU.
  • the SO domain is set in the RLC PDU; when the data in the RLC PDU is a segment of the RLC SDU but is the first In the case of segmentation, the SO domain may not be set in the RLC PDU.
  • Data is used to represent the data field.
  • the content of the Data field may be the original RLC SDU (which may be applicable if the original RLC SDU is not segmented), or the content of the Data field may be the segment of the original RLC SDU (can be applied to the original RLC SDU) The case of the paragraph).
  • Operation 1d Adaptation function processing performed at DgNB.
  • the processing herein includes adding information about the adaptation function based on the RLC PDU, such as adding information for packet routing and/or for QoS mapping.
  • the information for the packet routing and/or for the QoS mapping includes at least one of the following: information of the identifier of the network node involved in the downlink transmission path (such as information of the identifier of the UE, identifier of the RN serving the UE) Information, at least one of the identification information of the transmission path, and the information of the identification of the DgNB), the information of the identification of the QoS flow, the information of the identity of the radio bearer of the UE, the information of the identity of the logical channel of the UE, DgNB and RN Information about the identity of the radio bearer between the interface, and the identity of the logical channel of the interface between the DgNB and the RN.
  • the RN that provides the service to the terminal device may be the RN to which the serving cell to which the terminal device accesses belongs.
  • the intermediate node in the transmission path is convenient to obtain the correct next hop node for the downlink data to be transmitted.
  • the information about the adaptation function may not need to include the information of the identifier of the bearer between the DgNB and the RN, and/or may not need the information including the identifier of the logical channel between the DgNB and the RN.
  • the RN can obtain the foregoing information about the adaptation function carried in the data packet, and then add information about the required adaptation function to the downlink data packet sent after the RN processing to meet the downlink data. Transport routing and QoS protection requirements.
  • the adaptation function may further include a process of QoS mapping, such as mapping from a QoS flow or a DRB of the UE to a bearer or a logical channel of a next hop, for example, in a single-hop relay system, directly
  • QoS mapping such as mapping from a QoS flow or a DRB of the UE to a bearer or a logical channel of a next hop, for example, in a single-hop relay system, directly
  • the UE DRB ID determines the bearer of the RN to the UE; for example, it can also map from the bearer/logical channel of the previous hop to the bearer/logical channel of the next hop.
  • a data message obtained after the DgNB is processed via the adaptation function can be considered to be obtained by further adding information about the adaptation function based on the RLC PDU, such as by a reserved bit in the header information of the RLC PDU. Or add a bit to indicate information about the adaptation function.
  • the adaptation function referred to here can be implemented as a separate protocol layer in the DgNB.
  • a separate adaptation function protocol layer is set in the protocol stack of the DgNB, and the adaptation function protocol layer can be logically located between the RLC layer of the DgNB.
  • the adaptation function can also be used as part of the logical function of the RLC layer in the DgNB.
  • the function of the RLC layer at this time includes the foregoing
  • the function of the layering function is different from that of the traditional RLC layer. For example, the existing reserved bits or newly added fields are used on the basis of the "message structure 1" to place information related to the adaptation function in the embodiment of the present application.
  • the message structure used at this time is different from the "message structure one".
  • the adaptation function can also be used as part of the logical function of the MAC layer in the DgNB.
  • the function of the MAC layer at this time is different from the function of the traditional MAC layer because it includes the aforementioned adaptation layer function.
  • the implementation of the adaptation function is not specifically limited herein.
  • Operation 1e Processing of the MAC layer function and the PHY layer function performed at the DgNB.
  • the processing of the MAC layer herein may include at least one of the following: scheduling or priority handling processing, multiplexing processing, retransmission processing based on the HARQ mechanism, and processing of the downlink data after the MAC layer function. And then processed by the PHY layer, and then sent to the RN through the interface between the DgNB and the UE.
  • the processing of the downlink data sent from the DgNB in the RN may include two cases.
  • the RN and the UE processing the downlink data have A direct communication interaction can be applied to a single-hop relay or a multi-hop relay.
  • the RN that processes the downlink data needs to communicate with another RN and the UE.
  • the scenarios are as follows:
  • the relay node is located between the terminal device and the host base station, and the relay node directly communicates with the terminal device.
  • the relay node directly communicates with the host base station, and the processing of the downlink data by the relay node RN includes at least one of the following operations:
  • Operation 2a The receiving side of the RN performs processing of the PHY layer function and the MAC layer function on the received downlink data.
  • the processing of the PHY layer function and the MAC layer function herein includes at least one of: performing error correction (for example, error correction by a HARQ mechanism), demultiplexing, and the like by receiving the downlink data through the HARQ mechanism.
  • Operation 2b The RN performs processing related to at least one of the following adaptation functions on the downlink data:
  • the RN learns information related to the adaptation function from the received downlink data packet, such as information for packet routing and/or information for QoS mapping, where information for packet routing and/or Or the information of the QoS mapping includes at least one of the following: information of the identifier of the UE, information of the identifier of the RN serving the UE, information of the identifier of the transmission path, information of the identifier of the DgNB, information of the identifier of the QoS flow, PDU Information of the identity of the session, information of the identity of the radio bearer of the UE, and information of the identity of the logical channel of the UE.
  • the RN serving the terminal device may be a relay node to which the serving cell accessed by the terminal device belongs. By carrying the information in the downlink data packet, the intermediate node in the transmission path obtains the correct next hop node for the downlink data to be transmitted.
  • the RN can know that the next hop node transmitted by the data packet is the UE.
  • the RN determines the radio bearer or logical channel required to transmit the downlink data packet. For example, optionally, the QoS parameters and/or QoS mapping rules configured according to the network side (for example, the core network element or the configuration of the DgNB to the RN, or the RN local configuration), and/or the RN corresponding to the received downlink data.
  • the network side for example, the core network element or the configuration of the DgNB to the RN, or the RN local configuration
  • Logical channel or radio bearer determining the radio bearer or logical channel used by the interface between the RN and the UE to send the downlink data; or, optionally, according to the network side (for example, the core network element or the DgNB to the RN configuration, Or the QoS parameter and/or the QoS mapping rule configured by the RN, and/or the received QoS flow identifier carried in the downlink data packet, determining the radio bearer used by the interface between the RN and the UE to send the downlink data or Logical channel; or, optionally, the RN determines the radio used by the interface between the RN and the UE to send the downlink data by using the information of the identifier of the radio bearer of the UE or the identifier of the logical channel of the UE carried in the data packet.
  • the network side for example, the core network element or the DgNB to the RN configuration, Or the QoS parameter and/or the QoS mapping rule configured by the RN, and/or the received Qo
  • Bearer or logical channel It can be understood that the logical channel of the terminal device generally has a corresponding relationship with the radio bearer of the terminal device, and the radio bearer generally has the QoS requirement guarantee of the corresponding granularity, and then the downlink data carries the information of the identifier of the logical channel of the UE or The information about the identifier of the radio bearer corresponding to the logical channel also indicates the corresponding Qos requirement of the service to which the downlink data belongs; different PDU sessions generally correspond to different radio bearers, and for one PDU session, the air interface can establish at least one radio bearer and Corresponding; a PDU session can also carry different QoS flows, each QoS flow can have different QoS requirements, so that the protocol data unit session can have corresponding QoS requirements based on its corresponding radio bearer or the QoS flow it carries. . Of course, if the downlink data carries the information of the QoS flow identifier, it also indicates the QoS requirement of the service
  • the adaptation function processing of the RN may be implemented on the downlink receiving side of the RN side, for example, may be set as the MAC in the downlink receiving side part of the RN.
  • a separate functional module (such as a logical function protocol layer) on the layer is implemented; or it may be part of the function of an existing protocol layer in the downlink receiving side part of the RN, such as a part of the MAC layer functional entity on the downlink receiving side,
  • the function of the MAC layer differs from the function of the conventional MAC layer because it includes the aforementioned adaptation layer function.
  • the adaptation function may also be part of the logical function of the RLC layer on the downlink receiving side.
  • the adaptation function processing may also be implemented on the downlink transmission side of the RN side, for example, as an independent functional module (such as a logical function protocol layer) in the downlink transmission side part of the RN; or as a downlink transmission of the RN.
  • an independent functional module such as a logical function protocol layer
  • a part of the function of the protocol layer in the side part such as a part of the RLC function entity on the downlink transmitting side.
  • the related processing involved in the adaptation function may also be separately deployed.
  • some processing in the adaptation function processing is deployed as an independent functional entity, and some of the adaptation functions are part of the RLC protocol layer function, or Another part of the adaptation function can be part of the MAC layer functionality.
  • the processing of the routing information involved in the adaptation function processing may be performed as a separate part for any of the above-mentioned deployments, or the processing of the Qos information involved in the adaptation function processing may be performed as a separate part.
  • a deployment, specifically the division and deployment of the sub-functions in the adaptation function, is not limited herein.
  • adaptation function processing (such as identification, deletion, or addition of information related to the adaptation function), such as implementing the adaptation function by adding a separate protocol layer, may be referred to as an adaptation layer protocol.
  • an adaptation layer protocol such as identification, deletion, or addition of information related to the adaptation function
  • the specific name is not limited here.
  • the adaptation function is implemented in the RLC layer function in the RN node, then optional information for packet routing and/or for QoS mapping may be included in the header information of the RLC PDU, eg, in the RLC.
  • the header information of the PDU is represented by a new bit, or the reserved bit in the RLC PDU header information is used to indicate the information.
  • the adaptation function is implemented in the MAC layer function in the RN node, then optional information for packet routing and/or for QoS mapping may be included in the header information of the MAC SDU.
  • the adaptation processing function may also be implemented in a common processing module in the RN to support implementation of the receiving side and the transmitting side functions in the RN.
  • the implementation of the adaptation function in the RN is not specifically limited herein.
  • Operation 2c The RN performs processing of the RLC layer on the downlink data.
  • the processing of the RLC here includes at least one of the following:
  • segment the RLC PDU for example, a segment of the RLC SDU or the RLC SDU included in the RLC PDU
  • the segment here may be referred to as re-segmentation, and the second segment described herein may be relative to the case where the DgNB has already been segmented.
  • the transmitting side of the RN segments the received RLC PDU, that is, performs segmentation processing on the RLC SDU or RLC SDU segment included in the data field in the received RLC PDU, and the RN adds the obtained new segment to the RLC layer header.
  • a new RLC PDU is formed correspondingly.
  • one RLC PDU can be divided into at least two segments, each of which can correspond to a new RLC PDU.
  • the obtained new RLC PDU includes the sequence number (SN) in the original RLC PDU, and the sequence number in the original RLC PDU is the same as or corresponding to the initial RLC SDU sequence number.
  • the obtained RLC PDU satisfies the foregoing "message structure one".
  • the RLC status report PDU may not be re-segmented.
  • the “Modify One” includes at least one of the following processes:
  • the SI domain or frame information (frame innfo, FI) field carries indication information, where the indication information is used to indicate that the RLC PDU is a complete packet (for example, the data field in which the data field is an original RLC SDU without segmentation) And/or, the indication information is used to indicate a segment generated by the original RLC SDU corresponding to the RLC PDU (that is, a new RLC PDU obtained after the RN performs segmentation processing).
  • the value set of the FI/SI field is ⁇ 00, 01, 10, 11 ⁇ , and the meaning of the range of the value set is: ⁇ complete packet/SDU, first segment, last segment, intermediate segment Segment ⁇ (" ⁇ " here means the range of values, the same below).
  • here means the range of values, the same below.
  • the obtained RLC is obtained after the segmentation.
  • the FI/SI field in the PDU is different from the FI/SI field in the RLC PDU before the segmentation.
  • the value of the FI/SI field ranges from 00 to ⁇ 01, 10, 11 ⁇ .
  • the SO field is used to indicate the location of the segment in the original RLC SDU.
  • For the processing of the SO domain at least one of the following is included:
  • the value of the FI/SI field of the RLC PDU received by the RN is 00 or 01, that is, the data field in the RLC PDU received by the RN node is a complete RLC SDU, or the original RLC SDU.
  • a segment if the RN segments the RLC PDU, the new RLC PDU corresponding to the first segment obtained after the segmentation may be without SO, and the remaining segments corresponding to the segment are new.
  • the value of the SO field of the RLC PDU may be set by referring to the position of the first byte of the RLC SDU segment corresponding to the data field in each of the remaining new RLC PDUs in the original RLC SDU.
  • the value of the SO field of the RLC PDU is set to the first byte of the RLC SDU segment corresponding to the data field in each new RLC PDU.
  • the first RLC SDU or RLC SDU corresponding to the data field in the RLC PDU packet received by the RN The location in the segment.
  • the RLC PDU received by the RN node is an intermediate segment or a last segment, and the RN node receives the RLC PDU.
  • the RLC PDU data packet is segmented, and the SO domain of the new RLC PDU corresponding to the first segment obtained after the segmentation is identical to the SO domain of the RLC PDU data packet received by the RN node, and the rest is obtained after segmentation.
  • the value of the SO field of the new RLC PDU corresponding to the segment may be set with reference to the position of the first byte of the RLC SDU segment corresponding to the data field in the remaining new RLC PDUs in the original RLC SDU, for example, a possible manner.
  • the location in the RLC SDU segment corresponding to the data field in the RLC PDU received by the RN is set with reference to the position of the first byte of the RLC SDU segment corresponding to the data field in the remaining new RLC PDUs in the original RLC SDU, for example, a possible manner.
  • a data packet of length 100 bytes (the data packet may be the original RLC SDU) is divided into three segments, the first segment length is 20 bytes, and the second segment length is 30 bytes.
  • the third segment length is 50 bytes, then the SO value in the RLC PDU corresponding to the first segment is 0, the SO value in the RLC PDU corresponding to the second segment is 20, and the SO in the RLC PDU corresponding to the third segment The value is 50.
  • the SO value in the RLC PDU corresponding to the first sub-segment of the third segment is 50, and the third The SO value in the RLC PDU corresponding to the second sub-segment of the segment is 90.
  • the data retransmission mechanism is not implemented at the RLC layer of the RN. Specifically, at least one of the following is included:
  • the RN For the RLC PDU sent by the RN, if the data receiving end does not receive it correctly; or if the data receiving end feeds back the RLC PDU is not correctly received; or if the data receiving end feeds back the RLC corresponding to the data field in the RLC PDU The SDU or RLC SDU segment is not correctly received, or whether the data receiving end is received. For any of these cases, the RN does not perform retransmission of the RLC PDU.
  • the RN does not correctly receive the RLC PDU/SDU/SDU segment, and does not feed back the reception status to the data transmitting end; the RN sends the received report about the receiving status of the RLC SDU to the data transmitting end, but may not parse the receiving status. For example, the RN learns that the type of the RLC PDU is a control PDU by using the D/C domain and/or the CPT field in the header information of the RLC PDU, and the RN determines that the RLC PDU carries a status report, and then according to the adaptation. The routing information in the function-related information is sent to the sending end of the data.
  • the receiving status report may be from the UE or from the DgNB.
  • the receiving status referred to herein may be one or more RLC SDUs. Or the case where the segmentation of the RLC SDU is not received correctly.
  • the RN when the RN performs data transmission with the neighboring network node, it does not need to feed back the status to the data transmitting end in the processing of its radio link control layer function, and does not need to feed back the status to the data transmitting end.
  • the data sent by the RN but not received correctly by the receiving end needs to be retransmitted, so that the data processing and transmission efficiency of the relay node is higher, and the processing time of the data at the relay node is reduced, thereby reducing the communication system end.
  • the end data transmission delay when the RN performs data transmission with the neighboring network node, it does not need to feed back the status to the data transmitting end in the processing of its radio link control layer function, and does not need to feed back the status to the data transmitting end.
  • the RN Since the function of the RLC layer of the RN does not generate a report on the data reception status, and does not retransmit the downlink RLC PDU according to the status report of the data reception sent by the UE, the RN does not need to set the RLC layer for the retransmission buffer. (retransmit buffer), which saves system resource overhead.
  • the segments corresponding to the received RLC PDU may not be reorganized and/or reordered, and the segment is not reorganized as described herein, which may be understood as when the RLC SDU is used. After being segmented, each segment obtained corresponds to form a new RLC PDU.
  • the processing of the RLC layer of the RN does not need to restore the foregoing multiple RLC PDUs into a complete RLC SDU; without reordering, it can be understood
  • the RLC PDUs received by the RN are not sorted according to the sequence number of the SDU to which they belong, and are then delivered to the upper layer in order or sequentially to the transmitting side for further processing. It is to perform the next processing on the transmitting side that the received RLC PDU is delivered to the RN, thus further simplifying the data processing at the relay node, thereby further reducing the end-to-end communication delay.
  • the sending side of the RN performs RLC layer processing on the downlink data packet, and may also introduce an ARQ-based retransmission mechanism to enhance data transmission reliability, and introduce an ARQ mechanism, such as performing, in the foregoing simplified RLC layer function.
  • the portion of the aforementioned design that is not required to be executed may increase the processing delay. Therefore, the balance between the RLC function of the RN and the ARQ mechanism to improve the transmission QoS and the end-to-end communication delay is required to be designed according to the actual situation.
  • the processing function of the RLC layer can be deployed on the downlink receiving side of the RN node, and can be deployed on the downlink sending side of the RN node or in the common processing module in the RN node.
  • the downlink data packet processed by the RLC layer of the RN may be introduced by the adaptation function, for example, on the downlink sending side of the RN, and added in the downlink data packet for packet routing and/or Information for QoS mapping
  • the information for packet routing and/or for QoS mapping includes at least one of: information of the identity of the UE, of the RN node serving the UE in the relay transmission link
  • information for packet routing and/or for QoS mapping may be included in the header information of the RLC PDU, for example, in the header information of the RLC PDU, the newly added domain is used to represent the information, or the header information is used.
  • the reserved bits are used to indicate this information.
  • the RN that provides the service to the terminal device may be the RN to which the serving cell to which the terminal device accesses belongs.
  • Operation 2d The RN performs processing of the MAC layer and the PHY layer on the downlink data packet.
  • the transmitting side of the RN sends the RLC PDU to the MAC layer and the PHY layer for processing, and then sends the RLC PDU to the receiving UE.
  • the MAC layer of the receiving side of the RN and/or the MAC layer of the transmitting side of the RN may reserve a HARQ-based data retransmission mechanism, and perform operations such as feedback and retransmission in the HARQ retransmission mechanism during data transmission. To further ensure the reliability of data transmission.
  • the data processing at the RN node can refer to the example 2
  • the data processing at the RN node can refer to the example 3 .
  • Data processing at the RN node includes at least one of the following operations:
  • Operation 3a The receiving side of the RN performs processing of the PHY layer and the MAC layer on the received downlink data.
  • the processing of 3a here can refer to the way of 2a.
  • Operation 3b The RN performs processing on at least one of the following adaptation functions on the downlink data:
  • the RN learns information related to the adaptation function from the received downlink data packet, such as information for packet routing and/or information for QoS mapping, where information for packet routing and/or Or the information for the QoS mapping includes at least one of the following: information of the identifier of the UE, information of the identifier of the RN serving the UE, information of the identifier of the next hop RN, information of the identifier of the transmission path, and identifier of the DgNB Information, information of the QoS flow, information of the identity of the PDU session, information of the identity of the radio bearer of the UE, information of the identity of the logical channel of the UE, between the RN and the last hop node (such as DgNB or other RN) At least one of the information of the identity of the radio bearer of the interface and the information of the identity of the logical channel of the interface between the RN and the previous hop node.
  • information for packet routing and/or Or the information for the QoS mapping includes at least one of the
  • the RN that provides the service to the terminal device may refer to the RN to which the serving cell to which the terminal device accesses belongs. It can be understood that the embodiment of the present application does not limit information used for data packet routing or QoS mapping, and may be any other parameter or information that can be used to route or transmit QoS.
  • the RN determines the route.
  • the intermediate node in the transmission path obtains the correct next hop node for the downlink data that needs to be transmitted. For example, according to the information of the identifier of the UE carried in the data packet or the information of the identifier of the next hop RN or the identifier of the transmission path or the information of the identifier of the RN serving the UE, the RN can learn the transmission of the data packet.
  • the routing policy involved herein may be a network side configuration, such as a DgNB configuration, or may be locally configured by the RN.
  • the RN determines the radio bearer or logical channel required to transmit the downlink data packet.
  • the QoS parameters and/or QoS mapping rules configured according to the network side (for example, the configuration of the core network element or the DgNB to the RN, or the local configuration of the RN), and/or the logic of the RN corresponding to the received downlink data.
  • Radio bearer to determine the radio bearer or logical channel used by the interface between the RN and the next hop node (such as other RNs or UEs) to transmit the downlink data; or, alternatively, according to the network side (eg, the core network) Determining the RN and the next hop node by the QoS parameter and/or QoS mapping rule configured by the network element or the DgNB to the RN, or the RN local configuration), and/or the received QoS flow identifier carried in the downlink data packet a radio bearer or a logical channel used by the interface between the RN or the UE to transmit the downlink data; or the RN according to the information of the identifier of the radio bearer of the UE carried in the data packet or the identifier of the logical channel of the UE, The radio bearer or logical channel used by the interface between the RN and the next hop node (such as other RNs or UEs) to transmit the downlink data is determined.
  • the wireless logical channel generally has a corresponding relationship with the radio bearer
  • the radio bearer generally has the QoS requirement guarantee of the corresponding granularity
  • the downlink data carries the information of the identifier of the logical channel or the radio bearer corresponding to the logical channel.
  • the information of the identification also indicates the corresponding Qos requirement of the service to which the downlink data belongs.
  • Different PDU sessions generally correspond to different radio bearers.
  • an air interface can establish at least one radio bearer corresponding thereto; a PDU session can also carry different QoS flows, and each QoS flow can have different QoS requirements, such that The protocol data unit session may have a corresponding QoS requirement based on its corresponding radio bearer or the Qos flow it carries.
  • the downlink data carries the information of the QoS flow identifier, it also indicates the QoS requirement of the service to which the downlink data belongs.
  • the adaptation function processing of the RN may be implemented on the downlink receiving side of the RN side, for example, may be set as the MAC in the downlink receiving side part of the RN.
  • a separate functional module (such as a logical function protocol layer) on the layer is implemented; or it may be part of the function of an existing protocol layer in the downlink receiving side part of the RN, such as a part of the MAC layer functional entity on the downlink receiving side,
  • the function of the MAC layer differs from the function of the conventional MAC layer because it includes the aforementioned adaptation layer function.
  • the adaptation function may also be part of the logical function of the RLC layer on the downlink receiving side.
  • the adaptation function processing may also be implemented on the downlink transmission side of the RN side, for example, as an independent functional module (such as a logical function protocol layer) in the downlink transmission side part of the RN; or as a downlink transmission of the RN.
  • an independent functional module such as a logical function protocol layer
  • a part of the function of the protocol layer in the side part such as a part of the RLC function entity configured on the downlink transmitting side.
  • the related processing functions involved in the adaptation function may also be separately deployed.
  • some processing in the adaptation function processing is deployed as an independent functional entity, and some of the adaptation functions are part of the RLC protocol layer function.
  • another portion of the adaptation function can be part of the MAC layer functionality.
  • the processing of the routing information involved in the adaptation function processing may be performed as a separate part for any of the above-mentioned deployments, or the processing of the Qos information involved in the adaptation function processing may be performed as a separate part.
  • a deployment, specifically the division and deployment of the sub-functions in the adaptation function, is not limited herein.
  • information for packet routing and/or for QoS mapping may be included in the header information of the RLC PDU, for example, The information is represented by new bits in the header information of the RLC PDU, or by using reserved bits in the RLC PDU header information.
  • information for packet routing and/or for QoS mapping may be included in the header information of the MAC SDU.
  • adaptation function processing (such as identification, deletion, or addition of information related to the adaptation function), such as implementing the adaptation function by adding a separate protocol layer, may be referred to as an adaptation layer protocol.
  • an adaptation layer protocol such as identification, deletion, or addition of information related to the adaptation function
  • the specific name is not limited here.
  • the information about the foregoing adaptation function may be included in the header information of the adaptation layer PDU.
  • the adaptation processing function can also be implemented in a common processing module in the RN to support the implementation of the receiving side and the transmitting side functions in the RN.
  • the implementation of the adaptation function in the RN is not specifically limited herein.
  • Operation 3c The RN performs processing of the RLC layer function on the downlink data.
  • the processing of the RLC here includes at least one of the following:
  • segment the RLC PDU On the transmitting side of the RN, segment the RLC PDU. If the received RLC PDU is an RLC PDU that has been obtained after segmentation, the segment here may be referred to as re-segmentation or secondary segmentation ( 2nd segmentation), the re-segmentation or quadratic segmentation described herein may be relative to the case where the DgNB or the last hop has segmented the RLC PDU or the RLC SDU.
  • the transmitting side of the RN segments the received RLC PDU, that is, performs segmentation processing on the RLC SDU or RLC SDU segment included in the data field in the received RLC PDU, and the RN adds the obtained new segment to the RLC layer header.
  • a new RLC PDU is formed correspondingly.
  • one RLC PDU can be divided into at least two segments, each of which can correspond to a new RLC PDU.
  • the obtained new RLC PDU includes the sequence number (SN) in the original RLC PDU, and the sequence number in the original RLC PDU is the same as or corresponding to the initial RLC SDU sequence number.
  • the RLC status report PDU may not be re-segmented.
  • the obtained RLC PDU satisfies the foregoing "message structure one".
  • the data retransmission mechanism is not implemented at the RLC layer of the RN. Specifically, at least one of the following is included:
  • the RN For the RLC PDU sent by the RN, if the data receiving end does not receive it correctly; or if the data receiving end feeds back the RLC PDU is not correctly received; or if the data receiving end feeds back the RLC corresponding to the data field in the RLC PDU The SDU or RLC SDU segment is not correctly received; or regardless of whether the data receiving end receives it, for any of these cases, the RN does not perform retransmission of the RLC PDU.
  • the RN does not feed back the receiving status to the data transmitting end of the RLC PDU that is not correctly received; the RN sends the received report about the receiving status of the RLC SDU to the data sending end, but may not parse the content of the report of the receiving status, such as
  • the RN learns that the type of the RLC PDU is a control PDU by using the D/C field and/or the CPT field in the header information of the RLC PDU, and the RN determines that the RLC PDU carries a status report, and then according to the information about the adaptation function.
  • the routing information is sent to the sending end of the data, and the report of the receiving status may be from the UE or from the DgNB.
  • the receiving status referred to herein may be that one or more RLC SDUs are not correctly received. happening.
  • the RN when the RN performs data transmission with the neighboring network node, it does not need to feed back the status to the data transmitting end in the processing of its radio link control layer function, and does not need to feed back the status to the data transmitting end.
  • the data sent by the RN but not received correctly by the receiving end needs to be retransmitted, and the retransmission mechanism similar to ARQ is not performed, so that the data processing and transmission efficiency at the relay node is higher, and the data is reduced at the relay node. Processing time, which reduces the end-to-end data transmission delay of the communication system.
  • the RN Since the function of the RLC layer of the RN does not set the ARQ mechanism, the RN does not generate a report on the data reception status, and does not retransmit the downlink RLC PDU according to the status report of the data received by the UE, so the RN does not need to set the RLC layer.
  • the retransmit buffer for retransmission saves system resource overhead.
  • the segments corresponding to the received RLC PDU may not be reorganized and/or reordered, and the reorganization of the segment is referred to herein as After the RLC SDU is segmented, each segment obtained corresponds to form a new RLC PDU.
  • the processing of the RLC layer of the RN does not need to restore the foregoing multiple RLC PDUs into a complete RLC SDU; Sorting, it can be understood that, in the processing of the RLC layer of the RN, the RLC PDUs received by the RN are not sorted according to the sequence number of the SDU to which they belong, and are sequentially delivered to the upper layer or sequentially to the transmitting side.
  • the received RLC PDU is forwarded to the transmitting side of the RN for further processing, thereby further simplifying data processing at the relay node, thereby further reducing the end-to-end communication delay.
  • the sending side of the RN performs RLC layer processing on the downlink data packet, and may also introduce an ARQ-based retransmission mechanism to enhance data transmission reliability, and introduce an ARQ mechanism, such as performing, in the foregoing simplified RLC layer function.
  • the portion of the aforementioned design that is not required to be executed may increase the processing delay. Therefore, the balance between the RLC function of the RN and the ARQ mechanism to improve the transmission QoS and the end-to-end communication delay is required to be designed according to the actual situation.
  • the processing function of the RLC layer can be deployed on the downlink receiving side of the RN node, and can be deployed on the downlink sending side of the RN node or in the common processing module in the RN node.
  • Operation 3d The RN performs processing of the adaptation function of the downlink data.
  • an adaptation function process may be introduced, such as adding the foregoing for packet routing and/or in the downlink data packet on the transmitting side of the RN.
  • Information for QoS mapping includes at least one or any of the following: information of the identity of the UE, information of the identity of the DgNB, in the relay link Information about the identity of at least one RN node involved, information of the identity of the transmission path, information of the identity of the QoS flow, information of the identity of the PDU session, information of the identity of the radio bearer of the UE, and information of the identity of the logical channel of the UE .
  • the implementation of the adaptation function in the RN can refer to the design of the adaptation function in 3b, which will not be repeated here.
  • Operation 3e The RN transmitting side performs processing of the MAC layer and the PHY layer. For example, it may include: scheduling, multiplexing, and retransmission.
  • the RN transmitting side transmits downlink data processed by the MAC layer and the PHY layer to the next hop RN node.
  • the MAC layer of the receiving side of the RN and/or the MAC layer of the transmitting side of the RN may reserve a HARQ-based data retransmission mechanism, and perform operations such as feedback and retransmission in the HARQ retransmission mechanism during data transmission. To further ensure the reliability of data transmission.
  • the reference system 700 describes the reception of downlink data from the perspective of the downlink data receiving end, where the receiving end may be a terminal device, such as a UE.
  • the data processing process at the receiving end includes at least one of the following operations:
  • Operation 4a The UE performs PHY layer and MAC layer processing on downlink data received from the RN.
  • the processing herein may include a HARQ mechanism based error correction processing performed at the MAC layer, and a demultiplexing process and the like.
  • Operation 4b The UE performs processing of the RLC layer. After performing the processing of the PHY layer and the MAC layer on the downlink data, the corresponding RLC PDU is obtained. If the data field in the RLC PDU includes the RLC SDU segment, the RLC SDU passes through the segment of the transmitting end DgNB and/or The fragmentation process of the intermediate node RN, the RLC layer of the receiving end UE may reassemble the received RLC PDU according to the information carried by the RLC PDU. Specifically, the UE may receive the received RLC PDU packet. Carrying the indication information, removing the RLC message header, reorganizing the RLC SDU segments therein, and reordering the complete RLC SDUs obtained after the reorganization, and then submitting them to the PDCP layer in order.
  • the UE before the UE performs RLC layer processing, the UE performs processing of the adaptation function, including reading information about the adaptation function, and/or removing the adaptation layer header if the adaptation function is an independent protocol layer. If the adaptation function is part of the RLC layer, these operations can be done in the RLC layer function of the UE.
  • the processing of the UE at the RLC layer may perform an ARQ-based data transmission error correction mechanism, so that unreceived RLC SDU or RLC SDU segments can be retransmitted. If a partial RLC PDU is lost or not received correctly, the receiving UE cannot obtain the complete RLC SDU corresponding to the RLC PDUs, and the receiving UE sends the RLC receiving status report, such as the RLC status report, through the relay node. And indicating to the transmitting end DgNB the RLC SDU or RLC SDU segment that is not correctly received, so that the transmitting end DgNB performs retransmission.
  • Operation 4c The UE performs processing of the PDCP layer and the SDAP layer on the downlink data.
  • the processing of the PDCP layer herein may include at least one of the following: deciphering, integrity verification, reordering & duplicate detection, and header decompression; here
  • the processing of the SDAP layer may include processing QoS flow ID information, removing the SDAP header, and the like.
  • the above is the reference system 700 in the downlink data transmission process, from the perspective of the host base station, the relay node, and the terminal device, respectively, the operating mechanism of the system 700 is illustrated, wherein, instance 1, instance 2, example 3 And the host base station shown in Example 4, the first type of relay node (example: the RN directly communicates with the UE), and the second type of relay node (example: the RN communicates with the UE through another RN)
  • the interactions, and the terminal devices (and the processing flows involved respectively) are respectively a relatively independent implementation method or a single network element system as an integral part of the wireless relay system 700.
  • the embodiment of the system 700 is suitable for the relay node RN because the design of the protocol stack is greatly simplified compared to the prior art, thereby reducing the processing delay of the data packet at the relay node, which is helpful for improvement. End-to-end transmission guarantee and efficiency.
  • the end-to-end transmission of the system operates in an acknowledgment mode.
  • the RLC layer between the UE and the DgNB has a data reception state feedback and retransmission mechanism; and the RLC layer of the RN node may not be configured. Data reception status feedback and retransmission mechanism.
  • the above mainly describes the functions of each network node involved in the wireless relay communication system and its operating mechanism from the perspective of downlink data transmission and processing.
  • the direction of data transmission from the terminal device to the network side is uplink
  • the direction of data transmission from the network side to the terminal device is downlink.
  • the uplink of the relay communication system is Transmission and downlink transmission are described separately.
  • the wireless relay communication system and its operation mechanism according to the present application will be described from the perspective of uplink data transmission and processing.
  • FIG. 8 shows a wireless relay communication system 800 provided by an embodiment of the present application.
  • the system 800 is illustrated by taking an uplink transmission of data and a user plane protocol stack as an example.
  • UE, RN1, DgNB, and UPF wherein the UE and the RN1 perform communication interaction through a communication interface between the two (for example, the interface is a Uu interface, but the name is not limited herein), and the RN1 and the DgNB pass two
  • the communication interface between the two performs communication interaction (for example, the interface is a Un interface, the name is not limited here), and the DgNB and the UPF communicate through the communication interface between the two (for example, the interface is an N3 interface, where the name is
  • the communication between the UE and the DgNB can also be performed by a peer-to-peer communication protocol, for example, through a peer-to-peer RLC layer protocol, a PDCP layer protocol, and a SDAP layer protocol.
  • the UE and the UPF can also logically communicate through the peer IP layer protocols respectively.
  • System 800 can be applied to a wireless single-hop relay scenario where there is only one RN between the UE and the DgNB in the relay communication system.
  • the protocol stack configured by the UE includes: a PHY layer, a MAC layer, an RLC layer, a PDCP layer, a SDAP layer, and an IP layer; and the protocol stack on the uplink receiving side of the RN1 is configured as at least one of the following: a PHY and a MAC;
  • the protocol stack of the uplink transmitting side of the RN1 is configured as follows: at least one of a PHY layer, a MAC layer, a Daptation layer, and an S-RLC layer; and configured on the uplink receiving side of the DgNB as at least one of the following: PHY Layer, MAC layer, adaptation function, RLC layer, PDCP layer, and SDAP layer.
  • the protocol stack configuration on the upstream transmitting side of DgNB includes: L1 and L2, IP layer, UDP layer, and GTP layer; correspondingly, in UPF
  • the protocol stack configuration on the side includes: L1 and L2, IP layer, UDP layer, GTP layer, and IP layer.
  • L1 and L2 are generally referred to as protocol layers of wired communication.
  • L1 may be a physical layer
  • L2 may be a data link layer
  • L2 may further include: a MAC layer, a logical link control layer.
  • At least one of the link layer of the point-to-point protocol (PPP) and the Ethernet (Ethernet) technology, and the specific protocol layer included in the L1 and L2 is not limited in the embodiment of the present application. .
  • FIG. 9 shows a wireless relay communication system 900 provided by an embodiment of the present application, where the system 900 includes : UE, RN1, RN2, and DgNB.
  • the UE and the RN1 perform communication interaction through the communication interface between the two (for example, the interface is a Uu interface, but the name is not limited herein), and the communication between the RN1 and the RN2 is performed through an interface between the two, RN2
  • DgNB communicates through the interface between the two, the "RN-RN interface" shown in FIG.
  • the communication interface is a communication interface between two relay nodes; logically between the UE and the DgNB
  • the communication interaction is performed through the peer-to-peer protocol stack, for example, through the peer RLC layer protocol, the PDCP layer protocol, and the SDAP layer protocol respectively.
  • the protocol stack configured by the UE includes: a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an SDAP layer, and an IP layer; and a protocol stack configured on the uplink receiving side of the relay node RN1 is at least one of the following: PHY and MAC; the protocol stack configured on the uplink transmitting side of the relay node RN1 is at least one of the following: a PHY layer, a MAC layer, an adaptation function, and an S-RLC layer; and an uplink reception at the relay node RN2
  • the protocol stack configured on the side is at least one of the following: PHY, MAC, and adaptation functions; the protocol stack configured on the uplink transmitting side of the relay node RN2 is at least one of the following: PHY layer, MAC layer, and adaptation ( Adapatation) function and S-RLC; the protocol stack configured on the uplink receiving side of the DgNB includes: PHY layer, MAC layer, adaptation function, RLC layer,
  • L1 and L2 generally refer to a protocol layer of wired communication, for example, L1 may be a physical layer, L2 may be a data link layer, and L2 may further include: a MAC layer, a logical link control layer (LLC)
  • LLC logical link control layer
  • PPP point-to-point protocol
  • Ethernet Ethernet
  • the protocol stack is configured on the uplink receiving side as the PHY layer and the MAC layer, and is sent in the uplink.
  • the side is the PHY, MAC, adaptation function, and S-RLC layer;
  • the protocol stack is configured on the uplink receiving side as PHY, MAC, and adaptation functions; on the uplink transmitting side It is the PHY, MAC, adaptation function, and S-RLC layer.
  • the protocol stack setting and data processing of RN1 and RN2 in the embodiment of the present application are simplified, so that the processing time of the uplink data in the relay node is reduced, thereby reducing the end of data transmission in the communication system. End delay.
  • the embodiment of the present application provides a wireless relay communication system 1000, which includes: a transmitting end, a relay node, and a radio access network.
  • the transmitting end may be a UE
  • the relay node may be an RN
  • the receiving end may be a DgNB in a wireless access system, wherein the UE and the RN perform communication interaction through a communication interface between the two (
  • the interface is a Uu interface, and the name is not limited.
  • the RN and the DgNB communicate through the interface between the two (for example, the interface can be a Un interface, and the name is not limited here).
  • the configuration and operation of the system 1000 will be described below from the functions of the respective nodes in the relay communication system and the processing flow of the uplink data.
  • the system 1000 can operate according to the following example mechanism:
  • the sending end of the foregoing embodiment is used for the UE.
  • the processing in the UE includes at least one of the following operations:
  • Operation 5a Processing of the SDAP layer function performed at the UE.
  • the processing of the SDAP layer function herein can refer to the prior art.
  • Operation 5b Processing of the PDCP layer function performed at the UE.
  • the processing of the PDCP layer function herein may refer to the prior art.
  • Operation 5c Processing of the RLC layer function performed at the UE.
  • the processing of the RLC layer function here includes at least one of the following:
  • the sequence numbering of the RLC SDUs is such that each RLC SDU has its own sequence number at the RLC layer.
  • an RLC SDU can be divided into at least two segments, and each obtained segment can correspond to a new RLC PDU.
  • Each RLC PDU obtained after segmentation has a sequence number and a segmented original RLC SDU.
  • the serial number of each RLC PDU obtained by the same sequence number or the segmentation has a corresponding relationship with the sequence number of the original RLC SDU that is segmented.
  • the RLC SDU may not be segmented, and the corresponding RLC PDU will be carried in the corresponding RLC PDU. Whether or not to implement the segmentation depends on the actual situation and is not limited here.
  • the retransmission here may be based on an automatic repeat request mechanism, and the retransmitted data packet may be a segment of an RLC SDU or an RLC SDU.
  • the RLC SDU is not segmented, and the uplink transmitted data packet is an RLC SDU, and the retransmitted data packet is also a corresponding RLC SDU, for example, when When the MAC layer resources are small, the RLC SDUs that need to be retransmitted need to be segmented and then retransmitted, or when some RLC status reports reported by the receiving end are not correctly received.
  • the segment that was not correctly received may be retransmitted.
  • the specific retransmitted data packet is an RLC SDU or an RLC PDU obtained after the RLC SDU is segmented, and is determined according to actual conditions, and is not limited herein.
  • the RLC layer data retransmission mechanism performed between the terminal device and the donor base station includes: if the UE receives the RLC status report from the DgNB (ie, the DgNB reports on the RLC SDU reception status), the UE will not be The RLC SDU (or the fragment of the RLC SDU) that is correctly sent to the DgNB is retransmitted to the DgNB by the at least one RN. In the process of resending the RLC PDU by the UE to the DgNB, the at least one RN may not identify that the RLC PDU is an initial transmission.
  • the RLC PDU is also a retransmitted RLC PDU; and/or the UE sends a report on the reception status of the RLC SDU to the DgNB through at least one RN, for example, if the UE determines that one or more RLC PDUs from the DgNB are not received Or the UE does not correctly receive the report, and the UE sends a report about the receiving status of the unreceived data packet to the DgNB.
  • the RN may not parse the content of the status report, and the RN may Obtaining that the type of the RLC PDU is a control PDU by using the D/C domain and/or the CPT field in the header information of the RLC PDU, the RN determines that the RLC PDU is an RLC status report, and then according to the routing information in the information about the adaptation function.
  • the gNB sends the control PDU, and information about the adaptation function may also be carried in the RLC PDU.
  • the RLC PDU obtained after the RLC layer function of the UE satisfies the foregoing “Message Structure One”.
  • Operation 5d Processing of the MAC layer function and the PHY layer function performed by the UE.
  • the processing of the MAC layer here includes at least one of the following: scheduling or priority handling processing, multiplexing processing, and retransmission processing based on the HARQ mechanism; after the MAC processing, the uplink data passes through The processing of the PHY layer is then sent to the RN through a communication interface between the UE and the RN.
  • the processing of the uplink data sent from the UE in the RN may include two cases.
  • the RN that processes the uplink data has direct communication with the UE.
  • the case can be applied to a scenario of single-hop relay or multi-hop relay; the second case is that the RN that processes the uplink data needs to communicate with the UE through another RN, and this situation can be applied to the scenario of multi-hop relay.
  • the processing of the uplink data by the RN includes at least one of the following operations:
  • Operation 6a The uplink receiving side of the RN performs processing of the PHY layer function and the MAC layer function on the received uplink data.
  • the processing of the MAC layer here includes at least one of the following: error correction and demultiplexing of the reception of the uplink data by the HARQ mechanism.
  • Operation 6b The RN performs processing on at least one of the following functions related to the adaptation function on the uplink data:
  • the RN determines the radio bearer or logical channel required to transmit the upstream data packet.
  • the QoS parameters and/or QoS mapping rules configured according to the network side (for example, the configuration of the core network element or the DgNB to the RN, or the local configuration of the RN), and/or the logic of the RN corresponding to the received uplink data.
  • a radio bearer or a radio bearer that determines the radio bearer or logical channel used by the interface between the RN and the next hop node (such as another RN or DgNB) to transmit the uplink data; or, optionally, according to the network side (eg, the core network)
  • the QoS parameter and/or QoS mapping rule configured by the DL or the DGN to the RN, or the RN is configured locally, and/or the QoS flow identifier carried in the received uplink packet is determined at the RN and the next hop node (eg, The radio bearer or the logical channel used by the interface between the other RN or the DgNB to send the uplink data; or, optionally, the RN is identified by the identifier of the radio bearer of the UE carried in the data packet or the identifier of the logical channel of the UE.
  • the RN determines which node the uplink data packet needs to be sent to. Specifically, the RN may select the next hop node according to the configured routing policy.
  • the next hop node may be a DgNB or another RN.
  • the routing policy may be configured by the network side, such as a DgNB, or may be locally configured by the RN.
  • Operation 6c The RN performs processing of the RLC layer on the uplink data.
  • the processing of the RLC here includes at least one of the following:
  • segmenting the RLC PDU For example, if the RLC PDU received by the RN is an RLC PDU obtained after being segmented, the segment here may be referred to as a re-segment or a secondary segment, as referred to herein. The re-segmentation or quadratic segmentation may be relative to the case where the UE has already segmented.
  • the RN segments the RLC PDU, that is, performs segmentation processing on the RLC SDU or RLC SDU segment included in the data field in the received RLC PDU, and the RN adds the RLC layer header information to the obtained segment, and correspondingly forms a new one. RLC PDU.
  • one RLC PDU can be divided into at least two segments, each of which can correspond to a new RLC PDU.
  • the obtained new RLC PDU includes the sequence number (SN) in the original RLC PDU, and the sequence number in the original RLC PDU is the same as or corresponding to the initial RLC SDU sequence number.
  • the RLC status report PDU may not be re-segmented.
  • the obtained RLC PDU satisfies the foregoing "message structure one".
  • the data retransmission mechanism is not implemented at the RLC layer of the RN. Specifically, at least one of the following is included:
  • the RN For the RLC PDU sent by the RN, if the data receiving end does not receive it correctly; or if the data receiving end feeds back the RLC PDU is not correctly received; or if the data receiving end feeds back the RLC corresponding to the data field in the RLC PDU The SDU or RLC SDU segment is not correctly received; or regardless of whether the data receiving end receives it, for any of these cases, the RN does not perform retransmission of the RLC PDU.
  • the RN does not feed back the receiving status to the data transmitting end of the RLC PDU that is not correctly received; the RN sends the received report about the receiving status of the uplink RLC SDU to the data sending end, but may not parse the content of the report of the receiving status. For example, the RN learns that the type of the RLC PDU is a control PDU by using the D/C domain and/or the CPT field in the header information of the RLC PDU, and the RN determines that the RLC PDU carries a status report, and then sends the status report to the sender of the data according to the routing information.
  • the control PDU, the report of the receiving status may be from the UE, or may be from the DgNB.
  • the receiving status referred to herein may be a case where one or more RLC SDUs are not correctly received.
  • the RN when the RN performs data transmission with the neighboring network node, it does not need to feed back the status to the data transmitting end in the processing of its radio link control layer function, and does not need to feed back the status to the data transmitting end.
  • the data sent by the RN but not received correctly by the receiving end needs to be retransmitted, so that the data processing and transmission efficiency of the RN is higher, and the processing time of the data at the relay node is reduced, thereby reducing the end-to-end of the communication system. Data transmission delay.
  • the RN Since the function of the RLC layer of the RN does not generate a report on the data reception status, and the RLC PDU is not retransmitted according to the status of the data reception, the RN does not need to set the REC layer for the retransmit buffer. Thereby saving system resource overhead.
  • the segments corresponding to the received RLC PDU may not be reorganized and/or reordered, and the segment is not reorganized, which may be understood as when the RLC SDU is segmented. Then, each segment obtained corresponds to form a new RLC PDU.
  • the processing of the RLC layer of the RN does not need to restore the foregoing multiple RLC PDUs into a complete RLC SDU; without reordering, it can be understood that
  • the RLC PDUs received by the RN are not sorted according to the sequence number of the SDU to which they belong, and are sequentially delivered to the upper layer or sequentially to the next side by the transmitting side, but are received.
  • the above-mentioned RLC PDUs are forwarded to the transmitting side of the RN for further processing, thus further simplifying the data processing at the relay node, thereby further reducing the end-to-end communication delay.
  • the sending side of the RN performs the RLC layer processing on the uplink data packet, and may also introduce an ARQ-based retransmission mechanism to enhance the reliability of the data transmission.
  • the implementation is not performed in the RN RLC functional entity in the foregoing design.
  • the part that is required to be executed may increase the processing delay. Therefore, the balance between the RLC function of the RN and the ARQ mechanism to improve the transmission QoS and the end-to-end communication delay is required to be designed according to the actual situation.
  • the processing function of the RLC layer can be deployed on the uplink receiving side of the RN node, and can be deployed on the uplink sending side of the RN node or in the common processing module in the RN node.
  • an adaptation function may be introduced, for example, on the uplink sending side of the RN, and the uplink data packet is added for data packet routing and/or Information for QoS mapping
  • the information for packet routing and/or for QoS mapping includes at least one of: information of the identity of the UE, of the RN node serving the UE in the relay transmission link
  • information for packet routing and/or for QoS mapping may be included in the header information of the RLC PDU, such as by using the newly added bits in the header information of the RLC PDU to indicate the information, or using the header information.
  • the reserved bits are used to indicate this information.
  • the RN that provides the service to the terminal device may refer to the RN to which the serving cell to which the terminal device accesses belongs.
  • Operation 6d The transmitting side of the RN performs processing of the MAC layer function and the PHY layer function on the uplink data.
  • the uplink data packet is processed by the MAC layer and the PHY layer on the uplink transmitting side of the RN, and then sent to the next hop node.
  • the next hop node mentioned here is DgNB, for multi-hop.
  • the MAC layer of the receiving side of the RN and/or the MAC layer of the transmitting side of the RN may reserve a HARQ-based data retransmission mechanism, and perform operations such as feedback and retransmission in the HARQ retransmission mechanism during data transmission. To further ensure the reliability of data transmission.
  • the RN node receives uplink data from another RN (not shown in the system 1000), processes the uplink data, and sends it to the next relay node or the donor base station.
  • the processing of the uplink data for the RN includes at least one of the following operations:
  • Operation 7a The receiving side of the RN performs processing of the PHY layer and the MAC layer on the received uplink data.
  • the processing of the MAC layer includes: performing error correction, demultiplexing, and the like on reception of uplink data by the HARQ mechanism.
  • Operation 7b The RN performs adaptation layer processing on the uplink data.
  • the adaptation layer processing referred to herein includes at least one of the following:
  • the RN learns information related to the adaptation function from the received uplink data packet, such as information for packet routing and/or information for QoS mapping, where it is used for packet routing and/or
  • the information of the QoS mapping includes at least one of the following: information of the identifier of the UE, information of the identifier of the RN serving the UE, information of the identifier of the transmission path, information of the identifier of the DgNB, information of the identifier of the QoS flow, PDU At least one of information of the identity of the session, information of the identity of the radio bearer of the UE, and information of the identity of the logical channel of the UE.
  • the RN that provides the service to the terminal device may refer to the RN to which the serving cell to which the terminal device accesses belongs.
  • the intermediate node in the transmission path is facilitated to obtain the correct next hop node for the uplink data to be transmitted.
  • the RN can learn the next hop of the uplink transmission of the data packet.
  • the node is another RN or DgNB.
  • the routing policy applied here may be a network side core network element or a DgNB configuration or the RN local configuration.
  • the RN determines the radio bearer or logical channel required to transmit the uplink data packet.
  • the QoS parameters and/or QoS mapping rules configured according to the network side (for example, the configuration of the core network element or the DgNB to the RN, or the local configuration of the RN), and/or the logic of the RN corresponding to the received uplink data.
  • a radio bearer or a radio bearer that determines the radio bearer or logical channel used by the interface between the RN and the next hop node (such as another RN or DgNB) to transmit the uplink data; or, optionally, according to the network side (eg, the core network)
  • the QoS parameter and/or QoS mapping rule configured by the DG or the RN is configured to the RN, or the RN is configured locally, and/or the QoS flow identifier carried in the received uplink packet is determined at the RN and the next hop node (eg, The radio bearer or the logical channel used by the interface between the other RN or the DgNB to send the uplink data; or the RN is determined by the information of the identifier of the radio bearer of the UE carried in the data packet or the identifier of the logical channel of the UE.
  • the radio bearer or logical channel used by the RN and the next hop node (such as other RN or DgNB) to transmit the uplink data generally has a corresponding relationship with the radio bearer of the terminal device, and the radio bearer generally has the QoS requirement guarantee of the corresponding granularity, and then the uplink data carries the information of the identifier of the logical channel of the UE or When the information of the identifier of the radio bearer corresponding to the logical channel is also indicated, the corresponding Qos requirement of the service to which the uplink data belongs is also indicated. Different PDU sessions generally correspond to different radio bearers.
  • an air interface can establish at least one radio bearer corresponding thereto; a PDU session can also carry different QoS flows, and each QoS flow can have different QoS requirements, such that The protocol data unit session may have a corresponding QoS requirement based on its corresponding radio bearer or the Qos flow it carries.
  • the uplink data carries the information of the QoS flow identifier, it also indicates the QoS requirement of the service to which the uplink data belongs.
  • the adaptation function processing of the RN may be implemented on the uplink receiving side of the RN side, for example, may be set as the MAC in the uplink receiving side part of the RN.
  • a separate functional module (such as a logical function protocol layer) on the layer is implemented; or it may be part of the function of an existing protocol layer in the uplink receiving side part of the RN, such as a part of the MAC layer functional entity on the uplink receiving side,
  • the function of the MAC layer differs from the function of the conventional MAC layer because it includes the aforementioned adaptation layer function.
  • the adaptation function may also be used as part of the logical function of the RLC layer on the uplink receiving side.
  • the adaptation function processing may also be implemented on the uplink transmitting side of the RN side, for example, as an independent functional module (such as a logical function protocol layer) in the uplink transmitting side part of the RN; or as an uplink sending of the RN.
  • a part of the function of the protocol layer in the side part such as a part of the RLC function entity of the uplink transmitting side of the RN.
  • the related processing involved in the adaptation function may also be separately deployed.
  • some processing in the adaptation function processing is deployed as an independent functional entity, and some of the adaptation functions are part of the RLC protocol layer function, or Another part of the adaptation function can be part of the MAC layer functionality.
  • the processing of the routing information involved in the adaptation function processing may be performed as a separate part for any of the above-mentioned deployments, or the processing of the Qos information involved in the adaptation function processing may be performed as a separate part.
  • a deployment, specifically the division and deployment of the sub-functions in the adaptation function, is not limited herein.
  • adaptation function processing (such as identification, deletion, or addition of information related to the adaptation function), such as implementing the adaptation function by adding a separate protocol layer, may be referred to as an adaptation layer protocol.
  • an adaptation layer protocol such as identification, deletion, or addition of information related to the adaptation function
  • the specific name is not limited here.
  • the adaptation function is implemented in the RLC layer function in the RN node, then optional information for packet routing and/or for QoS mapping may be included in the header information of the RLC PDU, eg, in the RLC.
  • the header information of the PDU is represented by a new bit, or the reserved bit in the RLC PDU header information is used to indicate the information.
  • the adaptation function is implemented in the MAC layer function in the RN node, then optional information for packet routing and/or for QoS mapping may be included in the header information of the MAC SDU.
  • the adaptation processing function may also be implemented in a common processing module in the RN to support implementation of the receiving side and the transmitting side functions in the RN.
  • the implementation of the adaptation function in the RN is not specifically limited herein.
  • Operation 7c The RN performs processing of the RLC layer on the uplink data.
  • the processing of the RLC here includes at least one of the following:
  • segmenting the RLC PDU For example, on the transmitting side of the RN, if the received RLC PDU is an RLC PDU obtained after being segmented, the segment here may be referred to as re-segmentation or second time. Segmentation.
  • the RN segments the received RLC PDU, that is, performs segmentation processing on the RLC SDU or RLC SDU segment included in the data field in the received RLC PDU, and the RN adds the RLC layer header information to the obtained new segment.
  • Corresponding to form a new RLC PDU For example, one RLC PDU can be divided into at least two segments, each of which can correspond to a new RLC PDU.
  • the obtained new RLC PDU includes the sequence number (SN) in the original RLC PDU, and the sequence number in the original RLC PDU is the same as or corresponding to the initial RLC SDU sequence number.
  • the obtained RLC PDU satisfies the foregoing "message structure one".
  • the RLC status report may not be re-segmented.
  • the data retransmission mechanism is not implemented at the RLC layer of the RN. Specifically, at least one of the following is included:
  • the RN For the RLC PDU sent by the RN, if the data receiving end does not receive it correctly; or if the data receiving end feeds back the RLC PDU is not correctly received; or if the data receiving end feeds back the RLC corresponding to the data field in the RLC PDU The SDU or RLC SDU segment is not correctly received, or whether the data receiving end is received. For any of these cases, the RN does not perform retransmission of the RLC PDU.
  • the RN does not feed back the receiving status to the data transmitting end (for example, the UE) for the RLC PDU that is not correctly received; the RN sends the received report about the receiving status of the uplink RLC SDU to the data sending end, but may not parse the receiving status.
  • the content of the report for example, the RN learns that the type of the RLC PDU is a control PDU by using the D/C domain and/or the CPT field in the header information of the RLC PDU, and the RN determines that the RLC PDU carries a status report, and then the data is forwarded according to the routing information.
  • the transmitting end sends the control PDU, and the report of the receiving status may be from the UE or from the DgNB.
  • the receiving status referred to herein may be a case where one or more RLC SDUs are not correctly received.
  • the data processing at the RN is simplified, the processing time of the data at the relay node is reduced, and the end-to-end data transmission delay of the communication system is reduced. Since the function of the RLC layer of the RN does not generate a report on the data reception status, and the uplink RLC PDU is not retransmitted according to the status of the data reception, the RN does not need to set the RLC layer for retransmission buffer (retransmit buffer). ), which saves system resource overhead.
  • the segments corresponding to the received RLC PDU may not be reorganized and/or reordered, and the segment is not reorganized, which may be understood as when the RLC SDU is segmented. Then, each segment obtained corresponds to form a new RLC PDU.
  • the processing of the RLC layer of the RN does not need to restore the foregoing multiple RLC PDUs into a complete RLC SDU; without reordering, it can be understood that
  • the RLC PDUs received by the RN are not sorted according to the sequence number of the SDU to which they belong, and are sequentially delivered to the upper layer or sequentially to the next side by the transmitting side, but are received.
  • the above-mentioned RLC PDUs are forwarded to the transmitting side of the RN for further processing, thus further simplifying the data processing at the relay node, thereby further reducing the end-to-end communication delay.
  • the sending side of the RN performs the RLC layer processing on the uplink data packet, and may also introduce an ARQ-based retransmission mechanism to enhance the reliability of the data transmission.
  • the implementation is not performed in the RN RLC functional entity in the foregoing design.
  • the part that is required to be executed may increase the processing delay. Therefore, the balance between the RLC function of the RN and the ARQ mechanism to improve the transmission QoS and the end-to-end communication delay is required to be designed according to the actual situation.
  • the processing function of the RLC layer can be deployed on the uplink receiving side of the RN node, and can be deployed on the uplink sending side of the RN node or in the common processing module in the RN node.
  • Operation 7d The transmitting side of the RN performs adaptation layer processing on the uplink data, where the processing of the adaptation layer includes at least one of the following:
  • an adaptation function may be introduced, for example, on the uplink sending side of the RN, and the data packet is added and/or used in the uplink data packet.
  • the information for the QoS mapping, the information for the packet routing and/or the QoS mapping includes at least one of the following: information of the identifier of the UE, information for identifying the identifier of the RN node serving the UE, and providing the UE with the service.
  • information for packet routing and/or for QoS mapping may be included in the header information of the RLC PDU, such as by using the newly added bits in the header information of the RLC PDU to indicate the information, or using the header information.
  • the reserved bits are used to indicate this information.
  • the adaptation function in the RN reference may be made to the design of the adaptation function in 3b, which will not be repeated here.
  • the RN that provides the service to the terminal device may refer to the RN to which the serving cell to which the terminal device accesses belongs.
  • Operation 7e The RN transmitting side performs processing of the MAC layer function and the PHY layer function on the uplink data. For example, it may include: scheduling, multiplexing, and retransmission.
  • the RN transmitting side transmits the uplink data processed by the MAC layer and the PHY layer to the next hop RN node or the DgNB.
  • the MAC layer of the receiving side of the RN and/or the MAC layer of the transmitting side of the RN may reserve a HARQ-based data retransmission mechanism, and perform operations such as feedback and retransmission in the HARQ retransmission mechanism during data transmission. To further ensure the reliability of data transmission.
  • the receiving of the uplink data is described from the perspective of the uplink data receiving end, where the receiving end takes the host base station DgNB as an example.
  • Data processing in DgNB including at least one of the following operations:
  • the DgNB performs PHY layer and MAC layer processing on the received uplink data, and may include, for example, HARQ mechanism based error correction processing performed at the MAC layer, and demultiplexing processing and the like.
  • Operation 8b DgNB performs processing of the RLC layer function.
  • the DgNB may perform an adaptation function process, including reading information about the adaptation function (such as an identifier of the UE, a bearer identifier of the UE, a PDU sesion identifier, etc.), and/or If the adaptation function is a separate protocol layer, the adaptation layer header is removed. If the adaptation function is configured as part of the RLC layer functionality, these operations can be done in the RLC layer functionality of the DgNB.
  • an adaptation function process including reading information about the adaptation function (such as an identifier of the UE, a bearer identifier of the UE, a PDU sesion identifier, etc.), and/or If the adaptation function is a separate protocol layer, the adaptation layer header is removed. If the adaptation function is configured as part of the RLC layer functionality, these operations can be done in the RLC layer functionality of the DgNB.
  • the RLC layer of the DgNB may receive the segment.
  • the information in the header of the RLC PDU indicates that the RLC PDU header is removed, and the received RLC SDU segment is reassembled according to the information carried in the RLC PDU header, and the complete obtained after the reassembly is completed.
  • the RLC SDUs are reordered and delivered to the PDCP layer in order.
  • the DgNB can perform an ARQ-based data transmission error correction mechanism at the RLC layer, so that unreceived RLC SDU or RLC SDU segments can be retransmitted. If a partial RLC SDU is lost or not received correctly, the receiving end UE cannot obtain the complete RLC SDU corresponding to the RLC PDUs, and the receiving end DgNB sends the RLC receiving status report, such as the RLC status report, through the relay node. And indicating, to the sending end UE, the RLC SDU or the RLC SDU segment that is not correctly received, so that the sending end UE performs retransmission.
  • Operation 8c The receiving end DgNB performs processing of the PDCP layer and the SDAP layer on the uplink data.
  • the above is the reference system 1000 in the uplink data transmission process, from the perspective of the terminal device, the relay node, and the host base station, respectively, the operating mechanism of the system 1000 is illustrated, wherein, example 5, example 6, instance 7 And the terminal device respectively shown in Example 8, the first type of relay node (example: the RN directly communicates with the UE), and the second type of relay node (example: the RN communicates with the UE through other RNs) And the host base station (and the processing flow involved respectively) are respectively a relatively independent implementation method or a single network element system as an integral part of the wireless relay system 1000.
  • the embodiment involved in the system 1000, for the relay node is greatly simplified compared to the prior art because the design of the protocol stack is simplified, thereby reducing the processing delay of the data packet at the relay node, and contributing to the promotion end. End-to-end transmission guarantee and efficiency.
  • any of the designs shown above may be understood as a technical solution designed for a specific scenario or a specific technical problem, but it is not necessary to implement the technical content described in the present application, and any one of the designs may be required according to needs. Implemented in conjunction with other designs to more specifically address specific objective technical issues.
  • the hardware platform having the processor and the communication interface can execute program instructions to respectively implement any of the foregoing embodiments in the present application.
  • the function involved in the technical solution, based on this, as shown in FIG. 11 the embodiment of the present application provides a schematic block diagram of a communication node 1100, where the communication node 1100 includes:
  • the communication interface is configured to support communication interaction between the communication device 1100 and other devices, for example, the control PDU of the RLC layer, the data PDU of the RLC, or the present application may be exchanged through the communication interface. Any of the uplink/downlink transmission data/signaling involved.
  • the program instructions are executed in the at least one processor 1101, the functions of any of the foregoing embodiments of the present application operating on any of the following devices are implemented: a relay node, a terminal device, and the host base station.
  • the communication node 1100 may further include a memory 1103 for storing program instructions necessary for implementing the above device functions or process data generated during program execution.
  • the communication device 1100 may further include an internal interconnecting line to implement communication interaction between the at least one processor 1101, 1102 communication interface and the 1103 memory.
  • the at least one processor 1101 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • the processing of all or part of the PHY function involved in the embodiment may be implemented by setting a dedicated circuit/chip in the at least one processor, and of course, by using the general-purpose processor set in the at least one processor 1101.
  • the implementation of the PHY function related program instructions is implemented; for example, the embodiment of the present application relates to all or part of the MAC layer, the adaptation function, the RLC layer, the PDCP layer, and the SDAP layer related functions in the device, the at least one
  • the processor 1101 may include a general purpose processing chip implemented by calling program instructions of the MAC layer, the adaptation function, the RLC layer, the PDCP layer, and the related functions of the SDAP layer. It will be understood that the methods, processes or data transfer steps of the various designs described in connection with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are executed in hardware or software depends on the specific application and design constraints of the technical solution.
  • the communication interface 1102 usually has a function of performing information interaction between two communication peers.
  • the communication interface may be designed as an interface circuit or include the same.
  • the hardware module of the interface circuit supports the wired form communication interaction between the communication peers; for the wireless form information interaction between the communication peers, the communication interface may be an interface circuit with a radio frequency transceiver function.
  • a hardware system including the interface circuit having the radio frequency transceiver function such as when the UE and the RN, or the RN and the RN, or the RN and the DgNB perform wireless communication, then the communication interface can adopt this design.
  • the receiving side and the transmitting side can be designed as separate physical hardware implementations, each of which can have the hardware architecture as described above: at least one processor plus communication interface.
  • At least one processor may be designed and implemented with reference to the at least one processor 1101 described above, and the communication interface may be designed and implemented with reference to the communication interface 1102 described above.
  • the receiving side and the transmitting side may also be implemented by a chip system respectively, the chip system comprising at least one processor capable of receiving the RN in any of the designs of the embodiment when the program instructions are executed in the at least one processor Side or send side corresponding function.
  • the embodiment of the present application further provides a computer program product, which has program instructions, when the program instructions are directly or indirectly executed, for example, when executed in the communication node 1100 in the foregoing embodiment,
  • the function of any of the following devices in any of the design embodiments is implemented: a relay node, a host base station, and a terminal device.
  • the program instructions may be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the program instructions may be from a website site, a computer
  • the server or data center is transported to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • a program instruction When a program instruction is executed, considering that a specific network device generally includes a hardware layer, an operating system layer running on the hardware layer, or an intermediate layer, when the program instructions related to the embodiment of the present application are executed, the multi-layer is often The invocation and execution of software, so the program instructions can be an indirect execution process in a hardware device (general purpose processing circuit or dedicated processing circuit).
  • the embodiment of the present application further provides a computer program storage medium, where the computer program storage medium stores program instructions, when the program instructions are directly or indirectly executed, for example, in the communication node 1100 in the foregoing embodiment.
  • the functions of any of the following devices in any of the embodiments of the present application are implemented: a relay node, a host base station, and a terminal device.
  • the technical solution of the present application or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computing device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the storage medium can be any available media that can be accessed by the computing device or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, a magnetic tape, an optical medium, or a semiconductor medium such as a Solid State Disk (SSD).
  • SSD Solid State Disk
  • the embodiment of the present application further provides a chip system, where the chip system includes at least one processor, when a program instruction is executed in the at least one processor, so that any one of the following embodiments of the present application is in any of the following devices
  • the functions are implemented: relay nodes, host base stations, and terminal devices.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Abstract

本申请实施例示出了一种中继通信方法,通过该方法,可以有效降低中继通信的端到端时延,并能保障中继通信端到端数据传输可靠性。该方法流程包括:中继通信系统中的中继节点接收来自于第二网络节点的数据;在该中继节点中,对该数据执行第一部分处理和第二部分处理,其中,该第一部分处理可以是:物理层功能处理,媒体接入控制层功能处理,以及适配功能处理;该第二部分处理可以是:简化的无线链路控制层功能处理,适配功能处理,媒体接入控制层功能处理,以及物理层功能处理;该中继节点将经由该第一部分处理和第二部分处理后的数据,发给第三网络节点。该中继节点和第二网络节点、第三网络节点处在同一中继通信系统中。

Description

[根据细则26改正04.01.2019] 一种通信方法、通信节点和系统
本申请要求于2017年11月27日提交中国专利局、申请号为201711206454.4、发明名称为“一种通信方法、通信节点和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
发明涉及通信技术领域,尤其涉及一种通信方法、通信节点和系统。
背景技术
在第三代合作伙伴计划(third generation partnership project,3GPP)定义了无线接入网的中继传输方案,根据3GPP的Release 10(R10)的定义,如图1所示出的一种无线中继通信系统100包括:用户设备(user equipment,UE),中继节点(relay node,RN),宿主基站(Donor eNodeB,DeNB)以及服务网关(serving gateway,SGW)/分组数据网络网关(packet data network gateway,PGW),其中,UE具有协议栈包括:物理层(physical layer,PHY),媒体接入控制层(media access control layer,MAC),无线链路控制层(radio link control layer,RLC),分组数据汇聚协议层(packet data convergence protocol layer,PDCP),英特网协议层(internet protocol layer,IP)以及传输控制协议层(transmission control protocol,TCP)/用户数据报协议层(user datagram protocol layer,UDP),以支持上层应用程序(Application)所需的数据传输;在该系统100中,RN几乎具备完整的基站能力,在RN与DeNB之间的接口上配置的协议栈包括:PHY,MAC,RLC,PDCP,IP,UDP以及GPRS隧道协议用户面部分(GPRS tunneling protocol-user plane,GTP-U),在RN与UE之间的接口上配置的协议栈包括:PHY,MAC,RLC以及PDCP;在系统100中,DeNB是为RN提供服务的基站,在S1和X2接口为RN提供相关功能的代理(S1/X2proxy),DeNB在与RN之间的接口上配置的协议栈包括:PHY,MAC,RLC,PDCP,IP,UDP以及GTP-U,在DeNB的与核心网网关SGW/PGW之间的接口配置的协议栈包括:L1,L2,IP,UDP以及GTP-U,其中L2为链路层,L1为物理层;SGW/PGW具有与DeNB相对等的协议栈,包括:L1,L2,IP,UDP,GTP-U,以及与UE相对等的IP层。在系统100中,UE和RN通过Uu接口进行通信交互,RN和DeNB通过Un接口进行通信交互,DeNB与SGW/PGW通过S1接口进行通信交互,具体的,UE通过Uu口接入RN,该UE与PGW之间建立演进分组系统(evolved packet system,EPS)承载,对应于该EPS承载,在DeNB与SGW/PGW之间的S1接口相应的建立一个GTP隧道,且在RN和DeNB之间的Un接口也建有一个GTP隧道,该Un接口建立的GTP隧道与S1接口建立的GTP隧道具有对应关系,由此,在各个传输区段可以通过数据包的承载标识和/或隧道标识找到正确的下一跳节点。3GPP R10定义的系统100目前仅支持单跳中继的场景,下行数据包从DeNB向RN发送时,需经过DeNB和RN之间的Un接口的协议栈解封装(参与处理的协议栈子层包括:PHY,MAC,RLC,PDCP,IP,UDP以及GTP-U),再重新经过Uu接口的空口协议栈各层处理和封装(参与处理的协议栈子层包括:PHY,MAC,RLC以及PDCP),再由RN发送给UE,这种中继传输方式如果应用到多跳中继场景,将导致数据包端到端传输时延较大。
发明内容
在新一代通信系统中,如果沿用3GPP R10的中继通信系统架构,数据包需要在中继节点上耗费较多的处理时间,难以满足新一代通信系统对低时延的严格要求,另,在现有的RN节点MAC层的混合自动重传请求机制(hybrid automatic repeat request,HARQ)已经能 保障数据包传输的可靠性。有鉴于此,本申请设计了一种新的中继传输方案,简化RN节点对数据包的处理,降低数据包在中间节点的处理时延,并可以提供提供接入网侧的端到端传输保障。第一方面,本申请提供了一种通信方法,可适用于中继通信系统,示例性的,以下主要从中继通信系统中的中继节点的视角进行描述,该方法包括:第一网络节点接收来自于第二网络节点的数据;在该第一网络节点中,接收到的该数据被执行第一部分处理和第二部分处理;该第一网络节点将被所述处理后的数据,发向第三网络节点;该第一部分处理为如下中至少一种:物理层功能处理,媒体接入控制层功能处理,以及适配功能处理;该第二部分处理为如下中至少一种:简化的无线链路控制层(simplified RLC,S-RLC)功能处理,适配功能处理,媒体接入控制层功能处理,以及物理层功能处理;该第一网络节点为中继通信系统中的中继节点。通过实施该方案,可简化中继节点对数据的处理,减少数据在中继节点的处理时间,进而降低在包含有该第一网络节点,该第二网络节点以及该第三网络节点的通信网络中数据传输的端到端时延。
根据第一方面的第一种可选设计包括:该第二网络节点为第二中继节点或宿主基站,来自于该第二网络节点的数据为下行数据,该第三网络节点为终端设备;该下行数据在该第二网络节点被依次执行第一部分处理和第二部分处理;该第一部分处理为:物理层功能处理,媒体接入控制层功能处理,以及适配功能处理;该第二部分处理为:简化的无线链路控制层功能处理,媒体接入控制层功能处理,以及物理层功能处理。通过实施本设计方案,简化了在中继节点对下行数据的处理,减少了下行传输的数据在中继节点的处理时间,进而降低了在包含有该第一网络节点,该第二网络节点以及该第三网络节点的通信网络中下行数据传输的端到端时延。该第一网络节点接收到的下行数据或者该第一网络节点处理后发向该终端设备的下行数据中,分别可以包含如下中至少一种与适配功能有关的信息:该终端设备的标识的信息,服务质量流(QoS flow)的标识的信息,协议数据单元会话的标识的信息,服务所述终端设备的中继节点的标识的信息,该终端设备的无线承载的标识的信息,以及该终端设备的逻辑信道的标识的信息。
根据第一方面的第二种可选设计包括:第一网络节点接收的数据是来自于第二网络节点的下行数据,该第二网络节点为第三中继节点或宿主基站,该第三网络节点为第四中继节点,该下行数据经由第三网络节点发向终端设备;在该第一网络节点,下行数据被依次执行第一部分处理和第二部分处理;该第一部分处理为:物理层功能处理,媒体接入控制层功能处理,以及适配功能处理;该第二部分处理为:简化的无线链路控制层功能处理,适配功能处理,媒体接入控制层功能处理,以及物理层功能处理。该第一网络节点接收到的下行数据或者该第一网络节点处理后发向下一节点的下行数据中,可分别包含如下中至少一种与适配功能有关的信息:该第四中继节点的标识的信息,该终端设备的标识的信息,该QoS flow的标识的信息,该协议数据单元会话的标识的信息,服务所述终端设备的中继节点的标识的信息,该终端设备的无线承载的标识的信息,以及该终端设备的逻辑信道的标识的信息。
根据第一方面的第一种可选设计和/或第二种可选设计,该终端设备的标识的信息和/或该第四中继节点的标识的信息,可被用于该下行数据传输的路由选择,以便于传输路径中的中间节点为需要传输的下行数据获得正确的下一跳节点。本申请实施例所称的传输路径,可以理解为数据包的传输路径,比如数据包经由DgNB-RN2-RN1-UE这条链路进行传输时,传输路径可以是该链路中的任意两个端点之间的数据传输途径。
根据第一方面的第一种可选设计及第二种可选设计,适配功能有关信息中的QoS flow的标识的信息,协议数据单元会话的标识的信息,终端设备的无线承载的标识的信息,以及终端设备的逻辑信道的标识的信息中的每一种,都可被用于在传输过程中为下行数据所属的业务提供所需的QoS保障。比如,终端设备的逻辑信道可以与终端设备的无线承载具有对应关系,而无线承载一般具有相应粒度的QoS保障,那么当下行数据中携带了终端设备的逻辑信道标识的信息或与逻辑信道对应的无线承载的标识的信息时,也表明了该下行 数据所属业务相应的Qos要求;不同协议数据单元会话通常有不同的无线承载和Qos flow,基于不同的无线承载,同理,不同的协议数据单元会话也分别具有相应的Qos要求。和无线承载类似,QoS flow一般具有表示数据传输过程中某种粒度的QoS保障的功能,当下行数据中携带了Qos flow的标识的信息时,也表明了该下行数据所属业务的Qos要求,从而使得传输节点可以按照该Qos flow ID对应的Qos要求对这个数据包进行传输。
根据第一方面的第三种可选设计包括,该第一网络节点接收的来自于该第二网络节点的数据为上行传输方向数据,该第二网络节点为终端设备,该第三网络节点为第五中继节点或宿主基站;该上行数据在中继节点被依次执行第一部分处理和第二部分处理;该第一部分处理为:物理层功能处理和媒体接入控制层功能处理;该第二部分处理为:简化的无线链路控制层功能处理,适配功能处理,媒体接入控制层功能处理,以及物理层功能处理。通过实施本设计方案,可以简化中继节点对上行数据的处理,减少上行传输的数据在中继节点的处理时间,进而降低在包含有该第一网络节点,该第二网络节点以及该第三网络节点的通信网络中上行数据传输的端到端时延。可选的,第一网络节点接收的上行数据或者经过该第一网络节点处理后发出的上行数据中,分别可包含如下中至少一种与适配功能有关的信息:该终端设备的标识的信息,该第五中继节点的标识的信息,该宿主基站的标识的信息,QoS flow的标识的信息,协议数据单元会话的标识的信息,该终端设备的无线承载的标识的信息,以及该终端设备的逻辑信道的标识的信息。
根据第一方面的第四种可选设计包括,第一网络节点接收到的来自于第二网络节点的数据为上行数据,该第二网络节点为第六中继节点,该第三网络节点为第七中继节点或宿主基站;该上行数据在该第一网络节点被依次执行第一部分处理和第二部分处理;该第一部分处理为:物理层功能处理,媒体接入控制层功能处理,以及适配功能处理;该第二部分处理为:简化的无线链路控制层功能处理,适配功能处理,媒体接入控制层功能处理,以及物理层功能处理,该第一网络节点为中继节点(仅为行文方便,编号为“第一中继节点”)。通过实施本设计方案,可以简化中继节点对上行数据的处理,减少上行数据在中继节点的处理时间,从而进一步降低在包含有该第一网络节点,该第二网络节点以及该第三网络节点的通信网络中上行数据传输的端到端时延。该第一网络节点接收到的上行数据中或者该第一网络处理后获得的上行数据,可分别包含如下中至少一种与该适配功能有关的信息:该终端设备的标识的信息,该第七中继节点的标识的信息,该宿主基站的标识的信息,QoS flow的标识的信息,协议数据单元会话的标识的信息,该终端设备的无线承载的标识的信息,以及该终端设备的逻辑信道的标识的信息。
根据第一方面的第三种可选设计及第四种可选设计,该终端设备的标识的信息,该第五中继节点的标识的信息,该第七中继节点的标识的信息,以及该宿主基站的标识的信息,可被用于上行数据传输中的路由选择过程,便于传输路径中的中间节点为需要传输的上行数据获得正确的下一跳节点。
根据第一方面的第三种可选设计及第四种可选设计,该QoS flow的标识的信息,该协议数据单元会话的标识的信息,该终端设备的无线承载的标识的信息,以及该终端设备的逻辑信道的标识的信息中的每一种均可用于在传输过程中为数据传输提供所需的QoS保障。比如,终端设备的逻辑信道可以与终端设备的无线承载具有对应关系,而无线承载一般具有相应粒度的QoS保障,那么当上行数据中携带了终端设备的逻辑信道标识的信息或与逻辑信道对应的无线承载的标识的信息时,也表明了该上行数据所属业务相应的Qos要求;不同协议数据单元会话通常有不同的无线承载和Qos flow,基于不同的无线承载,同理,不同的协议数据单元会话也分别具有相应的Qos要求。和无线承载类似,QoS flow一般具有表示数据传输过程中某种粒度的QoS保障的功能,当上行数据中携带了Qos flow的标识的信息时,也表明了该下行数据所属业务的Qos要求,从而使得传输节点可以按照该Qos flow ID对应的Qos要求对这个数据包进行传输。
参考或结合前述任一设计,根据第一方面的第五种可选设计包括,在中继节点进行的 所述简化的无线链路控制层功能处理,包括:对接收到的无线链路控制层协议数据单元执行分段,获得的分段对应新的无线链路控制层协议数据单元。这样,中继节点具有对无线链路控制层协议数据单元进行分段的功能,使得中继节点可以灵活的执行上下行数据传输,提高系统传输的效率和灵活性。
参考或结合前述任一设计,根据第一方面的第六种可选设计包括,第一网络节点为第一中继节点,在该中继节点进行的简化的无线链路控制层功能处理,包括执行如下中至少一种或任意几种:对未被正确发送出去的无线链路控制层协议数据单元不执行重传;对未正确接收到的无线链路控制层协议数据单元不反馈接收状态;将收到的关于无线链路控制层业务数据单元的传输状态的报告向数据发送端发送,该中继节点不解析该传输状态的报告的内容,此处所称的传输状态,可以是一个或多个某个无线链路控制层业务数据单元(比如,可以是RLC业务数据单元SDU或者RLC SDU的分段)未被正确接收到,或者某个无线链路控制层协议数据单元未正确发送出;通过实施本设计方案,中继节点在和相邻网络节点进行数据传输时,在其无线链路控制层功能的处理中不需要对传输的数据执行自动重传请求机制(automatic repeat request,ARQ),或者不执行类似于ARQ的重传机制,使得在中继节点的数据处理和传输效率更高,减少了数据在该中继节点的处理时间,从而降低了通信系统端到端数据传输时延。可选的,在中继节点的简化的RLC层功能处理中,不对接收到的RLC协议数据单元(protocol data unit,RLC PDU)对应的分段进行重组和/或重排序,此处所称的对分段进行重组,可以理解为,当RLC业务数据单元(service data unit,RLC SDU)进行分段后,每一个分段对应形成新的RLC PDU,在RN的RLC层的处理,不需要将前述形成的多个RLC PDU还原成完整的RLC SDU;此处所称的重排序,可以理解为,在RN的RLC层处理,对收到的上述RLC PDU,并不按照其所属的SDU的序号进行排序后按序递交给上层或按序递交给发送侧进行下一步处理,而是对收到的上述RLC PDU就递交给中继节点的发送侧进行下一步处理,这样,进一步简化了在中继节点的数据处理,从而进一步降低端到端通信时延。
参考或结合前述任一设计,在第一方面的第七种可选设计包括,经由适配功能处理后获得的数据包,包括:该适配功能有关的信息以及所述无线链路控制层协议数据单元。通过本设计,经过适配功能处理后,得到的数据报文可以认为是在无线链路控制层协议数据单元基础上,进一步增加适配功能有关的信息,比如,可以在RLC PDU的头信息中增加该适配功能有关的信息,从而使得上下行数据能够携带适配功能有关的信息,从而保障数据传输所需的路由信息和/或数据所需的传输Qos信息。
第二方面,本申请提供了一种通信方法,该方法可适用于中继通信系统,该方法主要从中继通信系统中宿主基站的视角进行描述,包括:宿主基站对下行数据执行无线链路控制层功能处理以及适配功能处理后,宿主基站将处理后得到的下行数据经由至少一个中继节点发向终端设备;发向所述终端设备的该下行数据中包含如下中至少一种与适配功能有关的信息:该终端设备的标识的信息,所述至少一个中继节点的标识的信息,QoS flow的标识的信息,协议数据单元会话的标识的信息,该终端设备的无线承载的标识的信息,以及该终端设备的逻辑信道的标识的信息。
根据第二方面的第一种可选设计包括,在该宿主基站的无线链路控制层功能处理,包括:对未被正确发送给该终端设备的无线链路控制层协议数据单元,通过该至少一个中继节点向该终端设备重新发送该未被正确发送到终端设备的RLC PDU,宿主基站向终端设备重新发送该RLC PDU的过程中,该至少一个中继节点可以不识别该RLC SDU是初传的RLC SDU还是重传的RLC SDU;和/或,通过该至少一个中继节点向该终端设备发送关于无线链路控制层业务数据单元的接收状态的报告,比如,宿主基站确定一个或多个来自于终端设备的RLC PDU未被接收到,则该宿主基站向终端设备发送关于未被接收到的数据包的报告,在发送接收状态的报告的过程中,该至少一个中继节点可不解析该接收状态的报告的内容,具体的,比如,RN通过RLC PDU的头信息中的数据控制(data/control,D/C)域和/或控制 PDU类型(control PDU type,CPT)域获知该RLC PDU的类型是控制PDU,则RN确定该RLC PDU携带了状态报告,然后根据适配功能有关的信息中的路由信息向数据的发送端发送该控制PDU,适配功能有关的信息也可以携带在该RLC PDU中。通过实施本设计方案,宿主基站和终端设备之间,执行类似ARQ机制的数据重传机制,保证了中继通信系统中端到端的通信传输质量保障,而宿主基站和终端设备之间的中继节点在参与端到端数据传输时,在其无线链路控制层功能的处理中不需要对传输的数据执行类似ARQ的机制,和/或,也不需要产生关于无线链路控制层业务数据单元的接收状态的报告,减少了数据在中继节点的处理时间,降低了端到端数据传输时延。从而在保障系统端到端数据传输Qos以及降低系统端到端通信时延这两者之间取得较好的平衡。
根据第二方面的第二种可选设计包括,在宿主基站,经由适配功能处理后获得的数据报文包括:该适配功能有关的信息以及无线链路控制层协议数据单元。通过实施本设计方案,经过宿主基站中的适配功能处理后,得到的数据报文可以认为是在无线链路控制层协议数据单元基础上,进一步增加适配功能有关的信息,比如在RLC PDU的头信息中增加该适配功能有关的信息,使得宿主基站发送的下行数据中能够携带适配功能有关的信息,从而保障提供下行数据传输所需的路由信息和/或数据传输所需的Qos信息。
第三方面,本申请提供了一种通信方法,该方法可适用于中继通信系统,该方法主要从中继通信系统中终端设备(比如终端设备为UE)的视角进行描述,包括:在终端设备对上行数据执行无线链路控制层功能处理以及适配功能处理后,终端设备将上行数据经由至少一个中继节点发向宿主基站;发向所述宿主基站的所述上行数据中包含如下中至少一种与适配功能有关的信息:该终端设备的标识的信息,该至少一个中继节点的标识的信息,该宿主基站的标识的信息,QoS flow的标识的信息,协议数据单元会话的标识的信息,该终端设备的无线承载的标识的信息,以及该终端设备的逻辑信道的标识的信息。
根据第三方面的第一种可选设计包括,在该终端设备的无线链路控制层功能处理,包括:对未被正确发送给该宿主基站的无线链路控制层协议数据单元,终端设备通过该至少一个中继节点向该宿主基站重新发送;和/或,该终端设备通过该至少一个中继节点向该宿主基站发送关于无线链路控制层业务数据单元的接收状态的报告,在该报告的发送过程中,该至少一个中继节点可不解析该接收状态的报告。通过实施本设计方案,和前述第二方面相类似,中继节点在和相邻网络节点进行数据传输时,在其无线链路控制层功能的处理中不需要对其接收或者发送的RLC PDU执行ARQ或者类似ARQ的自动重传请求机制,从而减少了数据在中继节点的处理时间,降低了通信系统端到端数据传输时延,但终端设备和宿主基站之间需要执行类似ARQ机制的数据重传机制,以保障中继通信系统端到端的通信传输质量。
根据第三方面的第二种可选设计包括,经由适配功能处理后获得的数据包,包括:该适配功能有关的信息以及无线链路控制层协议数据单元。通过实施本设计方案,通过适配功能处理后,得到的数据报文可以认为是在无线链路控制层协议数据单元基础上,进一步增加适配功能有关的信息,从而使得终端设备发送的上行数据能够携带适配功能有关的信息,保障提供上行数据传输所需的路由信息和/或数据传输所需的Qos信息。
可以理解的是,前述各个方面中的每一种设计,可以和其所在方面的其他设计结合适用,比如,可以任择一种其他设计或者任择多种其他设计合并实施以解决不同的技术问题。
第四方面,本申请提供了一种通信节点,该通信节点中包括至少一个处理器和通信接口,该通信接口,用于该通信节点与其他通信节点之间进行通信交互,该至少一个处理器,用于执行程序指令,以使得该通信节点实现如前述任一方面及其中任一可选设计中如下任一种设备的功能:该第一网络节点,该第二网络节点,该第三网络节点,该终端设备,该中继节点以及该宿主基站。
第五方面,本申请提供了一种系统芯片,该系统芯片中包括至少一个处理器和通信接口,该通信接口,用于该系统芯片与外部进行通信交互,该至少一个处理器,用于执行程 序指令,以使得实现如前述任一方面及其中任一可选设计中如下任一种设备的操作:该第一网络节点,该第二网络节点,该第三网络节点,该终端设备,该中继节点以及该宿主基站。
第六方面,本申请提供了一种计算机存储介质,该存储介质中存储有程序指令,当该程序指令被执行时,以使得执行前述任一方面及其中任一可选设计,比如,该程序被执行时,可以使得前述任一方面及其中任一可选设计中如下任一种设备的操作得以进行:该第一网络节点,该第二网络节点,该第三网络节点,该终端设备,该中继节点以及该宿主基站。
附图说明
图1为现有技术中一种无线中继通信系统100的示意图;
图2为本申请提出的一种无线中继通信系统200的示意图;
图3为本申请提供的一种无线中继通信系统300的流程示意图;
图4为本申请提供的一种无线中继通信系统400的示意图;
图5为本申请提供的一种无线中继通信系统500的示意图;
图6为本申请提供的一种无线中继通信系统600的示意图;
图7为本申请提供的一种无线中继通信系统700的示意图;
图8为本申请提供的一种无线中继通信系统800的示意图;
图9为本申请提供的一种无线中继通信系统900的示意图;
图10为本申请提供的一种无线中继通信系统1000的示意图;
图11为本申请提供的一种通信节点1100的示意图。
具体实施方式
针对下一代中继通信系统的应用,一方面,考虑到高频载波频率资源丰富,在热点区域,为满足5G超高容量需求,利用高频小站组网愈发流行。高频载波传播特性较差,受遮挡衰减严重,覆盖范围不广,故而需要大量密集部署小站,相应地,为这些大量密集部署的小站提供光纤回传的代价很高,施工难度较大,因此需要经济便捷的回传方案;另一方面,从广覆盖需求的角度出发,在一些偏远地区提供网络覆盖,光纤的部署难度大,成本高,也需要设计灵活便利的接入和回传方案。无线中继技术为解决上述两个问题提供了选择:其接入链路(access link)和回传链路(backhaul link)皆采用无线传输方案。
相较于3GPP R10定义的第四代移动通信系统,新一代通信系统对网络各项性能指标提出了更严苛的要求,以第五代移动通信(the fifth generation,5G)为例,提出了网络容量指标提升1000倍,更广的覆盖需求,以及超高可靠性超低时延等要求。
面向5G的无线中继通信组网场景中,需要支持多跳无线中继和多连接场景。相应地,如图2所示的一种无线中继通信系统200中,在考虑多跳无线中继通信组网场景下,无线接入网侧的网络拓扑可视为树状拓扑(tree based topology),即,中继节点和为中继节点服务的宿主基站(donor gNodeB,DgNB)有明确的层级关系,每一个中继节点将为其提供回传服务的节点视为唯一的父节点,如图2中所示出的系统200-A,该系统包括UE,RN2,RN1,以及DgNB,其中,RN 2将为其提供回传服务的节点RN 1视为其父节点,RN 2所服务的UE的上行和下行数据的传输都经过RN 2的唯一父节点RN 1。在树状拓扑结构的网络系统中,对于UE的上行数据,每个中继节点可以按照从属关系依次将数据递交给自己的父节点,最终上行数据会路由至DgNB,再经由DgNB和核心网之间的数据传输隧道递交到核心网;对于该RN 2所服务的UE的下行数据,在传输过程中由DgNB通过RN 1和RN 2依次发送给UE。若考虑多跳及多连接无线中继组网的场景,无线接入网侧的网络 拓扑可以被视为网状拓扑(mesh topology)或有向无环图(directed acyclic graph,DAG),如图2所示出的系统200-B,该系统中RN3到DgNB之间存在两条链路,一条链路为RN3-RN2-DgNB,另一条链路为RN3-RN1-DgNB,RN 3将为其分别提供回传服务的节点RN 2和RN1都视为父节点。
可以理解的是,当本申请实施例提供的方法或系统或装置应用在5G网络或新空口(new radio,NR)系统中时,下文中的中继节点或者无线回传节点可以是5G网络或者NR系统中的中继节点或者无线回传节点。示例性的,对于5G网络或NR系统,中继节点或者无线回传节点可以称为接入回传一体化(integrated access and backhaul,IAB)节点,当然也可以有其他名称,本申请实施例对此不作具体限定。当本申请实施例提供的方法或系统或装置应用在演进分组系统(evolved packet system,EPS)网络中时,下文中的中继节点或无线回传节点可以为EPS网络中的无线回传节点,比如,EPS网络中的无线回传节点可以称为中继节点(relay node,RN)。示例性的,无线回传节点可用于为通过无线方式接入该无线回传节点的节点(例如,终端)提供无线回传服务,其中,无线回传服务是指通过无线回传链路提供的回传服务。
可以理解的是,本申请实施例提供的方法或者系统或者装置可以应用于IAB网络,在IAB网络中,IAB节点可以为终端提供无线接入服务,并通过无线回传链路连接到宿主节点(donor node)传输用户的业务数据。示例性的,宿主节点可以为宿主基站。宿主节点在5G网络中可以简称为IAB宿主(IAB donor)或DgNB(即donor gNodeB)。宿主节点可以是一个完整的实体,还可以是CU和DU分离的形态,宿主节点的CU可以称之为Donor-CU(也可简称为CU),宿主节点的DU可以称之为Donor-DU(也可以简称为DU),即宿主节点由Donor-CU和Donor-DU组成。其中,Donor-CU在用户面具有业务数据适配协议(service data adaptation protocol,SDAP)层、PDCP层的功能,在控制面具有无线资源控制(radio resource control,RRC)层、PDCP层的功能;Donor-DU具有无线链路控制(radio link control,RLC)层、媒介接入控制(medium access control,MAC)层、物理(Physical,PHY)层的功能。示例性的,Donor-CU还可以是用户面(User plane,UP)和控制面(Control plane,CP)分离的形态,即由CU-CP和CU-UP组成。IAB节点经宿主节点通过有线链路连接到核心网(例如,在5G NR独立组网的系统架构下,IAB节点经宿主节点通过有线链路连接到5G网络的核心网(5G core,5GC);在5G NR非独立组网的5G架构下,IAB节点在控制面(control plane,CP)经eNB(evolved NodeB)连接到演进分组核心网(evolved packet core,EPC),在用户面(user plane,UP)经宿主节点以及eNB连接到EPC。
示例性的,本申请中所称宿主基站或中继节点,可以是具有全部或者部分标准基站的功能以及针对中继通信的增强特性的无线接入网设备,而对于标准基站,在大部分场景中,是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置,其实现形式包括但不限于:各种形式的宏基站,微基站(也称为小站),发送接收点(transmission reception point,TRP),演进型节点B(evolved Node B,eNB)、节点B(Node B,NB)、家庭基站(例如,Home evolved Node B,或Home Node B,HNB)、下一代基站(new generation radio access network node),该下一代基站可以是如下中至少一种:gNB,NG eNB,具有分离形态的中心单元(central unit,CU)和分布式单元(distributed unit,DU)的gNB,CU以及DU,或者,处理通信数据的基带单元(base band unit,BBU)等,还可以是无线局域网(wireless local area network,WLAN)接入设备等非3GPP系统的无线接入网设备。在采用不同的无线接入技术的系统中,具备相类似的为终端设备提供无线通信功能的基站的名称可能会有所不同。对于中继节点,本申请实施例还可以通过进一步具有中继功能的终端设备来实现,中继节点的具体实现方式本申请不做限定。
示例性的,本申请所称终端设备,是一种具有无线收发功能的设备,可以部署在陆地 上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。该终端设备可以包括各种类型的手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、用户驻地设备(customer premise equipment,CPE)、家庭网关(residential gateway,RG)设备、无线数据卡、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、机器类型通信(machine type communication,MTC)的终端设备,工业控制(industrial control)中的终端设备、无人驾驶(self driving)中的终端设备、远程医疗(remote medical)中的终端设备、智能电网(smart grid)中的终端设备、运输安全(transportation safety)中的终端设备、智慧城市(smart city)中的终端设备、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等),以及可穿戴设备(如智能手表,智能手环,计步器等)等等。本申请所称的终端设备,还可以被设置成固定位置,具有和前述终端设备相类似无线通信功能的设备。在采用不同的无线接入技术的系统中,具备相类似无线通信功能的终端设备的名称可能会有所不同,仅为描述方便,本申请实施例中,上述具有无线收发通信功能的装置统称为终端设备。
示例性的,本申请中的术语“第一”、“第二”等仅是为了区分不同的对象,“第一”、“第二”并不对其修饰的对象的实际顺序或功能进行限定。例如,“第一网络节点”和“第二网络节点”中的“第一”、“第二”,仅仅是为了区分这两者是不同的网络节点,并不对其实际先后顺序或者功能进行限定。本申请中出现的“示例性的”,“示例”,“例如”,“可选的设计”或者“一种设计”等表述,仅用于表示举例子、例证或说明。本申请中被描述为“示例性的”,“示例”,“例如”,“可选的设计”或者“一种设计”的任何实施例或设计方案都不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用这些词旨在以具体方式呈现相关概念。示例性的,本申请中出现的术语“上行”和“下行”,用于在特定场景描述数据/信息传输的方向,比如,“上行”方向一般是指数据/信息从终端设备向宿主基站传输的方向,“下行”方向一般是指数据/信息从宿主基站向终端设备传输的方向,可以理解,“上行”和“下行”仅用于描述数据/信息的传输方向,该数据/信息传输的具体起止的设备都不作限定。
示例性的,本申请中出现的术语“和/或”,仅仅是一种描述对象之间的关联关系,表示对象间可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,如无特别说明,则一般表示前后对象之间是一种“或”的关系。
示例性的,本申请中出现的字符“-”,一般用来表示该字符前后的对象两者之间具有逻辑上协作/关联/映射关系。例如,对于存在多跳多连接的中继通信系统中,如果RN1,RN2和DgNB等节点形成了其中的一条通信链路,则,该链路可表示为RN1-RN2-DgNB。在本申请中可能出现的对各种消息/信息/设备/网元/系统/装置/动作/操作/流程/概念等各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
示例性的,本申请中出现的类似于“项目包括如下中至少一种:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
示例性的,本申请中出现的类似于“某项目的标识的信息”,通常是指“某项目”的标识,比如该项目的具体名称,具体序号,或者具体识别信息直接标识该“某项目”的信息,也可以是和“直接标识该“某项目”的信息”具有对应关系的间接的信息,本文不做限定。
示例性的,本申请出现的描述如:“物理层功能处理”和“媒体接入控制层功能处理”,可以理解为分别对应于实现现有技术中定义的物理层(PHY)的基本功能和媒体接入控制(MAC)层的基本功能,比如3GPP中定义的PHY和MAC层的功能。本申请出现的描述“简化的无线链路控制层功能处理”,可以理解为实现的是不同于现有技术中定义的无线链路控制(RLC)层的基本功能,其具体含义和特征,可结合本申请实施例来确定,此处不做具体限定。本申请出现的描述“适配功能处理”,可以理解为实现一种单独的适配功能,也可以理解为,该适配功能作为物理层或MAC层功能的一部分或者无线链路控制层功能的一部分,此时,物理层或MAC层或无线链路控制层由于具有了适配功能的处理,从而和现有技术中定义的物理层的基本功能和媒体接入控制层的基本功能不同,其具体含义和特征,可分别结合本申请实施例来确定,此处不做具体限定。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图,对本申请中的技术方案进行描述。
如图3所示,本申请实施例提供一种中继通信系统300,该系统300中包含第一网络节点,第二网络节点,以及第三网络节点,该第一网络节点和该第二网络节点通过两者之间的通信接口进行数据上下行传输,该第一网络节点和该第三网络节点通过两者之间的通信接口进行数据上下行传输。对于数据的下行传输场景,比如,数据依次经由第二网络节点,第一网络节点,以及第三网络节点进行传输时,该第一网络节点为RN,该第二网络节点为宿主基站或一个与该第一网络节点通信的RN,该第三网络节点为终端设备或者另一个与该第一网络节点通信的RN。对于数据的上行传输场景,比如,数据依次经由第三网络节点,第一网络节点,以及第二网络节点进行传输时,该第三网络节点为终端设备或一个与该第一网络节点通信的RN,该第一网络节点为RN,该第二网络节点为另一个与该第一网络节点通信的RN或宿主基站。可以理解的是,可以根据需要对图3所示的中继通信系统300进一步扩展,比如在该第三网络节点和该第一网络节点两者之间可以设置一个或者多个中继节点,和/或,在该第一网络节点和第二网络节点两者之间可以设置一个或者多个中继节点,在此基础上根据需要组成单链多跳中继通信系统或者多链多跳中继通信系统。
参考图3所示例的系统300,本申请实施例提出了一种通信方法300,该方法以第一网络节点的角度对各种可行设计进行描述,该方法300包括:第一网络节点接收来自于第二网络节点的数据;在该第一网络节点中,接收到的数据被执行第一部分处理和第二部分处理;该第一网络节点将被该第一部分处理和该第二部分处理后获得的数据,发向第三网络节点;该第一部分处理为如下中至少一种:物理层功能处理,媒体接入控制层功能处理,以及适配功能处理;该第二部分处理为如下中至少一种:简化的无线链路控制层功能处理,适配功能处理,媒体接入控制层功能处理,以及物理层功能处理;该通信方法300可应用于中继通信系统,该第一网络节点为中继通信系统中的中继节点。相比较而言,现有技术中的中继节点几乎具备完整的基站能力,在现有的RN上,其与DeNB之间的接口配置的协议栈包括:PHY层,MAC层,RLC层,PDCP层,IP层,UDP层以及GTP-U,而本系统及方法300所提出的中继节点的处理,相比于现有技术,大大简化了协议栈设置,简化了在中继节点对数据的处理,减少了数据在中继节点的处理时间,进而降低在包含有该第 一网络节点,该第二网络节点以及该第三网络节点的中继通信系统中的端到端通信时延。
根据该方法300的一种可选设计包括,来自于该第二网络节点的所述数据为下行数据,该第二网络节点为第二中继节点或宿主基站,该第三网络节点为终端设备;该下行数据被依次执行第一部分处理和第二部分处理;该第一部分处理为:物理层功能处理,媒体接入控制层功能处理,以及适配功能处理;该第二部分处理为:简化的无线链路控制层功能处理,媒体接入控制层功能处理,以及物理层功能处理。通过实施本设计,中继节点对下行数据的处理相比于现有技术得到了较大的简化,减少了下行传输的数据在中继节点的处理时间,进而降低了在包含有该第一网络节点,该第二网络节点以及该第三网络节点的通信网络中下行数据传输的端到端时延。第一网络节点接收到的下行数据中或者在经过第一网络节点处理后获得的下行数据,分别可包含如下中至少一种与所述适配功能有关的信息:该终端设备的标识的信息,QoS flow的标识的信息,协议数据单元会话的标识的信息,该终端设备的无线承载的标识的信息,以及该终端设备的逻辑信道的标识的信息。
根据该方法300的一种可选设计包括,第一网络节点接收的来自于该第二网络节点的数据为下行数据,该第二网络节点为与该第一网络节点相通信的一个中继节点(比如,第三中继节点)或宿主基站,该第三网络节点为与该第一网络节点通信的一个中继节点(比如,第四中继节点),此处和前一种可选设计的一个区别在于,在前述可选设计中,第一网络节点在向下行发送数据时,和该第一网络节点直接通信的下行方向的节点是终端设备,而在本设计中,和该第一网络节点直接通信的下行方向的节点是另外一个RN,第一网络节点发送的该下行数据经由第三网络节点发向终端设备;在第一网络节点,对其收到的下行数据依次执行第一部分处理和第二部分处理;该第一部分处理为:物理层功能处理,媒体接入控制层功能处理,以及适配功能处理;该第二部分处理为:简化的无线链路控制层功能处理,适配功能处理,媒体接入控制层功能处理,以及物理层功能处理。作为可选设计,该第一网络节点收到的下行数据中或者经过该第一网络节点处理后发送的下行数据中,均可分别包含如下中至少一种与该适配功能有关的信息:下行传输所涉及的网络节点的标识的信息(比如,该第一网络节点的标识的信息,该第四中继节点的标识的信息,为该终端设备提供服务的中继节点的标识的信息,以及该终端设备的标识的信息中的至少一种),QoS flow的标识的信息,协议数据单元会话的标识的信息,该终端设备的无线承载的标识的信息,以及该终端设备的逻辑信道的标识的信息。本申请实施例所称的为终端设备提供服务的中继节点,可以是终端设备接入的服务小区所属的中继节点。
在前述方法300中的关于数据下行传输的各可选设计中,该终端设备的标识的信息,和/或,传输途径中涉及的中继节点的标识的信息(比如,该第四中继节点的标识的信息,和/或,为该终端设备提供服务的中继节点的标识的信息),可用于下行数据传输中的路由选择,便于传输路径中的节点为需要传输的下行数据获得正确的下一跳节点,以保障传输过程高效。
在前述方法300中的关于数据下行传输的各可选设计中,下行数据中携带的QoS flow的标识的信息,协议数据单元会话的标识的信息,终端设备的无线承载的标识的信息,以及终端设备的逻辑信道的标识的信息,可用于在传输过程中为该下行数据所属的业务提供所需的QoS保障。一般的,无线承载和Qos flow可分别用于体现基础的传输Qos要求,Qos flow和无线承载可以具有映射关系。不同协议数据单元会话通常对应于不同的无线承载,比如,针对一个协议数据单元会话在空口可以建立至少一个无线承载与之对应,该协议数据单元会话中可以承载不同的Qos flow,每个Qos flow可以有不同Qos要求,这样,协议数据单元会话也可以基于其对应的无线承载或其承载的QoS flow而具有相应的Qos要求;终端设备的逻辑信道与终端设备的无线承载通常也具有对应关系,那么当下行数据中携带了终端设备的无线承载的标识的信息和/或该终端设备的逻辑信道的标识的信息时,也表明了该下行数据具有的相应的下行传输Qos要求,从而便于传输路径中的节点根据该 Qos要求执行传输;当然,当下行数据中携带了Qos flow的标识的信息时,由于QoS flow体现基本的传输QoS要求,那么也明确表明了该下行数据传输所需的Qos要求。
根据该方法300的一种可选设计包括,该第一网络节点接收的来自于第二网络节点的数据为上行数据,该第二网络节点为终端设备,该第三网络节点为与该第一网络节点相通信的其他中继节点(比如,第五中继节点)或宿主基站;在第一网络节点对接收到的上行数据依次执行第一部分处理和第二部分处理;该第一部分处理为:物理层功能处理和媒体接入控制层功能处理;该第二部分处理为:简化的无线链路控制层功能处理,适配功能处理,媒体接入控制层功能处理,以及物理层功能处理。通过实施本设计,相比于现有技术,显著简化了在第一网络节点(即中继节点)对上行传输的数据的处理,减少了上行传输的数据在中继节点的处理时间,进而降低了在包含有该第一网络节点,该第二网络节点以及该第三网络节点的通信网络中上行数据传输的端到端时延。在该第一网络节点接收的上行数据中或经过该第一网络节点处理后发送的上行数据中,均可以分别包含如下中至少一种与该适配功能有关的信息:上行传输涉及的节点的标识的信息(比如,该终端设备的标识的信息,该第一网络节点的标识的信息,该第五中继节点的标识的信息,和该宿主基站的标识的信息中的至少一种),QoS flow的标识的信息,协议数据单元会话的标识的信息,该终端设备的无线承载的标识的信息,以及该终端设备的逻辑信道的标识的信息。可以理解的是,通过在上行数据中携带终端设备的标识和/或协议数据单元会话的标识的信息,可用于宿主基站将协议数据单元会话的该上行数据通过与该终端设备的该协议数据单元会话对应的隧道(比如,N3 tunnel)发送至网关设备,比如该网关设备是用户面功能(user plane function,UPF)。
根据该方法300的一种可选设计包括,该第一网络节点接收的来自于第二网络节点的数据为上行数据,该第二网络节点为与该第一网络节点相通信的其他中继节点(比如,第六中继节点),该第三网络节点为与该第一网络节点相通信的其他中继节点(比如,第七中继节点)或宿主基站;该第一网络节点对接收的上行数据依次执行第一部分处理和第二部分处理;该第一部分处理为:物理层功能处理,媒体接入控制层功能处理,以及适配功能处理;该第二部分处理为:简化的无线链路控制层功能处理,适配功能处理,媒体接入控制层功能处理,以及物理层功能处理,该第一网络节点将经过该第一部分及第二部分处理后的上行数据发向第三网络节点。此处与前一可选设计的一个区别在于,前述可选设计中,在上行方向,与该第一网络节点相通信的第二网络节点为终端设备,而本设计中,在上行方向与该第一网络节点相通信的第二网络节点为另一个中继节点。通过实施本设计,与现有技术相比,简化了中继节点对上行数据的处理,减少了上行传输的数据在中继节点的处理时间,进而降低了在包含有该第一网络节点,该第二网络节点以及该第三网络节点的中继通信系统中上行数据传输的端到端时延。作为可选设计,该第一网络节点接收的上行数据中或者该第一网络节点处理后向第三网络节点发送的上行数据中,可分别包含如下中至少一种与该适配功能有关的信息:上行传输路径涉及的网络节点的标识的信息(比如,终端设备的标识的信息,该第一网络节点的标识的信息,该第六中继节点的标识的信息,该第七中继节点的标识的信息,为该终端设备提供服务的中继节点的标识的信息,以及该宿主基站的标识的信息中的至少一个),QoS flow的标识的信息,协议数据单元会话的标识的信息,该终端设备的无线承载的标识的信息,以及该终端设备的逻辑信道的标识的信息。
在前述方法300中关于数据上行传输的各可选设计中,上行传输路径中涉及的网络节点的标识的信息,比如,该终端设备的标识的信息,该第一网络节点的标识的信息,该第五中继节点的标识的信息,该第六中继节点的标识的信息,该第七中继节点的标识的信息,为该终端设备提供服务的中继节点的标识的信息,以及该宿主基站的标识的信息中的至少一个或任一个,可用于上行数据传输中的路由选择,便于传输路径中的中间节点为需要传 输的上行数据获得正确的下一跳节点。进一步可选的,在传输路径的中间节点,可以根据上行发送端,比如终端设备的标识的信息,来确定上行数据的下一跳节点,可以通过为终端设备预设传输路径等间接的方式确定下一跳路由节点。这时,该终端设备的标识的信息也可以作为与适配功能有关的信息,携带在上行传输的数据包中。
在前述方法300中关于数据上行传输的各可选设计中,上行数据中携带的QoS flow的标识的信息,协议数据单元会话的标识的信息,终端设备的无线承载的标识的信息,以及终端设备的逻辑信道的标识的信息,可用于在传输过程中为该上行数据所属的业务提供所需的QoS保障。无线承载和Qos flow可分别用于体现基础的传输Qos要求,Qos flow和无线承载可以具有映射关系。不同协议数据单元会话通常对应于不同的无线承载,可以理解,针对一个PDU session,空口可以建立至少一个无线承载与之对应;一个协议数据单元会话还可以承载不同的Qos flow,每个Qos flow可以有不同Qos要求,这样,协议数据单元会话可基于其对应的无线承载或者其承载的Qos flow而具有相应的Qos要求;终端设备的逻辑信道与终端设备的无线承载通常也具有对应关系,那么当上行数据中携带了终端设备的无线承载的标识的信息和/或该终端设备的逻辑信道的标识的信息时,也表明了该上行数据所具有的相应的Qos要求,从而便于传输路径中的节点根据该Qos要求执行传输,当上行数据中携带了Qos flow的标识的信息时,由于QoS flow一般用于表示基本的传输QoS要求,那么也明确表明了该上行数据在传输中所需要的Qos要求。
根据该方法300的一种可选设计包括,针对上行数据传输或者下行数据传输,在该第一网络节点(以中继节点为例)进行的简化的无线链路控制层功能处理中,对接收到的无线链路控制层协议数据单元执行分段,获得的分段对应形成新的无线链路控制层协议数据单元。这样,中继节点具有对无线链路控制层协议数据单元进行分段的功能,使得中继节点可以灵活的执行上下行数据传输,提高系统传输的效率和灵活性。
根据该方法300的一种可选设计包括,针对上行数据传输或者下行数据传输,在该第一网络节点(以中继节点为例)进行的简化的无线链路控制层功能处理中,该第一网络节点对无线链路控制层协议数据单元执行如下中至少一种:
操作一:对于未被该第一网络节点正确发送出去的无线链路控制层协议数据单元,该第一网络节点不执行重传,比如,第一网络节点给另一个中继节点发送的RLC PDU,如果该RLC PDU发送失败,或者对端未正确接收到该RLC PDU,则该第一网络节点不会重新再将该RLC PDU发送给所述的另一个中继节点;
操作二:对于未被该第一网络节点正确接收到的无线链路控制层协议数据单元,该第一网络节点不向数据发送端反馈接收状态,比如,另一个中继节点向该第一网络节点发送的RLC PDU,如果发送失败或者该第一网络节点未正确接收到,则该第一网络节点不会将该RLC PDU未正确接收到的情况反馈给所述的另一个中继节点;
操作三:该第一网络节点将收到的关于无线链路控制层业务数据单元的接收状态的报告向数据发送端发送,该第一网络节点不对该接收状态的报告进行解析,可选的,也可以理解为该第一网络节点只是为该接收状态的报告提供传输通道,并不获知该接收状态的报告的内容,此处所称的接收状态,可以是一个或多个无线链路控制层业务数据单元(比如,可以是RLC业务数据单元SDU或者RLC SDU的分段)未被正确接收到的信息;
操作四:该第一网络节点对接收到的无线链路控制层协议数据单元不进行分段重组,具体的,示例如:一般而言,在发送端或发送端与第一网络节点之间的任一节点对RLC SDU进行分段后,每一个分段对应形成新的RLC PDU,在该第一网络节点的RLC层的处理中,不对每一个分段对应的RLC PDU进行重组,不需要将前述形成的多个RLC PDU拼接还原成完整的原始RLC SDU;
操作五:该第一网络节点对接收到的无线链路控制层协议数据单元不进行重排序,具体的,示例如:对收到的RLC PDU,并不按照其所属的SDU的序号进行排序后按序递交给上层或按序递交给发送侧进行下一步处理,而是对收到的RLC PDU将其直接交给该第一网络节点(比如中继节点)的发送侧进行下一步处理。而现有技术中需要对收到的RLC PDU按序递交下一步处理,从而需要较多的处理时延。
通过实施本设计,该第一网络节点在和相邻网络节点进行数据传输时,在其无线链路控制层功能的处理中不需要对其接收或者发送的数据执行自动重传请求(automatic repeat request,ARQ)机制,或者不执行类似于ARQ的重传机制,和/或,不需要对接收到的RLC PDU执行分段重组和/或重排序,从而使得在该第一网络节点(中继节点)的数据处理和传输效率更高,进一步减少了数据在中继节点的处理时间,进一步降低了通信系统端到端数据传输时延。
根据该方法300的一种可选设计包括,针对上行数据传输或者下行数据传输,在该第一网络节点,经由适配功能处理后获得的数据包,包括:该适配功能有关的信息以及该无线链路控制层协议数据单元,作为示例性的理解,经由适配功能处理后获得的数据包,是在RLC PDU的基础上增加适配功能相关的信息获得,比如,可以在RLC PDU的头信息中添加适配功能相关的信息,又比如,还可以将RLC PDU数据包作为净荷封装形成相对独立的适配协议层数据包,前述适配功能相关的信息可以包含在该适配协议层数据包的头信息中。通过实施本设计方案,经过适配功能处理后,得到的数据报文可以认为是在无线链路控制层协议数据单元基础上,进一步增加适配功能有关的信息,从而使得上下行数据中能够包含路由和/或传输QoS保障所必须的信息,保障上下行数据传输可靠高效。
参考图3所示的系统300,本申请实施例还提供了一种通信方法300-2,该方法主要从中继通信系统中宿主基站的视角进行描述,包括:宿主基站对下行数据执行无线链路控制层功能处理以及适配功能处理,宿主基站将处理后得到的下行数据经由至少一个中继节点发向终端设备,其中,宿主基站发向该终端设备的该下行数据中包含如下中至少一种与适配功能有关的信息:下行传输路径所涉及的网络节点的标识的信息(比如,该终端设备的标识的信息,该至少一个中继节点的标识的信息,以及为该终端设备提供服务的中继节点的标识的信息中的至少一个),QoS flow的标识的信息,协议数据单元会话的标识的信息,该终端设备的无线承载的标识的信息,以及该终端设备的逻辑信道的标识的信息。
根据该方法300-2的一种可选设计包括,在该宿主基站的无线链路控制层功能处理,包括:对未被所述终端设备正确接收的无线链路控制层协议数据单元,通过至少一个中继节点重传给所述终端设备,可选的,该至少一个中继节点无需识别在其传输的RLC SDU是初次传输的RLC SDU还是重传的RLC SDU;和/或,通过该至少一个中继节点向该终端设备发送关于无线链路控制层业务数据单元的接收状态的报告,比如,如果宿主基站确定某一个或多个RLC SDU(或RLC SDU的部分分段)未被接收到,则该宿主基站向终端设备发送关于该RLC SDU(或其部分分段)未被正确接收的反馈,该接收状态的报告在发送过程中,不被该至少一个中继节点解析。通过实施本设计,宿主基站和终端设备之间执行数据重传机制,这样,即使中继节点和相邻网络节点之间的无线链路控制层的数据传输不具有数据重传机制和或数据传输状态反馈机制,也能较好的保障中继通信系统中端到端的通信传输质量,使得在降低通信系统端到端数据传输时延和保障传输质量这两者之间取得了一种平衡。
根据该方法300-2的一种可选设计包括,在宿主基站,经由适配功能处理后获得的数据包,包括:该适配功能有关的信息以及无线链路控制层协议数据单元,作为示例性的一种理解,在宿主基站经由适配功能处理后获得的数据包,可以是在RLC PDU的头信息中添加适配功能相关的信息后获得,也可以是通过将RLC PDU数据包作为净荷封装形成相 对独立的适配协议层数据包获得,适配功能相关的信息可以包含在该适配协议层数据包的头信息中。通过实施本设计方案,在无线链路控制层协议数据单元基础上,进一步增加适配功能有关的信息,从而使得下行数据中能够包含路由和/或传输QoS保障所必须的信息,保障下行数据传输可靠高效。
参考图3所示的系统300,本申请实施例还提供了一种通信方法300-3,该方法主要从终端设备(比如UE)的视角进行描述,包括:在终端设备对数据执行无线链路控制层功能处理以及适配功能处理,终端设备将处理后的数据经由至少一个中继节点发向宿主基站;发向该宿主基站的该上行数据中包含如下中至少一种与适配功能有关的信息:上行传输路径中涉及的网络节点的标识(比如,该终端设备的标识的信息,该至少一个中继节点的标识的信息,为该终端设备提供服务的中继节点的标识的信息,以及该宿主基站的标识的信息中的至少一个),QoS flow的标识的信息,协议数据单元会话的标识的信息,该终端设备的无线承载的标识的信息,以及该终端设备的逻辑信道的标识的信息。
根据该方法300-3的一种可选设计包括,在终端设备的无线链路控制层功能处理,包括:对未被宿主基站正确接收的无线链路控制层业务数据单元,通过至少一个中继节点将该未被正确发送的RLC SDU重传给该宿主基站,该至少一个中继节点可不识别在其传输的RLC SDU是初次传输的RLC SDU还是重传的RLC SDU;和/或,终端设备通过该至少一个中继节点向该宿主基站发送关于无线链路控制层业务数据单元的接收状态的报告,比如,终端设备确定没有接收到某一个或多个RLC SDU(或RLC SDU的部分分段)时,终端设备向该宿主基站反馈关于这些RLC SDU(或其部分分段)的未接收到的状态的报告,在通过至少一个中继节点向宿主基站发送该状态报告的过程中,该至少一个中继节点可不解析该接收状态的报告。通过实施本设计,终端设备和宿主基站之间执行数据重传机制,这样,即使中继节点和相邻网络节点之间的无线链路控制层的数据传输不具备数据重传机制和或传输状态反馈机制,中继通信系统中端到端的通信传输质量也能得到较好的保障,使得在降低中继通信系统端到端数据传输时延和保障传输质量这两者之间取得了一种平衡。
根据该方法300-3的一种可选设计包括,在终端设备,经由所述适配功能处理后获得的数据包,包括:该适配功能有关的信息以及无线链路控制层协议数据单元,作为示例性的一种理解,在终端设备经由适配功能处理后获得的数据包,可以是在RLC PDU的头信息中添加适配功能相关的信息后获得,也可以是通过将RLC PDU数据包作为净荷封装形成相对独立的适配协议层数据包获得,适配功能相关的信息可以包含在该适配协议层数据包的头信息中。通过实施本设计方案,可以在RLC PDU的基础上,进一步增加适配功能有关的信息,从而使得上行数据中能够包含路由和/或传输QoS保障所必须的信息,保障上行数据传输可靠高效。
根据该方法300或300-2或300-3的一种可选设计包括,在中继通信系统的数据接收端,比如在宿主基站或终端设备的RLC层,可以对接收到的数据包做重排序,按序递交给上层处理。
可以理解的是,前述实施例提供的通信方法300,通信方法300-2,以及300-3中的任一种可选设计,均可以和其他可选设计结合适用,比如,可以任择一种其他设计或者任择多种其他设计合并实施以解决不同的技术问题。若无特别说明,本申请后续实施例中出现的可选设计,可按照同样原则和其他可选设计相结合适用,结合的方式此处不做限定。
进一步的,参考图3所示的通信系统300的设计,图4示出了一种无线中继通信系统400,该系统400以数据的下行传输和用户面协议栈为视角进行说明。该系统400包括:用户面功能(user plane function,UPF)网元,DgNB,RN 1,以及UE,其中,UE和RN1通过两者之间的接口进行通信交互(该接口可以为Uu口,或者NR接口,此处接口名称 不做限定),RN1和DgNB通过两者之间的接口进行通信交互(该接口可以为Un接口,此处名称不做限定),DgNB和UPF之间通过两者之间的接口进行通信交互(该接口可以为N3接口,此处名称不做限定);UE和DgNB之间逻辑上可以通过对等的通信协议栈功能进行通信交互,比如通过两者分别具有的对等的RLC层协议栈,PDCP层协议栈,以及业务数据适配协议(service data adaptation protocol,SDAP)层协议栈进行通信交互;UE和UPF逻辑上也可以通过两者分别具有的对等的IP层协议栈进行通信交互。系统400可应用于无线单跳中继场景,在典型的无线单跳中继场景中,中继通信系统中具有UE,RN以及DgNB这三个网络节点并可进行上下行通信交互,从用户面协议栈配置的角度,系统400中,UE配置的协议栈包括:PHY层,MAC层,RLC层,PDCP层,SDAP层,以及IP层;在RN1的下行发送侧配置的协议栈包括如下中至少一种:PHY层,MAC层,以及S-RLC;在RN1的下行接收侧配置的协议栈包括如下中至少一种:PHY层,MAC层,RN1还具有适配(adaptation)功能,该适配功能可以独立存在,比如作为独立的适配层或RN1中的相对独立的适配功能实体,也可以作为RN1的下行接收侧MAC层的一部分,还可以作为RN1的下行发送侧S-RLC层的一部分;在DgNB的发送侧配置的协议栈包括如下中至少一种:PHY层,MAC层,适配功能,RLC层,PDCP层,以及SDAP层,其中,适配功能可以在DgNB独立存在,比如作为独立的适配层或RN1中的相对独立的适配功能实体,也可以作为DgNB下行发送侧的MAC层功能的一部分,还可以作为DgNB的下行发送侧RLC层的一部分;在DgNB的下行接收侧配置的协议栈包括:层1(L1)和层2(L2)协议栈,IP层,UDP层,以及GTP层;对应的,在UPF侧配置的协议栈包括:L1和L2协议栈,IP层,UDP层,GTP层,以及IP层。此处DgNB和UPF所配置的L1和L2通常是指有线通信的协议层,视DgNB和UPF之间具体采用的连接技术而定,比如L1可以为物理层,L2可以为数据链路层,L2可以进一步包括:MAC层,逻辑链路控制层(logical link control layer,LLC),点对点协议层(point to point protocol,PPP),以及以太网(Ethernet)技术的链路层中的至少一种。对L1和L2包含的具体协议层,本申请实施例中不予限定。
参考系统300以及系统400的设计,图5示出了本申请实施例提供的一种中继通信系统500,该系统500以控制面协议栈为例进行示意性说明,可以理解的是,该系统500所示出的控制面协议栈,仅作为示例性的内容,具体控制面的协议栈设计此处不做限定。该系统500中包括:接入和移动性管理功能(access and mobility management function,AMF)实体,DgNB,RN 1以及UE。其中,UE和RN1通过两者之间的接口进行通信交互(该接口可以为Uu接口等,此处接口的名称不做限定),RN1和DgNB通过两者之间的接口进行通信交互(该接口可以为Un接口,此处接口的名称不做限定),DgNB和AMF通过两者之间的接口进行通信交互(该接口可以为N2接口,具体接口的名称此处不做限定);UE和DgNB之间逻辑上也可以通过其分别具有的对等的协议栈进行通信交互,比如通过两者分别具有的对等的RLC层协议,PDCP层协议,以及无线资源控制(radio resource control,RRC)层协议进行控制面通信交互;UE和AMF逻辑上也可以通过两者分别具有的对等的NAS层协议进行通信交互。系统500中,在UE配置的协议栈包括:PHY层,MAC层,RLC层,PDCP层,RRC层以及非接入层(non-access stratum,NAS);在RN1的下行发送侧配置的协议栈为如下中至少一种:PHY层,MAC层,以及S-RLC层;在RN1的下行接收侧配置的协议栈为如下中至少一种:PHY层,MAC层,RN1还具有适配功能,该适配功能可以在RN1中独立存在,比如在RN1的下行接收侧部分作为独立的适配层或在RN1中作为相对独立的适配功能实体,也可以作为RN1中下行发送侧的S-RLC层功能的一部分,还可以作为RN1的下行接收侧的MAC层的一部分;在DgNB的下行发送侧配置的协议栈包括如下中至少一种:PHY层,MAC层,适配(adapatiion)功能,RLC层,PDCP层,以及RRC层,其中,该适配功能可以在DgNB中独立存在,比如作为DgNB的下行发送侧中独立的适配层协议或DgNB中的相对独立的适配功能实体,也可以作为DgNB下行发送侧的MAC层功能的一部分,还可以作为DgNB的下行发送侧RLC层的一部分;在 DgNB的下行接收侧配置的协议栈包括:L1和L2,IP层,流传输控制协议层(stream control transmission protocol,SCTP),以及NG接口应用协议(NG application protocol,NG-AP)层,其中,NG是5G系统RAN和核心网之间的接口,功能上可类似于LTE中的S1接口。与此对应的,在AMF配置的协议栈包括:L1和L2,IP层,SCTP层,NG-AP层,以及NAS层。此处所称的L1和L2通常是指有线通信的协议层,比如L1可以为物理层,L2可以为数据链路层,L2可以进一步包括:MAC层,逻辑链接链路控制层(logical link control layer,LLC),点对点协议层(point to point protocol,PPP),以太网(Ethernet)技术的链路层中的至少一种。对L1和L2包含的具体协议层,本申请实施例中不予限定。
在图4所示的无线中继通信系统400的基础上,针对无线多跳中继场景,图6示出了本申请实施例提供的一种无线中继通信系统600,以数据的下行传输和用户面协议栈为视角对该系统600进行描述,该系统600包括:UPF,DgNB,RN 2,RN1以及UE。其中,UE和RN1通过两者之间具有的接口进行通信交互(该接口可以为Uu口,或者NR接口,此处接口名称不做限定),RN1和RN2通过两者之间的RN-RN接口进行通信交互(此处所称“RN-RN接口”表示该通信接口是两个中继节点之间的接口,具体名称不做限定),RN2和DgNB通过两者之间的接口进行通信交互(该接口可以为Un接口,此处接口名称不做限定),DgNB和UPF通过两者之间的接口进行通信交互(比如,该接口可以为N3接口);UE和DgNB之间逻辑上也可以通过分别具有的对等的协议栈进行通信交互,比如通过两者分别具有的对等的RLC层协议,PDCP层协议,以及SDAP层协议进行通信交互;UE和UPF逻辑上也可以通过两者分别具有的对等的IP层协议进行通信交互。根据系统600所示出的,在UE配置的协议栈包括:PHY层,MAC层,RLC层,PDCP层,SDAP层以及IP层;在中继节点RN1的下行发送侧配置的协议栈为如下中至少一种:PHY层,MAC层,以及S-RLC层;在中继节点RN1的下行接收侧配置的协议栈为如下中至少一种:PHY层以及MAC层,RN1还具有适配(adaptation)功能,该适配功能可以在RN1中独立存在,比如在RN1的下行接收侧部分作为独立的适配层协议或在RN1中作为相对独立的适配功能实体,也可以作为RN1中下行发送侧的S-RLC层功能的一部分,还可以作为RN1的下行接收侧的MAC层的一部分;在中继节点RN2的下行发送侧配置的协议栈为如下中至少一种:PHY层,MAC层,适配(adaptation)功能,以及S-RLC层,其中该适配功能可以作为RN2中下行发送侧的S-RLC层功能的一部分,也可以作为RN1的下行发送侧的MAC层的一部分;在中继节点RN2的下行接收侧配置的协议处理为如下中至少一种:PHY层,MAC层以及适配(adaptation)功能,该适配功能可以作为RN2接收侧部分的独立的协议层,也可以作为RN2接收侧部分MAC层的一部分,还可以作为RN2的独立的适配功能实体;在DgNB的下行发送侧配置的协议栈包括如下至少一种:PHY层,MAC层,适配(adapatation)功能,RLC层,PDCP层,以及SDAP层,其中,适配功能可以作为独立的协议层,也可以作为DgNB中MAC或RLC层的功能的一部分;在DgNB的下行接收侧配置的协议栈包括:L1和L2,IP层,UDP层,以及GTP层,与此对应的,UPF配置的协议栈包括:L1和L2,IP层,UDP层,GTP以及IP层。此处所称的L1和L2通常是指有线通信的协议层,比如L1可以为物理层,L2可以为数据链路层,L2可以进一步包括:MAC层,逻辑链接链路控制层(logical link control layer,LLC),点对点协议层(point to point protocol,PPP),以太网(Ethernet)技术的链路层中的至少一种。对L1和L2包含的具体协议层,本申请实施例中不予限定。
从前述图4,图5以及图6所分别示出的系统协议栈架构可以看出,对于其中的中继节点RN1而言,示例性的,其协议栈配置在下行发送侧为如下中至少一种:PHY层,MAC层,以及S-RLC层,在RN1的下行接收侧为如下中至少一种:PHY层,MAC层,以及适配功能,因此,RN1可以认为具有层2的全部或者部分功能;示例性的,对于其中的中继节点RN2而言,示例性的,其协议栈配置在下行发送侧为如下中至少一种:PHY层,MAC层,适配功能,以及S-RLC层,在下行接收侧的协议栈配置为如下中至少一种:PHY 层,MAC层,以及适配功能层,因此,RN2可以认为具有层2的全部或者部分功能。可以看出,相对于现有技术,本申请实施例中RN1和RN2的协议栈设置和对数据的处理得到简化,使得下行数据在中继节点的处理时间得以减少,从而降低了通信系统中端到端数据传输的时延。
为便于描述和行文,对RN的处理功能配置进行说明时分别“发送侧”,“接收侧”来描述,但可以理解的是,本申请实施例中RN节点上配置的S-RLC和适配功能,两者中任一的具体部署,既可以在RN的“发送侧”,也可以在RN的“接收侧”,或者部署的时候作为独立的处理功能实体,并不强调是在“发送侧”还是“接收侧”的范围。
参考前述系统300,400,500,以及600中至少一种系统的设计,如图7所示的本申请实施例提供的一种无线中继通信系统700,该系统700包括:无线接入网中的发送端,中继节点,以及终端设备,具体的,无线接入网发送端可以是宿主基站DgNB,中继节点可以是RN,终端设备可以是UE,其中,DgNB和RN通过两者之间的接口进行通信交互(比如该接口可以是Un口,具体名称此处不作限定),RN和UE通过两者之间的接口进行通信交互(该接口可以是Uu接口或者NR接口,具体名称不作限定)。以下从中继通信系统中涉及节点的功能和对下行数据的处理流程来说明该系统700的构成和运行。该系统700可以按照如下示例的机制运行:
实例1
在无线接入网络中下行数据传输的发送端的角度(以DgNB为例),对来自于核心网的用户面数据包的处理,包括如下中至少一种操作:
操作1a:在DgNB执行的SDAP层功能的处理。此处的处理可以包括如下中至少一种:
(1)对下行数据包执行Qos flow到UE的数据无线承载(data radio bearer,DRB)的映射(mapping of QoS flow to DRB)。
(2)通过对来自于核心网的下行数据包中添加服务质量流标识(QoS flow ID)的信息,对下行数据包标记Qos flow的标识的信息。
此处所称的Qos flow具有表示某种粒度的QoS保障的功能,通过在数据包中添加Qos flow的标识的信息,那么传输节点可以获知该数据包对应的Qos要求,从而使得传输节点可以按照该Qos flow ID对应的Qos要求对这个数据包进行传输。
操作1b:在DgNB执行的PDCP层功能的处理。此处的处理可包括如下中至少一种:
(1)对数据包进行编号(sequence numbering),此处所称数据包可以是PDCP SDU,使得每个PDCP PDU携带其自身的PDCP层的序号。(2)执行头压缩操作。(3)执行完整性保护操作。(4)执行安全性相关保护(ciphering)操作。(5)执行数据包路由或者数据包复制(packet routing or duplication)的操作。(6)执行PDCP SDU的重传。(7)执行用户数据传输。
操作1c:在DgNB执行的RLC层功能的处理。此处的处理包括如下中至少一种:
(1)对收到的PDCP PDU或者对RLC SDU进行编号(sequence numbering),这样,每一个RLC SDU具有自己的序号。
(2)在DgNB侧的RLC层执行第一次数据包分段(1 st segmentation)或对重传的RLC SDU进行再分段(re-segmentation)。例如,一个RLC SDU可以被分成至少两段,得到的每一个分段均可以对应一个新的RLC PDU,经过分段后得到的每一个RLC PDU具有的序号与被分段的原始RLC SDU具有的序号相同,或者经过分段后得到的每一个RLC PDU具 有的序号与被分段的原始RLC SDU的序号具有对应关系。在某些情况,比如空口资源相对充足的情况下,可以不对RLC SDU进行分段,则下行传输的数据包为RLC SDU。具体是否执行分段需要视实际情况决定,此处不做限定。
(3)执行数据包重传。此处的重传可以是基于自动重传请求机制进行的,重传的数据包可以是RLC SDU或者RLC SDU的分段。在某些情况,比如,空口资源相对充足的情况下,未对RLC SDU进行分段,则下行传输的数据包为RLC SDU,那么重传的数据包也为相应的RLC SDU,又比如,当MAC层资源较少的情况下,可以对需要进行重传的RLC SDU进行分段后再重传,或者当接收端反馈的RLC状态报告中显示某些RLC SDU的部分分段没有被正确接收时,可以重传所述未被正确接收的分段。具体重传的数据包是RLC SDU或者是对RLC SDU分段后得到的RLC PDU,需要视实际情况决定,此处不做限定。
示例性的,在宿主基站和终端设备之间进行的RLC层数据重传机制,包括:若DgNB收到来自于UE的RLC状态报告(如UE关于RLC SDU接收状态的报告),则DgNB将未被正确发送给UE的RLC SDU(也可以是RLC SDU的分段),通过至少一个RN向该UE重新发送,DgNB向UE重新发送该RLC SDU的过程中,该至少一个中继节点可不识别该RLC SDU是初传的RLC SDU还是重传的RLC SDU;和/或,DgNB通过至少一个中继节点向UE发送关于RLC SDU的接收状态的报告,比如,若DgNB确定一个或多个来自于UE的RLC SDU未被接收到或者未被正确接收到,则DgNB向UE发送关于未被接收到的数据包的接收状态的报告,在向UE发送该接收状态的报告的过程中,RN可不解析该状态报告的内容,RN可以通过RLC PDU的头信息中的D/C域和/或CPT域获知该RLC PDU的类型是控制PDU,则RN确定该RLC PDU是RLC状态报告,然后根据适配功能有关的信息中的路由信息向数据的发送端发送该控制RLC PDU,适配功能有关的信息也可以携带在该RLC PDU中。通过实施本设计方案,宿主基站和终端设备之间执行数据重传机制,较好的保证了中继通信系统中端到端的通信传输质量。
在一种可选设计中,经过宿主基站的RLC层功能处理后得到的RLC PDU满足如下所示的“报文结构一”:
报文结构一:
D/C P SI R SN SO Data
具体的,在该“报文结构一”中包括如下至少一种:D/C域,P域,SI域,R域,SN域,SO域,以及Data域。其中:
(1)D/C用于表示数据/控制(data/control)域,D/C域中携带的信息用于表明该RLC PDU是一个RLC层的数据PDU,即该RLC PDU可理解为携带的是用户数据,或者,D/C域中携带的信息表明该RLC PDU是一个RLC层的控制PDU,即该RLC PDU可理解为携带的是控制信息。当RLC PDU为控制PDU时,上述报文结构中还可以包括控制PDU类型(control PDU type,CPT)域,通过CPT域中的值可以表明该RLC控制PDU携带的控制信息可以是关于RLC SDU接收状态的报告,或者是其他系统所需的控制信息,其中,对于控制RLC PDU中的CPT域,一种可选设计中,如CPT域取值为“000”则表示该RLC PDU为包含数据包接收状态的控制RLC PDU。
该D/C域的功能可适用于具有确认(acknowledged mode,AM)模式的RLC PDU传输机制。
(2)P用于表示轮询(polling)域,在该“报文结构一”中,该域中可包含轮询比特,用于向传输对端的AM RLC功能实体请求关于RLC SDU接收状态的报告。该AM RLC功能实体可以是RLC层功能的一部分。
该轮询比特的功能可适用于具有AM模式的RLC PDU传输机制。
(3)SI用于表示分段信息(segmentation infomation)域,该域携带的信息用于表明该RLC PDU包含的是一个完整的RLC SDU,或者该域携带的信息用于表明该RLC PDU是对应于一个RLC SDU的一个分段,比如该分段是所述RLC SDU的首个分段,或者,该分段是所述RLC SDU的中间分段,或者,该分段是所述RLC SDU的最后一个分段。
(4)SN用于表示序号(sequence number)域,该SN域用于表示与该RLC PDU对应的RLC SDU的序号。
在AM模式下,同一个RLC SDU的不同分段分别对应的RLC PDU都具有相同的SN;在非确认(acknowledged mode,UM)模式下,当RLC PDU中的数据是RLC SDU的一个分段时,该RLC PDU具有SN域。
(5)R用于表示保留(reserved)比特:该域为可选。比如,若该RLC PDU中的SN域具有特定长度,则设置该保留比特,或者,为了节省系统开销,则该RLC PDU也可以不设置保留比特。可选的,保留比特也可以用来表示本申请实施例中所称的适配功能有关的信息,这样,适配功能可以作为RLC层功能的一部分,适配功能有关的信息比如路由和Qos有关的信息包含在RLC PDU报文中。
(6)SO用于表示(segment offset)分段偏置域,该域用于表明与该RLC PDU对应的RLC SDU分段在原始的RLC SDU中的相对位置。当该RLC PDU中的数据是RLC SDU的一个分段且不是首个分段时,则该RLC PDU中设置该SO域;当该RLC PDU中的数据是RLC SDU的一个分段但又是首个分段时,则该RLC PDU中可以不设置该SO域。
(7)Data用于表示数据域。Data域的内容可以是原始RLC SDU(可适用于未对原始RLC SDU进行分段的情况),或者,Data域的内容可以是原始RLC SDU的分段(可适用于对原始RLC SDU进行过分段的情况)。
操作1d:在DgNB执行的适配功能处理。此处的处理包括:在RLC PDU基础上,增加适配功能有关的信息,比如添加用于数据包路由和/或用于QoS映射的信息。其中,用于数据包路由和/或用于QoS映射的信息包括如下中至少一种:下行传输路径涉及的网络节点的标识的信息(比如UE的标识的信息,为UE提供服务的RN的标识的信息,传输路径的标识的信息,以及DgNB的标识的信息中的至少一个),QoS flow的标识的信息,UE的无线承载的标识的信息,UE的逻辑信道的标识的信息,DgNB和RN之间接口的无线承载的标识的信息,以及DgNB和RN之间接口的逻辑信道的标识的信息。此处,为终端设备提供服务的RN,可以是终端设备接入的服务小区所属的RN。通过在下行数据包中携带这些信息,便于传输路径中的中间节点为需要传输的下行数据获得正确的下一跳节点。
一种可选设计中,适配功能有关的信息中可以不需要包含DgNB和RN之间的承载的标识的信息,和/或,可以不需要包含DgNB和RN之间的逻辑信道的标识的信息。可以理解的是,RN可以获取到数据包中携带的适配功能有关的上述信息,然后根据需要在RN处理后发出的下行数据包中添加所需的适配功能有关的信息,以满足下行数据传输的路由和Qos保障的需求。
可选的,适配功能中还可以包括QoS映射的处理,比如可以从QoS flow或UE的DRB到下一跳的承载或逻辑信道的映射,例如,在单跳中继系统中,可以直接根据UE DRB ID确定RN到UE的承载);又比如,还可以从上一跳的承载/逻辑信道到下一跳的承载/逻辑信道的映射。
作为示例性的理解,在DgNB经由适配功能处理后获得的数据报文可以认为是在RLC PDU基础上进一步增加适配功能有关的信息而获得,比如通过在RLC PDU的头信息中的 保留比特或者新增比特来表示该适配功能有关的信息。
此处所称适配功能,可以作为DgNB中独立的一个协议层去实现,比如在DgNB的协议栈中设置单独的适配功能协议层,该适配功能协议层逻辑上可以介于DgNB的RLC层和MAC层之间,或者可以作为DgNB中的一个独立的适配功能实体;该适配功能也可以作为DgNB中RLC层的逻辑功能的一部分,此时的RLC层的功能由于包含了前述的适配层功能,故和传统RLC层的功能存在不同,比如,在“报文结构一”的基础上使用已有保留比特或者新增域,以放置本申请实施例中与适配功能有关的信息,此时使用的报文结构和“报文结构一”有所不同。该适配功能还可以作为DgNB中MAC层的逻辑功能的一部分,此时的MAC层的功能由于包含了前述的适配层功能,故和传统MAC层的功能存在不同。综上,适配功能的实现方式此处不做具体限定。
操作1e:在DgNB执行的MAC层功能和PHY层功能的处理。此处MAC层的处理可包括如下中至少一种:调度(scheduling or priority handling)处理,复用(multiplexing)处理,基于HARQ机制的重传(retransmission)处理;下行数据经过MAC层功能的处理后,再经过PHY层的处理,然后通过DgNB和UE之间的接口,发送给RN。
需要说明的是,为便于行文,对以上操作进行了顺序编号,但可以理解,这并不意味着方法流程的执行顺序必须按照编号顺序进行,以及,具体哪些步骤需要被执行,需要根据所解决的具体技术问题来确定,对步骤进行顺序编号,并不意味着这些步骤中的每一个都需要被执行。
根据系统700,以下从中继节点RN的角度进一步对本发明实施例进行描述,从DgNB发来的下行数据在RN的处理可以包括两种情况,对于第一种情况,处理下行数据的RN和UE具有直接的通信交互,可适用于单跳中继或者多跳中继的场景;对于第二种情况,处理下行数据的RN,需要通过另一个RN和UE进行通信交互,可适用于多跳中继的场景,分别介绍如下:
实例2
以单跳中继场景为例,该场景中继通信链路上只有一个中继节点,该中继节点位于终端设备和宿主基站之间,该中继节点直接与该终端设备进行通信交互,该中继节点直接与宿主基站进行通信交互,在该中继节点RN对下行数据的处理,包括如下至少一种操作:
操作2a:RN的接收侧对接收到的下行数据执行PHY层功能和MAC层功能的处理。此处PHY层功能和MAC层功能的处理包括如下中至少一种:通过HARQ机制,对下行数据的接收进行纠错(比如,通过HARQ机制进行的纠错),以及解复用等。
操作2b:RN对下行数据执行如下中至少一项适配功能有关的处理:
(1)RN从收到的下行数据包中获知与适配功能有关的信息,比如用于数据包路由的信息和/或用于QoS映射的信息,其中,用于数据包路由的信息和/或QoS映射的信息包括如下中至少一种:UE的标识的信息,为UE提供服务的RN的标识的信息,传输路径的标识的信息,DgNB的标识的信息,QoS flow的标识的信息,PDU session的标识的信息,UE的无线承载的标识的信息,以及UE的逻辑信道的标识的信息。此处,为终端设备提供服务的RN,可以是终端设备接入的服务小区所属的中继节点。通过在下行数据包中携带这些信息,以便于传输路径中的中间节点为需要传输的下行数据获得正确的下一跳节点。
(2)确定下一跳路由。例如,根据数据包中携带的UE的标识的信息,RN可以获知该数据包传输的下一跳节点是该UE。
(3)RN确定发送下行数据包所需的无线承载或逻辑信道。比如,可选的,根据网络侧(例如核心网网元或DgNB给RN的配置,或者RN本地配置)配置的QoS参数和/或 QoS映射规则,和/或接收的该下行数据所对应的RN的逻辑信道或无线承载,确定在RN和UE之间接口发送该下行数据所使用的无线承载或逻辑信道;或者,可选的,根据网络侧(例如核心网网元或DgNB给RN的配置,或者RN本地配置)配置的QoS参数和/或QoS映射规则,和/或接收的该下行数据包中携带的QoS flow标识,确定在RN和UE之间接口发送该下行数据所使用的无线承载或逻辑信道;或者,可选的,RN由数据包中携带的UE的无线承载的标识的信息或UE的逻辑信道的标识的信息,确定在RN和UE之间接口发送该下行数据所使用的无线承载或逻辑信道。可以理解的是,终端设备的逻辑信道与终端设备的无线承载一般具有对应关系,而无线承载一般具有相应粒度的QoS要求保障,那么当下行数据中携带了UE的逻辑信道的标识的信息或与该逻辑信道对应的无线承载的标识的信息时,也表明了该下行数据所属业务相应的Qos要求;不同PDU session通常对应于不同的无线承载,针对一个PDU session,空口可以建立至少一个无线承载与之对应;一个PDU session中还可以承载不同的Qos flow,每个Qos flow可以有不同Qos要求,这样,协议数据单元会话可基于其对应的无线承载或者其承载的Qos flow而具有相应的Qos要求。当然,如果下行数据中携带了Qos flow的标识的信息时,也表明了该下行数据所属业务的Qos要求。
(4)执行移除下行数据包中的适配功能相关的信息,比如移除适配信息报文头(remove adaptation header)。
此处RN的适配功能处理(比如适配功能有关的信息的识别,删除,或增加),可以在RN侧的下行接收侧部分实现,比如,可以作为RN的下行接收侧部分中设置在MAC层之上的独立的一个功能模块(比如逻辑功能协议层)去实现;也可以作为RN的下行接收侧部分中已有协议层的功能的一部分,比如下行接收侧的MAC层功能实体的一部分,此时,MAC层的功能由于包含了前述的适配层功能,故和传统MAC层的功能存在不同。如果RN的下行接收侧配置了RLC层,则该适配功能也可以做为下行接收侧的RLC层的逻辑功能的一部分。该适配功能处理还可以在RN侧的下行发送侧部分实现,比如,可以作为RN的下行发送侧部分中独立的一个功能模块(比如逻辑功能协议层)去实现;也可以作为RN的下行发送侧部分中已有协议层的功能的一部分,比如下行发送侧的RLC功能实体的一部分。
该适配功能涉及的相关的处理,还可以分开部署,比如:适配功能处理中有一部分处理作为独立的功能实体部署,该适配功能中有一部分作为RLC协议层功能的一部分,或者,该适配功能的另外一部分可以作为MAC层功能的一部分。示例性的,适配功能处理中涉及的路由信息的处理,可以作为单独的部分进行上述任一种部署,或者,适配功能处理中涉及的Qos信息的处理,可以作为单独的部分进行上述任一种部署,具体该适配功能中的子功能的划分和部署,此处不作限定。
可以理解,该适配功能处理(比如适配功能有关的信息的识别,删除,或增加),如通过新增独立的协议层来实现该适配功能,则对应可称为适配层协议,但具体名称此处不做限定。
如该适配功能是在RN节点中的RLC层功能中实现,则可选的,用于数据包路由和/或用于QoS映射的信息可以包含在RLC PDU的头信息中,比如,在RLC PDU的头信息中用新增的比特来表示该信息,或者使用RLC PDU头信息中的保留比特来表示该信息。
如该适配功能是在RN节点中的MAC层功能中实现,则可选的,用于数据包路由和/或用于QoS映射的信息可以包含在MAC SDU的头信息中。
可选的,该适配处理功能还可以在RN中的公共处理模块中实现,以支持RN中接收侧和发送侧功能的实现。
综上,适配功能在RN的实现方式此处不做具体限定。
操作2c:RN对下行数据执行RLC层的处理。此处RLC的处理包括如下中至少一种:
1、在RN的发送侧,对RLC PDU进行分段(如,对RLC PDU中包含的RLC SDU或RLC SDU的分段),如果接收到的RLC PDU是已经是对RLC SDU经过分段后获得的RLC PDU,则此处的分段可以称为再分段(re-segmentation),这里所述的第二次分段,可以是相对在DgNB已经做过分段的情况而言的。RN的发送侧对接收到的RLC PDU进行分段,即对接收到的RLC PDU中data域包含的RLC SDU或RLC SDU分段进行分段处理,RN将得到的新分段添加RLC层头部信息后,对应形成新的RLC PDU。例如,一个RLC PDU可以分成至少两段,其中的每一个分段均可以对应一个新的RLC PDU。对于再分段的情况,获得的新的RLC PDU中均包含原RLC PDU中具有的序号(SN),原RLC PDU中具有的序号,与初始RLC SDU序号相同或者具有对应关系。RN节点的发送侧对下行数据包进行分段处理后,得到的RLC PDU满足前述“报文结构一”。可选的,在RN的RLC层的处理中,可以不对RLC状态报告PDU进行再分段的操作。
2、在RN节点对RLC PDU的报文执行“修改一”,该“修改一”包括如下中至少一种处理:
2.1:RLC PDU的序号SN保持不变。
2.2:RLC PDU的D/C域字段保持不变。
2.3:SI域或者帧信息(frame innfo,FI)域中携带指示信息,该指示信息用来表示该RLC PDU是完整的包(比如其中的data域为未经分段分段的原始RLC SDU),和/或,该指示信息用来表示该RLC PDU对应的基于原始RLC SDU产生的分段(也即,RN进行分段处理后获得的新的RLC PDU)。比如,该FI/SI域取值集合为{00,01,10,11},该取值集合范围对应的含义为:{完整的包/SDU,第一个分段,末尾分段,中间分段}(此处的“{}”表示取值集合范围,下同)。对于FI/SI域的取值,可以有以下情况:
2.3.1:若RN对收到的RLC PDU不做分段,则RLC PDU中FI/SI域的信息可保持不变。
2.3.2:若RN收到的RLC PDU是一个完整的数据包,比如其中的data域对应于未经分段的原始RLC SDU,RN对该数据包分段,则分段后的得到的RLC PDU中的FI/SI域和分段前的RLC PDU中的FI/SI域不同,FI/SI域的取值范围从00变为{01,10,11}。
2.3.3:若RN收到的RLC PDU的FI/SI域取值为01,对该数据包进行分段,则此处分段后得到的第一段对应的RLC PDU中的FI/SI域取值为01,其余分段对应的RLC PDU的FI/SI域取值为11。
2.3.4:若RN收到的RLC PDU的FI/SI是11,RN对该数据包分段,则此处分段后得到的新的分段对应的RLC PDU的FI/SI域的取值都为11。
2.3.5:若RN收到的RLC PDU的FI/SI是10,RN对该数据包分段,则此处分段后得到的最后一段对应的新的RLC PDU中的FI/SI域取值为10,其余段FI/SI皆为11。
2.4:分段偏置SO域的处理。SO域用于指示分段在原始RLC SDU中的位置。对于SO域的处理,包括如下中至少一种:
2.4.1:若RN对收到的RLC PDU不做分段,若该RLC PDU有SO域,则该SO域的内容保持不变。
2.4.2:若RN收到的RLC PDU的FI/SI域的取值是00或01,即该RN节点收到的RLC PDU中的data域为完整的RLC SDU,或是原始RLC SDU的第一个分段,若RN对该RLC  PDU进行分段,则分段后得到的第一个分段对应的新的RLC PDU中可以不带SO,分段后得到的其余各分段对应的新RLC PDU的SO域的值,可以参考其余各个新RLC PDU中data域对应的RLC SDU分段的首字节在原始RLC SDU中的位置进行设置,例如一种可能的方式为:将其余各个新RLC PDU的SO域的值,设置为各个新RLC PDU中data域对应的RLC SDU分段的首字节在该RN接收到的RLC PDU数据包中data域对应的RLC SDU或RLC SDU第一个分段中的位置。
2.4.3:若RN节点收到RLC PDU的FI/SI域的取值是11或10,则该RN节点收到的RLC PDU为中间分段,或者为末尾分段,RN节点对该收到的RLC PDU数据包进行分段,则分段后得到的第一分段对应的新的RLC PDU的SO域和该RN节点收到的RLC PDU数据包的SO域一致,分段后得到的其余分段分别对应的新RLC PDU的SO域的值,可参考其余各个新RLC PDU中data域对应的RLC SDU分段的首字节在原始RLC SDU中的位置进行设置,例如一种可能的方式为:将其余各个新RLC PDU的SO域的值,设置为所述RN接收到的RLC PDU数据包的SO域的值加上,各个新RLC PDU中data域对应的RLC SDU分段的首字节在所述RN接收到的RLC PDU中data域对应的RLC SDU分段中的位置。
对于SO域的处理,具体举例如:一个长度是100bytes的数据包(该数据包可以是原始的RLC SDU)被分成了三段,第一分段长度是20bytes,第二分段长度是30bytes,第三分段长度是50bytes,那么第一分段对应的RLC PDU中的SO值是0,第二分段对应的RLC PDU中的SO值是20,第三分段对应的RLC PDU中的SO值是50,如果对该第三分段再分段为长度分别为40byte和10byte的两段,那么该第三分段的第一子段对应的RLC PDU中的SO值为50,该第三分段的第二子段对应的RLC PDU中的SO值是90。
3、在RN的RLC层不执行数据重传机制。具体的,包括如下中至少一种:
对于该RN发送出去的RLC PDU,如果数据接收端没有正确接收到;或者,如果数据接收端反馈该RLC PDU没有被正确接收到;或者,如果数据接收端反馈该RLC PDU中data域对应的RLC SDU或RLC SDU分段没有被正确接收到,或者不考虑数据接收端是否接收到,对于这几种情况中的任一种,RN都不执行该RLC PDU的重传。
RN对未正确接收到的RLC PDU/SDU/SDU分段,不向数据发送端反馈接收状态;RN将收到的关于RLC SDU的接收状态的报告向数据发送端发送,但可不解析该接收状态的报告的内容,比如,RN通过RLC PDU的头信息中的D/C域和/或CPT域获知该RLC PDU的类型是控制PDU,则RN确定该RLC PDU携带了状态报告,然后根据适配功能有关的信息中的路由信息向数据的发送端发送该控制PDU,该接收状态的报告可以是来自于UE,也可以来自于DgNB,此处所称的接收状态,可以是一个或者多个RLC SDU或者RLC SDU的分段未被正确接收到的情况。
通过实施本设计方案,RN在和相邻网络节点进行数据传输时,在其无线链路控制层功能的处理中不需要对其未接收到预期的数据的情况向数据发送端反馈状态,也不需要对RN发出去但未被接收端正确接收的数据进行重传,使得在中继节点的数据处理和传输效率更高,减少了数据在该中继节点的处理时间,从而降低了通信系统端到端数据传输时延。由于RN的RLC层的功能不产生关于数据接收状态的报告,也不会根据UE发送的数据接收的状态报告重传下行的RLC PDU,那么RN就不需要设置RLC层的用于重传的缓存(retransmit buffer),从而节省了系统资源开销。
可选的,在RN的RLC层功能处理中,也可以不对接收到的RLC PDU对应的分段进行重组和/或重排序,此处所称的不对分段进行重组,可以理解为,当RLC SDU被分段后,得到的每一个分段对应形成新的RLC PDU,在RN的RLC层的处理,不需要将前述形成的多个RLC PDU还原成完整的RLC SDU;不进行重排序,可以理解为,在RN的RLC 层的处理中,对RN收到的上述RLC PDU,并不按照其所属的SDU的序号进行排序后按序递交给上层或按序递交给发送侧进行下一步处理,而是对收到的上述RLC PDU递交给RN的发送侧进行下一步处理,这样,进一步简化了在中继节点的数据处理,从而进一步了降低端到端通信时延。
可选的,RN的发送侧对下行数据包进行RLC层的处理,也可以引入基于ARQ的重传机制,以增强数据传输的可靠性,在前述简化的RLC层功能中引入ARQ机制,比如执行在前述设计中未被要求执行的部分,可能会增加处理时延。因此,在RN的RLC功能具备ARQ机制以提升传输Qos和降低端到端通信时延这两者之间的平衡,需要根据实际情况设计,本申请实施例对此不做限定。
此处所称的RLC层的处理功能,可以部署在RN节点的下行接收侧,可以部署在RN节点的下行发送侧,也可以部署在RN节点中公共处理模块中。
进一步可选的,对于已经过RN的RLC层处理后的下行数据包,可引入适配功能对其处理,比如在RN的下行发送侧,在下行数据包中添加用于数据包路由和/或用于QoS映射的信息,所述用于数据包路由和/或用于QoS映射的信息包括如下至少一种:UE的标识的信息,中继传输链路中的为UE提供服务的RN节点的标识的信息,为UE提供服务的DgNB的标识的信息,传输路径的标识的信息,PDU session的标识的信息,QoS flow的标识的信息,UE的无线承载的标识的信息,以及UE的逻辑信道的标识的信息。比如,用于数据包路由和/或用于QoS映射的信息可以包含在RLC PDU的头信息中,比如,在RLC PDU的头信息中用新增的域来表示该信息,或者使用头信息中的保留比特来表示该信息。此处,为终端设备提供服务的RN,可以是终端设备接入的服务小区所属的RN。
操作2d:RN对下行数据包执行MAC层和PHY层的处理。
比如,RN的发送侧将RLC PDU交由MAC层和PHY层依次处理后,向接收端UE发送。
可选的,RN的接收侧的MAC层和/或RN的发送侧的MAC层,可以保留基于HARQ的数据重传机制,在数据传输过程中执行HARQ重传机制中的反馈和重传等操作,以进一步保障数据传输的可靠性。
需要说明的是,为便于行文,对以上操作进行了顺序编号,但可以理解,这并不意味着方法流程的执行顺序必须按照编号顺序进行,也并不意味着所有的编号的操作都必须得到执行。
实例3
对于第二种情况,即对于多跳中继场景,中继通信系统中存在多个RN节点,其中的一个RN节点接收来自DgNB的下行数据,对该下行数据进行处理后发向下一个RN(该下一个RN在系统700中未示出)。当RN节点的下一跳是UE时,在该RN节点的数据处理,可参考实例2,当RN节点的下一跳是另一个RN时,在该RN节点的数据处理,可参考本实例3。根据实例3。在RN节点的数据处理,包括如下至少一种操作:
操作3a:RN的接收侧对接收到的下行数据执行PHY层和MAC层的处理。此处3a的处理可参考2a的方式。
操作3b:RN对下行数据执行如下中至少一项适配功能的处理:
(1)RN从收到的下行数据包中获知与适配功能有关的信息,比如用于数据包路由的信息和/或用于QoS映射的信息,其中,用于数据包路由的信息和/或用于Qos映射的信息包括如下中至少一种:UE的标识的信息,为UE提供服务的RN的标识的信息,下一跳RN的标识的信息,传输路径的标识的信息,DgNB的标识的信息,QoS flow的标识的信 息,PDU session的标识的信息,UE的无线承载的标识的信息,UE的逻辑信道的标识的信息,RN和上一跳节点(比如DgNB或其他RN)之间接口的无线承载的标识的信息,以及RN和上一跳节点之间接口的逻辑信道的标识的信息中的至少一种。此处,为终端设备提供服务的RN,可以是指终端设备接入的服务小区所属的RN。可以理解的是,本申请实施例对用于数据包路由或者QoS映射的信息不做限定,可以是任何其他可用于路由或传输Qos的参数或者信息。
(2)RN确定路由。通过在下行数据包中携带路由相关信息,以使得传输路径中的中间节点为需要传输的下行数据获得正确的下一跳节点。例如,根据数据包中携带的UE的标识的信息或下一跳RN的标识的信息或传输路径的标识的信息或为UE提供服务的RN的标识的信息,RN可以获知该数据包传输的下一跳节点。可选的,此处涉及的路由策略,可以是网络侧配置例如DgNB配置,也可以由RN本地配置。
(3)RN确定发送下行数据包所需的无线承载或者逻辑信道。可选的,根据网络侧(例如核心网网元或DgNB给RN的配置,或者RN本地配置)配置的QoS参数和/或QoS映射规则,和/或接收的该下行数据所对应的RN的逻辑信道或无线承载,来确定在RN和下一跳节点(如其他RN或者UE)之间接口发送该下行数据所使用的无线承载或逻辑信道;或者,可选的,根据网络侧(例如核心网网元或DgNB给RN的配置,或者RN本地配置)配置的QoS参数和/或QoS映射规则,和/或接收的该下行数据包中携带的QoS flow标识,来确定在RN和下一跳节点(如其他RN或者UE)之间接口发送该下行数据所使用的无线承载或逻辑信道;或者,RN根据数据包中携带的UE的无线承载的标识的信息或UE的逻辑信道的标识的信息,来确定在RN和下一跳节点(如其他RN或者UE)之间接口发送该下行数据所使用的无线承载或逻辑信道。
可以理解的是,无线逻辑信道与无线承载一般具有对应关系,而无线承载一般具有相应粒度的QoS要求保障,那么当下行数据中携带了逻辑信道的标识的信息或与该逻辑信道对应的无线承载的标识的信息时,也表明了该下行数据所属业务相应的Qos要求。不同PDU session通常对应于不同的无线承载,针对一个PDU session,空口可以建立至少一个无线承载与之对应;一个PDU session中还可以承载不同的Qos flow,每个Qos flow可以有不同Qos要求,这样,协议数据单元会话可基于其对应的无线承载或者其承载的Qos flow而具有相应的Qos要求。当然,如果下行数据中携带了Qos flow的标识的信息时,也表明了该下行数据所属业务的Qos要求。
(4)执行移除下行数据包中的适配功能相关的信息,比如移除适配信息报文头。
此处RN的适配功能处理(比如适配功能有关的信息的识别,删除,或增加),可以在RN侧的下行接收侧部分实现,比如,可以作为RN的下行接收侧部分中设置在MAC层之上的独立的一个功能模块(比如逻辑功能协议层)去实现;也可以作为RN的下行接收侧部分中已有协议层的功能的一部分,比如下行接收侧的MAC层功能实体的一部分,此时,MAC层的功能由于包含了前述的适配层功能,故和传统MAC层的功能存在不同。如果RN的下行接收侧配置了RLC层,则该适配功能也可以做为下行接收侧的RLC层的逻辑功能的一部分。该适配功能处理还可以在RN侧的下行发送侧部分实现,比如,可以作为RN的下行发送侧部分中独立的一个功能模块(比如逻辑功能协议层)去实现;也可以作为RN的下行发送侧部分中已有协议层的功能的一部分,比如下行发送侧配置的RLC功能实体的一部分。
该适配功能涉及的相关的处理功能,还可以分开部署,示例性的,适配功能处理中有一部分处理作为独立的功能实体部署,该适配功能中有一部分作为RLC协议层功能的一部分,或者,该适配功能的另外一部分可以作为MAC层功能的一部分。示例性的,适配功能处理中涉及的路由信息的处理,可以作为单独的部分进行上述任一种部署,或者,适配 功能处理中涉及的Qos信息的处理,可以作为单独的部分进行上述任一种部署,具体该适配功能中的子功能的划分和部署,此处不作限定。
一种可选设计中,如该适配功能是在RN节点中的RLC层功能中实现,用于数据包路由和/或用于QoS映射的信息可以包含在RLC PDU的头信息中,比如,在RLC PDU的头信息中用新增的比特来表示该信息,或者使用RLC PDU头信息中的保留比特来表示该信息。
一种可选设计中,如该适配功能是在RN节点中的MAC层功能中实现,用于数据包路由和/或用于QoS映射的信息可以包含在MAC SDU的头信息中。
可以理解,该适配功能处理(比如适配功能有关的信息的识别,删除,或增加),如通过新增独立的协议层来实现该适配功能,则对应可称为适配层协议,但具体名称此处不做限定。前述适配功能有关的信息,可以包含在适配层PDU的头信息中。
一种可选设计中,该适配处理功能还可以在RN中的公共处理模块中实现,以支持RN中接收侧和发送侧功能的实现。
综上,适配功能在RN的实现方式此处不做具体限定。
操作3c:RN对下行数据执行RLC层功能的处理。此处RLC的处理包括如下至少一种:
1、在RN的发送侧,对RLC PDU进行分段,如果接收到的RLC PDU是已经经过分段后获得的RLC PDU,则此处的分段可以称为再分段或二次分段(2nd segmentation),这里所述的再分段或二次分段,可以是相对在DgNB或上一跳RN对RLC PDU或RLC SDU已经做过分段的情况而言的。RN的发送侧对接收到的RLC PDU进行分段,即对接收到的RLC PDU中data域包含的RLC SDU或RLC SDU分段进行分段处理,RN将得到的新分段添加RLC层头部信息后,对应形成新的RLC PDU。例如,一个RLC PDU可以分成至少两段,其中的每一个分段均可以对应一个新的RLC PDU。对于再分段的情况,获得的新的RLC PDU中均包含原RLC PDU中具有的序号(SN),原RLC PDU中具有的序号,与初始RLC SDU序号相同或者具有对应关系。可选的,在RN的RLC层的处理中,可以不对RLC状态报告PDU进行再分段的操作。
RN节点的发送侧对下行数据包进行分段处理后,得到的RLC PDU满足前述“报文结构一”。
2、在RN节点对RLC PDU的报文执行前述“修改一”。
3、在RN的RLC层不执行数据重传机制。具体的,包括如下中至少一种:
对于该RN发送出去的RLC PDU,如果数据接收端没有正确接收到;或者,如果数据接收端反馈该RLC PDU没有被正确接收到;或者,如果数据接收端反馈该RLC PDU中data域对应的RLC SDU或RLC SDU分段没有被正确接收到;或者不考虑数据接收端是否接收到,对于这几种情况中的任一种,RN都不执行该RLC PDU的重传。
RN对未正确接收到的RLC PDU,不向数据发送端反馈接收状态;RN将收到的关于RLC SDU的接收状态的报告向数据发送端发送,但可不解析该接收状态的报告的内容,比如,RN通过RLC PDU的头信息中的D/C域和/或CPT域获知该RLC PDU的类型是控制PDU,则RN确定该RLC PDU携带了状态报告,然后根据适配功能有关的信息中的路由信息向数据的发送端发送该控制PDU,该接收状态的报告可以是来自于UE,也可以来自于DgNB,此处所称的接收状态,可以是一个或多个RLC SDU未被正确接收到的情况。
通过实施本设计方案,RN在和相邻网络节点进行数据传输时,在其无线链路控制层 功能的处理中不需要对其未接收到预期的数据的情况向数据发送端反馈状态,也不需要对RN发出去但未被接收端正确接收的数据进行重传,不执行类似于ARQ的重传机制,使得在中继节点的数据处理和传输效率更高,减少了数据在该中继节点的处理时间,从而降低了通信系统端到端数据传输时延。由于RN的RLC层的功能不设置ARQ机制,RN即不产生关于数据接收状态的报告,也不会根据UE发送的数据接收的状态报告重传下行的RLC PDU,那么RN就不需要设置RLC层的用于重传的缓存(retransmit buffer),从而节省了系统资源开销。
可选的,在RN的简化的RLC层功能处理中,也可以不对接收到的RLC PDU对应的分段进行重组和/或重排序,此处所称的对分段进行重组,可以理解为,当RLC SDU被分段后,得到的每一个分段对应形成新的RLC PDU,在RN的RLC层的处理,不需要将前述形成的多个RLC PDU还原成完整的RLC SDU;此处所称的重排序,可以理解为,在RN的RLC层的处理中,对RN收到的上述RLC PDU,并不按照其所属的SDU的序号进行排序后按序递交给上层或按序交由发送侧进行下一步处理,而是对收到的上述RLC PDU递交给RN的发送侧进行下一步处理,这样,进一步简化了在中继节点的数据处理,从而进一步了降低端到端通信时延。
可选的,RN的发送侧对下行数据包进行RLC层的处理,也可以引入基于ARQ的重传机制,以增强数据传输的可靠性,在前述简化的RLC层功能中引入ARQ机制,比如执行在前述设计中未被要求执行的部分,可能会增加处理时延。因此,在RN的RLC功能具备ARQ机制以提升传输Qos和降低端到端通信时延这两者之间的平衡,需要根据实际情况设计,本申请实施例对此不做限定。
此处所称的RLC层的处理功能,可以部署在RN节点的下行接收侧,可以部署在RN节点的下行发送侧,也可以部署在RN节点中公共处理模块中。
操作3d:RN执行对下行数据的适配功能的处理。
示例性的,对于已经过RN的RLC层处理后获得的下行数据包,可引入适配功能处理,比如在RN的发送侧,在所述下行数据包中添加前述用于数据包路由和/或用于QoS映射的信息,所述用于数据包路由和/或用于QoS映射的信息包括如下至少一种或者任几种:UE的标识的信息,DgNB的标识的信息,中继链路中涉及的至少一个RN节点的标识的信息,传输路径的标识的信息,QoS flow的标识的信息,PDU session的标识的信息,UE的无线承载的标识的信息,以及UE的逻辑信道的标识的信息。此处适配功能在RN的实现,可以参考3b中关于适配功能的设计,此处不再一一赘述。
操作3e:RN发送侧执行MAC层和PHY层的处理。比如可以包括:调度,复用,以及重传等处理。RN发送侧将经过MAC层和PHY层处理的下行数据发送至下一跳RN节点。
可选的,RN的接收侧的MAC层和/或RN的发送侧的MAC层,可以保留基于HARQ的数据重传机制,在数据传输过程中执行HARQ重传机制中的反馈和重传等操作,以进一步保障数据传输的可靠性。
需要说明的是,为便于行文,对以上操作进行了顺序编号,但可以理解,这并不意味着方法流程的执行顺序必须按照编号顺序进行,以及,具体哪些步骤需要被执行,需要根据所解决的具体技术问题来确定,对步骤进行顺序编号,并不意味着这些步骤中的每一个都需要被执行。
实例4
参考系统700,从下行数据接收端的角度对下行数据的接收进行描述,此处接收端可 以是终端设备,如UE。在接收端的数据处理过程,包括如下至少一种操作:
操作4a:UE对从RN接收的下行数据执行PHY层和MAC层处理。此处的处理可包括在MAC层进行的基于HARQ机制的纠错处理,以及解复用(demultiplexing)处理等。
操作4b:UE执行RLC层的处理。通过对上述下行数据进行PHY层和MAC层的处理后,获得对应的RLC PDU,若RLC PDU中的data域包含的是RLC SDU分段,即RLC SDU经过了发送端DgNB的分段和/或中间节点RN的分段处理,则接收端UE的RLC层可以按照该RLC PDU携带的信息对收到的RLC PDU进行重组(reassemble)处理,具体的,UE可以通过收到的RLC PDU报文中携带的指示信息,移除RLC报文头,对其中的RLC SDU分段进行重组,并将重组后获得的完整RLC SDU进行重排序后按序向PDCP层递交。
可选的,UE执行RLC层处理之前,UE执行适配功能的处理,包括读取适配功能有关的信息,和/或,如果适配功能为独立协议层则去掉适配层头部。若适配功能为RLC层的一部分,则可以在UE的RLC层功能中完成这些操作。
UE在RLC层的处理,可以执行基于ARQ机制的数据传输纠错机制,使得未接收到的RLC SDU或RLC SDU分段能够得到重传。若出现部分RLC PDU丢失或未正确接收的情况,致使接收端UE无法获得这些RLC PDU对应的完整RLC SDU,则接收端UE通过发送RLC接收情况的报告,比如RLC状态报告,通过中继节点发送,向发送端DgNB指示未正确接收的RLC SDU或RLC SDU分段,以便发送端DgNB进行重传。
操作4c:UE对下行数据执行PDCP层以及SDAP层的处理。此处PDCP层的处理可以包括如下中至少一种:解密(deciphering),完整性校验(integrity verification),重排序和重复检测(reordering&duplicate detection),以及头部解压缩(header decompression);此处SDAP层的处理可以包括读取QoS flow ID信息,移除SDAP头部等处理。
以上为参考系统700在下行数据的传输过程中,分别从宿主基站,中继节点,以及终端设备的角度,对系统700的运行机制进行了示例性说明,其中,实例1,实例2,实例3以及实例4所分别示出的宿主基站,第一种类型中继节点(示例:该RN与UE直接通信交互),第二种类型中继节点(示例:该RN通过另一个RN与UE进行通信交互),以及终端设备(及其分别涉及的处理流程),分别为具有相对独立性的实施方法或者单网元系统,作为无线中继系统700的组成部分。本系统700涉及的实施例,对于中继节点RN而言,由于其协议栈的设计相比于现有技术大为简化,从而降低了数据包在中继节点的处理时延,有助于提升端到端的传输保障和效率。
从系统700的运行机制可以看出,系统的端到端传输运行在确认模式,例如,UE和DgNB之间RLC层具有数据接收状态反馈和重传机制;而在RN节点的RLC层可以不配置数据接收状态反馈和重传机制。通过提高中间节点的数据处理和传输效率,降低了系统端到端传输时延。
以上主要从下行数据传输和处理的角度对无线中继通信系统中涉及的各个网络节点的功能及其运行机制进行了描述。可以理解,对于无线通信系统来说,数据从终端设备向网络侧传输的方向为上行,数据从网络侧向终端设备传输的方向为下行,为便于理解和行文,本文对中继通信系统的上行传输和下行传输进行了分开描述。以下,从上行数据传输和处理的角度对本申请涉及的无线中继通信系统及其运行机制进行描述。
参考前述系统300-700中任一系统的设计,图8示出了本申请实施例提供的一种无线中继通信系统800,该系统800以数据的上行传输和用户面协议栈为例进行说明,包括:UE,RN1,DgNB,以及UPF,其中,UE和RN1通过两者之间的通信接口进行通信交互(比如该接口为Uu接口,但此处名称不做限定),RN1和DgNB通过两者之间的通信接口进行通信交互(比如该接口为Un接口,此处名称不做限定),DgNB和UPF通过两者之间 的通信接口进行通信交互(比如该接口为N3接口,此处名称不做限定);UE和DgNB之间逻辑上也可以通过对等的通信协议进行通信交互,比如通过两者分别具有的对等的RLC层协议,PDCP层协议,以及SDAP层协议进行通信交互;UE和UPF逻辑上也可以通过两者分别具有的对等的IP层协议进行通信交互。系统800可应用于无线单跳中继场景,即该中继通信系统中UE和DgNB之间只有一个RN。其中,UE配置的协议栈包括:PHY层,MAC层,RLC层,PDCP层,SDAP层,以及IP层;在RN1的上行接收侧的协议栈配置为如下中至少一种:PHY和MAC;在RN1的上行发送侧的协议栈配置为如下中至少一种:PHY层,MAC层,适配(daptation)层,以及S-RLC层;在DgNB的上行接收侧配置为如下中至少一种:PHY层,MAC层,适配功能,RLC层,PDCP层,以及SDAP层,在DgNB的上行发送侧的协议栈配置包括:L1和L2,IP层,UDP层,以及GTP层;对应的,在UPF侧的协议栈配置包括:L1和L2,IP层,UDP层,GTP层,以及IP层。此处所称的L1和L2通常是指有线通信的协议层,比如L1可以为物理层,L2可以为数据链路层,L2可以进一步包括:MAC层,逻辑链接链路控制层(logical link control layer,LLC),点对点协议层(point to point protocol,PPP),以太网(Ethernet)技术的链路层中的至少一种,对L1和L2包含的具体协议层,本申请实施例中不予限定。
参考图8所示的无线中继通信系统800,针对UE和DgNB之间具有多个RN的场景,图9示出了本申请实施例提供的一种无线中继通信系统900,该系统900包括:UE,RN1,RN2,以及DgNB。其中,UE和RN1通过两者之间的通信接口进行通信交互(比如该接口为Uu口,但此处名称不做限定),RN1和RN2之间通过两者之间的接口进行通信交互,RN2和DgNB通过两者之间的接口进行通信交互,图9中示出的“RN-RN接口”表示该通信接口是两个中继节点之间的通信接口;UE和DgNB之间逻辑上也可以通过对等的协议栈进行通信交互,比如通过两者分别具有的对等的RLC层协议,PDCP层协议,以及SDAP层协议进行通信交互。系统900中,在UE配置的协议栈包括:PHY层,MAC层,RLC层,PDCP层,SDAP层以及IP层;在中继节点RN1的上行接收侧配置的协议栈为如下中至少一种:PHY和MAC;在中继节点RN1的上行发送侧配置的协议栈为如下至少一种:PHY层,MAC层,适配(adapatation)功能,以及S-RLC层;在中继节点RN2的上行接收侧配置的协议栈为如下中至少一种:PHY,MAC,以及适配功能;在中继节点RN2的上行发送侧配置的协议栈为如下中至少一种:PHY层,MAC层,适配(adapatation)功能以及S-RLC;在DgNB的上行接收侧配置的协议栈包括:PHY层,MAC层,适配(adapatation)功能,RLC层,PDCP层,以及SDAP层;在DgNB的上行发送侧配置的协议栈包括:L1和L2,IP层,UDP层,以及GTP层。此处L1和L2通常是指有线通信的协议层,比如L1可以为物理层,L2可以为数据链路层,L2可以进一步包括:MAC层,逻辑链接链路控制层(logical link control layer,LLC),点对点协议层(point to point protocol,PPP),以太网(Ethernet)技术的链路层中的至少一种,对L1和L2包含的具体协议层,本申请实施例中不予限定。
从前述图8和图9所分别示出的系统协议栈架构可以看出,对于中继节点RN1而言,示例性的,其协议栈配置在上行接收侧为PHY层和MAC层,在上行发送侧为PHY,MAC,适配功能,以及S-RLC层;对于中继节点RN2而言,示例性的,其协议栈配置在上行接收侧为PHY,MAC,以及适配功能;在上行发送侧为PHY,MAC,适配功能,以及S-RLC层。相对于现有技术,本申请实施例中RN1和RN2的协议栈设置和对数据的处理得到简化,使得上行数据在中继节点的处理时间得以减少,从而降低了通信系统中数据传输的端到端时延。
参考前述系统800和/或系统900的设计,如图10所示,本申请实施例提供了一种无线中继通信系统1000,该系统1000包括:发送端,中继节点,以及无线接入网中的接收端,具体的,发送端可以是UE,中继节点可以是RN,接收端可以是无线接入系统中的 DgNB,其中,UE和RN通过两者之间的通信接口进行通信交互(比如,该接口为Uu接口,此处名称不作限定),RN和DgNB通过两者之间的接口进行通信交互(比如该接口可以为Un接口,此处名称不做限定)。以下从中继通信系统中各个节点的功能和对上行数据的处理流程来说明该系统1000的构成和运行。该系统1000可以按照如下示例的机制运行:
实例5
本实例以上行发送端为UE进行说明,对于UE产生的用户面数据包,在UE的处理,包括如下中至少一种操作:
操作5a:在UE执行的SDAP层功能的处理。可选的,此处SDAP层功能的处理可参考现有技术。
操作5b:在UE执行的PDCP层功能的处理。可选的,此处PDCP层功能的处理可参考现有技术。
操作5c:在UE执行的RLC层功能的处理。此处RLC层功能的处理包括如下中至少一种:
(1)对RLC SDU进行编号(sequence numbering),使得每一个RLC SDU具有自己在RLC层的序号。
(2)在RLC层对RLC SDU执行第一次数据包分段(1 st segmentation)。例如,一个RLC SDU可以被分成至少两段,得到的每一个分段均可以对应一个新的RLC PDU,经过分段后得到的每一个RLC PDU具有的序号与被分段的原始RLC SDU具有的序号相同,或者经过分段后得到的每一个RLC PDU具有的序号与被分段的原始RLC SDU的序号具有对应关系。在某些情况,比如空口资源相对充足的情况下,可以不对RLC SDU进行分段,则对应传输的RLC PDU中将携带完整的RLC SDU。具体是否执行分段需要视实际情况决定,此处不做限定。
(3)执行数据包重传。此处的重传可以是基于自动重传请求机制进行的,重传的数据包可以是RLC SDU或者RLC SDU的分段。在某些情况,比如,空口资源相对充足的情况下,未对RLC SDU进行分段,则上行传输的数据包为RLC SDU,那么重传的数据包也为相应的RLC SDU,又比如,当MAC层资源较少的情况下,对需要进行重传的RLC SDU需要进行分段后再重传,或者当接收端反馈的RLC状态报告中显示某些RLC SDU的部分分段没有被正确接收时,可以重传所述未被正确接收的分段。具体重传的数据包是RLC SDU或者是对RLC SDU分段后得到的RLC PDU,需要视实际情况决定,此处不做限定。
示例性的,在终端设备和宿主基站之间执行的RLC层数据重传机制,包括:若UE收到来自于DgNB的RLC状态报告(即DgNB关于RLC SDU接收状态的报告),UE将未被正确发送给DgNB的RLC SDU(或者RLC SDU的分段),通过至少一个RN向该DgNB重新发送,UE向DgNB重新发送该RLC PDU的过程中,该至少一个RN可不识别该RLC PDU是初传的RLC PDU还是重传的RLC PDU;和/或,UE通过至少一个RN向DgNB发送关于RLC SDU的接收状态的报告,比如,若UE确定一个或多个来自于DgNB的RLC PDU未被接收到或者未被正确接收到,则UE向DgNB发送关于未被接收到的数据包的接收状态的报告,在向DgNB发送该接收状态的报告的过程中,RN可不解析该状态报告的内容,RN可以通过RLC PDU的头信息中的D/C域和/或CPT域获知该RLC PDU的类型是控制PDU,则RN确定该RLC PDU是RLC状态报告,然后根据适配功能有关的信息中的路由信息向DgNB发送该控制PDU,适配功能有关的信息也可以携带在该RLC PDU中。通过实施本设计方案,UE和DgNB之间执行数据重传机制,较好的保证了中继通信系统中端到端的通信传输质量。
在一种可选设计中,经过UE的RLC层功能处理后得到的RLC PDU满足前述“报文结构一”。
操作5d:在UE执行的MAC层功能和PHY层功能的处理。此处MAC层的处理包括如下中至少一种:调度(scheduling or priority handling)处理,复用(multiplexing)处理,基于HARQ机制的重传处理(retransmission);经过MAC的处理后,上行数据再经过PHY层的处理,然后通过UE和RN的之间的通信接口发送给RN。
需要说明的是,为便于行文,对以上操作进行了顺序编号,但可以理解,这并不意味着方法流程的执行顺序必须按照编号顺序进行,以及,具体哪些步骤需要被执行,需要根据所解决的具体技术问题来确定,对步骤进行顺序编号,并不意味着这些步骤中的每一个都需要被执行。
根据系统1000,以下从RN的角度对本发明实例进行描述,对从UE发来的上行数据在RN的处理可以包括两种情况,第一种情况为处理上行数据的RN与UE具有直接通信,这种情况可适用于单跳中继或者多跳中继的场景;第二种情况为处理上行数据的RN需要通过另一个RN与UE进行通信,这种情况可适用于多跳中继的场景。
实例6
对于第一种情况,在该RN对上行数据的处理,包括如下中至少一种操作:
操作6a:RN的上行接收侧对接收到的上行数据执行PHY层功能和MAC层功能的处理。此处MAC层的处理包括如下中至少一种:通过HARQ机制,对上行数据的接收情况进行纠错,以及解复用(demultiplexing)。
操作6b:RN对上行数据执行如下中与适配功能有关的至少一项的处理:
1、RN确定发送上行数据包所需的无线承载或逻辑信道。可选的,根据网络侧(例如核心网网元或DgNB给RN的配置,或者RN本地配置)配置的QoS参数和/或QoS映射规则,和/或接收的该上行数据所对应的RN的逻辑信道或无线承载,确定在RN和下一跳节点(如其他RN或DgNB)之间接口发送该上行数据所使用的无线承载或逻辑信道;或者,可选的,根据网络侧(例如核心网网元或DgNB给RN的配置,或者RN本地配置)配置的QoS参数和/或QoS映射规则,和/或接收的该上行数据包中携带的QoS flow标识,确定在RN和下一跳节点(如其他RN或DgNB)之间接口发送该上行数据所使用的无线承载或逻辑信道;或者,可选的,RN由数据包中携带的UE的无线承载的标识的信息或UE的逻辑信道的标识的信息,确定在RN和下一跳节点(如其他RN或DgNB)之间接口发送该上行数据所使用的无线承载或逻辑信道。
2、RN确定上行数据包需发送至哪一个节点,具体的,RN可以根据配置的路由策略,选择下一跳节点,例如,下一跳节点可以是DgNB,或者是另一个RN。所述路由策略可以由网络侧例如DgNB配置,也可由RN本地配置。
操作6c:RN对上行数据执行RLC层的处理。此处RLC的处理包括如下至少一种:
1、对RLC PDU进行分段,比如,如果RN接收到的RLC PDU是已经经过分段后获得的RLC PDU,则此处的分段可以称为再分段或二次分段,这里所称的再分段或二次分段,可以是相对在UE已经做过分段的情况而言的。RN对RLC PDU进行分段,即对接收到的RLC PDU中data域包含的RLC SDU或RLC SDU分段进行分段处理,RN将得到的分段添加RLC层头部信息后,对应形成新的RLC PDU。例如,一个RLC PDU可以分成至少两段,其中的每一个分段均可以对应一个新的RLC PDU。对于再分段的情况,获得的新的RLC PDU中均包含原RLC PDU中具有的序号(SN),原RLC PDU中具有的序号,与初始RLC SDU序号相同或者具有对应关系。可选的,在RN的RLC层的处理中,可以不对 RLC状态报告PDU进行再分段的操作。
RN节点的发送侧对上行数据包进行分段处理后,得到的RLC PDU满足前述“报文结构一”。
2、在RN节点对RLC PDU的报文执行前述“修改一”。
3、在RN的RLC层不执行数据重传机制。具体的,包括如下中至少一种:
对于该RN发送出去的RLC PDU,如果数据接收端没有正确接收到;或者,如果数据接收端反馈该RLC PDU没有被正确接收到;或者,如果数据接收端反馈该RLC PDU中data域对应的RLC SDU或RLC SDU分段没有被正确接收到;或者不考虑数据接收端是否接收到,对于这几种情况中的任一种,RN都不执行该RLC PDU的重传。
RN对未正确接收到的RLC PDU,不向数据发送端反馈接收状态;RN将收到的关于上行RLC SDU的接收状态的报告向数据发送端发送,但可不解析该接收状态的报告的内容,比如,RN通过RLC PDU的头信息中的D/C域和/或CPT域获知RLC PDU的类型是控制PDU,则RN确定该RLC PDU携带了状态报告,然后根据路由信息向数据的发送端发送该控制PDU,该接收状态的报告可以是来自于UE,也可以来自于DgNB,此处所称的接收状态,可以是一个或多个RLC SDU未被正确接收到的情况。
通过实施本设计方案,RN在和相邻网络节点进行数据传输时,在其无线链路控制层功能的处理中不需要对其未接收到预期的数据的情况向数据发送端反馈状态,也不需要对RN发出去但未被接收端正确接收的数据进行重传,使得在RN的数据处理和传输效率更高,减少了数据在该中继节点的处理时间,从而降低了通信系统端到端数据传输时延。由于RN的RLC层的功能不产生关于数据接收状态的报告,也不会根据数据接收的状态报告重传RLC PDU,那么RN就不需要设置RLC层的用于重传的缓存(retransmit buffer),从而节省了系统资源开销。
可选的,在RN的RLC层功能处理中,也可以不对接收到的RLC PDU对应的分段进行重组和/或重排序,对分段不进行重组,可以理解为,当RLC SDU被分段后,得到的每一个分段对应形成新的RLC PDU,在RN的RLC层的处理,不需要将前述形成的多个RLC PDU还原成完整的RLC SDU;不进行重排序,可以理解为,在RN的RLC层的处理中,对RN收到的上述RLC PDU,并不按照其所属的SDU的序号进行排序后按序递交给上层或按序交由发送侧进行下一步处理,而是对收到的上述RLC PDU递交给RN的发送侧进行下一步处理,这样,进一步简化了在中继节点的数据处理,从而进一步了降低端到端通信时延。
可选的,RN的发送侧对上行数据包进行RLC层的处理,也可以引入基于ARQ的重传机制,以增强数据传输的可靠性,比如执行在前述设计中在RN RLC功能实体中不被要求执行的部分,可能会增加处理时延。因此,在RN的RLC功能具备ARQ机制以提升传输Qos和降低端到端通信时延这两者之间的平衡,需要根据实际情况设计,本申请实施例对此不做限定。
此处所称的RLC层的处理功能,可以部署在RN节点的上行接收侧,可以部署在RN节点的上行发送侧,也可以部署在RN节点中公共处理模块中。
进一步可选的,对于已经过RN的RLC层处理后的上行数据包,可引入适配功能对其处理,比如在RN的上行发送侧,在上行数据包中添加用于数据包路由和/或用于QoS映射的信息,所述用于数据包路由和/或用于QoS映射的信息包括如下至少一种:UE的标识的信息,中继传输链路中的为UE提供服务的RN节点的标识的信息,为UE提供服务的DgNB的标识的信息,传输路径的标识的信息,QoS flow的标识的信息,PDU session的标识的 信息,UE的无线承载的标识的信息,以及UE的逻辑信道的标识的信息。比如,用于数据包路由和/或用于QoS映射的信息可以包含在RLC PDU的头信息中,比如,在RLC PDU的头信息中用新增的比特来表示该信息,或者使用头信息中的保留比特来表示该信息。此处关于适配功能在RN的实现方式,可以参考3b中关于适配功能的设计,此处不再一一赘述。此处,为终端设备提供服务的RN,可以是指终端设备接入的服务小区所属的RN。
操作6d:RN的发送侧对上行数据执行MAC层功能和PHY层功能的处理。
上行数据包经由RN上行发送侧的MAC层和PHY层处理后,发送至下一跳节点,具体的,对于单跳中继场景,则此处所言的下一跳节点是DgNB,对于多跳中继的场景,此处的下一跳节点是另一个RN。
可选的,RN的接收侧的MAC层和/或RN的发送侧的MAC层,可以保留基于HARQ的数据重传机制,在数据传输过程中执行HARQ重传机制中的反馈和重传等操作,以进一步保障数据传输的可靠性。
需要说明的是,为便于行文,对以上操作进行了顺序编号,但可以理解,这并不意味着方法流程的执行顺序必须按照编号顺序进行,以及,具体哪些步骤需要被执行,需要根据所解决的具体技术问题来确定,对步骤进行顺序编号,并不意味着这些步骤中的每一个都需要被执行。
实例7
对于第二种情况,RN节点接收来自另一个RN(系统1000中未示出)的上行数据,对该上行数据进行处理后发向下一个中继节点或者宿主基站。对于该RN(示例性的,该RN的其协议栈配置可参考图9所示系统900中的RN2)对上行数据的处理过程,包括如下中至少一种操作:
操作7a:RN的接收侧对接收到的上行数据执行PHY层和MAC层的处理。此处MAC层的处理包括:通过HARQ机制,对上行行数据的接收进行纠错,以及解复用(demultiplexing)等。
操作7b:RN对上行数据执行适配层处理。此处所称适配层处理,包括如下至少一项:
(1)RN从收到的上行数据包中获知与适配功能有关的信息,比如用于数据包路由的信息和/或用于QoS映射的信息,其中,用于数据包路由和/或用于QoS映射的信息包括如下中至少一种:UE的标识的信息,为UE提供服务的RN的标识的信息,传输路径的标识的信息,DgNB的标识的信息,QoS flow的标识的信息,PDU session的标识的信息,UE的无线承载的标识的信息,以及UE的逻辑信道的标识的信息中的至少一种。此处,为终端设备提供服务的RN,可以是指终端设备接入的服务小区所属的RN。通过在上行数据包中携带的这些信息,便于传输路径中的中间节点为需要传输的上行数据获得正确的下一跳节点。
(2)确定下一跳路由。例如,根据数据包中携带的UE的标识的信息或为UE提供服务的RN的标识的信息或者DgNB的标识的信息或传输路径的标识的信息,RN可以获知该数据包上行传输的下一跳节点是其他RN或者DgNB。此处所应用的路由策略可以是网络侧核心网网元或DgNB配置或者该RN本地配置。
(3)RN确定发送上行数据包所需的无线承载或逻辑信道。可选的,根据网络侧(例如核心网网元或DgNB给RN的配置,或者RN本地配置)配置的QoS参数和/或QoS映射规则,和/或接收的该上行数据所对应的RN的逻辑信道或无线承载,确定在RN和下一跳节点(如其他RN或DgNB)之间接口发送该上行数据所使用的无线承载或逻辑信道;或者,可选的,根据网络侧(例如核心网网元或DgNB给RN的配置,或者RN本地配置) 配置的QoS参数和/或QoS映射规则,和/或接收的该上行数据包中携带的QoS flow标识,确定在RN和下一跳节点(如其他RN或DgNB)之间接口发送该上行数据所使用的无线承载或逻辑信道;或者,RN由数据包中携带的UE的无线承载的标识的信息或UE的逻辑信道的标识的信息,确定在RN和下一跳节点(如其他RN或DgNB)之间接口发送该上行数据所使用的无线承载或逻辑信道。可以理解的是,终端设备的逻辑信道与终端设备的无线承载一般具有对应关系,而无线承载一般具有相应粒度的QoS要求保障,那么当上行数据中携带了UE的逻辑信道的标识的信息或与该逻辑信道对应的无线承载的标识的信息时,也表明了该上行数据所属业务相应的Qos要求。不同PDU session通常对应于不同的无线承载,针对一个PDU session,空口可以建立至少一个无线承载与之对应;一个PDU session中还可以承载不同的Qos flow,每个Qos flow可以有不同Qos要求,这样,协议数据单元会话可基于其对应的无线承载或者其承载的Qos flow而具有相应的Qos要求。当然,如果上行数据中携带了Qos flow的标识的信息时,也表明了该上行数据所属业务的Qos要求。
(4)执行移除上行数据包中的适配功能相关的信息,比如移除适配信息报文头。
此处RN的适配功能处理(比如适配功能有关的信息的识别,删除,或增加),可以在RN侧的上行接收侧部分实现,比如,可以作为RN的上行接收侧部分中设置在MAC层之上的独立的一个功能模块(比如逻辑功能协议层)去实现;也可以作为RN的上行接收侧部分中已有协议层的功能的一部分,比如上行接收侧的MAC层功能实体的一部分,此时,MAC层的功能由于包含了前述的适配层功能,故和传统MAC层的功能存在不同。如果RN的上行接收侧配置了RLC层,则该适配功能也可以做为上行接收侧的RLC层的逻辑功能的一部分。该适配功能处理还可以在RN侧的上行发送侧部分实现,比如,可以作为RN的上行发送侧部分中独立的一个功能模块(比如逻辑功能协议层)去实现;也可以作为RN的上行发送侧部分中已有协议层的功能的一部分,比如RN的上行发送侧的RLC功能实体的一部分。
该适配功能涉及的相关的处理,还可以分开部署,比如:适配功能处理中有一部分处理作为独立的功能实体部署,该适配功能中有一部分作为RLC协议层功能的一部分,或者,该适配功能的另外一部分可以作为MAC层功能的一部分。示例性的,适配功能处理中涉及的路由信息的处理,可以作为单独的部分进行上述任一种部署,或者,适配功能处理中涉及的Qos信息的处理,可以作为单独的部分进行上述任一种部署,具体该适配功能中的子功能的划分和部署,此处不作限定。
可以理解,该适配功能处理(比如适配功能有关的信息的识别,删除,或增加),如通过新增独立的协议层来实现该适配功能,则对应可称为适配层协议,但具体名称此处不做限定。
如该适配功能是在RN节点中的RLC层功能中实现,则可选的,用于数据包路由和/或用于QoS映射的信息可以包含在RLC PDU的头信息中,比如,在RLC PDU的头信息中用新增的比特来表示该信息,或者使用RLC PDU头信息中的保留比特来表示该信息。
如该适配功能是在RN节点中的MAC层功能中实现,则可选的,用于数据包路由和/或用于QoS映射的信息可以包含在MAC SDU的头信息中。可选的,该适配处理功能还可以在RN中的公共处理模块中实现,以支持RN中接收侧和发送侧功能的实现。
综上,适配功能在RN的实现方式此处不做具体限定。
操作7c:RN对上行数据执行RLC层的处理。此处RLC的处理包括如下中至少一种:
1、对RLC PDU进行分段,比如,在RN的发送侧,如果接收到的RLC PDU是已经经过分段后获得的RLC PDU,则此处的分段可以称为再分段或第二次分段。RN对接收到 的RLC PDU进行分段,即对接收到的RLC PDU中data域包含的RLC SDU或RLC SDU分段进行分段处理,RN将得到的新分段添加RLC层头部信息后,对应形成新的RLC PDU。例如,一个RLC PDU可以分成至少两段,其中的每一个分段均可以对应一个新的RLC PDU。对于再分段的情况,获得的新的RLC PDU中均包含原RLC PDU中具有的序号(SN),原RLC PDU中具有的序号,与初始RLC SDU序号相同或者具有对应关系。RN节点的发送侧对上行数据包进行分段处理后,得到的RLC PDU满足前述“报文结构一”。可选的,在RN的RLC层的处理中,可以不对RLC状态报告进行再分段的操作。
2、在RN节点对RLC PDU的报文执行前述“修改一”。
3、在RN的RLC层不执行数据重传机制。具体的,包括如下中至少一种:
对于该RN发送出去的RLC PDU,如果数据接收端没有正确接收到;或者,如果数据接收端反馈该RLC PDU没有被正确接收到;或者,如果数据接收端反馈该RLC PDU中data域对应的RLC SDU或RLC SDU分段没有被正确接收到,或者不考虑数据接收端是否接收到,对于这几种情况中的任一种,RN都不执行该RLC PDU的重传。
RN对未正确接收到的RLC PDU,不向数据发送端(例如UE)反馈接收状态;RN将收到的关于上行RLC SDU的接收状态的报告向数据发送端发送,但可不解析该接收状态的报告的内容,比如,RN通过RLC PDU的头信息中的D/C域和/或CPT域获知RLC PDU的类型是控制PDU,则RN确定该RLC PDU携带了状态报告,然后根据路由信息向数据的发送端发送该控制PDU,该接收状态的报告可以是来自于UE,也可以来自于DgNB,此处所称的接收状态,可以是一个或多个RLC SDU未被正确接收到的情况。
通过实施本设计方案,使得在RN的数据处理简化,减少了数据在该中继节点的处理时间,从而降低了通信系统端到端数据传输时延。由于RN的RLC层的功能不产生关于数据接收状态的报告,也不会根据数据接收的状态报告重传上行的RLC PDU,那么RN就不需要设置RLC层的用于重传的缓存(retransmit buffer),从而节省了系统资源开销。
可选的,在RN的RLC层功能处理中,也可以不对接收到的RLC PDU对应的分段进行重组和/或重排序,对分段不进行重组,可以理解为,当RLC SDU被分段后,得到的每一个分段对应形成新的RLC PDU,在RN的RLC层的处理,不需要将前述形成的多个RLC PDU还原成完整的RLC SDU;不进行重排序,可以理解为,在RN的RLC层的处理中,对RN收到的上述RLC PDU,并不按照其所属的SDU的序号进行排序后按序递交给上层或按序交由发送侧进行下一步处理,而是对收到的上述RLC PDU递交给RN的发送侧进行下一步处理,这样,进一步简化了在中继节点的数据处理,从而进一步了降低端到端通信时延。
可选的,RN的发送侧对上行数据包进行RLC层的处理,也可以引入基于ARQ的重传机制,以增强数据传输的可靠性,比如执行在前述设计中在RN RLC功能实体中不被要求执行的部分,可能会增加处理时延。因此,在RN的RLC功能具备ARQ机制以提升传输Qos和降低端到端通信时延这两者之间的平衡,需要根据实际情况设计,本申请实施例对此不做限定。
此处所称的RLC层的处理功能,可以部署在RN节点的上行接收侧,可以部署在RN节点的上行发送侧,也可以部署在RN节点中公共处理模块中。
操作7d:RN的发送侧对上行数据执行适配层处理,此处适配层的处理包括如下至少一种:
可选的,对于已经过RN的RLC层处理后的上行数据包,可引入适配功能对其处理,比如在RN的上行发送侧,在上行数据包中添加用于数据包路由和/或用于QoS映射的信息, 所述用于数据包路由和/或用于QoS映射的信息包括如下至少一种:UE的标识的信息,为UE提供服务的RN节点的标识的信息,为UE提供服务的DgNB的标识的信息,传输路径的标识的信息,QoS flow的标识的信息,PDU session的标识的信息,UE的无线承载的标识的信息,以及UE的逻辑信道的标识的信息。比如,用于数据包路由和/或用于QoS映射的信息可以包含在RLC PDU的头信息中,比如,在RLC PDU的头信息中用新增的比特来表示该信息,或者使用头信息中的保留比特来表示该信息。此处关于适配功能在RN的实现方式,可以参考3b中关于适配功能的设计,此处不再一一赘述。此处,为终端设备提供服务的RN,可以是指终端设备接入的服务小区所属的RN。
操作7e:RN发送侧对上行数据执行MAC层功能和PHY层功能的处理。比如可以包括:调度,复用,以及重传等处理。
RN发送侧将经过MAC层和PHY层处理的上行数据发送至下一跳RN节点或者DgNB。
可选的,RN的接收侧的MAC层和/或RN的发送侧的MAC层,可以保留基于HARQ的数据重传机制,在数据传输过程中执行HARQ重传机制中的反馈和重传等操作,以进一步保障数据传输的可靠性。
需要说明的是,为便于行文,对以上操作进行了顺序编号,但可以理解,这并不意味着方法流程的执行顺序必须按照编号顺序进行,以及,具体哪些步骤需要被执行,需要根据所解决的具体技术问题来确定,对步骤进行顺序编号,并不意味着这些步骤中的每一个都需要被执行。
实例8
根据系统1000,从上行数据接收端的角度对上行数据的接收进行描述,此处接收端以宿主基站DgNB为例。在DgNB的数据处理,包括如下中至少一种操作:
操作8a:DgNB对收到的上行数据执行PHY层和MAC层处理,比如可包括:在MAC层进行的基于HARQ机制的纠错处理,以及解复用(demultiplexing)处理等。
操作8b:DgNB执行RLC层功能的处理。
可选的,在DgNB执行RLC层功能处理之前,DgNB可以执行适配功能处理,包括读取适配功能有关的信息(例如UE的标识,UE的承载标识,PDU sesion标识等),和/或,如果适配功能为独立协议层则去掉适配层头部。若适配功能被配置为RLC层功能的一部分,则可以在DgNB的RLC层功能中完成这些操作。
若DgNB收到的RLC PDU中的data域包含的是RLC SDU分段,即RLC SDU经过了发送端UE的分段和/或中间节点RN的分段处理,则DgNB的RLC层可以按照收到的RLC PDU报文头中的信息指示,移除RLC PDU头,并按照该RLC PDU头中携带的信息对收到的对RLC SDU分段进行重组(reassemble)处理,并将重组后获得的完整RLC SDU进行重排序后按序向PDCP层递交。
DgNB在RLC层可以执行基于ARQ机制的数据传输纠错机制,使得未接收到的RLC SDU或RLC SDU分段能够得到重传。若出现部分RLC SDU丢失或未正确接收的情况,致使接收端UE无法获得这些RLC PDU对应的完整RLC SDU,则接收端DgNB通过发送RLC接收情况的报告,比如RLC状态报告,通过中继节点发送,向发送端UE指示未正确接收的RLC SDU或RLC SDU分段,以便发送端UE进行重传。
操作8c:接收端DgNB对上行数据执行PDCP层以及SDAP层的处理。
以上为参考系统1000在上行数据的传输过程中,分别从终端设备,中继节点,以及宿主基站的角度,对系统1000的运行机制进行了示例性说明,其中,实例5,实例6,实 例7以及实例8所分别示出的终端设备,第一种类型中继节点(示例:该RN与UE直接通信交互),第二种类型中继节点(示例:该RN通过其他RN与UE进行通信交互),以及宿主基站(及其分别涉及的处理流程),分别为具有相对独立性的实施方法或者单网元系统,作为无线中继系统1000的组成部分。本系统1000涉及的实施例,对于中继节点而言,由于其协议栈的设计相比于现有技术大为简化,从而降低了数据包在中继节点的处理时延,有助于提升端到端的传输保障和效率。
以上所示出的任一种设计,可以理解为针对特定场景或者特定技术问题而设计的技术方案,但并不能理解为实施本申请所记载技术内容所必须,其中的任一种设计可根据需要和其他设计相结合实施,以更有针对性的解决特定的客观技术问题。
可以理解的是,对于前述实施例所涉及的中继节点,宿主基站,以及终端设备,可通过具有处理器和通信接口的硬件平台执行程序指令来分别实现其在本申请前述实施例中任一技术方案中涉及的功能,基于此,如图11所示出的,本申请实施例提供了一种通信节点1100的示意性框图,所述通信节点1100包括:
至少一个处理器1101,以及通信接口1102,该通信接口用于支持该通信设备1100和其他设备进行通信交互,比如,可以通过该通信接口交互RLC层的控制PDU,RLC的数据PDU,或者本申请中涉及的任一种上下行传输的数据/信令。当程序指令在该至少一个处理器1101中执行时,本申请前述实施例任一方案中在如下任一设备上操作的功能得以实现:中继节点,终端设备以及该宿主基站。可选的,该通信节点1100还可以包含存储器1103,以存储实现上述设备功能所必须的程序指令或者程序执行过程中所产生的过程数据。可选的,该通信设备1100还可以包含内部的互联线路,以实现该至少一个处理器1101,1102通信接口以及1103存储器之间的通信交互。该至少一个处理器1101可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。例如,对于实施例中涉及的PHY功能的全部或者部分的处理,可以考虑在该至少一个处理器中设置专用电路/芯片来实现,当然也可以通过该至少一个处理器1101中设置的通用处理器执行具有PHY功能相关的程序指令来实现;又例如,对于本申请实施例涉及设备中的MAC层,适配功能,RLC层,PDCP层,以及SDAP层相关功能的全部或者部分处理,该至少一个处理器1101可以包含通用处理芯片,通过调用MAC层,适配功能,RLC层,PDCP层,以及SDAP层的相关功能的程序指令来实现。可以理解的是,结合本文中所公开的实施例描述的各设计的方法,流程或者数据传输步骤,能够一一以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件,比如,考虑通用性好成本低软硬件解耦等方面,可以采纳执行程序指令的方式来实现,又比如,考虑系统性能和可靠性等方面,可以采纳使用专用电路来实现。普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,此处不做限定。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
该通信接口1102,通常具有为两个通信对端之间执行进行信息交互的功能,对于通信对端之间执行的是有线形式的信息交互的情况,通信接口可以设计成接口电路,或者包含该接口电路的硬件模块,以支持通信对端之间进行的有线形式的通信交互;对于通信对端之间执行的是无线形式的信息交互的情况,通信接口可以是具有射频收发功能的接口电路,或者是包含该具有射频收发功能的接口电路的硬件系统,比如在UE和RN,或者,RN和 RN,或者,RN和DgNB之间进行无线通信时,那么通信接口可以采纳这种设计。
对于RN而言,接收侧和发送侧两部分可以设计成独立的实体硬件实现,每一个部分均可具备如上所述的硬件架构:至少一个处理器加通信接口。其中,至少一个处理器可以参考前述该至少一个处理器1101设计实现,通信接口可以参考前述该通信接口1102设计实现。接收侧和发送侧也可以分别由芯片系统来实现,该芯片系统包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,能够实现本实施例任一设计中的RN中接收侧或者发送侧相应的功能。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品具有程序指令,当该程序指令被直接或者间接执行时,比如,在前述实施例中的通信节点1100中被执行时,使得本申请实施例任一设计中在如下任一设备的功能得以实现:中继节点,宿主基站,以及终端设备。可以理解的是,所述程序指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述程序指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。程序指令被执行时,考虑到具体的网络设备中一般包括硬件层、运行在硬件层之上的操作系统层和或中间层,与本申请实施例相关的程序指令被执行时,往往经过多层软件的调用和执行,因此该程序指令在硬件设备(通用处理电路或者专用处理电路)可以是一种间接的执行过程。
本申请实施例还提供了一种计算机程序存储介质,该计算机程序存储介质中存储有程序指令,当所述程序指令被直接或者间接执行时,比如,在前述实施例中的通信节点1100中被执行时,使得本申请实施例任一设计中在如下任一设备的功能得以实现:中继节点,宿主基站,以及终端设备。可以理解的是,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。所述存储介质可以是计算设备能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质、或者半导体介质(例如固态硬盘Solid State Disk,SSD)等。
本申请实施例还提供了一种芯片系统,所述芯片系统包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得本申请实施例任一设计中在如下任一设备的功能得以实现:中继节点,宿主基站,以及终端设备。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM)、随机存取存储器(RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (21)

  1. 一种通信方法,其特征在于,包括:
    第一网络节点接收来自于第二网络节点的数据;
    在所述第一网络节点中,所述数据被执行第一部分处理和第二部分处理;
    所述第一网络节点将被所述处理后的数据,发向第三网络节点;
    所述第一部分处理为如下中的至少一种:物理层功能处理,媒体接入控制层功能处理,以及适配功能处理;所述第二部分处理为如下中的至少一种:简化的无线链路控制层功能处理,适配功能处理,媒体接入控制层功能处理,以及物理层功能处理;
    所述第一网络节点为第一中继节点。
  2. 如权利要求1所述的通信方法,其特征在于,包括:
    来自于所述第二网络节点的所述数据为下行数据,所述第二网络节点为第二中继节点或宿主基站,所述第三网络节点为终端设备;
    所述下行数据被依次执行所述第一部分处理和所述第二部分处理;
    所述第一部分处理为:所述物理层功能处理,所述媒体接入控制层功能处理,以及所述适配功能处理;所述第二部分处理为:所述简化的无线链路控制层功能处理,所述媒体接入控制层功能处理,以及所述物理层功能处理。
  3. 如权利要求1所述的通信方法,其特征在于,包括:
    来自于所述第二网络节点的所述数据为下行数据,所述第二网络节点为第三中继节点或宿主基站,所述第三网络节点为第四中继节点,所述下行数据经由第三网络节点发向终端设备;
    所述下行数据被依次执行所述第一部分处理和所述第二部分处理;
    所述第一部分处理为:所述物理层功能处理,所述媒体接入控制层功能处理,以及所述适配功能处理;
    所述第二部分处理为:所述简化的无线链路控制层功能处理,所述适配功能处理,所述媒体接入控制层功能处理,以及所述物理层功能处理。
  4. 如权利要求1或2中任一所述的通信方法,其特征在于,
    所述下行数据中包含如下中的至少一种与所述适配功能有关的信息:所述终端设备的标识的信息,服务质量流QoS flow的标识的信息,协议数据单元会话的标识的信息,服务所述终端设备的中继节点的标识的信息,所述终端设备的无线承载的标识的信息,以及所述终端设备的逻辑信道的标识的信息。
  5. 如权利要求1或3中任一所述的通信方法,其特征在于,
    所述下行数据中包含如下中的至少一种与所述适配功能有关的信息:所述第四中继节点的标识的信息,所述终端设备的标识的信息,服务质量流QoS flow的标识的信息,协议数据单元会话的标识的信息,服务所述终端设备的中继节点的标识的信息,所述终端设备的无线承载的标识的信息,以及所述终端设备的逻辑信道的标识的信息。
  6. 如权利要求1所述的通信方法,其特征在于,包括:
    来自于所述第二网络节点的所述数据为上行数据,所述第二网络节点为终端设备,所述第三网络节点为第五中继节点或宿主基站;
    所述上行数据被依次执行所述第一部分处理和所述第二部分处理;
    所述第一部分处理为:所述物理层功能处理和所述媒体接入控制层功能处理;
    所述第二部分处理为:所述简化的无线链路控制层功能处理,所述适配功能处理,所述媒体接入控制层功能处理,以及所述物理层功能处理。
  7. 如权利要求1所述的通信方法,其特征在于,包括:
    来自于所述第二网络节点的所述数据为上行数据,所述第二网络节点为第六中继节点,所述第三网络节点为第七中继节点或宿主基站;
    所述上行数据被依次执行所述第一部分处理和所述第二部分处理;
    所述第一部分处理为:所述物理层功能处理,所述媒体接入控制层功能处理,以及所述适配功能处理;
    所述第二部分处理为:所述简化的无线链路控制层功能处理,所述适配功能处理,所述媒体接入控制层功能处理,以及所述物理层功能处理。
  8. 如权利要求1或6中任一所述的通信方法,其特征在于,
    所述上行数据中包含如下中的至少一种与所述适配功能有关的信息:所述终端设备的标识的信息,所述第五中继节点的标识的信息,所述宿主基站的标识的信息,服务质量流QoS flow的标识的信息,协议数据单元会话的标识的信息,所述终端设备的无线承载的标识的信息,以及所述终端设备的逻辑信道的标识的信息。
  9. 如权利要求1或7中任一所述的通信方法,其特征在于,包括:
    所述上行数据中包含如下中的至少一种与所述适配功能有关的信息:所述终端设备的标识的信息,所述第七中继节点的标识的信息,所述宿主基站的标识的信息,服务质量流QoS flow的标识的信息,协议数据单元会话的标识的信息,所述终端设备的无线承载的标识的信息,以及所述终端设备的逻辑信道的标识的信息。
  10. 如权利要求1-9中任一所述的通信方法,其特征在于,在所述简化的无线链路控制层功能处理中,对接收到的无线链路控制层协议数据单元执行分段,获得的分段对应新的无线链路控制层协议数据单元。
  11. 如权利要求1-9中任一所述的通信方法,其特征在于,在所述简化的无线链路控制层功能处理中,执行如下中至少一种或任意几种:对未被正确发送出去的无线链路控制层业务数据单元不执行重传,对未正确接收到的无线链路控制层业务数据单元不反馈接收状态,将收到的关于无线链路控制层业务数据单元的接收状态的报告向数据发送端发送。
  12. 如权利要求1-11中任一所述的通信方法,其特征在于,经由所述适配功能处理后获得的数据包,包括:所述适配功能有关的信息以及所述无线链路控制层协议数据单元。
  13. 一种通信方法,其特征在于,包括:
    执行无线链路控制层功能处理以及适配功能处理后,宿主基站将下行数据经由至少一个中继节点发向终端设备;
    发向所述终端设备的所述下行数据中包含如下中的至少一种与适配功能有关的信息:所述终端设备的标识的信息,所述至少一个中继节点的标识的信息,服务质量流QoS flow的标识的信息,协议数据单元会话的标识的信息,所述终端设备的无线承载的标识的信息,以 及所述终端设备的逻辑信道的标识的信息。
  14. 如权利要求13所述的通信方法,其特征在于,在所述宿主基站的无线链路控制层功能处理,包括:
    对未被正确发送给所述终端设备的无线链路控制层业务数据单元,通过所述至少一个中继节点发送给所述终端设备;和/或,
    通过所述至少一个中继节点向所述终端设备发送关于无线链路控制层业务数据单元的接收状态的报告,所述接收状态的报告不被所述至少一个中继节点解析。
  15. 如权利要求13或14任一所述的通信方法,其特征在于,经由所述适配功能处理后获得的数据包,包括:所述适配功能有关的信息以及无线链路控制层协议数据单元。
  16. 一种通信方法,其特征在于,包括:
    执行无线链路控制层功能处理以及适配功能处理后,终端设备将上行数据经由至少一个中继节点发向宿主基站;
    发向所述宿主基站的所述上行数据中包含如下中至少一种与适配功能有关的信息:所述宿主基站的标识的信息,所述终端设备的标识的信息,所述至少一个中继节点的标识的信息,服务质量流QoS flow的标识的信息,协议数据单元会话的标识的信息,所述终端设备的无线承载的标识的信息,以及所述终端设备的逻辑信道的标识的信息。
  17. 如权利要求16所述的通信方法,其特征在于,在所述终端设备的无线链路控制层功能处理,包括:
    对未被正确发送给所述宿主基站的无线链路控制层业务数据单元,通过所述至少一个中继节点发送给所述宿主基站;和/或,
    通过所述至少一个中继节点发送给所述宿主基站关于无线链路控制层业务数据单元的接收状态的报告,所述接收状态的报告不被所述至少一个中继节点解析。
  18. 如权利要求16或17所述的通信方法,其特征在于,经由所述适配功能处理后获得的数据包,包括:所述适配功能有关的信息以及无线链路控制层协议数据单元。
  19. 一种通信节点,其特征在于,包括:至少一个处理器和通信接口,所述通信接口,用于所述通信节点与其他通信节点之间进行通信交互,所述至少一个处理器,用于执行程序指令,以使得所述通信节点实现如权利要求1-18中任一所述的方法中如下任一种设备的功能:所述第一网络节点,所述第二网络节点,所述第三网络节点,所述终端设备,所述中继节点以及所述宿主基站。
  20. 一种系统芯片,其特征在于,包括:至少一个处理器和通信接口,所述通信接口,用于所述系统芯片与外部进行通信交互,所述至少一个处理器,用于执行程序指令,以使得实现如权利要求1-18中任一所述的方法中如下任一种设备的操作:所述第一网络节点,所述第二网络节点,所述第三网络节点,所述终端设备,所述中继节点以及所述宿主基站。
  21. 一种计算机存储介质,其特征在于,包括:所述存储介质中存储有程序指令,当所述程序指令被执行时,以使得进行如权利要求1-18中任一所述的方法。
PCT/CN2018/117607 2017-11-27 2018-11-27 一种通信方法、通信节点和系统 WO2019101211A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18881593.0A EP3706328A4 (en) 2017-11-27 2018-11-27 COMMUNICATION PROCEDURE, COMMUNICATION NODE AND SYSTEM
US16/883,176 US11483058B2 (en) 2017-11-27 2020-05-26 Communication method, communications node, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711206454.4 2017-11-27
CN201711206454.4A CN109842440B (zh) 2017-11-27 2017-11-27 一种通信方法、通信节点和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/883,176 Continuation US11483058B2 (en) 2017-11-27 2020-05-26 Communication method, communications node, and system

Publications (1)

Publication Number Publication Date
WO2019101211A1 true WO2019101211A1 (zh) 2019-05-31

Family

ID=66631355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117607 WO2019101211A1 (zh) 2017-11-27 2018-11-27 一种通信方法、通信节点和系统

Country Status (4)

Country Link
US (1) US11483058B2 (zh)
EP (1) EP3706328A4 (zh)
CN (1) CN109842440B (zh)
WO (1) WO2019101211A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021233235A1 (zh) * 2020-05-22 2021-11-25 华为技术有限公司 连接建立的方法、装置和系统
US20220132362A1 (en) * 2019-01-25 2022-04-28 Sharp Kabushiki Kaisha Wireless communication methods for adaptive entity and rlc entity, and communication device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110366206A (zh) * 2018-03-26 2019-10-22 华为技术有限公司 一种信息传输方法和装置
US11082329B2 (en) * 2018-05-31 2021-08-03 At&T Intellectual Property I, L.P. Lossless data delivery at route changes in wireless radio networks
CN110636570B (zh) * 2018-06-25 2022-08-02 中兴通讯股份有限公司 Iab网络中iab节点信息的处理方法及装置
US11700565B2 (en) * 2018-09-18 2023-07-11 Qualcomm Incorporated Management of radio link failure in wireless backhaul
CN113302971A (zh) * 2019-01-17 2021-08-24 中兴通讯股份有限公司 用于无线通信中的数据映射的方法、装置和系统
GB2583521B (en) * 2019-05-02 2022-01-12 Samsung Electronics Co Ltd Relay network routing
US11540274B2 (en) * 2019-05-03 2022-12-27 Qualcomm Incorporated Efficient signaling of resource pattern in integrated-access and backhaul (IAB) networks
CN112235877B (zh) * 2019-07-15 2023-05-09 中国移动通信有限公司研究院 一种回传链路重映射方法、装置和计算机可读存储介质
CN112584428B (zh) * 2019-09-27 2023-01-13 大唐移动通信设备有限公司 一种数据传输方法、装置及设备
JP7320673B2 (ja) * 2019-10-04 2023-08-03 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 端末間マルチホップサイドリンク無線通信におけるデータパケット伝送実行の方法および装置
WO2021102671A1 (en) * 2019-11-26 2021-06-03 Mediatek Singapore Pte. Ltd. Methods and apparatus of cooperative communication for sidelink relay
CN111200816A (zh) * 2020-01-21 2020-05-26 南通大学 一种无线通信装置及无线通信方法
US11689957B2 (en) * 2020-03-13 2023-06-27 Qualcomm Incorporated Quality of service support for sidelink relay service
US11825330B2 (en) 2020-03-13 2023-11-21 Qualcomm Incorporated Techniques for quality of service support in sidelink communications
CN117033267B (zh) * 2023-10-07 2024-01-26 深圳大普微电子股份有限公司 混合存储主控制器及混合存储器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100272006A1 (en) * 2009-01-06 2010-10-28 Texas Instruments Incorporated Design of In-Band Backhaul for Wireless Relays in Wireless Networks
CN102098725A (zh) * 2009-12-15 2011-06-15 中兴通讯股份有限公司 一种服务网关与中继终端间传输数据的系统及方法
CN102369784A (zh) * 2009-03-12 2012-03-07 华为技术有限公司 提高中继网络系统性能的方法、通信系统及协议实体
CN102449944A (zh) * 2009-08-17 2012-05-09 上海贝尔股份有限公司 多跳中继通信系统中对下行数据传输控制的方法和装置
CN102763346A (zh) * 2011-06-22 2012-10-31 华为技术有限公司 中继网络中的工作模式切换方法、基站、中继节点及通讯系统
CN107295459A (zh) * 2016-03-30 2017-10-24 财团法人工业技术研究院 用于d2d通信的通信系统、通信装置、基站及其方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100662286B1 (ko) * 2000-11-30 2007-01-02 엘지전자 주식회사 무선 링크 제어 계층에서의 프로토콜 데이터 유닛 송신 방법 및 무선 링크 제어 계층을 갖는 무선 통신 시스템
WO2006103576A1 (en) * 2005-03-29 2006-10-05 Koninklijke Philips Electronics N.V. Receiver apparatus and method for receiving data units over a channel
EP2267929B1 (en) * 2005-08-16 2012-10-24 Panasonic Corporation Method and apparatuses for activation of Hybrid Automatic Request (HARQ) processes
CN101384020B (zh) * 2007-09-05 2012-07-04 中兴通讯股份有限公司 一种无线中继系统及其数据传输方法
CN101848489B (zh) * 2009-03-25 2014-02-05 中兴通讯股份有限公司 Pdu的发送/接收方法和装置
WO2010121416A1 (zh) * 2009-04-21 2010-10-28 华为技术有限公司 中继链路中处理数据的方法、中继节点和系统
CN102056226B (zh) * 2009-11-10 2016-03-02 中兴通讯股份有限公司 Pdcp状态报告的获取方法和pdcp实体
CN102448053B (zh) * 2010-09-30 2015-08-26 上海贝尔股份有限公司 在回程链路上执行多个mac pdu传递的方法和中继节点
GB2526224B (en) * 2013-02-22 2019-08-14 Bao Tran Communication apparatus
CN104125652A (zh) * 2013-04-25 2014-10-29 华为技术有限公司 中继链路的建立方法、站点和系统
CN104717717B (zh) * 2013-12-16 2018-11-13 中国电信股份有限公司 移动中继承载处理方法和装置
WO2015105301A1 (ko) * 2014-01-13 2015-07-16 엘지전자 주식회사 다운링크 데이터 전달 방법 및 위치 갱신 절차 수행 방법
KR20170023178A (ko) * 2014-07-07 2017-03-02 콘비다 와이어리스, 엘엘씨 머신 타입 통신 그룹 기반 서비스를 위한 조정된 그룹화
CN107950048B (zh) * 2015-04-10 2021-03-19 三星电子株式会社 用于在lte-wlan聚合系统中将数据分组路由到用户设备的装置和方法
WO2018233809A1 (en) * 2017-06-20 2018-12-27 Motorola Mobility Llc METHODS AND APPARATUSES FOR PAGING A REMOTE UNIT VIA A DIRECT MOBILE CONNECTION
CN109756925B (zh) * 2017-08-26 2022-04-12 华为技术有限公司 一种通过中继的通信处理方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100272006A1 (en) * 2009-01-06 2010-10-28 Texas Instruments Incorporated Design of In-Band Backhaul for Wireless Relays in Wireless Networks
CN102369784A (zh) * 2009-03-12 2012-03-07 华为技术有限公司 提高中继网络系统性能的方法、通信系统及协议实体
CN102449944A (zh) * 2009-08-17 2012-05-09 上海贝尔股份有限公司 多跳中继通信系统中对下行数据传输控制的方法和装置
CN102098725A (zh) * 2009-12-15 2011-06-15 中兴通讯股份有限公司 一种服务网关与中继终端间传输数据的系统及方法
CN102763346A (zh) * 2011-06-22 2012-10-31 华为技术有限公司 中继网络中的工作模式切换方法、基站、中继节点及通讯系统
CN107295459A (zh) * 2016-03-30 2017-10-24 财团法人工业技术研究院 用于d2d通信的通信系统、通信装置、基站及其方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3706328A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220132362A1 (en) * 2019-01-25 2022-04-28 Sharp Kabushiki Kaisha Wireless communication methods for adaptive entity and rlc entity, and communication device
WO2021233235A1 (zh) * 2020-05-22 2021-11-25 华为技术有限公司 连接建立的方法、装置和系统

Also Published As

Publication number Publication date
CN109842440B (zh) 2021-08-27
US20200287615A1 (en) 2020-09-10
US11483058B2 (en) 2022-10-25
EP3706328A1 (en) 2020-09-09
EP3706328A4 (en) 2021-03-24
CN109842440A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
WO2019101211A1 (zh) 一种通信方法、通信节点和系统
US11510131B2 (en) Configuration method, data transmission method, and apparatus
KR102615567B1 (ko) 정보 전송 방법 및 디바이스
US11496923B2 (en) Data transmission method and apparatus used in wireless backhaul network
US10966123B2 (en) Method and apparatus for preventing loss of data packets
CN111148163B (zh) 通信方法及装置
WO2020063504A1 (zh) 用于无线回传网络的数据传输方法和装置
CN110365609B (zh) 一种数据包分段方法、及装置
CN110603803A (zh) 用于云局域网环境中网络实体之间通信的方法和设备
WO2020164615A1 (zh) 一种通信方法及相关设备
WO2019242755A1 (zh) 数据传输方法、网络设备以及终端设备
WO2020164557A1 (zh) 一种通信方法及相关装置
US8711756B2 (en) Efficient relay automatic repeat request procedure in broadband wireless access system
KR102465917B1 (ko) 데이터 재송신 방법 및 장치
WO2020082948A1 (zh) 一种数据传输方法及装置
WO2021026936A1 (zh) 一种处理回传链路发生链路失败的方法及装置
WO2023011111A1 (zh) 路由方法和通信装置
US20240129802A1 (en) Method and a device for data retransmission
US20240155461A1 (en) Communication control method
US20220322204A1 (en) User Equipment Layer 2 Buffer Operation in IAB Networks
US20230239954A1 (en) Communication method and related device
CN115915330A (zh) 路由方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018881593

Country of ref document: EP

Effective date: 20200602