WO2021233235A1 - 连接建立的方法、装置和系统 - Google Patents

连接建立的方法、装置和系统 Download PDF

Info

Publication number
WO2021233235A1
WO2021233235A1 PCT/CN2021/093968 CN2021093968W WO2021233235A1 WO 2021233235 A1 WO2021233235 A1 WO 2021233235A1 CN 2021093968 W CN2021093968 W CN 2021093968W WO 2021233235 A1 WO2021233235 A1 WO 2021233235A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
cpe
terminal device
pdu session
data
Prior art date
Application number
PCT/CN2021/093968
Other languages
English (en)
French (fr)
Inventor
徐艺珊
诸华林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021233235A1 publication Critical patent/WO2021233235A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • This application relates to the field of communication technology, and in particular to methods, devices and systems for connection establishment.
  • the third generation partnership project (3rd generation partnership project, 3GPP) standard group released the fifth-generation mobile communication technology (fifth-generation, 5G) network architecture.
  • the 5G network architecture supports a residential gateway (Residential Gateway, RG) to access the 5G core network through a wireless access network or a fixed broadband access network, and then access to the Data Network (DN) connected to the 5G core network.
  • RG is also a 5G terminal for 5G networks.
  • terminals with 5G functions (such as computers, mobile phones, IoT devices that support 5G functions, etc.) can access the 5G system through RG to establish a PDU session.
  • the above-mentioned communication method is referred to as multiple terminals communicating through cascade.
  • an IP security (IPSec) tunnel needs to be established with the 5G system.
  • the IPSec tunnel is carried on the user plane of the RG, and the control plane signaling interaction and user plane data between the terminal and the 5G core network need to be transmitted through the IPSec tunnel.
  • the embodiments of the present application are used to provide a method, device, and system for establishing a connection, which are used to reduce the time delay when multiple terminals are cascaded for communication.
  • an embodiment of the present application provides a first method for establishing a connection.
  • the method includes:
  • the first terminal device receives a first message from the second terminal, the first message requesting the establishment of a first connection between the second terminal device and the data network; the first terminal device passes the control between the first terminal device and the core network Forward the first message to the core network to obtain a response that the core network accepts a request to establish the first connection; the first terminal device establishes or selects a second connection for transmitting data of the first connection; wherein, the The second connection is the connection between the first terminal device and the data network.
  • the first terminal device forwards the first message of the second terminal device to the core network through the control between the first terminal device and the core network, and the first terminal device establishes or selects the first message
  • the second connection of a terminal device is used to transmit the data of the first connection of the second terminal device, which simplifies the implementation complexity of the first terminal device and the second terminal device, and reduces the circuitous path of signaling and data transmission, Reduce the communication delay.
  • the method further includes: the first terminal obtains, through the control plane, the establishment parameters of the first connection determined by the core network; the first terminal device establishes or selects for transmitting the first connection
  • the second connection of the data includes: the first terminal establishes or selects the second connection according to the establishment parameters of the first connection.
  • the first terminal device establishes or selects the second connection of the first terminal device according to the establishment parameters of the first connection obtained from the core network for transmitting the second terminal device
  • the data of the first connection simplifies the implementation complexity of the first terminal device and the second terminal device, reduces the circuitous path of signaling and data transmission, and reduces the communication delay.
  • the establishment parameters of the first connection include: the network slice selection auxiliary information NSSAI of the first connection determined by the core network; or, the data network name DNN of the first connection determined by the core network .
  • the method further includes: the first terminal obtains the request establishment parameters of the first connection requested by the second terminal; the first terminal device establishes or selects the parameter used to transmit the first connection
  • the second connection of data includes: the first terminal establishes or selects the second connection according to the request establishment parameter of the first connection.
  • the first terminal device establishes or selects the second connection of the first terminal device according to the establishment parameters of the first connection acquired from the second terminal for transmitting the second connection.
  • the data of the first connection of the terminal device simplifies the implementation complexity of the first terminal device and the second terminal device, reduces the circuitous path of signaling and data transmission, and reduces the communication delay.
  • the request establishment parameter of the first connection includes: the network slice selection assistance information NSSAI of the first connection requested by the second terminal; or, the first connection requested by the second terminal
  • the name of the data network is DNN.
  • the first message is a first non-access stratum NAS message
  • the first terminal device forwards the first message to the core network through control between the first terminal device and the core network
  • the method includes: the first terminal device sends a second NAS message to a first control plane network element serving the first terminal, the second NAS message includes the first NAS message, so as to enable the first control plane network element to The second control plane network element serving the second terminal device sends the first NAS message.
  • the first terminal device receives the first data packet of the first connection from the second terminal device; the first terminal device transforms the first data packet into the second data packet of the second connection Data packet; the first terminal device sends the second data packet through the second connection.
  • the first terminal device converting the first data packet into the second data packet of the second connection includes: the first terminal device sets the source IP address of the first data packet to The IP address of the first terminal device allocated for the second connection.
  • the first terminal device receives the third data packet of the second connection; the first terminal device converts the third data packet into the fourth data packet of the first connection; The terminal device sends the fourth data packet to the second terminal device.
  • the first terminal device converting the third data packet into the fourth data packet of the first connection includes: the first terminal device sets the destination IP address of the third data packet to The IP address of the second terminal allocated for the first connection.
  • the first terminal device uses the second connection of the first terminal device to transmit data of the first connection of the second terminal device, which simplifies the first terminal device and the second terminal device.
  • the implementation complexity of the equipment reduces the circuitous path of signaling and data transmission, and reduces the communication delay.
  • the first connection is a first protocol data unit PDU session between the first terminal and the data network
  • the second connection is a second PDU session between the second terminal and the data network.
  • the data network name DNN or the network slice selection auxiliary information NSSAI of the first connection and the second connection are the same.
  • the embodiments of the present application provide a method for establishing a connection.
  • the method includes:
  • the first control plane network element obtains the first message of the second terminal device through the second control plane network element of the first terminal device, and the first message requests the establishment of a first connection between the second terminal device and the data network;
  • a control plane network element sends the first message to a third control plane network element serving the second terminal device to obtain a response of the core network to accepting the request to establish the first connection.
  • the first control plane network element obtains the first message of the second terminal device through the control plane of the first terminal device, and obtains the response of the core network to accepting the request to establish the first connection To support the establishment of the first connection establishment request of the second terminal device.
  • the foregoing process simplifies the implementation complexity of the first terminal device and the second terminal device, reduces the circuitous path of signaling transmission, and reduces the communication delay.
  • the first control plane network element obtains the establishment parameters of the first connection determined by the core network; the first control plane network element sends the establishment parameters of the first connection to the first terminal device , To enable the first terminal device to establish or select a second connection for transmitting data of the first connection; wherein, the second connection is a connection between the first terminal device and the data network.
  • the first control plane network element transmits the connection establishment request and response between the second terminal device and the core network through the second control plane network element of the first terminal device, and sends it to the first terminal device.
  • a terminal device sends the establishment parameters of the first connection determined by the core network to support the first terminal device to establish or select the second connection of the first terminal device for transmitting the data of the first connection.
  • the establishment parameters of the first connection include: the network slice selection auxiliary information NSSAI of the first connection determined by the core network; or, the data network name DNN of the first connection determined by the core network .
  • the first control plane network element participates in the establishment of the second connection.
  • the first message is a first non-access stratum NAS message
  • the first control plane network element obtains the first message of the second terminal device through the control plane of the first terminal device, including:
  • the first control plane network element receives a second NAS message from the first terminal device, and the second NAS message includes the first NAS message.
  • the second NAS message further includes the first identifier of the second terminal device; the method further includes: obtaining the second identifier of the second terminal device according to the first identifier; the first control
  • the sending of the first message by the network element of the second control plane to the second control plane network element serving the second terminal device includes: sending the first message and the second message by the first control plane network element to the second control plane network element Logo.
  • the first connection is a first protocol data unit PDU session between the first terminal and the data network
  • the second connection is a second PDU session between the second terminal and the data network.
  • the data network name DNN or the network slice selection auxiliary information NSSAI of the first connection and the second connection are the same.
  • the embodiments of the present application provide a third method for establishing a connection.
  • the method includes:
  • the second terminal device sends the first session establishment request parameter to the first terminal device to enable the first terminal device to establish or select a second connection for transmitting the data of the first connection; wherein, the second connection is the The connection of the first terminal device to the data network.
  • the second terminal device sends the first session establishment request parameter to the first terminal device to enable the first terminal device to select or establish the first session establishment request parameter according to the first session establishment request parameter.
  • the second connection of a terminal device is used to transmit the data of the first connection of the second terminal device, which simplifies the implementation complexity of the first terminal device and the second terminal device, reduces the circuitous path of data transmission, and reduces the communication Time delay.
  • an embodiment of the present application provides a communication device, including a processor, configured to read and execute instructions from a memory to implement the method in the first aspect or any possible implementation manner.
  • an embodiment of the present application provides a communication device, which is characterized by including a processor, which is configured to read and execute instructions from a memory to implement the second aspect or any possible implementation manner as described above. Methods.
  • an embodiment of the present application provides a communication device, which is characterized by including a processor, which is configured to read and execute instructions from a memory to implement the third aspect or any possible implementation manner as described above. Methods.
  • an embodiment of the present application provides a program product, which is characterized by including an instruction, when the instruction runs on a communication device, so that the communication device implements the first aspect or any possible implementation manner as before In the method.
  • an embodiment of the present application provides a program product, which is characterized by including an instruction, when the instruction runs on a communication device, so that the communication device implements the second aspect or any possible implementation manner as before In the method.
  • an embodiment of the present application provides a program product, which is characterized by including an instruction, when the instruction runs on a communication device, so that the communication device implements the third aspect or any possible implementation manner as before In the method.
  • an embodiment of the present application provides a computer-readable storage medium, which is characterized by including the program product according to the seventh aspect.
  • an embodiment of the present application provides a computer-readable storage medium, which is characterized by including the program product according to the eighth aspect.
  • an embodiment of the present application provides a computer-readable storage medium, which is characterized by including the program product according to the ninth aspect.
  • the embodiments of the present application provide a method for establishing a connection.
  • the method includes:
  • the first terminal device receives a first message from the second terminal, the first message requesting the establishment of a first connection between the second terminal device and the data network; the first terminal device passes the control between the first terminal device and the core network Forward the first message to the core network to establish a connection of the user plane network element of the first connection to the data network; the first terminal device establishes or selects a second connection for transmitting data of the first connection,
  • the second connection is a connection between the first terminal device and the data network where the user plane network element of the first connection is located; wherein, between the user plane network element of the first connection and the user plane network element of the second connection
  • the connection is established through the establishment of the first connection and the establishment or modification of the second connection.
  • the first terminal device forwards the first message of the second terminal device to the core network through the control between the first terminal device and the core network, and the first terminal device establishes or selects The second connection of the first terminal device, wherein the second connection and the connection between the user plane network element of the first connection and the user plane network element of the second connection are used to transmit data of the first connection of the second terminal device,
  • the implementation complexity of the first terminal device and the second terminal device is simplified, the circuitous path of signaling and data transmission is reduced, and the communication delay is reduced.
  • the method further includes: the first terminal obtains the data network where the user plane network element of the first connection is located through the control plane.
  • the method further includes: the first terminal obtains, through the control plane, the establishment parameters of the first connection determined by the core network; the first terminal device establishes or selects for transmitting the first connection
  • the second connection of the data includes: the first terminal establishes or selects the second connection according to the establishment parameters of the first connection.
  • the method further includes: the first terminal obtains the request establishment parameters of the first connection requested by the second terminal; the first terminal device establishes or selects data for transmitting the first connection
  • the second connection includes: the first terminal establishes or selects the second connection according to the request establishment parameter of the first connection.
  • the first message is a first non-access stratum NAS message
  • the first terminal device forwards the first message to the core network through control between the first terminal device and the core network
  • the method includes: the first terminal device sends a second NAS message to a first control plane network element serving the first terminal, the second NAS message includes the first NAS message, so as to enable the first control plane network element to The second control plane network element serving the second terminal device sends the first NAS message.
  • the method further includes: the first terminal device receives the first data packet of the first connection from the second terminal device; the first terminal device sends the second connection through the second connection The second data packet; wherein, the second data packet includes the first data packet.
  • the method further includes: the first terminal device receives a third data packet of the second connection; the first terminal device obtains fourth data of the first connection from the third data packet Packet; the first terminal device sends the fourth data packet to the second terminal device.
  • the first connection is the first protocol data unit PDU session between the first terminal and the data network
  • the second connection is the user plane network element of the second terminal and the second connection.
  • the second PDU session of the data network is the first protocol data unit PDU session between the first terminal and the data network.
  • an embodiment of the present application provides a method for establishing a connection, which is characterized in that it includes:
  • the first control plane network element obtains the first message of the second terminal device through the control plane of the first terminal device, and the first message requests the establishment of a first connection between the second terminal device and the data network; the first control plane network The element sends the first message to a second control plane network element serving the second terminal device; the first control plane network element receives a second message from the first terminal device, and the second message requests the establishment of the first terminal A second connection between the device and the user plane network element of the first connection; the second connection is used to transmit data packets of the first connection; the tunnel endpoint identifier of the user plane network element of the first connection and the second connection are obtained The tunnel end point identifier of the user plane network element to enable the establishment of a connection between the user plane network element of the first connection and the user plane network element of the second connection.
  • the first control plane network element transmits the message between the second terminal device and the core network through the control plane of the first terminal device, and the first control plane network element establishes the The connection between the user plane network element of the first connection and the user plane network element of the second connection is used to transmit data of the first connection of the second terminal device.
  • the method further includes: the first control plane network element acquires the establishment parameters of the first connection determined by the core network; and the first control plane network element sends the first connection to the first terminal device.
  • a connection establishment parameter to enable the first terminal device to establish or select the second connection.
  • the first message is a first non-access stratum NAS message
  • the first control plane network element obtains the first message of the second terminal device through the control plane of the first terminal device, including:
  • the first control plane network element receives a second NAS message from the first terminal device, and the second NAS message includes the first NAS message.
  • an embodiment of the present application provides a communication device, including a processor, configured to read and execute instructions from a memory to implement the method in the thirteenth aspect or any possible implementation manner. .
  • an embodiment of the present application provides a communication device, which is characterized by including a processor, which is used to read and execute instructions from a memory to implement the fourteenth aspect or any possible implementation as before The method in the way.
  • an embodiment of the present application provides a program product, which is characterized by including an instruction, when the instruction runs on a communication device, so that the communication device realizes the thirteenth aspect or any possible The method in the implementation mode.
  • an embodiment of the present application provides a program product, which is characterized by including an instruction, when the instruction runs on a communication device, so that the communication device realizes the fourteenth aspect or any possible The method in the implementation mode.
  • an embodiment of the present application provides a computer-readable storage medium, which is characterized by including the program product according to the seventeenth aspect.
  • an embodiment of the present application provides a computer-readable storage medium, which is characterized by including the program product according to the eighteenth aspect.
  • the first terminal device transmits the message between the second terminal device and the core network through the control plane between the first terminal device and the core network, and the first terminal device establishes or selects the first terminal device’s
  • the second connection is used to transmit the data of the first connection of the second terminal device, which simplifies the implementation complexity of the first terminal device and the second terminal device, reduces the circuitous path of signaling and data transmission, and reduces the communication time. Extension.
  • Figure 1 is a schematic diagram of the 5G network architecture defined by 3GPP;
  • Figure 2 is a schematic diagram of a UE accessing a 5G core network through an RG;
  • Figure 3 is a schematic diagram of an architecture in which RG performs data transmission through a CPE PDU session
  • Figure 4 is a schematic diagram of an architecture in which RG performs data transmission through a PDU session of CPE and a PDU session of RG;
  • FIG. 5 is a schematic diagram of a connection establishment method based on the architecture of FIG. 3;
  • Figure 6 is a schematic diagram of a CPE based on the architecture of Figure 3 obtaining a network response to the establishment of an RG PDU session;
  • Fig. 7 is a schematic diagram of a CPE establishing a CPE PDU session for transmitting RG PDU session data based on the architecture of Fig. 3;
  • Figure 8 is a schematic diagram of another connection establishment method based on the architecture of Figure 3;
  • Fig. 9 is a schematic diagram of another CPE based on the architecture of Fig. 3 establishing a CPE PDU session for transmitting RG PDU session data;
  • FIG. 10 is a schematic diagram of a method for establishing a connection based on the architecture of FIG. 4;
  • FIG. 11 is a schematic diagram of a CPE based on the architecture of FIG. 4 obtaining a network response to the establishment of an RG PDU session;
  • FIG. 12 is a schematic diagram of a CPE establishing a CPE PDU session for transmitting RG PDU session data based on the architecture of FIG. 4;
  • Figure 13 is a schematic diagram of a CPE AMF based on the architecture of Figure 4 establishing a user plane connection between a CPE PDU session and an RG PDU session;
  • FIG. 14 is a schematic diagram of another connection establishment method based on the architecture of FIG. 4;
  • FIG. 15 is a schematic diagram of another CPE based on the architecture of FIG. 4 establishing a CPE PDU session for transmitting RG PDU session data;
  • Fig. 16 is a schematic diagram of another CPE AMF based on the architecture of Fig. 4 establishing a user plane connection between a CPE PDU session and an RG PDU session.
  • FIG. 17 is a schematic diagram of a method for establishing a connection on the first terminal device side based on the architecture of FIG. 3;
  • FIG. 18 is a schematic diagram of a method for establishing a connection on the side of a second terminal device based on the architecture of FIG. 3;
  • 19 is a schematic diagram of a method for establishing a connection on the network element side of the first control plane based on the architecture of FIG. 3;
  • Figure 20 is a schematic diagram of a communication device
  • FIG. 21 is a schematic diagram of a method for establishing a connection on the first terminal device side based on the architecture of FIG. 4;
  • FIG. 22 is a schematic diagram of a method for establishing a connection on the network element side of the first control plane based on the architecture of FIG. 4;
  • Figure 23 is a schematic diagram of a terminal device
  • Fig. 24 is a schematic diagram of a communication device.
  • the 3GPP standards group formulated the Next Generation System (Next Generation System) at the end of 2016, which is called the 5G network architecture, as shown in Figure 1.
  • UE User Equipment
  • R Radio Access
  • (R)AN includes 3GPP RAN and non-3GPP access networks
  • non-3GPP access networks include WLAN, Wireline, etc.
  • the core network includes control plane functional network elements and user plane functional network elements.
  • the control plane function network elements include access and mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), authentication server functions (Authentication Server Function, AUSF), and unified users Data management (Unified Data Management, UDM) and Policy Control function (PCF).
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • AUSF Authentication Server Function
  • PCF Policy Control function
  • AMF is mainly responsible for the registration and authentication of users during access, and the management of user mobility.
  • SMF is mainly responsible for establishing a corresponding session connection on the network side when a user initiates a service, providing specific services for the user, and issuing data message forwarding strategies and QoS control strategies to the user plane functional network elements.
  • AUSF is mainly responsible for authenticating user equipment and determining the legitimacy of user equipment.
  • UDM is mainly used to store user equipment subscription data.
  • PCF is mainly used to issue business-related policies to AMF or SMF.
  • the user plane function network element is mainly the user plane function (User Plane Function, UPF), which is mainly responsible for the forwarding of packet data packets, quality of service (QoS) control, and accounting information statistics.
  • UPF User Plane Function
  • the UE may request to establish a user plane connection with a data network (Data Network, DN) through a 5G network.
  • a data network Data Network, DN
  • the UE may request to establish a Protocol Data Unit Session (PDU Session).
  • PDU Session Protocol Data Unit Session
  • the uplink data packet of the UE is sent to the UPF via the (R)AN, and then the UPF is sent to the DN.
  • the UPF receives the UE's downlink data packet from the DN, it is sent to the UE via the (R)AN.
  • the 5G network architecture supports the fixed terminal residential gateway (RG) to access the core network from the (R)AN. Further, the 5G network architecture also supports the UE to access the core network through the RG, as shown in Figure 2.
  • N3GF Non-3GPP Gateway Function
  • N3IWF Non-3GPP InterWorking Function
  • the user plane function, access and mobility management function, session management function, etc. are only a name, and the name does not constitute a limitation on the device itself.
  • the network elements or entities corresponding to user plane functions, access and mobility management functions, session management functions, etc. may also have other names, which are not specifically limited in the embodiment of the present application.
  • the user plane function may also be replaced with UP, etc., which are uniformly explained here, and will not be repeated here.
  • user plane functions, access and mobility management functions, session management functions, etc. in addition to the functions in the embodiments of the present application, may also have other functions, which are not specifically limited in the embodiments of the present application.
  • user plane functions, access and mobility management functions, session management functions, etc. may be implemented by one physical device, or may be jointly implemented by multiple physical devices, which are not specifically limited in the embodiment of the present application. That is, it can be understood that the user plane functions, access and mobility management functions, session management functions, etc. in the embodiments of the present application may all be a logical function module in a physical device, or may be composed of multiple physical devices.
  • a logical function module composed of an entity may also be an entity having the functions of user plane functions, access and mobility management functions, and session management functions in the embodiments of this application. The embodiments of this application will not make specific details about this. limited.
  • the embodiments of this application mainly involve two architectures.
  • One is that the RG performs data transmission between the RG and the DN through the connection between the CPE and the CPE UPF and the connection between the CPE and the DN, as shown in Figure 3.
  • the other is that the RG performs data transmission between the RG and the DN through the connection between the CPE and the RG UPF and the connection between the RG UPF and the DN, as shown in Figure 4.
  • AMF, SMF, and UPF serving RG are referred to as RG AMF, RG SMF, and RG UPF
  • AMF, SMF, and UPF serving CPE are referred to as CPE AMF, CPE SMF, and CPE UPF.
  • RG AMF and CPE AMF can be the same entity or the same network element, that is, one AMF serves both RG and AMF.
  • RG SMF and CPE SMF, RG UPF and CPE UPF may also be the same entity or the same network element.
  • the architecture shown in FIG. 3 includes RG, CPE (Customer-premises equipment), (R)AN, and core network.
  • (R)AN and core network refer to the description of Fig. 1 for details.
  • the CPE transmits the NAS signaling between the RG and the RG AMF through the Non-Access-Stratum (NAS) connection between the CPE and the CPE AMF.
  • the uplink and downlink data exchanged between the RG and the data network (Data Network, DN) are transmitted through the connection from the CPE to the DN, that is, the uplink and downlink data transmission of the RG is carried through the connection established between the CPE, RAN and the CPE UPF.
  • DN Non-Access-Stratum
  • the architecture shown in FIG. 4 includes RG, CPE (Customer-premises equipment), (R)AN, and core network.
  • (R)AN and core network refer to the description of Fig. 1 for details.
  • the CPE transmits the NAS signaling between the RG and the RG AMF through the NAS connection between the CPE and the CPE AMF.
  • the transmission of uplink and downlink data between the RG and the DN is carried out through the connection between the CPE and the RG UPF and the connection between the RG UPF and the DN.
  • the architecture of Figure 4 there is no need to establish an IPSec tunnel between the N3GF and the RG, and then the N3GF is used to transmit the uplink and downlink data between the RG and the DN.
  • connections described in the foregoing Figures 3 and 4 such as the connection between the CPE and the CPE UPF, and the connection between the CEP and the RG UPF, can be established by using the PDU session establishment process.
  • RG and CPE in Figure 3 and Figure 4 have UE functions. Therefore, in actual deployment, the RG and CPE in the architecture of FIG. 2 can also be replaced with other terminal devices with UE functions.
  • RG may also be UE or CPE
  • CPE may also be UE or RG.
  • the architecture shown in Figure 2 can describe a UE accessing a 5G core network through another UE, or a UE accessing a 5G core network through an RG or CPE, or an RG accessing a 5G core network through another RG or CPE. Enter the 5G core network, etc.
  • the method includes:
  • S501 The RG sends the first RG NAS message to the CPE.
  • the first RG NAS message is used to request the establishment of an RG PDU session.
  • CPE NAS messages transferred between CPE and CPE AMF are called CPE NAS messages; NAS messages transferred between RG and RG AMF are called RG NAS messages; RG PDU sessions are called RG PDU sessions, and CPE PDUs The session is called a CPE PDU session.
  • the first RG NAS message includes the first RG PDU session establishment request parameter.
  • the RG NAS message includes an RG session management container (SM container), and the SM container includes the first RG PDU session establishment request parameter.
  • SM container RG session management container
  • the first RG PDU session establishment request parameter describes the characteristics of the PDU session that the RG requests to establish.
  • the first PDU session establishment parameter includes a PDU session ID (PDU session ID).
  • the first PDU session establishment parameters may also include: Data Network Name (DNN), Network Slice Selection Assistance Information (NSSAI), Session and Service Continuity Mode (Session and Service) Continuity Mode, SSC mode), or PDU session Type, etc.
  • DNN Data Network Name
  • NSSAI Network Slice Selection Assistance Information
  • Session and Service Continuity Mode Session and Service Continuity Mode
  • SSC mode Session and Service Continuity Mode
  • PDU session Type etc.
  • the PDU session ID is the identifier assigned by the RG for the PDU session requested to be established;
  • DNN is the name of the DN requested by the RG to connect;
  • NSSAI is the slice information corresponding to the DN requested by the RG to connect;
  • SSC mode is the session of the PDU session requested by the RG And business continuity mode;
  • PDU session Type refers to the type of the PDU session that the RG requests to establish.
  • the type of the PDU session may be IPv4 type, IPv6 type, IPv4v6 type, Ethernet type, or Unstructured type.
  • the above-mentioned first RG NAS message may be carried on the PPPoE connection between the RG and the CPE.
  • the RG sends a first message to the CPE, and the first message includes the first RG NAS message.
  • the first message may be a vendor specific message (Vender Specific Message, VSM).
  • the first message also includes a second RGPDU session establishment request parameter.
  • the second RGPDU session establishment request parameter may include some or all of the parameters in the first RGPDU session establishment request parameter.
  • the CPE can learn that the RG requests to establish a PDU session.
  • the CPE may also learn the characteristics of the PDU session that the RG requests to establish.
  • the CPE sends the first RG NAS message to the CPE AMF through the CPE NAS message, and the CPE AMF forwards the first RG NAS message to the RG AMF to obtain the first response of the network to the request to establish the RG PDU session.
  • the first response is used to indicate that the network accepts the request to establish an RG PDU session. It can be understood that the first response may be considered as the authorization of the network to establish the RG PDU session, that is, it indicates that the RG is allowed to establish the RG PDU session in the network.
  • the CPE may obtain RGPDU session establishment parameters determined by the network from the network.
  • the RG PDU session establishment parameter determined by the network includes the IP address of the RG allocated for the RG PDU session.
  • the RG PDU session establishment parameters determined by the network further include PDU Session ID, DNN, NSSAI, SSC mode, or PDU Session Type.
  • the RG PDU session establishment parameter determined by the network may be different from the first RG PDU session establishment request parameter.
  • the first response may be an acceptance message for the first RG NAS message.
  • the CPE establishes or selects a CPE PDU session for transmitting the RG PDU session data.
  • the DNN or NSSAI of the CPE PDU session is the same as the above-mentioned RG PDU session, so that the destination address of the data packet of the RG PDU session is reachable for the CPE PDU session.
  • the CPE has established or selected a connection with the data network requested by the RG.
  • Solution 1 The CPE establishes a CPE PDU session.
  • the CPE may establish a CPE PDU session according to one or more parameters among the RG PDU session establishment parameters determined by the network. For example, if the RG PDU session establishment parameters include DNN1 and NSSAI1, the CPE requests to establish a PDU session with DNN as DNN1 and NSSAI as NSSAI1.
  • the CPE may establish a CPE PDU session according to one or more of the above-mentioned second RG PDU session establishment request parameters.
  • the parameters of the second RG PDU session establishment request include DNN1 and NSSAI1
  • the CPE requests to establish a PDU session with DNN as DNN1 and NSSAI as NSSAI1.
  • one or more parameters of the second RG PDU session establishment request parameters may be used to establish the CPE PDU session.
  • the CPE may establish the CPE PDU session according to one or more of the default PDU session establishment parameters.
  • the RG may also establish the RG PDU session according to one or more of the default PDU session establishment parameters.
  • the default PDU session establishment parameters may be configured by the network or agreed upon by a standard protocol.
  • the default PDU session establishment parameters may include DNN, NSSAI, SSC mode, or PDU session Type.
  • one or more of the default PDU session establishment parameters may be used to establish the CPE PDU session.
  • Solution 2 CPE chooses CPE PDU session.
  • the CPE can determine whether there is a CPE PDU session that satisfies the RG PDU session. If there is a CPE PDU session that satisfies the RG PDU session, the CPE PDU session can be used to serve the RG.
  • the CPE may determine whether there is a CPE PDU session that satisfies the RG PDU session according to whether the CPE PDU session matches one or more of the RG PDU session establishment parameters determined by the network. For example, when the DNN or NSSAI of the CPE PDU session meets the DNN or NSSAI in the RG PDU session establishment parameters determined by the network, the CPE PDU session can be considered to satisfy the RG PDU session.
  • the CPE may determine whether there is a CPE PDU session that satisfies the RG PDU session according to one or more of the above-mentioned second RG PDU session establishment request parameters.
  • the second RG PDU session establishment request parameter includes DNN1
  • the CPE has established a PDU session whose DNN is DNN1
  • the CPE determines that the CPE PDU session is a CPE PDU session that satisfies the RG PDU session.
  • one or more parameters of the second RG PDU session establishment request parameters may be used to determine the CPE PDU session that satisfies the RG PDU session.
  • the CPE may also determine whether there is a CPE PDU session that satisfies the RG PDU session according to one or more parameters in the default PDU session establishment parameters.
  • the RG PDU session may also be established according to one or more of the default PDU session establishment parameters.
  • the default PDU session establishment parameters may be configured by the network or agreed upon by a standard protocol.
  • the default PDU session establishment parameters may include DNN, NSSAI, SSC mode, or PDU session Type.
  • the association relationship between the RG PDU session CPE PDU session can be saved on the CPE, and the CPE can convert the uplink data packet of the RG PDU session into the uplink data packet of the CPE PDU session according to the association relationship, and pass the The CPE PDU session is sent to the DN; accordingly, the CPE can receive the downlink data packet of the CPE PDU session from the DN through the CPE PDU session, and according to the association relationship, convert the downlink data packet of the CPE PDU session to the RG PDU session Downlink data packets are sent to RG.
  • the association relationship between the IP address of the RG allocated for the RG PDU session and the CPE PDU Session ID can be stored on the CPE, as shown in Table 1. Show. Since there is a one-to-one correspondence between the RG PDU session and the IP address allocated for the RG PDU session, the corresponding RG PDU session can be identified by the RG IP address.
  • the CPE when the CPE receives an uplink data packet from the RG, the CPE determines the corresponding CPE PDU session through the IP address of the RG carried in the uplink data packet, and sends the uplink data through the CPE PDU session Bag.
  • the CPE receives the downlink data packet of the CPE PDU session, the CPE determines the IP address of the corresponding RG through the CPE Session ID corresponding to the downlink data packet, and sends the downlink data packet to the RG through the RG IP address.
  • the CPE determines the corresponding CPE PDU session through the 5WE Session ID carried in the uplink data packet, and sends the uplink data through the CPE PDU session.
  • the CPE determines the corresponding 5WE Session ID through the CPE Session ID corresponding to the downlink data, and sends the downlink data through the channel corresponding to the 5WE Session ID.
  • the CPE when the CPE receives the uplink data of the RG, the CPE uses the 5WE Session ID carried in the uplink data packet to determine the corresponding CPE PDU Session and CPE port number, and uses the CPE PDU Session and CPE The port number sends the upstream data.
  • the CPE determines the corresponding 5WE Session ID through the PDU SessionID and CPE port number corresponding to the downlink data, and sends the downlink data through the channel corresponding to the 5WE Session ID.
  • the CPE before sending the uplink data, may replace the source IP address carried in the uplink data with the IP address corresponding to the CPE PDU session; accordingly, the CPE is sending the Before the downlink data, replace the destination IP address carried in the downlink data with the IP address of the corresponding RG.
  • the NAS signaling between the RG and the RG AMF is transferred through the NAS connection between the CPE and the CPE AMF, and the uplink and downlink data between the RG and the DN are transmitted through the connection between the CPE and the DN, and there is no need to establish multiple layers
  • the IPSec tunnel simplifies the implementation complexity of RG and CPE, reduces the circuitous path of signaling and data transmission, and reduces the communication delay.
  • the CPE sends the first RG NAS message to the CPE AMF through the CPE NAS message, and the CPE AMF forwards the first RG NAS to the RG AMF to obtain the network request to establish the RG PDU session.
  • S502 includes:
  • the CPE sends the first CPE NAS message to the CPE AMF.
  • the first CPE NAS message includes the first RG NAS message of the RG received in S501.
  • the first CPE NAS message may include the first RG NAS message and the first RG identifier.
  • the first RG identifier is an identifier that uniquely identifies the RG in the CPE.
  • the first RG identifier may be an identifier assigned by the CPE to the RG, or the identifier of the connection between the CPE and the RG (such as the PPPoE connection ID), or the MAC address of the RG, or the identifier assigned by the network to the RG.
  • the first RG NAS message is the RG NAS message of the RG identified by the first RG identifier.
  • a container may be included in the first CPE NAS message, and the container is used to carry the first RG NAS message and the first RG identifier.
  • the CPE AMF sends the first RG NAS message of the RG to the RG AMF.
  • the CPE AMF After the CPE AMF receives the first CPE NAS message, it can obtain the first RG NAS message of the RG from the first CPE NAS message, and forward it to the RG AMF.
  • the CPE AMF may send a first message to the RG AMF, and the first message includes the first RG NAS message of the RG.
  • the first message includes a first RG NAS message and a first RG identifier. It can be learned from the first RG identifier that the first RG NAS message is the RG NAS message of the RG identified by the first RG identifier.
  • the first message may be an interface message between AMFs.
  • the CPE AMF can select the RG AMF based on local configuration or AMF selection information provided by the CPE.
  • the AMF selection information may include the location of the RG (for example, tracking area, service area, geographic location, etc.), or the slice that the RG requests to access.
  • the AMF selection information may be generated by the CPE, or may be sent by the RG to the CPE.
  • the RG AMF sends a session establishment request message to the RG SMF according to the received first RG NAS message.
  • the session establishment request message is used to request the establishment of the RG PDU session of the RG.
  • the session establishment request message includes the first RGPDU session establishment request parameter.
  • the session establishment request message further includes the second RG identifier.
  • the second RG identity may be an identity used by the RG in the 5G core network, such as a subscription permanent identity (Subscription Permanent Identifier, SUPI) or an international mobile subscriber identity (International Mobile Subscription Identity, IMSI).
  • the first RG identifier may be the same as the second RG identifier.
  • the first RG identifier may be different from the second RG identifier, and after the RG AMF receives the first RG identifier, the first RG identifier may be converted into the second RG identifier.
  • the mapping relationship between the first RG identifier and the second RG identifier may be obtained during the process of registering the RG to the network through the CPE.
  • the RG SMF obtains the contract data of the RG from the UDM.
  • the RG SMF determines that the first RG PDU session establishment request parameter is consistent with the subscription data of the RG.
  • the first RG PDU session establishment request parameter includes DNN1
  • the RG's subscription data allows the RG to access DNN1
  • the first RG PDU session establishment request parameter is consistent with the RG's subscription data.
  • S604 is optional.
  • the RG SMF sends a session establishment response message to the RG AMF.
  • the session establishment response message is used to indicate acceptance to establish the RGPDU session of the RG.
  • the session establishment response message includes RGPDU session establishment parameters determined by the network.
  • the RG PDU session establishment parameter determined by the network includes the IP address of the RG allocated for the RG PDU session.
  • the RG PDU session establishment parameters determined by the network further include PDU Session ID, SSC mode, S-NSSAI(s), DNN, Session-AMBR, or PDU Session Type, etc.
  • the session establishment response message further includes the second RG identifier. It can be learned from the second RG identifier that the RG PDU session accepted to be established is the RG PDU session of the RG identified by the second RG identifier.
  • the RG PDU session establishment parameters determined by the network may also be understood as the RG PDU session establishment parameters determined by the core network.
  • the RG AMF sends a second RG NAS message addressed to the RG to the CPE AMF.
  • the second RG NAS message is used to inform the acceptance of establishing the RG PDU session of the RG.
  • the RG AMF may send a second message to the CPE AMF, and the second message includes the second RG NAS message of the RG.
  • the second message includes a second RG NAS message and the first RG identifier. It can be learned from the first RG identifier that the second RG NAS message is an RG NAS message sent to the RG identified by the first RG identifier.
  • the second message may be an interface message between AMFs.
  • the second message further includes the RGPDU session establishment parameters determined by the above-mentioned network.
  • the RG AMF may determine the first RG identity according to the second RG identity.
  • the CPE AMF sends a second CPE NAS message to the CPE.
  • the second CPE NAS message includes the above-mentioned second RG NAS message sent to the RG.
  • the second CPE NAS message further includes the first RG identifier. It can be learned from the first RG identifier that the second RG NAS message is an RG NAS message sent to the RG identified by the first RG identifier.
  • the second CPE NAS message further includes the RG PDU session establishment parameters determined by the network.
  • S608 The CPE sends a second RG NAS message to the RG.
  • the CPE transmits the RG NAS signaling between the RG and RG AMF through the CPE NAS message exchange with the CPE AMF and the message exchange between the CPE AMF and the RG AMF, thus shortening the control plane Transmission delay of signaling.
  • the CPE can obtain the network's response to the RG NAS message.
  • the response includes the network's response to the RG request to establish a PDU session.
  • the CPE may establish or select a CPE PDU session for transmitting the data of the above-mentioned RG PDU session based on the response, thereby shortening the data transmission path and reducing the transmission delay of the user plane data.
  • S503 includes:
  • the CPE sends a third CPE NAS message to the CPE AMF to request the establishment of a CPE PDU session.
  • the third CPE NAS message may include the first CPE PDU session establishment parameter.
  • the third CPE NAS message may also include the CPE PDU session ID.
  • the first CPE PDU session establishment parameter may include one or more parameters among the RG PDU session establishment parameters determined by the network in S502.
  • the first CPE PDU session establishment parameter may include one or more parameters in the second RG PDU session establishment request parameter.
  • one or more parameters of the second RG PDU session establishment request parameters may be used to establish the CPE PDU session.
  • the first CPE PDU session establishment parameter may include one or more of the default PDU session establishment parameters.
  • the CPE does not obtain the RG PDU session establishment parameter and the second RG PDU session establishment request parameter determined by the network, one or more of the default PDU session establishment parameters may be used to establish the CPE PDU session.
  • the selection of the parameters for establishing the first CPE PDU session is to make the DNN or NSSAI of the CPE PDU session the same as the DNN or NSSAI of the RG PDU session.
  • the CPE PDU session ID may be allocated by the CPE for the CPE PDU session.
  • the CPE AMF sends a session establishment request message to the CPE SMF.
  • the session establishment request message includes the first CPE PDU session establishment parameter.
  • S703 Establish an N4 session between the CPE SMF and the CPE UPF.
  • the CPE SMF sends a session establishment response message to the CPE AMF.
  • the session establishment response message includes the CPE's IP address allocated by the CPE SMF for the CPE PDU session.
  • the CPE AMF sends a fourth CPE NAS message to the CPE.
  • the fourth CPE NAS message includes the IP address of the CPE allocated by the CPE SMF for the CPE PDU session.
  • the CPE establishes the same CPE PDU session as the DNN or NSSAI of the RG PDU session according to the network response to the RG PDU session requested by the first RG NAS message.
  • the data of the RG PDU session can be transmitted, so that the uplink and downlink data of the RG and DN are transmitted through the connection between the CPE and the DN.
  • multi-layer IPSec tunnels which simplifies the implementation complexity of RG and CPE and reduces The circuitous path of signaling and data transmission is reduced, and the communication delay is reduced.
  • the CPE PDU session is established after the RG PDU session is established and accepted by the network.
  • the establishment of the CPE PDU session can be initiated before the establishment of the RG PDU session is accepted by the network.
  • the method includes:
  • the RG sends the first RG NAS message to the CPE.
  • the second RG PDU session establishment request parameter as described in S501 can be obtained in S801.
  • the CPE establishes or selects a CPE PDU session for transmitting the RG PDU session data.
  • Solution 1 The CPE establishes a CPE PDU session.
  • the CPE may establish the CPE PDU session according to one or more of the above-mentioned second RG PDU session establishment request parameters.
  • the RG PDU session may be established according to one or more of the default PDU session establishment parameters.
  • the CPE may also establish the RG PDU session according to one or more of the default PDU session establishment parameters. Item parameters to establish the RG PDU session.
  • Solution 2 CPE chooses CPE PDU session.
  • the CPE sends the first RG NAS message to the CPE AMF through the CPE NAS message, and the CPE AMF forwards the first RG NAS message to the RG AMF to obtain the network's first response to the request to establish the RG PDU session.
  • the association relationship between the RG PDU session CPE PDU session can be saved on the CPE, and the CPE can convert the uplink data packet of the RG PDU session into the uplink data packet of the CPE PDU session according to the association relationship, and pass the The CPE PDU session is sent to the DN.
  • the CPE can receive the downlink data packet of the CPE PDU session from the DN through the CPE PDU session, and according to the association relationship, convert the downlink data packet of the CPE PDU session into the downlink data packet of the RG PDU session and send it to the RG .
  • the relevant content in the method in Figure 5 please refer to the relevant content in the method in Figure 5.
  • the NAS signaling between RG and RG AMF is transmitted through the NAS connection between CPE and CPE AMF, and the uplink and downlink data between RG and DN are transmitted through the connection between CPE and the DN, and there is no need to establish multiple layers
  • the IPSec tunnel simplifies the implementation complexity of RG and CPE, reduces the circuitous path of signaling and data transmission, and reduces the communication delay.
  • the method for the CPE to establish a CPE PDU session for transmitting the RG PDU session data can refer to the method in FIG. 9. As shown in Figure 9.
  • S802 includes:
  • the CPE sends a third CPE NAS message to the CPE AMF to request the establishment of a CPE PDU session.
  • the first CPE PDU session establishment parameter may include one or more parameters in the second RG PDU session establishment request parameter, or one or more parameters in the default PDU session establishment parameter.
  • the selection of the parameters for establishing the first CPE PDU session is to make the DNN or NSSAI of the CPE PDU session the same as the DNN or NSSAI of the RG PDU session.
  • the CPE AMF sends a session establishment request message to the CPE SMF.
  • the CPE SMF sends a session establishment response message to the CPE AMF.
  • the CPE establishes an RG PDU session according to the RG request, and establishes the same CPE PDU session as the DNN or NSSAI of the RG PDU session.
  • the data of the RG PDU session can be transmitted, so that the uplink and downlink data of the RG and DN are transmitted through the connection between the CPE and the DN.
  • multi-layer IPSec tunnels which simplifies the implementation complexity of RG and CPE and reduces The circuitous path of signaling and data transmission is reduced, and the communication delay is reduced.
  • the CPE sends the first RG NAS message to the CPE AMF through the CPE NAS message, and the CPE AMF forwards the first RG NAS to the RG AMF to obtain the network request to establish the RG PDU session.
  • the CPE transmits the RG NAS signaling between RG and RG AMF through the CPE NAS message exchange with CPE AMF and the message exchange between CPE AMF and RG AMF, thus shortening the transmission of control plane signaling Time delay.
  • the method includes:
  • the RG sends the first RG NAS message to the CPE.
  • the CPE sends the first RG NAS message to the CPE AMF through the CPE NAS message, and the CPE AMF forwards the first RG NAS message to the RG AMF to obtain the network's first response to the request to establish an RG PDU session.
  • the RG SMF needs to select the RG UPF for the RG PDU, and can notify the RG AMF of the uplink tunnel endpoint identifier of the RG UPF, and the RG AMF sends the CPE AMF.
  • the uplink tunnel endpoint identifier identifies the tunnel endpoint on the RG UPF side of the user plane connection between the RG UPF and the CPE UPF in FIG. 4.
  • the CPE establishes or selects a CPE PDU session for transmitting the RG PDU session data.
  • the DNN or NSSAI of the CPE PDU session is the same as the DNN or NSSAI to which the RG UPF belongs, so that the RG PDU session can be transferred through the CPE PDU session
  • the data packet is sent to the RG UPF, and the CPE can receive the data packet of the RG PDU session from the RG UPF.
  • the CPE selects the CPE PDU session used to transmit the RG PDU session data
  • the CPE determines whether there is a CPE PDU session that satisfies the RG PDU session, it can be based on the DNN of the CPE PDU session or the NSSAI and RG UPF belonging to Judge whether DNN or NSSAI are the same. If the DNN or NSSAI of the CPE PDU session is the same as the DNN or NSSAI to which the RG UPF belongs, it is considered that the CPE PDU session satisfies the RG PDU session.
  • CPE AMF establishes a user plane connection between CPE UPF and RG UPF.
  • the CPE AMF After the CPE AMF obtains the upstream tunnel endpoint identifier of the RG UPF, it can send the upstream tunnel endpoint identifier of the RG UPF to the CPE SMF, and the CPE SMF sends it to the CPE UPF, so that the CPE UPF can send the upstream tunnel endpoint identifier of the RG UPF to the CPE UPF.
  • the RG UPF sends the data of the RG PDU session (which can be regarded as uplink data).
  • the CPE AMF can use the process of establishing a CPE PDU session in S1003 to pass the uplink tunnel endpoint identifier of the RG UPF to the CPE UPF.
  • the CPE AMF may obtain the CPE UPF downlink tunnel endpoint identifier from the CPE SMF, for example, the CPE UPF downlink tunnel endpoint identifier of the CPE UPF may be obtained in S1003.
  • the downlink tunnel endpoint identifier is used to identify the tunnel endpoint on the CPE UPF side of the user plane connection between the RG UPF and the CPE UPF in FIG. 4.
  • CPE AMF sends the downlink tunnel endpoint identifier to RG AMF, RG AMF sends to RG SMF, and RG SMF to RG UPF.
  • the RG UPF can send the RG PDU session data (which can be regarded as downlink data) to the CPE UPF.
  • the user plane connection between the CPE UPF and the RG UPF can be established.
  • the association relationship between the RG PDU session CPE PDU session can be saved on the CPE, and the CPE can send the uplink data packet of the RG PDU session to the RG UPF through the CPE PDU session according to the association relationship, and the RG UPF Sent to the destination address.
  • the CPE can send the downlink data packet of the CPE PDU session to the RG. See the description of the method in Figure 5 for details.
  • the NAS signaling between RG and RG AMF is transmitted through the NAS connection between CPE and CPE AMF, and the uplink and downlink data between RG and DN is transmitted through the connection between CPE and RG UPF, and RG UPF and DN
  • There is no need to establish a multi-layer IPSec tunnel for transmission between connections which simplifies the complexity of RG and CPE implementation, reduces the circuitous path of signaling and data transmission, and reduces communication delay.
  • S1002 includes:
  • the CPE sends the first CPE NAS message to the CPE AMF.
  • the CPE AMF sends the first RG NAS message of the RG to the RG AMF.
  • the RG AMF sends a session establishment request message to the RG SMF according to the first RG NAS message received.
  • RG SMF obtains RG contract data from UDM.
  • S1104 is optional, see S604 for details.
  • S1105 includes:
  • the RG SMF sends an N4 session establishment request message to the RG UPF;
  • the RG UPF sends an N4 session establishment response message to the RG SMF.
  • the N4 session establishment response message includes RG UPF core network tunnel information (CN tunnel info).
  • the CN tunnel info of the RG UPF identifies the tunnel endpoint on the RG UPF side of the user plane connection between the RG UPF and the CPE UPF in Figure 4.
  • the tunnel endpoint is used to receive the uplink data sent by the CPE UPF, that is, the data packet sent by the CPE UPF to the RG UPF through the tunnel needs to carry the CN tunnel info of the RG UPF.
  • the CN tunnel info of the RG UPF includes the IP address of the RG UPF and the GTP endpoint identifier, and the data packet sent by the CPE UPF to the RG UPF through the tunnel carries the IP address of the RG UPF and the GTP endpoint identifier.
  • the RG SMF sends a session establishment response message to the RG AMF.
  • the session establishment response message also includes CN tunnel info of RG UPF.
  • the RG AMF sends a second RG NAS message addressed to the RG to the CPE AMF.
  • the RG AMF also sends the CN tunnel info of the RG UPF to the CPE AMF.
  • the second CPE NAS message including the second RG NAS message sent to the RG also includes the CN tunnel info of the RG UPF.
  • the CPE AMF sends a second CPE NAS message to the CPE.
  • S1109 The CPE sends a second RG NAS message to the RG.
  • the CPE transmits the RG NAS signaling between the RG and RG AMF through the CPE NAS message exchange with the CPE AMF and the message exchange between the CPE AMF and the RG AMF, thus shortening the control plane Transmission delay of signaling.
  • the CPE can obtain the network's response to the RG NAS message.
  • the response includes the network's response to the RG request to establish a PDU session.
  • the CPE may establish or select a CPE PDU session for transmitting the data of the above-mentioned RG PDU session based on the response.
  • CPE AMF can receive CN tunnel info of RG UPF.
  • the CPE AMF can pass the CN tunnel info of the RG UPF to the CPE UPF during the process of establishing the CPE PDU session associated with the above RG PDU session, so that the CPE UPF can transmit uplink data to the RG UPF, thereby shortening the data transmission path , Reduce the transmission delay of user plane data.
  • S1003 the CPE establishes or selects a CPE PDU session used to transmit the RG PDU session data, refer to FIG. 12. As shown in Figure 12, S1003 includes:
  • the CPE sends a third CPE NAS message to the CPE AMF to request the establishment of a CPE PDU session.
  • the DNN of the CPE PDU session is the same as the DNN of the DN where the RG UPF is located.
  • the CPE AMF sends a session establishment request message to the CPE SMF.
  • the session establishment request message also includes CN tunnel info of RG UPF.
  • S1203 includes: the CPE SMF sends an N4 session establishment request message to the CPE UPF.
  • the N4 session establishment request message includes CN tunnel info of RG UPF.
  • the CPE UPF sends an N4 session establishment response message to the CPE SMF.
  • the N4 session establishment response message includes the CN tunnel info of the CPE UPF.
  • the CN tunnel info of the CPE UPF identifies the end point of the tunnel on the CPE UPF side of the user plane connection between the RG UPF and the CPE UPF in Figure 4.
  • the tunnel endpoint is used to receive the downlink data sent by the RG UPF, that is, the data packet sent by the RG UPF to the CPE UPF through the tunnel needs to carry the CN tunnel info of the CPE UPF.
  • the CN tunnel info of the CPE UPF includes the IP address of the CPE UPF and the GTP endpoint identifier, and the data packet sent by the RG UPF to the CPE UPF through the tunnel carries the IP address of the CPE UPF and the GTP endpoint identifier.
  • the CPE SMF sends a session establishment response message to the CPE AMF.
  • the session establishment response message includes the CPE IP address allocated by the CPE SMF for the CPE PDU session and the CN tunnel info of the CPE UPF.
  • the CN tunnel info of the CPE UPF can be used in S1004 to establish a user plane connection between the RG UPF and the CPE UPF.
  • the CPE AMF sends the fourth CPE NAS message to the CPE.
  • the CPE establishes a CPE PDU session to the DN where the RG UPF is located and a connection between the CPE UPF and the RG UPF according to the network response to the RG PDU session requested by the first RG NAS message.
  • the data of the RG PDU session can be transmitted without the need to establish multi-layer IPSec tunnels, which simplifies the implementation complexity of RG and CPE, and reduces signaling and data transmission.
  • the circuitous path reduces the communication delay.
  • the CPE AMF establishes a user plane connection between the CPE UPF and the RG UPF.
  • S1004 includes:
  • CPE AMF sends CN tunnel info of CPE UPF to RG AMF.
  • the CN tunnel info of the CPE UPF may be received by the CPE AMF in step S1204.
  • the CN tunnel info of the CPE UPF may be carried in the N2 session management information (N2 SM information) parameter or the access network tunnel information (AN Tunnel Info) parameter.
  • N2 SM information N2 session management information
  • AN Tunnel Info access network tunnel information
  • RG AMF sends CN tunnel info of CPE UPF to RG SMF.
  • the CN tunnel info of the CPE UPF can be carried in the N2 SM information parameter or the AN Tunnel Info parameter.
  • RG SMF sends CN tunnel info of CPE UPF to RG UPF.
  • S1303 includes:
  • the RG SMF sends an N4 session modification request message to the RG UPF, which carries the CN tunnel info of the CPE UPF;
  • the RG UPF sends an N4 session modification response message to the RG SMF.
  • the CPE AMF transfers the CN tunnel info of the CPE UPF received in step S1204 to the RG UPF, which can enable the RG UPF to transmit downlink data to the CPE UPF.
  • the CPE UPF needs to obtain the CN tunnel info of the RG UPF.
  • RG SMF sends CN tunnel info of RG UPF to RG AMF.
  • RG AMF sends CN tunnel info of RG UPF to CPE AMF.
  • S1106 and S1107 can be used to transfer the CN tunnel info of RG UPF from RG SMF to CPE AMF.
  • CPE AMF sends CN tunnel info of RG UPF to CPE SMF.
  • the CN tunnel info of the RG UPF can be carried in the N2 SM information parameter or the AN Tunnel Info parameter.
  • CPE SMF sends CN tunnel info of RG UPF to CPE UPF.
  • S1307 As a possible implementation of S1307, refer to S1303, that is, through the N4 session modification process.
  • the CN tunnel info of RG UPF can be transferred from CPE AMF to RG UPF through S1202 and S1203.
  • the CN tunnel info of the RG UPF can be passed to the CPE UPF, and the CPE UPF can be enabled to transmit uplink data to the RG UPF.
  • the CPE PDU session is performed after the establishment of the RG PDU session is accepted by the network.
  • the establishment of the CPE PDU session can be initiated before the establishment of the RG PDU session is accepted by the network.
  • the method includes:
  • S1402 The CPE establishes or selects a CPE PDU session for transmitting the RG PDU session data.
  • the DNN of the DN where the RG UPF is located can be pre-configured, and the DNN is used to establish the CPE PDU session to realize the CPE to RG UPF Connectivity.
  • the CPE sends the first RG NAS message to the CPE AMF through the CPE NAS message, and the CPE AMF forwards the first RG NAS message to the RG AMF to obtain the network's first response to the request to establish an RG PDU session.
  • the CPE AMF can obtain the uplink tunnel endpoint identifier of the RG UPF.
  • the uplink tunnel endpoint identifier reference may be made to the description in step S1002.
  • the association relationship between the RG PDU session requested to be established by the first RG NAS message in S1401 and the CPE PDU session determined in S1402 can be saved on the CPE, and the uplink and downlink data packets can be processed according to the association relationship.
  • the uplink and downlink data packets can be processed according to the association relationship. For routing, refer to the description in step S503.
  • S1404 Establish a user plane connection between the CPE UPF and the RG UPF.
  • the CPE AMF After the CPE AMF obtains the upstream tunnel endpoint identifier of the RG UPF, it can send the upstream tunnel endpoint identifier of the RG UPF to the CPE SMF, and the CPE SMF sends it to the CPE UPF, so that the CPE UPF can send the upstream tunnel endpoint identifier of the RG UPF to the CPE UPF.
  • the RG UPF sends the data of the RG PDU session (which can be regarded as uplink data).
  • the CPE AMF may use the process of establishing a CPE PDU session in S1403 to transfer the uplink tunnel endpoint identifier of the RG UPF to the CPE UPF.
  • the CPE AMF can obtain the CPE UPF downlink tunnel endpoint identifier from the CPE SMF, for example, the CPE UPF downlink tunnel endpoint identifier of the CPE UPF can be obtained in S1403.
  • the downlink tunnel endpoint identifier is used to identify the tunnel endpoint on the CPE UPF side of the user plane connection between the RG UPF and the CPE UPF in FIG. 4.
  • CPE AMF sends the downlink tunnel endpoint identifier to RG AMF, RG AMF sends to RG SMF, and RG SMF to RG UPF.
  • the RG UPF can send the RG PDU session data (which can be regarded as downlink data) to the CPE UPF.
  • the user plane connection between the CPE UPF and the RG UPF can be established.
  • the NAS signaling between RG and RG AMF is transferred through the NAS connection between CPE and CPE AMF, and the uplink and downlink data between RG and DN is passed through the connection between CPE and RG UPF, and RG UPF and DN
  • IPSec tunnel for transmission between connections, which simplifies the complexity of RG and CPE implementation, reduces the circuitous path of signaling and data transmission, and reduces communication delay.
  • S1402 includes:
  • the CPE AMF sends a session establishment request message to the CPE SMF.
  • S1503 includes:
  • the CPE SMF sends an N4 session establishment request message to the CPE UPF;
  • the CPE UPF sends an N4 session establishment response message to the CPE SMF.
  • the N4 session establishment response message includes the CN tunnel info of the CPE UPF.
  • the CN tunnel info of the CPE UPF refer to step S1203.
  • the CPE SMF sends a session establishment response message to the CPE AMF.
  • the session establishment response message includes the IP address allocated by the CPE SMF for the CPE PDU session and the CN tunnel info of the CPE UPF.
  • the CPE AMF sends a second CPE NAS message to the CPE.
  • the CPE establishes the same CPE PDU session as the DNN or NSSAI of the RG PDU session.
  • the data of the RG PDU session can be transmitted, so that the uplink and downlink data of the RG and DN are transmitted through the connection between the CPE and the DN.
  • the CPE sends the first RG NAS message to the CPE AMF through the CPE NAS message, and the CPE AMF forwards the first RG NAS message to the RG AMF to obtain the network request to establish an RG PDU session Refer to Figure 11 for the first response.
  • the CPE transmits the RG NAS signaling between the RG and RG AMF through the CPE NAS message exchange with the CPE AMF and the message exchange between the CPE AMF and the RG AMF, thereby shortening the transmission delay of the control plane signaling.
  • CPE AMF can receive CN tunnel info of RG UPF.
  • the CPE AMF may pass the CN tunnel info of the RG UPF to the CPE UPF during the establishment of the user plane connection between the CPE PDU session and the RG PDU session, so that the CPE UPF can transmit uplink data to the RG UPF.
  • the CPE can obtain the network's response to the RG NAS message.
  • the response includes the network's response to the RG request to establish a PDU session.
  • the only difference is that after the CPE obtains the RG PDU session establishment parameters determined by the network, it no longer establishes the CPE PDU session associated with the above RG PDU session based on one or more of the RG PDU session establishment parameters determined by the network. .
  • the CPE uses the CPE PDU session determined in step S1402 to transmit the data of the RG PDU session, thereby shortening the data transmission path and reducing the transmission delay of the user plane data.
  • FIG. 16 As an optional implementation manner of S1404, to establish a user plane connection between CPEUPF and RG UPF, refer to FIG. 16. As shown in Figure 16, including:
  • CPE AMF sends CN tunnel info of CPE UPF to RG AMF.
  • the CN tunnel info of the CPE UPF is received by the CPE AMF in step S1504. Refer to the description in step S1301 for the parameters of CN tunnel info carrying CPE UPF.
  • RG AMF sends CN tunnel info of CPE UPF to RG SMF.
  • step S1302. S1603: RG SMF sends CN tunnel info of CPE UPF to RG UPF.
  • CPE AMF sends CN tunnel info of RG UPF to CPE SMF.
  • the CN tunnel info of the RG UPF is received by the CPE AMF in step S1106.
  • the CPE AMF sends a session establishment request message to the CPE SMF.
  • the session establishment request message includes the CN tunnel info of the RG UPF.
  • CPE SMF sends CN tunnel info of RG UPF to CPE UPF.
  • step S1605 includes:
  • the CPE SMF sends an N4 session modification request message to the CPE UPF.
  • the N4 session modification request message carries CN tunnel info of RG UPF;
  • the CPE UPF sends an N4 session modification response message to the CPE SMF.
  • the CPE AMF transfers the CN tunnel info of the CPE UPF received in step S1504 to the RG UPF, so that the RG UPF can transmit downlink data to the CPE UPF.
  • the CPE AMF transfers the CN tunnel info of the RG UPF received in step S1106 to the CPE UPF, so that the CPE UPF can transfer uplink data to the RG UPF.
  • the CPE AMF can perform steps S1601-S1603 first, or perform steps S1604-S1605 first, or perform steps S1601-S1603 and steps S1604-S1605 at the same time.
  • the CPE UPF needs to obtain the CN tunnel info of the RG UPF. Refer to the description of S1304-S1307.
  • the CN tunnel info of the RG UPF can be passed to the CPE UPF, and the CPE UPF can be enabled to transmit uplink data to the RG UPF.
  • the method includes:
  • the first terminal device receives a first message from the second terminal, and the first message requests to establish a first connection between the second terminal device and the data network.
  • the first terminal device can be the CPE in Figure 5-9; the second terminal device can be the RG in Figure 5-9; the first message can be the first RG NAS message; the first connection can be the RG PDU session.
  • the first terminal device forwards the first message to the core network through the control between the first terminal device and the core network, so as to obtain a response that the core network accepts the request to establish the first connection.
  • control plane between the first terminal device and the core network may be the NAS message between the CPE and the CPE AMF.
  • the first terminal device establishes or selects a second connection for transmitting data of the first connection; where the second connection is a connection between the first terminal device and the data network.
  • the second connection may be a PDU session of the CPE.
  • the first terminal device first executes S1702 and then executes S1703.
  • S1703 can refer to the description of S503 or FIG. 7.
  • the first terminal device first executes S1703 and then executes S1702.
  • S1703 can refer to the description of S802 or FIG. 9.
  • the first terminal device forwards the first message of the second terminal device to the core network through the control between the first terminal device and the core network, and the first terminal device establishes or selects the first message of the first terminal device.
  • the second connection is used to transmit the data of the first connection of the second terminal device without establishing a multi-layer IPSec tunnel, which simplifies the implementation complexity of the first terminal device and the second terminal device, and reduces the circuitousness of signaling and data transmission Path, reducing the communication delay.
  • the method shown in FIGS. 5 to 9 will be described from the RG side. As shown in Figure 18, the method includes:
  • the second terminal device sends a first message to the first terminal device, the first message requesting to establish a first connection between the second terminal device and the data network.
  • the first terminal device can be the CPE in Figure 5-9; the second terminal device can be the RG in Figure 5-9; the first message can be the first RG NAS message; the first connection can be the RG PDU session.
  • the second terminal device receives a core network acceptance response request to establish the first connection sent by the first terminal device.
  • the second terminal device requests the core network to establish the first connection through the first terminal device, and receives the core network's response to the first connection establishment request through the first terminal device, without the need to establish a multi-layer IPSec tunnel , Simplifies the implementation complexity of the first terminal device and the second terminal device, reduces the circuitous path of signaling transmission, and reduces the communication delay.
  • the method includes:
  • the first control plane network element obtains the first message of the second terminal device through the second control plane network element of the first terminal device, and the first message requests the establishment of a first connection between the second terminal device and the data network.
  • the first control plane network element can be the RG AMF in Figure 5-16;
  • the first terminal device can be the CPE in Figure 5-16;
  • the second control plane network element can be the CPE in Figure 5-16 CPE AMF;
  • the second terminal device can be the RG in Figure 5-16;
  • the first message can be the first RG NAS message;
  • the first connection can be the PDU session of the RG.
  • the first control plane network element sends the first message to a third control plane network element serving the second terminal device to obtain a response of the core network to accepting the request to establish the first connection.
  • the third control plane network element may be the RG SMF in Figure 5-16.
  • the first control plane network element obtains the first message of the second terminal device through the control plane of the first terminal device, and obtains the response of the core network to accept the request to establish the first connection, and supports the second terminal device.
  • the first connection establishment request of the terminal device is established.
  • the foregoing process does not need to establish a multi-layer IPSec tunnel, which simplifies the implementation complexity of the first terminal device and the second terminal device, reduces the circuitous path of signaling transmission, and reduces the communication delay.
  • FIG. 20 is a schematic block diagram of a communication device 2000 provided by an embodiment of this application.
  • the communication apparatus 2000 is, for example, a first terminal device.
  • the first terminal device includes a processing module 2010.
  • the transceiver module 2020 may also be included.
  • the first terminal device 2000 may be a terminal device, and may also be a chip applied to the terminal device or other combination devices, components, etc. having the function of the first terminal device described above.
  • the transceiver module 2020 may be a transceiver, and the transceiver may include a wired or wireless device, including an antenna, a radio frequency module, a wired connection line, etc.
  • the processing module 2010 may be a processor (or , Processing circuit), such as a baseband processor, which may include one or more CPUs.
  • the transceiver module 2020 may be a radio frequency unit, and the processing module 2010 may be a processor (or a processing circuit), such as a baseband processor.
  • the transceiver module 2020 may be an input and output interface of a chip (for example, a baseband chip), and the processing module 2010 may be a processor (or processing circuit) of the chip system, and may include one or more Central processing unit.
  • processing module 2010 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component (or referred to as a processing circuit), and the transceiver module 2020 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 2010 may be used to perform all operations other than the transceiving operation performed by the first terminal device in the embodiment shown in FIG. 17, such as S1703, and/or other operations used to support the technology described herein. process.
  • the transceiver module 2020 may be used to perform all the transceiver operations performed by the first terminal device in the embodiment shown in FIG. 17, such as S1701 and S1702, and/or other processes used to support the technology described herein.
  • the communication apparatus 2000 is, for example, a second terminal device.
  • the second terminal device includes a processing module and a transceiver module, and you can refer to the description of the first terminal device.
  • the transceiving module 2020 may be used to perform all the transceiving operations performed by the first terminal device in the embodiment shown in FIG. 18, such as S1801 and S1802, and/or other processes used to support the technology described herein.
  • the communication device 2000 is, for example, a first control plane network element.
  • the first control plane network element 2000 includes a processing module 2010.
  • the transceiver module 2020 may also be included.
  • the transceiving module 2020 may be used to perform all the transceiving operations performed by the first terminal device in the embodiment shown in FIG. 19, such as S1901 and S1902, and/or other processes used to support the technology described herein.
  • the method shown in FIGS. 10-16 will be described below. As shown in Figure 21, the method includes:
  • the first terminal device receives a first message from the second terminal, where the first message requests the establishment of a first connection between the second terminal device and the data network.
  • the first terminal device can be the CPE in Figure 10-16; the second terminal device can be the RG in Figure 10-16; the first message can be the first RG NAS message; the first connection can be the RG PDU session.
  • S2102 The first terminal device forwards the first message to the core network through the control between the first terminal device and the core network, so as to establish the user plane network element of the first connection to the data Network connection.
  • control plane between the first terminal device and the core network may be the NAS message between the CPE and the CPE AMF.
  • the first terminal device establishes or selects a second connection for transmitting data of the first connection, where the second connection is where the first terminal device and the user plane network element of the first connection are located Data network connection.
  • the second connection may be a PDU session of the CPE.
  • connection between the user plane network element of the first connection and the user plane network element of the second connection is established through the establishment of the first connection and the establishment or modification of the second connection.
  • the first terminal device first executes S2102 and then executes S2103.
  • S2103 can refer to the description of S1003 or FIG. 12.
  • For connection establishment between the user plane network element of the first connection and the user plane network element of the second connection refer to S1004 or FIG. 13.
  • the first terminal device first executes S2103 and then executes S2102.
  • S2103 may refer to the description of S1402 or FIG. 15.
  • For connection establishment between the user plane network element of the first connection and the user plane network element of the second connection refer to S1404 or FIG. 15.
  • the first terminal device forwards the first message of the second terminal device to the core network through the control between the first terminal device and the core network, and the first terminal device establishes or selects the first message of the first terminal device.
  • the second connection is used to transmit the data of the first connection of the second terminal device without establishing a multi-layer IPSec tunnel, which simplifies the implementation complexity of the first terminal device and the second terminal device, and reduces the circuitousness of signaling and data transmission Path, reducing the communication delay.
  • FIGS. 10-16 will be described from the RG side. As shown in FIG. 18, the method can refer to the description of FIG. 18.
  • the method includes:
  • the first control plane network element obtains the first message of the second terminal device through the control plane of the first terminal device, and the first message requests the establishment of a first connection between the second terminal device and the data network.
  • the first control plane network element can be the CPE AMF in Figure 10-16; the first terminal device can be the CPE in Figure 5-9; the second terminal device can be the RG in Figure 5-9;
  • the first control plane network element sends the first message to the second control plane network element serving the second terminal device.
  • the second control plane network element may be the RG AMF in Figure 10-16.
  • the first control plane network element receives a second message from the first terminal device.
  • the second message requests the establishment of a second connection between the first terminal device and the first connected user plane network element; the second connection is used to transmit the Data packet for the first connection.
  • the second message may be the CPE NAS message in Figure 10-16; the second connection may be a PDU session of the CPE.
  • S2204 Obtain the tunnel endpoint identifier of the user plane network element of the first connection and the tunnel endpoint identifier of the user plane network element of the second connection, so as to enable the user plane network element of the first connection and the network element of the second connection to be established. Connection between user plane network elements.
  • the tunnel endpoint identifier of the user plane network element of the first connection can be RG UPF CN tunnel info in Figure 10-16;
  • the tunnel endpoint identifier of the user plane network element of the second connection can be the one in Figure 10-16 CPE UPF CN tunnel info.
  • S2204 can refer to CPE AMF in Figure 10-16 to obtain RG UPF CN tunnel info and CPE UPF CN tunnel info, and send RG UPF CN tunnel info to CPE UPF, and CPE UPF CN tunnel info to RG UPF.
  • the communication apparatus 2000 is, for example, a first terminal device.
  • the first terminal device includes a processing module and a transceiver module, and reference may be made to the description of FIG. 20.
  • the processing module 2010 may be used to perform all operations other than the transceiving operation performed by the first terminal device in the embodiment shown in FIG. 21, such as S2103, and/or other operations used to support the technology described herein. process.
  • the transceiver module 2020 may be used to perform all the transceiver operations performed by the first terminal device in the embodiment shown in FIG. 21, such as S2101 and S2102, and/or other processes used to support the technology described herein.
  • the communication device 2000 is, for example, a first control plane network element.
  • the first control plane network element 2000 includes a processing module 2010.
  • the transceiver module 2020 may also be included.
  • the transceiving module 2020 may be used to perform all the transceiving operations performed by the first terminal device in the embodiment shown in FIG. 22, such as S2201-S2204, and/or other processes used to support the technology described herein.
  • the transceiver unit 2110 is used to perform the sending operation and receiving operation on the first terminal device side in the above method embodiment, and the processing unit 2120 is used to perform the above method embodiment. Other operations on the first terminal device except for receiving and sending operations.
  • the processing unit 2110 may be used to perform all operations performed by the first terminal device in the embodiment shown in FIG. 22 except for the receiving and sending operations, such as S2203, and/or for supporting Other processes of the technique described in this article.
  • the transceiving unit 2120 may be used to perform all the transceiving operations performed by the first terminal device in the embodiment shown in FIG. 22, such as S2201 and S2202, and/or other processes used to support the technology described herein.
  • the embodiment of the present application also provides a communication device, and the communication device may be a terminal device or a circuit.
  • the communication device may be used to perform the actions performed by the first terminal device in the foregoing method embodiments.
  • FIG. 23 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal equipment uses CPE as an example.
  • the terminal device includes a processor, a memory, a wireless or wired connection device, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the wireless or wired connection device is mainly used for the conversion and processing of wireless signals or wired signals.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • FIG. 23 For ease of description, only one memory and processor are shown in FIG. 23. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the wireless or wired connection device can be regarded as the transceiver unit of the terminal device (the transceiver unit can be a functional unit that can realize the sending function and the receiving function; alternatively, the transceiver unit can also include two The functional units are respectively a receiving unit capable of realizing the receiving function and a transmitting unit capable of realizing the transmitting function), and the processor with the processing function is regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 2310 and a processing unit 2320.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 2310 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 2310 as the sending unit, that is, the transceiver unit 2310 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 2310 is used to perform the sending and receiving operations on the first terminal device in the foregoing method embodiment
  • processing unit 2320 is used to perform other operations on the first terminal device in the foregoing method embodiment except for the transceiving operation. .
  • the processing unit 2310 may be used to perform all operations other than the transceiving operation performed by the first terminal device in the embodiment shown in FIG. 17, such as S1703, and/or to support Other processes of the technique described in this article.
  • the transceiving unit 2320 may be used to perform all the transceiving operations performed by the first terminal device in the embodiment shown in FIG. 17, such as S1701 and S1702, and/or other processes used to support the technology described herein.
  • the transceiving unit 2320 may be used to perform all the transceiving operations performed by the first terminal device in the embodiment shown in FIG. 18, such as S1801 and S1802, and/or to support the descriptions described herein. Other processes of technology.
  • the processing unit 2310 may be used to perform all operations performed by the first terminal device in the embodiment shown in FIG. 21 except for the receiving and sending operations, such as S2103, and/or to support the text. Other processes of the described technique.
  • the transceiving unit 2320 may be used to perform all the transceiving operations performed by the first terminal device in the embodiment shown in FIG. 21, such as S2101 and S2102, and/or other processes used to support the technology described herein.
  • the transceiving unit 2320 may be used to perform all the transceiving operations performed by the first terminal device in the embodiment shown in FIG. 22, such as S2201-S2204, and/or to support the operations described herein. Other processes of technology.
  • the device may include a transceiver and a processor.
  • the transceiving unit may be an input/output circuit and/or a communication interface;
  • the processing unit is an integrated processor or microprocessor or integrated circuit.
  • the communication device in this embodiment is a terminal device, the device shown in FIG. 20 can be referred to.
  • the transceiver can refer to the processing unit 2010 in FIG. 20 and complete the corresponding functions;
  • the processor can refer to the transceiver unit 2020 in FIG. 20 and complete the corresponding functions.
  • the communication device in this embodiment is a control plane network element
  • the device shown in FIG. 20 can be referred to.
  • the transceiver can refer to the processing unit 2010 in FIG. 20 and complete the corresponding functions;
  • the processor can refer to the transceiver unit 2020 in FIG. 20 and complete the corresponding functions.
  • the communication device includes a processor 2401, a communication interface 2402, and a memory 2403.
  • the processor 2401, the communication interface 2402, and the memory 2403 may be connected to each other through a bus 2404; the bus 2404 may be a PCI bus or an EISA bus.
  • the above-mentioned bus 2404 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 24 to represent it, but it does not mean that there is only one bus or one type of bus.
  • the communication device shown in FIG. 24 may be the CPE AMF shown in FIG. 5 to FIG. 23 (also referred to as the first control plane network element in FIG. 22) to complete corresponding functions.
  • the communication device shown in FIG. 24 may be the RG AMF shown in FIG. 5 to FIG. 23 (also referred to as the first control plane network element in FIG. 19) to complete corresponding functions.
  • An embodiment of the present application also provides a communication system, which includes one or more of the aforementioned first terminal device, second terminal device access network device, and first control plane network element.
  • This application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the CPE ( Also referred to as the first terminal device).
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the method shown in FIGS. 5 to 23.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the CPE AMF in the method shown in FIG. 5 to FIG. 23. (Also referred to as the first control plane network element in FIG. 22) Various steps performed.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the method shown in Figure 5 to Figure 23. (Also referred to as the first control plane network element in FIG. 19) Various steps performed.
  • This application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the CPE ( Also referred to as the first terminal device).
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the method shown in FIGS. 5 to 23.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the CPE AMF in the method shown in FIG. 5 to FIG. 23. (Also referred to as the first control plane network element in FIG. 22) Various steps performed.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the method shown in Figure 5 to Figure 23. (Also referred to as the first control plane network element in FIG. 19) Various steps performed.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the method shown in FIG. 5 to FIG. 23.
  • the CPE also referred to as the first terminal device
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the method shown in FIG. 5 to FIG. 23.
  • the RG also referred to as the second terminal device
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the CPE AMF (also referred to as the first (A control plane network element) each step executed.
  • the CPE AMF also referred to as the first (A control plane network element) each step executed.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the method shown in Figure 5 to Figure 23. (A control plane network element) each step executed.
  • the application also provides a chip including a processor.
  • the processor is used to read and run a computer program stored in the memory to execute the corresponding operation and/or process executed by the service server in the method for transmitting data provided in this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive processed data and/or information, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the application also provides a chip including a processor.
  • the processor is used to read and run the computer program stored in the memory to execute the corresponding operation and/or process performed by the access network device in the method for transmitting data provided in this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive processed data and/or information, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the application also provides a chip including a processor.
  • the processor is used to read and run a computer program stored in the memory to execute the corresponding operation and/or process performed by the policy control network element in the method for transmitting data provided in this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive processed data and/or information, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the application also provides a chip including a processor.
  • the processor is used to read and run the computer program stored in the memory to execute the corresponding operation and/or process performed by the session management network element in the method for transmitting data provided in this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive processed data and/or information, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the above-mentioned chip can also be replaced with a chip system, which will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual conditions to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .
  • the term "and/or” in this application is only an association relationship that describes associated objects, which means that there can be three types of relationships, for example, A and/or B, which can mean that A alone exists, and both A and B exist. , There are three cases of B alone.
  • the character "/" in this document generally means that the associated objects before and after are in an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A At least one of, B and C can mean: A alone exists, B alone exists, C alone exists, A and B exist alone, A and C exist at the same time, C and B exist at the same time, A and B and C exist at the same time, this Seven situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种连接建立的方法、装置和系统。第一终端设备接收第二终端的第一消息,该第一消息请求建立该第二终端设备与数据网络的第一连接;该第一终端设备通过该第一终端设备和核心网之间的控制面向该核心网转发该第一消息,以获取该核心网接受请求建立该第一连接的响应;该第一终端设备建立或者选择用于传输该第一连接的数据的第二连接;其中,该第二连接为该第一终端设备与该数据网络的连接。简化了第一终端设备和第二终端设备的实现复杂度,减少了信令和数据的传输的迂回路径,降低了通信时延。

Description

连接建立的方法、装置和系统
本申请要求于2020年5月22日提交中国国家知识产权局、申请号为202010444377.1、发明名称为“连接建立的方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及连接建立的方法、装置和系统。
背景技术
第三代合作伙伴计划(3rd generation partnership project,3GPP)标准组发布了第五代移动通信技术(fifth-generation,5G)网络架构。该5G网络架构支持家庭网关(Residential Gateway,RG)通过无线接入网络或者固定宽带接入网络接入5G核心网络,进而接入与5G核心网络连接的数据网络(Data Network,DN)。在此架构中,对于5G网络而言,RG也是一种5G终端。在此架构的基础上,具有5G功能的终端(如支持5G功能的电脑、手机、物联设备等)可以通过RG接入5G系统,建立PDU会话。上述通信方式称为多个终端通过级联进行通信。根据3GPP标准定义,具有5G功能的终端通过RG接入5G系统的时候,需要与5G系统之间建立IP安全(IPSec)隧道。该IPSec隧道承载在RG的用户面之上,终端与5G核心网之间的控制面信令交互和用户面数据都需要通过该IPSec隧道进行传输。
在实际部署中,由于环境限制,如信号问题(例如具有5G功能的终端设备与3GPP或固网接入点之间距离过远或有遮挡,无法找到一个合适的RG部署位置),或为了方便管理等,有时候需要具有5G功能的终端通过两个家庭网关设备(如RG或Customer Premise Equipment,CPE)接入5G系统。此时,中间的家庭网关设备也需要通过另一个家庭网关设备接入5G系统。中间的家庭网关也可以看作一个具有5G功能的终端设备。当家庭网关请求建立PDU会话时,按照3GPP标准定义的方案,家庭网关与5G系统之间需要建立IP安全隧道。同样地,末端的具有5G功能的终端设备建立PDU会话时,也需要与5G系统之间建立IP安全隧道。这样就会出现两层IPSec隧道叠加的场景,不仅增加了家庭网关的实现成本和复杂度,也使得数据传输路径变得迂回,从而降低了数据传输的吞吐率、造成了通信时延。
发明内容
本申请实施例用于提供连接建立的方法、装置以及系统,用于降低多个终端级联进行通信时的时延。
为了实现以上目的,本申请实施例提供以下方案。
第一方面,本申请实施例提供第一种连接建立的方法。该方法包括:
第一终端设备接收第二终端的第一消息,该第一消息请求建立该第二终端设备与数据网络的第一连接;该第一终端设备通过该第一终端设备和核心网之间的控制面向该核心网转发该第一消息,以获取该核心网接受请求建立该第一连接的响应;该第一终端设备建立或者选择用于传输该第一连接的数据的第二连接;其中,该第二连接为该第一终端设备与该数据网络的连接。
通过第一方面提供的连接建立的方法,第一终端设备通过该第一终端设备和核心网之间的控制面向该核心网转发第二终端设备的第一消息,第一终端设备建立或者选择第一终端设备的第二连接,用于传输第二终端设备的第一连接的数据,简化了第一终端设备和第二终端设备的实现复杂度,减少了信令和数据的传输的迂回路径,降低了通信时延。
作为一种可能的实现方式,该方法还包括:该第一终端通过该控制面获取该核心网确定的该第一连接的建立参数;该第一终端设备建立或者选择用于传输该第一连接的数据的第二连接,包括:该第一终端根据该第一连接的建立参数建立或者选择该第二连接。
通过该可能的实现方式提供的连接建立的方法,第一终端设备根据从该核心网获取的该第一连接的建立参数建立或者选择第一终端设备的第二连接,用于传输第二终端设备的第一连接的数据,简化了第一终端设备和第二终端设备的实现复杂度,减少了信令和数据的传输的迂回路径,降低了通信时延。
作为一种可能的实现方式,该第一连接的建立参数包括:该核心网确定的该第一连接的网络切片选择辅助信息NSSAI;或者,该核心网确定的该第一连接的数据网络名称DNN。
作为另一种可能的实现方式,该方法还包括:该第一终端获取该第二终端请求的该第一连接的请求建立参数;该第一终端设备建立或者选择用于传输该第一连接的数据的第二连接,包括:该第一终端根据该第一连接的请求建立参数建立或者选择该第二连接。
通过上述可能的实现方式提供的连接建立的方法,该第一终端设备根据从该第二终端获取的该第一连接的建立参数建立或者选择第一终端设备的第二连接,用于传输第二终端设备的第一连接的数据,简化了第一终端设备和第二终端设备的实现复杂度,减少了信令和数据的传输的迂回路径,降低了通信时延。
作为一种可能的实现方式,该第一连接的请求建立参数包括:该第二终端所请求的该第一连接的网络切片选择辅助信息NSSAI;或者,该第二终端所请求的该第一连接的数据网络名称DNN。
作为一种可能的实现方式,该第一消息为第一非接入层NAS消息,该第一终端设备通过该第一终端设备和核心网之间的控制面向该核心网转发该第一消息,包括:该第一终端设备向服务于该第一终端的第一控制面网元发送第二NAS消息,该第二NAS消息包括该第一NAS消息,以使能该第一控制面网元向服务于该第二终端设备的第二控制面网元发送该第一NAS消息。
作为一种可能的实现方式,该第一终端设备从该第二终端设备接收该第一连接的第一数据包;该第一终端设备将该第一数据包转变为该第二连接的第二数据包;该第 一终端设备通过该第二连接发送该第二数据包。
作为一种可能的实现方式,该第一终端设备将该第一数据包转变为该第二连接的第二数据包,包括:该第一终端设备将该第一数据包的源IP地址设置为为该第二连接分配的该第一终端设备的IP地址。
作为一种可能的实现方式,该第一终端设备接收该第二连接的第三数据包;该第一终端设备将该第三数据包转变为该第一连接的第四数据包;该第一终端设备向该第二终端设备发送该第四数据包。
作为一种可能的实现方式,该第一终端设备将该第三数据包转变为该第一连接的第四数据包,包括:该第一终端设备将该第三数据包的目的IP地址设置为为该第一连接分配的该第二终端的IP地址。
通过上述可能的实现方式提供的连接建立的方法,该第一终端设备使用第一终端设备的第二连接,传输第二终端设备的第一连接的数据,简化了第一终端设备和第二终端设备的实现复杂度,减少了信令和数据的传输的迂回路径,降低了通信时延。
作为一种可能的实现方式,该第一连接为该第一终端与该数据网络的第一协议数据单元PDU会话,该第二连接为该第二终端与该数据网络的第二PDU会话。
作为一种可能的实现方式,该第一连接与该第二连接的数据网络名称DNN或者网络切片选择辅助信息NSSAI相同。
第二方面,本申请实施例提供连接建立的方法。该方法包括:
第一控制面网元通过与第一终端设备的第二控制面网元获取第二终端设备的第一消息,该第一消息请求建立该第二终端设备与数据网络的第一连接;该第一控制面网元向服务于该第二终端设备的第三控制面网元发送该第一消息,以获取核心网对接受请求建立该第一连接的响应。
通过第二方面提供的连接建立的方法,第一控制面网元通过与第一终端设备的控制面获取第二终端设备的第一消息,并获取核心网对接受请求建立该第一连接的响应,支持该第二终端设备的第一连接建立请求建立。上述过程简化了第一终端设备和第二终端设备的实现复杂度,减少了信令传输的迂回路径,降低了通信时延。
作为一种可能的实现方式,该第一控制面网元获取该核心网确定的该第一连接的建立参数;该第一控制面网元向该第一终端设备发送该第一连接的建立参数,以使能该第一终端设备建立或者选择用于传输该第一连接的数据的第二连接;其中,该第二连接为该第一终端设备与该数据网络的连接。
通过第二方面提供的连接建立的方法,该第一控制面网元通过第一终端设备的第二控制面网元传递第二终端设备与核心网之间的连接建立请求与相应,并向第一终端设备发送核心网确定的该第一连接的建立参数,支持该第一终端设备建立或者选择该第一终端设备的第二连接,用于传输该该第一连接的数据。上述过程简化了第一终端设备和第二终端设备的实现复杂度,减少了信令和数据传输的迂回路径,降低了通信时延。
作为一种可能的实现方式,该第一连接的建立参数包括:该核心网确定的该第一连接的网络切片选择辅助信息NSSAI;或者,该核心网确定的该第一连接的数据网络名称DNN。
作为一种可能的实现方式,该第一控制面网元参与该第二连接的建立。
作为一种可能的实现方式,该第一消息为第一非接入层NAS消息,该第一控制面网元通过与第一终端设备的控制面获取第二终端设备的第一消息,包括:该第一控制面网元从该第一终端设备接收第二NAS消息,该第二NAS消息包括该第一NAS消息。
作为一种可能的实现方式,该第二NAS消息还包括该第二终端设备的第一标识;该方法还包括:根据该第一标识获取该第二终端设备的第二标识;该第一控制面网元向服务于该第二终端设备的第二控制面网元发送该第一消息,包括:该第一控制面网元向该第二控制面网元发送该第一消息和该第二标识。
作为一种可能的实现方式,该第一连接为该第一终端与该数据网络的第一协议数据单元PDU会话,该第二连接为该第二终端与该数据网络的第二PDU会话。
作为一种可能的实现方式,该第一连接与该第二连接的数据网络名称DNN或者网络切片选择辅助信息NSSAI相同。
第三方面,本申请实施例提供第三种连接建立的方法。该方法包括:
第二终端设备向第一终端设备发送第一会话建立请求参数,以使能该第一终端设备建立或者选择用于传输该第一连接的数据的第二连接;其中,该第二连接为该第一终端设备与该数据网络的连接。
通过第三方面提供的连接建立的方法,该第二终端设备向第一终端设备发送第一会话建立请求参数,以使能该第一终端设备根据该第一会话建立请求参数选择或建立该第一终端设备的第二连接,用于传输第二终端设备的第一连接的数据,简化了第一终端设备和第二终端设备的实现复杂度,减少了数据的传输的迂回路径,降低了通信时延。
第四方面,本申请实施例提供一种通信装置,包括处理器,该处理器用于从存储器读取并运行指令,以实现如前该第一方面或任一可能的实现方式中的方法。
第五方面,本申请实施例提供一种通信装置,其特征在于,包括处理器,该处理器用于从存储器读取并运行指令,以实现如前该第二方面或任一可能的实现方式中的方法。
第六方面,本申请实施例提供一种通信装置,其特征在于,包括处理器,该处理器用于从存储器读取并运行指令,以实现如前该第三方面或任一可能的实现方式中的方法。
第七方面,本申请实施例提供一种程序产品,其特征在于,包括指令,当该指令在通信装置上运行时,以使该通信装置实现如前该第一方面或任一可能的实现方式中的方法。
第八方面,本申请实施例提供一种程序产品,其特征在于,包括指令,当该指令在通信装置上运行时,以使该通信装置实现如前该第二方面或任一可能的实现方式中的方法。
第九方面,本申请实施例提供一种程序产品,其特征在于,包括指令,当该指令在通信装置上运行时,以使该通信装置实现如前该第三方面或任一可能的实现方式中的方法。
第十方面,本申请实施例提供一种计算机可读存储介质,其特征在于,包括如第七方面该的程序产品。
第十一方面,本申请实施例提供一种计算机可读存储介质,其特征在于,包括如第八方面该的程序产品。
第十二方面,本申请实施例提供一种计算机可读存储介质,其特征在于,包括如第九方面该的程序产品。
第十三方面,本申请实施例提供连接建立的方法。该方法包括:
第一终端设备接收第二终端的第一消息,该第一消息请求建立该第二终端设备与数据网络的第一连接;该第一终端设备通过该第一终端设备和核心网之间的控制面向该核心网转发该第一消息,以建立该第一连接的用户面网元到该数据网络的连接;该第一终端设备建立或者选择用于传输该第一连接的数据的第二连接,该第二连接为该第一终端设备与该第一连接的用户面网元所在的数据网络的连接;其中,该第一连接的用户面网元与该第二连接的用户面网元之间的连接是通过该第一连接的建立和该第二连接的建立或修改来建立的。
通过第十三方面提供的连接建立的方法,第一终端设备通过该第一终端设备和核心网之间的控制面向该核心网转发第二终端设备的第一消息,第一终端设备建立或者选择第一终端设备的第二连接,其中第二连接和第一连接的用户面网元与该第二连接的用户面网元之间的连接用于传输第二终端设备的第一连接的数据,简化了第一终端设备和第二终端设备的实现复杂度,减少了信令和数据的传输的迂回路径,降低了通信时延。
作为一种可能的实现方式,该方法还包括:该第一终端通过该控制面获取该第一连接的用户面网元所在的数据网络。
作为一种可能的实现方式,该方法还包括:该第一终端通过该控制面获取该核心网确定的该第一连接的建立参数;该第一终端设备建立或者选择用于传输该第一连接的数据的第二连接,包括:该第一终端根据该第一连接的建立参数建立或者选择该第二连接。
作为一种可能的实现方式,该方法还包括:该第一终端获取该第二终端请求的该第一连接的请求建立参数;该第一终端设备建立或者选择用于传输该第一连接的数据的第二连接,包括:该第一终端根据该第一连接的请求建立参数建立或者选择该第二连接。
作为一种可能的实现方式,该第一消息为第一非接入层NAS消息,该第一终端设备通过该第一终端设备和核心网之间的控制面向该核心网转发该第一消息,包括:该第一终端设备向服务于该第一终端的第一控制面网元发送第二NAS消息,该第二NAS消息包括该第一NAS消息,以使能该第一控制面网元向服务于该第二终端设备的第二控制面网元发送该第一NAS消息。
作为一种可能的实现方式,该方法还包括:该第一终端设备从该第二终端设备接收该第一连接的第一数据包;该第一终端设备通过该第二连接发送该第二连接的第二数据包;其中,该第二数据包包括该第一数据包。
作为一种可能的实现方式,该方法还包括:该第一终端设备接收该第二连接的第 三数据包;该第一终端设备从该第三数据包中获取该第一连接的第四数据包;该第一终端设备向该第二终端设备发送该第四数据包。
作为一种可能的实现方式,该第一连接为该第一终端与该数据网络的第一协议数据单元PDU会话,该第二连接为该第二终端与该第二连接的用户面网元所在数据网络的第二PDU会话。
第十四方面,本申请实施例提供一种连接建立的方法,其特征在于,包括:
第一控制面网元通过与第一终端设备的控制面获取第二终端设备的第一消息,该第一消息请求建立该第二终端设备与数据网络的第一连接;该第一控制面网元向服务于该第二终端设备的第二控制面网元发送该第一消息;该第一控制面网元从该第一终端设备接收第二消息,该第二消息请求建立该第一终端设备与该第一连接的用户面网元的第二连接;该第二连接用于传输该第一连接的数据包;获取该第一连接的用户面网元的隧道端点标识和该第二连接的用户面网元的隧道端点标识,以使能建立该第一连接的用户面网元和该第二连接的用户面网元之间的连接。
通过第十四方面提供的连接建立的方法,该第一控制面网元通过与第一终端设备的控制面传递第二终端设备与核心网之间的消息,该第一控制面网元建立该第一连接的用户面网元和该第二连接的用户面网元之间的连接,用于传输第二终端设备的第一连接的数据。上述过程简化了第一终端设备和第二终端设备的实现复杂度,减少了信令和数据传输的迂回路径,降低了通信时延。
作为一种可能的实现方式,该方法还包括:该第一控制面网元获取该核心网确定的该第一连接的建立参数;该第一控制面网元向该第一终端设备发送该第一连接的建立参数,以使能该第一终端设备建立或者选择该第二连接。
作为一种可能的实现方式,该第一消息为第一非接入层NAS消息,该第一控制面网元通过与第一终端设备的控制面获取第二终端设备的第一消息,包括:该第一控制面网元从该第一终端设备接收第二NAS消息,该第二NAS消息包括该第一NAS消息。
第十五方面,本申请实施例提供一种通信装置,包括处理器,该处理器用于从存储器读取并运行指令,以实现如前该第十三方面或任一可能的实现方式中的方法。
第十六方面,本申请实施例提供一种通信装置,其特征在于,包括处理器,该处理器用于从存储器读取并运行指令,以实现如前该第十四方面或任一可能的实现方式中的方法。
第十七方面,本申请实施例提供一种程序产品,其特征在于,包括指令,当该指令在通信装置上运行时,以使该通信装置实现如前该第十三方面或任一可能的实现方式中的方法。
第十八方面,本申请实施例提供一种程序产品,其特征在于,包括指令,当该指令在通信装置上运行时,以使该通信装置实现如前该第十四方面或任一可能的实现方式中的方法。
第十九方面,本申请实施例提供一种计算机可读存储介质,其特征在于,包括如第十七方面该的程序产品。
第二十方面,本申请实施例提供一种计算机可读存储介质,其特征在于,包括如 第十八方面该的程序产品。
在本申请实施例中,第一终端设备通过该第一终端设备与核心网之间的控制面传递第二终端设备与核心网之间的消息,第一终端设备建立或者选择第一终端设备的第二连接,用于传输第二终端设备的第一连接的数据,简化了第一终端设备和第二终端设备的实现复杂度,减少了信令和数据的传输的迂回路径,降低了通信时延。
附图说明
图1是3GPP定义的5G网络架构示意图;
图2是UE通过RG接入5G核心网的示意图;
图3是一种RG通过CPE的PDU会话进行数据传输的架构示意图;
图4是一种RG通过CPE的PDU会话和RG的PDU会话进行数据传输的架构示意图;
图5是基于图3架构的一种连接建立的方法的示意图;
图6是基于图3架构的一种CPE获取网络对RG PDU会话建立的响应的示意图;
图7是基于图3架构的一种CPE建立用于传输RG PDU会话数据的CPE PDU会话的示意图;
图8是基于图3架构的另一种连接建立的方法示意图;
图9是基于图3架构的另一种CPE建立用于传输RG PDU会话数据的CPE PDU会话的示意图;
图10是基于图4架构的一种连接建立的方法的示意图;
图11是基于图4架构的一种CPE获取网络对RG PDU会话建立的响应的示意图;
图12是基于图4架构的一种CPE建立用于传输RG PDU会话数据的CPE PDU会话的示意图;
图13是基于图4架构的一种CPE AMF建立CPE PDU会话与RG PDU会话之间的用户面连接的示意图;
图14是基于图4架构的另一种连接建立的方法的示意图;
图15是基于图4架构的另一种CPE建立用于传输RG PDU会话数据的CPE PDU会话的示意图;
图16基于图4架构的另一种CPE AMF建立CPE PDU会话与RG PDU会话之间的用户面连接的示意图。
图17是基于图3架构的一种第一终端设备侧的连接建立的方法的示意图;
图18是基于图3架构的一种第二终端设备侧的连接建立的方法的示意图;
图19是基于图3架构的一种第一控制面网元侧的连接建立的方法的示意图;
图20是一种通信装置的示意图;
图21是基于图4架构的一种第一终端设备侧的连接建立的方法的示意图;
图22是基于图4架构的一种第一控制面网元侧的连接建立的方法的示意图;
图23是一种终端设备的示意图;
图24是一种通信装置的示意图。
具体实施方式
以下结合附图对本申请实施例的方案进行说明。以下实施例以5G网络为例进行介绍。需要说明的是,本申请的技术方案还可以适用于演进的4G网络,或者未来的6G网络等。
3GPP标准组在2016年底制定了下一代移动通信网络架构(Next Generation System),称为5G网络架构,如图1所示。图1中,UE(User Equipment,用户设备)通过(R)AN接入核心网。其中,(R)AN包括3GPP RAN和非3GPP接入网,非3GPP接入网包括WLAN,Wireline等。核心网包括控制面功能网元和用户面功能网元。其中控制面功能网元包括接入和移动性管理功能(Access and Mobility Management Function,AMF),会话管理功能(Session Management Function,SMF),鉴权服务器功能(Authentication Server Function,AUSF),统一的用户数据管理(Unified Data Management,UDM)和策略控制功能(Policy Control function,PCF)。其中AMF主要负责用户接入时的注册认证、及用户的移动性管理。SMF主要负责用户发起业务时网络侧建立相应的会话连接,为用户提供具体服务,向用户面功能网元下发数据报文转发策略、QoS控制策略等。AUSF主要负责对用户设备进行鉴权,确定用户设备合法性。UDM主要用来存储用户设备签约数据。PCF主要用来下发业务相关的策略给AMF或SMF。用户面功能网元主要是用户面功能(User Plane Function,UPF),主要负责分组数据报文的转发、服务质量(Quality of Service,QoS)控制、计费信息统计等。UE可以请求通过5G网络建立与数据网络(Data Network,DN)之间建立用户面连接,例如,UE可以请求建立协议数据单元会话(Protocol Data Unit Session,PDU Session)。当UE的PDU Session建立后,UE的上行数据包经过(R)AN发送到UPF,再由UPF向DN发送。相应地,UPF从DN接收到UE的下行数据包后,经过(R)AN发送给UE。
5G网络架构支持固定终端家庭网关(Residential Gateway,RG)从(R)AN接入核心网。进一步地,5G网络架构还支持UE通过RG接入核心网,如图2所示。在图2中,N3GF(Non-3GPP Gateway Function)为UE提供了从非3GPP接入网接入核心网的接入网关功能,可以对应于可信非3GPP接入架构的TNGF(Trusted Non-3GPP Gateway Function),或者非可信非3GPP接入架构的N3IWF(Non-3GPP InterWorking Function)。
需要说明的是,本申请实施例中,用户面功能、接入和移动性管理功能、会话管理功能等仅是一个名字,名字对设备本身不构成限定。在5G网络以及未来其它的网络中,用户面功能、接入和移动性管理功能、会话管理功能等所对应的网元或实体也可以是其他的名字,本申请实施例对此不作具体限定。例如,该用户面功能还有可能被替换为UP,等等,在此进行统一说明,以下不再赘述。
同样需要说明的是,上述用户面功能、接入和移动性管理功能、会话管理功能等除了具备本申请实施例中的功能,还可能具备其他的功能,本申请实施例对此不作具体限定。此外,用户面功能、接入和移动性管理功能、会话管理功能等,可能由一个实体设备实现,也可能由多个实体设备共同实现,本申请实施例对此不作具体限定。即,可以理解的是,本申请实施例中的用户面功能、接入和移动性管理功能、会话管 理功能等,都可能是实体设备内的一个逻辑功能模块,也可能是由多个实体设备组成的一个逻辑功能模块,也可以是一个实体具有本申请实施例中的用户面功能的功能、接入和移动性管理功能的功能和会话管理功能的功能等,本申请实施例对此不作具体限定。
本申请实施例主要涉及两种架构。一种为RG通过CPE与CPE UPF之间的连接和该CPE UPF与DN的连接进行RG与DN之间的数据传输,如图3所示。另一种为RG通过CPE与RG UPF之间的连接和该RG UPF与DN之间的连接进行RG与DN之间的数据传输,如图4所示。在本申请中,为了便于说明,服务于RG的AMF、SMF、UPF称为RG AMF、RG SMF和RG UPF;服务于CPE的AMF、SMF、UPF称为CPE AMF、CPE SMF和CPE UPF。在实际使用中,RG AMF和CPE AMF可以是同一个实体,或同一个网元,即一个AMF同时服务于RG和AMF。同样地,RG SMF和CPE SMF,RG UPF和CPE UPF也可以是同一个实体,或同一个网元。
图3示出的架构包括RG,CPE(Customer-premises equipment),(R)AN,核心网。其中(R)AN和核心网具体参见图1的描述。CPE通过CPE与CPE AMF之间的非接入层(Non-Access-Stratum,NAS)连接传递RG与RG AMF之间的NAS信令。RG与数据网络(Data Network,DN)之间交换的上下行数据通过CPE到该DN的连接进行传输,即通过CPE、RAN和CPE UPF之间建立的连接承载RG的上下行数据传输。和图2的架构相比,在图3该架构中,无需建立N3GF和RG之间的IPSec隧道,再通过N3GF和RG UPF来进行RG与DN之间的上下行数据的传输。
图4示出的架构包括RG,CPE(Customer-premises equipment),(R)AN,核心网。其中(R)AN和核心网具体参见图1的说明。CPE通过CPE与CPE AMF之间的NAS连接传递RG与RG AMF之间的NAS信令。RG与DN之间上下行数据的传输通过CPE与RG UPF之间的连接以及RG UPF与DN之间的连接进行。和图2的架构相比,在图4的架构中,无需建立N3GF和RG之间的IPSec隧道,再通过N3GF来进行RG与DN之间的上下行数据的传输。
作为一种实施方式,上述图3和图4中所述的连接,例如CPE与CPE UPF之间的连接、CEP与RG UPF之间的连接、可以利用PDU会话建立流程进行建立。
需要说明的是,图3和图4中的RG和CPE都具有UE功能。因此,在实际部署中,图2架构中的RG和CPE也可以换成其他具有UE功能的终端设备。例如,RG也可以是UE或CPE,CPE也可以是UE或RG。换句话说,图2所示的架构可以描述一个UE通过另一个UE接入5G核心网,也可以描述一个UE通过一个RG或CPE接入5G核心网,或者一个RG通过另一个RG或CPE接入5G核心网等。
以下结合图3所示的架构,对本申请实施例提供的一种连接建立的方法进行介绍。如图5所示,该方法包括:
S501:RG向CPE发送第一RG NAS消息。
其中,该第一RG NAS消息用以请求建立RG PDU会话。
在本申请中,CPE与CPE AMF之间传递的NAS消息称为CPE NAS消息;RG与RG AMF之间传递的NAS消息称为RG NAS消息;RG的PDU会话称为RG PDU会话,CPE的PDU会话称为CPE PDU会话。
该第一RG NAS消息包括第一RG PDU会话建立请求参数。
示例性地,该RG NAS消息中包括RG会话管理容器(SM container),该SM container中包括该第一RG PDU会话建立请求参数。
第一RG PDU会话建立请求参数描述了RG请求建立的PDU会话的特征。示例性的,第一PDU会话建立参数包括PDU会话标识(PDU session ID)。可选地,第一PDU会话建立参数还可以包括:数据网络名称(Data Network Name,DNN)、网络切片选择辅助信息(Network Slice Selection Assistance Information,NSSAI)、会话和业务连续性模式(Session and Service Continuity Mode,SSC mode)、或者PDU session Type等。其中PDU session ID是RG为请求建立的PDU会话分配的标识;DNN是RG请求连接的DN的名字;NSSAI是RG请求连接的DN所对应的切片信息;SSC mode是RG请求建立的PDU会话的会话和业务连续性模式;PDU session Type指RG请求建立的PDU会话的类型。例如PDU会话的类型可以是IPv4类型,IPv6类型,IPv4v6类型,Ethernet类型,或Unstructured类型。
作为一种可选的实施方式,上述第一RG NAS消息可以承载在RG与CPE之间的PPPoE连接上。
作为一种可选的实施方式,RG向CPE发送第一消息,该第一消息中包括该第一RG NAS消息。该第一消息可以为设备商特定消息(Vender Specific Message,VSM)。可选地,该第一消息中还包括第二RG PDU会话建立请求参数。该第二RG PDU会话建立请求参数可以包括第一RG PDU会话建立请求参数中的部分或者全部参数。通过该第二RG PDU会话建立请求参数,CPE可以获知RG请求建立PDU会话。可选的,CPE还可以获知RG请求建立的PDU会话的特征。
S502:CPE通过CPE NAS消息将第一RG NAS消息发送至CPE AMF,并由CPE AMF向RG AMF转发第一RG NAS消息,以获取网络对请求建立RG PDU会话的第一响应。
该第一响应用于指示网络接受请求建立RG PDU会话。可以理解,该第一响应可以认为是网络对于建立RG PDU会话的授权,即表明该RG在网络中被允许建立该RG PDU会话。可选的,在获取该第一响应时,CPE可以从网络获取网络确定的RG PDU会话建立参数。网络确定的RG PDU会话建立参数包括为该RG PDU会话分配的RG的IP地址。可选的,网络确定的RG PDU会话建立参数还包括PDU Session ID、DNN、NSSAI、SSC mode、或者PDU session Type。网络确定的RG PDU会话建立参数可以与第一RG PDU会话建立请求参数不同。示例性的,该第一响应可以是针对第一RG NAS消息的接受消息。
S503:CPE建立或选择用于传输该RG PDU会话数据的CPE PDU会话。
其中,该CPE PDU会话与上述RG PDU会话的DNN或者NSSAI相同,以使得RG PDU会话的数据包的目的地址对于CPE PDU会话而言是可达的。换而言之,CPE建立或选择了与RG所请求连接的数据网络的连接。
方案一:CPE建立CPE PDU会话。
作为一种可能的实施方式,CPE可以根据上述网络确定的RG PDU会话建立参数中的一项或多项参数来建立CPE PDU会话。例如,RG PDU会话建立参数中包括DNN1, NSSAI1,则CPE请求建立一个DNN为DNN1,NSSAI为NSSAI1的PDU会话。
作为另一种可能的实施方式,CPE可以根据上述第二RG PDU会话建立请求参数中的一项或多项参数来建立CPE PDU会话。例如,第二RG PDU会话建立请求参数中包括DNN1,NSSAI1,则CPE请求建立一个DNN为DNN1,NSSAI为NSSAI1的PDU会话。可选的,当CPE没有获取到网络确定的RG PDU会话建立参数时,可以采用第二RG PDU会话建立请求参数中的一项或多项参数来建立CPE PDU会话。
作为再一种可能的实施方式,CPE可以根据该默认的PDU会话建立参数中的一项或多项参数来建立该CPE PDU会话。此时,RG也可能会按照默认的PDU会话建立参数中的一项或多项参数来建立该RG PDU会话。其中,默认的PDU会话建立参数可以是网络配置的、或者标准协议约定的。作为一种示例,默认的PDU会话建立参数可以包括DNN、NSSAI、SSC mode、或者PDU session Type。可选的,当CPE没有获取到网络确定的RG PDU会话建立参数和第二RG PDU会话建立请求参数时,可以采用默认的PDU会话建立参数中的一项或多项参数来建立CPE PDU会话。
方案二:CPE选择CPE PDU会话。
CPE可以判断是否存在满足该RG PDU会话的CPE PDU会话。若存在满足该RG PDU会话的CPE PDU会话,则可以通过该CPE PDU会话来为RG服务。
在一种可能的实施方式中,CPE可以通过CPE PDU会话是否匹配网络确定的RG PDU会话建立参数中的一项或多项来确定是否存在满足该RG PDU会话的CPE PDU会话。例如:当CPE PDU会话的DNN或者NSSAI满足网络确定的RG PDU会话建立参数中的DNN或者NSSAI时,可以认为该CPE PDU会话满足该RG PDU会话。
在另一种可能的实施方式中,CPE可以根据上述第二RG PDU会话建立请求参数中的一项或多项参数来确定是否存在满足该RG PDU会话的CPE PDU会话。例如,第二RG PDU会话建立请求参数中包括DNN1,CPE已经建立有一个DNN为DNN1的PDU会话,则CPE确定该CPE PDU会话为满足该RG PDU会话的CPE PDU会话。可选的,当CPE没有获取到网络确定的RG PDU会话建立参数时,可以采用第二RG PDU会话建立请求参数中的一项或多项参数来确定满足RG PDU会话的CPE PDU会话。
作为再一种可能的实施方式,CPE也可以根据该默认的PDU会话建立参数中的一项或多项参数来确定是否存在满足该RG PDU会话的CPE PDU会话。此时,RG PDU会话也可能会按照默认的PDU会话建立参数中的一项或多项参数来建立该RG PDU会话。其中,默认的PDU会话建立参数可以是网络配置的、或者标准协议约定的。作为一种示例,默认的PDU会话建立参数可以包括DNN、NSSAI、SSC mode、或者PDU session Type。
在上述方法中,可以在CPE上保存RG PDU会话CPE PDU会话之间的关联关系,CPE可以根据该关联关系,将RG PDU会话的上行数据包转变为CPE PDU会话的上行数据包,并通过该CPE PDU会话发送至DN;相应地,CPE可以通过该CPE PDU会话从DN接收到该CPE PDU会话的下行数据包,根据该关联关系,将该CPE PDU会话的下行数据包转变为RG PDU会话的下行数据包并发送至RG。
作为建立RG PDU会话和CPE PDU会话关联关系的第一种可能的实施方式,可以在CPE上保存上述针对该RG PDU会话分配的RG的IP地址与CPE PDU Session ID的关联关系,如表1所示。由于RG PDU会话和为该RG PDU会话分配的IP地址有一一对应的关系,因此通过RG IP地址可以标识对应的RG PDU会话。
RG IP地址1 CPE PDU Session ID 1
RG IP地址2 CPE PDU Session ID 2
表1
在这种可能的实施方式中,当CPE接收到RG的上行数据包时,CPE通过该上行数据包所携带的RG的IP地址确定对应的CPE PDU会话,并通过该CPE PDU会话发送该上行数据包。当CPE接收到CPE PDU会话的下行数据包时,CPE通过该下行数据包对应的CPE Session ID确定对应的RG的IP地址,并通过该RG IP地址向该RG发送该下行数据包。
作为建立上述关联关系的第二种可能的实施方式,若RG和CPE之间建立了PDU会话粒度的5WE(5G Wireless Wireline Convergence User Plane Encapsulation)会话,且5WE会话和RG PDU会话是一一对应的关系,可以在CPE上保存5WE Session ID与CPE PDU Session ID的关联关系,如表2所示。通过5WE Session ID可以标识出对应的RG PDU会话。
5WE Session ID 1 CPE PDU Session ID 1
5WE Session ID 2 CPE PDU Session ID 2
表2
在这种可能的实施方式中,当CPE接收到RG的上行数据包时,CPE通过该上行数据包中携带的5WE Session ID确定对应的CPE PDU会话,并通过该CPE PDU会话发送该上行数据。当CPE接收到RG的下行数据时,CPE通过该下行数据对应的CPE Session ID确定对应的5WE Session ID,并通过该5WE Session ID对应的通道发送该下行数据。
作为建立上述关联关系的第三种可能的实施方式,在第二种可能的方式基础上,若同一RG的不同RG PDU会话可以共享同一个CPE PDU会话,或者不同RG的RG PDU会话可以共享同一个CPE PDU会话,可以考虑引入CPE端口号来区别不同的RG PDU会话。其中,由于5WE会话标识是由CPE分配的,所以CPE可以为不同的5WE会话分配不同的5WE会标标识。如表3所示。
Figure PCTCN2021093968-appb-000001
表3
在这种可能的实施方式中,当CPE接收到RG的上行数据时,CPE通过该上行数据包中携带的5WE Session ID确定对应的CPE PDU Session和CPE端口号,并通过该CPE PDU Session和CPE端口号发送该上行数据。当CPE接收到RG的下行数据时, CPE通过该下行数据对应的PDU SessionID和CPE端口号确定对应的5WE Session ID,并通过该5WE Session ID对应的通道发送该下行数据。
可选地,在上述三种可能的实施方式中,CPE在发送该上行数据前,可以将该上行数据中携带的源IP地址替换为对应CPE PDU会话的IP地址;相应地,CPE在发送该下行数据前,将该下行数据中携带的目的IP地址替换为对应RG的IP地址。
通过上述步骤S501-S503,RG与RG AMF之间的NAS信令通过CPE与CPE AMF之间的NAS连接传递,RG与DN的上下行数据通过CPE与该DN的连接进行传输,无需建立多层IPSec隧道,简化了RG和CPE的实现复杂度,减少了信令和数据的传输的迂回路径,降低了通信时延。
作为S502的一种可选的实施方式,CPE通过CPE NAS消息将第一RG NAS消息发送至CPE AMF,并由CPE AMF向RG AMF转发第一RG NAS,以获取网络对请求建立RG PDU会话的第一响应的方法,可以参考图6。如图6所示,S502包括:
S601:CPE向CPE AMF发送第一CPE NAS消息。
其中,该第一CPE NAS消息包括S501中接收到的RG的第一RG NAS消息。作为一种可选的实现,该第一CPE NAS消息可以包括第一RG NAS消息和第一RG标识。该第一RG标识为在该CPE中唯一标识该RG的标识。该第一RG标识可以是CPE为RG分配的标识、或者CPE和RG之间连接的标识(如PPPoE连接ID),或者RG的MAC地址、或者网络为RG分配的标识。通过该第一RG标识可以获知该第一RG NAS消息是该第一RG标识所标识的RG的RG NAS消息。可选的,可以在第一CPE NAS消息中包括一个容器,该容器用于携带第一RG NAS消息和第一RG标识。
S602:CPE AMF向RG AMF发送RG的第一RG NAS消息。
CPE AMF收到第一CPE NAS消息后,可以从第一CPE NAS消息中获取该RG的第一RG NAS消息,并转发给RG AMF。
可选的,CPE AMF可以向RG AMF发送第一消息,该第一消息包括该RG的第一RG NAS消息。作为一种可选的实施方式,该第一消息包括第一RG NAS消息和第一RG标识。通过该第一RG标识可获知该第一RG NAS消息为该第一RG标识所标识的RG的RG NAS消息。示例性的,该第一消息可以是AMF之间的接口消息。
可选的,CPE AMF可以根据本地配置或者CPE提供的AMF选择信息来选择RG AMF。其中,AMF选择信息可以包括RG所在的位置(例如跟踪区、服务区,地理位置等)、或者RG请求接入的切片等。该AMF选择信息可以由CPE生成、或者可以由RG向CPE发送。
S603:RG AMF根据接收到的第一RG NAS消息,向RG SMF发送会话建立请求消息。
其中,该会话建立请求消息用于请求建立RG的RG PDU会话。
可选的,该会话建立请求消息中包括第一RG PDU会话建立请求参数。第一RG PDU会话建立请求参数的说明可参见步骤S501。可选的,该会话建立请求消息还包括第二RG标识。通过该第二RG标识可以获知请求建立的是第二RG标识所标识的RG的RG PDU会话。第二RG标识可以是RG在5G核心网中使用的标识,如签约用户永久标识(Subscription Permanent Identifier,SUPI)或国际移动用户标识(International  Mobile Subscription Identity,IMSI)。可选的,第一RG标识可以和第二RG标识相同。可选的,第一RG标识可以和第二RG标识不同,RG AMF收到第一RG标识后,可以将第一RG标识转换为第二RG标识。可选的,第一RG标识和第二RG标识之间的映射关系可以是RG通过CPE注册到网络过程中获得的。
S604:RG SMF从UDM获取RG的签约数据。
作为一种可能的实施方式,RG SMF判断第一RG PDU会话建立请求参数与RG的签约数据一致。示例性地,如果第一RG PDU会话建立请求参数中包括DNN1,且RG的签约数据允许RG接入DNN1,则第一RG PDU会话建立请求参数与RG的签约数据一致。
S604可选。
S605:RG SMF向RG AMF发送会话建立响应消息。
该会话建立响应消息用于指示接受建立该RG的RG PDU会话。
可选的,该会话建立响应消息包括网络确定的RG PDU会话建立参数。示例性的,网络确定的RG PDU会话建立参数包括为该RG PDU会话分配的RG的IP地址。可选地,网络确定的RG PDU会话建立参数还包括PDU Session ID、SSC mode,S-NSSAI(s)、DNN、Session-AMBR、或者PDU Session Type等。可选的,该会话建立响应消息还包括第二RG标识。通过该第二RG标识可获知接受建立的RG PDU会话是该第二RG标识所标识的RG的RG PDU会话。本申请实施例中,网络确定的RG PDU会话建立参数也可以理解为是核心网确定的RG PDU会话建立参数。
S606:RG AMF向CPE AMF发送发往该RG的第二RG NAS消息。其中,该第二RG NAS消息用于告知接受建立该RG的RG PDU会话。
可选的,RG AMF可以向CPE AMF发送第二消息,该第二消息包括该RG的第二RG NAS消息。作为一种可选的实施方式,该第二消息包括第二RG NAS消息和第一RG标识。通过该第一RG标识可以获知该第二RG NAS消息为发往该第一RG标识所标识的RG的RG NAS消息。可选的,该第二消息可以是AMF之间的接口消息。可选的,该第二消息还包括上述网络确定的RG PDU会话建立参数。
可选的,RG AMF可以根据第二RG标识确定第一RG标识。
S607:CPE AMF向CPE发送第二CPE NAS消息。
其中,该第二CPE NAS消息包括上述发往该RG的第二RG NAS消息。可选的,该第二CPE NAS消息还包括第一RG标识。通过该第一RG标识可获知该第二RG NAS消息是发往第一RG标识所标识的RG的RG NAS消息。可选的,该第二CPE NAS消息还包括上述网络确定的RG PDU会话建立参数。
S608:CPE向RG发送第二RG NAS消息。
通过上述步骤S601-S608,CPE通过与CPE AMF之间的CPE NAS消息交互以及CPE AMF与RG AMF之间的消息交互,传递了RG与RG AMF之间的RG NAS信令,从而缩短了控制面信令的传输时延。
在上述过程中,CPE可以获取网络对RG NAS消息的响应。该响应包括网络针对RG请求建立PDU会话的响应。CPE可以基于该响应建立或者选择用于传输上述RG PDU会话的数据的CPE PDU会话,从而缩短数据传输的路径,降低用户面数据的传 输时延。
作为S503的一种可选的实施方式,CPE建立用于传输该RG PDU会话数据的CPE PDU会话的方法,可以参考图7。如图7所示,S503包括:
S701:CPE向CPE AMF发送第三CPE NAS消息,以请求建立CPE PDU会话。
可选的,该第三CPE NAS消息可以包括第一CPE PDU会话建立参数。可选的,该第三CPE NAS消息还可以包括CPE PDU session ID。
可选的,第一CPE PDU会话建立参数可以包括S502中网络确定的RG PDU会话建立参数中的一项或多项参数。
可选的,第一CPE PDU会话建立参数可以包括第二RG PDU会话建立请求参数中的一项或多项参数。可选的,当CPE没有获取到网络确定的RG PDU会话建立参数时,可以采用第二RG PDU会话建立请求参数中的一项或多项参数来建立CPE PDU会话。
可选的,第一CPE PDU会话建立参数可以包括默认的PDU会话建立参数中的一项或多项参数。可选的,当CPE没有获取到网络确定的RG PDU会话建立参数和第二RG PDU会话建立请求参数时,可以采用默认的PDU会话建立参数中的一项或多项参数来建立CPE PDU会话。
作为一种理解,对于第一CPE PDU会话建立参数的选择是为了使CPE PDU会话与RG PDU会话的DNN或者NSSAI相同。
CPE PDU session ID可以是CPE为该CPE PDU会话分配的。
S702:CPE AMF向CPE SMF发送会话建立请求消息。
该会话建立请求消息中包括第一CPE PDU会话建立参数。
S703:CPE SMF和CPE UPF之间建立N4会话。
S704:CPE SMF向CPE AMF发送会话建立响应消息。
该会话建立响应消息中包括CPE SMF为该CPE PDU会话分配的CPE的IP地址。
S705:CPE AMF向CPE发送第四CPE NAS消息。
该第四CPE NAS消息中包括上述CPE SMF为CPE PDU会话分配的CPE的IP地址。
通过上述步骤S701-S705,CPE根据网络对第一RG NAS消息所请求建立的RG PDU会话的响应,建立与RG PDU会话的DNN或者NSSAI相同的CPE PDU会话。通过该CPE PDU会话可以传输该RG PDU会话的数据,从而RG与DN的上下行数据通过CPE与该DN的连接进行传输,无需建立多层IPSec隧道,简化了RG和CPE的实现复杂度,减少了信令和数据的传输的迂回路径,降低了通信时延。
在图5的方法中,CPE PDU会话是在建立RG PDU会话被网络接受之后进行的。作为图5方法的一种变形,可以在建立RG PDU会话被网络接受之前发起建立CPE PDU会话。以下结合图3所示的架构,对本申请实施例提供的另一种连接建立的方法进行介绍。如图8所示,该方法包括:
S801:RG向CPE发送第一RG NAS消息。
S801可参见S501。
可选的,在S801中可以获得如S501中所述的第二RG PDU会话建立请求参数。
S802:CPE建立或选择用于传输该RG PDU会话数据的CPE PDU会话。
方案一:CPE建立CPE PDU会话。
方案一具体可参见S503。需要说明的是,由于在建立RG PDU会话被网络接受之前发起建立CPE PDU会话,在S802CPE还未获取到网络确定的RG PDU会话建立参数。
可选的,CPE在S801获取到第二RG PDU会话建立请求参数后,可以根据上述第二RG PDU会话建立请求参数中的一项或多项参数来建立CPE PDU会话。
可选的,RG PDU会话可能会按照默认的PDU会话建立参数中的一项或多项参数来建立该RG PDU会话,此时CPE也可以根据该默认的PDU会话建立参数中的一项或多项参数来建立该RG PDU会话。
方案二:CPE选择CPE PDU会话。
方案二具体可参考S503。
S803:CPE通过CPE NAS消息将第一RG NAS消息发送至CPE AMF,并由CPE AMF向RG AMF转发第一RG NAS消息,以获取网络对请求建立RG PDU会话的第一响应。
S803具体可参见S502。
在上述方法中,可以在CPE上保存RG PDU会话CPE PDU会话之间的关联关系,CPE可以根据该关联关系,将RG PDU会话的上行数据包转变为CPE PDU会话的上行数据包,并通过该CPE PDU会话发送至DN。相应地,CPE可以通过该CPE PDU会话从DN接收到该CPE PDU会话的下行数据包,根据该关联关系,将该CPE PDU会话的下行数据包转变为RG PDU会话的下行数据包并发送至RG。具体可参见图5方法中的相关内容。
通过上述步骤S801-S803,RG与RG AMF之间的NAS信令通过CPE与CPE AMF之间的NAS连接传递,RG与DN的上下行数据通过CPE与该DN的连接进行传输,无需建立多层IPSec隧道,简化了RG和CPE的实现复杂度,减少了信令和数据的传输的迂回路径,降低了通信时延。
作为S802的一种可选的实施方式,CPE建立用于传输该RG PDU会话数据的CPE PDU会话的方法可以参考图9的方法。如图9所示。S802包括:
S901:CPE向CPE AMF发送第三CPE NAS消息,以请求建立CPE PDU会话。
S901可参见S701。
可选的,第一CPE PDU会话建立参数可以包括第二RG PDU会话建立请求参数中的一项或多项参数、或者默认的PDU会话建立参数中的一项或多项参数。对于第一CPE PDU会话建立参数的选择是为了使CPE PDU会话与RG PDU会话的DNN或者NSSAI相同。
S902:CPE AMF向CPE SMF发送会话建立请求消息。
参见S702。
S903:CPE SMF和CPE UPF之间建立N4会话。
参见S703。
S904:CPE SMF向CPE AMF发送会话建立响应消息。
参见S704。
S905:CPE AMF向CPE发送第四CPE NAS消息。
参见S705。
通过上述步骤S901-S905,CPE根据RG请求建立RG PDU会话,建立与RG PDU会话的DNN或者NSSAI相同的CPE PDU会话。通过该CPE PDU会话可以传输该RG PDU会话的数据,从而RG与DN的上下行数据通过CPE与该DN的连接进行传输,无需建立多层IPSec隧道,简化了RG和CPE的实现复杂度,减少了信令和数据的传输的迂回路径,降低了通信时延。
作为S803的一种可选的实施方式,CPE通过CPE NAS消息将第一RG NAS消息发送至CPE AMF,并由CPE AMF向RG AMF转发第一RG NAS,以获取网络对请求建立RG PDU会话的第一响应的方法,可以参考图6的方法。通过该方法CPE通过与CPE AMF之间的CPE NAS消息交互以及CPE AMF与RG AMF之间的消息交互,传递了RG与RG AMF之间的RG NAS信令,从而缩短了控制面信令的传输时延。
以下结合图4所示的架构,对本申请实施例提供的另一种连接建立的方法进行介绍。如图10所示,该方法包括:
S1001:RG向CPE发送第一RG NAS消息。
S1001可参见S501。
S1002:CPE通过CPE NAS消息将第一RG NAS消息发送至CPE AMF,并由CPE AMF向RG AMF转发第一RG NAS消息,以获取网络对请求建立RG PDU会话的第一响应。
S1002可参见S502。
需要说明的是,RG SMF需要为RG PDU选择RG UPF,并可以将RG UPF的上行隧道端点标识通知给RG AMF,由RG AMF发送给CPE AMF。该上行隧道端点标识标识了图4中RG UPF与CPE UPF之间用户面连接的RG UPF侧的隧道端点。
S1003:CPE建立或选择用于传输该RG PDU会话数据的CPE PDU会话。
S1003可参见S503。
在CPE建立用于传输该RG PDU会话数据的CPE PDU会话的实施方式中,该CPE PDU会话的DNN或者NSSAI与RG UPF所属的DNN或者NSSAI相同,以使得可以通过该CPE PDU会话将RG PDU会话的数据包发送至RG UPF,以及CPE可以从RG UPF接收RG PDU会话的数据包。
在CPE选择用于传输该RG PDU会话数据的CPE PDU会话的实施方式中,CPE判断是否存在满足该RG PDU会话的CPE PDU会话时,可以根据该CPE PDU会话的DNN或者NSSAI与RG UPF所属的DNN或者NSSAI是否相同来进行判断。若CPE PDU会话的DNN或者NSSAI与RG UPF所属的DNN或者NSSAI相同,则认为该CPE PDU会话满足该RG PDU会话。
S1004:CPE AMF建立CPE UPF与RG UPF之间的用户面连接。
CPE AMF在获得RG UPF的上行隧道端点标识后,可以将RG UPF的上行隧道 端点标识发送给CPE SMF,并由CPE SMF发送给CPE UPF,以使得CPE UPF可以根据RG UPF的上行隧道端点标识向RG UPF发送RG PDU会话的数据(可视为上行数据)。可选的,CPE AMF可以利用S1003中建立CPE PDU会话的流程将RG UPF的上行隧道端点标识传递给CPE UPF。
另外,CPE AMF可从CPE SMF获取到CPE UPF的下行隧道端点标识,例如在S1003中获取到CPE UPF的下行隧道端点标识。该下行隧道端点标识用于标识图4中RG UPF与CPE UPF之间用户面连接的CPE UPF侧的隧道端点。CPE AMF将该下行隧道端点标识发送给RG AMF,由RG AMF发送至RG SMF,并由RG SMF发送至RG UPF。通过该下行隧道端点标识,可以使得RG UPF向CPE UPF发送RG PDU会话的数据(可视为下行数据)。
通过将RG UPF的上行隧道端点标识通知到CPE UPF,将CPE UPF的下行隧道端点标识通知到RG UPF,可以建立CPE UPF和RG UPF之间的用户面连接。
在上述方法中,可以在CPE上保存RG PDU会话CPE PDU会话之间的关联关系,CPE可以根据该关联关系,将RG PDU会话的上行数据包通过CPE PDU会话发送至RG UPF,并由RG UPF发往目的地址。相应地,CPE可以将CPE PDU会话的下行数据包发送RG。具体可参见图5方法的说明。
通过上述步骤S1001-S1004,RG与RG AMF之间的NAS信令通过CPE与CPE AMF之间的NAS连接传递,RG与DN的上下行数据通过CPE和RG UPF之间的连接以及RG UPF和DN之间的连接进行传输,无需建立多层IPSec隧道,简化了RG和CPE的实现复杂度,减少了信令和数据的传输的迂回路径,降低了通信时延。
CPE通过CPE NAS消息将第一RG NAS消息发送至CPE AMF,并由CPE AMF向RG AMF转发第一RG NAS,以获取网络对请求建立RG PDU会话的第一响应的方法,可以参考图11。如图11所示,S1002包括:
S1101:CPE向CPE AMF发送第一CPE NAS消息。
S1101可参见S601。
S1102:CPE AMF向RG AMF发送RG的第一RG NAS消息。
S1102可参见S1102。
S1103:RG AMF根据接收到的第一RG NAS消息,向RG SMF发送会话建立请求消息。
S1103可参见S603。
S1104:RG SMF从UDM获取RG的签约数据。
S1104可选,具体可参见S604。
S1105:RG SMF和RG UPF之间建立N4会话。
作为一种可能的实施方式,S1105包括:
RG SMF向RG UPF发送N4会话建立请求消息;
RG UPF向RG SMF发送N4会话建立响应消息。
该N4会话建立响应消息中包括RG UPF的核心网隧道信息(CN tunnel info)。该RG UPF的CN tunnel info标识了图4中RG UPF与CPE UPF之间用户面连接的RG UPF侧的隧道端点。该隧道端点用于接收CPE UPF发送的上行数据,即CPE  UPF通过该隧道向RG UPF发送的数据包需要携带该RG UPF的CN tunnel info的信息。例如,RG UPF的CN tunnel info包括RG UPF的IP地址和GTP端点标识,CPE UPF通过该隧道向RG UPF发送的数据包携带该RG UPF的IP地址和GTP端点标识。
S1106:RG SMF向RG AMF发送会话建立响应消息。
S1106可参见S605。
可选的,会话建立响应消息中还包括RG UPF的CN tunnel info。
S1107:RG AMF向CPE AMF发送发往该RG的第二RG NAS消息。
可选的,S1107中,RG AMF还向CPE AMF发送RG UPF的CN tunnel info。
RG AMF向CPE AMF发送发往该RG的第二RG NAS消息可参见S606。其中,包括发往该RG的第二RG NAS消息的第二CPE NAS消息还包括RG UPF的CN tunnel info。
S1108:CPE AMF向CPE发送第二CPE NAS消息。
S1108可参见S607。
S1109:CPE向RG发送第二RG NAS消息。
S1109可参见S608。
通过上述步骤S1101-S1109,CPE通过与CPE AMF之间的CPE NAS消息交互以及CPE AMF与RG AMF之间的消息交互,传递了RG与RG AMF之间的RG NAS信令,从而缩短了控制面信令的传输时延。
在上述过程中,CPE可以获取网络对RG NAS消息的响应。该响应包括网络针对RG请求建立PDU会话的响应。CPE可以基于该响应建立或者选择用于传输上述RG PDU会话的数据的CPE PDU会话。在上述过程中,CPE AMF可以接收到RG UPF的CN tunnel info。CPE AMF可以在建立与上述RG PDU会话关联的CPE PDU会话的过程中,将该RG UPF的CN tunnel info传递给CPE UPF,以使得CPE UPF可以向RG UPF传递上行数据,从而缩短数据传输的路径,降低用户面数据的传输时延。
作为S1003的一种可选的实施方式,CPE建立或选择用于传输该RG PDU会话数据的CPE PDU会话,可以参考图12。如图12所示,S1003包括:
S1201:CPE向CPE AMF发送第三CPE NAS消息,以请求建立CPE PDU会话。
S1201可以参考S701。其中,该CPE PDU会话的DNN与RG UPF所在的DN的DNN相同。
S1202:CPE AMF向CPE SMF发送会话建立请求消息。
S1202可参见S702。
其中,可选地,该会话建立请求消息还包括RG UPF的CN tunnel info。
S1203:CPE SMF和CPE UPF之间建立N4会话。
作为一种可能的实施方式,S1203包括:CPE SMF向CPE UPF发送N4会话建立请求消息。可选地,该N4会话建立请求消息中包括RG UPF的CN tunnel info。CPE UPF向CPE SMF发送N4会话建立响应消息。
该N4会话建立响应消息中包括CPE UPF的CN tunnel info。其中CPE UPF的 CN tunnel info标识了图4中RG UPF与CPE UPF之间用户面连接的CPE UPF侧的隧道端点。该隧道端点用于接收RG UPF发送的下行数据,即RG UPF通过该隧道向CPE UPF发送的数据包需要携带该CPE UPF的CN tunnel info的信息。例如,CPE UPF的CN tunnel info包括CPE UPF的IP地址和GTP端点标识,RG UPF通过该隧道向CPE UPF发送的数据包携带该CPE UPF的IP地址和GTP端点标识。
S1204:CPE SMF向CPE AMF发送会话建立响应消息。
该会话建立响应消息中包括CPE SMF为该CPE PDU会话分配的CPE的IP地址和CPE UPF的CN tunnel info。该CPE UPF的CN tunnel info可以在S1004中用于建立RG UPF和CPE UPF之间的用户面连接。
S1205:CPE AMF向CPE发送第四CPE NAS消息。
S1205可参考S705。
通过上述步骤S1201-S1205,CPE根据网络对第一RG NAS消息所请求建立的RG PDU会话的响应,建立到RG UPF所在的DN的CPE PDU会话,以及CPE UPF到RG UPF之间的连接。通过该CPE PDU会话以及CPE UPF到RG UPF之间的连接,可以传输RG PDU会话的数据,无需建立多层IPSec隧道,简化了RG和CPE的实现复杂度,减少了信令和数据的传输的迂回路径,降低了通信时延。
作为S1004的一种可选的实施方式,CPE AMF建立CPE UPF与RG UPF之间的用户面连接,可以参考图13。如图13所示,S1004包括:
S1301:CPE AMF向RG AMF发送CPE UPF的CN tunnel info。
CPE UPF的CN tunnel info可以是CPE AMF在步骤S1204中接收到的。示例性的,CPE UPF的CN tunnel info可以携带在N2会话管理信息(N2 SM information)参数中,或接入网隧道信息(AN Tunnel Info)参数中。
S1302:RG AMF向RG SMF发送CPE UPF的CN tunnel info。
示例性地,CPE UPF的CN tunnel info可以携带在N2 SM information参数中,或AN Tunnel Info参数中。
S1303:RG SMF向RG UPF发送CPE UPF的CN tunnel info。
作为一种可能的实施方式,S1303包括:
RG SMF向RG UPF发送N4会话修改请求消息,其中携带CPE UPF的CN tunnel info;
RG UPF向RG SMF发送N4会话修改响应消息。
通过上述步骤S1301-S1303,CPE AMF将在步骤S1204中接收到的CPE UPF的CN tunnel info传递给RG UPF,可以使能RG UPF向CPE UPF传递下行数据。
另一方面,对于上行而言CPE UPF需要获取RG UPF的CN tunnel info。例如:
S1304:RG SMF向RG AMF发送RG UPF的CN tunnel info。
S1305:RG AMF向CPE AMF发送RG UPF的CN tunnel info。
作为S1304和S1305的一种可选的实施方式,可以通过S1106和S1107来实现RG UPF的CN tunnel info从RG SMF到CPE AMF的传递。
S1306:CPE AMF向CPE SMF发送RG UPF的CN tunnel info。
示例性的,RG UPF的CN tunnel info可以携带在N2 SM information参数中,或AN Tunnel Info参数中。
S1307:CPE SMF向CPE UPF发送RG UPF的CN tunnel info。
作为S1307的一种可能的实施方式可以参考S1303,即通过N4会话修改流程进行。
作为S1306和S1307的一种可选的实施方式,可以通过S1202和S1203来实现RG UPF的CN tunnel info从CPE AMF到RG UPF的传递。
通过上述步骤S1304-S1307,可以将RG UPF的CN tunnel info传递给CPE UPF,可以使能CPE UPF向RG UPF传递上行数据。
通过建立RG UPF和CPE UPF之间的连接,可以避免多层IPSec隧道的建立,减少传输路径的迂回。
在图10的方法中,CPE PDU会话是在建立RG PDU会话被网络接受之后进行的。作为图10方法的一种变形,可以在建立RG PDU会话被网络接受之前发起建立CPE PDU会话。
以下结合图4所示的架构,对本申请实施例提供的另一种连接建立的方法进行介绍。如图14所示,该方法包括:
S1401:RG向CPE发送第一消息。
S1401可参见S801。
S1402:CPE建立或选择用于传输该RG PDU会话数据的CPE PDU会话。
S1402可参见S802。
其中,CPE建立CPE PDU会话时,由于在建立RG PDU会话被网络接受之前发起建立CPE PDU会话,可以预先配置RG UPF所在DN的DNN,使用该DNN来建立CPE PDU会话,以实现CPE到RG UPF的连通性。
S1403:CPE通过CPE NAS消息将第一RG NAS消息发送至CPE AMF,并由CPE AMF向RG AMF转发第一RG NAS消息,以获取网络对请求建立RG PDU会话的第一响应。
S1403可参见S803。
在S1403中,CPE AMF可以获取RG UPF的上行隧道端点标识。该上行隧道端点标识可以参考步骤S1002中的描述。
在上述方法中,可以在CPE上保存S1401中第一RG NAS消息请求建立的RG PDU会话和S1402中确定的CPE PDU会话之间的关联关系,并根据该关联关系对上下行数据包进行处理和路由,可以参见步骤S503中的描述。
S1404:建立CPE UPF与RG UPF之间的用户面连接。
CPE AMF在获得RG UPF的上行隧道端点标识后,可以将RG UPF的上行隧道端点标识发送给CPE SMF,并由CPE SMF发送给CPE UPF,以使得CPE UPF可以根据RG UPF的上行隧道端点标识向RG UPF发送RG PDU会话的数据(可视为上行数据)。可选的,CPE AMF可以利用S1403中建立CPE PDU会话的流程将RG UPF的上行隧道端点标识传递给CPE UPF。
另外,CPE AMF可从CPE SMF获取到CPE UPF的下行隧道端点标识,例如在S1403中获取到CPE UPF的下行隧道端点标识。该下行隧道端点标识用于标识图4中RG UPF与CPE UPF之间用户面连接的CPE UPF侧的隧道端点。CPE AMF将该下行隧道端点标识发送给RG AMF,由RG AMF发送至RG SMF,并由RG SMF发送至RG UPF。通过该下行隧道端点标识,可以使得RG UPF向CPE UPF发送RG PDU会话的数据(可视为下行数据)。
通过将RG UPF的上行隧道端点标识通知到CPE UPF,将CPE UPF的下行隧道端点标识通知到RG UPF,可以建立CPE UPF和RG UPF之间的用户面连接。
通过上述步骤S1401-S1404,RG与RG AMF之间的NAS信令通过CPE与CPE AMF之间的NAS连接传递,RG与DN的上下行数据通过CPE和RG UPF之间的连接以及RG UPF和DN之间的连接进行传输,无需建立多层IPSec隧道,简化了RG和CPE的实现复杂度,减少了信令和数据的传输的迂回路径,降低了通信时延。
CPE通过CPE NAS消息将第一RG NAS消息发送至CPE AMF,并由CPE AMF向RG AMF转发第一RG NAS,以获取网络对请求建立RG PDU会话的第一响应的方法,可以参考图15。如图15所示,S1402包括:
S1501:CPE向CPE AMF发送第一CPE NAS消息。
S1501可参见S901。
S1502:CPE AMF向CPE SMF发送会话建立请求消息。
S1502可参见S902。
S1503:CPE SMF和CPE UPF之间建立N4会话。
作为一种可能的实施方式,S1503包括:
CPE SMF向CPE UPF发送N4会话建立请求消息;
CPE UPF向CPE SMF发送N4会话建立响应消息。
可选的,N4会话建立响应消息中包括CPE UPF的CN tunnel info。CPE UPF的CN tunnel info的说明参见步骤S1203。
S1504:CPE SMF向CPE AMF发送会话建立响应消息。
可选的,该会话建立响应消息中包括CPE SMF为该CPE PDU会话分配的IP地址和CPE UPF的CN tunnel info。
S1505:CPE AMF向CPE发送第二CPE NAS消息。
S1505可参见S905。
通过上述步骤S1501-S1505,CPE建立与RG PDU会话的DNN或者NSSAI相同的CPE PDU会话。通过该CPE PDU会话可以传输该RG PDU会话的数据,从而RG与DN的上下行数据通过CPE与该DN的连接进行传输,无需建立多层IPSec隧道,简化了RG和CPE的实现复杂度,减少了信令和数据的传输的迂回路径,降低了通信时延。
作为S1403的一种可选的实施方式,CPE通过CPE NAS消息将第一RG NAS消息发送至CPE AMF,并由CPE AMF向RG AMF转发第一RG NAS消息,以获取网络 对请求建立RG PDU会话的第一响应可以参考图11。
CPE通过与CPE AMF之间的CPE NAS消息交互以及CPE AMF与RG AMF之间的消息交互,传递了RG与RG AMF之间的RG NAS信令,从而缩短了控制面信令的传输时延。在上述过程中,CPE AMF可以接收到RG UPF的CN tunnel info。CPE AMF可以在CPE PDU会话与RG PDU会话之间的用户面连接建立的过程中,将该RG UPF的CN tunnel info传递给CPE UPF,以使得CPE UPF可以向RG UPF传递上行数据。在上述过程中,CPE可以获取网络对RG NAS消息的响应。该响应包括网络针对RG请求建立PDU会话的响应。唯一不同的是,CPE在获取到网络确定的RG PDU会话建立参数后,不再基于网络确定的RG PDU会话建立参数中的一项或多项参数,建立与上述RG PDU会话关联的CPE PDU会话。CPE使用步骤S1402中确定的CPE PDU会话传输上述RG PDU会话的数据,从而缩短数据传输的路径,降低了用户面数据的传输时延。
作为S1404的一种可选的实施方式,建立CPEUPF与RG UPF之间的用户面连接,可以参考图16。如图16所示,包括:
S1601:CPE AMF向RG AMF发送CPE UPF的CN tunnel info。
CPE UPF的CN tunnel info是CPE AMF在步骤S1504中接收到的。携带CPE UPF的CN tunnel info的参数参见步骤S1301中的描述。
S1602:RG AMF向RG SMF发送CPE UPF的CN tunnel info。
该步骤可以参考步骤S1302的描述。S1603:RG SMF向RG UPF发送CPE UPF的CN tunnel info。
该步骤可以参考步骤S1303的描述。
S1604:CPE AMF向CPE SMF发送RG UPF的CN tunnel info。
该RG UPF的CN tunnel info是CPE AMF在步骤S1106中接收到的。示例性地,CPE AMF向CPE SMF发送会话建立请求消息。该会话建立请求消息中包括RG UPF的CN tunnel info。
S1605:CPE SMF向CPE UPF发送RG UPF的CN tunnel info。
作为一种可能的实施方式,步骤S1605包括:
CPE SMF向CPE UPF发送N4会话修改请求消息。
该N4会话修改请求消息中携带RG UPF的CN tunnel info;
CPE UPF向CPE SMF发送N4会话修改响应消息。
通过上述步骤S1601-S1605,CPE AMF将在步骤S1504中接收到的CPE UPF的CN tunnel info传递给RG UPF,以使得RG UPF可以向CPE UPF传递下行数据。CPE AMF将在步骤S1106中接收到的RG UPF的CN tunnel info传递给CPE UPF,以使得CPE UPF可以向RG UPF传递上行数据。从而,完成了CPE PDU会话与RG PDU会话之间的用户面连接建立。
需要说明的是,步骤S1601-S1603和步骤S1604-S1605的执行没有先后关系。CPE AMF可以先执行步骤S1601-S1603,也可以先执行步骤S1604-S1605,或者同时执行步骤S1601-S1603和步骤S1604-S1605。另一方面,对于上行而言CPE UPF需要 获取RG UPF的CN tunnel info。可参考S1304-S1307的说明。
通过上述步骤可以将RG UPF的CN tunnel info传递给CPE UPF,可以使能CPE UPF向RG UPF传递上行数据。
通过建立RG UPF和CPE UPF之间的连接,可以避免多层IPSec隧道的建立,减少传输路径的迂回。
以下从CPE侧,对图5-图9所示的方法进行说明。如图17所示,该方法包括:
S1701:第一终端设备接收第二终端的第一消息,该第一消息请求建立该第二终端设备与数据网络的第一连接。
其中,第一终端设备可以是图5-图9中的CPE;第二终端设备可以是图5-图9中的RG;第一消息可以是第一RG NAS消息;第一连接可以是RG的PDU会话。
S1701可以参考S501或S801的描述。
S1702:第一终端设备通过该第一终端设备和核心网之间的控制面向该核心网转发该第一消息,以获取该核心网接受请求建立该第一连接的响应。
其中,第一终端设备和核心网之间的控制面可以是CPE和CPE AMF之间的NAS消息。
S1702可以参考S502或图6或S803的描述。
S1703:第一终端设备建立或者选择用于传输该第一连接的数据的第二连接;其中,该第二连接为该第一终端设备与该数据网络的连接。
其中,第二连接可以是CPE的PDU会话。
在一种可能的实施方式中,第一终端设备先执行S1702再执行S1703。在这种可能的实施方式中,S1703可以参考S503或图7的描述。
在另一种可能的实施方式中,第一终端设备先执行S1703再执行S1702。在这种可能的实施方式中,S1703可以参考S802或图9的描述。
通过上述S1701-S1703,第一终端设备通过该第一终端设备和核心网之间的控制面向该核心网转发第二终端设备的第一消息,第一终端设备建立或者选择第一终端设备的第二连接,用于传输第二终端设备的第一连接的数据,无需建立多层IPSec隧道,简化了第一终端设备和第二终端设备的实现复杂度,减少了信令和数据的传输的迂回路径,降低了通信时延。
以下从RG侧,对图5-图9所示的方法进行说明。如图18所示,该方法包括:
S1801:第二终端设备向第一终端设备发送第一消息,该第一消息请求建立该第二终端设备与数据网络的第一连接。
其中,第一终端设备可以是图5-图9中的CPE;第二终端设备可以是图5-图9中的RG;第一消息可以是第一RG NAS消息;第一连接可以是RG的PDU会话。
S1801可以参考S501或S801的描述。
S1802:第二终端设备接收该第一终端设备发送的核心网接受请求建立该第一连接的响应。
S1802可以参考S608的描述。
通过上述S1801-S1802,第二终端设备通过第一终端设备向核心网请求建立第一连接,并通过该第一终端设备接收该核心网对第一连接建立请求的响应,无需建立多 层IPSec隧道,简化了第一终端设备和第二终端设备的实现复杂度,减少了信令传输的迂回路径,降低了通信时延。
以下从RG AMF侧,对图5-图16所示的方法进行说明。如图19所示,该方法包括:
S1901:第一控制面网元通过与第一终端设备的第二控制面网元获取第二终端设备的第一消息,该第一消息请求建立该第二终端设备与数据网络的第一连接。
其中,第一控制面网元可以是图5-图16中的RG AMF;第一终端设备可以是图5-图16中的CPE;第二控制面网元可以是图5-图16中的CPE AMF;第二终端设备可以是图5-图16中的RG;第一消息可以是第一RG NAS消息;第一连接可以是RG的PDU会话。
S1901可以参考S602或S1102的描述。
S1902:该第一控制面网元向服务于该第二终端设备的第三控制面网元发送该第一消息,以获取核心网对接受请求建立该第一连接的响应。
其中,第三控制面网元可以是图5-图16中的RG SMF。
S1902可以参考S603或S1103的描述。
通过上述S1901-S1902,第一控制面网元通过与第一终端设备的控制面获取第二终端设备的第一消息,并获取核心网对接受请求建立该第一连接的响应,支持该第二终端设备的第一连接建立请求建立。上述过程无需建立多层IPSec隧道,简化了第一终端设备和第二终端设备的实现复杂度,减少了信令传输的迂回路径,降低了通信时延。
图20是为本申请实施例提供的通信装置2000的示意性框图。示例性地,通信装置2000例如为第一终端设备。
第一终端设备包括处理模块2010。可选的,还可以包括收发模块2020。示例性地,第一终端设备2000可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述第一终端设备功能的组合器件、部件等。当第一终端设备2000是终端设备时,收发模块2020可以是收发器,收发器可以包括有线或无线的装置等,包括天线、射频模块、有线连接线等,处理模块2010可以是处理器(或者,处理电路),例如基带处理器,基带处理器中可以包括一个或多个CPU。当第一终端设备2000是具有上述第一终端设备功能的部件时,收发模块2020可以是射频单元,处理模块2010可以是处理器(或者,处理电路),例如基带处理器。当第一终端设备2000是芯片系统时,收发模块2020可以是芯片(例如基带芯片)的输入输出接口、处理模块2010可以是芯片系统的处理器(或者,处理电路),可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块2010可以由处理器或处理器相关电路组件(或者,称为处理电路)实现,收发模块2020可以由收发器或收发器相关电路组件实现。
例如,处理模块2010可以用于执行图17所示的实施例中由第一终端设备所执行的除了收发操作之外的全部操作,例如S1703,和/或用于支持本文所描述的技术的其它过程。收发模块2020可以用于执行图17所示的实施例中由第一终端设备所执行的 全部收发操作,例如S1701和S1702,和/或用于支持本文所描述的技术的其它过程。
示例性地,通信装置2000例如为第二终端设备。第二终端设备包括处理模块和收发模块,可以参考第一终端设备的描述。例如,收发模块2020可以用于执行图18所示的实施例中由第一终端设备所执行的全部收发操作,例如S1801和S1802,和/或用于支持本文所描述的技术的其它过程。
示例性地,通信装置2000例如为第一控制面网元。第一控制面网元2000包括处理模块2010。可选的,还可以包括收发模块2020。例如,收发模块2020可以用于执行图19所示的实施例中由第一终端设备所执行的全部收发操作,例如S1901和S1902,和/或用于支持本文所描述的技术的其它过程。
以下从CPE侧,对图10-图16所示的方法进行说明。如图21所示,该方法包括:
S2101:第一终端设备接收第二终端的第一消息,所述第一消息请求建立所述第二终端设备与数据网络的第一连接。
其中,第一终端设备可以是图10-图16中的CPE;第二终端设备可以是图10-图16中的RG;第一消息可以是第一RG NAS消息;第一连接可以是RG的PDU会话。
S2101可以参考S1001或S1401的描述。
S2102:所述第一终端设备通过所述第一终端设备和核心网之间的控制面向所述核心网转发所述第一消息,以建立所述第一连接的用户面网元到所述数据网络的连接。
其中,第一终端设备和核心网之间的控制面可以是CPE和CPE AMF之间的NAS消息。
S2102可以参考S1002或图11或S1403的描述。
S2103:所述第一终端设备建立或者选择用于传输所述第一连接的数据的第二连接,所述第二连接为所述第一终端设备与所述第一连接的用户面网元所在的数据网络的连接。
其中,第二连接可以是CPE的PDU会话。
其中,该第一连接的用户面网元与该第二连接的用户面网元之间的连接是通过该第一连接的建立和该第二连接的建立或修改来建立的。
在一种可能的实施方式中,第一终端设备先执行S2102再执行S2103。在这种可能的实施方式中,S2103可以参考S1003或图12的描述。该第一连接的用户面网元与该第二连接的用户面网元之间的连接建立可参考S1004或图13。
在另一种可能的实施方式中,第一终端设备先执行S2103再执行S2102。在这种可能的实施方式中,S2103可以参考S1402或图15的描述。该第一连接的用户面网元与该第二连接的用户面网元之间的连接建立可参考S1404或图15。
通过上述S2101-S2103,第一终端设备通过该第一终端设备和核心网之间的控制面向该核心网转发第二终端设备的第一消息,第一终端设备建立或者选择第一终端设 备的第二连接,用于传输第二终端设备的第一连接的数据,无需建立多层IPSec隧道,简化了第一终端设备和第二终端设备的实现复杂度,减少了信令和数据的传输的迂回路径,降低了通信时延。
以下从RG侧,对图10-图16所示的方法进行说明。如图18所示,该方法可参考图18的描述。
以下从CPE AMF侧,对图10-图16所示的方法进行说明。如图22所示,该方法包括:
S2201:第一控制面网元通过与第一终端设备的控制面获取第二终端设备的第一消息,该第一消息请求建立该第二终端设备与数据网络的第一连接。
其中,第一控制面网元可以是图10-图16中的CPE AMF;第一终端设备可以是图5-图9中的CPE;第二终端设备可以是图5-图9中的RG;第一消息可以是第一RG NAS消息;第一连接可以是RG的PDU会话。
S2201可以参考S1101的描述。
S2202:第一控制面网元向服务于第二终端设备的第二控制面网元发送该第一消息。
其中,第二控制面网元可以是图10-图16中的RG AMF。
S2202可以参考S1102的描述。
S2203:第一控制面网元从第一终端设备接收第二消息,该第二消息请求建立第一终端设备与第一连接的用户面网元的第二连接;该第二连接用于传输该第一连接的数据包。
其中,第二消息可以是图10-图16中的CPE NAS消息;第二连接可以是CPE的PDU会话。
S2203可以参考S1201或S1501的描述。
S2204:获取该第一连接的用户面网元的隧道端点标识和该第二连接的用户面网元的隧道端点标识,以使能建立该第一连接的用户面网元和该第二连接的用户面网元之间的连接。
其中,第一连接的用户面网元的隧道端点标识可以是图10-图16中的RG UPF CN tunnel info;第二连接的用户面网元的隧道端点标识可以是图10-图16中的CPE UPF CN tunnel info。
S2204可以参考图10-图16中CPE AMF获取RG UPF CN tunnel info和CPE UPF CN tunnel info,并向CPE UPF发送RG UPF CN tunnel info,向RG UPF发送CPE UPF CN tunnel info的描述。
图21所示的终端设备可以参考图20所述的通信装置示意性框图。
示例性地,通信装置2000例如为第一终端设备。第一终端设备包括处理模块和收发模块,可以参考图20的描述。例如,处理模块2010可以用于执行图21所示的实施例中由第一终端设备所执行的除了收发操作之外的全部操作,例如S2103,和/或用于支持本文所描述的技术的其它过程。收发模块2020可以用于执行图21所示的实 施例中由第一终端设备所执行的全部收发操作,例如S2101和S2102,和/或用于支持本文所描述的技术的其它过程。
图22所示的第一控制面网元可以参考图20所述的通信装置示意性框图。
示例性地,通信装置2000例如为第一控制面网元。第一控制面网元2000包括处理模块2010。可选的,还可以包括收发模块2020。例如,收发模块2020可以用于执行图22所示的实施例中由第一终端设备所执行的全部收发操作,例如S2201-S2204,和/或用于支持本文所描述的技术的其它过程。
参考图21示出的一种简化的终端设备的结构示意图,收发单元2110用于执行上述方法实施例中第一终端设备侧的发送操作和接收操作,处理单元2120用于执行上述方法实施例中第一终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,处理单元2110可以用于执行图22所示的实施例中由第一终端设备所执行的除了收发操作之外的全部操作,例如S2203,和/或用于支持本文所描述的技术的其它过程。收发单元2120可以用于执行图22所示的实施例中由第一终端设备所执行的全部收发操作,例如S2201和S2202,和/或用于支持本文所描述的技术的其它过程。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由第一终端设备所执行的动作。
当该通信装置为第一终端设备时,图23示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图23中,终端设备以CPE作为例子。如图23所示,终端设备包括处理器、存储器、无线或有线连接装置以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。无线或有线连接装置主要用于无线信号或有线信号的转换和处理。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
为便于说明,图23中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将无线或有线连接装置视为终端设备的收发单元(收发单元可以是一个功能单元,该功能单元能够实现发送功能和接收功能;或者,收发单元也可以包括两个功能单元,分别为能够实现接收功能的接收单元和能够实现发送功能的发送单元),将具有处理功能的处理器视为终端设备的处理单元。如图23所示,终端设备包括收发单元2310和处理单元2320。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元2310中用于实现接收功能的器件视为接收单元,将收发单元2310中用于实现发送功能的器件视为发送单元,即收发单元2310包括接收单 元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元2310用于执行上述方法实施例中第一终端设备侧的发送操作和接收操作,处理单元2320用于执行上述方法实施例中第一终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,处理单元2310可以用于执行图17所示的实施例中由第一终端设备所执行的除了收发操作之外的全部操作,例如S1703,和/或用于支持本文所描述的技术的其它过程。收发单元2320可以用于执行图17所示的实施例中由第一终端设备所执行的全部收发操作,例如S1701和S1702,和/或用于支持本文所描述的技术的其它过程。
在另一种实现方式中,收发单元2320可以用于执行图18所示的实施例中由第一终端设备所执行的全部收发操作,例如S1801和S1802,和/或用于支持本文所描述的技术的其它过程。
在另一种实现方式中,处理单元2310可以用于执行图21所示的实施例中由第一终端设备所执行的除了收发操作之外的全部操作,例如S2103,和/或用于支持本文所描述的技术的其它过程。收发单元2320可以用于执行图21所示的实施例中由第一终端设备所执行的全部收发操作,例如S2101和S2102,和/或用于支持本文所描述的技术的其它过程。
在另一种实现方式中,收发单元2320可以用于执行图22所示的实施例中由第一终端设备所执行的全部收发操作,例如S2201-S2204,和/或用于支持本文所描述的技术的其它过程。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发机和处理机。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。本实施例中的通信装置为终端设备时,可以参照图20所示的设备。收发机可以参考图20中的处理单元2010,并完成相应的功能;处理机可以参考图20中的收发单元2020,并完成相应的功能。本实施例中的通信装置为控制面网元时,可以参照图20所示的设备。收发机可以参考图20中的处理单元2010,并完成相应的功能;处理机可以参考图20中的收发单元2020,并完成相应的功能。
本申请实施例还提供一种通信装置,参考图24所示,包括:处理器2401、通信接口2402、存储器2403。其中,处理器2401、通信接口2402以及存储器2403可以通过总线2404相互连接;总线2404可以是PCI总线或EISA总线等。上述总线2404可以分为地址总线、数据总线和控制总线等。为便于表示,图24中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图24所示的通信装置可以为图5-图23所示的CPE AMF(在图22中也称为第一控制面网元),用以完成相应功能。
图24所示的通信装置可以为图5-图23所示的RG AMF(在图19中也称为第一控制面网元),用以完成相应功能。
本申请实施例还提供一种通信系统,其包括前述的第一终端设备、第二终端设备接入网设备、第一控制面网元中的一个或多个。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图5-图23所示的方法中CPE(也称为第一终端设备)执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图5-图23所示的方法中RG(也称为第二终端设备)执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图5-图23所示的方法中CPE AMF(在图22中也称为第一控制面网元)执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图5-图23所示的方法中RG AMF(在图19中也称为第一控制面网元)执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图5-图23所示的方法中CPE(也称为第一终端设备)执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图5-图23所示的方法中RG(也称为第二终端设备)执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图5-图23所示的方法中CPE AMF(在图22中也称为第一控制面网元)执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图5-图23所示的方法中RG AMF(在图19中也称为第一控制面网元)执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图5-图23所示的方法中CPE(也称为第一终端设备)执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图5-图23所示的方法中RG(也称为第二终端设备)执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图5-图23所示的方法中CPE AMF(在图22中也称为第一控制面网元)执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图5-图23所示的方法中RG AMF(在图19中也称为第 一控制面网元)执行的各个步骤。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的用于传输数据的方法中由业务服务器执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是该芯片上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的用于传输数据的方法中由接入网设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是该芯片上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的用于传输数据的方法中由策略控制网元执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是该芯片上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的用于传输数据的方法中由会话管理网元执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是该芯片上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
上述的芯片也可以替换为芯片系统,这里不再赘述。
本申请中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单 元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中至少一个,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种连接建立的方法,其特征在于,包括:
    第一终端设备接收第二终端的第一消息,所述第一消息请求建立所述第二终端设备与数据网络的第一连接;
    所述第一终端设备通过所述第一终端设备和核心网之间的控制面向所述核心网转发所述第一消息,以获取所述核心网接受请求建立所述第一连接的响应;
    所述第一终端设备建立或者选择用于传输所述第一连接的数据的第二连接;其中,所述第二连接为所述第一终端设备与所述数据网络的连接。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:所述第一终端通过所述控制面获取所述核心网确定的所述第一连接的建立参数;
    所述第一终端设备建立或者选择用于传输所述第一连接的数据的第二连接,包括:
    所述第一终端根据所述第一连接的建立参数建立或者选择所述第二连接。
  3. 根据权利要求2所述的方法,其中,所述第一连接的建立参数包括:
    所述核心网确定的所述第一连接的网络切片选择辅助信息NSSAI;或者,
    所述核心网确定的所述第一连接的数据网络名称DNN。
  4. 根据权利要求1所述的方法,其中,所述方法还包括:所述第一终端获取所述第二终端请求的所述第一连接的请求建立参数;
    所述第一终端设备建立或者选择用于传输所述第一连接的数据的第二连接,包括:
    所述第一终端根据所述第一连接的请求建立参数建立或者选择所述第二连接。
  5. 根据权利要求4所述的方法,其中,所述第一连接的请求建立参数包括:
    所述第二终端所请求的所述第一连接的网络切片选择辅助信息NSSAI;或者,
    所述第二终端所请求的所述第一连接的数据网络名称DNN。
  6. 根据权利要求1-5任一所述的方法,其中,所述第一消息为第一非接入层NAS消息,所述第一终端设备通过所述第一终端设备和核心网之间的控制面向所述核心网转发所述第一消息,包括:
    所述第一终端设备向服务于所述第一终端的第一控制面网元发送第二NAS消息,所述第二NAS消息包括所述第一NAS消息,以使能所述第一控制面网元向服务于所述第二终端设备的第二控制面网元发送所述第一NAS消息。
  7. 根据权利要求1-6任一所述的方法,其中,所述方法还包括:
    所述第一终端设备从所述第二终端设备接收所述第一连接的第一数据包;
    所述第一终端设备将所述第一数据包转变为所述第二连接的第二数据包;
    所述第一终端设备通过所述第二连接发送所述第二数据包。
  8. 根据权利要求7所述的方法,其中,所述第一终端设备将所述第一数据包转变为所述第二连接的第二数据包,包括:
    所述第一终端设备将所述第一数据包的源IP地址设置为为所述第二连接分配的所述第一终端设备的IP地址。
  9. 根据权利要求1-8任一所述的方法,其中,所述方法还包括:
    所述第一终端设备接收所述第二连接的第三数据包;
    所述第一终端设备将所述第三数据包转变为所述第一连接的第四数据包;
    所述第一终端设备向所述第二终端设备发送所述第四数据包。
  10. 根据权利要求9所述的方法,其中,所述第一终端设备将所述第三数据包转变为所述第一连接的第四数据包,包括:
    所述第一终端设备将所述第三数据包的目的IP地址设置为为所述第一连接分配的所述第二终端的IP地址。
  11. 根据权利要求1-10任一所述的方法,其中,所述第一连接为所述第一终端与所述数据网络的第一协议数据单元PDU会话,所述第二连接为所述第二终端与所述数据网络的第二PDU会话。
  12. 根据权利要求1-11任一所述的方法,其中,所述第一连接与所述第二连接的数据网络名称DNN或者网络切片选择辅助信息NSSAI相同。
  13. 一种连接建立的方法,其特征在于,包括:
    第一控制面网元通过与第一终端设备的第二控制面网元获取第二终端设备的第一消息,所述第一消息请求建立所述第二终端设备与数据网络的第一连接;
    所述第一控制面网元向服务于所述第二终端设备的第三控制面网元发送所述第一消息,以获取核心网对接受请求建立所述第一连接的响应。
  14. 根据权利要求13所述的方法,其中,所述方法还包括:
    所述第一控制面网元获取所述核心网确定的所述第一连接的建立参数;
    所述第一控制面网元向所述第一终端设备发送所述第一连接的建立参数,以使能所述第一终端设备建立或者选择用于传输所述第一连接的数据的第二连接;其中,所述第二连接为所述第一终端设备与所述数据网络的连接。
  15. 根据权利要求14所述的方法,其中,所述第一连接的建立参数包括:
    所述核心网确定的所述第一连接的网络切片选择辅助信息NSSAI;或者,
    所述核心网确定的所述第一连接的数据网络名称DNN。
  16. 根据权利要求14或15所述的方法,其中,还包括:
    所述第一控制面网元参与所述第二连接的建立。
  17. 根据权利要求13-16任一所述的方法,其中,所述第一消息为第一非接入层NAS消息,所述第一控制面网元通过与第一终端设备的控制面获取第二终端设备的第一消息,包括:
    所述第一控制面网元从所述第一终端设备接收第二NAS消息,所述第二NAS消息包括所述第一NAS消息。
  18. 根据权利要求17所述的方法,其中,所述第二NAS消息还包括所述第二终端设备的第一标识;
    所述方法还包括:根据所述第一标识获取所述第二终端设备的第二标识;
    所述第一控制面网元向服务于所述第二终端设备的第二控制面网元发送所述第一消息,包括:所述第一控制面网元向所述第二控制面网元发送所述第一消息和所述第二标识。
  19. 根据权利要求13-18任一所述的方法,其中,所述第一连接为所述第一终端与所述数据网络的第一协议数据单元PDU会话,所述第二连接为所述第二终端与所述数据网络的第二PDU会话。
  20. 根据权利要求13-19任一所述的方法,其中,所述第一连接与所述第二连接的数据网络名称DNN或者网络切片选择辅助信息NSSAI相同。
  21. 一种通信装置,其特征在于,包括处理器;
    所述处理器用于从存储器读取并运行指令,以实现如权利要求1-12任一所述方法。
  22. 一种通信装置,其特征在于,包括处理器;
    所述处理器用于从存储器读取并运行指令,以实现如权利要求13-20任一所述方法。
  23. 一种程序产品,其特征在于,包括指令,当所述指令在通信装置上运行时,以使所述通信装置实现如权利要求1-12任一所述的方法。
  24. 一种程序产品,其特征在于,包括指令,当所述指令在通信装置上运行时,以使所述通信装置实现如权利要求13-20任一所述的方法。
  25. 一种计算机可读存储介质,其特征在于,包括如权利要求23所述的程序产品。
  26. 一种计算机可读存储介质,其特征在于,包括如权利要求24所述的程序产品。
PCT/CN2021/093968 2020-05-22 2021-05-15 连接建立的方法、装置和系统 WO2021233235A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010444377.1 2020-05-22
CN202010444377.1A CN113709904B (zh) 2020-05-22 2020-05-22 连接建立的方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2021233235A1 true WO2021233235A1 (zh) 2021-11-25

Family

ID=78646495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093968 WO2021233235A1 (zh) 2020-05-22 2021-05-15 连接建立的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN113709904B (zh)
WO (1) WO2021233235A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115297569A (zh) * 2022-10-08 2022-11-04 北京云智软通信息技术有限公司 一种通信方法、节点和设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018233484A1 (zh) * 2017-06-20 2018-12-27 华为技术有限公司 会话管理方法、及装置
CN109788520A (zh) * 2017-11-13 2019-05-21 电信科学技术研究院 网络切换方法、amf和ran节点
WO2019101211A1 (zh) * 2017-11-27 2019-05-31 华为技术有限公司 一种通信方法、通信节点和系统
CN110035564A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 通信方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018161796A1 (zh) * 2017-03-08 2018-09-13 华为技术有限公司 多接入场景中的连接处理方法和装置
CN110049072B (zh) * 2018-01-15 2021-09-21 华为技术有限公司 会话建立方法及设备
CN111972005B (zh) * 2018-04-13 2022-10-18 Oppo广东移动通信有限公司 建立传输路径的方法和设备
CN110972218B (zh) * 2018-09-30 2021-04-09 华为技术有限公司 一种通信方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018233484A1 (zh) * 2017-06-20 2018-12-27 华为技术有限公司 会话管理方法、及装置
CN109788520A (zh) * 2017-11-13 2019-05-21 电信科学技术研究院 网络切换方法、amf和ran节点
WO2019101211A1 (zh) * 2017-11-27 2019-05-31 华为技术有限公司 一种通信方法、通信节点和系统
CN110035564A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 通信方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP: "3GPP TR 23.716 v0.3.0", STUDY ON THE WIRELESS AND WIRELINE CONVERGENCE FOR THE 5G SYSTEM ARCHITECTURE (RELEASE 15), 31 March 2018 (2018-03-31), XP051450341 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115297569A (zh) * 2022-10-08 2022-11-04 北京云智软通信息技术有限公司 一种通信方法、节点和设备及存储介质
CN115297569B (zh) * 2022-10-08 2023-06-02 北京云智软通信息技术有限公司 一种通信方法、节点和设备及存储介质

Also Published As

Publication number Publication date
CN113709904A (zh) 2021-11-26
CN113709904B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
CN109792598B (zh) 支持网络分片的漫游环境中用于终端附接和创建归属路由pdu会话的方法和设备
EP4117340A1 (en) Business processing method, device and system for proximity service
WO2018014539A1 (zh) 一种信息传输方法、融合网关及系统
EP4192184A1 (en) Pdu session establishment method, terminal device, and chip system
US11902849B2 (en) Methods and apparatus for supporting quality of service in a system including a cable modem termination system and wireless communications link
CN110166414B (zh) 一种通信方法、装置及系统
CN112312381B (zh) 一种通信方法及设备
CN106470465B (zh) Wifi语音业务发起方法、lte通信设备、终端及通信系统
WO2022089164A1 (zh) 多路径传输方法和通信装置
WO2012062183A1 (zh) 一种实现数据流服务质量和计费策略控制的方法及系统
WO2021254353A1 (zh) 一种释放中继连接的方法、设备及系统
WO2012068946A1 (zh) 查询网关的方法及系统
WO2021233235A1 (zh) 连接建立的方法、装置和系统
US20240107417A1 (en) Communication method and apparatus
WO2014172836A1 (zh) 接入网络的方法、装置及网络系统
EP4044614A1 (en) Method for establishing multicast session and network device
WO2019136925A1 (zh) 一种数据传输方法及装置、计算机存储介质
WO2024032245A1 (zh) 通信方法和通信装置
WO2022226749A1 (zh) 一种通信方法及装置、存储介质和芯片系统
CN111869309B (zh) 在无线通信系统中建立用于与局域网通信的会话的方法、装置和系统
WO2023151491A1 (zh) 请求应用功能的方法、装置和系统
WO2023001046A1 (zh) 一种通信方法及装置
WO2023015973A1 (zh) 一种网络切片准入控制方法和装置
WO2023040732A1 (zh) 确定密钥获取方式的方法、通信方法及通信装置
WO2023236764A1 (zh) 一种分配互联网协议地址的方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21809341

Country of ref document: EP

Kind code of ref document: A1