WO2020082948A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2020082948A1
WO2020082948A1 PCT/CN2019/107056 CN2019107056W WO2020082948A1 WO 2020082948 A1 WO2020082948 A1 WO 2020082948A1 CN 2019107056 W CN2019107056 W CN 2019107056W WO 2020082948 A1 WO2020082948 A1 WO 2020082948A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
node
adaptation layer
rlc
data packet
Prior art date
Application number
PCT/CN2019/107056
Other languages
English (en)
French (fr)
Inventor
朱元萍
阿舍拉施马金
戴明增
刘菁
曹振臻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020082948A1 publication Critical patent/WO2020082948A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/06Notations for structuring of protocol data, e.g. abstract syntax notation one [ASN.1]

Definitions

  • This application relates to the field of communication technology, and in particular, to a data transmission method and device.
  • the fifth-generation mobile communication system has imposed stricter requirements on all performance indicators of the network. For example, the capacity index has been increased by a factor of 1,000, wider coverage requirements, ultra-high reliability and ultra-low latency.
  • the capacity index has been increased by a factor of 1,000, wider coverage requirements, ultra-high reliability and ultra-low latency.
  • the use of high-frequency small station networking is becoming more and more popular. The high-frequency carrier propagation characteristics are poor, the attenuation due to occlusion is severe, and the coverage is not wide. Therefore, a large number of densely deployed small stations are required.
  • 5G introduces integrated access and backhaul (IAB) network technology. Both the access link and the backhaul link in the IAB network use wireless transmission solutions to avoid optical fibers Deployment, thereby reducing deployment costs and increasing deployment flexibility.
  • IAB integrated access and backhaul
  • a wireless backhaul node can provide wireless access services for terminal devices, and the wireless backhaul node can also be referred to as an IAB node (IAB node) or a relay node (RN).
  • the service data of the terminal device can be transmitted by the wireless backhaul node to the host node through the wireless backhaul link.
  • the host node can refer to an IAB host (IAB donor) or a host base station (donor gNodeB, DgNB).
  • a wireless backhaul node can converge different wireless bearer services of multiple terminal devices.
  • the bearers of multiple different terminal devices can be mapped to the radio link control (radio link control) of the same backhaul link. , RLC) channel; alternatively, the bearer of each terminal device can be mapped to a RLC channel one-to-one, accordingly, the number of RLC channels on the backhaul link will increase with the number of terminal devices and each The number of radio bearers supported by each terminal device increases.
  • RLC radio link control
  • the corresponding RLC channel can be identified by using the logical channel identifier of the LCH, but when multiple RLC channels of the backhaul link are multiplexed into one LCH At the time of use, it is impossible to determine the RLC channel using only the logical channel identifier of the LCH. How to distinguish the correspondence between different RLC channels and logical channels on the backhaul link, accurately identify the RLC channels, and thus perform data transmission in the IAB network is an urgent technical problem to be solved.
  • Embodiments of the present application provide a data transmission method and device to solve the problem of how to perform data transmission in an IAB network.
  • an embodiment of the present application provides a data transmission method.
  • the method includes: a first node generates a first data packet; the first node sends the first data packet to a second node; and the first data
  • the packet includes adaptation layer information and first information; or, the first data packet includes the adaptation layer information, the first information, and the second information; wherein, the first information is used to indicate
  • the second node obtains the adaptation layer information, and the second information is used to indicate the position of the adaptation layer information in the first data packet; the first node and the second node are wireless A node in relay communication.
  • the second node may determine the RLC channel corresponding to the first data packet according to the adaptation layer information.
  • the receiving side of the wireless backhaul link can distinguish the mapping relationship between the logical channel and the RLC channel according to the first information, thereby determining the RLC channel mapped by the logical channel, so that the data packet can be delivered to the correct RLC entity Be processed.
  • the first data packet includes a media access control MAC subheader, a radio link control RLC header, a packet data aggregation protocol PDCP protocol data unit PDU, or a section of a PDCP PDU;
  • the MAC sub-header or the RLC header includes the first information, and the adaptation layer information is located after the PDCP PDU or a section in a PDCP PDU.
  • the MAC sub-header (MAC sub-header) is header information added by the MAC layer before the MAC SDU.
  • the MAC subheader or the RLC header further includes the second information, where the second information is used to indicate the start of the adaptation layer information in the first data packet Starting position.
  • the first data packet includes a MAC subheader, an RLC header, a PDCP PDU, or a section of a PDCP PDU;
  • the MAC sub-header or the adaptation layer information or the RLC header includes the first information; the adaptation layer information is located between the MAC sub-header and the RLC header.
  • the MAC subheader or the adaptation layer information further includes the second information, and the second information is used to indicate that the adaptation layer information is in the first data packet Start position and / or end position.
  • the first data packet includes a MAC subheader, an RLC header, a PDCP PDU, or a section of a PDCP PDU;
  • the MAC sub-header or the adaptation layer information or the RLC header includes the first information
  • the adaptation layer information is located between the RLC header and the PDCP PDU or a section of a PDCP PDU.
  • the MAC subheader or the adaptation layer information or the RLC header further includes the second information, and the second information is used to indicate that the adaptation layer information is in the The start position and / or end position in the first data packet.
  • the first logical channel corresponding to the first data packet maps at least two RLC channels.
  • an embodiment of the present application provides a data transmission device.
  • the data transmission device includes a processor, and the processor is coupled to a memory, where: the memory is used to store instructions; the processor is used to execute instructions stored in the memory, To implement the method in the first aspect or any possible design of the first aspect.
  • the data transmission device may further include the memory.
  • the data transmission device may further include a transceiver for supporting the communication device to send and / or receive information in the above method.
  • the data transmission device may be an IAB node, or a device in the IAB node, such as a chip or a chip system, wherein the chip system includes at least one chip, and the chip system may further include other circuit structures and / or Or discrete devices.
  • embodiments of the present application provide a data transmission device for implementing the first aspect or any method in the first aspect, including corresponding functional modules, such as a processing unit, a transceiver unit, etc. To implement the steps in the above method.
  • an embodiment of the present application provides a data transmission method, including: a second node receiving a first data packet sent by a first node; wherein, the first data packet includes adaptation layer information, first information, and Second information; or, the first data packet includes the adaptation layer information, the first information, and second information; the first information is used to instruct the second node to acquire the adaptation layer Information, the second information is used to indicate the location of the adaptation layer information in the first data packet; the second node according to the first information and the second information, or according to the first A message, acquiring the adaptation layer information from the first data packet; the second node determining the first radio link control RLC channel corresponding to the first data packet according to the adaptation layer information, and Processing the first data packet through an RLC entity corresponding to the first RLC channel.
  • the second node may determine the RLC channel corresponding to the first data packet according to the adaptation layer information.
  • the receiving side of the wireless backhaul link can distinguish the mapping relationship between the logical channel and the RLC channel according to the first information, thereby determining the RLC channel mapped by the logical channel, so that the data packet can be delivered to the correct RLC entity Be processed.
  • the first data packet includes a media access control MAC subheader, a radio link control RLC header, a packet data aggregation protocol PDCP protocol data unit PDU, or a section of a PDCP PDU;
  • the MAC sub-header or the RLC header includes the first information
  • the adaptation layer information is located after the PDCP PDU or a section in one PDCP PDU.
  • the MAC subheader or the RLC header further includes the second information, where the second information is used to indicate the start of the adaptation layer information in the first data packet Starting position.
  • the first data packet includes a MAC subheader, an RLC header, a PDCP PDU, or a section of a PDCP PDU;
  • the MAC sub-header or the adaptation layer information or the RLC header includes the first information; the adaptation layer information is located between the MAC sub-header and the RLC header.
  • the MAC subheader or the adaptation layer information further includes the second information, and the second information is used to indicate that the adaptation layer information is in the first data packet Start position and / or end position.
  • the first data packet includes a MAC subheader, an RLC header, a PDCP PDU, or a section of a PDCP PDU; wherein, the MAC subheader or the adaptation layer information or the RLC
  • the header includes the first information; the adaptation layer information is located between the RLC header and the PDCP PDU or a section of a PDCP PDU.
  • the MAC subheader or the adaptation layer information or the RLC header further includes the second information, and the second information is used to indicate that the adaptation layer information is in the The start position and / or end position in the first data packet.
  • the first information is used to instruct the second node to acquire the adaptation layer information, and the first logical channel corresponding to the first data packet maps at least two RLC channels.
  • the adaptation layer information includes a terminal device identification of the terminal device and a bearer identification of the terminal device; the second node determines the corresponding to the first data packet according to the adaptation layer information
  • the first radio link control RLC channel includes: the second node determines at least two RLC channels mapped to the first logical channel identifier corresponding to the first data packet; the second node links the at least two RLC channels In which, the RLC channel corresponding to the terminal device identifier in the adaptation layer information and the bearer identifier of the terminal device is used as the first RLC channel.
  • the adaptation layer information may be used by different protocol layers.
  • the MAC layer of the second node may determine the RLC channel according to part or all of the adaptation layer information; or, the second The RLC layer of the node or the independent adaptation layer processing may determine the next hop node for transmission of the first data packet according to part or all of the adaptation layer information.
  • an embodiment of the present application provides a data transmission device.
  • the data transmission device includes a processor, and the processor is coupled to a memory, where: the memory is used to store instructions; the processor is used to execute instructions stored in the memory, To implement the above fourth aspect or any possible design method in the fourth aspect.
  • the data transmission device may further include the memory.
  • the data transmission device may further include a transceiver for supporting the communication device to send and / or receive information in the above method.
  • the data transmission device may be an IAB node, or a device in the IAB node, such as a chip or a chip system, wherein the chip system includes at least one chip, and the chip system may further include other circuit structures and / or Or discrete devices.
  • an embodiment of the present application provides a data transmission device for implementing the above fourth aspect or any method in the fourth aspect, including corresponding functional modules, such as a processing unit, a transceiver unit, etc. To implement the steps in the above method.
  • an embodiment of the present application provides a data transmission method, including:
  • the second node receives the first data packet sent by the first node; wherein, the first data packet includes adaptation layer information, a first logical channel identifier, and second information, and the second information is used to indicate the appropriate The location of the distribution layer information in the first data packet; the second node obtains the adaptation layer information from the first data packet according to the first logical channel identifier and the second information;
  • the first node and the second node are nodes in wireless relay communication.
  • the second node can distinguish the mapping relationship between the logical channel and the RLC channel according to the first logical channel identifier, thereby determining the RLC channel to which the logical channel is mapped, so that the data packet can be delivered to the correct RLC entity for processing.
  • the method further includes: the second node receiving third information sent by a third node, the third node being a parent of the second node in the wireless relay communication Node or host node;
  • the third information includes the first logical channel identifier; or, the third information includes the first logical channel identifier and attribute information of the first logical channel identifier, and the attribute information is used to indicate the Whether the second node obtains the adaptation layer information.
  • the attribute information when the attribute information is a first preset value, the attribute information is used to instruct the second node to obtain the adaptation layer information; the attribute information is a second preset value Value, the attribute information is used to instruct the second node not to acquire the adaptation layer information.
  • the second node obtaining the adaptation layer information from the first data packet according to the first logical channel identifier and the second information includes:
  • the second node determines that the attribute information is the first preset value, it acquires the adaptation layer information from the first data packet according to the position indicated by the second information.
  • the attribute information indicates the RLC channel ID of the RLC channel mapped by the first logical channel ID, or the attribute information indicates the bearer corresponding to the RLC channel mapped by the first logical channel ID Logo.
  • the second node obtaining the adaptation layer information from the first data packet according to the first logical channel identifier and the second information includes:
  • the second node determines that the number of RLC channel identifiers or bearer identifiers mapped by the first logical channel identifier is greater than 1, according to the attribute information, according to the location indicated by the second information, from the first data packet Obtain the adaptation layer information.
  • an embodiment of the present application provides a data transmission device.
  • the data transmission device includes a processor, and the processor is coupled to a memory, where: the memory is used to store instructions; the processor is used to execute instructions stored in the memory, To implement the above seventh aspect or any possible design method in the seventh aspect.
  • the data transmission device may further include the memory.
  • the data transmission device may further include a transceiver for supporting the communication device to send and / or receive information in the above method.
  • the data transmission device may be an IAB node, or a device in the IAB node, such as a chip or a chip system, wherein the chip system includes at least one chip, and the chip system may further include other circuit structures and / or Or discrete devices.
  • an embodiment of the present application provides a data transmission device for implementing the seventh aspect or any method in the seventh aspect, including corresponding functional modules, such as a processing unit, a transceiver unit, etc. To implement the steps in the above method.
  • Embodiments of the present application provide a computer-readable storage medium that stores computer-readable instructions.
  • the computer reads and executes the computer-readable instructions, the computer is allowed to execute any of the above-mentioned possible designs. The method.
  • An embodiment of the present application provides a computer program product, which, when a computer reads and executes the computer program product, causes the computer to execute any one of the methods in the above possible designs.
  • An embodiment of the present application provides a chip, the chip is connected to a memory, and is used to read and execute a software program stored in the memory, so as to implement any one of the above possible design methods.
  • An embodiment of the present application provides a communication device, including a processor, which is used to couple with a memory, read and execute instructions in the memory, so as to implement any one of the foregoing aspects or any one of any possible aspects Method in design.
  • An embodiment of the present application provides a communication system, including the communication device in the second aspect and the communication device in the fifth aspect.
  • FIG. 1 shows a schematic diagram of a communication system according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a data packet structure provided by an embodiment of the present application.
  • 4 (a), 4 (b), 4 (c) and 4 (d) are schematic diagrams of a data packet processing flow provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an adaptation layer PDU provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a data packet processing flow provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a MAC subheader according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a data transmission device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a data transmission device according to an embodiment of the present application.
  • a node that supports integrated access and backhaul is called a wireless backhaul node, and the wireless backhaul node may also be called a relay node (RN) or an IAB node (IAB node).
  • the wireless backhaul node may be a mobile terminal (MT) role, that is, the wireless backhaul node may include at least one MT unit, for example, the wireless backhaul node may include only one MT role, the MT has multiple connections Capable MT, the wireless backhaul node can establish a backhaul connection between multiple parent nodes of the wireless backhaul node through the MT; for another example, the wireless backhaul node can include multiple MTs, among the multiple MTs Each MT establishes a connection with a parent node of the wireless backhaul node as an independent backhaul link of the wireless backhaul node.
  • MT mobile terminal
  • the MT unit includes a packet data convergence protocol (packet, data, protocol, PDCP) layer, an adaptation layer, a radio link control (radio link control, RLC) layer, a media access control (medium access control, MAC) layer, and a physical ( physical, PHY) and other protocol layers.
  • packet data convergence protocol packet, data, protocol, PDCP
  • RLC radio link control
  • MAC media access control
  • PHY physical, PHY
  • the IAB node can provide wireless access services for terminal devices.
  • the service data of the terminal device is transmitted by the IAB node to the host node through a wireless backhaul link.
  • the host node is also called IAB host (IAB donor) or host base station (donor gNodeB , DgNB).
  • IAB host IAB donor
  • DgNB host base station
  • the DgNB may be an access network element with a complete base station function, or a separate form of an access network element with a centralized unit (CU) and a distributed unit (DU).
  • CU centralized unit
  • DU distributed unit
  • DgNB is connected to the core network element serving the terminal equipment, for example, to the 5G core network (5G core (5GC), and provides wireless backhaul for IAB nodes.
  • 5G core 5G core
  • this article refers to the centralized unit of the host node as the host CU (donor CU), and the distributed unit of the host node as the host DU (donor DU), where the donor CU may also be the control plane (control plane) , CP) and user plane (user plane, UP) are separated.
  • a CU is composed of a CU-CP and multiple CU-UPs, which is not limited in the embodiment of the present application.
  • IAB nodes can support multi-connectivity to cope with the abnormalities that may occur on the backhaul link, for example, abnormalities such as link interruption or blocking and load fluctuations To improve the reliability of transmission.
  • the above multi-connection may specifically be dual connectivity (DC), or may be more than two connections, which is not limited in the embodiment of the present application.
  • the IAB network supports multi-hop and multi-connection networking. Therefore, there may be multiple transmission paths between the terminal device and the host node. On a path, there is a certain hierarchical relationship between the IAB nodes and between the IAB node and the host node that provides services to the IAB node.
  • each IAB node regards the node that provides the backhaul service as the parent Nodes, accordingly, each IAB node can be regarded as a child node of its parent node.
  • the parent node of an IAB node is the next hop node of the IAB node on the uplink
  • the child node of an IAB node is the previous hop node of the IAB node on the uplink.
  • Uplink next hop node (also called parent node): a node that provides wireless backhaul link resources.
  • Uplink last-hop node also known as child node: a node that uses the backhaul link resource to transmit data to the network, or receives data from the network, where the network is above the core network or other access network Network, such as Internet, private network, etc.
  • Access link refers to a wireless link used by a terminal device to communicate with a node (for example, an IAB node, host node, or host DU) that provides access services to it. Including uplink transmission and downlink transmission links.
  • the uplink transmission on the access link is also referred to as the uplink transmission of the access link, and the downlink transmission is also referred to as the downlink transmission of the access link.
  • the backhaul link refers to the wireless link used by a node to communicate with its parent node, including the uplink and downlink transmission links.
  • the uplink transmission on the backhaul link is also called the uplink transmission of the backhaul link, and the downlink transmission is also called the downlink transmission of the backhaul link.
  • the nodes include but are not limited to the aforementioned IAB nodes.
  • Path The entire route from the sending node to the receiving node.
  • the path consists of at least one link.
  • the link represents the connection between adjacent nodes.
  • FIG. 1 is a schematic diagram of a communication system applied in an embodiment of the present application.
  • the communication systems applicable to the embodiments of the present application include but are not limited to: narrow-band Internet of Things (NB-IoT) system, wireless local area network (WLAN) system, LTE system, Next-generation 5G mobile communication systems or communication systems after 5G, such as NR, device-to-device (D2D) communication systems.
  • NB-IoT narrow-band Internet of Things
  • WLAN wireless local area network
  • LTE Long Term Evolution
  • Next-generation 5G mobile communication systems or communication systems after 5G, such as NR, device-to-device (D2D) communication systems such as Wi-Fi
  • D2D device-to-device
  • the communication system shown in Figure 1 is an IAB system.
  • the IAB system 100 includes a host node, IAB node A, IAB node B, IAB node C, and terminal equipment served by the IAB node C (FIG. 1 takes UE 1 as an example).
  • the parent node of IAB node A is the host node, and IAB node A is the parent node of IAB node C.
  • the parent node of IAB node B is the host node, and IAB node B is the parent node of IAB node C. Therefore, IAB node C has two parent nodes.
  • IAB node C includes two next-hop nodes on the uplink, and the uplink data packet that needs to be sent via IAB node C can be transmitted to the host node through two paths.
  • IAB node A is also called the first next hop node of IAB node C
  • IAB node B is also called the second next hop node of IAB node C.
  • the uplink data packet of UE1 can be transmitted to the host node through one or more IAB nodes, and then sent by the host node to the mobile gateway device (for example, the user plane functional (unit) function in the 5G core network, UPF) unit), the downlink data packet will be received by the host node from the mobile gateway device, and then sent to the UE1 through the IAB node.
  • the mobile gateway device for example, the user plane functional (unit) function in the 5G core network, UPF) unit
  • the above-mentioned IAB system 100 may further include other numbers of terminal devices and IAB nodes.
  • the IAB system 100 further includes an IAB node D and a terminal device served by the IAB node D (FIG. 1 takes UE 2 as an example).
  • the parent node of IAB node D is IAB node A, and IAB node C can also provide services for UE2.
  • path 1 UE 2 ⁇ ⁇ IAB node C ⁇ ⁇ IAB node A ⁇ ⁇ host node
  • path 2 UE 2 ⁇ ⁇ IAB node C ⁇ ⁇ IAB node B ⁇ ⁇ host node
  • path 3 UE 2 ⁇ ⁇ IAB node D ⁇ ⁇ IAB node A ⁇ ⁇ host node
  • the IAB system shown in FIG. 1 is only an example. In an IAB scenario where multiple hops and multiple connections are combined, there are many other possibilities. For example, the host node and the IAB node under another host node form a dual connection Provide services for terminal equipment, etc., no longer list them here.
  • the host node may include but is not limited to: evolved node B (evolved node base, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station) controller, BSC), base transceiver station (BTS), home base station (eg, home evolved NodeB, or home node B, HNB), baseband unit (BBU), eLTE (evolved LTE, eLTE) base station , NR base station (next generation node B, gNB), etc.
  • evolved node B evolved node base, eNB
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BSC base transceiver station
  • home base station eg, home evolved NodeB, or home node B, HNB
  • BBU baseband unit
  • eLTE evolved LTE, eLTE
  • terminal equipment may include, but is not limited to: user equipment (UE), mobile station, access terminal, subscriber unit, user station, mobile station, remote station, remote terminal, mobile device, terminal, wireless communication Equipment, user agents, wireless local area network (wireless local access network, WLAN) stations (station, ST), cellular phones, cordless phones, session initiation protocol (session initiation protocol, SIP) phones, wireless local loop (wireless local loop) , WLL) stations, personal digital processing (personal digital assistant (PDA), handheld devices with wireless communication capabilities, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices, mobile stations in future 5G networks And any one of terminal devices in a public land mobile network (PLMN) network that will evolve in the future.
  • PLMN public land mobile network
  • the IAB node is a specific name for the relay node in the IAB network, and does not limit the scheme of this application.
  • the use of IAB nodes in this application is only for the purpose of description, and does not mean that the solution of this application is only used in NR scenarios.
  • IAB nodes can refer to any node or device with a relay function.
  • the IAB node may be any one of the above base stations or terminal devices with a forwarding function, or may be an independent device form, which is not limited in this embodiment of the present application.
  • IAB node A IAB node A
  • IAB node B IAB node C
  • RRC radio resource control
  • this kind of relay is usually called layer 3 relay
  • RRC radio resource control
  • This relay usually only has part of the layer 2 protocol stack function of the base station, and is called layer 2 relay.
  • Layer 2 relays usually exist as the DU of the host node under the NR control and bearer separation (central unit and distributed unit, CU-DU) architecture, and the host node or host node through the F1 application protocol (F1 application protocol (F1AP) interface)
  • the CU performs control plane communication.
  • the peer-to-peer packet data convergence protocol packet data convergence protocol (packet data convergence protocol (PDCP) layer and service data application protocol (service data application protocol (SDAP) layer) are located at the host On the CU of the node or host node.
  • the IAB node performs the forwarding of UE service data at the radio link control (RLC) layer and below, that is, the forwarded data packet is the PDCP layer protocol data unit (PDU) of the UE.
  • RLC radio link control
  • PDU PDCP layer protocol data unit
  • the information unit from a higher protocol layer above the protocol layer may be called a service data unit (SDU), and after being processed by the protocol layer,
  • SDU service data unit
  • PDU The information unit sent to the next protocol layer
  • the information unit of a higher protocol layer received by the PDCP layer may be called PDCP SDU.
  • PDCP PDU the information unit sent to the next layer
  • the PDCP layer processing may include operations such as assigning a serial number (SN), header compression, encryption, integrity protection, and packet header addition.
  • an adaptation layer (adaptation layer) is introduced on the backhaul link of the layer 2 IAB node.
  • the adaptation layer carries some requirements related to routing, quality of service (QoS) guarantee, identification of UE and bearer Related information, and provide routing and QoS mapping functions required for data forwarding.
  • QoS quality of service
  • the above adaptation layer may be an independent protocol layer, or may be a sub-layer or sub-module of an existing protocol layer, for example, a sub-layer of the RLC layer or a sub-layer of the MAC layer. limited.
  • the embodiments of the present application are merely for convenience of description, and the newly introduced protocol layer with routing and QoS mapping functions is called an adaptation layer, but in an actual network, the protocol layer may have other names. The embodiment of the present application There is no limit to this.
  • the adaptation layer can be an independent protocol layer
  • the adaptation layer can be deployed in two ways.
  • the data packet processing method is different.
  • the following two deployment methods are respectively Introduce.
  • Method 1 The adaptation layer is deployed on the RLC layer. This deployment method has the following characteristics:
  • the adaptation layer can perform the mapping of data packets to the RLC channel (RLC channel) of the backhaul link.
  • RLC channel RLC channel
  • the RLC channel of the backhaul link can correspond to the UE bearer (UE bearer), or it can be multiple UEs.
  • the bearers are aggregated and mapped onto the RLC channel of the same backhaul link.
  • the IAB node can directly perform the mapping of the RLC channel of the previous hop link to the RLC channel of the next hop link between the backhaul links, and can also perform the mapping of the UE bearer to the RLC channel of the next hop link.
  • the RLC layer entity of the IAB node on the backhaul link corresponds one-to-one to the RLC bearer or RLC channel of the IAB node on the backhaul link. At least two RLC channels can be mapped / multiplexed / corresponded to one LCH, or one RLC channel corresponds to one LCH one by one.
  • the hop-by-hop automatic repeat request (ARQ) mode or the end-to-end ARQ mode is used.
  • Method 2 The adaptation layer is deployed below the RLC layer and above the medium access control (MAC) layer, that is, the adaptation layer is deployed between the MAC layer and the RLC layer.
  • This deployment method has the following characteristics:
  • the RLC entity / RLC channel of the IAB node on the backhaul link corresponds to the UE bearer.
  • the IAB node can directly perform the mapping from the LCH of the previous hop link to the LCH of the next hop link between the backhaul links, and can also perform the mapping and / or aggregation of the UE bearer to the LCH of the next hop link.
  • the LCH of the backhaul link can correspond to the RLC channel one by one, or multiple RLC channels can be aggregated and mapped (multiplexed) To the LCH of the same backhaul link.
  • the end-to-end ARQ mode is: ARQ-related functions are only configured on the RLC entities at both ends, and the RLC layer of the middle IAB node has segmentation and / or re-segmentation Function, without the need to perform ARQ functions (including feedback on data packet reception as a receiving node, and retransmission of unacknowledged data packets as a sending node), where segmentation is for a complete RLC service data unit For SDU, sub-segmentation is for an RLC SDU segment. Taking the above transmission as an example, the UE sends a data packet to the host node through the IAB node.
  • the host node When the host node receives the data packet correctly, the host node will feedback an acknowledgement (ACK) message to the IAB node. When the data packet is not received correctly, it will send The IAB node feeds back non-acknowledgement (NACK) messages. The IAB node only forwards these messages. When the host node feeds back a NACK message, the UE will send the data packet to the host node again through the IAB node until the host The node feeds back an ACK message for the data packet.
  • ACK acknowledgement
  • NACK non-acknowledgement
  • the hop-by-hop ARQ mode is: all nodes (including IAB nodes) in the IAB network are configured with ARQ-related functions.
  • the RLC layer of the IAB node has the functions of segmentation and / or re-segmentation, and also has ARQ related functions. That is, the IAB node can not only forward the data packet, but also can feedback to the node that sent the data packet (the previous hop node of the IAB node) whether the data packet is correctly received.
  • the data packet may adopt two modes of hop-by-hop reassembly and end-to-end reassembly during transmission.
  • Hop-by-hop reassembly is: when the sending node sends data packets to the receiving node through N intermediate nodes, on each link, if the sending node performs segmentation processing on the RLC layer at the RLC layer, the intermediate node can The RLC layer on the receiving side reassembles these segments to recover the complete RLC SDU.
  • End-to-end reorganization is: when the sending node sends data packets to the receiving node through N intermediate nodes, the sending node can segment the RLC SDU at the RLC layer, and N intermediate nodes between the sending node and the receiving node You can also segment the complete RLC SDU, or continue segmenting the RLC SDU segment, but the intermediate node does not reorganize on its receiving side until these RLC SDU segments are transmitted to the receiving node. The receiving node can reassemble all the received segments at the RLC layer on the receiving side to recover the complete RLC SDU.
  • the corresponding recombination mode is also hop-by-hop recombination; when the end-to-end ARQ mode is adopted, the recombination mode can be hop-by-hop recombination or end-to-end recombination.
  • FIG. 2 shows a schematic flowchart of a data transmission method provided by an embodiment of the present application. This method can be applied to the communication system shown in FIG. 1, but the embodiments of the present application are not limited thereto. Referring to Figure 2, the method includes:
  • Step 201 The first node generates a first data packet.
  • the first data packet includes adaptation layer information and first information.
  • the first data packet may further include second information.
  • the first information is used to instruct a second node to obtain the adaptation layer information, and the second information is used to indicate a position of the adaptation layer information in the first data packet; the first node and The second node is a node in wireless relay communication.
  • the wireless relay communication may include, but is not limited to, communication based on an IAB network.
  • whether the second node obtains the adaptation layer information may refer to whether the second node determines the first RLC channel corresponding to the first data packet according to the adaptation layer information.
  • the second node may determine the first RLC channel corresponding to the first data packet according to the adaptation layer information; correspondingly, when the second node does not acquire the adaptation layer information
  • the second node can determine the first RLC channel corresponding to the first data packet without adaptation layer information. For example, when the logical channel and the RLC channel are mapped one-to-one, the second node can directly determine the RLC channel according to the logical channel.
  • Step 202 The first node sends the first data packet to the second node.
  • the first node is a wireless backhaul node
  • the second node is a wireless backhaul node or a home node or home DU.
  • the first node is a wireless backhaul node or host node or host DU
  • the second node is a wireless backhaul node.
  • Step 203 The second node receives the first data packet sent by the first node.
  • Step 204 The second node obtains the adaptation layer information from the first data packet according to the first information and the second information, or according to the first information.
  • Step 205 The second node determines the first RLC channel corresponding to the first data packet according to the adaptation layer information, and processes the first data packet through the RLC entity corresponding to the first RLC channel.
  • the second node may use the adaptation layer information, etc. Determine the corresponding RLC channel.
  • the receiving side of the wireless backhaul link can distinguish the mapping relationship between the logical channel and the RLC channel according to the first information, and then determine the RLC channel corresponding to the data packet, so that the data packet can be delivered to the correct RLC entity (entity).
  • the first node obtains the PDCP PDU, and the PDCP PDU may include the terminal device or the IAB node (may be the IAB node or its child IAB node).
  • the PDCP PDU belongs to a specific radio bearer of the terminal device / MT.
  • MT like terminal equipment, has PDCP layer, adaptation layer, RLC layer, MAC layer, PHY layer and other protocol layers. It is a special type of terminal equipment. For convenience of description, the following uses terminal equipment as an example For the description, the content that can be executed by the terminal device can also be executed by the MT, which will not be repeated here.
  • the first node generates a first data packet according to the obtained PDCP PDU, and the first data packet may include multiple parts.
  • FIG. 3 it is a schematic structural diagram of a first data packet provided by an embodiment of the present application.
  • the first data packet shown in FIG. 3 includes MAC subheader, RLC header, PDCP PDU, and adaptation layer information.
  • the first information may be located in the MAC sub-header or RLC header
  • the second information may be located in the MAC sub-header or RLC header or adaptation layer information, which is determined according to actual conditions.
  • the adaptation layer information may also be located at a preset position, and at this time, the second information may not be included in the first data packet.
  • FIG. 3 is only an example, and the PDCP PDU in FIG. 3 may also be a section of the PDCP PDU, that is, a part of the PDCP PDU obtained after the segmentation process of the RLC layer.
  • the adaptation layer information includes at least the terminal device identifier and the bearer identifier of the terminal device, and may also include a cell identifier (cell ID), the identifier of the IAB node that the terminal device accesses, and the return link At least one or more of the RLC channel / bearer identification and the label used to indicate the quality of service (QoS) requirements of the data packet, which will not be described one by one here.
  • the bearer identifier of the terminal device is used to identify the data radio bearer (DRB) and / or signaling radio bearer (SRB) of the terminal device.
  • the terminal equipment identifier may be a cell radio network temporary identifier (C-RNTI) of the terminal equipment, or may be, for example, an international mobile subscriber identification number (international mobile subscriber identification number) of the terminal equipment, IMSI), temporary mobile subscriber identity (TMSI), the unique identifier assigned by the host node / host CU to the terminal device within the service range of the host node / host CU, etc .; or, the terminal device identifier and the bearer of the terminal device
  • the two can be represented by the tunnel end point identifier (TEID) of the GPRS tunneling protocol (GTP) corresponding to the wireless bearer of the terminal device.
  • the GTP tunnel can be at the host node / host The transmission channel between the CU and the IAB node that provides access services for the terminal device.
  • the adaptation layer information may also be located at other positions in the first data packet, which will be described in detail below.
  • the first information may be located in the MAC sub-header or the RLC header, and the position of the second information may be determined according to the position of the adaptation layer information.
  • the adaptation layer information is added by the adaptation layer at the end of the RLC PDU, or by the RLC layer after the RLC processing is completed and added at the end of the RLC PDU, and the adaptation layer information is located in the first data After the PDCP in the packet or a section in a PDCP PDU.
  • the tail of the RLC PDU referred to herein refers to the adjacent part after the RLC PDU.
  • the first node obtains the PDCP PDU (also called RLC SDU), according to the radio bearer (hereinafter referred to as UE bearer) of the terminal device to which the PDCP PDU belongs and the RLC of the backhaul link
  • the mapping relationship between the channels determines the RLC channel on the sending side, and then delivers the PDCP PDU to the RLC entity (entity) corresponding to the RLC channel for RLC layer processing.
  • the RLC layer processing includes such as segmentation and automatic repeat request (automatic repeat request) , ARQ), add RLC header (header), etc.
  • the RLC PDU is obtained.
  • the RLC PDU includes a section or all of the RLC header and the PDCP PDU.
  • the RLC PDU includes all the RLC header and the PDCP PDU as an example, and other details will not be repeated.
  • the first node After the first node obtains the RLC PDU, it can add the adaptation layer information.
  • the first node can add the adaptation layer information at the end of the RLC PDU.
  • the tail of the RLC PDU here is Refers to the adjacent part after the RLC PDU, such as shown in Figure 4 (a).
  • the specific content of the adaptation layer information may refer to the previous description.
  • the adaptation layer information may include but not limited to the terminal device identification, the terminal device bearer ID (bearer ID), and provides access for the terminal device. The identifier of the first node served, the cell identifier of the cell accessed by the terminal device, etc., will not be described in other cases.
  • the addition of adaptation layer information may be performed by an independent adaptation layer, which is located between the RLC layer and the MAC layer; or, the addition of adaptation layer information may also be performed by The first node executes at the RLC layer on the sending side of the backhaul link.
  • the first node may also carry part of the adaptation layer information at the tail of the RLC PDU.
  • the tail of the RLC PDU referred to here refers to the adjacent part after the RLC PDU.
  • a part is carried in the MAC sub-header, or in the RLC header, etc.
  • the identifier of the terminal device and the bearer identifier of the terminal device in the adaptation layer information may be carried in the MAC subheader, and the remaining adaptation layer information, such as the identifier of the IAB node accessed by the terminal device, is carried at the end of the RLC PDU.
  • the addition of part of the adaptation layer information carried at the end of the RLC PDU may be performed by an independent adaptation layer, which is located between the RLC layer and the MAC layer; or, the part carried at the end of the RLC PDU
  • the addition of adaptation layer information can also be performed by the RLC layer or MAC layer of the first node on the sending side of the backhaul link; if the MAC subheader carries part of the adaptation layer information, this part of the adaptation layer information is added by One node executes at the MAC layer on the sending side of the backhaul link; if the RLC header carries part of the adaptation layer information, the addition of this part of the adaptation layer information is performed by the first node at the RLC layer at the sending side of the backhaul link .
  • the second information when the adaptation layer information is added at the end of the RLC PDU, the second information may be carried in the RLC header to indicate the end position of the RLC PDU or the adaptation layer information located at the end of the RLC PDU is at the The starting position in a data packet, or the second indication information may be carried in the MAC subheader to indicate the starting position of the adaptation layer information carried at the end of the MAC SDU in the first data packet.
  • the first node submits the RLC PDU and the added adaptation layer information to the MAC layer through the logical channel corresponding to the RLC channel to perform corresponding processing.
  • the logical channel identifier LCID is y in the example of FIG. 4 (a). .
  • logical channel identifier LCID may be located in the MAC subheader, which will not be repeated here.
  • the adaptation layer information can also be added by the MAC layer of the first node on the sending side of the backhaul link at the end of the RLC PDU, that is, the addition of the adaptation layer information can be regarded as a MAC layer function
  • the adaptation layer information is located after the PDCP PDU in the first data packet or a segment in a PDCP PDU, for details, refer to FIG. 4 (b).
  • the MAC layer of the first node on the sending side of the backhaul link may also carry part of the adaptation layer information at the end of the RLC PDU, and the other part at the MAC subheader.
  • the first node determines the RLC channel on the sending side according to the mapping relationship between the UE bearer to which the PDCP PDU belongs and the RLC channel of the backhaul link, and then delivers the PDCP PDU to The RLC entity corresponding to the RLC channel performs RLC layer processing to obtain RLC PDU.
  • the RLC PDU includes a section or all of the RLC header and the PDCP PDU.
  • the RLC PDU includes all the RLC header and the PDCP PDU as an example, and other details will not be repeated.
  • the first node After obtaining the RLC PDU, the first node delivers the RLC PDU to the MAC layer through the logical channel corresponding to the RLC channel.
  • the MAC layer of the first node adds a MAC subheader before the RLC PDU, and adds adaptation layer information at the end of the RLC PDU to obtain the first data packet.
  • the MAC subheader may include second indication information, which is used to indicate the starting position of the adaptation layer information in the first data packet.
  • the tail of the RLC PDU referred to herein refers to the adjacent part after the RLC PDU.
  • the addition of the adaptation layer information is performed before the processing of the RLC layer, that is, the adaptation layer information is added at the end of the PDCP PDU (that is, the RLC SDU is carried by the PDCP PDU and the adaptation layer carried by the tail Information composition), the addition of adaptation layer information can be performed by an independent adaptation layer, which is located above the RLC layer; or, the addition of adaptation layer information can also be performed by the RLC layer.
  • the functions of the RLC layer are expanded. For details, refer to FIG. 4 (c).
  • the tail of the RLC PDU carries only a part of the adaptation layer information, and the other part is carried in the MAC subheader or the RLC header.
  • the MAC sub-header carries part of the adaptation layer information
  • the addition of this part of the adaptation layer information is performed by the first node at the MAC layer on the sending side of the backhaul link
  • the RLC header carries part of the adaptation information
  • the addition of this part of the adaptation layer information is performed by the RLC layer of the first node on the sending side of the backhaul link.
  • the first node after acquiring the PDCP PDU, adds the adaptation layer information after the PDCP PDU.
  • the first node may determine the RLC channel on the sending side according to the mapping relationship between the bearer to which the PDCP PDU belongs and the RLC channel of the backhaul link, and then deliver the PDCP PDU with the adaptation layer information added to the RLC channel.
  • the RLC entity performs RLC layer processing to obtain RLC PDU.
  • the RLC PDU may include a section of the RLC header and PDCP PDU; or, the RLC PDU includes all of the RLC header and PDCP PDU; or, the RLC PDU includes all of the RLC header, PDCP PDU, and all of the adaptation layer information; or, The RLC PDU includes all RLC headers, PDCP PDUs, and a section of adaptation layer information; or, the RLC PDU includes RLC headers, a section or all of the adaptation layer information; or, the RLC PDU includes RLC headers, PDCP PDU sections. 3. A section or all of the adaptation layer information.
  • the first node After obtaining the RLC PDU, the first node submits the RLC PDU to the MAC layer for processing through a logical channel corresponding to the RLC channel.
  • the MAC layer of the first node adds a MAC subheader before the RLC PDU to obtain the first data packet.
  • the second indication information may be carried in the RLC header, and the second indication information is used to indicate the adaptation layer carried at the tail of the RLC SDU The starting position of the information in the first data packet.
  • the second indication information may also be located in the MAC subheader, and is used to indicate the starting position of the adaptation layer information carried in the tail of the MAC SDU in the first data packet.
  • the tail of the PDCP PDU referred to here refers to the adjacent part after the PDCP PDU.
  • the RLC layer may perform segmentation processing on the PDCP PDU. If the PDCP PDU undergoes segmentation processing on the RLC layer, the PDCP PDU may be divided into at least two segments, “PDCP "Means any one of at least two segments, and" a segment of PDCP PDU "includes only a part of PDCP PDU.
  • the RLC layer may also be segmentation processing of the RLC SDU.
  • the RLC SDU may be obtained by adding adaptation layer information on the basis of the PDCP PDU, for example, before the PDCP PDU or before the PDCP PDU. After that, the adaptation layer information is added to obtain the RLC SDU referred to here.
  • the first node may add the adaptation layer information at the front of the RLC PDU.
  • the adaptation layer information is located between the MAC sub-header and the RLC header.
  • FIG. 4 (d) As shown.
  • the front part of the RLC PDU here refers to the adjacent part before the RLC PDU.
  • the addition of adaptation layer information may be performed by an independent adaptation layer, which is located between the RLC layer and the MAC layer; or, the addition of adaptation layer information may also be performed by the first The node performs at the RLC layer on the sending side of the backhaul link; alternatively, the addition of the adaptation layer information may also be performed by the first node at the MAC layer on the sending side of the backhaul link.
  • the adaptation layer information is added in the MAC subheader by the MAC layer of the first node on the sending side of the backhaul link.
  • the first node determines the RLC channel on the sending side according to the mapping relationship between the bearer to which the PDCP PDU belongs and the RLC channel of the backhaul link, and then submits the PDCP PDU to the RLC channel
  • the corresponding RLC entity performs RLC layer processing to obtain RLC PDU.
  • the RLC PDU may include a section of the RLC header and PDCP PDU; or, the RLC PDU includes all of the RLC header and PDCP PDU.
  • the first node After obtaining the RLC PDU, the first node adds the adaptation layer information before the RLC PDU, and then submits the RLC PDU with the adaptation layer information added to the MAC layer for processing through the logical channel corresponding to the RLC channel.
  • the MAC layer of the first node is Before the adaptation layer information and RLC PDU, add a MAC subheader to obtain the first data packet; or, in another possible scenario, after the first node obtains the RLC PDU, the RLC PDU is delivered to the MAC layer through the logical channel corresponding to the RLC channel Processing, the MAC layer of the first node adds a MAC subheader before the RLC PDU, and the MAC subheader contains the adaptation layer information.
  • the second information may be located in the MAC subheader or the adaptation layer information, and the second information is used to indicate a starting position of the adaptation layer information in the first data packet And / or end position.
  • the adaptation layer may also support the function of data packet concatenation. Specifically, the adaptation layer may splice the SDUs of the adaptation layer to obtain the PDU of the adaptation layer, and then send the PDU of the adaptation layer to the protocol layer below the adaptation layer for subsequent transmission-side processing, cascading
  • the data packet format of the PDU in the post-adaptation layer is shown in Figure 5.
  • the header information added by the adaptation layer also needs to carry a length indication, which is used to indicate the length of each adaptation layer SDU in the concatenated data packet.
  • the configuration information provided by the host node to the IAB node includes whether to allow cascading capability configuration and the upper limit of the cascading packet size.
  • the configuration information can be carried in, for example, the F1 application protocol (F1 application protocol (F1AP) message sent to the DU part of the IAB node, or the radio resource control (Radio resource control, RRC) sent to the MT part of the IAB node ) In the message.
  • F1 application protocol F1 application protocol (F1AP) message sent to the DU part of the IAB node
  • RRC Radio resource control
  • the first node may add adaptation layer information at the front of the PDCP PDU, in which case the adaptation layer information is located in a section of the RLC header and the PDCP PDU or the PDCP PDU between.
  • the addition of the adaptation layer information may be performed by an independent adaptation layer, which is located above the RLC layer; or, the addition of the adaptation layer information may also be performed by the RLC of the first node on the sending side of the backhaul link
  • the layer is executed, and the added adaptation layer information is regarded as a part of the RLC header.
  • the front part of the PDCP PDU here refers to the adjacent part before the PDCP PDU.
  • a part of the adaptation layer information is carried between the RLC header and the PDCP PDU or a section of the PDCP PDU, and the other part is carried in the MAC sub-header. It should be noted that if the MAC subheader carries part of the adaptation layer information, the addition of this part of the adaptation layer information is performed by the MAC layer of the first node on the sending side of the backhaul link.
  • the first node after acquiring the PDCP PDU, the first node adds the adaptation layer information before the PDCP PDU.
  • the first node may determine the RLC channel on the sending side according to the mapping relationship between the bearer to which the PDCP PDU belongs and the RLC channel of the backhaul link, and then deliver the PDCP PDU with the adaptation layer information added to the RLC corresponding to the RLC channel
  • the entity performs RLC layer processing to obtain RLC PDU.
  • the RLC PDU may include the RLC header, all the adaptation layer information, and the PDCP PDU; or, the RLC PDU includes the RLC header, the adaptation layer information, or all of the PDCP PDU; A section of distribution layer information, all of PDCP PDUs; or, RLC PDUs include a section or all of adaptation layer information; or RLC PDUs include a section or all of PDCP PDUs.
  • the first node submits the RLC PDU to the MAC layer for processing through a logical channel corresponding to the RLC channel.
  • the MAC layer of the first node adds a MAC subheader before the RLC PDU to obtain the first data packet.
  • the second information may be located in the MAC subheader or the adaptation layer information or the RLC header, and the second information is used to indicate that the adaptation layer information is in the first data The start position and / or end position in the package.
  • the adaptation layer may also support the function of cascading data packets.
  • the adaptation layer may also support the function of cascading data packets.
  • multiple RLC channels may be mapped (or multiplexed) onto the same logical channel, or one RLC channel may be mapped one-to-one onto a logical channel (ie, no Multiple RLC channels are multiplexed into one logical channel).
  • the corresponding RLC channel can be identified by using the logical channel identifier of the LCH, but when multiple RLC channels of the backhaul link are multiplexed into one LCH At the time of the above, the RLC channel cannot be determined using only the logical channel identifier of the LCH, and additional information is required.
  • the first information may be used to instruct the second node to acquire the adaptation layer information to determine the RLC channel.
  • the second node may use the adaptation layer information
  • the first information in addition to the first information used to instruct the second node to acquire the adaptation layer information, the first information may also be used to indicate that the second node does not acquire the adaptation layer information, and may also be determined RLC channels.
  • the bearers of multiple terminal devices may be mapped to the same RLC channel.
  • the RLC channel and the logical channel may be kept one-to-one mapping.
  • the second node may not obtain Adaptation layer information.
  • the first information may also be used to instruct the second node not to obtain adaptation layer information.
  • the second node does not need to use the adaptation layer information, but only according to the logical channel identifier LCID carried in the MAC subheader. Determine the RLC channel or the RLC entity corresponding to the RLC channel.
  • the first information may include at least one bit.
  • the first information may have at least two different values, and each value indicates different content.
  • the first information is used to instruct the second node to obtain the adaptation layer information; when the first information is a second value, the The first information is used to instruct the second node not to acquire the adaptation layer information.
  • the length of the first information is 1 bit, when its value is 0, it is used to indicate that the first information is used to instruct the second node not to obtain the adaptation layer information; when its value is 1, it is used to The indication first information is used to instruct the second node to acquire the adaptation layer information.
  • the length of the first information may be greater than 1 bit.
  • the correspondence between the value of the first information and whether the second node obtains the adaptation layer information may also exist. for example.
  • the second node when the second node determines the RLC channel corresponding to the first data packet, it may need to obtain adaptation layer information according to the first information, and when the second node performs other steps according to the adaptation layer information, For example, the routing information of the first data packet is determined according to the adaptation layer information, and it may not be necessary to obtain the adaptation layer information according to the first information.
  • the first logical channel corresponding to the first data packet may map at least two RLC channels;
  • the first information is used to indicate that the first logical channel uniquely maps an RLC channel if the second node does not acquire the adaptation layer information.
  • the first information may also instruct the second node to acquire the adaptation layer information by indicating the mapping relationship between the first logical channel and the RLC channel corresponding to the first data packet.
  • the first information indicates that the first logical channel maps at least two RLC channels, it is used to instruct the second node to obtain adaptation layer information to determine the RLC channel in combination with the adaptation layer information; correspondingly, the first information indicates When the first logical channel is uniquely mapped to an RLC channel, it is used to instruct the second node not to acquire the adaptation layer information, and the RLC channel can be determined only according to the logical channel identifier.
  • the length of the first information is 1 bit. When its value is 1, it is used to instruct the first logical channel to map at least two RLC channels; when its value is 0, it is used to instruct the first logical channel to map only one RLC. channel.
  • the length of the first information may be greater than 1 bit.
  • Instructions At this time, it may be determined whether to acquire the adaptation layer information according to the mapping relationship between the first logical channel and the RLC channel.
  • the first information may be carried in the MAC subheader of the first data packet.
  • part or all of the adaptation layer information may also be carried in the MAC subheader.
  • An example in this case The format of a versatile MAC subheader is shown in Figure 7.
  • Figure 7 is just an example, and the MAC subheader may also include only the first information or the adaptation layer information, which will not be described one by one here.
  • R stands for reserved bits and is generally set to 0
  • F is the format field.
  • LCID stands for logical channel identification, used to identify logical channels
  • L is the length field (length), used to indicate the size of the MAC SDU or variable length MAC control element (control) element (CE)
  • CE variable length MAC control element
  • L takes 2 bytes as an example, but the format of the MAC subheader should not be limited to this.
  • X is an optional field, which may be a reserved bit, or may be used to indicate whether the MAC subheader contains a cell identification field, or may also indicate a length option of the terminal device identification field.
  • X is used as 1bit is used as an example, but the actual length of X can also be other values, not limited to this.
  • the bearer identification field includes the bearer identification of the terminal device, which is used to identify the data radio bearer (DRB) and / or signaling radio bearer (SRB) of the terminal device.
  • the length may be 6 bits, but the embodiment of the present application is not limited to this length value, and the length of the bearer identification field may also be other values.
  • FIG. 7 uses 6 bits as an example.
  • the terminal device identification field includes the terminal device identification.
  • the terminal device identification in the embodiment of the present application may be the C-RNTI of the terminal device, or may be allocated to the terminal device such as the IMSI, TMSI, and CU of the terminal device.
  • the specific form of the terminal device identifier is not limited in the embodiments of the present application.
  • the cell identification field is an identification of the cell to which the terminal device belongs and is an optional field. For example, when the terminal device identification is C-RNTI, the cell identification field exists, and when the terminal device identification is IMSI, the cell identification field may not be required. In FIG. 7 of the embodiment of the present application, the cell identification field occupies 8 bits as an example, but the length occupied by the field field is not limited in advance.
  • the adaptation layer information in the embodiments of the present application can be used by function modules in multiple protocol layers.
  • the adaptation layer information can be used by the MAC layer to determine the RLC channel, and the adaptation layer information can also be used by other protocol layers or functional modules.
  • the distribution layer information can be used to determine the RLC channel by the protocol layer between the MAC and RLC layers in the second node.
  • the terminal device identification can be used by the RLC layer or the routing function module above the RLC layer to determine the transmission of data packets.
  • One-hop node can be used by the RLC layer or the routing function module above the RLC layer to determine the transmission of data packets.
  • the first information may also be included in the header information of the RLC layer, or may also be included in the header information of the adaptation layer as an independent protocol layer, which is not described one by one here.
  • the second node may obtain the adaptation from the first data packet according to the location indicated by the second information ⁇ ⁇ Layer information. If the first data packet does not include the second information, the adaptation layer information is located at a preset position in the first data packet, at which time the second node can obtain the adaptation layer from the preset position in the first data packet information.
  • the second node may determine that the first logical channel identifier in the first data packet corresponds to the first information used to instruct the second node to obtain the adaptation layer information
  • the first logical channel is mapped to at least two RLC channels.
  • the second node can thus determine the first logical channel through the first logical channel identifier in the first data packet, and can then, in at least two RLC channels mapped with the first logical channel, communicate with the terminal device included in the adaptation layer information
  • the RLC channel corresponding to the identifier and the bearer identifier of the terminal device is determined to be the first RLC channel corresponding to the first data packet, and then part of the content in the first data packet (such as RLC PDU) is submitted to the corresponding RLC channel RLC entity processing.
  • the first information when used to instruct the second node not to acquire the adaptation layer information, it may be determined that the first logical channel corresponding to the first logical channel identifier in the first data packet maps an RLC channel.
  • the second node can thus determine the first logical channel by the first logical channel identifier in the first data packet, and then can determine the RLC channel corresponding to the first logical channel as the first RLC channel, and then the first logical channel Part of the content (such as RLC PDU) is submitted to the RLC entity corresponding to the first RLC channel for processing.
  • the first data packet may not include the first information, but the attribute information of each logical channel is pre-configured by the host node or the parent node of the first node, and the node on the receiving side receives the data packet Afterwards, it can be determined whether to acquire the adaptation layer information in the data packet according to the attribute information of the logical channel corresponding to the data packet to determine the RLC channel, which will be described in detail below.
  • FIG. 8 shows a schematic flowchart of a data transmission method provided by an embodiment of the present application. This method can be applied to the communication system shown in FIG. 1, but the embodiments of the present application are not limited thereto. Referring to Figure 8, the method includes:
  • Step 801 The first node sends the first data packet to the second node.
  • Step 802 The second node receives the first data packet sent by the first node.
  • the first data packet includes adaptation layer information, a first logical channel identifier and second information, and the second information is used to indicate the location of the adaptation layer information in the first data packet;
  • Step 803 The second node obtains the adaptation layer information from the first data packet according to the first logical channel identifier and the second information.
  • the first node and the second node are nodes in wireless relay communication.
  • steps 801 to 803 regarding the adaptation layer information, the second information, etc., reference may be made to the description in the flow shown in FIG. 2, which will not be repeated here.
  • the second node may receive third information sent by a third node, where the third node is a parent node or a host node of the second node in the wireless relay communication.
  • the host node may also be a centralized unit CU of the host node; or when the CU has the form of separation of CU-CP and CU-UP, the host node may also be CU- CP, but this embodiment of the present application does not limit this.
  • the CU and DU referred to herein are components of a logical base station gNB, where the CU generally has PDCP and RRC protocol layer functions, and the DU generally has RLC, MAC and PHY protocol layer functions.
  • CU can also be divided into CU-CP and CU-UP, where CU-CP can have RRC and PDCP protocol layer functions, and CU-UP can have SDAP and PDCP protocol layer functions.
  • the third information includes the first logical channel identifier; or, the third information includes the first logical channel identifier and attribute information of the first logical channel identifier, and the attribute information is used to indicate the Whether the second node obtains the adaptation layer information.
  • the third information includes the first logical channel identifier and does not include the attribute information of the first logical channel identifier, it indicates that the logical channel corresponding to the first logical channel identifier maps at least two RLC channels, and the second node is receiving
  • the adaptation layer information needs to be obtained from the first data packet, and then the RLC channel corresponding to the first data packet is determined in conjunction with the adaptation layer information.
  • the second node determines that the logical channel corresponding to the first logical channel identifier maps at least two RLC channels according to the first logical channel identifier, so that the second node can pass the first
  • the first logical channel identifier in the data packet determines the first logical channel, and then, in at least two RLC channels mapped with the first logical channel, it can be compared with the terminal device identifier and the terminal device bearer identifier contained in the adaptation layer information.
  • the corresponding RLC channel is determined to be the first RLC channel corresponding to the first data packet, and then part of the content in the first data packet (such as RLC PDU) is submitted to the RLC entity corresponding to the first RLC channel for processing.
  • the attribute information of the first logical channel identifier may have multiple implementation manners.
  • the attribute information is a first preset value
  • the attribute information is used to instruct the second node to obtain the adaptation layer information
  • the attribute information is a second preset
  • the attribute information is used to instruct the second node not to obtain the adaptation layer information.
  • step 803 when the second node determines that the attribute information is the first preset value, it obtains the first data packet from the first data packet according to the position indicated by the second information
  • the adaptation layer information in combination with the adaptation layer information, determines the RLC channel corresponding to the first data packet.
  • the second node determines that the attribute information is the second preset value, it determines that it is not necessary to acquire the adaptation layer information, so that it is not necessary to determine the RLC channel corresponding to the first data packet according to the adaptation layer information.
  • the attribute information indicates the RLC channel ID of the RLC channel mapped by the first logical channel ID, or the attribute information indicates the RLC channel corresponding to the first logical channel ID Bearer ID.
  • step 803 when the second node determines that the number of RLC channel identifiers or bearer identifiers mapped by the first logical channel identifier is greater than 1, according to the attribute information, according to the location indicated by the second information, Obtain the adaptation layer information from the first data packet, and then determine the RLC channel corresponding to the first data packet in combination with the adaptation layer information.
  • the second node determines, according to the attribute information, that the number of RLC channel identifiers or bearer identifiers mapped by the first logical channel identifier is equal to 1, it determines that it is not necessary to acquire the adaptation layer information, so that it does not need to be based on the adaptation layer information Determine the RLC channel corresponding to the first data packet.
  • the second node may determine that the first logical channel maps at least two RLC channels when the attribute information is used to instruct the second node to obtain the adaptation layer information.
  • the second node can thus determine the first logical channel through the first logical channel identifier in the first data packet, and can then, in at least two RLC channels mapped with the first logical channel, communicate with the terminal device included in the adaptation layer information
  • the RLC channel corresponding to the identifier and the bearer identifier of the terminal device is determined as the first RLC channel corresponding to the first data packet, and then part of the content in the first data packet (such as RLC PDU) is submitted to the corresponding RLC channel RLC entity processing.
  • the attribute information when used to instruct the second node not to acquire the adaptation layer information, it may be determined that the first logical channel corresponding to the first logical channel identifier in the first data packet maps an RLC channel.
  • the second node can thus determine the first logical channel by the first logical channel identifier in the first data packet, and then can determine the RLC channel mapped to the first logical channel as the first RLC channel, and then the first logical channel Part of the content (such as RLC PDU) is submitted to the RLC entity corresponding to the first RLC channel for processing.
  • FIG. 9 shows a data transmission device 900 provided by an embodiment of the present application.
  • the device 900 may be a wireless backhaul node or a chip in the wireless backhaul node.
  • the device 900 includes a processing unit 901 and a transceiver unit 902.
  • the device 900 executes the method of the first node in the flow of FIG. 2, the functions are as follows:
  • the processing unit 901 is configured to generate a first data packet by the first node
  • the transceiver unit 902 is configured to send the first data packet to a second node; the first data packet includes adaptation layer information and first information; or, the first data packet includes the adaptation layer Information, the first information and the second information; wherein, the first information is used to instruct the second node to acquire the adaptation layer information, and the second information is used to indicate that the adaptation layer information is in The location in the first data packet; the first node and the second node are nodes in wireless relay communication.
  • the first data packet includes a media access control MAC subheader, a radio link control RLC header, a packet data aggregation protocol PDCP protocol data unit PDU, or a section of a PDCP PDU;
  • the MAC sub-header or the RLC header includes the first information
  • the adaptation layer information is located after the PDCP PDU or a section in one PDCP PDU.
  • the MAC subheader or the RLC header further includes the second information, where the second information is used to indicate the start of the adaptation layer information in the first data packet Starting position.
  • the first data packet includes a MAC subheader, an RLC header, a PDCP PDU, or a section of a PDCP PDU;
  • the MAC sub-header or the adaptation layer information or the RLC header includes the first information; the adaptation layer information is located between the MAC sub-header and the RLC header.
  • the MAC subheader or the adaptation layer information further includes the second information, and the second information is used to indicate that the adaptation layer information is in the first data packet Start position and / or end position.
  • the first data packet includes a MAC subheader, an RLC header, a PDCP PDU, or a section of a PDCP PDU;
  • the MAC sub-header or the adaptation layer information or the RLC header includes the first information
  • the adaptation layer information is located between the RLC header and the PDCP PDU or a section of a PDCP PDU.
  • the MAC subheader or the adaptation layer information or the RLC header further includes the second information, and the second information is used to indicate that the adaptation layer information is in the The start position and / or end position in the first data packet.
  • the first logical channel corresponding to the first data packet maps at least two RLC channels.
  • the device 900 executes the method of the second node in the flow of FIG. 2, the functions are as follows:
  • the transceiver unit 902 is configured to receive a first data packet sent by a first node; wherein, the first data packet includes adaptation layer information, first information, and second information; or, the first data packet includes The adaptation layer information, the first information, and the second information; the first information is used to instruct the second node to obtain the adaptation layer information, and the second information is used to indicate the adaptation The position of the layer information in the first data packet;
  • the processing unit 901 is configured to obtain the adaptation layer information from the first data packet according to the first information and the second information, or according to the first information; according to the adaptation layer information Determining a first radio link control RLC channel corresponding to the first data packet, and processing the first data packet through an RLC entity corresponding to the first RLC channel.
  • the first data packet includes a media access control MAC subheader, a radio link control RLC header, a packet data aggregation protocol PDCP protocol data unit PDU, or a section of a PDCP PDU;
  • the MAC sub-header or the RLC header includes the first information
  • the adaptation layer information is located after the PDCP PDU or a section in one PDCP PDU.
  • the MAC subheader or the RLC header further includes the second information, where the second information is used to indicate the start of the adaptation layer information in the first data packet Starting position.
  • the first data packet includes a MAC subheader, an RLC header, a PDCP PDU, or a section of a PDCP PDU;
  • the MAC sub-header or the adaptation layer information or the RLC header includes the first information; the adaptation layer information is located between the MAC sub-header and the RLC header.
  • the MAC subheader or the adaptation layer information further includes the second information, and the second information is used to indicate that the adaptation layer information is in the first data packet Start position and / or end position.
  • the first data packet includes a MAC subheader, an RLC header, a PDCP PDU, or a section of a PDCP PDU;
  • the MAC sub-header or the adaptation layer information or the RLC header includes the first information
  • the adaptation layer information is located between the RLC header and the PDCP PDU or a section of a PDCP PDU.
  • the MAC subheader or the adaptation layer information or the RLC header further includes the second information, and the second information is used to indicate that the adaptation layer information is in the The start position and / or end position in the first data packet.
  • the first information is used to instruct the second node to acquire the adaptation layer information, and the first logical channel corresponding to the first data packet maps at least two RLC channels.
  • the adaptation layer information includes a terminal device identifier of the terminal device and a bearer identifier of the terminal device;
  • the processing unit 901 is specifically used to:
  • the RLC channel corresponding to the terminal device identifier and the bearer identifier of the terminal device in the adaptation layer information Determining, among the at least two RLC channels, the RLC channel corresponding to the terminal device identifier and the bearer identifier of the terminal device in the adaptation layer information as the first RLC channel.
  • the transceiver unit 902 is configured to receive a first data packet sent by a first node; wherein, the first data packet includes adaptation layer information, a first logical channel identifier, and second information, and the second information is used to indicate The location of the adaptation layer information in the first data packet;
  • the processing unit 901 is configured to obtain the adaptation layer information from the first data packet according to the first logical channel identifier and the second information.
  • the transceiver unit 902 is also used to:
  • the third information includes the first logical channel identifier; or, the third information includes the first logical channel identifier and attribute information of the first logical channel identifier, and the attribute information is used to indicate the Whether the second node obtains the adaptation layer information.
  • the attribute information when the attribute information is a first preset value, the attribute information is used to instruct the second node to obtain the adaptation layer information;
  • the attribute information is used to instruct the second node not to acquire the adaptation layer information.
  • processing unit 901 is specifically used to:
  • the adaptation layer information is obtained from the first data packet according to the position indicated by the second information.
  • the attribute information indicates the RLC channel ID of the RLC channel mapped by the first logical channel ID, or the attribute information indicates the bearer corresponding to the RLC channel mapped by the first logical channel ID Logo.
  • processing unit 901 is specifically used to:
  • FIG. 10 shows a data transmission device provided by an embodiment of the present application.
  • the device shown in FIG. 10 may be a hardware circuit implementation of the device shown in FIG. 9.
  • FIG. 10 shows only the main components of the device.
  • the device 1000 may be a wireless backhaul node, may also be a chip in the wireless backhaul node, or may be a device or module in the wireless backhaul node for implementing related functions.
  • the device 1000 includes a processor 1001, a transceiver 1002, and a memory 1003.
  • the processor 1001 is configured to generate a first data packet by the first node
  • the transceiver 1002 is configured to send the first data packet to a second node; the first data packet includes adaptation layer information and first information; or, the first data packet includes the adaptation layer Information, the first information and the second information; wherein, the first information is used to instruct the second node to acquire the adaptation layer information, and the second information is used to indicate that the adaptation layer information is in The location in the first data packet; the first node and the second node are nodes in wireless relay communication.
  • the first data packet includes a media access control MAC subheader, a radio link control RLC header, a packet data aggregation protocol PDCP protocol data unit PDU, or a section of a PDCP PDU;
  • the MAC sub-header or the RLC header includes the first information
  • the adaptation layer information is located after the PDCP PDU or a section in one PDCP PDU.
  • the MAC subheader or the RLC header further includes the second information, where the second information is used to indicate the start of the adaptation layer information in the first data packet Starting position.
  • the first data packet includes a MAC subheader, an RLC header, a PDCP PDU, or a section of a PDCP PDU;
  • the MAC sub-header or the adaptation layer information or the RLC header includes the first information; the adaptation layer information is located between the MAC sub-header and the RLC header.
  • the MAC subheader or the adaptation layer information further includes the second information, and the second information is used to indicate that the adaptation layer information is in the first data packet Start position and / or end position.
  • the first data packet includes a MAC subheader, an RLC header, a PDCP PDU, or a section of a PDCP PDU;
  • the MAC sub-header or the adaptation layer information or the RLC header includes the first information
  • the adaptation layer information is located between the RLC header and the PDCP PDU or a section of a PDCP PDU.
  • the MAC subheader or the adaptation layer information or the RLC header further includes the second information, and the second information is used to indicate that the adaptation layer information is in the The start position and / or end position in the first data packet.
  • the first logical channel corresponding to the first data packet maps at least two RLC channels.
  • the transceiver 1002 is configured to receive a first data packet sent by a first node; wherein, the first data packet includes adaptation layer information, first information, and second information; or, the first data packet includes The adaptation layer information, the first information, and the second information; the first information is used to instruct the second node to obtain the adaptation layer information, and the second information is used to indicate the adaptation The position of the layer information in the first data packet;
  • the processor 1001 is configured to obtain the adaptation layer information from the first data packet according to the first information and the second information, or according to the first information; according to the adaptation layer information Determining a first radio link control RLC channel corresponding to the first data packet, and processing the first data packet through an RLC entity corresponding to the first RLC channel.
  • the first data packet includes a media access control MAC subheader, a radio link control RLC header, a packet data aggregation protocol PDCP protocol data unit PDU, or a section of a PDCP PDU;
  • the MAC sub-header or the RLC header includes the first information
  • the adaptation layer information is located after the PDCP PDU or a section in one PDCP PDU.
  • the MAC subheader or the RLC header further includes the second information, where the second information is used to indicate the start of the adaptation layer information in the first data packet Starting position.
  • the first data packet includes a MAC subheader, an RLC header, a PDCP PDU, or a section of a PDCP PDU;
  • the MAC sub-header or the adaptation layer information or the RLC header includes the first information; the adaptation layer information is located between the MAC sub-header and the RLC header.
  • the MAC subheader or the adaptation layer information further includes the second information, and the second information is used to indicate that the adaptation layer information is in the first data packet Start position and / or end position.
  • the first data packet includes a MAC subheader, an RLC header, a PDCP PDU, or a section of a PDCP PDU;
  • the MAC sub-header or the adaptation layer information or the RLC header includes the first information
  • the adaptation layer information is located between the RLC header and the PDCP PDU or a section of a PDCP PDU.
  • the MAC subheader or the adaptation layer information or the RLC header further includes the second information, and the second information is used to indicate that the adaptation layer information is in the The start position and / or end position in the first data packet.
  • the first information is used to instruct the second node to acquire the adaptation layer information, and the first logical channel corresponding to the first data packet maps at least two RLC channels.
  • the adaptation layer information includes a terminal device identifier of the terminal device and a bearer identifier of the terminal device;
  • the processor 1001 is specifically used for:
  • the RLC channel corresponding to the terminal device identifier and the bearer identifier of the terminal device in the adaptation layer information Determining, among the at least two RLC channels, the RLC channel corresponding to the terminal device identifier and the bearer identifier of the terminal device in the adaptation layer information as the first RLC channel.
  • the transceiver 1002 is configured to receive a first data packet sent by a first node; wherein, the first data packet includes adaptation layer information, a first logical channel identifier, and second information, and the second information is used to indicate The location of the adaptation layer information in the first data packet;
  • the processor 1001 is configured to obtain the adaptation layer information from the first data packet according to the first logical channel identifier and the second information.
  • the transceiver 1002 is also used for:
  • the third information includes the first logical channel identifier; or, the third information includes the first logical channel identifier and attribute information of the first logical channel identifier, and the attribute information is used to indicate the Whether the second node obtains the adaptation layer information.
  • the attribute information when the attribute information is a first preset value, the attribute information is used to instruct the second node to obtain the adaptation layer information;
  • the attribute information is used to instruct the second node not to acquire the adaptation layer information.
  • the processor 1001 is specifically used to:
  • the adaptation layer information is obtained from the first data packet according to the position indicated by the second information.
  • the attribute information indicates the RLC channel ID of the RLC channel mapped by the first logical channel ID, or the attribute information indicates the bearer corresponding to the RLC channel mapped by the first logical channel ID Logo.
  • the processor 1001 is specifically used to:
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual couplings or direct couplings or communication connections may be indirect couplings or communication connections through some interfaces, devices, or units, and may also be electrical, mechanical, or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units are integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or software function unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology, or all or part of the technical solution can be embodied in the form of a software product
  • the computer software product is stored in a storage medium
  • several instructions are included to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

一种数据传输方法及装置,其中方法包括:第一节点生成第一数据包;所述第一节点向第二节点发送所述第一数据包;所述第一数据包中包括适配层信息和第一信息;或者,所述第一数据包中包括所述适配层信息、所述第一信息和第二信息;其中,所述第一信息用于指示所述第二节点获取所述适配层信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;所述第一节点和所述第二节点为无线中继通信中的节点。通过上述方法,无线回传链路的接收侧,能够根据第一信息区分逻辑信道和RLC信道之间的映射关系,从而确定逻辑信道映射的RLC信道,从而可以将数据包递交给正确的RLC实体进行处理。

Description

一种数据传输方法及装置
相关申请的交叉引用
本申请要求在2018年10月26日提交中国专利局、申请号为201811261117.X、申请名称为“一种数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
相较于第四代移动通信系统,第五代移动通信系统(5th-generation,5G)针对网络各项性能指标,全方位得都提出了更严苛的要求。例如,容量指标提升1000倍,更广的覆盖需求、超高可靠超低时延等。一方面,考虑到高频载波频率资源丰富,在热点区域,为满足5G超高容量需求,利用高频小站组网愈发流行。高频载波传播特性较差,受遮挡衰减严重,覆盖范围不广,故而需要大量密集部署小站,相应地,为这些大量密集部署的小站提供光纤回传的代价很高,施工难度大,因此需要经济便捷的回传方案;另一方面,从广覆盖需求的角度出发,在一些偏远地区提供网络覆盖,光纤的部署难度大,成本高,也需要设计灵活便利的接入和回传方案。5G中引入了接入回传一体化(integrated access and backhaul,IAB)网络技术,IAB网络中的接入链路(access link)和回传链路(backhaul link)皆采用无线传输方案,避免光纤部署,从而降低部署成本,提高部署灵活性。
在IAB网络中,无线回传节点可以为终端设备提供无线接入服务,该无线回传节点又可以称为IAB节点(IAB node)或中继节点(relay node,RN)。终端设备的业务数据可以由无线回传节点通过无线回传链路连接到宿主节点传输,宿主节点可以是指IAB宿主(IAB donor)或者宿主基站(donor gNodeB,DgNB)。IAB网络的回传链路上,一个无线回传节点可以汇聚有多个终端设备的不同无线承载的业务。因此,为了满足回传链路上多个终端设备业务汇聚的需求,回传链路中,多个不同的终端设备的承载可以映射到同一个回传链路的无线链路控制(radio link control,RLC)信道(channel)上;或者,每个终端设备的承载可以一对一映射到一个RLC channel上,相应地,回传链路上的RLC channel的数量将随着终端设备的数量和每个终端设备支持的无线承载数量的增加而增加。
然而,现有技术中,RLC channel和逻辑信道之间是一一映射的,且逻辑信道标识(Logical channel identifier,LCID)的空间十分有限。因此,在IAB网络中,为了在回传链路利用有限数量的逻辑信道传输多个UE的多种类型业务,回传链路的多个RLC channel可以映射(或复用multiplex)到同一个逻辑信道(logical channel,LCH)上,或者回传链路的一个RLC channel一对一的映射到一个LCH上(即不将多个RLC channel复用到一个LCH)。当回传链路的RLC channel和LCH之间一对一映射时,利用LCH的逻辑信道标识即可识别出相应的RLC channel,但当回传链路的多个RLC channel被复用到一个LCH上时,仅利用LCH的逻辑信道标识无法确定RLC channel。如何在回传链路区分不同RLC channel和逻辑信道之间的对应关系,准确的识别出RLC channel,从而在IAB网络中进行 数据传输,是一个亟待解决的技术问题。
发明内容
本申请实施例提供一种数据传输方法及装置,用以解决如何在IAB网络中进行数据传输的问题。
第一方面,本申请实施例提供一种数据传输方法,该方法包括:第一节点生成第一数据包;所述第一节点向第二节点发送所述第一数据包;所述第一数据包中包括适配层信息和第一信息;或者,所述第一数据包中包括所述适配层信息、所述第一信息和第二信息;其中,所述第一信息用于指示所述第二节点获取所述适配层信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;所述第一节点和所述第二节点为无线中继通信中的节点。
上述方法中,当第一信息指示第二节点获取所述适配层信息时,第二节点可以根据适配层信息确定出第一数据包对应的RLC信道。通过上述方法,无线回传链路的接收侧,能够根据第一信息区分逻辑信道和RLC信道之间的映射关系,从而确定逻辑信道映射的RLC信道,从而可以将数据包递交给正确的RLC实体进行处理。
一种可能的设计中,所述第一数据包中包括媒体接入控制MAC子头、无线链路控制RLC头、分组数据汇聚协议PDCP协议数据单元PDU或一个PDCP PDU中的一段;
示例性的,所述MAC子头或者所述RLC头包括所述第一信息,所述适配层信息位于所述PDCP PDU或一个PDCP PDU中的一段之后。
示例性的,本申请实施例中,所述MAC子头(MAC sub-header)是MAC层在MAC SDU之前添加的头信息。
上述方法中,可以通过统一的包格式,同时支持终端设备承载到回传链路的RLC channel的一对一映射,以及支持终端设备承载到回传链路的RLC channel的多对一映射方式。
一种可能的设计中,所述MAC子头或所述RLC头中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的起始位置。
一种可能的设计中,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;
其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;所述适配层信息位于所述MAC子头与所述RLC头之间。
一种可能的设计中,所述MAC子头或所述适配层信息中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
一种可能的设计中,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;
其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;
所述适配层信息位于所述RLC头与所述PDCP PDU或一个PDCP PDU中的一段之间。
一种可能的设计中,所述MAC子头或者所述适配层信息或者所述RLC头中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
一种可能的设计中,所述第一信息用于指示所述第二节点获取所述适配层信息的情况 下,所述第一数据包对应的第一逻辑信道映射至少两个RLC信道。
第二方面,本申请实施例提供一种数据传输装置,所述数据传输装置包括处理器,所述处理器与存储器耦合,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,以执行上述第一方面或第一方面中任一种可能的设计中的方法。可选的,所述数据传输装置还可以包括所述存储器。可选的,所述数据传输装置还可以包括收发器,用于支持所述通信装置进行上述方法中的信息发送和/或接收。可选的,该数据传输装置可以是IAB节点,也可以是IAB节点中的装置,如芯片或者芯片系统,其中所述芯片系统包含至少一个芯片,所述芯片系统还可以包括其他电路结构和/或分立器件。
第三方面,本申请实施例提供一种数据传输装置,用于实现上述第一方面或第一方面中的任意一种方法,包括相应的功能模块,例如包括处理单元、收发单元等,分别用于实现以上方法中的步骤。
第四方面,本申请实施例提供一种数据传输方法,包括:第二节点接收第一节点发送的第一数据包;其中,所述第一数据包中包括适配层信息、第一信息和第二信息;或者,所述第一数据包中包括所述适配层信息、所述第一信息和第二信息;所述第一信息用于指示所述第二节点获取所述适配层信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;所述第二节点根据所述第一信息和所述第二信息,或者根据所述第一信息,从所述第一数据包中获取所述适配层信息;所述第二节点根据所述适配层信息确定所述第一数据包对应的第一无线链路控制RLC信道,并通过所述第一RLC信道对应的RLC实体处理所述第一数据包。
上述方法中,当第一信息指示第二节点获取所述适配层信息时,第二节点可以根据适配层信息确定出第一数据包对应的RLC信道。通过上述方法,无线回传链路的接收侧,能够根据第一信息区分逻辑信道和RLC信道之间的映射关系,从而确定逻辑信道映射的RLC信道,从而可以将数据包递交给正确的RLC实体进行处理。
一种可能的设计中,所述第一数据包中包括媒体接入控制MAC子头、无线链路控制RLC头、分组数据汇聚协议PDCP协议数据单元PDU或一个PDCP PDU中的一段;
其中,所述MAC子头或者所述RLC头包括所述第一信息,所述适配层信息位于所述PDCP PDU或一个PDCP PDU中的一段之后。
一种可能的设计中,所述MAC子头或所述RLC头中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的起始位置。
一种可能的设计中,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;
其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;所述适配层信息位于所述MAC子头与所述RLC头之间。
一种可能的设计中,所述MAC子头或所述适配层信息中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
一种可能的设计中,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;所述适配层信息位于所述RLC头与所述PDCP PDU或一个PDCP PDU中的一段之间。
一种可能的设计中,所述MAC子头或者所述适配层信息或者所述RLC头中还包括所 述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
一种可能的设计中,所述第一信息用于指示所述第二节点获取所述适配层信息时,所述第一数据包对应的第一逻辑信道映射至少两个RLC信道。
一种可能的设计中,所述适配层信息包括终端设备的终端设备标识以及所述终端设备的承载标识;所述第二节点根据所述适配层信息确定所述第一数据包对应的第一无线链路控制RLC信道,包括:第二节点确定与所述第一数据包对应的第一逻辑信道标识映射的至少两个RLC信道;所述第二节点将所述至少两个RLC信道中,与所述适配层信息中的终端设备标识和该终端设备的承载标识所对应的RLC信道,作为所述第一RLC信道。
一种可能的设计中,所述适配层信息可以被不同的协议层所使用,比如,第二节点的MAC层可以根据所述适配层信息的部分或全部确定RLC信道;或者,第二节点的RLC层或独立的适配层处理可以根据所述适配层信息的部分或全部,确定第一数据包的传输下一跳节点。
第五方面,本申请实施例提供一种数据传输装置,所述数据传输装置包括处理器,所述处理器与存储器耦合,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,以执行上述第四方面或第四方面中任一种可能的设计中的方法。可选的,所述数据传输装置还可以包括所述存储器。可选的,所述数据传输装置还可以包括收发器,用于支持所述通信装置进行上述方法中的信息发送和/或接收。可选的,该数据传输装置可以是IAB节点,也可以是IAB节点中的装置,如芯片或者芯片系统,其中所述芯片系统包含至少一个芯片,所述芯片系统还可以包括其他电路结构和/或分立器件。
第六方面,本申请实施例提供一种数据传输装置,用于实现上述第四方面或第四方面中的任意一种方法,包括相应的功能模块,例如包括处理单元、收发单元等,分别用于实现以上方法中的步骤。
第七方面,本申请实施例提供一种数据传输方法,包括:
第二节点接收第一节点发送的第一数据包;其中,所述第一数据包中包括适配层信息、第一逻辑信道标识和第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;所述第二节点根据所述第一逻辑信道标识和所述第二信息,从所述第一数据包中获取所述适配层信息;所述第一节点和所述第二节点为无线中继通信中的节点。
上述方法中,第二节点可以根据第一逻辑信道标识,区分逻辑信道和RLC信道之间的映射关系,从而确定逻辑信道映射的RLC信道,从而可以将数据包递交给正确的RLC实体进行处理。
一种可能的设计中,所述方法还包括:所述第二节点接收第三节点发送的第三信息,所述第三节点为在所述无线中继通信中的所述第二节点的父节点或者宿主节点;
所述第三信息包括所述第一逻辑信道标识;或者,所述第三信息包括所述第一逻辑信道标识及所述第一逻辑信道标识的属性信息,所述属性信息用于指示所述第二节点是否获取所述适配层信息。
一种可能的设计中,所述属性信息为第一预设取值时,所述属性信息用于指示所述第二节点获取所述适配层信息;所述属性信息为第二预设取值时,所述属性信息用于指示所述第二节点不获取所述适配层信息。
一种可能的设计中,所述第二节点根据所述第一逻辑信道标识和所述第二信息,从所 述第一数据包中获取所述适配层信息,包括:
所述第二节点确定所述属性信息为所述第一预设取值时,根据所述第二信息指示的位置,从所述第一数据包中获取所述适配层信息。
一种可能的设计中,所述属性信息表示出所述第一逻辑信道标识映射的RLC信道的RLC信道标识,或所述属性信息表示出所述第一逻辑信道标识映射的RLC信道对应的承载标识。
一种可能的设计中,所述第二节点根据所述第一逻辑信道标识和所述第二信息,从所述第一数据包中获取所述适配层信息,包括:
所述第二节点根据所述属性信息确定所述第一逻辑信道标识映射的RLC信道标识或承载标识的数量大于1时,根据所述第二信息指示的位置,从所述第一数据包中获取所述适配层信息。
第八方面,本申请实施例提供一种数据传输装置,所述数据传输装置包括处理器,所述处理器与存储器耦合,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,以执行上述第七方面或第七方面中任一种可能的设计中的方法。可选的,所述数据传输装置还可以包括所述存储器。可选的,所述数据传输装置还可以包括收发器,用于支持所述通信装置进行上述方法中的信息发送和/或接收。可选的,该数据传输装置可以是IAB节点,也可以是IAB节点中的装置,如芯片或者芯片系统,其中所述芯片系统包含至少一个芯片,所述芯片系统还可以包括其他电路结构和/或分立器件。
第九方面,本申请实施例提供一种数据传输装置,用于实现上述第七方面或第七方面中的任意一种方法,包括相应的功能模块,例如包括处理单元、收发单元等,分别用于实现以上方法中的步骤。
本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一种可能的设计中的方法。
本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一种可能的设计中的方法。
本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述任一种可能的设计中的方法。
本申请实施例提供一种通信装置,包括处理器,所述处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现上述任一方面或任一方面中任一种可能的设计中的方法。
本申请实施例提供一种通信系统,包括上述第二方面中的通信装置和第五方面的通信装置。
附图说明
图1示出了本申请实施例的通信系统的示意图;
图2为本申请实施例提供的一种数据传输方法流程示意;
图3为本申请实施例提供的一种数据包结构示意图;
图4(a)、图4(b)、图4(c)以及图4(d)为本申请实施例提供的一种数据包处理流程示意图;
图5为本申请实施例提供的一种适配层PDU结构示意图;
图6为本申请实施例提供的一种数据包处理流程示意图;
图7为本申请实施例提供的一种MAC子头结构示意图;
图8为本申请实施例提供的一种数据传输方法流程示意;
图9为本申请实施例提供的一种数据传输装置结构示意;
图10为本申请实施例提供的一种数据传输装置结构示意。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
应理解,本申请中所有节点、消息的名称仅仅是本申请为描述方便而设定的名称,在实际网络中的名称可能不同,不应理解本申请限定各种节点、消息的名称,相反,任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内,以下不再赘述。
本申请将支持一体化的接入和回传的节点称为无线回传节点,该无线回传节点又可以称为中继节点(relay node,RN)或IAB节点(IAB node)。无线回传节点可以为具有移动终端(mobile terminal,MT)的角色,即无线回传节点可以包括至少一个MT单元,例如,无线回传节点可以仅包括一个MT的角色,该MT是具有多连接能力的MT,该无线回传节点可以通过该MT与该无线回传节点的多个父节点之间建立回传连接;又例如,无线回传节点可以包括多个MT,该多个MT中的每个MT与该无线回传节点的一个父节点建立连接,作为该无线回传节点的一条独立回传链路。MT单元中包括分组数据汇聚协议(packet data convergence protocol,PDCP)层、适配层、无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层以及物理(physical,PHY)层等协议层。针对无线回传节点包括MT单元的情况,本申请提出了一种在无线回传网络中进行数据传输的方法。
为便于描述,下面以无线回传节点为IAB节点为例进行说明。IAB节点可以为终端设备提供无线接入服务,该终端设备的业务数据由IAB节点通过无线回传链路连接到宿主节点传输,宿主节点又称为IAB宿主(IAB donor)或者宿主基站(donor gNodeB,DgNB)。示例性地,DgNB可以是一个具有完整基站功能的接入网网元,也可以是集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离形态的接入网网元。DgNB连接到为终端设备服务的核心网网元,例如,连接到5G核心网(5G core,5GC),并为IAB节点提供无线回传功能。为便于表述,本文将宿主节点的集中式单元简称为宿主CU(donor CU),将宿主节点的分布式单元简称为宿主DU(donor DU),其中,donor CU还有可能是控制面(control plane,CP)和用户面(user plane,UP)分离的形态,例如,一个CU由一个CU-CP和多个CU-UP组成,本申请实施例对此不作限定。
考虑到业务传输可靠性的需求,可以使IAB节点支持多连接(multi-connectivity),以应对回传链路可能发生的异常情况,例如,链路的中断或阻塞(blockage)及负载波动等异常,提高传输的可靠性保障。上述多连接具体可以为双连接(dual connectivity,DC),也可以为两个以上的连接,本申请实施例对此不作限定。
IAB网络支持多跳和多连接组网,因此,在终端设备和宿主节点之间可能存在多条传输路径。在一条路径上,IAB节点之间以及IAB节点和为IAB节点提供服务的宿主节点有 确定的层级关系,在本申请实施例中,每个IAB节点将为其提供回传服务的节点视为父节点,相应地,每个IAB节点可视为其父节点的子节点。换句话说,一个IAB节点的父节点为该IAB节点在上行链路上的下一跳节点,一个IAB节点的子节点为该IAB节点在上行链路上的上一跳节点。
为描述方便,下面定义本申请实施例中用到的基本术语。
上行链路的下一跳节点(又称父节点):提供无线回传链路资源的节点。
上行链路的上一跳节点(又称子节点):使用回传链路资源向网络进行数据传输,或者接收来自网络的数据的节点,这里的网络为核心网或者其他接入网之上的网络,如因特网、专网等。
接入链路(access link,AL):接入链路是指终端设备和为它提供接入服务的节点(例如,IAB节点、宿主节点或者宿主DU)进行通信时所使用的无线链路,包括上行传输和下行传输的链路。接入链路上的上行传输也被称为接入链路的上行传输,下行传输也被称为接入链路的下行传输。
回传链路(backhaul link,BL):回传链路是指某个节点和它的父节点进行通信时所使用的无线链路,包括上行传输和下行传输的链路。回传链路上的上行传输也被称为回传链路的上行传输,下行传输也被称为回传链路的下行传输。其中的节点包括但不限于前述IAB节点。
路径(path):从发送节点至接收节点的全程路由,路径由至少一段链路(link)组成,在本申请中,链路表示相邻节点之间的连接。
为了更好地理解本申请实施例的用于无线回传网络的数据传输方法和装置,下面先对本申请实施例应用的通信系统进行描述。请参阅图1,图1为本申请实施例应用的一种通信系统的示意图。
需要说明的是,本申请实施例适用的通信系统包括但不限于:窄带物联网(narrow band-internet of things,NB-IoT)系统、无线局域网(wireless local access network,WLAN)系统、LTE系统、下一代5G移动通信系统或者5G之后的通信系统,如NR、设备到设备(device to device,D2D)通信系统。
图1所示的通信系统为一个IAB系统。该IAB系统100包括一个宿主节点、IAB节点A、IAB节点B、IAB节点C以及该IAB节点C所服务的终端设备(图1以UE 1为例)。IAB节点A的父节点为宿主节点,IAB节点A又为IAB节点C的父节点。IAB节点B的父节点为宿主节点,IAB节点B又为IAB节点C的父节点。因此,IAB节点C具有两个父节点。换句话说,IAB节点C在上行链路上包括两个下一跳节点,需经由IAB节点C发送的上行数据包可以通过两条路径传输至宿主节点。本申请将IAB节点A又称为IAB节点C的第一下一跳节点,将IAB节点B又称为IAB节点C的第二下一跳节点。
示例性地,UE 1的上行数据包可以经一个或多个IAB节点传输至宿主节点之后,再由宿主节点发送至移动网关设备(例如,5G核心网中的用户平面功能(user plane functional unit,UPF)单元),下行数据包将由宿主节点从移动网关设备处接收后,再通过IAB节点发送至UE 1。在图1中,UE 1和宿主节点之间的数据传输有两条可用的路径,路径1:UE 1←→IAB节点C←→IAB节点A←→宿主节点,路径2:UE 1←→IAB节点C←→IAB节点B←→宿主节点。
可选地,上述IAB系统100中还可以包括其他数量的终端设备和IAB节点。如图1 所示,该IAB系统100中还包括IAB节点D和该IAB节点D所服务的终端设备(图1以UE 2为例)。IAB节点D的父节点为IAB节点A,且IAB节点C也可以为UE 2提供服务。
因此,UE 2和宿主节点之间的数据传输有三条可用的路径,路径1:UE 2←→IAB节点C←→IAB节点A←→宿主节点,路径2:UE 2←→IAB节点C←→IAB节点B←→宿主节点,路径3:UE 2←→IAB节点D←→IAB节点A←→宿主节点。
图1所示的IAB系统仅仅是示例性的,在多跳和多连接结合的IAB场景中,还有更多其他的可能性,例如,宿主节点和另一宿主节点下的IAB节点组成双连接为终端设备提供服务等等,此处不再一一列举。
应理解,宿主节点可以包括但不限于:演进型节点B(evolved node base,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home node B,HNB)、基带单元(baseband Unit,BBU)、eLTE(evolved LTE,eLTE)基站、NR基站(next generation node B,gNB)等。
还应理解,终端设备可以包括但不限于:用户设备(user equipment,UE)、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理、无线局域网(wireless local access network,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等中的任意一种。
IAB节点是在IAB网络中对中继节点的特定称呼,不对本申请的方案构成限定。本申请中用IAB节点仅仅出于描述的需要,并不表示本申请的方案仅用于NR的场景,在本申请中,IAB节点可以泛指任何具有中继功能的节点或设备,示例性地,IAB节点可以是一种具有转发功能的上述基站或者终端设备中的任意一种,也可以是一种独立的设备形态,本申请实施例对此不作限定。
此外,IAB的用户面协议架构有多种备选方案,可以分为层2的IAB架构和层3的IAB架构。图1所示的IAB节点,例如,IAB节点A、IAB节点B、IAB节点C,可以有两种存在的形态:一种是作为一个独立的接入节点存在,可以独立管理接入到IAB节点的终端设备,这种形态的中继通常需要有完全的基站协议栈功能,比如无线资源控制(radio resource control,RRC)的功能,这种中继通常被称为层3中继;而另一种形态的中继节点和宿主节点可共同进行用户的管理,这种中继通常只具有基站的部分层2协议栈功能,被称为层2中继。层2中继在NR的控制和承载分离(central unit and distributed unit,CU-DU)架构下通常作为宿主节点的DU而存在,通过F1应用协议(F1application protocol,F1AP)接口和宿主节点或宿主节点的CU进行控制面通信。
以UE为例,在一种层2的IAB架构中,与UE对等的分组数据汇聚协议(packet data convergence protocol,PDCP)层和业务数据应用协议(service data adaptation protocol,SDAP)层,位于宿主节点或宿主节点的CU上。IAB节点在无线链路控制(radio link control,RLC)层及以下执行UE业务数据的转发,即转发的数据包是UE的PDCP层协议数据单元 (protocol data unit,PDU)。
示例性地,对于某一协议层来说,来自该协议层之上的更高一个协议层的信息单元可以被称为服务数据单元(Service Data Unit,SDU),而经过该协议层处理之后,送往下一个协议层的信息单元可以被称为PDU。例如,PDCP层接收到的更高一个协议层的信息单元可以称为PDCP SDU,经过PDCP层处理,送往下一层的信息单元可以称为PDCP PDU。这里的PDCP层处理可以包括分配序列号(serial number,SN)、头压缩、加密、完整性保护、加包头等操作。
此外,层2的IAB节点的回传链路上引入了适配层(adaptation layer),该适配层携带一些与路由、服务质量(quality of service,QoS)保障、识别UE及承载所需的相关信息,并提供数据转发时需要的路由和QoS映射功能。应理解,上述适配层可以是独立的协议层,也可以是现有协议层的子层或子模块,例如,RLC层的子层,或者MAC层的子层,本申请实施例对此不作限定。还应理解,本申请实施例仅仅为了便于描述,将新引入的具有路由和QoS映射功能的协议层称为适配层,但在实际网络中,该协议层可能具有其他名称,本申请实施例对此并不作限定。
可选地,在适配层可以是独立的协议层的情况下,该适配层的部署可以采用两种方式,针对不同的部署方式,数据包的处理方式不同,下面分别对两种部署方式进行介绍。
方式一、适配层部署在RLC层之上,这种部署方式具有下列特点:
1、在适配层可以执行将数据包映射到回传链路的RLC信道(RLC channel),回传链路的RLC信道可以与UE承载(UE bearer)一一对应,还可以是多个UE bearer被聚合映射到同一个回传链路的RLC信道上。
2、IAB节点可以直接执行回传链路间上一跳链路的RLC信道到下一跳链路的RLC信道的映射,也可以执行UE bearer到下一跳链路的RLC信道的映射。
3、IAB节点在回传链路的RLC层实体与IAB节点在回传链路的RLC bearer或RLC信道一一对应。至少两个RLC channel可以映射/复用/对应到一个LCH上,或者一个RLC channel一一对应于一个LCH。
4、对于RLC确认模式(acknowledged mode,AM),采用逐跳的自动重传请求(automatic repeat request,ARQ)模式,或者端到端的ARQ模式(end-to-end ARQ)。
方式二、适配层部署在RLC层之下,媒体接入控制(medium access control,MAC)层之上,即适配层部署在MAC层与RLC层之间,这种部署方式具有下列特点:
1、IAB节点在回传链路的RLC实体/RLC channel与UE bearer一一对应。
2、IAB节点可以直接执行回传链路间上一跳链路的LCH到下一跳链路的LCH的映射,也可以执行UE bearer到下一跳链路的LCH的映射和/或聚合。
3、在适配层可以执行将数据包映射到回传链路的LCH,回传链路的LCH可以是与RLC channel一一对应的,还可以是多个RLC channel被聚合映射(复用)到同一个回传链路的LCH上。
4、对于RLC确认模式(acknowledged mode,AM),既可以采用端到端的ARQ模式,也可以采用逐跳的ARQ模式(hop-by-hop ARQ)。
5、既可以采用端到端的重组(reassemble),也可以采用逐跳的重组。
示例性地,端到端的ARQ模式为:与ARQ相关的功能只在两端的RLC实体上配置,中间的IAB节点的RLC层具有分段(segmentation)和/或再分段(re-segmentation)的功 能,无需执行ARQ的功能(包括作为接收节点时对数据包接收的反馈,以及作为发送节点时对未被确认的数据包的重发),其中,分段是针对一个完整的RLC服务数据单元SDU而言的,再分段是针对一个RLC SDU分段而言的。以上行传输为例,UE通过IAB节点向宿主节点发送数据包,宿主节点在正确接收到数据包时会向IAB节点反馈确认(acknowledgement,ACK)消息,在未正确接收到该数据包时会向IAB节点反馈非确认(non-acknowledgement,NACK)消息,IAB节点仅仅对这些消息进行转发,当宿主节点反馈的是NACK消息时,UE会通过IAB节点重新向宿主节点发送该数据包,直到该宿主节点针对该数据包反馈的是ACK消息为止。
而逐跳的ARQ模式为:IAB网络中的所有节点(包括IAB节点)都被配置有与ARQ相关的功能。IAB节点的RLC层具有分段和/或再分段的功能,也具有ARQ的相关功能。即IAB节点不仅能够对数据包进行转发,还能够向发送该数据包的节点(该IAB节点的上一跳节点)反馈是否正确接收到该数据包。
示例性地,数据包在传输过程中可以采用逐跳重组和端到端重组两种模式。
逐跳重组为:发送节点经过N个中间节点向接收节点发送数据包时,在每一段链路上,若该发送节点在RLC层对RLC SDU做了分段处理,则该中间节点可以在其接收侧的RLC层对这些分段做重组(reassemble),则可以恢复出完整的RLC SDU。
端到端重组为:发送节点经过N个中间节点向接收节点发送数据包时,该发送节点可以在RLC层对RLC SDU做分段处理,该发送节点和该接收节点之间的N个中间节点也可以对完整的RLC SDU做分段处理,或者对RLC SDU分段(segment)继续做分段处理,但中间节点在其接收侧不做重组,直到这些RLC SDU分段传输至接收节点,该接收节点可以在其接收侧的RLC层对所有接收到的分段进行重组,恢复出完整的RLC SDU。
可以理解的是,在IAB网络采用逐跳的ARQ模式时,相应的重组模式也是逐跳重组;而在采用端到端的ARQ模式时,重组模式可以是逐跳重组也可以是端到端重组。
图2示出了本申请实施例提供的一种数据传输方法的流程示意图。该方法可以应用于图1所示的通信系统,但本申请实施例不限于此。参见图2,该方法包括:
步骤201:第一节点生成第一数据包。
示例性的,所述第一数据包中包括适配层信息、第一信息。示例性的,所述第一数据包中还可以包括第二信息。所述第一信息用于指示第二节点获取所述适配层信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;所述第一节点和所述第二节点为无线中继通信中的节点,无线中继通信可以包括但不限于基于IAB网络的通信等。
本申请实施例中,第二节点是否获取所述适配层信息,可以是指第二节点是否根据所述适配层信息确定第一数据包对应的第一RLC信道。第二节点获取所述适配层信息时,第二节点可以根据所述适配层信息确定第一数据包对应的第一RLC信道;相应的,第二节点不获取所述适配层信息时,第二节点无需适配层信息亦可以确定第一数据包对应的第一RLC信道,例如逻辑信道与RLC信道一一映射时,第二节点可以直接根据逻辑信道确定RLC信道。
步骤202:第一节点向第二节点发送第一数据包。
作为一个可选的实施例,所述第一节点为无线回传节点,所述第二节点为无线回传节点或宿主节点或宿主DU。或者,第一节点为无线回传节点或宿主节点或宿主DU,第二节 点为无线回传节点。
步骤203:第二节点接收第一节点发送的第一数据包。
步骤204:第二节点根据第一信息和第二信息,或者根据第一信息,从第一数据包中获取适配层信息。
步骤205:第二节点根据适配层信息确定第一数据包对应的第一RLC信道,并通过第一RLC信道对应的RLC实体处理所述第一数据包。
图2所示的流程中,为了使得数据包的接收方确定数据包对应的RLC信道,当第一信息指示第二节点获取所述适配层信息时,第二节点可以根据适配层信息等确定出对应的RLC信道。通过上述方法,无线回传链路的接收侧,能够根据第一信息区分逻辑信道和RLC信道之间的映射关系,进而确定数据包对应的RLC信道,从而可以将数据包递交给正确的RLC实体(entity)进行处理。
步骤201中,第一节点在生成第一数据包之前,获取到的数据为PDCP PDU,该PDCP PDU中包含的可以是终端设备或者IAB节点(可能为该IAB节点,或者其子IAB节点)的MT角色的业务数据或控制面信令,该PDCP PDU属于终端设备/MT的某个特定的无线承载。示例性的,MT与终端设备一样,具有PDCP层、适配层、RLC层、MAC层以及PHY层等协议层,是一种特殊类型的终端设备,为了描述方便,以下均以终端设备为例进行描述,终端设备可以执行的内容,MT也可以执行,在此不再赘述。
第一节点根据获取到的PDCP PDU生成第一数据包,该第一数据包可以包括多个部分。举例来说,如图3所示,为本申请实施例提供的一种第一数据包的结构示意图。图3所示的第一数据包中包括MAC子头(subheader)、RLC头、PDCP PDU以及适配层信息。本申请实施例中,第一信息可以位于MAC子头或RLC头中,第二信息可以位于MAC子头或RLC头或适配层信息中,具体根据实际情况确定。其中,适配层信息还可以位于预设的位置,此时第一数据包中可以不包括第二信息。
需要说明的是,图3只是示例,图3中的PDCP PDU还可以是PDCP PDU的一段,即经过RLC层的分段处理后,得到的PDCP PDU的一部分。
本申请实施例中,适配层信息中至少包括终端设备标识和终端设备的承载(bearer)标识,还可以包括小区标识(cell ID)、终端设备接入的IAB节点的标识、回传链路的RLC信道/承载标识、用于指示数据包服务质量(quality of service,QoS)需求的标签等中的至少一种或多种,在此不再逐一举例说明。其中,终端设备的承载标识,用于标识终端设备的数据无线承载(data radio bearer,DRB)和/或信令无线承载(signaling radio bearer,SRB)。本申请实施例中,终端设备标识可以是终端设备的小区无线网络临时标识(cell radio network temporary identifier,C-RNTI),还可以是如终端设备的国际移动用户识别码(international mobile subscriber identification number,IMSI)、临时移动用户标识(temporary mobile subscriber identity,TMSI)、宿主节点/宿主CU为终端设备分配的在宿主节点/宿主CU服务范围内唯一的标识等;或者,终端设备标识和终端设备的承载标识这两者可以由与终端设备的无线承载一一对应的GPRS隧道协议(GPRS tunnel protocol,GTP)的隧道端点标识(Tunnelling endpoint identifier,TEID)来表示,该GTP隧道可以是在宿主节点/宿主CU和为该终端设备提供接入服务的IAB节点之间的传输通道。
本申请实施例中,适配层信息还可以位于第一数据包中的其它位置,下面将详细描述。
下面的每种可能的实现方式中,第一信息均可以位于MAC子头或RLC头中,第二信息的位置,可以根据适配层信息的位置确定。
第一种可能的实现方式中,适配层信息由适配层添加在RLC PDU的尾部,或者由RLC层在RLC处理完成后添加在RLC PDU的尾部,此时适配层信息位于第一数据包中的PDCP PDU或一个PDCP PDU中的一段之后。示例性的,此处所称RLC PDU的尾部是指该RLC PDU之后的邻接部分。
如图4(a)所示,第一节点获取到PDCP PDU(也可以称为RLC SDU)之后,根据PDCP PDU所属的终端设备的无线承载(以下简称为UE承载)与回传链路的RLC信道之间的映射关系确定发送侧的RLC信道,然后将PDCP PDU递交给RLC信道对应的RLC实体(entity)进行RLC层处理,RLC层的处理包括如分段、自动重传请求(automatic repeat request,ARQ)、增加RLC头(header)等。经过RLC层处理后,得到RLC PDU。RLC PDU包括RLC头和PDCP PDU的一段或全部,图4(a)中以RLC PDU包括RLC头和PDCP PDU的全部为例,其他情况不再赘述。
第一节点获得RLC PDU之后,可以添加适配层信息,第一种可能的场景中,第一节点可以在RLC PDU的尾部增加适配层信息,示例性的,此处所称RLC PDU的尾部是指该RLC PDU之后的邻接部分,例如图4(a)所示。图4(a)中,适配层信息的具体内容可以参考前面的描述,例如适配层信息可以包括但不限于终端设备标识、终端设备的承载标识(bearer ID)、为终端设备提供接入服务的第一节点的标识、终端设备接入的小区的小区标识等,其它情况不再赘述。示例性的,在该场景下,适配层信息的添加可以由独立的适配层执行,该独立的适配层位于RLC层和MAC层之间;或者,适配层信息的添加也可以由第一节点在回传链路发送侧的RLC层执行。
第二种可能的场景中,第一节点也可以将适配层信息中的部分携带在RLC PDU的尾部,示例性的,此处所称RLC PDU的尾部是指该RLC PDU之后的邻接部分,另一部分携带在MAC子头,或携带在RLC头部等位置。例如可以将适配层信息中的终端设备的标识、终端设备的承载标识携带在MAC子头,其余的适配层信息如终端设备接入的IAB节点的标识等携带在RLC PDU的尾部。示例性的,携带在RLC PDU尾部的部分适配层信息的添加可以由独立的适配层执行,该独立的适配层位于RLC层和MAC层之间;或者,携带在RLC PDU尾部的部分适配层信息的添加也可以由第一节点在回传链路发送侧的RLC层或MAC层执行;若MAC子头携带有部分适配层信息,则这部分适配层信息的添加由第一节点在回传链路发送侧的MAC层执行;若RLC头部携带有部分适配层信息,则这部分适配层信息的添加由第一节点在回传链路发送侧的RLC层执行。
本申请实施例中,在RLC PDU尾部增加有适配层信息的情况下,可以在RLC头中携带第二信息,用于指示RLC PDU结束的位置或位于RLC PDU尾部的适配层信息在第一数据包中的起始位置,或者可以在MAC子头中携带第二指示信息,用于指示MAC SDU尾部携带的适配层信息在第一数据包中的起始位置。进而,第一节点将RLC PDU及增加的适配层信息通过与RLC信道对应的逻辑信道递交给MAC层执行相应处理,图4(a)中以逻辑信道标识LCID为y的逻辑信道为例说明。
需要说明的是,逻辑信道标识LCID可以位于MAC子头中,在此不再赘述。
第二种可能的实现方式中,适配层信息也可以由第一节点在回传链路发送侧的MAC 层添加在RLC PDU的尾部,即可以将适配层信息的添加视为MAC层功能的一部分,此时适配层信息位于第一数据包中的PDCP PDU或一个PDCP PDU中的一段之后,具体可以参考图4(b)所示。另一可能的场景中,第一节点在回传链路发送侧的MAC层也可以将适配层信息中的部分携带在RLC PDU的尾部,另一部分携带在MAC子头。
如图4(b)所示,第一节点获取到PDCP PDU之后,根据PDCP PDU所属UE承载与回传链路的RLC信道之间的映射关系确定发送侧的RLC信道,然后将PDCP PDU递交给RLC信道对应的RLC实体进行RLC层处理,得到RLC PDU。RLC PDU包括RLC头和PDCP PDU的一段或全部,图4(b)中以RLC PDU包括RLC头和PDCP PDU的全部为例,其他情况不再赘述。
第一节点获得RLC PDU之后,将RLC PDU通过与RLC信道对应的逻辑信道递交给MAC层。第一节点的MAC层在RLC PDU之前添加MAC子头,在RLC PDU的尾部添加适配层信息,得到第一数据包。此时,MAC子头中可以包含第二指示信息,用于指示适配层信息在第一数据包中的起始位置。示例性的,此处所称RLC PDU的尾部是指该RLC PDU之后的邻接部分。
第三种可能的实现方式中,适配层信息的添加先于RLC层的处理过程执行,即适配层信息被添加在PDCP PDU的尾部(即RLC SDU由PDCP PDU及尾部携带的适配层信息组成),适配层信息的添加可以由独立的适配层执行,该独立的适配层位于RLC层之上;或者,适配层信息的添加还可以由RLC层执行,需要对现有RLC层的功能进行扩展。具体可以参考图4(c)所示。
另一可能的场景中,在RLC PDU的尾部只携带适配层信息中的一部分,另一部分携带在MAC子头或携带在RLC头部等位置。需要说明的是,若MAC子头携带有部分适配层信息,则这部分适配层信息的添加由第一节点在回传链路发送侧的MAC层执行;若RLC头部携带有部分适配层信息,则这部分适配层信息的添加由第一节点在回传链路发送侧的RLC层执行。
图4(c)中,第一节点获取到PDCP PDU之后,在PDCP PDU之后添加适配层信息。可选的,第一节点可以根据PDCP PDU所属的承载与回传链路的RLC信道之间的映射关系确定发送侧的RLC信道,然后将添加了适配层信息的PDCP PDU递交给RLC信道对应的RLC实体进行RLC层处理,得到RLC PDU。RLC PDU中可能包括RLC头和PDCP PDU的一段;或者,RLC PDU中包括RLC头和PDCP PDU的全部;或者,RLC PDU中包括RLC头、PDCP PDU的全部、适配层信息的全部;或者,RLC PDU中包括RLC头、PDCP PDU的全部、适配层信息的一段;或者,RLC PDU中包括RLC头、适配层信息的一段或全部;或者,RLC PDU中包括RLC头、PDCP PDU的一段、适配层信息的一段或全部。第一节点获得RLC PDU之后,将RLC PDU通过与RLC信道对应的逻辑信道递交给MAC层处理,第一节点的MAC层在RLC PDU之前添加MAC子头得到第一数据包。
对于第三种可能的实现方式,在PDCP PDU的尾部增加有适配层信息的情况下,可以在RLC头中携带第二指示信息,第二指示信息用于指示RLC SDU尾部携带的适配层信息在第一数据包中的起始位置。第二指示信息也可以位于MAC子头中,用于指示MAC SDU尾部携带的适配层信息在第一数据包中的起始位置。示例性的,此处所称PDCP PDU的尾部是指该PDCP PDU之后的邻接部分。
本申请实施例中,RLC层可能会对PDCP PDU进行分段(segmentation)处理,若PDCP PDU经过了RLC层的分段处理,PDCP PDU可以被分为至少两个分段,“PDCP PDU的一段”表示至少两个分段中的任意一段,“PDCP PDU的一段”只包括PDCP PDU的一部分。或者,RLC层也可以是对RLC SDU进行分段(segmentation)处理,此处所称的RLC SDU可以是在PDCP PDU的基础上,增加适配层信息而获得,比如在PDCP PDU之前或者在PDCP PDU之后增加了适配层信息,得到此处所称的RLC SDU。
第四种可能的实现方式中,第一节点可以在RLC PDU的前部增加适配层信息,此时该适配层信息位于MAC子头与RLC头之间,具体可以参考图4(d)所示。示例性的,此处所称RLC PDU的前部是指该RLC PDU之前的邻接部分。
图4(d)中,适配层信息的添加可以由独立的适配层执行,该独立的适配层位于RLC层和MAC层之间;或者,适配层信息的添加也可以由第一节点在回传链路发送侧的RLC层执行;或者,适配层信息的添加也可以由第一节点在回传链路发送侧的MAC层执行。另一可能的场景中,适配层信息由第一节点在回传链路发送侧的MAC层添加在MAC子头中。
图4(d)中,第一节点获取到PDCP PDU之后,根据PDCP PDU所属的承载与回传链路的RLC信道之间的映射关系确定发送侧的RLC信道,然后将PDCP PDU递交给RLC信道对应的RLC实体进行RLC层处理,得到RLC PDU。RLC PDU中可能包括RLC头和PDCP PDU的一段;或者,RLC PDU中包括RLC头和PDCP PDU的全部。第一节点获得RLC PDU之后,在RLC PDU之前添加适配层信息,然后将添加了适配层信息的RLC PDU通过与RLC信道对应的逻辑信道递交给MAC层处理,第一节点的MAC层在适配层信息和RLC PDU之前添加MAC子头得到第一数据包;或者,另一可能的场景中,第一节点获得RLC PDU之后,将RLC PDU通过与RLC信道对应的逻辑信道递交给MAC层处理,第一节点的MAC层在RLC PDU之前添加MAC子头,MAC子头中包含适配层信息。
在该实现方式下,第二信息可以位于所述MAC子头或所述适配层信息中,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
示例性的,在该实现方式下,若适配层是独立的协议层,适配层还可以支持数据包级联的功能。具体的,适配层可以将适配层的SDU拼接起来,得到适配层的PDU,再将该适配层的PDU发送给适配层之下的协议层进行后续的发送侧处理,级联后适配层的PDU的数据包格式如图5所示。这种情况下,适配层添加的头信息中,除了适配层信息外,还需要携带长度指示,用于指示级联后的数据包中,每个适配层SDU的长度。
示例性的,若考虑适配层具有对上层协议层的PDU进行级联的能力,在宿主节点给IAB节点的配置信息中,包含是否允许级联的能力配置,以及级联包大小的上限的配置,该配置信息可以携带在例如发送给IAB节点的DU部分的F1应用协议(F1 application Protocol,F1AP)消息中,或者携带在发送给IAB节点的MT部分的无线资源控制(Radio resource control,RRC)消息中。
第五种可能的实现方式中,第一节点可以在PDCP PDU的前部增加适配层信息,此时所述适配层信息位于RLC头与所述PDCP PDU或所述PDCP PDU中的一段之间。适配层信息的添加可以由独立的适配层执行,该独立的适配层位于RLC层之上;或者,适配层信 息的添加也可以由第一节点在回传链路发送侧的RLC层执行,将添加的适配层信息视为RLC头的一部分,具体可以参考图6所示。示例性的,此处所称PDCP PDU的前部是指该PDCP PDU之前的邻接部分。
另一可能的场景中,在RLC头与PDCP PDU或所述PDCP PDU中的一段之间携带适配层信息中的一部分,另一部分携带在MAC子头中。需要说明的是,若MAC子头携带有部分适配层信息,则这部分适配层信息的添加由第一节点在回传链路发送侧的MAC层执行。
图6中,第一节点获取到PDCP PDU之后,在PDCP PDU之前添加适配层信息。此外,第一节点可以根据PDCP PDU所属的承载与回传链路的RLC信道之间的映射关系确定发送侧的RLC信道,然后将添加了适配层信息的PDCP PDU递交给RLC信道对应的RLC实体进行RLC层处理,得到RLC PDU。RLC PDU中可能包括RLC头、适配层信息的全部、PDCP PDU的全部;或者,RLC PDU中包括RLC头、适配层信息的一段或全部、PDCP PDU的一段;或者,RLC PDU中包括适配层信息的一段、PDCP PDU的全部;或者,RLC PDU中包括适配层信息的一段或全部;或者RLC PDU中包括PDCP PDU的一段或全部。第一节点获得RLC PDU之后,将RLC PDU通过与RLC信道对应的逻辑信道递交给MAC层处理,第一节点的MAC层在RLC PDU之前添加MAC子头得到第一数据包。
在该实现方式下,第二信息可以位于所述MAC子头或所述适配层信息或者所述RLC头中,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
示例性的,在该实现方式下,适配层还可以支持数据包级联的功能,具体可以参考前面的描述,在此不再赘述。
上面描述了适配层信息的位置的不同实现方式,以及对应的第一数据包的不同格式,示例性的,本申请实施例中,第一信息也可以存在多种实现方式。
本申请实施例中,在回传链路传输中,多个RLC信道可以映射(或复用)到同一个逻辑信道上,或者一个RLC信道一对一的映射到一个逻辑信道上(即不将多个RLC channel复用到一个逻辑信道)。当回传链路的RLC channel和LCH之间一对一映射时,利用LCH的逻辑信道标识即可识别出相应的RLC channel,但当回传链路的多个RLC channel被复用到一个LCH上时,仅利用LCH的逻辑信道标识无法确定RLC channel,还需要额外的信息。
例如,回传链路的RLC信道与终端设备的承载为一一映射时,为避免扩展回传链路的逻辑信道标识空间,可以将至少两个RLC信道映射到同一个逻辑信道以节省所需的回传链路逻辑信道的数量,对于这种情况,第一信息可以用于指示所述第二节点获取适配层信息,用于确定RLC channel,第二节点可根据所述适配层信息中的终端设备标识和终端设备的承载标识,以及MAC子头中携带的逻辑信道标识LCID,确定RLC channel或与RLC channel对应的RLC entity。本申请实施例中,第一信息除了用于指示所述第二节点获取所述适配层信息以外,第一信息也可以用于指示所述第二节点不获取适配层信息,亦可确定RLC channel。例如,本申请实施例中,可以将多个终端设备的承载映射到同一个RLC信道,此时可以保持RLC信道与逻辑信道为一一映射,对于这种情况,所述第二节点可以不获取适配层信息,此时第一信息也可以用于指示所述第二节点不获取适配层信息,第二节点无 需根据适配层信息,仅根据MAC子头中携带的逻辑信道标识LCID,确定RLC channel或与RLC channel对应的RLC entity。
示例性的,本申请实施例中,第一信息可以包括至少一个比特,此时第一信息可以存在至少两种不同的取值,每种取值指示出不同内容。举例来说,所述第一信息为第一取值时,所述第一信息用于指示所述第二节点获取所述适配层信息;所述第一信息为第二取值时,所述第一信息用于指示所述第二节点不获取所述适配层信息。例如,第一信息的长度为1比特,其取值为0时,用于指示第一信息用于指示所述第二节点不获取所述适配层信息;其取值为1时,用于指示第一信息用于指示所述第二节点获取所述适配层信息。当然,以上只是示例,第一信息的长度可以大于1比特,第一信息的取值与指示第二节点是否获取所述适配层信息的对应关系,也可以存在其他情况,在此不再逐一举例说明。
示例性的,本申请实施例中,第二节点确定第一数据包对应的RLC信道时,可能需要根据第一信息获取适配层信息,当第二节点根据适配层信息执行其他步骤时,例如根据适配层信息确定第一数据包的路由信息,可以不需要根据第一信息获取适配层信息。
本申请实施例中,所述第一信息用于指示所述第二节点获取所述适配层信息的情况下,所述第一数据包对应的第一逻辑信道可以映射至少两个RLC信道;所述第一信息用于指示所述第二节点不获取所述适配层信息的情况下,所述第一逻辑信道唯一映射一个RLC信道。
示例性的,结合上面的描述,第一信息也可以通过指示第一数据包对应的第一逻辑信道与RLC信道之间的映射关系的方式,指示第二节点获取适配层信息。举例来说,第一信息指示出第一逻辑信道映射至少两个RLC信道时,用于指示第二节点获取适配层信息,以结合适配层信息确定RLC信道;相应的,第一信息指示出第一逻辑信道唯一映射一个RLC信道时,用于指示第二节点不获取适配层信息,仅根据逻辑信道标识即可确定RLC信道。
例如,第一信息的长度为1比特,其取值为1时,用于指示第一逻辑信道映射至少两个RLC信道;其取值为0时,用于指示第一逻辑信道唯一映射一个RLC信道。当然,以上只是示例,第一信息的长度可以大于1比特,第一信息的取值与第一数据包中是否包括适配层信息的对应关系,也可以存在其他情况,在此不再逐一举例说明。此时,可以根据第一逻辑信道与RLC信道之间的映射关系,确定出是否获取适配层信息。
如前所述,本申请实施例中,第一信息可以携带在第一数据包的MAC子头中。可选的,适配层信息的部分或全部(包括例如终端设备标识、终端设备的承载标识、小区标识(cell ID)等,也可以携带在MAC子头中。这种情况下的一种示例性的MAC子头的格式如下图7所示。图7只是示例,MAC子头中也可以只包括第一信息或适配层信息,在此不再逐一举例说明。
如图7所示的MAC子头中,R、F、LCID、L字段的含义与现有NR协议中一致,即R表示保留比特,一般设置为0;F为格式域(format field),用于表征长度域的大小;LCID表示逻辑信道标识,用于识别逻辑信道;L为长度域(length field),用于指示MAC SDU的大小或可变长度的MAC控制元素(control element,CE)的大小,其中L可以占用2字节,也可以占用1个字节,在图7中以L占用2字节为例,但MAC子头的格式应不限于此。
第一信息,其含义可参见前述描述,在此不再赘述。
X是可选字段,可以是预留比特,或者也可以用于表征MAC子头中是否包含小区标识字段,或者还可以表征终端设备标识字段的长度选项,本申请实施例图7中以X为1bit为例,但实际X的长度还可以是其他取值,不限于此。
承载标识字段中包括终端设备的承载标识,用于标识终端设备的数据无线承载(data radio bearer,DRB)和/或信令无线承载(signaling radio bearer,SRB)。一种可能的方式中,其长度可以为6个比特,但本申请实施例不限于此长度取值,承载标识字段的长度也可以是其他取值,图7中以6比特为例。另一种可能的方式中,承载标识字段中有1bit(例如最高位的1bit)标识承载标识的类型为DRB或SRB,剩余部分为DRB标识或SRB标识。
终端设备标识字段中包括终端设备的标识,示例性的,本申请实施例中的终端设备标识可以是终端设备的C-RNTI,还可以是如终端设备的IMSI、TMSI、CU为终端设备分配的在CU服务范围内唯一的标识等,本申请实施例对终端设备标识的具体形式不予限定。
小区标识字段是终端设备所属小区的标识,是可选字段,例如当终端设备标识为C-RNTI时,则该小区标识字段存在,当终端设备标识为IMSI时,可以不需要小区标识字段。本申请实施例图7中以小区标识字段占用8比特为示例,但对该字段域占用的长度不预限定。
需要说明的是,本申请实施例中的适配层信息,可以被多个协议层中的功能模块使用。例如,当MAC子头中包含适配层信息的部分或全部时,适配层信息可以被MAC层用来确定RLC channel,适配层信息还可以被其他协议层或功能模块使用,比如,适配层信息可以被第二节点中MAC和RLC层之间的协议层来确定RLC channel,还比如,终端设备标识可以被RLC层或RLC层之上的路由功能模块用于确定数据包的传输下一跳节点。
另一可选的方式中,第一信息还可以包含在RLC层的头信息中,或者还可以包含在作为独立协议层的适配层的头信息中,在此不再逐一举例说明。
本申请实施例中,在步骤204中,当第一数据包中包括第二信息时,第二节点可以根据所述第二信息指示的位置,从所述第一数据包中获取所述适配层信息。若第一数据包中不包括第二信息,适配层信息则位于第一数据包中的预设位置,此时第二节点可以从第一数据包中的预设位置获取所述适配层信息。
在步骤205中,第二节点在收到第一数据包后,在第一信息用于指示第二节点获取适配层信息的情况下,可以确定第一数据包中的第一逻辑信道标识对应的第一逻辑信道映射至少两个RLC信道。第二节点从而可以通过第一数据包中的第一逻辑信道标识确定第一逻辑信道,然后可以在与第一逻辑信道映射的至少两个RLC信道中,与适配层信息中包含的终端设备标识和终端设备的承载标识所对应的RLC信道,确定为第一数据包对应的第一RLC信道,进而将第一数据包中的部分内容(如RLC PDU)递交给与第一RLC信道对应的RLC实体处理。
相应的,在第一信息用于指示第二节点不获取适配层信息的情况下,可以确定第一数据包中的第一逻辑信道标识对应的第一逻辑信道映射一个RLC信道。第二节点从而可以通过第一数据包中的第一逻辑信道标识确定第一逻辑信道,然后可以将与第一逻辑信道对应的RLC信道,确定为第一RLC信道,进而将第一数据包中的部分内容(如RLC PDU)递交给与第一RLC信道对应的RLC实体处理。
本申请实施例中,第一数据包中也可以不包括第一信息,而是由宿主节点或者第一节点的父节点预先配置好每个逻辑信道的属性信息,接收侧的节点接收到数据包之后,可以根据该数据包对应的逻辑信道的属性信息,判断是否获取该数据包中的适配层信息,以确定RLC信道,下面详细描述。
图8示出了本申请实施例提供的一种数据传输方法的流程示意图。该方法可以应用于图1所示的通信系统,但本申请实施例不限于此。参见图8,该方法包括:
步骤801:第一节点向第二节点发送第一数据包。
步骤802:第二节点接收第一节点发送的第一数据包。
其中,所述第一数据包中包括适配层信息、第一逻辑信道标识和第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;
步骤803:所述第二节点根据所述第一逻辑信道标识和所述第二信息,从所述第一数据包中获取所述适配层信息。
所述第一节点和所述第二节点为无线中继通信中的节点。
步骤801至步骤803中,关于适配层信息、第二信息等内容,可以参考图2所示的流程中的描述,在此不再赘述。
步骤801之前,所述第二节点可以接收第三节点发送的第三信息,所述第三节点为在所述无线中继通信中的所述第二节点的父节点或者宿主节点。当宿主节点为CU-DU分离的形态时,上述宿主节点还可以为宿主节点的集中式单元CU;或者当CU具有CU-CP和CU-UP分离的形态时,上述宿主节点还可以是CU-CP,但本申请实施例对此不作限定。示例性的,此处所称CU,DU,是属于一个逻辑基站gNB的组成部分,其中,CU一般具有PDCP和RRC协议层功能,DU一般具有RLC,MAC和PHY协议层功能。CU还可以分为CU-CP和CU-UP,其中,CU-CP可以具有RRC和PDCP协议层功能,CU-UP可以具有SDAP和PDCP协议层功能。
所述第三信息包括所述第一逻辑信道标识;或者,所述第三信息包括所述第一逻辑信道标识及所述第一逻辑信道标识的属性信息,所述属性信息用于指示所述第二节点是否获取所述适配层信息。
当第三信息中包括第一逻辑信道标识,不包含该第一逻辑信道标识的属性信息时,则表明该第一逻辑信道标识所对应的逻辑信道映射至少两个RLC信道,第二节点在收到包含该第一逻辑信道标识的第一数据包时,需要从第一数据包中获取适配层信息,进而结合该适配层信息确定第一数据包对应的RLC信道。此时,在步骤803中,所述第二节点根据所述第一逻辑信道标识,确定所述第一逻辑信道标识所对应的逻辑信道映射至少两个RLC信道,第二节点从而可以通过第一数据包中的第一逻辑信道标识确定第一逻辑信道,然后可以在与第一逻辑信道映射的至少两个RLC信道中,与适配层信息中包含的终端设备标识和终端设备的承载标识所对应的RLC信道,确定为第一数据包对应的第一RLC信道,进而将第一数据包中的部分内容(如RLC PDU)递交给与第一RLC信道对应的RLC实体处理。
本申请实施例中,第一逻辑信道标识的属性信息可以有多种实现方式。一种可能的实现方式中,所述属性信息为第一预设取值时,所述属性信息用于指示所述第二节点获取所述适配层信息;所述属性信息为第二预设取值时,所述属性信息用于指示所述第二节点不获取所述适配层信息。
此时,在步骤803中,所述第二节点确定所述属性信息为所述第一预设取值时,根据所述第二信息指示的位置,从所述第一数据包中获取所述适配层信息,进而结合该适配层信息确定第一数据包对应的RLC信道。相应的,第二节点确定所述属性信息为所述第二预设取值时,确定不需要获取适配层信息,从而不需要根据适配层信息确定第一数据包对应的RLC信道。
另一种可能的实现方式中,所述属性信息表示出所述第一逻辑信道标识映射的RLC信道的RLC信道标识,或所述属性信息表示出所述第一逻辑信道标识映射的RLC信道对应的承载标识。
此时,在步骤803中,所述第二节点根据所述属性信息确定所述第一逻辑信道标识映射的RLC信道标识或承载标识的数量大于1时,根据所述第二信息指示的位置,从所述第一数据包中获取所述适配层信息,进而结合该适配层信息确定第一数据包对应的RLC信道。相应的,第二节点根据所述属性信息确定所述第一逻辑信道标识映射的RLC信道标识或承载标识的数量等于1时,确定不需要获取适配层信息,从而不需要根据适配层信息确定第一数据包对应的RLC信道。
示例性的,第二节点在收到第一数据包后,在属性信息用于指示第二节点获取适配层信息的情况下,可以确定第一逻辑信道映射至少两个RLC信道。第二节点从而可以通过第一数据包中的第一逻辑信道标识确定第一逻辑信道,然后可以在与第一逻辑信道映射的至少两个RLC信道中,与适配层信息中包含的终端设备标识和终端设备的承载标识所对应的RLC信道,确定为第一数据包对应的第一RLC信道,进而将第一数据包中的部分内容(如RLC PDU)递交给与第一RLC信道对应的RLC实体处理。
相应的,在属性信息用于指示第二节点不获取适配层信息的情况下,可以确定第一数据包中的第一逻辑信道标识对应的第一逻辑信道映射一个RLC信道。第二节点从而可以通过第一数据包中的第一逻辑信道标识确定第一逻辑信道,然后可以将与第一逻辑信道映射的RLC信道,确定为第一RLC信道,进而将第一数据包中的部分内容(如RLC PDU)递交给与第一RLC信道对应的RLC实体处理。
图9示出了本申请实施例提供的数据传输装置900,该装置900可以是无线回传节点,也可以为无线回传节点中的芯片。该装置900包括:处理单元901和收发单元902。
该装置900执行图2流程中第一节点的方法时,功能如下:
处理单元901,用于第一节点生成第一数据包;
收发单元902,用于向第二节点发送所述第一数据包;所述第一数据包中包括适配层信息和第一信息;或者,所述第一数据包中包括所述适配层信息、所述第一信息和第二信息;其中,所述第一信息用于指示所述第二节点获取所述适配层信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;所述第一节点和所述第二节点为无线中继通信中的节点。
一种可能的设计中,所述第一数据包中包括媒体接入控制MAC子头、无线链路控制RLC头、分组数据汇聚协议PDCP协议数据单元PDU或一个PDCP PDU中的一段;
其中,所述MAC子头或者所述RLC头包括所述第一信息,所述适配层信息位于所述PDCP PDU或一个PDCP PDU中的一段之后。
一种可能的设计中,所述MAC子头或所述RLC头中还包括所述第二信息,所述第二 信息用于指示所述适配层信息在所述第一数据包中的起始位置。
一种可能的设计中,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;
其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;所述适配层信息位于所述MAC子头与所述RLC头之间。
一种可能的设计中,所述MAC子头或所述适配层信息中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
一种可能的设计中,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;
其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;
所述适配层信息位于所述RLC头与所述PDCP PDU或一个PDCP PDU中的一段之间。
一种可能的设计中,所述MAC子头或者所述适配层信息或者所述RLC头中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
一种可能的设计中,所述第一信息用于指示所述第二节点获取所述适配层信息的情况下,所述第一数据包对应的第一逻辑信道映射至少两个RLC信道。
该装置900执行图2流程中第二节点的方法时,功能如下:
收发单元902,用于接收第一节点发送的第一数据包;其中,所述第一数据包中包括适配层信息、第一信息和第二信息;或者,所述第一数据包中包括所述适配层信息、所述第一信息和第二信息;所述第一信息用于指示所述第二节点获取所述适配层信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;
处理单元901,用于根据所述第一信息和所述第二信息,或者根据所述第一信息,从所述第一数据包中获取所述适配层信息;根据所述适配层信息确定所述第一数据包对应的第一无线链路控制RLC信道,并通过所述第一RLC信道对应的RLC实体处理所述第一数据包。
一种可能的设计中,所述第一数据包中包括媒体接入控制MAC子头、无线链路控制RLC头、分组数据汇聚协议PDCP协议数据单元PDU或一个PDCP PDU中的一段;
其中,所述MAC子头或者所述RLC头包括所述第一信息,所述适配层信息位于所述PDCP PDU或一个PDCP PDU中的一段之后。
一种可能的设计中,所述MAC子头或所述RLC头中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的起始位置。
一种可能的设计中,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;
其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;所述适配层信息位于所述MAC子头与所述RLC头之间。
一种可能的设计中,所述MAC子头或所述适配层信息中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
一种可能的设计中,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;
其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;
所述适配层信息位于所述RLC头与所述PDCP PDU或一个PDCP PDU中的一段之间。
一种可能的设计中,所述MAC子头或者所述适配层信息或者所述RLC头中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
一种可能的设计中,所述第一信息用于指示所述第二节点获取所述适配层信息时,所述第一数据包对应的第一逻辑信道映射至少两个RLC信道。
一种可能的设计中,所述适配层信息包括终端设备的终端设备标识以及所述终端设备的承载标识;
所述处理单元901具体用于:
确定与所述第一数据包对应的第一逻辑信道标识映射的至少两个RLC信道;
将所述至少两个RLC信道中,与所述适配层信息中的终端设备标识和终端设备的承载标识所对应的RLC信道,确定为所述第一RLC信道。
该装置900执行图8流程中第二节点的方法时,功能如下:
收发单元902,用于接收第一节点发送的第一数据包;其中,所述第一数据包中包括适配层信息、第一逻辑信道标识和第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;
处理单元901,用于根据所述第一逻辑信道标识和所述第二信息,从所述第一数据包中获取所述适配层信息。
一种可能的设计中,所述收发单元902还用于:
接收第三节点发送的第三信息,所述第三节点为在所述无线中继通信中的所述第二节点的父节点或者宿主节点;
所述第三信息包括所述第一逻辑信道标识;或者,所述第三信息包括所述第一逻辑信道标识及所述第一逻辑信道标识的属性信息,所述属性信息用于指示所述第二节点是否获取所述适配层信息。
一种可能的设计中,所述属性信息为第一预设取值时,所述属性信息用于指示所述第二节点获取所述适配层信息;
所述属性信息为第二预设取值时,所述属性信息用于指示所述第二节点不获取所述适配层信息。
一种可能的设计中,所述处理单元901具体用于:
确定所述属性信息为所述第一预设取值时,根据所述第二信息指示的位置,从所述第一数据包中获取所述适配层信息。
一种可能的设计中,所述属性信息表示出所述第一逻辑信道标识映射的RLC信道的RLC信道标识,或所述属性信息表示出所述第一逻辑信道标识映射的RLC信道对应的承载标识。
一种可能的设计中,所述处理单元901具体用于:
根据所述属性信息确定所述第一逻辑信道标识映射的RLC信道标识或承载标识的数量大于1时,根据所述第二信息指示的位置,从所述第一数据包中获取所述适配层信息。
图10示出了本申请实施例提供的数据传输装置,图10所示的装置可以为图9所示的 装置的一种硬件电路的实现方式。为了便于说明,图10仅示出了该装置的主要部件。该装置1000可以是无线回传节点,也可以为无线回传节点中的芯片,也可以是无线回传节点中用于实现涉及功能的装置或模块。该装置1000包括:处理器1001、收发器1002和存储器1003。
该装置1000执行图2流程中第一节点的方法时,功能如下:
处理器1001,用于第一节点生成第一数据包;
收发器1002,用于向第二节点发送所述第一数据包;所述第一数据包中包括适配层信息和第一信息;或者,所述第一数据包中包括所述适配层信息、所述第一信息和第二信息;其中,所述第一信息用于指示所述第二节点获取所述适配层信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;所述第一节点和所述第二节点为无线中继通信中的节点。
一种可能的设计中,所述第一数据包中包括媒体接入控制MAC子头、无线链路控制RLC头、分组数据汇聚协议PDCP协议数据单元PDU或一个PDCP PDU中的一段;
其中,所述MAC子头或者所述RLC头包括所述第一信息,所述适配层信息位于所述PDCP PDU或一个PDCP PDU中的一段之后。
一种可能的设计中,所述MAC子头或所述RLC头中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的起始位置。
一种可能的设计中,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;
其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;所述适配层信息位于所述MAC子头与所述RLC头之间。
一种可能的设计中,所述MAC子头或所述适配层信息中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
一种可能的设计中,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;
其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;
所述适配层信息位于所述RLC头与所述PDCP PDU或一个PDCP PDU中的一段之间。
一种可能的设计中,所述MAC子头或者所述适配层信息或者所述RLC头中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
一种可能的设计中,所述第一信息用于指示所述第二节点获取所述适配层信息的情况下,所述第一数据包对应的第一逻辑信道映射至少两个RLC信道。
该装置1000执行图2流程中第二节点的方法时,功能如下:
收发器1002,用于接收第一节点发送的第一数据包;其中,所述第一数据包中包括适配层信息、第一信息和第二信息;或者,所述第一数据包中包括所述适配层信息、所述第一信息和第二信息;所述第一信息用于指示所述第二节点获取所述适配层信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;
处理器1001用于,根据所述第一信息和所述第二信息,或者根据所述第一信息,从所述第一数据包中获取所述适配层信息;根据所述适配层信息确定所述第一数据包对应的 第一无线链路控制RLC信道,并通过所述第一RLC信道对应的RLC实体处理所述第一数据包。
一种可能的设计中,所述第一数据包中包括媒体接入控制MAC子头、无线链路控制RLC头、分组数据汇聚协议PDCP协议数据单元PDU或一个PDCP PDU中的一段;
其中,所述MAC子头或者所述RLC头包括所述第一信息,所述适配层信息位于所述PDCP PDU或一个PDCP PDU中的一段之后。
一种可能的设计中,所述MAC子头或所述RLC头中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的起始位置。
一种可能的设计中,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;
其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;所述适配层信息位于所述MAC子头与所述RLC头之间。
一种可能的设计中,所述MAC子头或所述适配层信息中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
一种可能的设计中,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;
其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;
所述适配层信息位于所述RLC头与所述PDCP PDU或一个PDCP PDU中的一段之间。
一种可能的设计中,所述MAC子头或者所述适配层信息或者所述RLC头中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
一种可能的设计中,所述第一信息用于指示所述第二节点获取所述适配层信息时,所述第一数据包对应的第一逻辑信道映射至少两个RLC信道。
一种可能的设计中,所述适配层信息包括终端设备的终端设备标识以及所述终端设备的承载标识;
所述处理器1001具体用于:
确定与所述第一数据包对应的第一逻辑信道标识映射的至少两个RLC信道;
将所述至少两个RLC信道中,与所述适配层信息中的终端设备标识和终端设备的承载标识所对应的RLC信道,确定为所述第一RLC信道。
该装置1000执行图8流程中第二节点的方法时,功能如下:
收发器1002,用于接收第一节点发送的第一数据包;其中,所述第一数据包中包括适配层信息、第一逻辑信道标识和第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;
处理器1001,用于根据所述第一逻辑信道标识和所述第二信息,从所述第一数据包中获取所述适配层信息。
一种可能的设计中,所述收发器1002还用于:
接收第三节点发送的第三信息,所述第三节点为在所述无线中继通信中的所述第二节点的父节点或者宿主节点;
所述第三信息包括所述第一逻辑信道标识;或者,所述第三信息包括所述第一逻辑信道标识及所述第一逻辑信道标识的属性信息,所述属性信息用于指示所述第二节点是否获 取所述适配层信息。
一种可能的设计中,所述属性信息为第一预设取值时,所述属性信息用于指示所述第二节点获取所述适配层信息;
所述属性信息为第二预设取值时,所述属性信息用于指示所述第二节点不获取所述适配层信息。
一种可能的设计中,所述处理器1001具体用于:
确定所述属性信息为所述第一预设取值时,根据所述第二信息指示的位置,从所述第一数据包中获取所述适配层信息。
一种可能的设计中,所述属性信息表示出所述第一逻辑信道标识映射的RLC信道的RLC信道标识,或所述属性信息表示出所述第一逻辑信道标识映射的RLC信道对应的承载标识。
一种可能的设计中,所述处理器1001具体用于:
根据所述属性信息确定所述第一逻辑信道标识映射的RLC信道标识或承载标识的数量大于1时,根据所述第二信息指示的位置,从所述第一数据包中获取所述适配层信息。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可 以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (33)

  1. 一种数据传输方法,其特征在于,包括:
    第一节点生成第一数据包;
    所述第一节点向第二节点发送所述第一数据包;
    所述第一数据包中包括适配层信息和第一信息;或者,所述第一数据包中包括所述适配层信息、所述第一信息和第二信息;
    其中,所述第一信息用于指示所述第二节点获取所述适配层信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;所述第一节点和所述第二节点为无线中继通信中的节点。
  2. 根据权利要求1所述的方法,其特征在于,所述第一数据包中包括媒体接入控制MAC子头、无线链路控制RLC头、分组数据汇聚协议PDCP协议数据单元PDU或一个PDCP PDU中的一段;
    其中,所述MAC子头或者所述RLC头包括所述第一信息,所述适配层信息位于所述PDCP PDU或一个PDCP PDU中的一段之后。
  3. 根据权利要求2所述的方法,其特征在于,所述MAC子头或所述RLC头中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的起始位置。
  4. 根据权利要求1所述的方法,其特征在于,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;
    其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;所述适配层信息位于所述MAC子头与所述RLC头之间。
  5. 根据权利要求4所述的方法,其特征在于,所述MAC子头或所述适配层信息中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
  6. 根据权利要求1所述的方法,其特征在于,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;
    其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;
    所述适配层信息位于所述RLC头与所述PDCP PDU或一个PDCP PDU中的一段之间。
  7. 根据权利要求6所述的方法,其特征在于,所述MAC子头或者所述适配层信息或者所述RLC头中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述第一信息用于指示所述第二节点获取所述适配层信息的情况下,所述第一数据包对应的第一逻辑信道映射至少两个RLC信道。
  9. 一种数据传输方法,其特征在于,包括:
    第二节点接收第一节点发送的第一数据包;其中,所述第一数据包中包括适配层信息、第一信息和第二信息;或者,所述第一数据包中包括所述适配层信息、所述第一信息和第二信息;所述第一信息用于指示所述第二节点获取所述适配层信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;
    所述第二节点根据所述第一信息和所述第二信息,或者根据所述第一信息,从所述第 一数据包中获取所述适配层信息;
    所述第二节点根据所述适配层信息确定所述第一数据包对应的第一无线链路控制RLC信道,并通过所述第一RLC信道对应的RLC实体处理所述第一数据包。
  10. 根据权利要求9所述的方法,其特征在于,所述第一数据包中包括媒体接入控制MAC子头、无线链路控制RLC头、分组数据汇聚协议PDCP协议数据单元PDU或一个PDCP PDU中的一段;
    其中,所述MAC子头或者所述RLC头包括所述第一信息,所述适配层信息位于所述PDCP PDU或一个PDCP PDU中的一段之后。
  11. 根据权利要求10所述的方法,其特征在于,所述MAC子头或所述RLC头中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的起始位置。
  12. 根据权利要求9所述的方法,其特征在于,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;
    其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;所述适配层信息位于所述MAC子头与所述RLC头之间。
  13. 根据权利要求12所述的方法,其特征在于,所述MAC子头或所述适配层信息中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
  14. 根据权利要求9所述的方法,其特征在于,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;
    其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;
    所述适配层信息位于所述RLC头与所述PDCP PDU或一个PDCP PDU中的一段之间。
  15. 根据权利要求14所述的方法,其特征在于,所述MAC子头或者所述适配层信息或者所述RLC头中还包括所述第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的开始位置和/或结束位置。
  16. 根据权利要求9至15任一所述的方法,其特征在于,所述第一信息用于指示所述第二节点获取所述适配层信息时,所述第一数据包对应的第一逻辑信道映射至少两个RLC信道。
  17. 根据权利要求16所述的方法,其特征在于,所述适配层信息包括终端设备的终端设备标识以及所述终端设备的承载标识;
    所述第二节点根据所述适配层信息确定所述第一数据包对应的第一无线链路控制RLC信道,包括:
    第二节点确定与所述第一数据包对应的第一逻辑信道标识映射的至少两个RLC信道;
    所述第二节点将所述至少两个RLC信道中,与所述适配层信息中的终端设备标识和终端设备的承载标识所对应的RLC信道,作为所述第一RLC信道。
  18. 一种数据传输方法,其特征在于,包括:
    第二节点接收第一节点发送的第一数据包;其中,所述第一数据包中包括适配层信息、第一逻辑信道标识和第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;
    所述第二节点根据所述第一逻辑信道标识和所述第二信息,从所述第一数据包中获取 所述适配层信息;
    所述第一节点和所述第二节点为无线中继通信中的节点。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述第二节点接收第三节点发送的第三信息,所述第三节点为在所述无线中继通信中的所述第二节点的父节点或者宿主节点;
    所述第三信息包括所述第一逻辑信道标识;或者,所述第三信息包括所述第一逻辑信道标识及所述第一逻辑信道标识的属性信息,所述属性信息用于指示所述第二节点是否获取所述适配层信息。
  20. 根据权利要求19所述的方法,其特征在于,所述属性信息为第一预设取值时,所述属性信息用于指示所述第二节点获取所述适配层信息;
    所述属性信息为第二预设取值时,所述属性信息用于指示所述第二节点不获取所述适配层信息。
  21. 根据权利要求20所述的方法,其特征在于,所述第二节点根据所述第一逻辑信道标识和所述第二信息,从所述第一数据包中获取所述适配层信息,包括:
    所述第二节点确定所述属性信息为所述第一预设取值时,根据所述第二信息指示的位置,从所述第一数据包中获取所述适配层信息。
  22. 根据权利要求19所述的方法,其特征在于,所述属性信息表示出所述第一逻辑信道标识映射的RLC信道的RLC信道标识,或所述属性信息表示出所述第一逻辑信道标识映射的RLC信道对应的承载标识。
  23. 根据权利要求22所述的方法,其特征在于,所述第二节点根据所述第一逻辑信道标识和所述第二信息,从所述第一数据包中获取所述适配层信息,包括:
    所述第二节点根据所述属性信息确定所述第一逻辑信道标识映射的RLC信道标识或承载标识的数量大于1时,根据所述第二信息指示的位置,从所述第一数据包中获取所述适配层信息。
  24. 一种数据传输装置,其特征在于,包括:
    处理单元,用于生成第一数据包;
    收发单元,用于向第二节点发送所述第一数据包;
    所述第一数据包中包括适配层信息和第一信息;或者,所述第一数据包中包括所述适配层信息、所述第一信息和第二信息;
    其中,所述第一信息用于指示所述第二节点获取所述适配层信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;所述第一节点和所述第二节点为无线中继通信中的节点。
  25. 根据权利要求24所述的装置,其特征在于,所述第一数据包中包括媒体接入控制MAC子头、无线链路控制RLC头、分组数据汇聚协议PDCP协议数据单元PDU或一个PDCP PDU中的一段;
    其中,所述MAC子头或者所述RLC头包括所述第一信息,所述适配层信息位于所述PDCP PDU或一个PDCP PDU中的一段之后。
  26. 根据权利要求24所述的装置,其特征在于,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;
    其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;所述 适配层信息位于所述MAC子头与所述RLC头之间。
  27. 根据权利要求24所述的装置,其特征在于,所述第一数据包中包括MAC子头、RLC头、PDCP PDU或一个PDCP PDU中的一段;
    其中,所述MAC子头或者所述适配层信息或者所述RLC头包括所述第一信息;
    所述适配层信息位于所述RLC头与所述PDCP PDU或一个PDCP PDU中的一段之间。
  28. 一种数据传输装置,其特征在于,包括:
    收发单元,用于接收第一节点发送的第一数据包;其中,所述第一数据包中包括适配层信息、第一信息和第二信息;或者,所述第一数据包中包括所述适配层信息、所述第一信息和第二信息;所述第一信息用于指示所述第二节点获取所述适配层信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;
    处理单元,用于根据所述第一信息和所述第二信息,或者根据所述第一信息,从所述第一数据包中获取所述适配层信息;根据所述适配层信息确定所述第一数据包对应的第一无线链路控制RLC信道,并通过所述第一RLC信道对应的RLC实体处理所述第一数据包。
  29. 根据权利要求28所述的装置,其特征在于,所述适配层信息包括终端设备的终端设备标识以及所述终端设备的承载标识;
    所述处理单元具体用于:
    确定与所述第一数据包对应的第一逻辑信道标识映射的至少两个RLC信道;
    将所述至少两个RLC信道中,与所述适配层信息中的所述终端设备标识和所述终端设备的承载标识所对应的RLC信道,作为所述第一RLC信道。
  30. 一种数据传输装置,其特征在于,包括:
    收发单元,用于接收第一节点发送的第一数据包;其中,所述第一数据包中包括适配层信息、第一逻辑信道标识和第二信息,所述第二信息用于指示所述适配层信息在所述第一数据包中的位置;
    处理单元,用于根据所述第一逻辑信道标识和所述第二信息,从所述第一数据包中获取所述适配层信息;
    所述第二节点为无线中继通信中的节点。
  31. 根据权利要求30所述的装置,其特征在于,所述收发单元还用于:
    接收第三节点发送的第三信息,所述第三节点为在所述无线中继通信中的所述第二节点的父节点或者宿主节点;
    所述第三信息包括所述第一逻辑信道标识;或者,所述第三信息包括所述第一逻辑信道标识及所述第一逻辑信道标识的属性信息,所述属性信息用于指示所述第二节点是否获取所述适配层信息。
  32. 根据权利要求31所述的装置,其特征在于,所述属性信息为第一预设取值时,所述属性信息用于指示所述第二节点获取所述适配层信息;
    所述属性信息为第二预设取值时,所述属性信息用于指示所述第二节点不获取所述适配层信息。
  33. 根据权利要求32所述的装置,其特征在于,所述处理单元具体用于:
    确定所述属性信息为所述第一预设取值时,根据所述第二信息指示的位置,从所述第一数据包中获取所述适配层信息。
PCT/CN2019/107056 2018-10-26 2019-09-20 一种数据传输方法及装置 WO2020082948A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811261117.XA CN111106908B (zh) 2018-10-26 2018-10-26 一种数据传输方法及装置
CN201811261117.X 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020082948A1 true WO2020082948A1 (zh) 2020-04-30

Family

ID=70330785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107056 WO2020082948A1 (zh) 2018-10-26 2019-09-20 一种数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN111106908B (zh)
WO (1) WO2020082948A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113660631A (zh) * 2020-05-12 2021-11-16 上海朗帛通信技术有限公司 用于中继传输的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114158069B (zh) * 2021-11-26 2023-12-01 中国联合网络通信集团有限公司 专网中数据传输的方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920125B1 (en) * 2000-10-27 2005-07-19 Nortel Network Limited IP adaptation layer on backhaul connection of cellular network
CN101335715A (zh) * 2008-07-21 2008-12-31 华为技术有限公司 无线自回传的方法、装置和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864719B2 (en) * 2005-03-29 2011-01-04 Lg Electronics Inc. Method of generating lower layer data block in wireless mobile communication system
KR100763207B1 (ko) * 2006-05-03 2007-10-04 삼성전자주식회사 비압축 aⅴ 데이터를 송수신하는 방법, 장치, 및 전송프레임 구조
US8837392B2 (en) * 2010-05-10 2014-09-16 Telefonaktiebolaget L M Ericsson (Publ) Application layer communication via single radio block access
CN102724710B (zh) * 2012-06-26 2015-06-10 大唐移动通信设备有限公司 一种pdu传输方法及装置
EP3378186B1 (en) * 2015-11-16 2021-02-24 LG Electronics Inc. Method for transmitting or receiving a mac pdu in a wireless communication system and a device therefor
WO2017108123A1 (en) * 2015-12-23 2017-06-29 Nokia Solutions And Networks Oy Methods, apparatuses and computer program product for pdu formatting according to sdu segmentation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920125B1 (en) * 2000-10-27 2005-07-19 Nortel Network Limited IP adaptation layer on backhaul connection of cellular network
CN101335715A (zh) * 2008-07-21 2008-12-31 华为技术有限公司 无线自回传的方法、装置和系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "MAC adaptation vs RLC adaptation layer for L2 relaying", 3GPP TSG-RAN WG2 MEETING #101BIS R2-1805703, 6 April 2018 (2018-04-06), XP051416089 *
QUALCOMM INC.: "Email discussion on unified design for IAB arch 1a", 3GPP TSG-RAN WG2 MEETING #103BIS R2-1815960, 12 October 2018 (2018-10-12), XP051525154 *
SAMSUNG ELECTRONICS R&D INSTITUTE U: "Design options and NR specs impact for different placements of the IAB adaptation layer", 3GPP TSG-RAN WG2 NR AD-HOC #18-07 R2-1809614, 1 July 2018 (2018-07-01), XP051466884 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113660631A (zh) * 2020-05-12 2021-11-16 上海朗帛通信技术有限公司 用于中继传输的方法和装置

Also Published As

Publication number Publication date
CN111106908A (zh) 2020-05-05
CN111106908B (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
US11510131B2 (en) Configuration method, data transmission method, and apparatus
US10412650B2 (en) Data transmission method, apparatus and system
EP3706328A1 (en) Communication method, communication node, and system
EP3860204B1 (en) Data transmission method and apparatus for wireless backhaul network
CN1822573B (zh) 用于在无线通信系统中控制数据通信的系统和方法
CN110603803B (zh) 用于云局域网环境中网络实体之间通信的方法和设备
EP3213595B1 (en) Devices and methods for reporting data reception status
KR101879969B1 (ko) 데이터 전송 방법 및 디바이스
WO2020063504A1 (zh) 用于无线回传网络的数据传输方法和装置
CN111148163B (zh) 通信方法及装置
CN110365609B (zh) 一种数据包分段方法、及装置
JP2012114940A (ja) 無線装置とネットワーク間のデータユニットのシーケンスの送信のための無線通信方法
WO2010121416A1 (zh) 中继链路中处理数据的方法、中继节点和系统
US20220225209A1 (en) Data packet transmission method and apparatus
CN115804146A (zh) 多链路装置之间的低时延数据的无线通信的方法和设备
WO2020192654A1 (zh) 配置无线链路控制rlc承载的方法和装置
WO2020164557A1 (zh) 一种通信方法及相关装置
WO2020082948A1 (zh) 一种数据传输方法及装置
TWI816496B (zh) 用於無線通訊的方法及使用者設備
EP3952600A1 (en) Method and apparatus for establishing radio bearer
WO2021087924A1 (zh) 一种通信方法及装置
WO2022206418A1 (zh) 通信方法及通信装置
WO2022239707A1 (ja) 通信制御方法
RU2803196C1 (ru) Способ передачи пакета данных и устройство
WO2023068254A1 (ja) 通信制御方法及び中継ノード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875420

Country of ref document: EP

Kind code of ref document: A1